WorldWideScience

Sample records for quantum noise bits

  1. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  2. Can classical noise enhance quantum transmission?

    International Nuclear Information System (INIS)

    Wilde, Mark M

    2009-01-01

    A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.

  3. Noise-tolerant parity learning with one quantum bit

    Science.gov (United States)

    Park, Daniel K.; Rhee, June-Koo K.; Lee, Soonchil

    2018-03-01

    Demonstrating quantum advantage with less powerful but more realistic devices is of great importance in modern quantum information science. Recently, a significant quantum speedup was achieved in the problem of learning a hidden parity function with noise. However, if all data qubits at the query output are completely depolarized, the algorithm fails. In this work, we present a quantum parity learning algorithm that exhibits quantum advantage as long as one qubit is provided with nonzero polarization in each query. In this scenario, the quantum parity learning naturally becomes deterministic quantum computation with one qubit. Then the hidden parity function can be revealed by performing a set of operations that can be interpreted as measuring nonlocal observables on the auxiliary result qubit having nonzero polarization and each data qubit. We also discuss the source of the quantum advantage in our algorithm from the resource-theoretic point of view.

  4. Insecurity of imperfect quantum bit seal

    International Nuclear Information System (INIS)

    Chau, H.F.

    2006-01-01

    Quantum bit seal is a way to encode a classical bit quantum mechanically so that everyone can obtain non-zero information on the value of the bit. Moreover, such an attempt should have a high chance of being detected by an authorized verifier. Surely, a reader looks for a way to get the maximum amount of information on the sealed bit and at the same time to minimize her chance of being caught. And a verifier picks a sealing scheme that maximizes his chance of detecting any measurement of the sealed bit. Here, I report a strategy that passes all measurement detection procedures at least half of the time for all quantum bit sealing schemes. This strategy also minimizes a reader's chance of being caught under a certain scheme. In this way, I extend the result of Bechmann-Pasquinucci et al. by proving that quantum seal is insecure in the case of imperfect sealed bit recovery

  5. Image processing on the image with pixel noise bits removed

    Science.gov (United States)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  6. Cheat sensitive quantum bit commitment via pre- and post-selected quantum states

    Science.gov (United States)

    Li, Yan-Bing; Wen, Qiao-Yan; Li, Zi-Chen; Qin, Su-Juan; Yang, Ya-Tao

    2014-01-01

    Cheat sensitive quantum bit commitment is a most important and realizable quantum bit commitment (QBC) protocol. By taking advantage of quantum mechanism, it can achieve higher security than classical bit commitment. In this paper, we propose a QBC schemes based on pre- and post-selected quantum states. The analysis indicates that both of the two participants' cheat strategies will be detected with non-zero probability. And the protocol can be implemented with today's technology as a long-term quantum memory is not needed.

  7. Secure self-calibrating quantum random-bit generator

    International Nuclear Information System (INIS)

    Fiorentino, M.; Santori, C.; Spillane, S. M.; Beausoleil, R. G.; Munro, W. J.

    2007-01-01

    Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographic method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled

  8. Quantum measurement and entanglement of spin quantum bits in diamond

    NARCIS (Netherlands)

    Pfaff, W.

    2013-01-01

    This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for

  9. Superconducting quantum bits

    International Nuclear Information System (INIS)

    Mooij, Hans

    2005-01-01

    Superconducting devices can be used to explore the boundaries between the quantum and classical worlds, and could also have applications in quantum information. The quantum world looks very different to the ordinary world. A quantum particle can, for instance, be in two places simultaneously, while its speed and position cannot both be measured with complete accuracy at the same time. Moreover, if its mass is small enough, a quantum particle can tunnel through energy barriers that its classical counterparts could never cross. Physicists are comfortable with the use of quantum mechanics to describe atomic and subatomic particles. However, in recent years we have discovered that micron-sized objects that have been produced using standard semiconductor-fabrication techniques - objects that are small on everyday scales but large compared with atoms - can also behave as quantum particles. These artificial quantum objects might one day be used as 'quantum bits' in a quantum computer that could perform certain computational tasks much faster than any classical computing device. Before then, however, these devices will allow us to explore the interface between the quantum and classical worlds, and to study how interactions with external degrees of freedom lead to a gradual disappearance of quantum behaviour. (U.K.)

  10. Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels

    Science.gov (United States)

    Qu, Zhiguo; Wu, Shengyao; Wang, Mingming; Sun, Le; Wang, Xiaojun

    2017-12-01

    As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the χ state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.

  11. Possibility, impossibility, and cheat sensitivity of quantum-bit string commitment

    NARCIS (Netherlands)

    Buhrman, H.; Christandl, M.; Hayden, P.; Lo, H.-K.; Wehner, S.

    2008-01-01

    Unconditionally secure nonrelativistic bit commitment is known to be impossible in both the classical and the quantum worlds. But when committing to a string of n bits at once, how far can we stretch the quantum limits? In this paper, we introduce a framework for quantum schemes where Alice commits

  12. A new approach to quantum oblivious transfer and quantum bit commitment

    International Nuclear Information System (INIS)

    Dang, Minh-Dung; Bellot, P.

    2005-01-01

    Full text: In this communication, we present our works on building quantum OT and BC protocols. The starting idea is to use non-orthogonal instead of orthogonal quantum states (|0>, |1>) to encode classical bits. Based on this coding, we propose a Weak Quantum Oblivious Transfer protocol, and by extending Crepeau's works, we can create a Quantum One-out-of-two Oblivious Transfer protocol that is secure against Alice and Bob cheating. A regular Bit Commitment protocol can then be built from our OOT protocol. Although the unconditional security of our BC and OOT protocols seem to contradict Mayers and Lo-Chau theorems, we conjecture that our protocols do not fit in the models of Mayers and Lo-Chau. (author)

  13. High-order noise filtering in nontrivial quantum logic gates.

    Science.gov (United States)

    Green, Todd; Uys, Hermann; Biercuk, Michael J

    2012-07-13

    Treating the effects of a time-dependent classical dephasing environment during quantum logic operations poses a theoretical challenge, as the application of noncommuting control operations gives rise to both dephasing and depolarization errors that must be accounted for in order to understand total average error rates. We develop a treatment based on effective Hamiltonian theory that allows us to efficiently model the effect of classical noise on nontrivial single-bit quantum logic operations composed of arbitrary control sequences. We present a general method to calculate the ensemble-averaged entanglement fidelity to arbitrary order in terms of noise filter functions, and provide explicit expressions to fourth order in the noise strength. In the weak noise limit we derive explicit filter functions for a broad class of piecewise-constant control sequences, and use them to study the performance of dynamically corrected gates, yielding good agreement with brute-force numerics.

  14. How to Convert a Flavor of Quantum Bit Commitment

    DEFF Research Database (Denmark)

    Crepeau, Claude; Legare, Frédéric; Salvail, Louis

    2001-01-01

    In this paper we show how to convert a statistically binding but computationally concealing quantum bit commitment scheme into a computationally binding but statistically concealing QBC scheme. For a security parameter n, the construction of the statistically concealing scheme requires O(n2......) executions of the statistically binding scheme. As a consequence, statistically concealing but computationally binding quantum bit commitments can be based upon any family of quantum one-way functions. Such a construction is not known to exist in the classical world....

  15. Experimental bit commitment based on quantum communication and special relativity.

    Science.gov (United States)

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H

    2013-11-01

    Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.

  16. Security bound of cheat sensitive quantum bit commitment.

    Science.gov (United States)

    He, Guang Ping

    2015-03-23

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  17. Security bound of cheat sensitive quantum bit commitment

    Science.gov (United States)

    He, Guang Ping

    2015-03-01

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  18. Quantum Bit Commitment and the Reality of the Quantum State

    Science.gov (United States)

    Srikanth, R.

    2018-01-01

    Quantum bit commitment is insecure in the standard non-relativistic quantum cryptographic framework, essentially because Alice can exploit quantum steering to defer making her commitment. Two assumptions in this framework are that: (a) Alice knows the ensembles of evidence E corresponding to either commitment; and (b) system E is quantum rather than classical. Here, we show how relaxing assumption (a) or (b) can render her malicious steering operation indeterminable or inexistent, respectively. Finally, we present a secure protocol that relaxes both assumptions in a quantum teleportation setting. Without appeal to an ontological framework, we argue that the protocol's security entails the reality of the quantum state, provided retrocausality is excluded.

  19. Cheat sensitive quantum bit commitment.

    Science.gov (United States)

    Hardy, Lucien; Kent, Adrian

    2004-04-16

    We define cheat sensitive cryptographic protocols between mistrustful parties as protocols which guarantee that, if either cheats, the other has some nonzero probability of detecting the cheating. We describe an unconditionally secure cheat sensitive nonrelativistic bit commitment protocol which uses quantum information to implement a task which is classically impossible; we also describe a simple relativistic protocol.

  20. Cloning the entanglement of a pair of quantum bits

    International Nuclear Information System (INIS)

    Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.; Fiurasek, Jaromir

    2004-01-01

    It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone

  1. Cheat Sensitive Quantum Bit Commitment

    OpenAIRE

    Hardy, Lucien; Kent, Adrian

    1999-01-01

    We define cheat sensitive cryptographic protocols between mistrustful parties as protocols which guarantee that, if either cheats, the other has some nonzero probability of detecting the cheating. We give an example of an unconditionally secure cheat sensitive non-relativistic bit commitment protocol which uses quantum information to implement a task which is classically impossible; we also describe a simple relativistic protocol.

  2. Geneva University - Superconducting flux quantum bits: fabricated quantum objects

    CERN Multimedia

    2007-01-01

    Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...

  3. Room temperature solid-state quantum bit with second-long memory

    Science.gov (United States)

    Kucsko, Georg; Maurer, Peter; Latta, Christian; Hunger, David; Jiang, Liang; Pastawski, Fernando; Yao, Norman; Bennet, Steven; Twitchen, Daniel; Cirac, Ignacio; Lukin, Mikhail

    2012-02-01

    Realization of stable quantum bits (qubits) that can be prepared and measured with high fidelity and that are capable of storing quantum information for long times exceeding seconds is an outstanding challenge in quantum science and engineering. Here we report on the realization of such a stable quantum bit using an individual ^13C nuclear spin within an isotopically purified diamond crystal at room temperature. Using an electronic spin associated with a nearby Nitrogen Vacancy color center, we demonstrate high fidelity initialization and readout of a single ^13C qubit. Quantum memory lifetime exceeding one second is obtained by using dissipative optical decoupling from the electronic degree of freedom and applying a sequence of radio-frequency pulses to suppress effects from the dipole-dipole interactions of the ^13C spin-bath. Techniques to further extend the quantum memory lifetime as well as the potential applications are also discussed.

  4. An Information-Theoretic Perspective on the Quantum Bit Commitment Impossibility Theorem

    Directory of Open Access Journals (Sweden)

    Marius Nagy

    2018-03-01

    Full Text Available This paper proposes a different approach to pinpoint the causes for which an unconditionally secure quantum bit commitment protocol cannot be realized, beyond the technical details on which the proof of Mayers’ no-go theorem is constructed. We have adopted the tools of quantum entropy analysis to investigate the conditions under which the security properties of quantum bit commitment can be circumvented. Our study has revealed that cheating the binding property requires the quantum system acting as the safe to harbor the same amount of uncertainty with respect to both observers (Alice and Bob as well as the use of entanglement. Our analysis also suggests that the ability to cheat one of the two fundamental properties of bit commitment by any of the two participants depends on how much information is leaked from one side of the system to the other and how much remains hidden from the other participant.

  5. Shuttle bit rate synchronizer. [signal to noise ratios and error analysis

    Science.gov (United States)

    Huey, D. C.; Fultz, G. L.

    1974-01-01

    A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.

  6. Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system

    Science.gov (United States)

    Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian

    2018-06-01

    In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.

  7. Klasifikasi Bit-Plane Noise untuk Penyisipan Pesan pada Teknik Steganography BPCS Menggunakan Fuzzy Inference Sistem Mamdani

    Directory of Open Access Journals (Sweden)

    Rahmad Hidayat

    2015-04-01

    Full Text Available Bit-Plane Complexity Segmentation (BPCS is a fairly new steganography technique. The most important process in BPCS is the calculation of complexity value of a bit-plane. The bit-plane complexity is calculated by looking at the amount of bit changes contained in a bit-plane. If a bit-plane has a high complexity, the bi-plane is categorized as a noise bit-plane that does not contain valuable information on the image. Classification of the bit-plane using the set cripst set (noise/not is not fair, where a little difference of the value will significantly change the status of the bit-plane. The purpose of this study is to apply the principles of fuzzy sets to classify the bit-plane into three sets that are informative, partly informative, and the noise region. Classification of the bit-plane into a fuzzy set is expected to classify the bit-plane in a more objective approach and ultimately message capacity of the images can be improved by using the Mamdani fuzzy inference to take decisions which bit-plane will be replaced with a message based on the classification of bit-plane and the size of the message that will be inserted. This research is able to increase the capability of BPCS steganography techniques to insert a message in bit-pane with more precise so that the container image quality would be better. It can be seen that the PSNR value of original image and stego-image is only slightly different.

  8. Efficient quantum state transfer in an engineered chain of quantum bits

    Science.gov (United States)

    Sandberg, Martin; Knill, Emanuel; Kapit, Eliot; Vissers, Michael R.; Pappas, David P.

    2016-03-01

    We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.

  9. Bit-Serial Adder Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the

  10. Quantum bit commitment with cheat sensitive binding and approximate sealing

    Science.gov (United States)

    Li, Yan-Bing; Xu, Sheng-Wei; Huang, Wei; Wan, Zong-Jie

    2015-04-01

    This paper proposes a cheat-sensitive quantum bit commitment scheme based on single photons, in which Alice commits a bit to Bob. Here, Bob’s probability of success at cheating as obtains the committed bit before the opening phase becomes close to \\frac{1}{2} (just like performing a guess) as the number of single photons used is increased. And if Alice alters her committed bit after the commitment phase, her cheating will be detected with a probability that becomes close to 1 as the number of single photons used is increased. The scheme is easy to realize with present day technology.

  11. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    International Nuclear Information System (INIS)

    Mendonca, Fabio Alencar; Ramos, Rubens Viana

    2008-01-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed

  12. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    Science.gov (United States)

    Mendonça, Fábio Alencar; Ramos, Rubens Viana

    2008-02-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.

  13. Classical noise, quantum noise and secure communication

    International Nuclear Information System (INIS)

    Tannous, C; Langlois, J

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems. (review)

  14. Quantum Noise

    International Nuclear Information System (INIS)

    Beenakker, C W J

    2005-01-01

    Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The

  15. Device-independent quantum reading and noise-assisted quantum transmitters

    International Nuclear Information System (INIS)

    Roga, W; Buono, D; Illuminati, F

    2015-01-01

    In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In the presence of noise or for sufficiently weak signals, quantum reading can outperform classical reading by reason of enhanced state distinguishability. Here we show that enhanced quantum efficiency depends on the presence in the transmitter of a particular type of quantum correlations, the discord of response. Different encodings and transmitters give rise to different levels of efficiency. Considering noisy quantum probes, we show that squeezed thermal transmitters with non-symmetrically distributed noise among the field modes yield higher quantum efficiency compared with coherent thermal quantum states. The noise-enhanced quantum advantage is a consequence of the discord of response being a non-decreasing function of increasing thermal noise under constant squeezing, a behavior that leads to increased state distinguishability. We finally show that, for non-symmetric squeezed thermal states, the probability of error, as measured by the quantum Chernoff bound, vanishes asymptotically with increasing local thermal noise with finite global squeezing. Therefore, with fixed finite squeezing, noisy but strongly discordant quantum states with a large noise imbalance between the field modes can outperform noisy classical resources as well as pure entangled transmitters with the same finite level of squeezing. (paper)

  16. Fault-Tolerate Three-Party Quantum Secret Sharing over a Collective-Noise Channel

    International Nuclear Information System (INIS)

    Li Chun-Yan; Li Yan-Song

    2011-01-01

    We present a fault-tolerate three-party quantum secret sharing (QSS) scheme over a collective-noise channel. Decoherence-free subspaces are used to tolerate two noise modes, a collective-dephasing channel and a collective-rotating channel, respectively. In this scheme, the boss uses two physical qubits to construct a logical qubit which acts as a quantum channel to transmit one bit information to her two agents. The agents can get the information of the private key established by the boss only if they collaborate. The boss Alice encodes information with two unitary operations. Only single-photon measurements are required to rebuilt Alice's information and detect the security by the agents Bob and Charlie, not Bell-state measurements. Moreover, Almost all of the photons are used to distribute information, and its success efficiency approaches 100% in theory. (general)

  17. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    Science.gov (United States)

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Supersymmetric quantum mechanics for string-bits

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1997-01-01

    The authors develop possible versions of supersymmetric single particle quantum mechanics, with application to superstring-bit models in view. The authors focus principally on space dimensions d = 1,2,4,8, the transverse dimensionalities of superstring in 3, 4, 7, 10 space-time dimensions. These are the cases for which classical superstring makes sense, and also the values of d for which Hooke's force law is compatible with the simplest superparticle dynamics. The basic question they address is: when is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string-bits that do not fall off with distance will almost certainly destroy cluster decomposition. They show that the answer is affirmative for d = 1,2, negative for d = 8, and so far inconclusive for d = 4

  19. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu; Chaaban, Anas; Shen, Chao; Elgala, Hany; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment's results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  20. Imperceptible reversible watermarking of radiographic images based on quantum noise masking.

    Science.gov (United States)

    Pan, Wei; Bouslimi, Dalel; Karasad, Mohamed; Cozic, Michel; Coatrieux, Gouenou

    2018-07-01

    Advances in information and communication technologies boost the sharing and remote access to medical images. Along with this evolution, needs in terms of data security are also increased. Watermarking can contribute to better protect images by dissimulating into their pixels some security attributes (e.g., digital signature, user identifier). But, to take full advantage of this technology in healthcare, one key problem to address is to ensure that the image distortion induced by the watermarking process does not endanger the image diagnosis value. To overcome this issue, reversible watermarking is one solution. It allows watermark removal with the exact recovery of the image. Unfortunately, reversibility does not mean that imperceptibility constraints are relaxed. Indeed, once the watermark removed, the image is unprotected. It is thus important to ensure the invisibility of reversible watermark in order to ensure a permanent image protection. We propose a new fragile reversible watermarking scheme for digital radiographic images, the main originality of which stands in masking a reversible watermark into the image quantum noise (the dominant noise in radiographic images). More clearly, in order to ensure the watermark imperceptibility, our scheme differentiates the image black background, where message embedding is conducted into pixel gray values with the well-known histogram shifting (HS) modulation, from the anatomical object, where HS is applied to wavelet detail coefficients, masking the watermark with the image quantum noise. In order to maintain the watermark embedder and reader synchronized in terms of image partitioning and insertion domain, our scheme makes use of different classification processes that are invariant to message embedding. We provide the theoretical performance limits of our scheme into the image quantum noise in terms of image distortion and message size (i.e. capacity). Experiments conducted on more than 800 12 bits radiographic images

  1. Supersymmetric quantum mechanics for string bits

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1997-01-01

    We develop possible versions of supersymmetric single-particle quantum mechanics, with application to superstring-bit models in view. We focus principally on space dimensions d=1,2,4,8, the transverse dimensionalities of superstring in 3, 4, 6, and 10 space-time dimensions. These are the cases for which open-quotes classicalclose quotes superstring makes sense, and also the values of d for which Hooke close-quote s force law is compatible with the simplest superparticle dynamics. The basic question we address is the following: When is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string bits that do not fall off with distance will almost certainly destroy cluster decomposition. We show that the answer is affirmative for d=1,2, negative for d=8, and so far inconclusive for d=4. copyright 1997 The American Physical Society

  2. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu

    2018-03-19

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment\\'s results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  3. High-speed noise-free optical quantum memory

    Science.gov (United States)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  4. Restoration for Noise Removal in Quantum Images

    Science.gov (United States)

    Liu, Kai; Zhang, Yi; Lu, Kai; Wang, Xiaoping

    2017-09-01

    Quantum computation has become increasingly attractive in the past few decades due to its extraordinary performance. As a result, some studies focusing on image representation and processing via quantum mechanics have been done. However, few of them have considered the quantum operations for images restoration. To address this problem, three noise removal algorithms are proposed in this paper based on the novel enhanced quantum representation model, oriented to two kinds of noise pollution (Salt-and-Pepper noise and Gaussian noise). For the first algorithm Q-Mean, it is designed to remove the Salt-and-Pepper noise. The noise points are extracted through comparisons with the adjacent pixel values, after which the restoration operation is finished by mean filtering. As for the second method Q-Gauss, a special mask is applied to weaken the Gaussian noise pollution. The third algorithm Q-Adapt is effective for the source image containing unknown noise. The type of noise can be judged through the quantum statistic operations for the color value of the whole image, and then different noise removal algorithms are used to conduct image restoration respectively. Performance analysis reveals that our methods can offer high restoration quality and achieve significant speedup through inherent parallelism of quantum computation.

  5. Reducing pure dephasing of quantum bits by collective encoding in quantum dot arrays

    International Nuclear Information System (INIS)

    Grodecka, A; Machnikowski, P; Jacak, L

    2006-01-01

    We show that phonon-induced pure dephasing of an excitonic (charge) quantum bit in a quantum dot (QD) may be reduced by collective encoding of logical qubits in QD arrays. We define the logical qubit on an array of 2, 4 and 8 QDs, connecting the logical 0) state with the presence of excitons in the appropriately chosen half of dots and the logical 1) state with the other half of the dots occupied. We give quantitative estimates of the resulting total error of a single qubit operation for an InAs/GaAs system

  6. Noise reduction in optically controlled quantum memory

    Science.gov (United States)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2018-05-01

    Quantum memory is an essential tool for quantum communications systems and quantum computers. An important category of quantum memory, called optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a single-photon signal through an atomic ensemble. In this type of memory, the residual light from the strong classical control beam can cause severe noise and degrade the system performance significantly. Efficiently suppressing this noise is a requirement for the successful implementation of optically controlled quantum memories. In this paper, we briefly introduce the latest and most common approaches to quantum memory and review the various noise-reduction techniques used in implementing them.

  7. Entanglement-enhanced communication over a quantum channel with correlated noise

    International Nuclear Information System (INIS)

    Banaszek, K.; Dragan, A.; Wasilewski, W.; Radzewicz, C.

    2005-01-01

    We present an experimental demonstration of entanglement enhanced classical capacity of a quantum channel with correlated noise. The channel is modelled by a fiber optic link exhibiting random birefringence that fluctuates on a time scale much longer than the temporal separation between consecutive uses of the channel. In this setting, it can be shown theoretically that introducing entanglement between two photons travelling down the fiber allows one to encode reliably one bit of information into their polarization degree of freedom. When no quantum correlations between two separate uses of the channel are allowed, this capacity is reduced by a factor of more than three. To demonstrate experimentally this effect, we generated polarization-entangled pairs of photons in either a singlet or a triplet state, corresponding to the two values of a classical bit. The pairs were then launched into a single-mode fiber submitted to random mechanical movements, scrambling the polarization state of the travelling light. At the output of the fiber, the photon pairs were detected using the Braunstein-Mann Bell state analyzer that allowed us to discriminate unambiguously the input singlet state against the triplet one despite polarization scrambling. To contrast this with the separable case, we also generated disentangled photon pairs and encoded information into their relative polarization. As predicted theoretically, after scrambling only partial information about the input state was retrieved. (author)

  8. Noise thresholds for optical quantum computers.

    Science.gov (United States)

    Dawson, Christopher M; Haselgrove, Henry L; Nielsen, Michael A

    2006-01-20

    In this Letter we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities <3 x 10(-3), and for depolarization probabilities <10(-4).

  9. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    Directory of Open Access Journals (Sweden)

    Min-Kyu Kim

    2015-12-01

    Full Text Available This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs. The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  10. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    International Nuclear Information System (INIS)

    Chang Yan; Zhang Shi-Bin; Yan Li-Li; Han Gui-Hua

    2015-01-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0′〉 state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0′〉. By using the |0′〉 state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping–pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. (paper)

  11. A short impossibility proof of quantum bit commitment

    International Nuclear Information System (INIS)

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Schlingemann, Dirk; Werner, Reinhard

    2013-01-01

    Bit commitment protocols, whose security is based on the laws of quantum mechanics alone, are generally held to be impossible on the basis of a concealment–bindingness tradeoff (Lo and Chau, 1997 [1], Mayers, 1997 [2]). A strengthened and explicit impossibility proof has been given in D'Ariano et al. (2007) [3] in the Heisenberg picture and in a C ⁎ -algebraic framework, considering all conceivable protocols in which both classical and quantum information is exchanged. In the present Letter we provide a new impossibility proof in the Schrödinger picture, greatly simplifying the classification of protocols and strategies using the mathematical formulation in terms of quantum combs (Chiribella et al., 2008 [4]), with each single-party strategy represented by a conditioned comb. We prove that assuming a stronger notion of concealment—for each classical communication history, not in average—allows Alice's cheat to pass also the worst-case Bob's test. The present approach allows us to restate the concealment–bindingness tradeoff in terms of the continuity of dilations of probabilistic quantum combs with the metric given by the comb discriminability-distance.

  12. Bit-commitment-based quantum coin flipping

    International Nuclear Information System (INIS)

    Nayak, Ashwin; Shor, Peter

    2003-01-01

    In this paper we focus on a special framework for quantum coin-flipping protocols, bit-commitment-based protocols, within which almost all known protocols fit. We show a lower bound of 1/16 for the bias in any such protocol. We also analyze a sequence of multiround protocols that tries to overcome the drawbacks of the previously proposed protocols in order to lower the bias. We show an intricate cheating strategy for this sequence, which leads to a bias of 1/4. This indicates that a bias of 1/4 might be optimal in such protocols, and also demonstrates that a more clever proof technique may be required to show this optimality

  13. Redundancy of einselected information in quantum Darwinism: The irrelevance of irrelevant environment bits

    Science.gov (United States)

    Zwolak, Michael; Zurek, Wojciech H.

    2017-03-01

    The objective, classical world emerges from the underlying quantum substrate via the proliferation of redundant copies of selected information into the environment, which acts as a communication channel, transmitting that information to observers. These copies are independently accessible, allowing many observers to reach consensus about the state of a quantum system via its imprints in the environment. Quantum Darwinism recognizes that the redundancy of information is thus central to the emergence of objective reality in the quantum world. However, in addition to the "quantum system of interest," there are many other systems "of no interest" in the Universe that can imprint information on the common environment. There is therefore a danger that the information of interest will be diluted with irrelevant bits, suppressing the redundancy responsible for objectivity. We show that mixing of the relevant (the "wheat") and irrelevant (the "chaff") bits of information makes little quantitative difference to the redundancy of the information of interest. Thus, we demonstrate that it does not matter whether one separates the wheat (relevant information) from the (irrelevant) chaff: The large redundancy of the relevant information survives dilution, providing evidence of the objective, effectively classical world.

  14. Bits and q-bits as versatility measures

    Directory of Open Access Journals (Sweden)

    José R.C. Piqueira

    2004-06-01

    Full Text Available Using Shannon information theory is a common strategy to measure any kind of variability in a signal or phenomenon. Some methods were developed to adapt information entropy measures to bird song data trying to emphasize its versatility aspect. This classical approach, using the concept of bit, produces interesting results. Now, the original idea developed in this paper is to use the quantum information theory and the quantum bit (q-bit concept in order to provide a more complete vision of the experimental results.Usar a teoria da informação de Shannon é uma estratégia comum para medir todo tipo de variabilidade em um sinal ou fenômeno. Alguns métodos foram desenvolvidos para adaptar a medida de entropia informacional a dados de cantos de pássaro, tentando enfatizar seus aspectos de versatilidade. Essa abordagem clássica, usando o conceito de bit, produz resultados interessantes. Agora, a idéia original desenvolvida neste artigo é usar a teoria quântica da informação e o conceito de q-bit, com a finalidade de proporcionar uma visão mais completa dos resultados experimentais.

  15. Shot noise of a quantum shuttle

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Flindt, Christian

    2004-01-01

    We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (Fsimilar or equal to10(-2)) in the shuttling regim...

  16. A short impossibility proof of quantum bit commitment

    Energy Technology Data Exchange (ETDEWEB)

    Chiribella, Giulio, E-mail: gchiribella@mail.tsinghua.edu.cn [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University (China); D' Ariano, Giacomo Mauro, E-mail: dariano@unipv.it [QUIT group, Dipartimento di Fisica, via Bassi 6, 27100 Pavia (Italy); INFN Gruppo IV, Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy); Perinotti, Paolo, E-mail: paolo.perinotti@unipv.it [QUIT group, Dipartimento di Fisica, via Bassi 6, 27100 Pavia (Italy); INFN Gruppo IV, Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy); Schlingemann, Dirk, E-mail: d.schlingemann@tu-bs.de [ISI Foundation, Quantum Information Theory Unit, Viale S. Severo 65, 10133 Torino (Italy); Werner, Reinhard, E-mail: Reinhard.Werner@itp.uni-hannover.de [Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover (Germany)

    2013-06-17

    Bit commitment protocols, whose security is based on the laws of quantum mechanics alone, are generally held to be impossible on the basis of a concealment–bindingness tradeoff (Lo and Chau, 1997 [1], Mayers, 1997 [2]). A strengthened and explicit impossibility proof has been given in D'Ariano et al. (2007) [3] in the Heisenberg picture and in a C{sup ⁎}-algebraic framework, considering all conceivable protocols in which both classical and quantum information is exchanged. In the present Letter we provide a new impossibility proof in the Schrödinger picture, greatly simplifying the classification of protocols and strategies using the mathematical formulation in terms of quantum combs (Chiribella et al., 2008 [4]), with each single-party strategy represented by a conditioned comb. We prove that assuming a stronger notion of concealment—for each classical communication history, not in average—allows Alice's cheat to pass also the worst-case Bob's test. The present approach allows us to restate the concealment–bindingness tradeoff in terms of the continuity of dilations of probabilistic quantum combs with the metric given by the comb discriminability-distance.

  17. Reexamination of quantum bit commitment: The possible and the impossible

    International Nuclear Information System (INIS)

    D'Ariano, Giacomo Mauro; Kretschmann, Dennis; Schlingemann, Dirk; Werner, Reinhard F.

    2007-01-01

    Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. We give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed 'honest' strategy, so that 'anonymous state protocols', which were recently suggested as a possible way to beat the known no-go results, are also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two-party protocols, which is applicable to more general situations, and an estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology and thus may allow secure bit commitment. We present such a protocol whose security, perhaps surprisingly, relies on decoherence in the receiver's laboratory

  18. Reexamination of quantum bit commitment: The possible and the impossible

    Science.gov (United States)

    D'Ariano, Giacomo Mauro; Kretschmann, Dennis; Schlingemann, Dirk; Werner, Reinhard F.

    2007-09-01

    Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. We give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed “honest” strategy, so that “anonymous state protocols,” which were recently suggested as a possible way to beat the known no-go results, are also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two-party protocols, which is applicable to more general situations, and an estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology and thus may allow secure bit commitment. We present such a protocol whose security, perhaps surprisingly, relies on decoherence in the receiver’s laboratory.

  19. Measurement of quantum noise in a single-electron transistor near the quantum limit

    Science.gov (United States)

    Xue, W. W.; Ji, Z.; Pan, Feng; Stettenheim, Joel; Blencowe, M. P.; Rimberg, A. J.

    2009-09-01

    Quantum measurement has challenged physicists for almost a century. Classically, there is no lower bound on the noise a measurement may add. Quantum mechanically, however, measuring a system necessarily perturbs it. When applied to electrical amplifiers, this means that improved sensitivity requires increased backaction that itself contributes noise. The result is a strict quantum limit on added amplifier noise. To approach this limit, a quantum-limited amplifier must possess an ideal balance between sensitivity and backaction; furthermore, its noise must dominate that of subsequent classical amplifiers. Here, we report the first complete and quantitative measurement of the quantum noise of a superconducting single-electron transistor (S-SET) near a double Cooper-pair resonance predicted to have the right combination of sensitivity and backaction. A simultaneous measurement of our S-SET's charge sensitivity indicates that it operates within a factor of 3.6 of the quantum limit, a fourfold improvement over the nearest comparable results.

  20. The Singapore protocol [for quantum cryptography

    International Nuclear Information System (INIS)

    Englert, B.

    2005-01-01

    The qubit protocol for quantum key distribution presented in this talk is fully tomographic and more efficient than other tomographic protocols. Under ideal circumstances the efficiency is log 2 (4/3) = 0.415 key bits per qubit sent, which is 25% more than the efficiency of 1/3 = 0.333 for the standard 6-state protocol. One can extract 0.4 key bits per qubit by a simple two-way communication scheme, and can so get close to the information-theoretical limit. The noise thresholds for secure key bit generation in the presence of unbiased noise will be reported and discussed. (author)

  1. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.

    Science.gov (United States)

    Stromatias, Evangelos; Neil, Daniel; Pfeiffer, Michael; Galluppi, Francesco; Furber, Steve B; Liu, Shih-Chii

    2015-01-01

    Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost two bits, and show that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.

  2. Practical Relativistic Bit Commitment

    NARCIS (Netherlands)

    Lunghi, T.; Kaniewski, J.; Bussières, F.; Houlmann, R.; Tomamichel, M.; Wehner, S.D.C.; Zbinden, H

    2015-01-01

    Bit commitment is a fundamental cryptographic primitive in which Alice wishes to commit a secret bit to Bob. Perfectly secure bit commitment between two mistrustful parties is impossible through an asynchronous exchange of quantum information. Perfect security is, however, possible when Alice and

  3. Quantum noise and superluminal propagation

    International Nuclear Information System (INIS)

    Segev, Bilha; Milonni, Peter W.; Babb, James F.; Chiao, Raymond Y.

    2000-01-01

    Causal ''superluminal'' effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an ''optical tachyon.'' Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being ''exponentially large.'' We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small. (c) 2000 The American Physical Society

  4. Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution

    Science.gov (United States)

    Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng

    2018-05-01

    In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.

  5. Quantum capacity of Pauli channels with memory

    International Nuclear Information System (INIS)

    Huang Peng; He Guangqiang; Lu Yuan; Zeng Guihua

    2011-01-01

    The amount of coherent quantum information that can be reliably transmitted down the memory Pauli channels with Markovian correlated noise is investigated. Two methods for evaluating the quantum capacity of the memory Pauli channels are proposed to try to trace the memory effect on the transmissions of quantum information. We show that the evaluation of quantum capacity can be reduced to the calculation of the initial memory state of each successive transmission. Furthermore, we derive quantum capacities of the memory phase flip channel, bit flip channel and bit-phase flip channel. Also, a lower bound of the quantum capacity of the memory depolarizing channel is obtained. An increase of the degree of memory of the channels has a positive effect on the increase of their quantum capacities.

  6. Quantum Walk in Terms of Quantum Bernoulli Noise and Quantum Central Limit Theorem for Quantum Bernoulli Noise

    Directory of Open Access Journals (Sweden)

    Caishi Wang

    2018-01-01

    Full Text Available As a unitary quantum walk with infinitely many internal degrees of freedom, the quantum walk in terms of quantum Bernoulli noise (recently introduced by Wang and Ye shows a rather classical asymptotic behavior, which is quite different from the case of the usual quantum walks with a finite number of internal degrees of freedom. In this paper, we further examine the structure of the walk. By using the Fourier transform on the state space of the walk, we obtain a formula that links the moments of the walk’s probability distributions directly with annihilation and creation operators on Bernoulli functionals. We also prove some other results on the structure of the walk. Finally, as an application of these results, we establish a quantum central limit theorem for the annihilation and creation operators themselves.

  7. Hidden Quantum Processes, Quantum Ion Channels, and 1/ f θ-Type Noise.

    Science.gov (United States)

    Paris, Alan; Vosoughi, Azadeh; Berman, Stephen A; Atia, George

    2018-03-22

    In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]-type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]-type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]-type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]-type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral

  8. Quantum games with correlated noise

    International Nuclear Information System (INIS)

    Nawaz, Ahmad; Toor, A H

    2006-01-01

    We analyse quantum games with correlated noise through a generalized quantization scheme. Four different combinations on the basis of entanglement of initial quantum state and the measurement basis are analysed. It is shown that the quantum player only enjoys an advantage over the classical player when both the initial quantum state and the measurement basis are in entangled form. Furthermore, it is shown that for maximum correlation the effects of decoherence diminish and it behaves as a noiseless game

  9. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  10. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  11. Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence

    CERN Document Server

    Orszag, Miguel

    2016-01-01

    This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to...

  12. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms

    Directory of Open Access Journals (Sweden)

    Evangelos eStromatias

    2015-07-01

    Full Text Available Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks requires vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost 2 bits, and shows that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.

  13. Quantum and Private Capacities of Low-Noise Channels

    Science.gov (United States)

    Leditzky, Felix; Leung, Debbie; Smith, Graeme

    2018-04-01

    We determine both the quantum and the private capacities of low-noise quantum channels to leading orders in the channel's distance to the perfect channel. It has been an open problem for more than 20 yr to determine the capacities of some of these low-noise channels such as the depolarizing channel. We also show that both capacities are equal to the single-letter coherent information of the channel, again to leading orders. We thus find that, in the low-noise regime, superadditivity and degenerate codes have a negligible benefit for the quantum capacity, and shielding does not improve the private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels are considered.

  14. 10-bit rapid single flux quantum digital-to-analog converter for ac voltage standard

    International Nuclear Information System (INIS)

    Maezawa, M; Hirayama, F

    2008-01-01

    Digital-to-analog (D/A) converters based on rapid single flux quantum (RSFQ) technology are under development for ac voltage standard applications. We present design and test results on a prototype 10-bit version integrated on a single chip. The 10-bit chip includes over 6000 Josephson junctions and consumes a bias current exceeding 1 A. To reduce the effects of the high bias current on circuit operation, a custom design method was employed in part and large circuit blocks were divided into smaller ones. The 10-bit chips were fabricated and tested at low speed. The test results suggested that our design approach could manage large bias currents on the order of 1 A per chip

  15. Quantum I/f noise in infrared detectors and scanning tunneling microscopes

    Science.gov (United States)

    Truong, Amanda Marie

    Noise is, by definition, any random and persistent disturbance, which interferes with the clarity of a signal. Modern electronic devices are designed to limit noise, and in most cases the classical forms of noise have been eliminated or greatly reduced through careful design. However, there is a fundamental, quite unavoidable type of noise, called quantum l/f noise, which occurs at low frequencies and is a fundamental consequence of the discrete nature of the charge carriers themselves. This quantum l/f noise is present in any physical cross section or process rate, such as carrier mobility, diffusion rates and scattering processes. Although quantum l/f noise has been observed for nearly a century, there has been much debate over its origin and formulation. But as modern electronic devices require greater levels of performance and detection, the l/f noise phenomenon has moved to the forefront, becoming the subject of intense research. Here, for the first time, the quantum l/f fluctuations present in both the dark current of the Quantum Well Intersubband Photodetector and the tunneling current of the Scanning Tunneling Microscope are investigated. Using the quantum l/f theory, the quantum l/f noise occurring in each of these devices is formulated. The theoretical noise results are then compared with the experimental findings of various authors with very good agreement. This important work provides a foundation for understanding quantum l/f noise and its causes in the QWIP and STM devices, and could ultimately lead to improved technology and noise reduction in these devices and others.

  16. A quantum speedup in machine learning: finding an N-bit Boolean function for a classification

    International Nuclear Information System (INIS)

    Yoo, Seokwon; Lee, Jinhyoung; Bang, Jeongho; Lee, Changhyoup

    2014-01-01

    We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate solution regions, i.e., the acceptable regions. This is also demonstrated by means of numerical simulations with a standard feedback model, namely random search, and a practical model, namely differential evolution. (paper)

  17. Entanglement dynamics of two-qubit systems in different quantum noises

    International Nuclear Information System (INIS)

    Pan Chang-Ning; Fang Jian-Shu; Li-Fei; Fang Mao-Fa

    2011-01-01

    The entanglement dynamics of two-qubit systems in different quantum noises are investigated by means of the operator-sum representation method. We find that, except for the amplitude damping and phase damping quantum noise, the sudden death of entanglement is always observed in different two-qubit systems with generalized amplitude damping and depolarizing quantum noise. (general)

  18. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  19. Quantum random bit generation using energy fluctuations in stimulated Raman scattering.

    Science.gov (United States)

    Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J

    2013-12-02

    Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

  20. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  1. Quantum teleportation via noisy bipartite and tripartite accelerating quantum states: beyond the single mode approximation

    Science.gov (United States)

    Zounia, M.; Shamirzaie, M.; Ashouri, A.

    2017-09-01

    In this paper quantum teleportation of an unknown quantum state via noisy maximally bipartite (Bell) and maximally tripartite (Greenberger-Horne-Zeilinger (GHZ)) entangled states are investigated. We suppose that one of the observers who would receive the sent state accelerates uniformly with respect to the sender. The interactions of the quantum system with its environment during the teleportation process impose noises. These (unital and nonunital) noises are: phase damping, phase flip, amplitude damping and bit flip. In expressing the modes of the Dirac field used as qubits, in the accelerating frame, the so-called single mode approximation is not imposed. We calculate the fidelities of teleportation, and discuss their behaviors using suitable plots. The effects of noise, acceleration and going beyond the single mode approximation are discussed. Although the Bell states bring higher fidelities than GHZ states, the global behaviors of the two quantum systems with respect to some noise types, and therefore their fidelities, are different.

  2. Quantum Phonon Optics: Squeezing Quantum Noise in the Atomic Displacements.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have investigated(X. Hu and F. Nori, Physical Review B, in press; preprints.) coherent and squeezed quantum states of phonons. Squeezed states are interesting because they allow the possibility of modulating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of phonon vacuum states. We have studiedfootnotemark[1] the possibility of squeezing quantum noise in the atomic displacement using a polariton-based approach and also a method based on the three-phonon anharmonic interaction. Our focus here is on the first approach. We have diagonalized the polariton Hamiltonian and calculated the corresponding expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators (the later is the phonon analog of the electric field operator for photons). Our results shows that squeezing of quantum fluctuations in the atomic displacements can be achieved with appropriate initial states of both photon and phonon fields. The degree of squeezing is directly related to the crystal susceptibility, which is indicative of the interaction strength between the incident light and the crystal.

  3. Robust shot-noise measurement for continuous-variable quantum key distribution

    Science.gov (United States)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  4. Electronic quantum noise and microwave photons

    International Nuclear Information System (INIS)

    Bize-Reydellet, L.H.

    2003-06-01

    This work is devoted to the experimental study of quantum electronic noise in mesoscopic conductors. In the first part of this thesis, we studied shot noise in a one-dimensional ballistic conductor: a quantum point contact (QPC). We showed experimentally that, when one of the QPC contacts is irradiated with microwave photons, we observe partition noise in the absence of net current flowing through the sample. Thus, we validate the scattering theory of photo-assisted shot noise first by measuring the Fano factor without bias voltage across the conductor, and then by measuring shot noise in the doubly non equilibrium situation, where both a bias voltage and a microwave modulation are applied. In the second part, we realized the first tests of a new experimental set-up which will be able to measure high frequency noise of a mesoscopic conductor and the photon statistics emitted by this conductor in the measurement circuit. These tests consist in realizing Hanbury-Brown and Twiss type experiments (intensity interferometry) with two kinds of microwave photon source. First, we used a thermal incoherent source (macroscopic 50 Ohms resistor). It showed super-Poissonian noise, since the power fluctuations are proportional to the square of the mean photon power. Secondly, we studied a classical monochromatic source, which shows a Poissonian statistics. The giant Fano factor measured is perfectly explained by the attenuator and amplifier noise. (author)

  5. Quantum noise in a terahertz hot electron bolometer mixer

    OpenAIRE

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The ?-factor (the quantum efficiency ...

  6. Average bit error probability of binary coherent signaling over generalized fading channels subject to additive generalized gaussian noise

    KAUST Repository

    Soury, Hamza

    2012-06-01

    This letter considers the average bit error probability of binary coherent signaling over flat fading channels subject to additive generalized Gaussian noise. More specifically, a generic closed form expression in terms of the Fox\\'s H function is offered for the extended generalized-K fading case. Simplifications for some special fading distributions such as generalized-K fading and Nakagami-m fading and special additive noise distributions such as Gaussian and Laplacian noise are then presented. Finally, the mathematical formalism is illustrated by some numerical examples verified by computer based simulations for a variety of fading and additive noise parameters. © 2012 IEEE.

  7. Multi-server blind quantum computation over collective-noise channels

    Science.gov (United States)

    Xiao, Min; Liu, Lin; Song, Xiuli

    2018-03-01

    Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.

  8. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    Science.gov (United States)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  9. Fault-tolerant controlled quantum secure direct communication over a collective quantum noise channel

    International Nuclear Information System (INIS)

    Yang, Chun-Wei; Hwang, Tzonelih; Tsai, Chia-Wei

    2014-01-01

    This work proposes controlled quantum secure direct communication (CQSDC) over an ideal channel. Based on the proposed CQSDC, two fault-tolerant CQSDC protocols that are robust under two kinds of collective noises, collective-dephasing noise and collective-rotation noise, respectively, are constructed. Due to the use of quantum entanglement of the Bell state (or logical Bell state) as well as dense coding, the proposed protocols provide easier implementation as well as better qubit efficiency than other CQSDC protocols. Furthermore, the proposed protocols are also free from correlation-elicitation attack and other well-known attacks. (paper)

  10. Two-party quantum key agreement protocols under collective noise channel

    Science.gov (United States)

    Gao, Hao; Chen, Xiao-Guang; Qian, Song-Rong

    2018-06-01

    Recently, quantum communication has become a very popular research field. The quantum key agreement (QKA) plays an important role in the field of quantum communication, based on its unconditional security in terms of theory. Among all kinds of QKA protocols, QKA protocols resisting collective noise are widely being studied. In this paper, we propose improved two-party QKA protocols resisting collective noise and present a feasible plan for information reconciliation. Our protocols' qubit efficiency has achieved 26.67%, which is the best among all the two-party QKA protocols against collective noise, thus showing that our protocol can improve the transmission efficiency of quantum key agreement.

  11. Manipulating the Flow of Thermal Noise in Quantum Devices

    Science.gov (United States)

    Barzanjeh, Shabir; Aquilina, Matteo; Xuereb, André

    2018-02-01

    There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.

  12. Renormalized powers of quantum white noise

    International Nuclear Information System (INIS)

    Accardi, L.; Boukas, A.

    2009-01-01

    Giving meaning to the powers of the creation and annihilation densities (quantum white noise) is an old and important problem in quantum field theory. In this paper we present an account of some new ideas that have recently emerged in the attempt to solve this problem. We emphasize the connection between the Lie algebra of the renormalized higher powers of quantum white noise (RHPWN), which can be interpreted as a suitably deformed (due to renormalization) current algebra over the 1-mode full oscillator algebra, and the current algebra over the centerless Virasoro (or Witt)-Zamolodchikov-ω ∞ Lie algebras of conformal field theory. Through a suitable definition of the action on the vacuum vector we describe how to obtain a Fock representation of all these algebras. We prove that the restriction of the vacuum to the abelian subalgebra generated by the field operators gives an infinitely divisible process whose marginal distribution is the beta (or continuous binomial). (authors)

  13. Mathematical modelling of Bit-Level Architecture using Reciprocal Quantum Logic

    Science.gov (United States)

    Narendran, S.; Selvakumar, J.

    2018-04-01

    Efficiency of high-performance computing is on high demand with both speed and energy efficiency. Reciprocal Quantum Logic (RQL) is one of the technology which will produce high speed and zero static power dissipation. RQL uses AC power supply as input rather than DC input. RQL has three set of basic gates. Series of reciprocal transmission lines are placed in between each gate to avoid loss of power and to achieve high speed. Analytical model of Bit-Level Architecture are done through RQL. Major drawback of reciprocal Quantum Logic is area, because of lack in proper power supply. To achieve proper power supply we need to use splitters which will occupy large area. Distributed arithmetic uses vector- vector multiplication one is constant and other is signed variable and each word performs as a binary number, they rearranged and mixed to form distributed system. Distributed arithmetic is widely used in convolution and high performance computational devices.

  14. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  15. Probing quantum and thermal noise in an interacting many-body system

    DEFF Research Database (Denmark)

    Hofferberth, S.; Lesanovsky, Igor; Schumm, Thorsten

    2008-01-01

    of the shot-to-shot variations of interference-fringe contrast for pairs of independently created one-dimensional Bose condensates. Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian......The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum-mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis....... Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system....

  16. Current Noise Spectrum of a Quantum Shuttle

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Jauho, Antti-Pekka

    2005-01-01

    We present a method for calculating the full current noise spectrum S(omega) for the class of nano-electromechanical systems (NEMS) that can be described by a Markovian generalized master equation. As a specific example we apply the method to a quantum shuttle. The noise spectrum of the shuttle has...... peaks at integer multiples of the mechanical frequency, which is slightly renormalized. The renormalization explains a previously observed small deviation of the shuttle Current compared to the expected value given by the product of the natural mechanical frequency and the electron charge. For a certain...... parameter range the quantum shuttle exhibits a coexistence regime, where the charges are transported by two different mechanisms: Shuttling and sequential tunneling. In our previous studies we showed that characteristic features in the zero-frequency noise could be quantitatively understood as a slow...

  17. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.

    Science.gov (United States)

    Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  18. Three-Stage Quantum Cryptography Protocol under Collective-Rotation Noise

    Directory of Open Access Journals (Sweden)

    Linsen Wu

    2015-05-01

    Full Text Available Information security is increasingly important as society migrates to the information age. Classical cryptography widely used nowadays is based on computational complexity, which means that it assumes that solving some particular mathematical problems is hard on a classical computer. With the development of supercomputers and, potentially, quantum computers, classical cryptography has more and more potential risks. Quantum cryptography provides a solution which is based on the Heisenberg uncertainty principle and no-cloning theorem. While BB84-based quantum protocols are only secure when a single photon is used in communication, the three-stage quantum protocol is multi-photon tolerant. However, existing analyses assume perfect noiseless channels. In this paper, a multi-photon analysis is performed for the three-stage quantum protocol under the collective-rotation noise model. The analysis provides insights into the impact of the noise level on a three-stage quantum cryptography system.

  19. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  20. Quantum noise in the mirror–field system: A field theoretic approach

    International Nuclear Information System (INIS)

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-01-01

    We revisit the quantum noise problem in the mirror–field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror’s displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation–dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: ► The quantum noise problem in the mirror–field system is re-visited by a field-theoretic approach. ► Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. ► The noise correlations can be used to suppress the overall quantum noise on the mirror.

  1. Quantum noise in the mirror-field system: A field theoretic approach

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, Jen-Tsung, E-mail: cosmology@gmail.com [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Wu, Tai-Hung [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Lee, Da-Shin, E-mail: dslee@mail.ndhu.edu.tw [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); King, Sun-Kun [Institutes of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC (China); Wu, Chun-Hsien [Department of Physics, Soochow University, Taipei, Taiwan, ROC (China)

    2013-02-15

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: Black-Right-Pointing-Pointer The quantum noise problem in the mirror-field system is re-visited by a field-theoretic approach. Black-Right-Pointing-Pointer Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. Black-Right-Pointing-Pointer The noise

  2. Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier

    International Nuclear Information System (INIS)

    Oh, Seongshik; Cicak, Katarina; Kline, Jeffrey S.; Sillanpaeae, Mika A.; Osborn, Kevin D.; Whittaker, Jed D.; Simmonds, Raymond W.; Pappas, David P.

    2006-01-01

    Quantum computing based on Josephson junction technology is considered promising due to its scalable architecture. However, decoherence is a major obstacle. Here, we report evidence for improved Josephson quantum bits (qubits) using a single-crystal Al 2 O 3 tunnel barrier. We have found an ∼80% reduction in the density of the spectral splittings that indicate the existence of two-level fluctators (TLFs) in amorphous tunnel barriers. The residual ∼20% TLFs can be attributed to interfacial effects that may be further reduced by different electrode materials. These results show that decoherence sources in the tunnel barrier of Josephson qubits can be identified and eliminated

  3. Noise-induced transition in a quantum system

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pulak Kumar [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Barik, Debashis [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Ray, Deb Shankar [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2005-07-04

    We examine the noise-induced transition in a fluctuating bistable potential of a driven quantum system in thermal equilibrium. Making use of a Wigner canonical thermal distribution for description of the statistical properties of the thermal bath, we explore the generic effects of quantization like vacuum field fluctuation and tunneling in the characteristic stationary probability distribution functions undergoing transition from unimodal to bimodal nature and in signal-to-noise ratio characterizing the cooperative effect among the noise processes and the weak periodic signal.

  4. Noise-induced transition in a quantum system

    International Nuclear Information System (INIS)

    Ghosh, Pulak Kumar; Barik, Debashis; Ray, Deb Shankar

    2005-01-01

    We examine the noise-induced transition in a fluctuating bistable potential of a driven quantum system in thermal equilibrium. Making use of a Wigner canonical thermal distribution for description of the statistical properties of the thermal bath, we explore the generic effects of quantization like vacuum field fluctuation and tunneling in the characteristic stationary probability distribution functions undergoing transition from unimodal to bimodal nature and in signal-to-noise ratio characterizing the cooperative effect among the noise processes and the weak periodic signal

  5. Quantum noise, quantum measurement, and squeezing

    International Nuclear Information System (INIS)

    Haus, Herman A

    2004-01-01

    This is the edited text of the Keynote Speech that Professor Haus had been invited to give at the Conference on Fluctuations and Noise in Photonics and Quantum Optics, held at Santa Fe, NM, on 1-4 June 2003. He introduces it as partly an overview, partly a retrospective, finishing with some remarks about the future, addressing the topics as he knew them best, from his own perspective. Sadly, Professor Haus died shortly before he was due to present this speech to conference delegates. (keynote speech)

  6. The different physical origins of 1/f noise and superimposed RTS noise in light-emitting quantum dot diodes

    NARCIS (Netherlands)

    Belyakov, A.V.; Vandamme, L.K.J.; Perov, M.Y.; Yakimov, A.V.

    2003-01-01

    Low frequency noise characteristics of light-emitting diodes with InAs quantum dots in GaInAs layer are investigated. Two noise components were found in experimental noise records: RTS, caused by burst noise, and 1/f Gaussian noise. Extraction of burst noise component from Gaussian noise background

  7. Correct mutual information, quantum bit error rate and secure transmission efficiency in Wojcik's eavesdropping scheme on ping-pong protocol

    OpenAIRE

    Zhang, Zhanjun

    2004-01-01

    Comment: The wrong mutual information, quantum bit error rate and secure transmission efficiency in Wojcik's eavesdropping scheme [PRL90(03)157901]on ping-pong protocol have been pointed out and corrected

  8. Implementation of a two-state quantum bit commitment protocol in optical fibers

    International Nuclear Information System (INIS)

    Almeida, Á J; Stojanovic, A D; Paunković, N; Loura, R; Mateus, P; Muga, N J; Silva, N A; André, P S; Pinto, A N

    2016-01-01

    We demonstrate experimentally the feasibility of a two-state quantum bit commitment protocol, which is both concealing and partially binding, assuming technological limitations. The security of this protocol is based on the lack of long-term stable quantum memories. We use a polarization-encoding scheme and optical fiber as a quantum channel. The measurement probability for the commitment is obtained and the optimal cheating strategy demonstrated. The average success rates for an honest player in the case where the measurements are performed using equal bases are 93.4%, when the rectilinear basis is measured, and 96.7%, when the diagonal basis is measured. The rates for the case when the measurements are performed in different bases are 52.9%, when the rectilinear basis is measured, and 55.4% when the diagonal basis is measured. The average success rates for the optimal cheating strategy are 80% and 73.8%, which are way below the success rates of an honest player. Using a strict numerical validity criterion, we show that, for these experimental values, the protocol is secure. (paper)

  9. A New Quantum Watermarking Based on Quantum Wavelet Transforms

    International Nuclear Information System (INIS)

    Heidari, Shahrokh; Pourarian, Mohammad Rasoul; Naseri, Mosayeb; Gheibi, Reza; Baghfalaki, Masoud; Farouk, Ahmed

    2017-01-01

    Quantum watermarking is a technique to embed specific information, usually the owner’s identification, into quantum cover data such for copyright protection purposes. In this paper, a new scheme for quantum watermarking based on quantum wavelet transforms is proposed which includes scrambling, embedding and extracting procedures. The invisibility and robustness performances of the proposed watermarking method is confirmed by simulation technique. The invisibility of the scheme is examined by the peak-signal-to-noise ratio (PSNR) and the histogram calculation. Furthermore the robustness of the scheme is analyzed by the Bit Error Rate (BER) and the Correlation Two-Dimensional (Corr 2-D) calculation. The simulation results indicate that the proposed watermarking scheme indicate not only acceptable visual quality but also a good resistance against different types of attack. (paper)

  10. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    Science.gov (United States)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  11. Experimental realization of universal geometric quantum gates with solid-state spins.

    Science.gov (United States)

    Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M

    2014-10-02

    Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.

  12. Quantum noise in a terahertz hot electron bolometer mixer

    NARCIS (Netherlands)

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model

  13. Quantum random number generator

    Science.gov (United States)

    Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin

    2001-03-01

    Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.

  14. True random numbers from amplified quantum vacuum.

    Science.gov (United States)

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  15. Robustness of quantum correlations against linear noise

    International Nuclear Information System (INIS)

    Guo, Zhihua; Cao, Huaixin; Qu, Shixian

    2016-01-01

    Relative robustness of quantum correlations (RRoQC) of a bipartite state is firstly introduced relative to a classically correlated state. Robustness of quantum correlations (RoQC) of a bipartite state is then defined as the minimum of RRoQC of the state relative to all classically correlated ones. It is proved that as a function on quantum states, RoQC is nonnegative, lower semi-continuous and neither convex nor concave; especially, it is zero if and only if the state is classically correlated. Thus, RoQC not only quantifies the endurance of quantum correlations of a state against linear noise, but also can be used to distinguish between quantum and classically correlated states. Furthermore, the effects of local quantum channels on the robustness are explored and characterized. (paper)

  16. Efficient quantum entanglement distribution over an arbitrary collective-noise channel

    Science.gov (United States)

    Sheng, Yu-Bo; Deng, Fu-Guo

    2010-04-01

    We present an efficient quantum entanglement distribution over an arbitrary collective-noise channel. The basic idea in the present scheme is that two parties in quantum communication first transmit the entangled states in the frequency degree of freedom which suffers little from the noise in an optical fiber. After the two parties share the photon pairs, they add some operations and equipments to transfer the frequency entanglement of pairs into the polarization entanglement with the success probability of 100%. Finally, they can get maximally entangled polarization states with polarization independent wavelength division multiplexers and quantum frequency up-conversion which can erase distinguishability for frequency. Compared with conventional entanglement purification protocols, the present scheme works in a deterministic way in principle. Surprisingly, the collective noise leads to an additional advantage.

  17. Unconditional violation of the shot-noise limit in photonic quantum metrology

    Science.gov (United States)

    Slussarenko, Sergei; Weston, Morgan M.; Chrzanowski, Helen M.; Shalm, Lynden K.; Verma, Varun B.; Nam, Sae Woo; Pryde, Geoff J.

    2017-11-01

    Interferometric phase measurement is widely used to precisely determine quantities such as length, speed and material properties1-3. Without quantum correlations, the best phase sensitivity Δ ϕ achievable using n photons is the shot-noise limit, Δ ϕ =1 /√{n }. Quantum-enhanced metrology promises better sensitivity, but, despite theoretical proposals stretching back decades3,4, no measurement using photonic (that is, definite photon number) quantum states has truly surpassed the shot-noise limit. Instead, all such demonstrations, by discounting photon loss, detector inefficiency or other imperfections, have considered only a subset of the photons used. Here, we use an ultrahigh-efficiency photon source and detectors to perform unconditional entanglement-enhanced photonic interferometry. Sampling a birefringent phase shift, we demonstrate precision beyond the shot-noise limit without artificially correcting our results for loss and imperfections. Our results enable quantum-enhanced phase measurements at low photon flux and open the door to the next generation of optical quantum metrology advances.

  18. Serial composition of quantum coin flipping and bounds on cheat detection for bit commitment

    International Nuclear Information System (INIS)

    Mochon, Carlos

    2004-01-01

    Quantum protocols for coin flipping can be composed in series in such a way that a cheating party gains no extra advantage from using entanglement between different rounds. This composition principle applies to coin-flipping protocols with cheat sensitivity as well, and is used to derive two results: There are no quantum strong coin-flipping protocols with cheat sensitivity that is linear in the bias (or bit-commitment protocols with linear cheat detection) because these can be composed to produce strong coin flipping with arbitrarily small bias. On the other hand, it appears that quadratic cheat detection cannot be composed in series to obtain even weak coin flipping with arbitrarily small bias

  19. Robust Quantum Secure Direct Communication over Collective Rotating Channel

    International Nuclear Information System (INIS)

    Qin Sujuan; Gao Fei; Wen Qiaoyan; Zhu Fuchen

    2010-01-01

    A quantum secure direct communication protocol over a collective rotating channel is proposed. The protocol encodes logical bits in noiseless subspaces, and so it can function over a quantum channel subjected to an arbitrary degree of collective rotating noise. Although entangled states are used, both the sender and receiver are only required to perform single-particle product measurement or Pauli operations. The protocol is feasible with present-day technique. (general)

  20. A Shearlet-based algorithm for quantum noise removal in low-dose CT images

    Science.gov (United States)

    Zhang, Aguan; Jiang, Huiqin; Ma, Ling; Liu, Yumin; Yang, Xiaopeng

    2016-03-01

    Low-dose CT (LDCT) scanning is a potential way to reduce the radiation exposure of X-ray in the population. It is necessary to improve the quality of low-dose CT images. In this paper, we propose an effective algorithm for quantum noise removal in LDCT images using shearlet transform. Because the quantum noise can be simulated by Poisson process, we first transform the quantum noise by using anscombe variance stabilizing transform (VST), producing an approximately Gaussian noise with unitary variance. Second, the non-noise shearlet coefficients are obtained by adaptive hard-threshold processing in shearlet domain. Third, we reconstruct the de-noised image using the inverse shearlet transform. Finally, an anscombe inverse transform is applied to the de-noised image, which can produce the improved image. The main contribution is to combine the anscombe VST with the shearlet transform. By this way, edge coefficients and noise coefficients can be separated from high frequency sub-bands effectively. A number of experiments are performed over some LDCT images by using the proposed method. Both quantitative and visual results show that the proposed method can effectively reduce the quantum noise while enhancing the subtle details. It has certain value in clinical application.

  1. Does the Finite Size of Electrons Affect Quantum Noise in Electronic Devices?

    International Nuclear Information System (INIS)

    Colomés, E; Marian, D; Oriols, X

    2015-01-01

    Quantum transport is commonly studied with the use of quasi-particle infinite- extended states. This leads to a powerful formalism, the scattering-states theory, able to capture in compact formulas quantities of interest, such as average current, noise, etc.. However, when investigating the spatial size-dependence of quasi-particle wave packets in quantum noise with exchange and tunneling, unexpected new terms appear in the quantum noise expression. For this purpose, the two particle transmission and reflection probabilities for two initial one-particle wave packets (with opposite central momentums) spatially localized at each side of a potential barrier are studied. After the interaction, each wave packet splits into a transmitted and a reflected component. It can be shown that the probability of detecting two (identically injected) electrons at the same side of the barrier is different from zero in very common (single or double barrier) scenarios. This originates an increase of quantum noise which cannot be obtained through the scattering states formalism. (paper)

  2. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate

    International Nuclear Information System (INIS)

    Chau, H.F.

    2002-01-01

    A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1√(5)≅27.6%, thereby making it the most error resistant scheme known to date

  3. Ab initio theory of spin-orbit coupling for quantum bits in diamond exhibiting dynamic Jahn-Teller effect

    Science.gov (United States)

    Gali, Adam; Thiering, Gergő

    Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).

  4. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  5. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-01-01

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  6. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takahiro, E-mail: yamada-takahiro@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Maezawa, Masaaki [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Urano, Chiharu [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Central 3, Umezono 1-1-1, Tsukuba, Ibaraki 305-8563 (Japan)

    2015-11-15

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  7. Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Friedrich, Daniel; Westphal, Tobias; Gossler, Stefan; Danzmann, Karsten; Schnabel, Roman; Somiya, Kentaro; Danilishin, Stefan L.

    2010-01-01

    Quantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the position of an oscillator, this coupling results in quantum radiation pressure noise. Up to now this effect has not been observed yet. Generally speaking, the strength of radiation pressure noise increases when the effective mass of the oscillator is decreased or when the power of the reflected light is increased. Recently, extremely light SiN membranes (≅100 ng) with high mechanical Q values at room temperature (≥10 6 ) have attracted attention as low thermal noise mechanical oscillators. However, the power reflectance of these membranes is much lower than unity (<0.4 at a wavelength of 1064 nm) which makes the use of advanced interferometer recycling techniques to amplify the radiation pressure noise in a standard Michelson interferometer inefficient. Here, we propose and theoretically analyze a Michelson-Sagnac interferometer that includes the membrane as a common end mirror for the Michelson interferometer part. In this topology, both power and signal recycling can be used even if the reflectance of the membrane is much lower than unity. In particular, signal recycling is a useful tool because it does not involve a power increase at the membrane. We derive the formulas for the quantum radiation pressure noise and the shot noise of an oscillator position measurement and compare them with theoretical models of the thermal noise of a SiN membrane with a fundamental resonant frequency of 75 kHz and an effective mass of125 ng. We find that quantum radiation pressure noise should be observable with a power of 1 W at the central beam splitter of the interferometer and a membrane temperature of 1 K.

  8. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    International Nuclear Information System (INIS)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-01-01

    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  9. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    Science.gov (United States)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-06-01

    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  10. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Science.gov (United States)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-11-01

    We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80-120%, with respect to the designed bias currents.

  11. SOLAR TRACKER CERDAS DAN MURAH BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    Directory of Open Access Journals (Sweden)

    I Wayan Sutaya

    2016-08-01

    Full Text Available prototipe produk solar tracker cerdas berbasis mikrokontroler AVR 8 bit. Solar tracker ini memasukkan filter digital IIR (Infinite Impulse Response pada bagian program. Memprogram filter ini membutuhkan perkalian 32 bit sedangkan prosesor yang tersedia pada mikrokontroler yang dipakai adalah 8 bit. Proses perkalian ini hanya bisa dilakukan pada mikrokontroler 8 bit dengan menggunakan bahasa assembly yang merupakan bahasa level hardware. Solar tracker cerdas yang menggunakan mikrokontroler 8 bit sebagai otak utama pada penelitian ini menjadikan produk ini berbiaya rendah. Pengujian yang dilakukan menunjukkan bahwa solar tracker cerdas dibandingkan dengan solar tracker biasa mempunyai perbedaan konsumsi daya baterai yang sangat signifikan yaitu terjadi penghematan sebesar 85 %. Besar penghematan konsumsi daya ini tentunya bukan sebuah angka konstan melainkan tergantung seberapa besar noise yang dikenakan pada alat solar tracker. Untuk sebuah perlakuan yang sama, maka semakin besar noise semakin besar pula perbedaan penghematan konsumsi daya pada solar tracker yang cerdas. Kata-kata kunci: solar tracker, filter digital, mikrokontroler 8 bit, konsumsi daya Abstract This research had made a prototype of smart solar tracker product based on microcontroller AVR 8 bit. The solar tracker used digital filter IIR (Infinite Impulse Response on its software. Filter programming needs 32 bit multiplication but the processor inside of the microcontroller that used in this research is 8 bit. This multiplication is only can be solved on microcontroller 8 bit by using assembly language in programming. The language is a hardware level language. The smart solar tracker using the microcontroller 8 bit as a main brain in this research made the product had a low cost. The test results show that the comparison in saving of baterai power consumption between the smart solar tracker and the normal one is 85 %. The percentage of the saving indubitably is not a constant

  12. Continuous-variable quantum key distribution with Gaussian source noise

    International Nuclear Information System (INIS)

    Shen Yujie; Peng Xiang; Yang Jian; Guo Hong

    2011-01-01

    Source noise affects the security of continuous-variable quantum key distribution (CV QKD) and is difficult to analyze. We propose a model to characterize Gaussian source noise through introducing a neutral party (Fred) who induces the noise with a general unitary transformation. Without knowing Fred's exact state, we derive the security bounds for both reverse and direct reconciliations and show that the bound for reverse reconciliation is tight.

  13. Johnson(-like)-Noise-Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line

    International Nuclear Information System (INIS)

    Mingesz, Robert; Gingl, Zoltan; Kish, Laszlo B.

    2008-01-01

    A pair of Kirchhoff-loop-Johnson(-like)-Noise communicators, which is able to work over variable ranges, was designed and built. Tests have been carried out on a model-line performance characteristics were obtained for ranges beyond the ranges of any known direct quantum communication channel and they indicate unrivalled signal fidelity and security performance of the exchanged raw key bits. This simple device has single-wire secure key generation and sharing rates of 0.1, 1, 10, and 100 bit/second for corresponding copper wire diameters/ranges of 21 mm/2000 km, 7 mm/200 km, 2.3 mm/20 km, and 0.7 mm/2 km, respectively and it performs with 0.02% raw-bit error rate (99.98% fidelity). The raw-bit security of this practical system significantly outperforms raw-bit quantum security. Current injection breaking tests show zero bit eavesdropping ability without triggering the alarm signal, therefore no multiple measurements are needed to build an error statistics to detect the eavesdropping as in quantum communication. Wire resistance based breaking tests of Bergou-Scheuer-Yariv type give an upper limit of eavesdropped raw-bit ratio of 0.19% and this limit is inversely proportional to the sixth power of cable diameter. Hao's breaking method yields zero (below measurement resolution) eavesdropping information

  14. Quantum bit commitment with misaligned reference frames

    International Nuclear Information System (INIS)

    Harrow, Aram; Oliveira, Roberto; Terhal, Barbara M.

    2006-01-01

    Suppose that Alice and Bob define their coordinate axes differently, and the change of reference frame between them is given by a probability distribution μ over SO(3). We show that this uncertainty of reference frame is of no use for bit commitment when μ is uniformly distributed over a (sub)group of SO(3), but other choices of μ can give rise to a partially or even arbitrarily secure bit commitment

  15. Noise-based logic hyperspace with the superposition of 2 states in a single wire

    Science.gov (United States)

    Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan

    2009-05-01

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have “on/off” states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 orthogonal system states. This is equivalent to a multi-valued logic system with 2 logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√{M}) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  16. Coherent and conventional gravidynamic quantum 1/f noise

    Science.gov (United States)

    Handel, Peter H.; George, Thomas F.

    2008-04-01

    Quantum 1/f noise is a fundamental fluctuation of currents, physical cross sections or process rates, caused by infrared coupling of the current carriers to very low frequency (soft) quanta, also known as infraquanta. The latter are soft gravitons in the gravidynamic case with the coupling constant g= pGM2/Nch considered here -- soft photons in the electrodynamic case and soft transversal piezo-phonons in the lattice-dynamical case. Here p=3.14 and F=psi. Quantum 1/f noise is a new aspect of quantum mechanics expressed mainly through the coherent quantum 1/f effect 2g/pf derived here for large systems, and mainly through the conventional quantum 1/f effect for small systems or individual particles. Both effects are present in general, and their effects are superposed in a first approximation with the help of a coherence (weight) parameter s" that will be derived elsewhere for the gravitational case. The spectral density of fractional fluctuations S(dj/j,f) for j=e(hk/2pm)|F|2 is S(F2,f)/ = S(j,f)/2 = [4ps"/(1+s")]GM2/pfNch = 4.4 10E9 M2/(pfNgram2). Here s" = 2N'GM/c2=N'rs, where N' is the number of particles of mass M per unit length of the current, rs their Schwarzschild radius, and s" is our coherence (weight) parameter giving the ratio of coherent to conventional quantum 1/f contributions.

  17. Quantum noise and stochastic reduction

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P

    2006-01-01

    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schroedinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this paper, two such models are investigated: one that achieves state reduction in infinite time and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions-algebraic in character and involving no integration-are obtained of both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems

  18. Connection between noise and quantum correlations in a double quantum dot

    NARCIS (Netherlands)

    Bodoky, F.; Belzig, W.; Bruder, C.

    We investigate the current and noise characteristics of a double quantum dot system. The strong correlations induced by the Coulomb interaction and the Pauli principle create entangled two-electron states and lead to signatures in the transport properties. We show that the interaction parameter Ø,

  19. Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fai, L. C.

    2018-02-01

    We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.

  20. Quantum noise for Faraday light–matter interfaces

    DEFF Research Database (Denmark)

    Vasliyev, D.V.; Hammerer, K.; Korolev, N.

    2012-01-01

    In light–matter interfaces based on the Faraday effect, quite a number of quantum information protocols have been successfully demonstrated. In order to further increase the performance and fidelities achieved in these protocols, a deeper understanding of the relevant noise and decoherence...

  1. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    International Nuclear Information System (INIS)

    Xin, Jun; Wang, Hailong; Jing, Jietai

    2016-01-01

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer can almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.

  2. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Jun; Wang, Hailong [State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-01

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer can almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.

  3. Quantum cost optimized design of 4-bit reversible universal shift register using reduced number of logic gate

    Science.gov (United States)

    Maity, H.; Biswas, A.; Bhattacharjee, A. K.; Pal, A.

    In this paper, we have proposed the design of quantum cost (QC) optimized 4-bit reversible universal shift register (RUSR) using reduced number of reversible logic gates. The proposed design is very useful in quantum computing due to its low QC, less no. of reversible logic gate and less delay. The QC, no. of gates, garbage outputs (GOs) are respectively 64, 8 and 16 for proposed work. The improvement of proposed work is also presented. The QC is 5.88% to 70.9% improved, no. of gate is 60% to 83.33% improved with compared to latest reported result.

  4. Noise effects in a three-player prisoner's dilemma quantum game

    International Nuclear Information System (INIS)

    Ramzan, M; Khan, M K

    2008-01-01

    We study the three-player prisoner's dilemma game under the effect of decoherence and correlated noise. It is seen that the quantum player is always better off than the classical players. It is also seen that the game's Nash equilibrium does not change in the presence of correlated noise in contradiction to the effect of decoherence in the multiplayer case. Furthermore, it is shown that for maximum correlation the game does not behave as a noiseless game and the quantum player is still better off for all values of the decoherence parameter p which is not possible in the two-player case. In addition, the payoffs reduction due to decoherence is controlled by the correlated noise throughout the course of the game

  5. Noise-based logic hyperspace with the superposition of 2N states in a single wire

    International Nuclear Information System (INIS)

    Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan

    2009-01-01

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 N orthogonal system states. This is equivalent to a multi-valued logic system with 2 2 N logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  6. Interferometric constraints on quantum geometrical shear noise correlations

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Aaron; Glass, Henry; Richard Gustafson, H.; Hogan, Craig J.; Kamai, Brittany L.; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan W.; Stoughton, Chris; Tomlin, Ray; Weiss, Rainer

    2017-07-20

    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches for faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.

  7. Shot Noise Suppression in a Quantum Point Contact with Short Channel Length

    International Nuclear Information System (INIS)

    Jeong, Heejun

    2015-01-01

    An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5 meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensional non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact. (paper)

  8. Study of quantum noise in nanoscale devices via the de Broglie-Bohm formulation

    International Nuclear Information System (INIS)

    Oriols, X.

    2005-01-01

    Full text: The experimental current measured in quantum-based devices fluctuates around average values, even at static conditions. Such current fluctuations are a consequence of the wave-particle duality. Roughly speaking, the undulatory nature of electrons (Schroedinger equation) controls the average current, while the particle like (discrete) nature of electrons determines the fluctuations. Such randomness in the electron flux of mesoscopic systems is known as quantum noise. The de Broglie-Bohm (dBB) interpretation of the quantum theory provides an excellent framework to study quantum noise because it describes phase-coherent phenomena in terms of well-defined quantum trajectories. This theory was initiated by de Broglie in 1926 and fully clarified by Bohm in 1952. In this conference we will present our quantum transport formalism, based on the dBB theory, to study fluctuations in mesoscopic systems. First, we show the excellent agreement between our noise results and those obtained by other approaches for simple tunnelling system. In addition, we will show how our quantum noise approach can directly include the non-trivial many-particle Coulomb interaction among electrons, via the instantaneous self-consistent solution of the Poisson and the Schroedinger equations. As a test, we study standard resonant tunnelling diodes for double and triple barrier. The current fluctuations obtained with dBB theory are in complete agreement with experimental results. We will also present noise results for time-dependent scenarios driven by very high frequencies (few THz), which are comparable to the inverse of the electron transit time in nanoscale devices. Under such conditions, the tunnelling phenomenology is clearly enriched leading to experimental evidences for the dBB theory. (author)

  9. Practical round-robin differential-phase-shift quantum key distribution

    International Nuclear Information System (INIS)

    Zhang, Zhen; Yuan, Xiao; Cao, Zhu; Ma, Xiongfeng

    2017-01-01

    The security of quantum key distribution (QKD) relies on the Heisenberg uncertainty principle, with which legitimate users are able to estimate information leakage by monitoring the disturbance of the transmitted quantum signals. Normally, the disturbance is reflected as bit flip errors in the sifted key; thus, privacy amplification, which removes any leaked information from the key, generally depends on the bit error rate. Recently, a round-robin differential-phase-shift QKD protocol for which privacy amplification does not rely on the bit error rate (Sasaki et al 2014 Nature 509 475) was proposed. The amount of leaked information can be bounded by the sender during the state-preparation stage and hence, is independent of the behavior of the unreliable quantum channel. In our work, we apply the tagging technique to the protocol and present a tight bound on the key rate and employ a decoy-state method. The effects of background noise and misalignment are taken into account under practical conditions. Our simulation results show that the protocol can tolerate channel error rates close to 50% within a typical experiment setting. That is, there is a negligible restriction on the error rate in practice. (paper)

  10. Noise-based logic hyperspace with the superposition of 2{sup N} states in a single wire

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu; Khatri, Sunil; Sethuraman, Swaminathan [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)

    2009-05-11

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2{sup N} orthogonal system states. This is equivalent to a multi-valued logic system with 2{sup 2{sup N}} logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O({radical}(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  11. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase...

  12. Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers

    International Nuclear Information System (INIS)

    Hashisaka, Masayuki; Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji

    2014-01-01

    We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements

  13. Symmetric Blind Information Reconciliation for Quantum Key Distribution

    International Nuclear Information System (INIS)

    Kiktenko, Evgeniy O.

    2017-01-01

    Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration of results of unsuccessful belief-propagation decodings.

  14. Influence of transmission bit rate on performance of optical fibre communication systems with direct modulation of laser diodes

    International Nuclear Information System (INIS)

    Ahmed, Moustafa F

    2009-01-01

    This paper reports on the influence of the transmission bit rate on the performance of optical fibre communication systems employing laser diodes subjected to high-speed direct modulation. The performance is evaluated in terms of the bit error rate (BER) and power penalty associated with increasing the transmission bit rate while keeping the transmission distance. The study is based on numerical analysis of the stochastic rate equations of the laser diode and takes into account noise mechanisms in the receiver. Correlation between BER and the Q-parameter of the received signal is presented. The relative contributions of the transmitter noise and the circuit and shot noises of the receiver to BER are quantified as functions of the transmission bit rate. The results show that the power penalty at BER = 10 -9 required to keep the transmission distance increases moderately with the increase in the bit rate near 1 Gbps and at high bias currents. In this regime, the shot noise is the main contributor to BER. At higher bit rates and lower bias currents, the power penalty increases remarkably, which comes mainly from laser noise induced by the pseudorandom bit-pattern effect.

  15. Quantum noise spectra for periodically driven cavity optomechanics

    Science.gov (United States)

    Aranas, E. B.; Akram, M. Javed; Malz, Daniel; Monteiro, T. S.

    2017-12-01

    A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However, such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators, (ii) Floquet [Phys. Rev. A 94, 023803 (2016), 10.1103/PhysRevA.94.023803], and (iii) iterative analysis [New J. Phys. 18, 113021 (2016), 10.1088/1367-2630/18/11/113021]. We prove that (i) and (ii) yield equivalent noise spectra and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how otherwise-inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies.

  16. Quantum noise locking

    International Nuclear Information System (INIS)

    McKenzie, Kirk; Mikhailov, Eugeniy E; Goda, Keisuke; Lam, Ping Koy; Grosse, Nicolai; Gray, Malcolm B; Mavalvala, Nergis; McClelland, David E

    2005-01-01

    Quantum optical states which have no coherent amplitude, such as squeezed vacuum states, cannot rely on standard readout techniques to generate error signals for control of the quadrature phase. Here we investigate the use of asymmetry in the quadrature variances to obtain a phase-sensitive readout and to lock the phase of a squeezed vacuum state, a technique which we call noise locking (NL). We carry out a theoretical derivation of the NL error signal and the associated stability of the squeezed and anti-squeezed lock points. Experimental data for the NL technique both in the presence and absence of coherent fields are shown, including a comparison with coherent locking techniques. Finally, we use NL to enable a stable readout of the squeezed vacuum state on a homodyne detector

  17. Excess quantum noise in optical parametric chirped-pulse amplification

    OpenAIRE

    Manzoni, C.; Moses, J.; Kärtner, F. X.; Cerullo, G.

    2011-01-01

    Noise evolution in an optical parametric chirped-pulse amplifier (OPCPA) differs essentially from that of an optical parametric or a conventional laser amplifier, in that an incoherent pedestal is produced by superfluorescence that can overwhelm the signal under strong saturation. Using a model for the nonlinear dynamics consistent with quantum mechanics, we numerically study the evolution of excess noise in an OPCPA. The observed dynamics explain the macroscopic characteristics seen previous...

  18. Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Huelga, Susana F

    2014-01-01

    Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)

  19. Rate equation description of quantum noise in nanolasers with few emitters

    DEFF Research Database (Denmark)

    Mørk, Jesper; Lippi, G. L.

    2018-01-01

    Rate equations for micro- and nanocavity lasers are formulated which take account of the finite number of emitters, Purcell effects as well as stochastic effects of spontaneous emission quantum noise. Analytical results are derived for the intensity noise and intensity correlation properties, g(2...

  20. Bounds on Minimum Energy per Bit for Optical Wireless Relay Channels

    Directory of Open Access Journals (Sweden)

    A. D. Raza

    2014-09-01

    Full Text Available An optical wireless relay channel (OWRC is the classical three node network consisting of source, re- lay and destination nodes with optical wireless connectivity. The channel law is assumed Gaussian. This paper studies the bounds on minimum energy per bit required for reliable communication over an OWRC. It is shown that capacity of an OWRC is concave and energy per bit is monotonically increasing in square of the peak optical signal power, and consequently the minimum energy per bit is inversely pro- portional to the square root of asymptotic capacity at low signal to noise ratio. This has been used to develop upper and lower bound on energy per bit as a function of peak signal power, mean to peak power ratio, and variance of channel noise. The upper and lower bounds on minimum energy per bit derived in this paper correspond respectively to the decode and forward lower bound and the min-max cut upper bound on OWRC capacity

  1. Comparison of the noise performance of 10 GHz repetition rate quantum-dot and quantum well monolithic mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Carpintero, G.; Thompson, M. G.; Yvind, Kresten

    2011-01-01

    fabricated with different material gain systems, one quantum well and the other quantum dot (QD), both with a monolithic all-active two-section mode-locked structure. Two important factors are identified as having a significant effect on the noise performance, the RF linewidth of the first harmonic......Mode-locked lasers are commonly used in carrier-wave signal generation systems because of their excellent phase noise performance. Owing to the importance of this key parameter, this study presents a like-for-like comparison of the noise performance of the passive mode-locked regime of two devices...... and the shape of the noise pedestals, both depending on the passive mode-locked bias conditions. Nevertheless, the dominant contribution of the RF linewidth to the phase noise, which is significantly narrower for the QD laser, makes this material more suitable for optical generation of low-noise millimetre...

  2. The Security Analysis of Two-Step Quantum Direct Communication Protocol in Collective-Rotation Noise Channel

    International Nuclear Information System (INIS)

    Li Jian; Sun Feng-Qi; Pan Ze-Shi; Nie Jin-Rui; Chen Yan-Hua; Yuan Kai-Guo

    2015-01-01

    To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein–Podolsky–Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003) 042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Q 0 (M : (Q 0 , 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ϵ is, the larger the error rate Q is. When the noise level ϵ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q < 0.153. Similarly, if error rate Q > 0.153 = Q 0 , eavesdropping information I > 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore. (paper)

  3. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging

    International Nuclear Information System (INIS)

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2010-01-01

    We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantum ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.

  4. Influence of Gaussian white noise on the frequency-dependent linear polarizability of doped quantum dot

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-01-01

    Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features

  5. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    Science.gov (United States)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  6. Scheme for Quantum Computing Immune to Decoherence

    Science.gov (United States)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report

  7. Capture dynamics of hot electrons on quantum dots in RTDs studied by noise measurement

    International Nuclear Information System (INIS)

    Hees, S S; Kardynal, B E; Shields, A J; Farrer, I; Ritchie, D A

    2008-01-01

    We investigate the noise in quantum dot resonant tunnelling diodes (QDRTDs), where the quantum dots (QDs) placed in the collector experience electric fields that vary in a wide range. The trapping/detrapping of electrons on the QDs dominated the measured electrical noise. The model that we derived for the noise explains the experimental data well. The QD capture cross-section is one to two orders of magnitude smaller than the physical size of the QDs due to the reduced probability of capturing a hot electron on the QD. The model is a powerful tool to design the noise characteristics of QDRTD single photon-detectors

  8. Experimental quantum verification in the presence of temporally correlated noise

    Science.gov (United States)

    Mavadia, S.; Edmunds, C. L.; Hempel, C.; Ball, H.; Roy, F.; Stace, T. M.; Biercuk, M. J.

    2018-02-01

    Growth in the capabilities of quantum information hardware mandates access to techniques for performance verification that function under realistic laboratory conditions. Here we experimentally characterise the impact of common temporally correlated noise processes on both randomised benchmarking (RB) and gate-set tomography (GST). Our analysis highlights the role of sequence structure in enhancing or suppressing the sensitivity of quantum verification protocols to either slowly or rapidly varying noise, which we treat in the limiting cases of quasi-DC miscalibration and white noise power spectra. We perform experiments with a single trapped 171Yb+ ion-qubit and inject engineered noise (" separators="∝σ^ z ) to probe protocol performance. Experiments on RB validate predictions that measured fidelities over sequences are described by a gamma distribution varying between approximately Gaussian, and a broad, highly skewed distribution for rapidly and slowly varying noise, respectively. Similarly we find a strong gate set dependence of default experimental GST procedures in the presence of correlated errors, leading to significant deviations between estimated and calculated diamond distances in the presence of correlated σ^ z errors. Numerical simulations demonstrate that expansion of the gate set to include negative rotations can suppress these discrepancies and increase reported diamond distances by orders of magnitude for the same error processes. Similar effects do not occur for correlated σ^ x or σ^ y errors or depolarising noise processes, highlighting the impact of the critical interplay of selected gate set and the gauge optimisation process on the meaning of the reported diamond norm in correlated noise environments.

  9. Quantum delta-kicked rotor: the effect of amplitude noise on the quantum resonances

    CERN Document Server

    Brouard, S

    2003-01-01

    We study analytically the effect of amplitude noise on the quantum resonances of an atom optics realization of the delta-kicked rotor. Noise is shown to add a time growth to the 'deterministic' energy and to induce a time increasing spreading in the momentum distribution; exact results are given for both effects. The ballistic peaks characteristic of the noiseless distribution for particular initial conditions broaden and eventually vanish, whereas the associated quadratic growth of energy persists; at large times, the survival probability decays as t sup - sup 1. Moreover, the nonexponential 'localization' linked to different initial conditions is gradually destroyed. Features specific to Gaussian noise, white and coloured, are analysed. The feasibility of experimental tests of these effects is discussed.

  10. Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling.

    Science.gov (United States)

    Thüring, André; Gräf, Christian; Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman

    2009-03-15

    Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on what we believe to be the first experimental realization of a TSR Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked, and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4 dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations.

  11. Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise

    International Nuclear Information System (INIS)

    Wang Chao; Liu Jian-Wei; Shang Tao; Chen Xiu-Bo; Bi Ya-Gang

    2015-01-01

    This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel. (paper)

  12. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    Science.gov (United States)

    Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.

    2016-07-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.

  13. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    International Nuclear Information System (INIS)

    Motazedifard, Ali; Bemani, F; Naderi, M H; Roknizadeh, R; Vitali, D

    2016-01-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers. (paper)

  14. A Novel Quantum Image Steganography Scheme Based on LSB

    Science.gov (United States)

    Zhou, Ri-Gui; Luo, Jia; Liu, XingAo; Zhu, Changming; Wei, Lai; Zhang, Xiafen

    2018-06-01

    Based on the NEQR representation of quantum images and least significant bit (LSB) scheme, a novel quantum image steganography scheme is proposed. The sizes of the cover image and the original information image are assumed to be 4 n × 4 n and n × n, respectively. Firstly, the bit-plane scrambling method is used to scramble the original information image. Then the scrambled information image is expanded to the same size of the cover image by using the key only known to the operator. The expanded image is scrambled to be a meaningless image with the Arnold scrambling. The embedding procedure and extracting procedure are carried out by K 1 and K 2 which are under control of the operator. For validation of the presented scheme, the peak-signal-to-noise ratio (PSNR), the capacity, the security of the images and the circuit complexity are analyzed.

  15. Quantum dynamics manipulation using optimal control theory in the presence of laser field noise

    Science.gov (United States)

    Kumar, Praveen; Malinovskaya, Svetlana A.

    2010-08-01

    We discuss recent advances in optimal control theory (OCT) related to the investigation of the impact of control field noise on controllability of quantum dynamics. Two numerical methods, the gradient method and the iteration method, are paid particular attention. We analyze the problem of designing noisy control fields to maximize the vibrational transition probability in diatomic quantum systems, e.g. the HF and OH molecules. White noise is used as an additive random variable in the amplitude of the control field. It is demonstrated that the convergence is faster in the presence of noise and population transfer is increased by 0.04% for small values of noise compared to the field amplitude.

  16. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Science.gov (United States)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2017-10-01

    Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  17. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Directory of Open Access Journals (Sweden)

    Marcello Benedetti

    2017-11-01

    Full Text Available Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  18. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.

    Science.gov (United States)

    Lucamarini, M; Yuan, Z L; Dynes, J F; Shields, A J

    2018-05-01

    Quantum key distribution (QKD) 1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre 3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration 4 . Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters 5-7 , is overcoming the fundamental rate-distance limit of QKD 8 . This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel 9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are 'twins' and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate-distance limit of QKD and greatly extending the range of secure quantum communications.

  19. Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers.......Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers....

  20. Study on the security of discrete-variable quantum key distribution over non-Markovian channels

    International Nuclear Information System (INIS)

    Huang Peng; Zhu Jun; He Guangqiang; Zeng Guihua

    2012-01-01

    The dynamic of the secret key rate of the discrete-variable quantum key distribution (QKD) protocol over the non-Markovian quantum channel is investigated. In particular, we calculate the secret key rate for the six-state protocol over non-Markovian depolarizing channels with coloured noise and Markovian depolarizing channels with Gaussian white noise, respectively. We find that the secure secret key rate for the non-Markovian depolarizing channel will be larger than the Markovian one under the same conditions even when their upper bounds of tolerable quantum bit error rate are equal. This indicates that this coloured noise in the non-Markovian depolarizing channel can enhance the security of communication. Moreover, we show that the secret key rate fluctuates near the secure point when the coupling strength of the system with the environment is high. The results demonstrate that the non-Markovian effects of the transmission channel can have a positive impact on the security of discrete-variable QKD. (paper)

  1. Stochastic resonance in a gain-noise model of a single-mode laser driven by pump noise and quantum noise with cross-correlation between real and imaginary parts under direct signal modulation

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Mei; Cao Li; Wu Da-Jin

    2007-01-01

    Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR)separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ and the deterministic steady-state intensity I0.In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of τand λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.

  2. Phonon squeezed states: quantum noise reduction in solids

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1999-03-01

    This article discusses quantum fluctuation properties of a crystal lattice, and in particular, phonon squeezed states. Squeezed states of phonons allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. Here we discuss our studies of both continuous-wave and impulsive second-order Raman scattering mechanisms. The later approach was used to experimentally suppress (by one part in a million) fluctuations in phonons. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments. Further information, including preprints and animations, are available in http://www-personal.engin.umich.edu/∼nori/squeezed.html.

  3. Triviality-quantum decoherence of quantum chromodynamics SU(∞) in the presence of an external strong white-noise electromagnetic field

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2004-01-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of a very strong external white-noise electromagnetic (strength) field within the context of QCD in the 't Hooft limit of a large number of colors

  4. Coupled influence of noise and damped propagation of impurity on linear and nonlinear polarizabilities of doped quantum dots

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Dopant migrates under damped condition. • Noise-damping coupling affects polarizabilities. - Abstract: We investigate the profiles of diagonal components of static and frequency-dependent linear, first, and second nonlinear polarizabilities of repulsive impurity doped quantum dot. We have considered propagation of dopant within an environment that damps the motion. Simultaneous presence of noise inherent to the system has also been considered. The dopant has a Gaussian potential and noise considered is a Gaussian white noise. The doped system is exposed to an external electric field which could be static or time-dependent. Noise undergoes direct coupling with damping and the noise-damping coupling strength appears to be a crucial parameter that designs the profiles of polarizability components. This happens because the coupling strength modulates the dispersive and asymmetric character of the system. The frequency of external field brings about additional features in the profiles of polarizability components. The present investigation highlights some useful features in the optical properties of doped quantum dots

  5. Universal quantum interfaces

    International Nuclear Information System (INIS)

    Lloyd, Seth; Landahl, Andrew J.; Slotine, Jean-Jacques E.

    2004-01-01

    To observe or control a quantum system, one must interact with it via an interface. This article exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored

  6. QUANTUM COMPUTING: Quantum Entangled Bits Step Closer to IT.

    Science.gov (United States)

    Zeilinger, A

    2000-07-21

    In contrast to today's computers, quantum computers and information technologies may in future be able to store and transmit information not only in the state "0" or "1," but also in superpositions of the two; information will then be stored and transmitted in entangled quantum states. Zeilinger discusses recent advances toward using this principle for quantum cryptography and highlights studies into the entanglement (or controlled superposition) of several photons, atoms, or ions.

  7. Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks

    International Nuclear Information System (INIS)

    Corndorf, Eric; Liang Chuang; Kanter, Gregory S.; Kumar, Prem; Yuen, Horace P.

    2005-01-01

    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered

  8. Quantum control with noisy fields: computational complexity versus sensitivity to noise

    International Nuclear Information System (INIS)

    Kallush, S; Khasin, M; Kosloff, R

    2014-01-01

    A closed quantum system is defined as completely controllable if an arbitrary unitary transformation can be executed using the available controls. In practice, control fields are a source of unavoidable noise, which has to be suppressed to retain controllability. Can one design control fields such that the effect of noise is negligible on the time-scale of the transformation? This question is intimately related to the fundamental problem of a connection between the computational complexity of the control problem and the sensitivity of the controlled system to noise. The present study considers a paradigm of control, where the Lie-algebraic structure of the control Hamiltonian is fixed, while the size of the system increases with the dimension of the Hilbert space representation of the algebra. We find two types of control tasks, easy and hard. Easy tasks are characterized by a small variance of the evolving state with respect to the operators of the control operators. They are relatively immune to noise and the control field is easy to find. Hard tasks have a large variance, are sensitive to noise and the control field is hard to find. The influence of noise increases with the size of the system, which is measured by the scaling factor N of the largest weight of the representation. For fixed time and control field the ability to control degrades as O(N) for easy tasks and as O(N 2 ) for hard tasks. As a consequence, even in the most favorable estimate, for large quantum systems, generic noise in the controls dominates for a typical class of target transformations, i.e. complete controllability is destroyed by noise. (paper)

  9. Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise

    International Nuclear Information System (INIS)

    Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.

    2011-01-01

    We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.

  10. Corrected RMS Error and Effective Number of Bits for Sinewave ADC Tests

    International Nuclear Information System (INIS)

    Jerome J. Blair

    2002-01-01

    A new definition is proposed for the effective number of bits of an ADC. This definition removes the variation in the calculated effective bits when the amplitude and offset of the sinewave test signal is slightly varied. This variation is most pronounced when test signals with amplitudes of a small number of code bin widths are applied to very low noise ADC's. The effectiveness of the proposed definition is compared with that of other proposed definitions over a range of signal amplitudes and noise levels

  11. Analytical expression for the bit error rate of cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, S.

    2003-01-01

    We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed.......We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed....

  12. Fabricating off-diagonal components of frequency-dependent linear and nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α xy , α yx ), first nonlinear (β xyy , β yxx ), and second nonlinear (γ xxyy , γ yyxx ) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities

  13. Stark shift of impurity doped quantum dots: Role of noise

    Science.gov (United States)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study makes a punctilious investigation of the profiles of Stark shift (SS) of doped GaAs quantum dot (QD) under the supervision of Gaussian white noise. A few physical parameters have been varied and the consequent variations in the SS profiles have been monitored. The said physical parameters comprise of magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for AlxGa1-x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The SS profiles unfurl interesting features that heavily depend upon the particular physical quantity concerned, presence/absence of noise and the manner (additive/multiplicative) noise enters the system. The study highlights feasible means of maximizing SS of doped QD in presence of noise by suitable adjustment of several control parameters. The study deems importance in view of technological applications of QD devices where noise plays some prominent role.

  14. KEAMANAN CITRA DENGAN WATERMARKING MENGGUNAKAN PENGEMBANGAN ALGORITMA LEAST SIGNIFICANT BIT

    Directory of Open Access Journals (Sweden)

    Kurniawan Kurniawan

    2015-01-01

    Full Text Available Image security is a process to save digital. One method of securing image digital is watermarking using Least Significant Bit algorithm. Main concept of image security using LSB algorithm is to replace bit value of image at specific location so that created pattern. The pattern result of replacing the bit value of image is called by watermark. Giving watermark at image digital using LSB algorithm has simple concept so that the information which is embedded will lost easily when attacked such as noise attack or compression. So need modification like development of LSB algorithm. This is done to decrease distortion of watermark information against those attacks. In this research is divided by 6 process which are color extraction of cover image, busy area search, watermark embed, count the accuracy of watermark embed, watermark extraction, and count the accuracy of watermark extraction. Color extraction of cover image is process to get blue color component from cover image. Watermark information will embed at busy area by search the area which has the greatest number of unsure from cover image. Then watermark image is embedded into cover image so that produce watermarked image using some development of LSB algorithm and search the accuracy by count the Peak Signal to Noise Ratio value. Before the watermarked image is extracted, need to test by giving noise and doing compression into jpg format. The accuracy of extraction result is searched by count the Bit Error Rate value.

  15. Improvement of two-way continuous variable quantum cryptography by using additional noise

    International Nuclear Information System (INIS)

    Wang Minjie; Pan Wei

    2010-01-01

    The performance of quantum key distribution such as one-way continuous variable protocols, can be increased by adding some noise on the reference side of error correction in the error-correction phase. For this reason, we here study this possibility in the case of two-way continuous variable system. Finally, the numerical results show that the using of additional noise gives two-way schemes better security performance in terms of secret key rates and resistance to channel excess noise.

  16. Nonlinear unitary quantum collapse model with self-generated noise

    Science.gov (United States)

    Geszti, Tamás

    2018-04-01

    Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.

  17. Triviality - quantum decoherence of Fermionic quantum chromodynamics SU (Nc) in the presence of an external strong U (∞) flavored constant noise field

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2008-01-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of an external U (∞) flavor constant charged white noise reservoir. (author)

  18. Effect of intrinsic-gain fluctuations on quantum noise of phosphor materials used in medical X-ray imaging

    International Nuclear Information System (INIS)

    Kalivas, N.; Costaridou, L.; Panayiotakis, G.; Nomicos, C.D.

    1999-01-01

    The quality of a medical image depends, among other parameters, on quantum noise. Quantum noise is affected by the fluctuations in the number of optical quanta produced within the phosphor, per absorbed X-ray (i.e. phosphor intrinsic-gain fluctuations). This effect is considered by means of a factor, called in this study intrinsic-gain noise factor, IGNF(E). In existing theoretical models of quantum noise, the corresponding factor is taken to be equal to one. In this paper, an expression that accounts for the coefficient of variation of the phosphor intrinsic gain is introduced. This expression takes into account the process of electron-hole pair conversion to optical photons and the frequency distribution function of the emitted optical photon energy. Subsequently IGNF(E) is expressed in terms of this coefficient of variation. IGNF(E) has been calculated for several phosphors and for various energies. For all medical X-ray energies studied, phosphors that exhibit a high relative fluctuation of emitted optical photon energy, IGNF(E) exceeds by 2% to over 17% the corresponding factor of the existing theoretical models of quantum noise. (orig.)

  19. A compact, multichannel, and low noise arbitrary waveform generator.

    Science.gov (United States)

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  20. A compact, multichannel, and low noise arbitrary waveform generator

    International Nuclear Information System (INIS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-01-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation

  1. Quantum logic gates based on coherent electron transport in quantum wires.

    Science.gov (United States)

    Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S

    2000-06-19

    It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.

  2. Single-charge tunneling in ambipolar silicon quantum dots

    NARCIS (Netherlands)

    Müller, Filipp

    2015-01-01

    Spin qubits in coupled quantum dots (QDs) are promising for future quantum information processing (QIP). A quantum bit (qubit) is the quantum mechanical analogon of a classical bit. In general, each quantum mechanical two-level system can represent a qubit. For the spin of a single charge carrier

  3. Quantum Mechanical Noise in a Michelson Interferometer with Nonclassical Inputs: Nonperturbative Treatment

    Science.gov (United States)

    King, Sun-Kun

    1996-01-01

    The variances of the quantum-mechanical noise in a two-input-port Michelson interferometer within the framework of the Loudon-Ni model were solved exactly in two general cases: (1) one coherent state input and one squeezed state input, and (2) two photon number states inputs. Low intensity limit, exponential decaying signal and the noise due to mixing were discussed briefly.

  4. Quantum-noise randomized ciphers

    International Nuclear Information System (INIS)

    Nair, Ranjith; Yuen, Horace P.; Kumar, Prem; Corndorf, Eric; Eguchi, Takami

    2006-01-01

    We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as αη and show that it is equivalent to a random cipher in which the required randomization is affected by coherent-state quantum noise. We describe the currently known security features of αη and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how αη used in conjunction with any standard stream cipher such as the Advanced Encryption Standard provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that αη is equivalent to a nonrandom stream cipher

  5. Faithful remote state preparation using finite classical bits and a nonmaximally entangled state

    International Nuclear Information System (INIS)

    Ye Mingyong; Zhang Yongsheng; Guo Guangcan

    2004-01-01

    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state

  6. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    Science.gov (United States)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  7. An experimental study of noise in midinfrared quantum cascade lasers of different designs

    OpenAIRE

    Schilt, Stéphane; Tombez, Lionel; Tardy, Camille; Bismuto, Alfredo; Blaser, Stéphane; Maulini, Richard; Terazzi, Romain; Rochat, Michel; Südmeyer, Thomas

    2015-01-01

    We present an experimental study of noise in mid-infrared quantum cascade lasers (QCLs) of differ-ent designs. By quantifying the high degree of correlation occurring between fluctuations of the optical frequency and voltage between the QCL terminals, we show that electrical noise is a powerful and simple mean to study noise in QCLs. Based on this outcome, we investigated the electrical noise in a large set of 22 QCLs emitting in the range of 7.6–8 μm and consisting of both ridge-waveguide and...

  8. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...

  9. Low-frequency excess flux noise in superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Sebastian; Ferring, Anna; Fleischmann, Andreas; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2016-07-01

    Low-frequency noise is a rather universal phenomenon and appears in physical, chemical, biological or even economical systems. However, there is often very little known about the underlying processes leading to its occurrence. In particular, the origin of low-frequency excess flux noise in superconducting devices has been an unresolved puzzle for many decades. Its existence limits, for example, the coherence time of superconducting quantum bits or makes high-precision measurements of low-frequency signals using SQUIDs rather challenging. Recent experiments suggest that low-frequency excess flux noise in Josephson junction based devices might be caused by the random reversal of interacting spins in surface layer oxides and in the superconductor-substrate interface. Even if it turns out to be generally correct, the underlying physical processes, i.e. the origin of these spins, their physical nature as well as the interaction mechanisms, have not been resolved so far. In this contribution we discuss recent measurements of low-frequency SQUID noise which we performed to investigate the origin of low-frequency excess flux noise in superconducting devices. Within this context we give an overview of our measurement techniques and link our data with present theoretical models and literature data.

  10. Unveiling the decoherence effect of noise on the entropic uncertainty relation and its control by partially collapsed operations

    Science.gov (United States)

    Chen, Min-Nan; Sun, Wen-Yang; Huang, Ai-Jun; Ming, Fei; Wang, Dong; Ye, Liu

    2018-01-01

    In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under open systems, and how to steer the uncertainty under different types of decoherence. Specifically, we develop the dynamical behaviors of the uncertainty of interest under two typical categories of noise; bit flipping and depolarizing channels. It has been shown that the measurement uncertainty firstly increases and then decreases with the growth of the decoherence strength in bit flipping channels. In contrast, the uncertainty monotonically increases with the increase of the decoherence strength in depolarizing channels. Notably, and to a large degree, it is shown that the uncertainty depends on both the systematic quantum correlation and the minimal conditional entropy of the observed subsystem. Moreover, we present a possible physical interpretation for these distinctive behaviors of the uncertainty within such scenarios. Furthermore, we propose a simple and effective strategy to reduce the entropic uncertainty by means of a partially collapsed operation—quantum weak measurement. Therefore, our investigations might offer an insight into the dynamics of the measurment uncertainty under decoherence, and be of importance to quantum precision measurement in open systems.

  11. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  12. Macroscopic superposition states and decoherence by quantum telegraph noise

    International Nuclear Information System (INIS)

    Abel, Benjamin Simon

    2008-01-01

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  13. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states

    Science.gov (United States)

    Wu, FangZhou; Yang, GuoJian; Wang, HaiBo; Xiong, Jun; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    This study proposes the first high-capacity quantum secure direct communication (QSDC) with two-photon six-qubit hyper-entangled Bell states in two longitudinal momentum and polarization degrees of freedom (DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits. Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication. The QSDC protocol has good applications in the future quantum communication because of all these features.

  14. Fault-tolerant quantum computation for local non-Markovian noise

    International Nuclear Information System (INIS)

    Terhal, Barbara M.; Burkard, Guido

    2005-01-01

    We derive a threshold result for fault-tolerant quantum computation for local non-Markovian noise models. The role of error amplitude in our analysis is played by the product of the elementary gate time t 0 and the spectral width of the interaction Hamiltonian between system and bath. We discuss extensions of our model and the applicability of our analysis

  15. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  16. Synchronicity, Quantum Information and the Psyche

    CERN Document Server

    Martin, Francois; Galli Carminati, Giuliana

    2009-01-01

    In this paper we describe synchronicity phenomena. As an explanation of these phenomena we propose quantum entanglement between the psychic realm known as the "unconscious" and also the classical illusion of the collapse of the wave-function. Then, taking the theory of quantum information as a model we consider the human unconscious, pre-consciousness and consciousness as sets of quantum bits (qu-bits). We analyze how there can be communication between these various qu-bit sets. In doing this we are inspired by the theory of nuclear magnetic resonance. In this manner we build quantum processes that permit consciousness to "read" the unconscious and vice-versa. The most elementary interaction, e.g. between a pre-consciousness qu-bit and a consciousness one, allows us to predict the time evolution of the pre-consciousness + consciousness system in which pre-consciousness and consciousness are quantum entangled. This time evolution exhibits Rabi oscillations that we name mental Rabi oscillations. This time evolu...

  17. Shot-noise evidence of fractional quasiparticle creation in a local fractional quantum Hall state.

    Science.gov (United States)

    Hashisaka, Masayuki; Ota, Tomoaki; Muraki, Koji; Fujisawa, Toshimasa

    2015-02-06

    We experimentally identify fractional quasiparticle creation in a tunneling process through a local fractional quantum Hall (FQH) state. The local FQH state is prepared in a low-density region near a quantum point contact in an integer quantum Hall (IQH) system. Shot-noise measurements reveal a clear transition from elementary-charge tunneling at low bias to fractional-charge tunneling at high bias. The fractional shot noise is proportional to T(1)(1-T(1)) over a wide range of T(1), where T(1) is the transmission probability of the IQH edge channel. This binomial distribution indicates that fractional quasiparticles emerge from the IQH state to be transmitted through the local FQH state. The study of this tunneling process enables us to elucidate the dynamics of Laughlin quasiparticles in FQH systems.

  18. On the Power of Quantum Memory

    OpenAIRE

    Koenig, Robert; Maurer, Ueli; Renner, Renato

    2003-01-01

    We address the question whether quantum memory is more powerful than classical memory. In particular, we consider a setting where information about a random n-bit string X is stored in r classical or quantum bits, for r

  19. Quantum Stackelberg duopoly in the presence of correlated noise

    International Nuclear Information System (INIS)

    Khan, Salman; Ramzan, M; Khan, M Khalid

    2010-01-01

    We study the influence of entanglement and correlated noise using correlated amplitude damping, depolarizing and phase damping channels on the quantum Stackelberg duopoly. Our investigations show that under the influence of an amplitude damping channel a critical point exists for an unentangled initial state at which firms get equal payoffs. The game becomes a follower advantage game when the channel is highly decohered. Two critical points corresponding to two values of the entanglement angle are found in the presence of correlated noise. Within the range of these limits of the entanglement angle, the game is a follower advantage game. In the case of a depolarizing channel, the payoffs of the two firms are strongly influenced by the memory parameter. The presence of quantum memory ensures the existence of the Nash equilibrium for the entire range of decoherence and entanglement parameters for both the channels. A local maximum in the payoffs is observed which vanishes as the channel correlation increases. Moreover, under the influence of the depolarizing channel, the game is always a leader advantage game. Furthermore, it is seen that the phase damping channel does not affect the outcome of the game.

  20. Noise analysis of a digital radiography system

    International Nuclear Information System (INIS)

    Arnold, B.A.; Scheibe, P.O.

    1984-01-01

    The sources of noise in a digital video subtraction angiography system were identified and analyzed. Signal-to-noise ratios of digital radiography systems were measured using the digital image data recorded in the computer. The major sources of noise include quantum noise, TV camera electronic noise, quantization noise from the analog-to-digital converter, time jitter, structure noise in the image intensifier, and video recorder electronic noise. A new noise source was identified, which results from the interplay of fixed pattern noise and the lack of image registration. This type of noise may result from image-intensifier structure noise in combination with TV camera time jitter or recorder time jitter. A similar noise source is generated from the interplay of patient absorption inhomogeneities and patient motion or image re-registration. Signal-to-noise ratios were measured for a variety of experimental conditions using subtracted digital images. Image-intensifier structure noise was shown to be a dominant noise source in unsubtracted images at medium to high radiation exposure levels. A total-system signal-to-noise ratio (SNR) of 750:1 was measured for an input exposure of 1 mR/frame at the image intensifier input. The effect of scattered radiation on subtracted image SNR was found to be greater than previously reported. The detail SNR was found to vary approximately as one plus the scatter degradation factor. Quantization error noise with 8-bit image processors (signal-to-noise ratio of 890:1) was shown to be of increased importance after recent improvements in TV cameras. The results of the analysis are useful both in the design of future digital radiography systems and the selection of optimum clinical techniques

  1. Suppression of the four-wave-mixing background noise in a quantum memory retrieval process by channel blocking

    Science.gov (United States)

    Zhang, Kai; Guo, Jinxian; Chen, L. Q.; Yuan, Chunhua; Ou, Z. Y.; Zhang, Weiping

    2014-09-01

    In a quantum memory scheme with the Raman process, the read process encounters noise from four-wave mixing (FWM), which can destroy the nonclassical properties of the generated quantum fields. Here we demonstrate experimentally that the noise from FWM can be greatly suppressed by simply reducing the FWM transition channels with a circularly polarized read beam while at the same time retaining relatively high retrieval efficiency.

  2. Exploration of Least Significant Bit Based Watermarking and Its Robustness against Salt and Pepper Noise

    OpenAIRE

    Kamaldeep Joshi; Rajkumar Yadav; Sachin Allwadhi

    2016-01-01

    Image steganography is the best aspect of information hiding. In this, the information is hidden within an image and the image travels openly on the Internet. The Least Significant Bit (LSB) is one of the most popular methods of image steganography. In this method, the information bit is hidden at the LSB of the image pixel. In one bit LSB steganography method, the total numbers of the pixels and the total number of message bits are equal to each other. In this paper, the LSB method of image ...

  3. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Justin, E-mail: justin.solomon@duke.edu [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Biomedical Engineering and Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  4. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    International Nuclear Information System (INIS)

    Solomon, Justin; Samei, Ehsan

    2014-01-01

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  5. Comodulation masking release in bit-rate reduction systems

    DEFF Research Database (Denmark)

    Vestergaard, Martin David; Rasmussen, Karsten Bo; Poulsen, Torben

    1999-01-01

    It has been suggested that the level dependence of the upper masking slope be utilized in perceptual models in bit-rate reduction systems. However, comodulation masking release (CMR) phenomena lead to a reduction of the masking effect when a masker and a probe signal are amplitude modulated...... with the same frequency. In bit-rate reduction systems the masker would be the audio signal and the probe signal would represent the quantization noise. Masking curves have been determined for sinusoids and 1-Bark-wide noise maskers in order to investigate the risk of CMR, when quantizing depths are fixed...... in accordance with psycho-acoustical principles. Masker frequencies of 500 Hz, 1 kHz, and 2 kHz have been investigated, and the masking of pure tone probes has been determined in the first four 1/3 octaves above the masker. Modulation frequencies between 6 and 20 Hz were used with a modulation depth of 0...

  6. Ultrahigh Error Threshold for Surface Codes with Biased Noise

    Science.gov (United States)

    Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.

    2018-02-01

    We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.

  7. Relative resilience to noise of standard and sequential approaches to measurement-based quantum computation

    Science.gov (United States)

    Gallagher, C. B.; Ferraro, A.

    2018-05-01

    A possible alternative to the standard model of measurement-based quantum computation (MBQC) is offered by the sequential model of MBQC—a particular class of quantum computation via ancillae. Although these two models are equivalent under ideal conditions, their relative resilience to noise in practical conditions is not yet known. We analyze this relationship for various noise models in the ancilla preparation and in the entangling-gate implementation. The comparison of the two models is performed utilizing both the gate infidelity and the diamond distance as figures of merit. Our results show that in the majority of instances the sequential model outperforms the standard one in regard to a universal set of operations for quantum computation. Further investigation is made into the performance of sequential MBQC in experimental scenarios, thus setting benchmarks for possible cavity-QED implementations.

  8. 24-Hour Relativistic Bit Commitment.

    Science.gov (United States)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-30

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  9. Quantum Watermarking Scheme Based on INEQR

    Science.gov (United States)

    Zhou, Ri-Gui; Zhou, Yang; Zhu, Changming; Wei, Lai; Zhang, Xiafen; Ian, Hou

    2018-04-01

    Quantum watermarking technology protects copyright by embedding invisible quantum signal in quantum multimedia data. In this paper, a watermarking scheme based on INEQR was presented. Firstly, the watermark image is extended to achieve the requirement of embedding carrier image. Secondly, the swap and XOR operation is used on the processed pixels. Since there is only one bit per pixel, XOR operation can achieve the effect of simple encryption. Thirdly, both the watermark image extraction and embedding operations are described, where the key image, swap operation and LSB algorithm are used. When the embedding is made, the binary image key is changed. It means that the watermark has been embedded. Of course, if the watermark image is extracted, the key's state need detected. When key's state is |1>, this extraction operation is carried out. Finally, for validation of the proposed scheme, both the Signal-to-noise ratio (PSNR) and the security of the scheme are analyzed.

  10. On the relationships between higher and lower bit-depth system measurements

    Science.gov (United States)

    Burks, Stephen D.; Haefner, David P.; Doe, Joshua M.

    2018-04-01

    The quality of an imaging system can be assessed through controlled laboratory objective measurements. Currently, all imaging measurements require some form of digitization in order to evaluate a metric. Depending on the device, the amount of bits available, relative to a fixed dynamic range, will exhibit quantization artifacts. From a measurement standpoint, measurements are desired to be performed at the highest possible bit-depth available. In this correspondence, we described the relationship between higher and lower bit-depth measurements. The limits to which quantization alters the observed measurements will be presented. Specifically, we address dynamic range, MTF, SiTF, and noise. Our results provide guidelines to how systems of lower bit-depth should be characterized and the corresponding experimental methods.

  11. Assessment of noise in a digital image using the join-count statistic and the Moran test

    International Nuclear Information System (INIS)

    Kehshih Chuang; Huang, H.K.

    1992-01-01

    It is assumed that data bits of a pixel in digital images can be divided into signal and noise bits. The signal bits occupy the most significant part of the pixel. The signal parts of each pixel are correlated while the noise parts are uncorrelated. Two statistical methods, the Moran test and the join-count statistic, are used to examine the noise parts. Images from computerized tomography, magnetic resonance and computed radiography are used for the evaluation of the noise bits. A residual image is formed by subtracting the original image from its smoothed version. The noise level in the residual image is then identical to that in the original image. Both statistical tests are then performed on the bit planes of the residual image. Results show that most digital images contain only 8-9 bits of correlated information. Both methods are easy to implement and fast to perform. (author)

  12. Subcarrier multiplexing optical quantum key distribution

    International Nuclear Information System (INIS)

    Ortigosa-Blanch, A.; Capmany, J.

    2006-01-01

    We present the physical principles of a quantum key distribution system that opens the possibility of parallel quantum key distribution and, therefore, of a substantial improvement in the bit rate of such systems. Quantum mechanics allows for multiple measurements at different frequencies and thus we exploit this concept by extending the concept of frequency coding to the case where more than one radio-frequency subcarrier is used for independently encoding the bits onto an optical carrier. Taking advantage of subcarrier multiplexing techniques we demonstrate that the bit rate can be greatly improved as parallel key distribution is enabled

  13. Nuclear spin states and quantum logical operations

    International Nuclear Information System (INIS)

    Orlova, T.A.; Rasulov, E.N.

    2006-01-01

    Full text: To build a really functional quantum computer, researchers need to develop logical controllers known as 'gates' to control the state of q-bits. In this work , equal quantum logical operations are examined with the emphasis on 1-, 2-, and 3-q-bit gates.1-q-bit quantum logical operations result in Boolean 'NOT'; the 'NOT' and '√NOT' operations are described from the classical and quantum perspective. For the 'NOT' operation to be performed, there must be a means to switch the state of q-bits from to and vice versa. For this purpose either a light or radio pulse of a certain frequency can be used. If the nucleus has the spin-down state, the spin will absorb a portion of energy from electromagnetic current and switch into the spin-up state, and the radio pulse will force it to switch into state. An operation thus described from purely classical perspective is clearly understood. However, operations not analogous to the classical type may also be performed. If the above mentioned radio pulses are only half the frequency required to cause a state switch in the nuclear spin, the nuclear spin will enter the quantum superposition state of the ground state (↓) and excited states (↑). A recurring radio pulse will then result in an operation equivalent to 'NOT', for which reason the described operation is called '√NOT'. Such an operation allows for the state of quantum superposition in quantum computing, which enables parallel processing of several numbers. The work also treats the principles of 2-q-bit logical operations of the controlled 'NOT' type (CNOT), 2-q-bit (SWAP), and the 3-q-bit 'TAFFOLI' gate. (author)

  14. Non-Markovian stochastic Schroedinger equations: Generalization to real-valued noise using quantum-measurement theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    Do stochastic Schroedinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schroedinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schroedinger equation introduced by Strunz, Diosi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction

  15. Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Mavalvala, Nergis

    2003-01-01

    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers

  16. Characterization of subsurface structure at Soultz HDR field by the triaxial drill-bit VSP; Sanjiku drill bit VSP ho ni yoru Soultz HDR field no chika kozo suitei

    Energy Technology Data Exchange (ETDEWEB)

    Asanuma, H; Niitsuma, H; Liu, H [Tohoku University, Sendai (Japan); Baria, R

    1997-10-22

    Triaxial drill-bit VSP (vertical seismic profiling) method is applied to the Soultz HDR (hot dry rock) field, France, where an artificial reservoir is provided inside the bedrock, and the structure inside the rockbed is estimated. An elastic wave detector is installed in the rockbed in this field, and data are acquired having frequency components up to approximately 1kHz. The trajectory of particles due to excavation noise is analyzed, and it is found that the drill-bit is the primary source of noise during excavation and that the SV-wave dominates in the emitted noise. Estimating the subsurface structure aided by the principle of the triaxial drill-bit VSP method, the lower part is detected of the artificial reservoir formed by hydraulic fracturing. As is reported in this paper, when the principle of the subject VSP method is considered, it has to be said that it is quite difficult to employ this method to extensively estimate the subsurface structure on the basis of measurements of the inside of the rockbed. There is a plan for a future study of a technique for accurately and extensively estimating subsurface structures by use of a small number of sensors. 8 refs., 7 figs.

  17. Fast physical random bit generation with chaotic semiconductor lasers

    Science.gov (United States)

    Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter

    2008-12-01

    Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.

  18. Nuclear quantum effects in solids using a colored-noise thermostat.

    Science.gov (United States)

    Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele

    2009-07-17

    We present a method, based on a non-Markovian Langevin equation, to include quantum corrections to the classical dynamics of ions in a quasiharmonic system. By properly fitting the correlation function of the noise, one can vary the fluctuations in positions and momenta as a function of the vibrational frequency, and fit them so as to reproduce the quantum-mechanical behavior, with minimal a priori knowledge of the details of the system. We discuss the application of the thermostat to diamond and to ice Ih. We find that results in agreement with path-integral methods can be obtained using only a fraction of the computational effort.

  19. Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field

    International Nuclear Information System (INIS)

    Pal, Suvajit; Sinha, Sudarson Sekhar; Ganguly, Jayanta; Ghosh, Manas

    2013-01-01

    Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r 0 ). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role

  20. Adaptive spatial filtering for daytime satellite quantum key distribution

    Science.gov (United States)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2014-11-01

    The rate of secure key generation (SKG) in quantum key distribution (QKD) is adversely affected by optical noise and loss in the quantum channel. In a free-space atmospheric channel, the scattering of sunlight into the channel can lead to quantum bit error ratios (QBERs) sufficiently large to preclude SKG. Furthermore, atmospheric turbulence limits the degree to which spatial filtering can reduce sky noise without introducing signal losses. A system simulation quantifies the potential benefit of tracking and higher-order adaptive optics (AO) technologies to SKG rates in a daytime satellite engagement scenario. The simulations are performed assuming propagation from a low-Earth orbit (LEO) satellite to a terrestrial receiver that includes an AO system comprised of a Shack-Hartmann wave-front sensor (SHWFS) and a continuous-face-sheet deformable mirror (DM). The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain waveoptics hardware emulator. Secure key generation rates are then calculated for the decoy state QKD protocol as a function of the receiver field of view (FOV) for various pointing angles. The results show that at FOVs smaller than previously considered, AO technologies can enhance SKG rates in daylight and even enable SKG where it would otherwise be prohibited as a consequence of either background optical noise or signal loss due to turbulence effects.

  1. High performance 14-bit pipelined redundant signed digit ADC

    International Nuclear Information System (INIS)

    Narula, Swina; Pandey, Sujata

    2016-01-01

    A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design. (paper)

  2. A Simple Encryption Algorithm for Quantum Color Image

    Science.gov (United States)

    Li, Panchi; Zhao, Ya

    2017-06-01

    In this paper, a simple encryption scheme for quantum color image is proposed. Firstly, a color image is transformed into a quantum superposition state by employing NEQR (novel enhanced quantum representation), where the R,G,B values of every pixel in a 24-bit RGB true color image are represented by 24 single-qubit basic states, and each value has 8 qubits. Then, these 24 qubits are respectively transformed from a basic state into a balanced superposition state by employed the controlled rotation gates. At this time, the gray-scale values of R, G, B of every pixel are in a balanced superposition of 224 multi-qubits basic states. After measuring, the whole image is an uniform white noise, which does not provide any information. Decryption is the reverse process of encryption. The experimental results on the classical computer show that the proposed encryption scheme has better security.

  3. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  4. ‘Momentum rejuvenation’ underlies the phenomenon of noise-assisted quantum energy flow

    International Nuclear Information System (INIS)

    Li, Ying; Gauger, Erik; Benjamin, Simon C; Caruso, Filippo

    2015-01-01

    An important challenge in quantum science is to fully understand the efficiency of energy flow in networks. Here we present a simple and intuitive explanation for the intriguing observation that optimally efficient networks are not purely quantum, but are assisted by some interaction with a ‘noisy’ classical environment. By considering the system's dynamics in both the site-basis and the momentum-basis, we show that the effect of classical noise is to sustain a broad momentum distribution, countering the depletion of high mobility terms which occurs as energy exits from the network. This picture suggests that the optimal level of classical noise is reciprocally related to the linear dimension of the lattice; our numerical simulations verify this prediction to high accuracy for regular 1D and 2D networks over a range of sizes up to thousands of sites. This insight leads to the discovery that dramatic further improvements in performance occur when a driving field targets noise at the low mobility components. The simulation code which we wrote for this study has been made openly available at figshare 4 . (paper)

  5. Blocking-state influence on shot noise and conductance in quantum dots

    Science.gov (United States)

    Harabula, M.-C.; Ranjan, V.; Haller, R.; Fülöp, G.; Schönenberger, C.

    2018-03-01

    Quantum dots (QDs) investigated through electron transport measurements often exhibit varying, state-dependent tunnel couplings to the leads. Under specific conditions, weakly coupled states can result in a strong suppression of the electrical current, and they are correspondingly called blocking states. Using the combination of conductance and shot noise measurements, we investigate blocking states in carbon nanotube (CNT) QDs. We report negative differential conductance and super-Poissonian noise. The enhanced noise is the signature of electron bunching, which originates from random switches between the strongly and weakly conducting states of the QD. Negative differential conductance appears here when the blocking state is an excited state. In this case, at the threshold voltage where the blocking state becomes populated, the current is reduced. Using a master equation approach, we provide numerical simulations reproducing both the conductance and the shot noise pattern observed in our measurements.

  6. A New Quantum Communication Scheme by Using Bell States

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Jing; Song Heshan

    2006-01-01

    A new quantum communication scheme based on entanglement swapping is presented. Simplified calculation symbols are adopted to realize the process. Quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. Two legitimate communicators can secretly share four certain key bits and four random key bits via three EPR pairs (quantum channels).

  7. Trading quantum for classical resources in quantum data compression

    International Nuclear Information System (INIS)

    Hayden, Patrick; Jozsa, Richard; Winter, Andreas

    2002-01-01

    We study the visible compression of a source E={|φ i >,p i } of pure quantum signal states or, more formally, the minimal resources per signal required to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor is given the identity of the input state sequence as classical information. According to the quantum source coding theorem, the optimal quantum rate is the von Neumann entropy S(E) qubits per signal. We develop a refinement of this theorem in order to analyze the situation in which the states are coded into classical and quantum bits that are quantified separately. This leads to a trade-off curve Q * (R), where Q * (R) qubits per signal is the optimal quantum rate for a given classical rate of R bits per signal. Our main result is an explicit characterization of this trade-off function by a simple formula in terms of only single-signal, perfect fidelity encodings of the source. We give a thorough discussion of many further mathematical properties of our formula, including an analysis of its behavior for group covariant sources and a generalization to sources with continuously parametrized states. We also show that our result leads to a number of corollaries characterizing the trade-off between information gain and state disturbance for quantum sources. In addition, we indicate how our techniques also provide a solution to the so-called remote state preparation problem. Finally, we develop a probability-free version of our main result which may be interpreted as an answer to the question: ''How many classical bits does a qubit cost?'' This theorem provides a type of dual to Holevo's theorem, insofar as the latter characterizes the cost of coding classical bits into qubits

  8. Quantum communication for satellite-to-ground networks with partially entangled states

    International Nuclear Information System (INIS)

    Chen Na; Quan Dong-Xiao; Pei Chang-Xing; Yang-Hong

    2015-01-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. (paper)

  9. A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)

    2014-12-15

    We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.

  10. A Bit of Quantum Mechanics

    Science.gov (United States)

    Oss, Stefano; Rosi, Tommaso

    2015-04-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.

  11. A prototype quantum cryptography system

    Energy Technology Data Exchange (ETDEWEB)

    Surasak, Chiangga

    1998-07-01

    In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to {approx} 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)

  12. A prototype quantum cryptography system

    International Nuclear Information System (INIS)

    Chiangga Surasak

    1998-07-01

    In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to ∼ 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)

  13. Quantum key distribution with several intercept-resend attacks via a depolarizing channel

    International Nuclear Information System (INIS)

    Dehmani, Mustapha; Errahmani, Mohamed; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2012-01-01

    The disturbance effect of a depolarizing channel on the security of the quantum key distribution of the four-state BB84 protocol, with multiple sequential intercept-resend attacks of many eavesdroppers, has been studied. The quantum bit error rate and the mutual information are computed for an arbitrary number N of eavesdroppers. It is found that the quantum error rate decreases with increasing the depolarizing parameter p characterizing the noise of the channel. For p tr of p below which the information is secure and otherwise the information is not secure. The value of p tr decreases with increasing the number of attacks. In contrast, for p ⩾ 0.165, the information is not secure independently of the number of eavesdroppers. Phase diagrams corresponding to the secure—unsecure information are also established. (paper)

  14. A New Quantum Key Distribution Scheme Based on Frequency and Time Coding

    International Nuclear Information System (INIS)

    Chang-Hua, Zhu; Chang-Xing, Pei; Dong-Xiao, Quan; Jing-Liang, Gao; Nan, Chen; Yun-Hui, Yi

    2010-01-01

    A new scheme of quantum key distribution (QKD) using frequency and time coding is proposed, in which the security is based on the frequency-time uncertainty relation. In this scheme, the binary information sequence is encoded randomly on either the central frequency or the time delay of the optical pulse at the sender. The central frequency of the single photon pulse is set as ω 1 for bit 0 and set as ω 2 for bit 1 when frequency coding is selected. However, the single photon pulse is not delayed for bit 0 and is delayed in τ for 1 when time coding is selected. At the receiver, either the frequency or the time delay of the pulse is measured randomly, and the final key is obtained after basis comparison, data reconciliation and privacy amplification. With the proposed method, the effect of the noise in the fiber channel and environment on the QKD system can be reduced effectively

  15. Quantum-Noise-Limited Sensitivity Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing a dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noise-limited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantum-noise-limited measurement precision, by temperature tuning a low-pressure vapor of non-interacting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  16. Steganography on quantum pixel images using Shannon entropy

    Science.gov (United States)

    Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.

    2016-07-01

    This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.

  17. Entanglement and Quantum Error Correction with Superconducting Qubits

    Science.gov (United States)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  18. Quantum random number generator based on quantum nature of vacuum fluctuations

    Science.gov (United States)

    Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.

    2017-11-01

    Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.

  19. Simple proof of the impossibility of bit commitment in generalized probabilistic theories using cone programming

    Science.gov (United States)

    Sikora, Jamie; Selby, John

    2018-04-01

    Bit commitment is a fundamental cryptographic task, in which Alice commits a bit to Bob such that she cannot later change the value of the bit, while, simultaneously, the bit is hidden from Bob. It is known that ideal bit commitment is impossible within quantum theory. In this work, we show that it is also impossible in generalized probabilistic theories (under a small set of assumptions) by presenting a quantitative trade-off between Alice's and Bob's cheating probabilities. Our proof relies crucially on a formulation of cheating strategies as cone programs, a natural generalization of semidefinite programs. In fact, using the generality of this technique, we prove that this result holds for the more general task of integer commitment.

  20. Eavesdropping on the "Ping-Pong" Quantum Communication Protocol Freely in a Noise Channel

    OpenAIRE

    Deng, Fu-Guo; Li, Xi-Han; Li, Chun-Yan; Zhou, Ping; Zhou, Hong-Yu

    2005-01-01

    We introduce an attack scheme for eavesdropping the ping-pong quantum communication protocol proposed by Bostr$\\ddot{o}$m and Felbinger [Phys. Rev. Lett. \\textbf{89}, 187902 (2002)] freely in a noise channel. The vicious eavesdropper, Eve, intercepts and measures the travel photon transmitted between the sender and the receiver. Then she replaces the quantum signal with a multi-photon signal in a same state, and measures the photons return with the measuring basis with which Eve prepares the ...

  1. A "Bit" of Quantum Mechanics

    Science.gov (United States)

    Oss, Stefano; Rosi, Tommaso

    2015-01-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…

  2. LSB-based Steganography Using Reflected Gray Code for Color Quantum Images

    Science.gov (United States)

    Li, Panchi; Lu, Aiping

    2018-02-01

    At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.

  3. Assuring robustness to noise in optimal quantum control experiments

    International Nuclear Information System (INIS)

    Bartelt, A.F.; Roth, M.; Mehendale, M.; Rabitz, H.

    2005-01-01

    Closed-loop optimal quantum control experiments operate in the inherent presence of laser noise. In many applications, attaining high quality results [i.e., a high signal-to-noise (S/N) ratio for the optimized objective] is as important as producing a high control yield. Enhancement of the S/N ratio will typically be in competition with the mean signal, however, the latter competition can be balanced by biasing the optimization experiments towards higher mean yields while retaining a good S/N ratio. Other strategies can also direct the optimization to reduce the standard deviation of the statistical signal distribution. The ability to enhance the S/N ratio through an optimized choice of the control is demonstrated for two condensed phase model systems: second harmonic generation in a nonlinear optical crystal and stimulated emission pumping in a dye solution

  4. Accurate estimation of camera shot noise in the real-time

    Science.gov (United States)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.

    2017-10-01

    Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the

  5. Low Noise Quantum Frequency Conversion from Rb Wavelengths to Telecom O-band

    Science.gov (United States)

    Li, Xiao; Solmeyer, Neal; Stack, Daniel; Quraishi, Qudsia

    2015-05-01

    Ideal quantum repeaters would be composed of long-lived quantum memories entangled with flying qubits. They are becoming essential elements to achieve quantum communication over long distances in a quantum network. However, quantum memories based on neutral atoms operate at wavelengths in the near infrared, unsuitable for long distance communication. The ability to coherently convert photons entangled with quantum memories into telecom wavelengths reduces the transmission loss in optical fibers and therefore dramatically improves the range of a quantum repeater. Furthermore, quantum frequency conversion (QFC) can enable entanglement and communication between different types of quantum memories, thus creating a versatile hybrid quantum network. A recent experiment has shown the conversion of heralded photons from Rb-based memories to the telecom C-band. We implement a setup using a nonlinear PPLN waveguide for the QFC into a wavelength region where the noise-floor would be limited by dark counts rather than pump photons. Our approach uses a pump laser at a much longer wavelength. It has the advantage that the strong pump itself and the broad background in the PPLN can be nearly completely filtered from the converted signal. Such low background level allows for the conversion to be done on the heralding photon, which enables the generated entanglement to be used in a scalable way to multiple nodes remotely situated and to subsequent protocols.

  6. Device-independent bit commitment based on the CHSH inequality

    International Nuclear Information System (INIS)

    Aharon, N; Massar, S; Pironio, S; Silman, J

    2016-01-01

    Bit commitment and coin flipping occupy a unique place in the device-independent landscape, as the only device-independent protocols thus far suggested for these tasks are reliant on tripartite GHZ correlations. Indeed, we know of no other bipartite tasks, which admit a device-independent formulation, but which are not known to be implementable using only bipartite nonlocality. Another interesting feature of these protocols is that the pseudo-telepathic nature of GHZ correlations—in contrast to the generally statistical character of nonlocal correlations, such as those arising in the violation of the CHSH inequality—is essential to their formulation and analysis. In this work, we present a device-independent bit commitment protocol based on CHSH testing, which achieves the same security as the optimal GHZ-based protocol, albeit at the price of fixing the time at which Alice reveals her commitment. The protocol is analyzed in the most general settings, where the devices are used repeatedly and may have long-term quantum memory. We also recast the protocol in a post-quantum setting where both honest and dishonest parties are restricted only by the impossibility of signaling, and find that overall the supra-quantum structure allows for greater security. (paper)

  7. Bit-Grooming: Shave Your Bits with Razor-sharp Precision

    Science.gov (United States)

    Zender, C. S.; Silver, J.

    2017-12-01

    Lossless compression can reduce climate data storage by 30-40%. Further reduction requires lossy compression that also reduces precision. Fortunately, geoscientific models and measurements generate false precision (scientifically meaningless data bits) that can be eliminated without sacrificing scientifically meaningful data. We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false-precision, those bits and bytes beyond the meaningful precision of the data.Bit Grooming is statistically unbiased, applies to all floating point numbers, and is easy to use. Bit-Grooming reduces geoscience data storage requirements by 40-80%. We compared Bit Grooming to competitors Linear Packing, Layer Packing, and GRIB2/JPEG2000. The other compression methods have the edge in terms of compression, but Bit Grooming is the most accurate and certainly the most usable and portable.Bit Grooming provides flexible and well-balanced solutions to the trade-offs among compression, accuracy, and usability required by lossy compression. Geoscientists could reduce their long term storage costs, and show leadership in the elimination of false precision, by adopting Bit Grooming.

  8. Towards a Quantum Computer?

    Science.gov (United States)

    Bellac, Michel Le

    2014-11-01

    In everyday life, practically all the information which is processed, exchanged or stored is coded in the form of discrete entities called bits, which take two values only, by convention 0 and 1. With the present technology for computers and optical fibers, bits are carried by electrical currents and electromagnetic waves corresponding to macroscopic fluxes of electrons and photons, and they are stored in memories of various kinds, for example, magnetic memories. Although quantum physics is the basic physics which underlies the operation of a transistor (Chapter 6) or of a laser (Chapter 4), each exchanged or processed bit corresponds to a large number of elementary quantum systems, and its behavior can be described classically due to the strong interaction with the environment (Chapter 9). For about thirty years, physicists have learned to manipulate with great accuracy individual quantum systems: photons, electrons, neutrons, atoms, and so forth, which opens the way to using two-state quantum systems, such as the polarization states of a photon (Chapter 2) or the two energy levels of an atom or an ion (Chapter 4) in order to process, exchange or store information. In § 2.3.2, we used the two polarization states of a photon, vertical (V) and horizontal (H), to represent the values 0 and 1 of a bit and to exchange information. In what follows, it will be convenient to use Dirac's notation (see Appendix A.2.2 for more details), where a vertical polarization state is denoted by |V> or |0> and a horizontal one by |H> or |1>, while a state with arbitrary polarization will be denoted by |ψ>. The polarization states of a photon give one possible realization of a quantum bit, or for short a qubit. Thanks to the properties of quantum physics, quantum computers using qubits, if they ever exist, would outperform classical computers for some specific, but very important, problems. In Sections 8.1 and 8.2, we describe some typical quantum algorithms and, in order to do so

  9. An Efficient Method for Image and Audio Steganography using Least Significant Bit (LSB) Substitution

    Science.gov (United States)

    Chadha, Ankit; Satam, Neha; Sood, Rakshak; Bade, Dattatray

    2013-09-01

    In order to improve the data hiding in all types of multimedia data formats such as image and audio and to make hidden message imperceptible, a novel method for steganography is introduced in this paper. It is based on Least Significant Bit (LSB) manipulation and inclusion of redundant noise as secret key in the message. This method is applied to data hiding in images. For data hiding in audio, Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) both are used. All the results displayed prove to be time-efficient and effective. Also the algorithm is tested for various numbers of bits. For those values of bits, Mean Square Error (MSE) and Peak-Signal-to-Noise-Ratio (PSNR) are calculated and plotted. Experimental results show that the stego-image is visually indistinguishable from the original cover-image when nsteganography process does not reveal presence of any hidden message, thus qualifying the criteria of imperceptible message.

  10. Spectral response, dark current, and noise analyses in resonant tunneling quantum dot infrared photodetectors.

    Science.gov (United States)

    Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas

    2016-10-20

    Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.

  11. Improvement of One Quantum Encryption Scheme

    Science.gov (United States)

    Cao, Zhengjun; Liu, Lihua

    2012-01-01

    Zhou et al. proposed a quantum encryption scheme based on quantum computation in 2006 [N. Zhou et al., Physica A362 (2006) 305]. Each qubit of the ciphertext is constrained to two pairs of conjugate states. So, its implementation is feasible with the existing technology. But it is inefficient since it entails six key bits to encrypt one message bit, and the resulting ciphertext for one message bit consists of three qubits. In addition, its security cannot be directly reduced to the well-known BB84 protocol. In this paper, we improve it using the technique developed in BB84 protocol. The new scheme entails only two key bits to encrypt one message bit. The resulting ciphertext is just composed of two qubits. It saves about a half cost without the loss of security. Moreover, the new scheme is probabilistic instead of deterministic.

  12. LSB Based Quantum Image Steganography Algorithm

    Science.gov (United States)

    Jiang, Nan; Zhao, Na; Wang, Luo

    2016-01-01

    Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.

  13. Noise Threshold and Resource Cost of Fault-Tolerant Quantum Computing with Majorana Fermions in Hybrid Systems.

    Science.gov (United States)

    Li, Ying

    2016-09-16

    Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.

  14. Autocompensating quantum cryptography

    International Nuclear Information System (INIS)

    Bethune, Donald S.; Risk, William P.

    2002-01-01

    Quantum cryptographic key distribution (QKD) uses extremely faint light pulses to carry quantum information between two parties (Alice and Bob), allowing them to generate a shared, secret cryptographic key. Autocompensating QKD systems automatically and passively compensate for uncontrolled time-dependent variations of the optical fibre properties by coding the information as a differential phase between orthogonally polarized components of a light pulse sent on a round trip through the fibre, reflected at mid-course using a Faraday mirror. We have built a prototype system based on standard telecom technology that achieves a privacy-amplified bit generation rate of ∼1000 bits s -1 over a 10 km optical fibre link. Quantum cryptography is an example of an application that, by using quantum states of individual particles to represent information, accomplishes a practical task that is impossible using classical means. (author)

  15. Kombinasi Steganografi Berbasis Bit Matching dan Kriptografi DES untuk Pengamanan Data

    Directory of Open Access Journals (Sweden)

    Budi Prasetiyo

    2015-05-01

    Full Text Available Pada penelitian ini dilakukan kombinasi steganografi dan kriptografi untuk pengamanan data dengan tidak mengubah kualitas media cover. Metode steganografi yang digunakan dengan melakukan pencocokan bit pesan pada bit MSB citra. Proses pencocokan dilakukan secara divide and conquer. Hasil indeks posisi bit kemudian dienkripsi menggunakan algoritma kriptografi Data Encryption Standard (DES. Masukkan data berupa pesan teks, citra, dan kunci. Output yang dihasilkan berupa chiperteks posisi bit yang dapat digunakan untuk merahasiakan data. Untuk mengetahui isi pesan semula diperlukan kunci dan citra yang sama. Kombinasi yang dihasilkan dapat digunakan untuk pengamanan data. Kelebihan metode tersebut citra tidak mengalami perubahan kualitas dan kapasitas pesan yang disimpan dapat lebih besar dari citra. Hasil pengujian menunjukkan citra hitam putih maupun color dapat digunakan sebagai cover, kecuali citra 100% hitam dan 100% putih. Proses pencocokan pada warna citra yang bervariasi lebih cepat. Kerusakan pesan dengan penambahan noise salt and peper mulai terjadi pada nilai MSE 0,0067 dan gaussian mulai terjadi pada nilai MSE 0,00234. 

  16. Noise Induced Dissipation in Discrete-Time Classical and Quantum Dynamical Systems

    OpenAIRE

    Wolowski, Lech

    2004-01-01

    We introduce a new characteristics of chaoticity of classical and quantum dynamical systems by defining the notion of the dissipation time which enables us to test how the system responds to the noise and in particular to measure the speed at which an initially closed, conservative system converges to the equilibrium when subjected to noisy (stochastic) perturbations. We prove fast dissipation result for classical Anosov systems and ...

  17. Noise in tunneling spin current across coupled quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  18. Configurable Electronics with Low Noise and 14-bit Dynamic Range for Photodiode-based Photon Detectors

    CERN Document Server

    Müller, H; Yin, Z; Zhou, D; Cao, X; Li, Q; Liu, Y; Zou, F; Skaali, B; Awes, T C

    2006-01-01

    We describe the principles and measured performance characteristics of custom configurable 32-channel shaper/digitizer Front End Electronics (FEE) cards with 14-bit dynamic range for use with gain-adjustable photon detectors. The electronics has been designed for the PHOS calorimeter of ALICE with avalanche photodiode (APD) readout operated at -25 C ambient temperature and a signal shaping time of $1 {\\mu}s$. The electronics has also been adopted by the EMCal detector of ALICE with the same APD readout, but operated at an ambient temperature of +20 C and with a shaping time of 100ns. The CR-RC2 signal shapers on the FEE cards are implemented in discrete logic on a 10-layer board with two shaper sections for each input channel. The two shaper sections with gain ratio of 16:1 are digitized by 10-bit ADCs and provide an effective dynamic range of 14 bits. Gain adjustment for each individual APD is available through 32 bias voltage control registers of 10-bit range. The fixed gains and shaping times of the pole-z...

  19. Quantum stochastic calculus associated with quadratic quantum noises

    International Nuclear Information System (INIS)

    Ji, Un Cig; Sinha, Kalyan B.

    2016-01-01

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus

  20. Quantum stochastic calculus associated with quadratic quantum noises

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju, Chungbuk 28644 (Korea, Republic of); Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-64, India and Department of Mathematics, Indian Institute of Science, Bangalore-12 (India)

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.

  1. Accurate Bit Error Rate Calculation for Asynchronous Chaos-Based DS-CDMA over Multipath Channel

    Science.gov (United States)

    Kaddoum, Georges; Roviras, Daniel; Chargé, Pascal; Fournier-Prunaret, Daniele

    2009-12-01

    An accurate approach to compute the bit error rate expression for multiuser chaosbased DS-CDMA system is presented in this paper. For more realistic communication system a slow fading multipath channel is considered. A simple RAKE receiver structure is considered. Based on the bit energy distribution, this approach compared to others computation methods existing in literature gives accurate results with low computation charge. Perfect estimation of the channel coefficients with the associated delays and chaos synchronization is assumed. The bit error rate is derived in terms of the bit energy distribution, the number of paths, the noise variance, and the number of users. Results are illustrated by theoretical calculations and numerical simulations which point out the accuracy of our approach.

  2. Rate Control for MPEG-4 Bit Stream

    Institute of Scientific and Technical Information of China (English)

    王振洲; 李桂苓

    2003-01-01

    For a very long time video processing dealt exclusively with fixed-rate sequences of rectangular shaped images. However, interest has been recently moving toward a more flexible concept in which the subject of the processing and encoding operations is a set of visual elements organized in both time and space in a flexible and arbitrarily complex way. The moving picture experts group (MPEG-4) standard supports this concept and its verification model (VM) encoder has adopted scalable rate control (SRC) as the rate control scheme, which is based on the spatial domain and compatible with constant bit rate (CBR) and variable bit rate (VBR). In this paper,a new rate control algorithm based on the DCT domain instead of the pixel domain is presented. More-over, macroblock level rate control scheme to compute the quantization step for each macroblock has been adopted. The experimental results show that the new algorithm can achieve a much better result than the original one in both peak signal-to-noise ratio (PSNR) and the coding bits, and that the new algorithm is more flexible than test model 5 (TM5) rate control algorithm.

  3. A short introduction to bit-string physics

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1997-06-01

    This paper starts with a personal memoir of how some significant ideas arose and events took place during the period from 1972, when the author first encountered Ted Bastin, to 1979, when the author proposed the foundation of ANPA. He then discusses program universe, the fine structure paper and its rejection, the quantitative results up to ANPA 17 and take a new look at the handy-dandy formula. Following the historical material is a first pass at establishing new foundations for bit-string physics. An abstract model for a laboratory notebook and a historical record are developed, culminating in the bit-string representation. The author set up a tic-toc laboratory with two synchronized clocks and shows how this can be used to analyze arbitrary incoming data. This allows him to discuss (briefly) finite and discrete Lorentz transformations, commutation relations, and scattering theory. Earlier work on conservation laws in 3- and 4-events and the free space Dirac and Maxwell equations is cited. The paper concludes with a discussion of the quantum gravity problem from his point of view and speculations about how a bit-string theory of strong, electromagnetic, weak and gravitational unification could take shape

  4. Entropy as a measure of the noise extent in a two-level quantum feedback controlled system

    Institute of Scientific and Technical Information of China (English)

    Wang Tao-Bo; Fang Mao-Fa; Hu Yao-Hua

    2007-01-01

    By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.

  5. Realistic noise-tolerant randomness amplification using finite number of devices

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Ramanathan, Ravishankar; Grudka, Andrzej; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Szarek, Tomasz; Wojewódka, Hanna

    2016-04-01

    Randomness is a fundamental concept, with implications from security of modern data systems, to fundamental laws of nature and even the philosophy of science. Randomness is called certified if it describes events that cannot be pre-determined by an external adversary. It is known that weak certified randomness can be amplified to nearly ideal randomness using quantum-mechanical systems. However, so far, it was unclear whether randomness amplification is a realistic task, as the existing proposals either do not tolerate noise or require an unbounded number of different devices. Here we provide an error-tolerant protocol using a finite number of devices for amplifying arbitrary weak randomness into nearly perfect random bits, which are secure against a no-signalling adversary. The correctness of the protocol is assessed by violating a Bell inequality, with the degree of violation determining the noise tolerance threshold. An experimental realization of the protocol is within reach of current technology.

  6. Scheme for Entering Binary Data Into a Quantum Computer

    Science.gov (United States)

    Williams, Colin

    2005-01-01

    A quantum algorithm provides for the encoding of an exponentially large number of classical data bits by use of a smaller (polynomially large) number of quantum bits (qubits). The development of this algorithm was prompted by the need, heretofore not satisfied, for a means of entering real-world binary data into a quantum computer. The data format provided by this algorithm is suitable for subsequent ultrafast quantum processing of the entered data. Potential applications lie in disciplines (e.g., genomics) in which one needs to search for matches between parts of very long sequences of data. For example, the algorithm could be used to encode the N-bit-long human genome in only log2N qubits. The resulting log2N-qubit state could then be used for subsequent quantum data processing - for example, to perform rapid comparisons of sequences.

  7. Secure multi-party quantum summation based on quantum Fourier transform

    Science.gov (United States)

    Yang, Hui-Yi; Ye, Tian-Yu

    2018-06-01

    In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties' private integer strings; and it is secure for the colluding attack performed by at most n - 2 parties, where n is the number of parties. In addition, the proposed protocol calculates the addition of modulo d and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.

  8. Low-noise behavior of InGaAs quantum-well-structured modulation-doped FET's from 10 to the -2nd to 10 to the 8 Hz

    Science.gov (United States)

    Liu, Shih-Ming J.; Das, Mukunda B.; Peng, Chin-Kun; Klem, John; Henderson, Timothy S.

    1986-01-01

    Equivalent gate noise voltage spectra of 1-micron gate-length modulation-doped FET's with pseudomorphic InGaAs quantum-well structure have been measured for the frequency range of 0.01 Hz to 100 MHz and commpared with the noise spectra of conventional AlGaAs/GaAs MODFET's and GaAs MESFET's. The prominent generation-recombination (g-r) noise bulge commonly observed in the vicinity of 10 kHz in conventional MODFET's at 300 K does not appear in the case of the new InGaAs quantum-well MODFET. Instead, its noise spectra indicate the presence of low-intensity multiple g-r noise components superimposed on a reduced 1/f noise. The LF noise intensity in the new device appears to be the lowest among those observed in any MODFET or MESFET. The noise spectra at 82 K in the new device represent nearly true 1/f noise. This unusual low-noise behavior of the new structure suggests the effectiveness of electron confinement in the quantum well that significantaly reduces electron trapping in the n-AlGaAs, and thus eliminates the g-r noise bulge observed in conventional MODFET's.

  9. Modeling of Bit Error Rate in Cascaded 2R Regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    and the regenerating nonlinearity is investigated. It is shown that an increase in nonlinearity can compensate for an increase in noise figure or decrease in signal power. Furthermore, the influence of the improvement in signal extinction ratio along the cascade and the importance of choosing the proper threshold......This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...

  10. Noisy non-transitive quantum games

    International Nuclear Information System (INIS)

    Ramzan, M; Khan, Salman; Khan, M Khalid

    2010-01-01

    We study the effect of quantum noise in 3 x 3 entangled quantum games. By taking into account different noisy quantum channels, we analyze how a two-player, three-strategy Rock-Scissor-Paper game is influenced by the quantum noise. We consider the winning non-transitive strategies R, S and P such that R beats S, S beats P and P beats R. The game behaves as a noiseless game for the maximum value of the quantum noise. It is seen that Alice's payoff is heavily influenced by the depolarizing noise as compared to the amplitude damping noise. A depolarizing channel causes a monotonic decrease in players' payoffs as we increase the amount of quantum noise. In the case of the amplitude damping channel, Alice's payoff function reaches its minimum for α = 0.5 and is symmetrical. This means that larger values of quantum noise influence the game weakly. On the other hand, the phase damping channel does not influence the game. Furthermore, the Nash equilibrium and non-transitive character of the game are not affected under the influence of quantum noise.

  11. Demonstrating Multi-bit Magnetic Memory in the Fe8 High Spin Molecule by Muon Spin Rotation

    OpenAIRE

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-01-01

    We developed a method to detect the quantum nature of high spin molecules using muon spin rotation, and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember 6 (possibly 8) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for Multi-bit Magnetic Memory. Our experiment also paves the w...

  12. Nature and location of quantum information

    International Nuclear Information System (INIS)

    Griffiths, Robert B.

    2002-01-01

    Quantum information is defined by applying the concepts of ordinary (Shannon) information theory to a quantum sample space consisting of a single framework or consistent family. A classical analogy for a spin-half particle and other arguments show that the infinite amount of information needed to specify a precise vector in its Hilbert space is not a measure of the information carried by a quantum entity with a d-dimensional Hilbert space; the latter is, instead, bounded by log 2 d bits (one bit per qubit). The two bits of information transmitted in dense coding are located not in one but in the correlation between two qubits, consistent with this bound. A quantum channel can be thought of as a structure or collection of frameworks, and the physical location of the information in the individual frameworks can be used to identify the location of the channel. Analysis of a quantum circuit used as a model of teleportation shows that the location of the channel depends upon which structure is employed; for ordinary teleportation it is not (contrary to Deutsch and Hayden) present in the two bits resulting from the Bell-basis measurement, but in correlations of these with a distant qubit. In neither teleportation nor dense coding does information travel backwards in time, nor is it transmitted by nonlocal (superluminal) influences. It is (tentatively) proposed that all aspects of quantum information can in principle be understood in terms of the (basically classical) behavior of information in a particular framework, along with the framework dependence of this information

  13. Exploration of dynamic dipole polarizability of impurity doped quantum dots in presence of noise

    Science.gov (United States)

    Ghosh, Anuja; Bera, Aindrila; Saha, Surajit; Arif, Sk. Md.; Ghosh, Manas

    2018-02-01

    Present study strives to perform a rigorous exploration of dynamic dipole polarizability (DDP) of GaAs quantum dot (QD) containing dopant with special reference to influence of Gaussian white noise. Several physical quantities have been varied over a range to observe the modulations of the DDP profiles. Aforesaid physical quantities include magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The DDP profiles reveal noticeable characteristics governed by the particular physical quantity involved, presence/absence of noise, the manner (additive/multiplicative) noise is applied to the system and the incoming photon frequency. As a general observation we have found that additive noise causing greater deviation of the DDP profile from noise-free state than its multiplicative neighbor. The study highlights viable means of harnessing DDP of doped QD under the governance of noise by appropriate adjustment of several relevant factors. The study merits importance in the light of technological applications of QD-based devices where noise appears as an integral component.

  14. Faithful One-way Trip Deterministic Secure Quantum Communication Scheme Against Collective Rotating Noise Based on Order Rearrangement of Photon Pairs

    Science.gov (United States)

    Yuan, Hao; Zhang, Qin; Hong, Liang; Yin, Wen-jie; Xu, Dong

    2014-08-01

    We present a novel scheme for deterministic secure quantum communication (DSQC) over collective rotating noisy channel. Four special two-qubit states are found can constitute a noise-free subspaces, and so are utilized as quantum information carriers. In this scheme, the information carriers transmite over the quantum channel only one time, which can effectively reduce the influence of other noise existing in quantum channel. The information receiver need only perform two single-photon collective measurements to decode the secret messages, which can make the present scheme more convenient in practical application. It will be showed that our scheme has a relatively high information capacity and intrisic efficiency. Foremostly, the decoy photon pair checking technique and the order rearrangement of photon pairs technique guarantee that the present scheme is unconditionally secure.

  15. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Bera, Aindrila; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  16. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Surajit [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Bera, Aindrila [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2016-11-30

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  17. Quantum gate decomposition algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  18. Emission Noise in an Interacting Quantum Dot: Role of Inelastic Scattering and Asymmetric Coupling to the Reservoirs

    Science.gov (United States)

    Crépieux, A.; Sahoo, S.; Duong, T. Q.; Zamoum, R.; Lavagna, M.

    2018-03-01

    A theory is developed for the emission noise at frequency ν in a quantum dot in the presence of Coulomb interactions and asymmetric couplings to the reservoirs. We give an analytical expression for the noise in terms of the various transmission amplitudes. Including the inelastic scattering contribution, it can be seen as the analog of the Meir-Wingreen formula for the current. A physical interpretation is given on the basis of the transmission of one electron-hole pair to the concerned reservoir where it emits an energy after recombination. We then treat the interactions by solving the self-consistent equations of motion for the Green functions. The results for the noise derivative versus e V show a zero value until e V =h ν , followed by a Kondo peak in the Kondo regime, in good agreement with recent measurements in carbon nanotube quantum dots.

  19. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  20. Quantum Integers

    International Nuclear Information System (INIS)

    Khrennikov, Andrei; Klein, Moshe; Mor, Tal

    2010-01-01

    In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.

  1. Architectures for a quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-01-01

    A random access memory, or RAM, is a device that, when interrogated, returns the content of a memory location in a memory array. A quantum RAM, or qRAM, allows one to access superpositions of memory sites, which may contain either quantum or classical information. RAMs and qRAMs with n-bit addresses can access 2^n memory sites. Any design for a RAM or qRAM then requires O(2^n) two-bit logic gates. At first sight this requirement might seem to make large scale quantum versions of such devices ...

  2. Achieving the Heisenberg limit in quantum metrology using quantum error correction.

    Science.gov (United States)

    Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang

    2018-01-08

    Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.

  3. Quantum Enigma Machines and the Locking Capacity of a Quantum Channel

    Directory of Open Access Journals (Sweden)

    Saikat Guha

    2014-01-01

    Full Text Available The locking effect is a phenomenon that is unique to quantum information theory and represents one of the strongest separations between the classical and quantum theories of information. The Fawzi-Hayden-Sen locking protocol harnesses this effect in a cryptographic context, whereby one party can encode n bits into n qubits while using only a constant-size secret key. The encoded message is then secure against any measurement that an eavesdropper could perform in an attempt to recover the message, but the protocol does not necessarily meet the composability requirements needed in quantum key distribution applications. In any case, the locking effect represents an extreme violation of Shannon’s classical theorem, which states that information-theoretic security holds in the classical case if and only if the secret key is the same size as the message. Given this intriguing phenomenon, it is of practical interest to study the effect in the presence of noise, which can occur in the systems of both the legitimate receiver and the eavesdropper. This paper formally defines the locking capacity of a quantum channel as the maximum amount of locked information that can be reliably transmitted to a legitimate receiver by exploiting many independent uses of a quantum channel and an amount of secret key sublinear in the number of channel uses. We provide general operational bounds on the locking capacity in terms of other well-known capacities from quantum Shannon theory. We also study the important case of bosonic channels, finding limitations on these channels’ locking capacity when coherent-state encodings are employed and particular locking protocols for these channels that might be physically implementable.

  4. Extracting random numbers from quantum tunnelling through a single diode.

    Science.gov (United States)

    Bernardo-Gavito, Ramón; Bagci, Ibrahim Ethem; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J; Woodhead, Christopher S; Missous, Mohamed; Roedig, Utz; Young, Robert J

    2017-12-19

    Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application.

  5. Flux-flow noise driven by quantum fluctuations in a thick amorphous film

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, S. [Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)]. E-mail: sokuma@o.cc.titech.ac.jp; Kainuma, K. [Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan); Kishimoto, T. [Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan); Kohara, M. [Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2006-10-01

    We measure the voltage-noise spectrum S {sub V}(f) (where f is a frequency) as well as the time (t)-dependent component {delta}V(t) of the flux-flow voltage in the low temperature liquid phase of a thick amorphous Mo {sub x}Si{sub 1-x} film. In the quantum-liquid phase both the amplitude vertical bar {delta}V vertical bar of voltage fluctuations and the asymmetry of the probability distribution of {delta}V(t) show an anomalous increase; the spectral shape of S {sub V}(f) is of a Lorentzian type, suggesting the shot-noise-like vortex motion with a large 'vortex-bundle size' and short characteristic time.

  6. Implementation problem for the canonical commutation relation in terms of quantum white noise derivatives

    International Nuclear Information System (INIS)

    Ji, Un Cig; Obata, Nobuaki

    2010-01-01

    The implementation problem for the canonical commutation relation is reduced to a system of differential equations for Fock space operators containing new type of derivatives. We solve these differential equations systematically by means of quantum white noise calculus, and obtain the solution to the implementation problem.

  7. BitPAl: a bit-parallel, general integer-scoring sequence alignment algorithm.

    Science.gov (United States)

    Loving, Joshua; Hernandez, Yozen; Benson, Gary

    2014-11-15

    Mapping of high-throughput sequencing data and other bulk sequence comparison applications have motivated a search for high-efficiency sequence alignment algorithms. The bit-parallel approach represents individual cells in an alignment scoring matrix as bits in computer words and emulates the calculation of scores by a series of logic operations composed of AND, OR, XOR, complement, shift and addition. Bit-parallelism has been successfully applied to the longest common subsequence (LCS) and edit-distance problems, producing fast algorithms in practice. We have developed BitPAl, a bit-parallel algorithm for general, integer-scoring global alignment. Integer-scoring schemes assign integer weights for match, mismatch and insertion/deletion. The BitPAl method uses structural properties in the relationship between adjacent scores in the scoring matrix to construct classes of efficient algorithms, each designed for a particular set of weights. In timed tests, we show that BitPAl runs 7-25 times faster than a standard iterative algorithm. Source code is freely available for download at http://lobstah.bu.edu/BitPAl/BitPAl.html. BitPAl is implemented in C and runs on all major operating systems. jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  8. Statistical analysis of error rate of large-scale single flux quantum logic circuit by considering fluctuation of timing parameters

    International Nuclear Information System (INIS)

    Yamanashi, Yuki; Masubuchi, Kota; Yoshikawa, Nobuyuki

    2016-01-01

    The relationship between the timing margin and the error rate of the large-scale single flux quantum logic circuits is quantitatively investigated to establish a timing design guideline. We observed that the fluctuation in the set-up/hold time of single flux quantum logic gates caused by thermal noises is the most probable origin of the logical error of the large-scale single flux quantum circuit. The appropriate timing margin for stable operation of the large-scale logic circuit is discussed by taking the fluctuation of setup/hold time and the timing jitter in the single flux quantum circuits. As a case study, the dependence of the error rate of the 1-million-bit single flux quantum shift register on the timing margin is statistically analyzed. The result indicates that adjustment of timing margin and the bias voltage is important for stable operation of a large-scale SFQ logic circuit.

  9. Statistical analysis of error rate of large-scale single flux quantum logic circuit by considering fluctuation of timing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Yamanashi, Yuki, E-mail: yamanasi@ynu.ac.jp [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan); Masubuchi, Kota; Yoshikawa, Nobuyuki [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2016-11-15

    The relationship between the timing margin and the error rate of the large-scale single flux quantum logic circuits is quantitatively investigated to establish a timing design guideline. We observed that the fluctuation in the set-up/hold time of single flux quantum logic gates caused by thermal noises is the most probable origin of the logical error of the large-scale single flux quantum circuit. The appropriate timing margin for stable operation of the large-scale logic circuit is discussed by taking the fluctuation of setup/hold time and the timing jitter in the single flux quantum circuits. As a case study, the dependence of the error rate of the 1-million-bit single flux quantum shift register on the timing margin is statistically analyzed. The result indicates that adjustment of timing margin and the bias voltage is important for stable operation of a large-scale SFQ logic circuit.

  10. Noisy non-transitive quantum games

    Energy Technology Data Exchange (ETDEWEB)

    Ramzan, M; Khan, Salman; Khan, M Khalid, E-mail: mramzan@phys.qau.edu.p [Department of Physics Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2010-07-02

    We study the effect of quantum noise in 3 x 3 entangled quantum games. By taking into account different noisy quantum channels, we analyze how a two-player, three-strategy Rock-Scissor-Paper game is influenced by the quantum noise. We consider the winning non-transitive strategies R, S and P such that R beats S, S beats P and P beats R. The game behaves as a noiseless game for the maximum value of the quantum noise. It is seen that Alice's payoff is heavily influenced by the depolarizing noise as compared to the amplitude damping noise. A depolarizing channel causes a monotonic decrease in players' payoffs as we increase the amount of quantum noise. In the case of the amplitude damping channel, Alice's payoff function reaches its minimum for {alpha} = 0.5 and is symmetrical. This means that larger values of quantum noise influence the game weakly. On the other hand, the phase damping channel does not influence the game. Furthermore, the Nash equilibrium and non-transitive character of the game are not affected under the influence of quantum noise.

  11. Quantum mechanical noise in coherent-state and squeezed-state Michelson interferometers

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob

    2002-01-01

    In the present study we extend and generalize previous results for coherent-state and squeezed-state Michelson interferometer quantum mechanical uncertainties (or fluctuations), which are commonly referred to as 'quantum noise'. The calculation of photon counting (PC) fluctuations in the squeezed-state interferometer is extended to fourth-order correlation functions used as the measured signal. We also generalize a 'unified model' for treating both PC and radiation pressure fluctuations in the coherent-state interferometer, by using mathematical methods which apply to Kerr-type interactions. The results are more general than those reported previously in two ways. First, we obtain exact expressions, which lead to previous results under certain approximations. Second, we deal with cases in which the responses of the two mirrors to radiation pressure are not equal

  12. Performance of BICM-T transceivers over Gaussian mixture noise channels

    KAUST Repository

    Malik, Muhammad Talha

    2014-04-01

    Experimental measurements have shown that the noise in many communication channels is non-Gaussian. Bit interleaved coded modulation (BICM) is very popular for spectrally efficient transmission. Recent results have shown that the performance of BICM using convolutional codes in non-fading channels can be significantly improved if the coded bits are not interleaved at all. This particular BICM design is called BICM trivial (BICM-T). In this paper, we analyze the performance of a generalized BICM-T design for communication over Gaussian mixture noise (GMN) channels. The results disclose that for an optimal bit error rate (BER) performance, the use of an interleaver in BICM for GMN channels depends upon the strength of the impulsive noise components in the Gaussian mixture. The results presented for 16-QAM show that the BICM-T can result in gains up to 1.5 dB for a target BER of 10-6 if the impulsive noise in the Gaussian mixture is below a certain threshold level. The simulation results verify the tightness of developed union bound (UB) on BER performance.

  13. EDITORIAL: Fluctuations and noise in photonics and quantum optics: a special issue in memory of Hermann Haus

    Science.gov (United States)

    Abbott, Derek; Shapiro, Jeffrey H.; Yamamoto, Yoshihisa

    2004-08-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of fluctuational phenomena in photonics and quantum optics. The topics discussed in this issue extend from fundamental physics to applications of noise and fluctuational methods from quantum to classical systems, and include: bullet Quantum measurement bullet Quantum squeezing bullet Solitons and fibres bullet Gravitational wave inferometers bullet Fluorescence phenomena bullet Cavity QED bullet Photon statistics bullet Noise in lasers and laser systems bullet Quantum computing and information bullet Quantum lithography bullet Teleportation. This Special Issue is published in connection with the SPIE International Symposium on Fluctuations and Noise, held in Santa Fe, New Mexico, on 1-4 June 2003. The symposium contained six parallel conferences, and the papers in this Special Issue are connected to the conference entitled `Fluctuations and Noise in Photonics and Quantum Optics'. This was the first in a series of symposia organized with the support of the SPIE that have greatly contributed to progress in this area. The co-founders of the symposium series were Laszlo B Kish (Texas A&M University) and Derek Abbott (The University of Adelaide). The Chairs of the `Fluctuations and Noise in Photonics and Quantum Optics' conference were Derek Abbott, Jeffrey H Shapiro and Yoshihisa Yamamoto. The practical aspects of the organization were ably handled by Kristi Kelso and Marilyn Gorsuch of the SPIE, USA. Sadly, less than two weeks before the conference, Hermann A Haus passed away. Hermann Haus was a founding father of the field of noise in optics and quantum optics. He submitted three papers to the conference and was very excited to attend; as can be seen in the collection of papers, he was certainly present in spirit. In honour of his creativity and pioneering work in this field, we have

  14. Formalization of Quantum Protocols using Coq

    Directory of Open Access Journals (Sweden)

    Jaap Boender

    2015-11-01

    Full Text Available Quantum Information Processing, which is an exciting area of research at the intersection of physics and computer science, has great potential for influencing the future development of information processing systems. The building of practical, general purpose Quantum Computers may be some years into the future. However, Quantum Communication and Quantum Cryptography are well developed. Commercial Quantum Key Distribution systems are easily available and several QKD networks have been built in various parts of the world. The security of the protocols used in these implementations rely on information-theoretic proofs, which may or may not reflect actual system behaviour. Moreover, testing of implementations cannot guarantee the absence of bugs and errors. This paper presents a novel framework for modelling and verifying quantum protocols and their implementations using the proof assistant Coq. We provide a Coq library for quantum bits (qubits, quantum gates, and quantum measurement. As a step towards verifying practical quantum communication and security protocols such as Quantum Key Distribution, we support multiple qubits, communication and entanglement. We illustrate these concepts by modelling the Quantum Teleportation Protocol, which communicates the state of an unknown quantum bit using only a classical channel.

  15. Video steganography based on bit-plane decomposition of wavelet-transformed video

    Science.gov (United States)

    Noda, Hideki; Furuta, Tomofumi; Niimi, Michiharu; Kawaguchi, Eiji

    2004-06-01

    This paper presents a steganography method using lossy compressed video which provides a natural way to send a large amount of secret data. The proposed method is based on wavelet compression for video data and bit-plane complexity segmentation (BPCS) steganography. BPCS steganography makes use of bit-plane decomposition and the characteristics of the human vision system, where noise-like regions in bit-planes of a dummy image are replaced with secret data without deteriorating image quality. In wavelet-based video compression methods such as 3-D set partitioning in hierarchical trees (SPIHT) algorithm and Motion-JPEG2000, wavelet coefficients in discrete wavelet transformed video are quantized into a bit-plane structure and therefore BPCS steganography can be applied in the wavelet domain. 3-D SPIHT-BPCS steganography and Motion-JPEG2000-BPCS steganography are presented and tested, which are the integration of 3-D SPIHT video coding and BPCS steganography, and that of Motion-JPEG2000 and BPCS, respectively. Experimental results show that 3-D SPIHT-BPCS is superior to Motion-JPEG2000-BPCS with regard to embedding performance. In 3-D SPIHT-BPCS steganography, embedding rates of around 28% of the compressed video size are achieved for twelve bit representation of wavelet coefficients with no noticeable degradation in video quality.

  16. Quantum key distribution without alternative measurements

    CERN Document Server

    Cabello, A

    2000-01-01

    Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to generate the same sequence of random bits in two remote places. A quantum key distribution protocol based on this idea is described. The scheme exhibits the following features. (a) It does not require that Alice and Bob choose between alternative measurements, therefore improving the rate of generated bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of arbitrary length using a single quantum system (three EPR pairs), instead of a long sequence of them. (c) Detecting Eve requires the comparison of fewer bits. (d) Entanglement is an essential ingredient. The scheme assumes reliable measurements of the Bell operator. (20 refs).

  17. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  18. Bit-rate reduction strategies for noise suppression with a remote wireless microphone

    NARCIS (Netherlands)

    Cvijanovic, N.; Sadiq, O.; Srinivasan, S.

    2012-01-01

    In single channel non-stationary noise reduction it is paramount that a good noise reference is available in a timely manner to maintaina high quality speech signal. Using a remote wireless microphone placed close to a noise source, a good estimate of the noise power spectral density (PSD) can be

  19. Bit rate reduction strategies for noise suppression using a remote wireless microphone

    NARCIS (Netherlands)

    Cvijanovic, N.; Sadiq, O.; Srinivasan, S.

    2012-01-01

    In single-channel non-stationary noise reduction it is paramount that a good noise reference is available in a timely manner to maintain a high quality speech signal. Using a remote wireless microphone placed close to a noise source, a good estimate of the noise power spectral density (PSD) can be

  20. High bit depth infrared image compression via low bit depth codecs

    Science.gov (United States)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  1. An experimental study of noise in mid-infrared quantum cascade lasers of different designs

    Science.gov (United States)

    Schilt, Stéphane; Tombez, Lionel; Tardy, Camille; Bismuto, Alfredo; Blaser, Stéphane; Maulini, Richard; Terazzi, Romain; Rochat, Michel; Südmeyer, Thomas

    2015-04-01

    We present an experimental study of noise in mid-infrared quantum cascade lasers (QCLs) of different designs. By quantifying the high degree of correlation occurring between fluctuations of the optical frequency and voltage between the QCL terminals, we show that electrical noise is a powerful and simple mean to study noise in QCLs. Based on this outcome, we investigated the electrical noise in a large set of 22 QCLs emitting in the range of 7.6-8 μm and consisting of both ridge-waveguide and buried-heterostructure (BH) lasers with different geometrical designs and operation parameters. From a statistical data processing based on an analysis of variance, we assessed that ridge-waveguide lasers have a lower noise than BH lasers. Our physical interpretation is that additional current leakages or spare injection channels occur at the interface between the active region and the lateral insulator in the BH geometry, which induces some extra noise. In addition, Schottky-type contacts occurring at the interface between the n-doped regions and the lateral insulator, i.e., iron-doped InP, are also believed to be a potential source of additional noise in some BH lasers, as observed from the slight reduction in the integrated voltage noise observed at the laser threshold in several BH-QCLs.

  2. Investigation and reduction of excess low-frequency noise in rf superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Mueck, M.; Heiden, C.; Clarke, J.

    1994-01-01

    A detailed study has been made of the low-frequency excess noise of rf superconducting quantum interference devices (SQUIDs), fabricated from thin niobium films and operated at 4.2 K, with rf bias frequencies of 0.15, 1.7, and 3 GHz. When the SQUIDs were operated in an open-loop configuration in the absence of low-frequency flux modulation, the demodulated rf voltage exhibited a substantial level 1/f noise, which was essentially independent of the rf bias frequency. As the rf bias frequency was increased, the crossover frequency at which the 1/f noise power was equal to the white noise power moved to higher frequencies, because of the reduction in white noise. On the other hand, when the SQUID was flux modulated at 50 kHz and operated in a flux locked loop, no 1/f noise was observed at frequencies above 0.5 Hz. A detailed description of how the combination of rf bias and flux modulation removes 1/f noise due to critical current fluctuations is given. Thus, the results demonstrate that the 1/f noise observed in these SQUIDs is generated by critical current fluctuations, rather than by the hopping of flux vortices in the niobium films

  3. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    Science.gov (United States)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  4. Quantum pattern recognition with multi-neuron interactions

    Science.gov (United States)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  5. Development and Application of Semiconductor Quantum Dots to Quantum Computing

    National Research Council Canada - National Science Library

    Steel, Duncan

    2002-01-01

    .... Several major milestones were achieved during the present program including the demonstration of optically induced and detected quantum entanglement of two qubits, Rabi oscillation (one bit rotation...

  6. Zero Thermal Noise in Resistors at Zero Temperature

    Science.gov (United States)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran

    2016-06-01

    The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.

  7. Practical free space quantum cryptography

    International Nuclear Information System (INIS)

    Schmitt-Manderbach, T.; Weier, H.; Regner, N.; Kurtsiefer, C.; Weinfurter, H.

    2005-01-01

    Full text: Quantum cryptography, the secure key distribution between two parties, is the first practical application of quantum information technology. By encoding digital information into different polarization states of single photons, a string of key bits can be established between two parties, where laws of quantum mechanics ensure that a possible eavesdropper has negligible knowledge of. Having shown the feasibility of a long distance quantum key distribution scheme, the emphasis of this work is to incorporate the previously developed compact sender and receiver modules into a quantum cryptography system suitable for every-day use in metropolitan areas. The permanent installation with automatic alignment allows to investigate in detail the sensitivity of the free space optical link to weather conditions and air turbulences commonly encountered in urban areas. We report on a successful free space quantum cryptography experiment over a distance of 500 m between the rooftops of two university buildings using the BB84 protocol. The obtained bit error rates in first runs of this experiment using faint coherent pulses with an average photon number ranging from 0.1 to 1.0 was measured to be below 3 percent for experiments carried out during night, leading to average raw key rates (before error correction and privacy amplification) of 50 kBits per second. Thanks to its simplicity of implementation, our experiment brings free space quantum key distribution a big step closer to practical usability in metropolitan networks and on a level with fibre-based quantum cryptography that up to now offers the only ready-to-use systems available. Compact and automated free space hardware is also a prerequisite for a possible earth-satellite quantum key distribution system in order to break the distance limit of about 100 km of current quantum cryptography schemes. (author)

  8. Quantum Logical Operations on Encoded Qubits

    International Nuclear Information System (INIS)

    Zurek, W.H.; Laflamme, R.

    1996-01-01

    We show how to carry out quantum logical operations (controlled-not and Toffoli gates) on encoded qubits for several encodings which protect against various 1-bit errors. This improves the reliability of these operations by allowing one to correct for 1-bit errors which either preexisted or occurred in the course of operation. The logical operations we consider allow one to carry out the vast majority of the steps in the quantum factoring algorithm. copyright 1996 The American Physical Society

  9. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  10. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Single-molecule magnets on a polymeric thin film as magnetic quantum bits

    Science.gov (United States)

    Ruiz-Molina, Daniel; Gomez, Jordi; Mas-Torrent, Marta; Balana, Ana Isabel; Domingo, Nues; Tejada, Javier; Martinez, Maria Teresa; Rovira, Concepcio; Veciana, Jaume

    2003-04-01

    Single-molecule magnets (SMM) have a large-spin ground state with appreciable magnetic anisotropy, resulting in a barrier for the spin reversal As a consequence, interesting magnetic properties such as out-of-phase ac magnetic susceptibility signals and stepwise magnetization hysteresis loops are observed. In addition to resonant magnetization tunnelling, during the last few years several other interesting phenomena have also been reported. The origin of the slow magnetization relaxation rates as well as of other phenomena are due to individual molecules rather than to long-range ordering; as confirmed by magnetization relaxation and heat capacity studies. Therefore, SMM represent nanoscale magnetic particles of a sharply defined size that offer the potential access to the ultimate high-density information storage devices as well as for quantum computing applications. However, if a truly molecular computational device based on SMM is to be achieved, new systematic studies that allow us to find a proper way to address properly oriented individual molecules or molecular aggregates onto the surface of a thin film, where each molecule or molecular aggregate can be used as a bit of information, are highly required. Here we report a new soft, reliable and simple methodology to address individual Mn12 molecules onto a film surface, as revealed by Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) images. Moreover, the advantageous properties of polymeric matrices, such as flexibility, transparency and low density, make this type of materials very interesting for potential applications.

  12. Realization of quantum Fourier transform over ZN

    International Nuclear Information System (INIS)

    Fu Xiang-Qun; Bao Wan-Su; Li Fa-Da; Zhang Yu-Chao

    2014-01-01

    Since the difficulty in preparing the equal superposition state of amplitude is 1/√N, we construct a quantile transform of quantum Fourier transform (QFT) over Z N based on the elementary transforms, such as Hadamard transform and Pauli transform. The QFT over Z N can then be realized by the quantile transform, and used to further design its quantum circuit and analyze the requirements for the quantum register and quantum gates. However, the transform needs considerable quantum computational resources and it is difficult to construct a high-dimensional quantum register. Hence, we investigate the design of t-bit quantile transform, and introduce the definition of t-bit semiclassical QFT over Z N . According to probability amplitude, we prove that the transform can be used to realize QFT over Z N and further design its quantum circuit. For this transform, the requirements for the quantum register, the one-qubit gate, and two-qubit gate reduce obviously when compared with those for the QFT over Z N . (general)

  13. Inclusive bit error rate analysis for coherent optical code-division multiple-access system

    Science.gov (United States)

    Katz, Gilad; Sadot, Dan

    2002-06-01

    Inclusive noise and bit error rate (BER) analysis for optical code-division multiplexing (OCDM) using coherence techniques is presented. The analysis contains crosstalk calculation of the mutual field variance for different number of users. It is shown that the crosstalk noise depends deeply on the receiver integration time, the laser coherence time, and the number of users. In addition, analytical results of the power fluctuation at the received channel due to the data modulation at the rejected channels are presented. The analysis also includes amplified spontaneous emission (ASE)-related noise effects of in-line amplifiers in a long-distance communication link.

  14. Exploring DC-Kerr effect of impurity doped quantum dots under the aegis of noise

    Science.gov (United States)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study performs an extensive exploration of the profiles of DC-Kerr effect (DCKE) of doped GaAs quantum dot (QD) under the control of Gaussian white noise. A large number of important physical parameters have been varied over a range and the resultant changes in the DCKE profiles have been thoroughly analyzed. The said physical parameters comprise of electric field, magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), carrier density, relaxation time, position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The particular physical quantity being varied, presence of noise and its pathway of application, in combination, lead to emergence of diverse features in the DCKE profiles. As a technologically significant aspect we often find maximization of DCKE for some typical combinations as mentioned above. Presence of multiplicative noise, in general, causes greater shift and greater augmentation of DCKE profiles from a noise-free condition than its additive counterpart. The outcomes of the study indicate ample scope of tailoring DCKE of doped QD systems in presence of noise by minute adjustment of several control parameters.

  15. Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad

    International Nuclear Information System (INIS)

    Liu Zhi-Hao; Chen Han-Wu

    2016-01-01

    The security of quantum broadcast communication (QBC) and authentication protocol based on Greenberger–Horne–Zeilinger (GHZ) state and quantum one-time pad is analyzed. It is shown that there are some security issues in this protocol. Firstly, an external eavesdropper can take the intercept–measure–resend attack strategy to eavesdrop on 0.369 bit of every bit of the identity string of each receiver without being detected. Meanwhile, 0.524 bit of every bit of the secret message can be eavesdropped on without being detected. Secondly, an inner receiver can take the intercept–measure–resend attack strategy to eavesdrop on half of the identity string of the other’s definitely without being checked. In addition, an alternative attack called the CNOT-operation attack is discussed. As for the multi-party QBC protocol, the attack efficiency increases with the increase of the number of users. Finally, the QBC protocol is improved to a secure one. (paper)

  16. Hamiltonian formulation of quantum error correction and correlated noise: Effects of syndrome extraction in the long-time limit

    Science.gov (United States)

    Novais, E.; Mucciolo, Eduardo R.; Baranger, Harold U.

    2008-07-01

    We analyze the long-time behavior of a quantum computer running a quantum error correction (QEC) code in the presence of a correlated environment. Starting from a Hamiltonian formulation of realistic noise models, and assuming that QEC is indeed possible, we find formal expressions for the probability of a given syndrome history and the associated residual decoherence encoded in the reduced density matrix. Systems with nonzero gate times (“long gates”) are included in our analysis by using an upper bound on the noise. In order to introduce the local error probability for a qubit, we assume that propagation of signals through the environment is slower than the QEC period (hypercube assumption). This allows an explicit calculation in the case of a generalized spin-boson model and a quantum frustration model. The key result is a dimensional criterion: If the correlations decay sufficiently fast, the system evolves toward a stochastic error model for which the threshold theorem of fault-tolerant quantum computation has been proven. On the other hand, if the correlations decay slowly, the traditional proof of this threshold theorem does not hold. This dimensional criterion bears many similarities to criteria that occur in the theory of quantum phase transitions.

  17. Quantum solitons

    Energy Technology Data Exchange (ETDEWEB)

    Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)

    1999-02-01

    Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weakerand weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This

  18. Quantum discord as a resource for quantum cryptography.

    Science.gov (United States)

    Pirandola, Stefano

    2014-11-07

    Quantum discord is the minimal bipartite resource which is needed for a secure quantum key distribution, being a cryptographic primitive equivalent to non-orthogonality. Its role becomes crucial in device-dependent quantum cryptography, where the presence of preparation and detection noise (inaccessible to all parties) may be so strong to prevent the distribution and distillation of entanglement. The necessity of entanglement is re-affirmed in the stronger scenario of device-independent quantum cryptography, where all sources of noise are ascribed to the eavesdropper.

  19. High bit depth infrared image compression via low bit depth codecs

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-01-01

    images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed.......264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can...

  20. Cryptographic quantum hashing

    Science.gov (United States)

    Ablayev, F. M.; Vasiliev, A. V.

    2014-02-01

    We present a version of quantum hash functions based on non-binary discrete functions. The proposed quantum procedure is ‘classical-quantum’, that is, it takes a classical bit string as an input and produces a quantum state. The resulting function has the property of a one-way function (pre-image resistance); in addition it has properties analogous to classical cryptographic hash second pre-image resistance and collision resistance. We also show that the proposed function can be naturally used in a quantum digital signature protocol.

  1. Cryptographic quantum hashing

    International Nuclear Information System (INIS)

    Ablayev, F M; Vasiliev, A V

    2014-01-01

    We present a version of quantum hash functions based on non-binary discrete functions. The proposed quantum procedure is ‘classical-quantum’, that is, it takes a classical bit string as an input and produces a quantum state. The resulting function has the property of a one-way function (pre-image resistance); in addition it has properties analogous to classical cryptographic hash second pre-image resistance and collision resistance. We also show that the proposed function can be naturally used in a quantum digital signature protocol. (letter)

  2. Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit

    Science.gov (United States)

    Tan, Ying-ying; Cheng, Xue-yun; Guan, Zhi-jin; Liu, Yang; Ma, Haiying

    2018-03-01

    With the development of reversible and quantum computing, study of reversible and quantum circuits has also developed rapidly. Due to physical constraints, most quantum circuits require quantum gates to interact on adjacent quantum bits. However, many existing quantum circuits nearest-neighbor have large quantum cost. Therefore, how to effectively reduce quantum cost is becoming a popular research topic. In this paper, we proposed multiple optimization strategies to reduce the quantum cost of the circuit, that is, we reduce quantum cost from MCT gates decomposition, nearest neighbor and circuit simplification, respectively. The experimental results show that the proposed strategies can effectively reduce the quantum cost, and the maximum optimization rate is 30.61% compared to the corresponding results.

  3. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    Science.gov (United States)

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  4. Noise of screen-film systems: origins and components

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, H

    1983-01-01

    When using the more sensitive rare-earth intensifying screens in radiography applying the screen-film system, one has to cope with an increase in quantum noise. Measurement of Wiener spectra will help to determine the noise of the film. With an appropriate apparatus, the noise spectra of screen-film systems of different sensitivity have been ascertained and compared with theoretical assessments. The integral noise made up of the components film noise, screen noise and quantum noise have been thoroughly analysed. Adequate choice of radiographic conditions (such as modification of film exposure time via the screen, change of tube voltage) will affect the number of absorbed X-ray quanta in the luminous substance and thus the quantum noise which, as was found out, largely contributes to the integral noise together with another factor, graininess of the film. The study shows that although quantum noise has to be cut back, this should not be done at any price, and due regard must be paid to other factors influencing the image quality of the system, such as contrast and MTF.

  5. Bit-string physics: A novel theory of everything

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1994-08-01

    We encode the quantum numbers of the standard model of quarks and leptons using constructed bitstrings of length 256. These label a grouting universe of bit-strings of growing length that eventually construct a finite and discrete space-time with reasonable cosmological properties. Coupling constants and mass ratios, computed from closure under XOR and a statistical hypothesis, using only ℎ, c and m p to fix our units of mass, length and time in terms of standard (meterkilogram-second) metrology, agree with the first four to seven significant figures of accepted experimental results. Finite and discrete conservation laws and commutation relations insure the essential characteristics of relativistic quantum mechanics, including particle-antiparticle pair creation. The correspondence limit in (free space) Maxwell electromagnetism and Einstein gravitation is consistent with the Feynman-Dyson-Tanimura ''proof.''

  6. Bit-string physics: A novel theory of everything

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1994-08-01

    We encode the quantum numbers of the standard model of quarks and leptons using constructed bitstrings of length 256. These label a grouting universe of bit-strings of growing length that eventually construct a finite and discrete space-time with reasonable cosmological properties. Coupling constants and mass ratios, computed from closure under XOR and a statistical hypothesis, using only {h_bar}, c and m{sub p} to fix our units of mass, length and time in terms of standard (meterkilogram-second) metrology, agree with the first four to seven significant figures of accepted experimental results. Finite and discrete conservation laws and commutation relations insure the essential characteristics of relativistic quantum mechanics, including particle-antiparticle pair creation. The correspondence limit in (free space) Maxwell electromagnetism and Einstein gravitation is consistent with the Feynman-Dyson-Tanimura ``proof.``

  7. Quantum demultiplexer of quantum parameter-estimation information in quantum networks

    Science.gov (United States)

    Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang

    2018-05-01

    The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

  8. An improved two-way continuous-variable quantum key distribution protocol with added noise in homodyne detection

    International Nuclear Information System (INIS)

    Sun Maozhu; Peng Xiang; Guo Hong

    2013-01-01

    We propose an improved two-way continuous-variable quantum key distribution (CV QKD) protocol by adding proper random noise on the receiver’s homodyne detection, the security of which is analysed against general collective attacks. The simulation result under the collective entangling cloner attack indicates that despite the correlation between two-way channels decreasing the secret key rate relative to the uncorrelated channels slightly, the performance of the two-way protocol is still far beyond that of the one-way protocols. Importantly, the added noise in detection is beneficial for the secret key rate and the tolerable excess noise of this two-way protocol. With the reasonable reconciliation efficiency of 90%, the two-way CV QKD with added noise allows the distribution of secret keys over 60 km fibre distance. (paper)

  9. Quantum noise on a point charge from electromagnetic squeezed vacuum fluctuations

    International Nuclear Information System (INIS)

    Wu, Tai-Hung; Hsiang, Jen-Tsung; Lee, Da-Shin

    2010-01-01

    The effect of quantum noises on a point charge from electromagnetic squeezed vacuum fluctuations is studied. Here a novel reduction phenomenon in velocity dispersion is found in the situation when the particle barely moves. It shows that the velocity dispersion of the charge can be reduced below the value solely given by the normal vacuum states of the electromagnetic fields by using an appropriate choice of the squeeze parameters. This may be viewed as a transient phenomenon. Optimally utilizing this reduction scheme for gravitational wave detection is possible, but challenging.

  10. Quantum noise on a point charge from electromagnetic squeezed vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tai-Hung; Hsiang, Jen-Tsung; Lee, Da-Shin [National Dong-Hwa University, Hua-lien, Taiwan (China)

    2010-09-15

    The effect of quantum noises on a point charge from electromagnetic squeezed vacuum fluctuations is studied. Here a novel reduction phenomenon in velocity dispersion is found in the situation when the particle barely moves. It shows that the velocity dispersion of the charge can be reduced below the value solely given by the normal vacuum states of the electromagnetic fields by using an appropriate choice of the squeeze parameters. This may be viewed as a transient phenomenon. Optimally utilizing this reduction scheme for gravitational wave detection is possible, but challenging.

  11. Combined influence of hydrostatic pressure and temperature on interband emission energy of impurity doped quantum dots in presence of noise

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Aindrila; Ghosh, Manas, E-mail: pcmg77@rediffmail.com

    2016-11-01

    We explore the profiles of interband emission energy (IEE) of impurity doped quantum dots (QDs) under the simultaneous influence of hydrostatic pressure (HP) and temperature (T) and in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In this regard, modulation of IEE by the variation of several other relevant quantities such as electric field, magnetic field, confinement potential, dopant location, dopant potential and aluminium concentration has also been investigated. Gradual alteration of HP and T affects IEE discernibly. Inclusion of noise has been found to enhance or deplete the IEE depending upon its mode of application. Moreover, under given conditions of temperature and pressure, the difference between the impurity-free ground state energy and the binding energy appears to be crucial in determining whether or not the profiles of IEE would resemble that of binding energy. The findings reveal fascinating role played by noise in tailoring the IEE of doped QD system under conspicuous presence of hydrostatic pressure and temperature. - Highlights: • Interband emission energy (IEE) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect IEE. • The dot is subjected to Gaussian white noise. • Noise amplifies and suppresses IEE depending on particular condition.

  12. Controllable quantum private queries using an entangled Fibonacci-sequence spiral source

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Hong, E-mail: honglaimm@163.com [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Department of Computing, Macquarie University, Sydney, NSW 2109 (Australia); School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Orgun, Mehmet A. [Department of Computing, Macquarie University, Sydney, NSW 2109 (Australia); Pieprzyk, Josef [School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Xiao, Jinghua [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Xue, Liyin [Corporate Analytics, The Australian Taxation Office, Sydney NSW 2000 (Australia); Jia, Zhongtian, E-mail: ise_jiazt@ujn.edu.cn [Provincial Key Laboratory for Network Based Intelligent Computing, University of Jinan, Jinan 250022 (China)

    2015-10-23

    Highlights: • Alice can easily control the size of a block by adjusting the parameter m rather than a high-dimension oracle. • The case of Alice knowing an exact multi-bit message can be realized deterministically. • Our protocol provides broad measures of protection against errors caused by the effect of noise. • Our protocol can greatly save both quantum and classical communication and exhibit some advantages in security. • Our protocol is scalable and flexible, and secure against quantum memory attacks by Alice. - Abstract: By changing the initial values in entangled Fibonacci-sequence spiral sources in Simon et al.'s (2013) experimental setup [13], we propose a controllable quantum private query protocol. Moreover, our protocol achieves flexible key expansion and even exhibits secure advantages during communications because of the following observations. We observe the close relationships between Lucas numbers and the first kind of Chebyshev maps, and the Chebyshev maps and k-Chebyshev maps; by adjusting the parameter m in k-Chebyshev maps, Alice and Bob can obtain their expected values of the key blocks and database respectively.

  13. Controllable quantum private queries using an entangled Fibonacci-sequence spiral source

    International Nuclear Information System (INIS)

    Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Xiao, Jinghua; Xue, Liyin; Jia, Zhongtian

    2015-01-01

    Highlights: • Alice can easily control the size of a block by adjusting the parameter m rather than a high-dimension oracle. • The case of Alice knowing an exact multi-bit message can be realized deterministically. • Our protocol provides broad measures of protection against errors caused by the effect of noise. • Our protocol can greatly save both quantum and classical communication and exhibit some advantages in security. • Our protocol is scalable and flexible, and secure against quantum memory attacks by Alice. - Abstract: By changing the initial values in entangled Fibonacci-sequence spiral sources in Simon et al.'s (2013) experimental setup [13], we propose a controllable quantum private query protocol. Moreover, our protocol achieves flexible key expansion and even exhibits secure advantages during communications because of the following observations. We observe the close relationships between Lucas numbers and the first kind of Chebyshev maps, and the Chebyshev maps and k-Chebyshev maps; by adjusting the parameter m in k-Chebyshev maps, Alice and Bob can obtain their expected values of the key blocks and database respectively

  14. Noise-driven diamagnetic susceptibility of impurity doped quantum dots: Role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function

    International Nuclear Information System (INIS)

    Bera, Aindrila; Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • The dot is subjected to Gaussian white noise. • Role of anisotropy, PDEM and PDDSF have been analyzed. • Noise amplifies and suppresses DMS depending on particular condition. • Findings bear significant technological importance. - Abstract: We explore Diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise introduced to the system additively and multiplicatively. In view of this profiles of DMS have been pursued with variations of geometrical anisotropy and dopant location. We have invoked position-dependent effective mass (PDEM) and position-dependent dielectric screening function (PDDSF) of the system. Presence of noise sometimes suppresses and sometimes amplifies DMS from that of noise-free condition and the extent of suppression/amplification depends on mode of application of noise. It is important to mention that the said suppression/amplification exhibits subtle dependence on use of PDEM, PDDSF and geometrical anisotropy. The study reveals that DMS, or more fundamentally, the effective confinement of LDSS, can be tuned by appropriate mingling of geometrical anisotropy/effective mass/dielectric constant of the system with noise and also on the pathway of application of latter.

  15. Quantum diffusion

    International Nuclear Information System (INIS)

    Habib, S.

    1994-01-01

    We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source

  16. Noise removing in encrypted color images by statistical analysis

    Science.gov (United States)

    Islam, N.; Puech, W.

    2012-03-01

    Cryptographic techniques are used to secure confidential data from unauthorized access but these techniques are very sensitive to noise. A single bit change in encrypted data can have catastrophic impact over the decrypted data. This paper addresses the problem of removing bit error in visual data which are encrypted using AES algorithm in the CBC mode. In order to remove the noise, a method is proposed which is based on the statistical analysis of each block during the decryption. The proposed method exploits local statistics of the visual data and confusion/diffusion properties of the encryption algorithm to remove the errors. Experimental results show that the proposed method can be used at the receiving end for the possible solution for noise removing in visual data in encrypted domain.

  17. Efficient networks for quantum factoring

    International Nuclear Information System (INIS)

    Beckman, D.; Chari, A.N.; Devabhaktuni, S.; Preskill, J.

    1996-01-01

    We consider how to optimize memory use and computation time in operating a quantum computer. In particular, we estimate the number of memory quantum bits (qubits) and the number of operations required to perform factorization, using the algorithm suggested by Shor [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124]. A K-bit number can be factored in time of order K 3 using a machine capable of storing 5K+1 qubits. Evaluation of the modular exponential function (the bottleneck of Shor close-quote s algorithm) could be achieved with about 72K 3 elementary quantum gates; implementation using a linear ion trap would require about 396K 3 laser pulses. A proof-of-principle demonstration of quantum factoring (factorization of 15) could be performed with only 6 trapped ions and 38 laser pulses. Though the ion trap may never be a useful computer, it will be a powerful device for exploring experimentally the properties of entangled quantum states. copyright 1996 The American Physical Society

  18. Electrical control of single hole spins in nanowire quantum dots

    NARCIS (Netherlands)

    Pribiag, V.S.; Nadj-Perge, S.; Frolov, S.M.; Berg, J.W.G.; Weperen, van I.; Plissard, S.R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.

    2013-01-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits)1. Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable

  19. Conclusive identification of quantum channels via monogamy of quantum correlations

    International Nuclear Information System (INIS)

    Kumar, Asutosh; Singha Roy, Sudipto; Pal, Amit Kumar; Prabhu, R.; Sen, Aditi; Sen, Ujjwal

    2016-01-01

    We investigate the action of global noise and local channels, namely, amplitude-damping, phase-damping, and depolarizing channels, on monogamy of quantum correlations, such as negativity and quantum discord, in three-qubit systems. We discuss the monotonic and non-monotonic variation, and robustness of the monogamy scores. By using monogamy scores, we propose a two-step protocol to conclusively identify the noise applied to the quantum system, by using generalized Greenberger–Horne–Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties. - Highlights: • Monogamy score monotonically decays with noise for generalized GHZ state as input. • Non-monotonically decaying monogamy score with noise for generalized W state as input. • Characterizing the dynamics of monogamy score. • Dynamics terminal quantifying robustness of monogamy score against noise. • Conclusively identifying the type of noise using monogamy score.

  20. Conclusive identification of quantum channels via monogamy of quantum correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh; Singha Roy, Sudipto; Pal, Amit Kumar [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Prabhu, R. [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Department of Physics, Indian Institute of Technology Patna, Bihta 801103, Bihar (India); Sen, Aditi, E-mail: aditi@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Sen, Ujjwal [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India)

    2016-10-23

    We investigate the action of global noise and local channels, namely, amplitude-damping, phase-damping, and depolarizing channels, on monogamy of quantum correlations, such as negativity and quantum discord, in three-qubit systems. We discuss the monotonic and non-monotonic variation, and robustness of the monogamy scores. By using monogamy scores, we propose a two-step protocol to conclusively identify the noise applied to the quantum system, by using generalized Greenberger–Horne–Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties. - Highlights: • Monogamy score monotonically decays with noise for generalized GHZ state as input. • Non-monotonically decaying monogamy score with noise for generalized W state as input. • Characterizing the dynamics of monogamy score. • Dynamics terminal quantifying robustness of monogamy score against noise. • Conclusively identifying the type of noise using monogamy score.

  1. A novel quantum steganography scheme for color images

    Science.gov (United States)

    Li, Panchi; Liu, Xiande

    In quantum image steganography, embedding capacity and security are two important issues. This paper presents a novel quantum steganography scheme using color images as cover images. First, the secret information is divided into 3-bit segments, and then each 3-bit segment is embedded into the LSB of one color pixel in the cover image according to its own value and using Gray code mapping rules. Extraction is the inverse of embedding. We designed the quantum circuits that implement the embedding and extracting process. The simulation results on a classical computer show that the proposed scheme outperforms several other existing schemes in terms of embedding capacity and security.

  2. Security analysis of the “Ping–Pong” quantum communication protocol in the presence of collective-rotation noise

    International Nuclear Information System (INIS)

    Li, Jian; Li, Lingyun; Jin, Haifei; Li, Ruifan

    2013-01-01

    Environmental noise is inevitable in non-isolated systems. It is, therefore, necessary to analyze the security of the “Ping–Pong” protocol in a noisy environment. An excellent model for collective-rotation noise is introduced, and information theoretical methods are applied to analyze the security of this protocol. If noise level ε is lower than 11%, an eavesdropper can gain some, but not all, information freely without being detected. Otherwise, the protocol becomes insecure. We conclude that the use of ‘Ping–Pong’ protocol as a quantum secure direct communication (QSDC) protocol is quasi-secure, as declared by the original author when ε⩽11%.

  3. Security analysis of the “Ping–Pong” quantum communication protocol in the presence of collective-rotation noise

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Li, Lingyun, E-mail: lilingyun@bupt.edu.cn; Jin, Haifei; Li, Ruifan

    2013-11-22

    Environmental noise is inevitable in non-isolated systems. It is, therefore, necessary to analyze the security of the “Ping–Pong” protocol in a noisy environment. An excellent model for collective-rotation noise is introduced, and information theoretical methods are applied to analyze the security of this protocol. If noise level ε is lower than 11%, an eavesdropper can gain some, but not all, information freely without being detected. Otherwise, the protocol becomes insecure. We conclude that the use of ‘Ping–Pong’ protocol as a quantum secure direct communication (QSDC) protocol is quasi-secure, as declared by the original author when ε⩽11%.

  4. Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression

    Science.gov (United States)

    Daly, Scott J.

    1989-08-01

    The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.

  5. Bit-Oriented Quantum Public-Key Cryptosystem Based on Bell States

    Science.gov (United States)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2018-06-01

    Quantum public key encryption system provides information confidentiality using quantum mechanics. This paper presents a quantum public key cryptosystem ( Q P K C) based on the Bell states. By H o l e v o' s theorem, the presented scheme provides the security of the secret key using one-wayness during the QPKC. While the QPKC scheme is information theoretic security under chosen plaintext attack ( C P A). Finally some important features of presented QPKC scheme can be compared with other QPKC scheme.

  6. Steganalysis and improvement of a quantum steganography protocol via a GHZ4 state

    International Nuclear Information System (INIS)

    Xu Shu-Jiang; Chen Xiu-Bo; Niu Xin-Xin; Yang Yi-Xian

    2013-01-01

    Quantum steganography that utilizes the quantum mechanical effect to achieve the purpose of information hiding is a popular topic of quantum information. Recently, El Allati et al. proposed a new quantum steganography using the GHZ 4 state. Since all of the 8 groups of unitary transformations used in the secret message encoding rule change the GHZ 4 state into 6 instead of 8 different quantum states when the global phase is not considered, we point out that a 2-bit instead of a 3-bit secret message can be encoded by one group of the given unitary transformations. To encode a 3-bit secret message by performing a group of unitary transformations on the GHZ 4 state, we give another 8 groups of unitary transformations that can change the GHZ 4 state into 8 different quantum states. Due to the symmetry of the GHZ 4 state, all the possible 16 groups of unitary transformations change the GHZ 4 state into 8 different quantum states, so the improved protocol achieves a high efficiency

  7. Quantum key distribution using three basis states

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 54; Issue 5. Quantum key distribution using three ... This note presents a method of public key distribution using quantum communication of photons that simultaneously provides a high probability that the bits have not been tampered. It is a variant of the quantum ...

  8. Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise

    International Nuclear Information System (INIS)

    Chang Yan; Zhang Shi-Bin; Yan Li-Li; Han Gui-Hua

    2015-01-01

    Higher channel capacity and security are difficult to reach in a noisy channel. The loss of photons and the distortion of the qubit state are caused by noise. To solve these problems, in our study, a hyperentangled Bell state is used to design faithful deterministic secure quantum communication and authentication protocol over collective-rotation and collective-dephasing noisy channel, which doubles the channel capacity compared with using an ordinary Bell state as a carrier; a logical hyperentangled Bell state immune to collective-rotation and collective-dephasing noise is constructed. The secret message is divided into several parts to transmit, however the identity strings of Alice and Bob are reused. Unitary operations are not used. (paper)

  9. A Novel Digital Background Calibration Technique for 16 bit SHA-less Multibit Pipelined ADC

    Directory of Open Access Journals (Sweden)

    Swina Narula

    2016-01-01

    Full Text Available In this paper, a high resolution of 16 bit and high speed of 125MS/s, multibit Pipelined ADC with digital background calibration is presented. In order to achieve low power, SHA-less front end is used with multibit stages. The first and second stages are used here as a 3.5 bit and the stages from third to seventh are of 2.5 bit and last stage is of 3-bit flash ADC. After bit alignment and truncation of total 19 bits, 16 bits are used as final digital output. To precise the remove linear gain error of the residue amplifier and capacitor mismatching error, a digital background calibration technique is used, which is a combination of signal dependent dithering (SDD and butterfly shuffler. To improve settling time of residue amplifier, a special circuit of voltage separation is used. With the proposed digital background calibration technique, the spurious-free dynamic range (SFDR has been improved to 97.74 dB @30 MHz and 88.9 dB @150 MHz, and the signal-to-noise and distortion ratio (SNDR has been improved to 79.77 dB @ 30 MHz, and 73.5 dB @ 150 MHz. The implementation of the Pipelined ADC has been completed with technology parameters of 0.18μm CMOS process with 1.8 V supply. Total power consumption is 300 mW by the proposed ADC.

  10. A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Wang, Pengtao; Yuan, Yanbin; Huang, Yuehua; Zhang, Xiaopan

    2015-01-01

    Highlights: • Quantum theory is introduced to artificial bee colony algorithm (ABC) to increase population diversity. • A chaotic local search operator is used to enhance local search ability of ABC. • Quantum inspired chaotic ABC method (QCABC) is proposed to solve optimal power flow. • The feasibility and effectiveness of the proposed QCABC is verified by examples. - Abstract: This paper proposes a new artificial bee colony algorithm with quantum theory and the chaotic local search strategy (QCABC), and uses it to solve the optimal power flow (OPF) problem. Under the quantum computing theory, the QCABC algorithm encodes each individual with quantum bits to form a corresponding quantum bit string. By determining each quantum bits value, we can get the value of the individual. After the scout bee stage of the artificial bee colony algorithm, we begin the chaotic local search in the vicinity of the best individual found so far. Finally, the quantum rotation gate is used to process each quantum bit so that all individuals can update toward the direction of the best individual. The QCABC algorithm is carried out to deal with the OPF problem in the IEEE 30-bus and IEEE 118-bus standard test systems. The results of the QCABC algorithm are compared with other algorithms (artificial bee colony algorithm, genetic algorithm, particle swarm optimization algorithm). The comparison shows that the QCABC algorithm can effectively solve the OPF problem and it can get the better optimal results than those of other algorithms

  11. Investigation of mode partition noise in Fabry-Perot laser diode

    Science.gov (United States)

    Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping

    2014-09-01

    Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.

  12. Quantum communication in noisy environments

    International Nuclear Information System (INIS)

    Aschauer, H.

    2004-01-01

    In this thesis, we investigate how protocols in quantum communication theory are influenced by noise. Specifically, we take into account noise during the transmission of quantum information and noise during the processing of quantum information. We describe three novel quantum communication protocols which can be accomplished efficiently in a noisy environment: (1) Factorization of Eve: We show that it is possible to disentangle transmitted qubits a posteriori from the quantum channel's degrees of freedom. (2) Cluster state purification: We give multi-partite entanglement purification protocols for a large class of entangled quantum states. (3) Entanglement purification protocols from quantum codes: We describe a constructive method to create bipartite entanglement purification protocols form quantum error correcting codes, and investigate the properties of these protocols, which can be operated in two different modes, which are related to quantum communication and quantum computation protocols, respectively

  13. A 12-bit 40 MS/s pipelined ADC with over 80 dB SFDR

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qi; Yin Xiumei; Han Dandan; Yang Huazhong, E-mail: q-wei05@mails.tsinghua.edu.c [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2010-02-15

    This paper describes a 12-bit 40 MS/s calibration-free pipelined analog-to-digital converter (ADC), which is optimized for high spurious free dynamic range (SFDR) performance and low power dissipation. With a 4.9 MHz sine wave input, the prototype ADC implemented in a 0.18-{mu}m 1P6M CMOS process shows measured differential nonlinearity and integral nonlinearity within 0.78 and 1.32 least significant bits at the 12-bit level without any trimming or calibration. The ADC, with a total die area of 3.1 x 2.1 mm{sup 2}, demonstrates a maximum signal-to-noise distortion ratio (SNDR) and SFDR of 66.32 and 83.38 dB, respectively, at a 4.9 MHz analog input and a power consumption of 102 mW from a 1.8 V supply. (semiconductor integrated circuits)

  14. Quantum 1/f noise in non-degerate semiconductors and emission statistics of alpha particles

    International Nuclear Information System (INIS)

    Kousik, G.S.

    1985-01-01

    Charged particle scattering is accompanied by the emission of soft photons. Handel's theory of 1/f noise, based on the infrared divergent coupling of the system to the electromagnetic field or other elementary excitations, states that the current associated with a beam of scattered particles will exhibit 1/f noise. The fraction of the particles scattered with an energy loss epsilon to soft photon emission is proportional to 1/epsilon and herein lies the origin of the quantum theory of 1/f noise. The 1/f noise caused by mobility fluctuations in semiconductors is related to the scattering cross section fluctuation given by Handel's theory, through the relaxation time. Chapters Two through Five of this dissertation presents the results of the detailed calculation of mobility fluctuation 1/f noise and Hooge parameter in nondegenerate semiconductors. Numerical results are given for silicon and gallium arsenide. Data obtained from extensive measurements on counting techniques for alpha-particles radioactive decay from a source containing 94 Pu 239 , 95 Am 241 and 96 Cm 244 are presented in Chapters Six and Seven of this dissertation. These data show that the statistics are non-Poissonian for large counting times (of the order of 1000 minutes) contrary to the popular belief that alpha-decay is an example of Poissonian statistics. Measurements of the Allan variance indicated the presence of a slow Lorentzian flicker noise and 1/f noise and the magnitude of the noise for large counting times is considerably larger than that predicted by Poissonian statistics

  15. Quantum watermarking scheme through Arnold scrambling and LSB steganography

    Science.gov (United States)

    Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping

    2017-09-01

    Based on the NEQR of quantum images, a new quantum gray-scale image watermarking scheme is proposed through Arnold scrambling and least significant bit (LSB) steganography. The sizes of the carrier image and the watermark image are assumed to be 2n× 2n and n× n, respectively. Firstly, a classical n× n sized watermark image with 8-bit gray scale is expanded to a 2n× 2n sized image with 2-bit gray scale. Secondly, through the module of PA-MOD N, the expanded watermark image is scrambled to a meaningless image by the Arnold transform. Then, the expanded scrambled image is embedded into the carrier image by the steganography method of LSB. Finally, the time complexity analysis is given. The simulation experiment results show that our quantum circuit has lower time complexity, and the proposed watermarking scheme is superior to others.

  16. Semiquantum-key distribution using less than four quantum states

    International Nuclear Information System (INIS)

    Zou Xiangfu; Qiu Daowen; Li Lvzhou; Wu Lihua; Li Lvjun

    2009-01-01

    Recently Boyer et al. [Phys. Rev. Lett. 99, 140501 (2007)] suggested the idea of semiquantum key distribution (SQKD) in which Bob is classical and they also proposed a semiquantum key distribution protocol (BKM2007). To discuss the security of the BKM2007 protocol, they proved that their protocol is completely robust. This means that nonzero information acquired by Eve on the information string implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. The BKM2007 protocol uses four quantum states to distribute a secret key. In this paper, we simplify their protocol by using less than four quantum states. In detail, we present five different SQKD protocols in which Alice sends three quantum states, two quantum states, and one quantum state, respectively. Also, we prove that all the five protocols are completely robust. In particular, we invent two completely robust SQKD protocols in which Alice sends only one quantum state. Alice uses a register in one SQKD protocol, but she does not use any register in the other. The information bit proportion of the SQKD protocol in which Alice sends only one quantum state but uses a register is the double as that in the BKM2007 protocol. Furthermore, the information bit rate of the SQKD protocol in which Alice sends only one quantum state and does not use any register is not lower than that of the BKM2007 protocol.

  17. A Holistic Approach to Bit Preservation

    DEFF Research Database (Denmark)

    Zierau, Eld Maj-Britt Olmütz

    2011-01-01

    This thesis presents three main results for a holistic approach to bit preservation, where the ultimate goal is to find the optimal bit preservation strategy for specific digital material that must be digitally preserved. Digital material consists of sequences of bits, where a bit is a binary digit...... which can have the value 0 or 1. Bit preservation must ensure that the bits remain intact and readable in the future, but bit preservation is not concerned with how bits can be interpreted as e.g. an image. A holistic approach to bit preservation includes aspects that influence the final choice of a bit...... a holistic approach and include aspects of digital representation, confidentiality, availability, bit safety and costs when defining requirements for the bit preservation. Analysis of such requirements and choice of the final bit preservation solution can be supported by the three main results presented...

  18. Optimal Classical Simulation of State-Independent Quantum Contextuality

    Science.gov (United States)

    Cabello, Adán; Gu, Mile; Gühne, Otfried; Xu, Zhen-Peng

    2018-03-01

    Simulating quantum contextuality with classical systems requires memory. A fundamental yet open question is what is the minimum memory needed and, therefore, the precise sense in which quantum systems outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not contain any oracular information. In particular, we show that, while classically simulating two qubits tested with the Peres-Mermin set requires log224 ≈4.585 bits, simulating a single qutrit tested with the Yu-Oh set requires, at least, 5.740 bits.

  19. Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope

    Science.gov (United States)

    Chui, Talso; Penanen, Konstantin

    2004-01-01

    A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.

  20. Maxwell's Demon, Szilard's Engine and Quantum Measurements

    OpenAIRE

    Zurek, Wojciech Hubert

    2003-01-01

    We propose and analyze a quantum version of Szilard's ``one-molecule engine.'' In particular, we recover, in the quantum context, Szilard's conclusion concerning the free energy ``cost'' of measurements: $\\Delta F \\geq k_B T\\ln2$ per bit of information.

  1. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  2. Locking classical correlations in quantum States.

    Science.gov (United States)

    DiVincenzo, David P; Horodecki, Michał; Leung, Debbie W; Smolin, John A; Terhal, Barbara M

    2004-02-13

    We show that there exist bipartite quantum states which contain a large locked classical correlation that is unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)-qubit states for which a one-bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2 bits to n bits. This phenomenon is impossible classically. However, states exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

  3. Task-based assessment of breast tomosynthesis: Effect of acquisition parameters and quantum noise1

    OpenAIRE

    Reiser, I.; Nishikawa, R. M.

    2010-01-01

    Purpose: Tomosynthesis is a promising modality for breast imaging. The appearance of the tomosynthesis reconstructed image is greatly affected by the choice of acquisition and reconstruction parameters. The purpose of this study was to investigate the limitations of tomosynthesis breast imaging due to scan parameters and quantum noise. Tomosynthesis image quality was assessed based on performance of a mathematical observer model in a signal-known exactly (SKE) detection task.

  4. Optimal quantum state estimation with use of the no-signaling principle

    International Nuclear Information System (INIS)

    Han, Yeong-Deok; Bae, Joonwoo; Wang Xiangbin; Hwang, Won-Young

    2010-01-01

    A simple derivation of the optimal state estimation of a quantum bit was obtained by using the no-signaling principle. In particular, the no-signaling principle determines a unique form of the guessing probability independent of figures of merit, such as the fidelity or information gain. This proves that the optimal estimation for a quantum bit can be achieved by the same measurement for almost all figures of merit.

  5. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    International Nuclear Information System (INIS)

    Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho

    2014-01-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs

  6. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    Science.gov (United States)

    Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim

    2014-05-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.

  7. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    Cerf, N.J.

    1998-01-01

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  8. Electron Spins in Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  9. Fault-ignorant quantum search

    International Nuclear Information System (INIS)

    Vrana, Péter; Reeb, David; Reitzner, Daniel; Wolf, Michael M

    2014-01-01

    We investigate the problem of quantum searching on a noisy quantum computer. Taking a fault-ignorant approach, we analyze quantum algorithms that solve the task for various different noise strengths, which are possibly unknown beforehand. We prove lower bounds on the runtime of such algorithms and thereby find that the quadratic speedup is necessarily lost (in our noise models). However, for low but constant noise levels the algorithms we provide (based on Grover's algorithm) still outperform the best noiseless classical search algorithm. (paper)

  10. Finite key analysis in quantum cryptography

    International Nuclear Information System (INIS)

    Meyer, T.

    2007-01-01

    In view of experimental realization of quantum key distribution schemes, the study of their efficiency becomes as important as the proof of their security. The latter is the subject of most of the theoretical work about quantum key distribution, and many important results such as the proof of unconditional security have been obtained. The efficiency and also the robustness of quantum key distribution protocols against noise can be measured by figures of merit such as the secret key rate (the fraction of input signals that make it into the key) and the threshold quantum bit error rate (the maximal error rate such that one can still create a secret key). It is important to determine these quantities because they tell us whether a certain quantum key distribution scheme can be used at all in a given situation and if so, how many secret key bits it can generate in a given time. However, these figures of merit are usually derived under the ''infinite key limit'' assumption, that is, one assumes that an infinite number of quantum states are send and that all sub-protocols of the scheme (in particular privacy amplification) are carried out on these infinitely large blocks. Such an assumption usually eases the analysis, but also leads to (potentially) too optimistic values for the quantities in question. In this thesis, we are explicitly avoiding the infinite key limit for the analysis of the privacy amplification step, which plays the most important role in a quantum key distribution scheme. We still assume that an optimal error correction code is applied and we do not take into account any statistical errors that might occur in the parameter estimation step. Renner and coworkers derived an explicit formula for the obtainable key rate in terms of Renyi entropies of the quantum states describing Alice's, Bob's, and Eve's systems. This results serves as a starting point for our analysis, and we derive an algorithm that efficiently computes the obtainable key rate for any

  11. Finite key analysis in quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.

    2007-10-31

    In view of experimental realization of quantum key distribution schemes, the study of their efficiency becomes as important as the proof of their security. The latter is the subject of most of the theoretical work about quantum key distribution, and many important results such as the proof of unconditional security have been obtained. The efficiency and also the robustness of quantum key distribution protocols against noise can be measured by figures of merit such as the secret key rate (the fraction of input signals that make it into the key) and the threshold quantum bit error rate (the maximal error rate such that one can still create a secret key). It is important to determine these quantities because they tell us whether a certain quantum key distribution scheme can be used at all in a given situation and if so, how many secret key bits it can generate in a given time. However, these figures of merit are usually derived under the ''infinite key limit'' assumption, that is, one assumes that an infinite number of quantum states are send and that all sub-protocols of the scheme (in particular privacy amplification) are carried out on these infinitely large blocks. Such an assumption usually eases the analysis, but also leads to (potentially) too optimistic values for the quantities in question. In this thesis, we are explicitly avoiding the infinite key limit for the analysis of the privacy amplification step, which plays the most important role in a quantum key distribution scheme. We still assume that an optimal error correction code is applied and we do not take into account any statistical errors that might occur in the parameter estimation step. Renner and coworkers derived an explicit formula for the obtainable key rate in terms of Renyi entropies of the quantum states describing Alice's, Bob's, and Eve's systems. This results serves as a starting point for our analysis, and we derive an algorithm that efficiently computes

  12. An Improved Quantum Information Hiding Protocol Based on Entanglement Swapping of χ-type Quantum States

    International Nuclear Information System (INIS)

    Xu Shu-Jiang; Wang Lian-Hai; Ding Qing-Yan; Zhang Shu-Hui; Chen Xiu-Bo

    2016-01-01

    In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states. (paper)

  13. An 8 bit 1 MS/s SAR ADC with 7.72-ENOB

    Science.gov (United States)

    Duan, Jihai; Zhu, Zhiyong; Deng, Jinli; Xu, Weilin

    2017-08-01

    This paper presents a low power 8-bit 1 MS/s SAR ADC with 7.72-bit ENOB. Without an op-amp, an improved segmented capacitor DAC is proposed to reduce the capacitance and the chip area. A dynamic latch comparator with output offset voltage storage technology is used to improve the precision. Adding an extra positive feedback in the latch is to increase the speed. What is more, two pairs of CMOS switches are utilized to eliminate the kickback noise introduced by the latch. The proposed SAR ADC was fabricated in SMIC 0.18 {{μ }}{{m}} CMOS technology. The measured results show that this design achieves an SFDR of 61.8 dB and an ENOB of 7.72 bits, and it consumes 67.5 μW with the FOM of 312 fJ/conversion-step at 1 MS/s sample under 1.8 V power supply. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Key Laboratory of Precision Navigation Technology and Application Foundation (No. DH201501).

  14. Digital Quantum Estimation

    Science.gov (United States)

    Hassani, Majid; Macchiavello, Chiara; Maccone, Lorenzo

    2017-11-01

    Quantum metrology calculates the ultimate precision of all estimation strategies, measuring what is their root-mean-square error (RMSE) and their Fisher information. Here, instead, we ask how many bits of the parameter we can recover; namely, we derive an information-theoretic quantum metrology. In this setting, we redefine "Heisenberg bound" and "standard quantum limit" (the usual benchmarks in the quantum estimation theory) and show that the former can be attained only by sequential strategies or parallel strategies that employ entanglement among probes, whereas parallel-separable strategies are limited by the latter. We highlight the differences between this setting and the RMSE-based one.

  15. Experimental integration of quantum key distribution and gigabit-capable passive optical network

    Science.gov (United States)

    Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei

    2018-01-01

    Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.

  16. Cryptography In The Bounded Quantum-Storage Model

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Salvail, Louis; Schaffner, Christian

    2005-01-01

    We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...

  17. Cryptography in the Bounded Quantum-Storage Model

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Serge, Fehr; Schaffner, Christian

    2008-01-01

    We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...

  18. White noise on bialgebras

    CERN Document Server

    Schürmann, Michael

    1993-01-01

    Stochastic processes with independent increments on a group are generalized to the concept of "white noise" on a Hopf algebra or bialgebra. The main purpose of the book is the characterization of these processes as solutions of quantum stochastic differential equations in the sense of R.L. Hudsonand K.R. Parthasarathy. The notes are a contribution to quantum probability but they are also related to classical probability, quantum groups, and operator algebras. The Az ma martingales appear as examples of white noise on a Hopf algebra which is a deformation of the Heisenberg group. The book will be of interest to probabilists and quantum probabilists. Specialists in algebraic structures who are curious about the role of their concepts in probablility theory as well as quantum theory may find the book interesting. The reader should havesome knowledge of functional analysis, operator algebras, and probability theory.

  19. From Bell's inequalities to quantum information: a new quantum revolution

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In 1964, John Stuart Bell discovered that it is possible to settle the debate experimentally, by testing the famous "Bell's inequalities", and to show directly that the revolutionary concept of entanglement is indeed a reality. 

A long series of experiments closer and closer to the ideal scheme presented by Bell has confirmed that entanglement is indeed "a great quantum mystery", to use the words of Feynman. Based on that concept, a new field of research has emerged, quantum information, where one uses quantum bits, the so-called “qubits”, to encode the information and process it. Entanglement ...

  20. Statistical Analysis of Coherent Ultrashort Light Pulse CDMA With Multiple Optical Amplifiers Using Additive Noise Model

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2005-05-01

    This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.

  1. Quantum capacity under adversarial quantum noise: arbitrarily varying quantum channels

    OpenAIRE

    Ahlswede, Rudolf; Bjelakovic, Igor; Boche, Holger; Noetzel, Janis

    2010-01-01

    We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede's dichotomy for classical arbitrarily varying channels. This includes...

  2. Quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2007-01-01

    A random access memory (RAM) uses n bits to randomly address N=2^n distinct memory cells. A quantum random access memory (qRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(log N) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust qRAM algorithm, as it in general requires entanglement among exponentially l...

  3. Free-Space Quantum Communication with a Portable Quantum Memory

    Science.gov (United States)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-12-01

    The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.

  4. Solving satisfiability problems by the ground-state quantum computer

    International Nuclear Information System (INIS)

    Mao Wenjin

    2005-01-01

    A quantum algorithm is proposed to solve the satisfiability (SAT) problems by the ground-state quantum computer. The scale of the energy gap of the ground-state quantum computer is analyzed for the 3-bit exact cover problem. The time cost of this algorithm on the general SAT problems is discussed

  5. Quantum key distribution with two-segment quantum repeaters

    Energy Technology Data Exchange (ETDEWEB)

    Kampermann, Hermann; Abruzzo, Silvestre; Bruss, Dagmar [Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2014-07-01

    Quantum repeaters represent one possible way to achieve long-distance quantum key distribution. One way of improving the repeater rate and decreasing the memory coherence time is the usage of multiplexing. Motivated by the experimental fact that long-range connections are practically demanding, we extend the analysis of the quantum repeater multiplexing protocol to the case of short-range connections. We derive formulas for the repeater rate and we show that short-range connections lead to most of the benefits of a full-range multiplexing protocol. A less demanding QKD-protocol without quantum memories was recently introduced by Lo et al. We generalize this measurement-device-independent quantum key Distribution protocol to the scenario where the repeater Station contains also heralded quantum memories. We assume either single-photon sources or weak coherent pulse sources plus decay states. We show that it is possible to significantly outperform the original proposal, even in presence of decoherence of the quantum memory. We give formulas in terms of device imperfections i.e., the quantum bit error rate and the repeater rate.

  6. Towards quantum chemistry on a quantum computer.

    Science.gov (United States)

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  7. Dynamics of a Landau–Zener non-dissipative system with fluctuating energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Fai, L.C. [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang (Cameroon); Diffo, J.T., E-mail: diffojaures@yahoo.com [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang (Cameroon); Department of Physics, Higher Teachers’ Training College, The University of Maroua, Maroua (Cameroon); Ateuafack, M.E.; Tchoffo, M.; Fouokeng, G.C. [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang (Cameroon)

    2014-12-01

    This paper considers a Landau–Zener (two-level) system influenced by a three-dimensional Gaussian and non-Gaussian coloured noise and finds a general form of the time dependent diabatic quantum bit (qubit) flip transition probabilities in the fast, intermediate and slow noise limits. The qubit flip probability is observed to mimic (for low-frequencies noise) that of the standard LZ problem. The qubit flip probability is also observed to be the measure of quantum coherence of states. The transition probability is observed to be tailored by non-Gaussian low-frequency noise and otherwise by Gaussian low-frequency coloured noise. Intermediate and fast noise limits are observed to alter the memory of the system in time and found to improve and control quantum information processing.

  8. Dynamics of a Landau–Zener non-dissipative system with fluctuating energy levels

    International Nuclear Information System (INIS)

    Fai, L.C.; Diffo, J.T.; Ateuafack, M.E.; Tchoffo, M.; Fouokeng, G.C.

    2014-01-01

    This paper considers a Landau–Zener (two-level) system influenced by a three-dimensional Gaussian and non-Gaussian coloured noise and finds a general form of the time dependent diabatic quantum bit (qubit) flip transition probabilities in the fast, intermediate and slow noise limits. The qubit flip probability is observed to mimic (for low-frequencies noise) that of the standard LZ problem. The qubit flip probability is also observed to be the measure of quantum coherence of states. The transition probability is observed to be tailored by non-Gaussian low-frequency noise and otherwise by Gaussian low-frequency coloured noise. Intermediate and fast noise limits are observed to alter the memory of the system in time and found to improve and control quantum information processing

  9. Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels

    Science.gov (United States)

    Ahlswede, Rudolf; Bjelaković, Igor; Boche, Holger; Nötzel, Janis

    2013-01-01

    We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede's dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.

  10. Functional spaces and operators connected with some L\\'evy noises

    OpenAIRE

    Lytvynov, E.

    2006-01-01

    We review some recent developments in white noise analysis and quantum probability. We pay a special attention to spaces of test and generalized functionals of some L\\'evy white noises, as well as as to the structure of quantum white noise on these spaces.

  11. Robustness of holonomic quantum gates

    International Nuclear Information System (INIS)

    Solinas, P.; Zanardi, P.; Zanghi, N.

    2005-01-01

    Full text: If the driving field fluctuates during the quantum evolution this produces errors in the applied operator. The holonomic (and geometrical) quantum gates are believed to be robust against some kind of noise. Because of the geometrical dependence of the holonomic operators can be robust against this kind of noise; in fact if the fluctuations are fast enough they cancel out leaving the final operator unchanged. I present the numerical studies of holonomic quantum gates subject to this parametric noise, the fidelity of the noise and ideal evolution is calculated for different noise correlation times. The holonomic quantum gates seem robust not only for fast fluctuating fields but also for slow fluctuating fields. These results can be explained as due to the geometrical feature of the holonomic operator: for fast fluctuating fields the fluctuations are canceled out, for slow fluctuating fields the fluctuations do not perturb the loop in the parameter space. (author)

  12. Improvement on Quantum Secure Direct Communication with W State in Noisy Channel

    International Nuclear Information System (INIS)

    Dong Li; Xiu Xiaoming; Gao Yajun; Chi Feng

    2009-01-01

    An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bit error rate induced by eavesdropper is 4.17% in C-protocol and 6.25% in Y-protocol. In this paper, another improvement on C-protocol is given. The quantum bit error rate of the eavesdropping will increase to 8.75%, which is 1.1 times larger than that in C-protocol and 0.4 times larger than that in Y-protocol.

  13. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  14. Cheat-sensitive commitment of a classical bit coded in a block of mxn round-trip qubits

    International Nuclear Information System (INIS)

    Shimizu, Kaoru; Fukasaka, Hiroyuki; Tamaki, Kiyoshi; Imoto, Nobuyuki

    2011-01-01

    This paper proposes a quantum protocol for a cheat-sensitive commitment of a classical bit. Alice, the receiver of the bit, can examine dishonest Bob, who changes or postpones his choice. Bob, the sender of the bit, can examine dishonest Alice, who violates concealment. For each round-trip case, Alice sends one of two spin states |S±> by choosing basis S at random from two conjugate bases X and Y. Bob chooses basis C is an element of {X,Y} to perform a measurement and returns a resultant state |C±>. Alice then performs a measurement with the other basis R (≠S) and obtains an outcome |R±>. In the opening phase, she can discover dishonest Bob, who unveils a wrong basis with a faked spin state, or Bob can discover dishonest Alice, who infers basis C but destroys |C±> by setting R to be identical to S in the commitment phase. If a classical bit is coded in a block of mxn qubit particles, impartial examinations and probabilistic security criteria can be achieved.

  15. Cheat-sensitive commitment of a classical bit coded in a block of mxn round-trip qubits

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kaoru; Fukasaka, Hiroyuki [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Tamaki, Kiyoshi [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-kitamachi, Koganei, Tokyo 184-8795 (Japan); Imoto, Nobuyuki [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan)

    2011-08-15

    This paper proposes a quantum protocol for a cheat-sensitive commitment of a classical bit. Alice, the receiver of the bit, can examine dishonest Bob, who changes or postpones his choice. Bob, the sender of the bit, can examine dishonest Alice, who violates concealment. For each round-trip case, Alice sends one of two spin states |S{+-}> by choosing basis S at random from two conjugate bases X and Y. Bob chooses basis C is an element of {l_brace}X,Y{r_brace} to perform a measurement and returns a resultant state |C{+-}>. Alice then performs a measurement with the other basis R ({ne}S) and obtains an outcome |R{+-}>. In the opening phase, she can discover dishonest Bob, who unveils a wrong basis with a faked spin state, or Bob can discover dishonest Alice, who infers basis C but destroys |C{+-}> by setting R to be identical to S in the commitment phase. If a classical bit is coded in a block of mxn qubit particles, impartial examinations and probabilistic security criteria can be achieved.

  16. Fermionic entanglement via quantum walks in quantum dots

    Science.gov (United States)

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2018-02-01

    Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.

  17. What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.

    Science.gov (United States)

    Kobayashi, Kensuke

    2016-01-01

    Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics.

  18. Quantum ballistic transistor and low noise HEMT for cryo-electronics lower than 4.2 K

    International Nuclear Information System (INIS)

    Gremion, E.

    2008-01-01

    Next generations of cryo-detectors, widely used in physics of particles and physics of universe, will need in the future high-performance cryo-electronics less noisy and closer to the detector. Within this context, this work investigates properties of two dimensional electron gas GaAlAs/GaAs by studying two components, quantum point contact (QPC) and high electron mobility transistor (HEMT). Thanks to quantized conductance steps in QPC, we have realized a quantum ballistic transistor (voltage gain higher than 1), a new component useful for cryo-electronics thanks to its operating temperature and weak power consumption (about 1 nW). Moreover, the very low capacity of this component leads to promising performances for multiplexing low temperature bolometer dedicated to millimetric astronomy. The second study focused on HEMT with very high quality 2DEG. At 4.2 K, a voltage gain higher than 20 can be obtained with a very low power dissipation of less than 100 μW. Under the above experimental conditions, an equivalent input voltage noise of 1.2 nV/√(Hz) at 1 kHz and 0.12 nV/√(Hz) at 100 kHz has been reached. According to the Hooge formula, these noise performances are get by increasing gate capacity estimated to 60 pF. (author)

  19. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Qiao [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2014-09-07

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factor is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.

  20. Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor

    Science.gov (United States)

    2015-03-10

    efficiency of on-chip storage units implemented with superconductor Reciprocal Quantum Logic (RQL) using our RQL VHDL cell library tuned to the MIT...processor prototype implemented with the AIST/ISTEC 10 kA/cm sq. fabrication process. Our team has developed complete logical and physical designs of five...of key components of a 30 GHz 16-bit RSFQ processor prototype implemented with the AIST/ISTEC 10 kA/cm sq. fabrication process. Our team has

  1. Quantum generalisation of feedforward neural networks

    Science.gov (United States)

    Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.

    2017-09-01

    We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.

  2. Modeling quantum noise of phosphors used in medical X-ray imaging detectors

    CERN Document Server

    Kalivas, N; Cavouras, D; Costaridou, L; Nomicos, C D; Panayiotakis, G S

    1999-01-01

    The noise properties of the granular phosphor screens, which are utilized in X-ray imaging detectors, are studied in terms of the quantum noise transfer function (QNTF). An analytical model, taking into account the effect of K-characteristic X-rays reabsorption within the phosphor material and the optical properties of the phosphor, was developed. The optical properties of the phosphor material required by the model were obtained from literature, except for the optical diffusion length (sigma) that was determined by data fitting and was found to be 26 cm sup 2 /g. The deviation between theoretical and experimental data is sigma depended. Specifically for sigma=26 cm sup 2 /g and sigma=25 cm sup 2 /g the respective deviations between experimental and predicted results were 0.698% and -1.597%. However for relative differences in sigma more than 15% from the value 26 cm sup 2 /g, the corresponding deviations exceed by 6 times the value of 0.698%. The model was tested via comparison to experimental results obtain...

  3. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  4. Smart BIT/TSMD Integration

    Science.gov (United States)

    1991-12-01

    integracion . Smart BIT/TSMD provides Rome Laboratory with a laboratory testbed to evaluate and assess the individual characteristics as well as the integration...that assessment. These windows are color-keyed to tie together multiple windows for the same Smart BIT techniques. The display of the neural net- work... Multiple accelerometer icons of any type may therefore be placed (non-overlapping) in the accelerometer Time Line region. The BIT Time Line Editor allows

  5. Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments

    International Nuclear Information System (INIS)

    Zhang Xiu-Xing; Li Fu-Li

    2011-01-01

    The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments. (general)

  6. Quantum Key Distribution Using Four-Qubit W State

    International Nuclear Information System (INIS)

    Cai Haijing; Song Heshan

    2006-01-01

    A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.

  7. Quantum steganography with noisy quantum channels

    International Nuclear Information System (INIS)

    Shaw, Bilal A.; Brun, Todd A.

    2011-01-01

    Steganography is the technique of hiding secret information by embedding it in a seemingly ''innocent'' message. We present protocols for hiding quantum information by disguising it as noise in a codeword of a quantum error-correcting code. The sender (Alice) swaps quantum information into the codeword and applies a random choice of unitary operation, drawing on a secret random key she shares with the receiver (Bob). Using the key, Bob can retrieve the information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We consider two types of protocols: one in which the hidden quantum information is stored locally in the codeword, and another in which it is embedded in the space of error syndromes. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for specific protocols and examples of error channels. We consider both the case where there is no actual noise in the channel (so that all errors in the codeword result from the deliberate actions of Alice), and the case where the channel is noisy and not controlled by Alice and Bob.

  8. Optimal control and quantum simulations in superconducting quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel J.

    2014-10-31

    Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.

  9. High bit depth infrared image compression via low bit depth codecs

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    .264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can...

  10. Design of Low-Complexity and High-Speed Coplanar Four-Bit Ripple Carry Adder in QCA Technology

    Science.gov (United States)

    Balali, Moslem; Rezai, Abdalhossein

    2018-03-01

    Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.

  11. Digital Signal Processing For Low Bit Rate TV Image Codecs

    Science.gov (United States)

    Rao, K. R.

    1987-06-01

    In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.

  12. Bit-coded regular expression parsing

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Henglein, Fritz

    2011-01-01

    the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...

  13. Architectures for a quantum random access memory

    Science.gov (United States)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-11-01

    A random access memory, or RAM, is a device that, when interrogated, returns the content of a memory location in a memory array. A quantum RAM, or qRAM, allows one to access superpositions of memory sites, which may contain either quantum or classical information. RAMs and qRAMs with n -bit addresses can access 2n memory sites. Any design for a RAM or qRAM then requires O(2n) two-bit logic gates. At first sight this requirement might seem to make large scale quantum versions of such devices impractical, due to the difficulty of constructing and operating coherent devices with large numbers of quantum logic gates. Here we analyze two different RAM architectures (the conventional fanout and the “bucket brigade”) and propose some proof-of-principle implementations, which show that, in principle, only O(n) two-qubit physical interactions need take place during each qRAM call. That is, although a qRAM needs O(2n) quantum logic gates, only O(n) need to be activated during a memory call. The resulting decrease in resources could give rise to the construction of large qRAMs that could operate without the need for extensive quantum error correction.

  14. The limits of quantum computers

    International Nuclear Information System (INIS)

    Aaronson, S.

    2008-01-01

    Future computers, which work with quantum bits, would indeed solve some special problems extremely fastly, but for the most problems the would hardly be superior to contemporary computers. This knowledge could manifest a new fundamental physical principle

  15. Cryo-CMOS Circuits and Systems for Quantum Computing Applications

    NARCIS (Netherlands)

    Patra, B; Incandela, R.M.; van Dijk, J.P.G.; Homulle, H.A.R.; Song, Lin; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; Charbon, E.E.E.

    2018-01-01

    A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising

  16. SpecBit, DecayBit and PrecisionBit. GAMBIT modules for computing mass spectra, particle decay rates and precision observables

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Dal, Lars A.; Gonzalo, Tomas E. [University of Oslo, Department of Physics, Oslo (Norway); Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Kvellestad, Anders [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Putze, Antje [Universite de Savoie, CNRS, LAPTh, Annecy-le-Vieux (France); Rogan, Chris [Harvard University, Department of Physics, Cambridge, MA (United States); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Collaboration: The GAMBIT Models Workgroup

    2018-01-15

    We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT. (orig.)

  17. SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables

    Science.gov (United States)

    Athron, Peter; Balázs, Csaba; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Kvellestad, Anders; McKay, James; Putze, Antje; Rogan, Chris; Scott, Pat; Weniger, Christoph; White, Martin

    2018-01-01

    We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.

  18. Quantum analogue computing.

    Science.gov (United States)

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  19. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    Science.gov (United States)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  20. Silicon Quantum Dots with Counted Antimony Donor Implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenakshi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Pacheco, Jose L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Perry, Daniel Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Garratt, E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Ten Eyck, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Wendt, Joel R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Manginell, Ronald P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Luhman, Dwight [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Bielejec, Edward S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Lilly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  1. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  2. Flexible Bit Preservation on a National Basis

    DEFF Research Database (Denmark)

    Jurik, Bolette; Nielsen, Anders Bo; Zierau, Eld

    2012-01-01

    In this paper we present the results from The Danish National Bit Repository project. The project aim was establishment of a system that can offer flexible and sustainable bit preservation solutions to Danish cultural heritage institutions. Here the bit preservation solutions must include support...... of bit safety as well as other requirements like e.g. confidentiality and availability. The Danish National Bit Repository is motivated by the need to investigate and handle bit preservation for digital cultural heritage. Digital preservation relies on the integrity of the bits which digital material...

  3. Key distillation in quantum cryptography

    Science.gov (United States)

    Slutsky, Boris Aron

    1998-11-01

    Quantum cryptography is a technique which permits two parties to communicate over an open channel and establish a shared sequence of bits known only to themselves. This task, provably impossible in classical cryptography, is accomplished by encoding the data on quantum particles and harnessing their unique properties. It is believed that no eavesdropping attack consistent with the laws of quantum theory can compromise the secret data unknowingly to the legitimate users of the channel. Any attempt by a hostile actor to monitor the data carrying particles while in transit reveals itself through transmission errors it must inevitably introduce. Unfortunately, in practice a communication is not free of errors even when no eavesdropping is present. Key distillation is a technique that permits the parties to overcome this difficulty and establish a secret key despite channel defects, under the assumption that every particle is handled independently from other particles by the enemy. In the present work, key distillation is described and its various aspects are studied. A relationship is derived between the average error rate resulting from an eavesdropping attack and the amount of information obtained by the attacker. Formal definition is developed of the security of the final key. The net throughput of secret bits in a quantum cryptosystem employing key distillation is assessed. An overview of quantum cryptographic protocols and related information theoretical results is also given.

  4. Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution

    Science.gov (United States)

    Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua

    2018-01-01

    In a practical continuous-variable quantum key distribution (CVQKD) system, real-time shot-noise measurement (RTSNM) is an essential procedure for preventing the eavesdropper exploiting the practical security loopholes. However, the performance of this procedure itself is not analyzed under the real-world condition. Therefore, we indicate the RTSNM practical performance and investigate its effects on the CVQKD system. In particular, due to the finite-size effect, the shot-noise measurement at the receiver's side may decrease the precision of parameter estimation and consequently result in a tight security bound. To mitigate that, we optimize the block size for RTSNM under the ensemble size limitation to maximize the secure key rate. Moreover, the effect of finite dynamics of amplitude modulator in this scheme is studied and its mitigation method is also proposed. Our work indicates the practical performance of RTSNM and provides the real secret key rate under it.

  5. Temporal Quantum Fluctuations of Current in Nano-structures

    International Nuclear Information System (INIS)

    Saminadayar, Laurent

    1997-01-01

    In a mesoscopic conductor, the transport of current is coherent: the associated wave of the electrons keeps a well-defined phase, so that one can observe interference effects. Transport in this regime has been extensively studied in the last decade, and the main features are well understood. In this thesis, we did focus on another aspect of the quantum transport, the noise. The purpose is to detect the fluctuations of the current around its average value. Our work is divided in three parts: first, we have measured shot noise in a quantum point contact. Shot-noise is due to the granularity of the charge. In a classical conductor, it is directly related to the current. We have shown that in a quantum conductor, such as a quantum point contact, quantum correlation due to the Pauli principle reduce the shot-noise, and that it can even be suppressed under certain conditions. In a second part, we did use the fact that shot-noise is sensitive to the charge of the carriers to detect the fractionally charged quasiparticles of the quantum Hall effect. The existence of the quasiparticles has been predicted since 1983, but no experimental observation has been reported up to now. By inducing a current of quasiparticles between the two edges of a sample in the fractional quantum Hall effect regime, and by measuring the noise associated with this current, we have proved it to be SI=2(e/3)I. This is actually a direct measurement of the charge of the carriers in the fractional quantum Hall regime, which is found to be e*=e/3 as predicted by the theory. Finally, the third part of our work is devoted to a subject closer to the applied physics, namely the measurement of low frequency noise in quantum dots. As quantum systems are more and more studied for potential applications, it is crucial to characterize the low frequency noise ('1/f' noise). We have found that this is due to free charges moving on the substrate around the dot, and that any improvement of the noise of

  6. The bit's the thing : PDC bits are the sparkly new best friend of drillers everywhere

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.

    2008-09-15

    Polycrystalline diamond compact (PDC) cutters were introduced to the oil and gas industry in 1972. The drill bit technology has made significant advances since its introduction, and the PDC bits are now more widely used than conventional roller cone bits. This article discussed new PDC drill bits designed to have rates of penetration (ROP) of over 1000 feet an hour, run distances of up to 22,000 feet, and have cumulative depths of 180,000 feet. A diamond volume management (DVM) system is used to place the diamond where it is needed for specific applications. Designed by Precise Drilling Component Ltd, the bits are accompanied by thermo stable cutters developed to increase the stability of the PDC bits. Precise Drilling Component is now supplying the drilling equipment to major international oil companies. The company has also developed new abrasion-resistant cutters and improved hydraulics that have increased durability and stability, as well as lower drilling costs. The PDC cutters are able to remove rock more efficiently than the grinding and gouging actions of roller bits, which translates into faster penetration rates and longer bit lives. PDC bits are increasingly being used in steam assisted gravity drainage (SAGD) operations as the tungsten carbide matrix used for the PDC bits is able to withstand the abrasive sands encountered in oil sands wellbores. It was concluded that the PDC drill bits will continue to be optimized for use in harsh oil sands conditions. New optimization features and analytical models for improving drilling efficiency were also outlined. 4 figs.

  7. String bit models for superstring

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1995-01-01

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D - 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D - 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring

  8. String bit models for superstring

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, O.; Thorn, C.B.

    1995-12-31

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

  9. Unexpected role of excess noise in spontaneous emission

    International Nuclear Information System (INIS)

    Lamprecht, C.; Ritsch, H.

    2002-01-01

    A single inverted two-level atom is used as a theoretical model for a quantum noise detector to investigate fundamental properties of excess noise in an unstable optical resonator. For a symmetric unstable spherical mirror cavity, we develop an analytic quantum description of the field in terms of a complete set of normalizable biorthogonal quasimodes and adjoint modes. Including the interaction with a single two-level atom leads to a description analogous to the Jaynes-Cummings model with modified coupling constants. One finds a strong position and geometry-dependent atomic decay probability proportional to the square root √(K) of the excess noise factor K at the cavity center. Introducing an additional homogeneous gain one recovers the K-fold emission enhancement that has been predicted before for the linewidth of an unstable cavity laser. We find that excess noise may be viewed as a spatial redistribution of the field quantum noise inside the resonator. Taking a position average of the atomic decay rate over the cavity volume leads to a cancellation of the excess noise enhancement

  10. Quality control in digital mammography: the noise components

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, Fernando [Universidade de Tarapaca, Arica (Chile). Centro de Estudios en Ciencias Radiologicas; Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nogueira, Maria do Socorro, E-mail: mnogue@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Duran, Maria Paz [Clinica Alemana, Santiago (Chile). Dept. de Radiologia; Dantas, Marcelino, E-mail: marcelino@inb.gov.b [Industrias Nucleares do Brasil (INB), Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Ubeda, Carlos, E-mail: cubeda@uta.c [Universidade de Tarapaca, Arica (Chile). Fac. de Ciencias de la Salud

    2011-07-01

    To measure the linearity of the detector and determine the noise components (quantum, electronic and structural noise) that contributed to losing image quality and to determine the signal noise ratio (SNR) and contrast noise ratio (CNR). This paper describes the results of the implementation of a protocol for quality control in digital mammography performed in two direct digital mammography equipment (Hologic, Selenia) in Santiago of Chile. Shows the results of linearity and noise analysis of the images which establishes the main cause of noise in the image of the mammogram to ensure the quality and optimize procedures. The study evaluated two digital mammography's Selenia, Hologic (DR) from Santiago, Chile. We conducted the assessment of linearity of the detector, the signal noise ratio, contrast noise ratio and was determined the contribution of different noise components (quantum, electronics and structural noise). Used different thicknesses used in clinical practice according to the protocol for quality control in digital mammography of Spanish society of medical physics and NHSBSP Equipment Report 0604 Version 3. The Selenia mammography software was used for the analysis of images and Unfors Xi detector for measuring doses. The mammography detector has a linear performance, the CNR and SNR did not comply with the Protocol for the thicknesses of 60 and 70 mm. The main contribution of the noise corresponds to the quantum noise, therefore it is necessary to adjust and optimize the mammography system. (author)

  11. Quality control in digital mammography: the noise components

    International Nuclear Information System (INIS)

    Leyton, Fernando; Nogueira, Maria do Socorro; Duran, Maria Paz; Dantas, Marcelino; Ubeda, Carlos

    2011-01-01

    To measure the linearity of the detector and determine the noise components (quantum, electronic and structural noise) that contributed to losing image quality and to determine the signal noise ratio (SNR) and contrast noise ratio (CNR). This paper describes the results of the implementation of a protocol for quality control in digital mammography performed in two direct digital mammography equipment (Hologic, Selenia) in Santiago of Chile. Shows the results of linearity and noise analysis of the images which establishes the main cause of noise in the image of the mammogram to ensure the quality and optimize procedures. The study evaluated two digital mammography's Selenia, Hologic (DR) from Santiago, Chile. We conducted the assessment of linearity of the detector, the signal noise ratio, contrast noise ratio and was determined the contribution of different noise components (quantum, electronics and structural noise). Used different thicknesses used in clinical practice according to the protocol for quality control in digital mammography of Spanish society of medical physics and NHSBSP Equipment Report 0604 Version 3. The Selenia mammography software was used for the analysis of images and Unfors Xi detector for measuring doses. The mammography detector has a linear performance, the CNR and SNR did not comply with the Protocol for the thicknesses of 60 and 70 mm. The main contribution of the noise corresponds to the quantum noise, therefore it is necessary to adjust and optimize the mammography system. (author)

  12. Measurement accuracy, bit-strings, Manthey's quaternions, and RRQM

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1995-01-01

    The author continues the discussion started last year. By now three potentially divergent research programs have surfaced in ANPA: (1) the Bastin-Kilmister understanding of the combinatorial hierarchy (Clive's open-quotes Menshevikclose quotes position); (2) the author's bit-string open-quotes Theory of Everythingclose quotes (which Clive has dubbed open-quotes Bolshevikclose quotes); (3) Manthey's cycle hierarchy based on co-occurrence and mutual exclusion that Clive helped him map onto quaternions (as an yet unnamed heresy?). Unless a common objective can be found, these three points of view will continue to diverge. The authors suggests the reconstruction of relativistic quantum mechanism (RRQM) as a reasonable, and attainable, goal that might aid convergence rather than divergence

  13. Quantum quincunx in cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Sanders, Barry C.; Bartlett, Stephen D.; Tregenna, Ben; Knight, Peter L.

    2003-01-01

    We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to Galton's quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical studies of quantum walks over orthogonal lattice states, we introduce quantum walks over nonorthogonal lattice states (specifically, coherent states on a circle) to demonstrate that the key features of a quantum walk are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a remarkable decrease in the position noise, or spread, with increasing decoherence

  14. A Noise Reduction Preprocessor for Mobile Voice Communication

    Directory of Open Access Journals (Sweden)

    Rainer Martin

    2004-07-01

    Full Text Available We describe a speech enhancement algorithm which leads to significant quality and intelligibility improvements when used as a preprocessor to a low bit rate speech coder. This algorithm was developed in conjunction with the mixed excitation linear prediction (MELP coder which, by itself, is highly susceptible to environmental noise. The paper presents novel as well as known speech and noise estimation techniques and combines them into a highly effective speech enhancement system. The algorithm is based on short-time spectral amplitude estimation, soft-decision gain modification, tracking of the a priori probability of speech absence, and minimum statistics noise power estimation. Special emphasis is placed on enhancing the performance of the preprocessor in nonstationary noise environments.

  15. Analysis of a sub-shot-noise power recycled Michelson interferometer

    International Nuclear Information System (INIS)

    McKenzie, K; Buchler, B C; Shaddock, D A; Lam, P K; McClelland, D E

    2004-01-01

    The sensitivity of interferometric gravitational wave detectors is ultimately limited by the 'quantum noise' of light. In this paper we compare results from a bench-top experiment and a theoretical model which show how squeezed states of light may be used to modify the quantum noise behaviour of a power recycled Michelson interferometer. We develop a simple theoretical model of the experiment and find close agreement of theoretical and experimental results. We measure quantum noise suppression of 2.3 dB and demonstrate the lock stability of the experiment for long periods

  16. Novel latch for adiabatic quantum-flux-parametron logic

    International Nuclear Information System (INIS)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki; Ortlepp, Thomas

    2014-01-01

    We herein propose the quantum-flux-latch (QFL) as a novel latch for adiabatic quantum-flux-parametron (AQFP) logic. A QFL is very compact and compatible with AQFP logic gates and can be read out in one clock cycle. Simulation results revealed that the QFL operates at 5 GHz with wide parameter margins of more than ±22%. The calculated energy dissipation was only ∼0.1 aJ/bit, which yields a small energy delay product of 20 aJ·ps. We also designed shift registers using QFLs to demonstrate more complex circuits with QFLs. Finally, we experimentally demonstrated correct operations of the QFL and a 1-bit shift register (a D flip-flop)

  17. Anomalous Quantum Correlations of Squeezed Light

    Science.gov (United States)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  18. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise.

    Science.gov (United States)

    Smolin, John A; Gambetta, Jay M; Smith, Graeme

    2012-02-17

    We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

  19. Maxwell's demon, Szilard's engine and quantum measurements

    International Nuclear Information System (INIS)

    Zorek, W.H.

    1986-01-01

    The author proposes and analyzes a quantum version of Szilard's one-molecule engine. In particular, the author recovers, in the quantum context, Szilard's conclusion concerning the free energy ''cost'' of measurements (delta /sub F/ is greater than or equal to k/sub b/T1n2) per bit of information. A cycle of Szilard's engine is illustrated for both the original and quantum versions. The measurement of the location of the molecule is essential in the process of extracting work in both classical and quantum design. Measurements are made by the classical Maxwell's demon

  20. Comment on 'Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair'

    International Nuclear Information System (INIS)

    Qin Sujuan; Gao Fei; Wen Qiaoyan; Guo Fenzhuo

    2010-01-01

    Three protocols of quantum cryptography with a nonmaximally entangled qubit pair [Phys. Rev. A 80, 022323 (2009)] were recently proposed by Shimizu, Tamaki, and Fukasaka. The security of these protocols is based on the quantum-mechanical constraint for a state transformation between nonmaximally entangled states. However, we find that the second protocol is vulnerable under the correlation-elicitation attack. An eavesdropper can obtain the encoded bit M although she has no knowledge about the random bit R.

  1. Bit-string physics a finite and discrete approach to natural philosophy

    CERN Document Server

    Noyes, H Pierre

    2001-01-01

    We could be on the threshold of a scientific revolution. Quantum mechanics is based on unique, finite, and discrete events. General relativity assumes a continuous, curved space-time. Reconciling the two remains the most fundamental unsolved scientific problem left over from the last century. The papers of H Pierre Noyes collected in this volume reflect one attempt to achieve that unification by replacing the continuum with the bit-string events of computer science. Three principles are used: physics can determine whether two quantities are the same or different; measurement can tell something

  2. Method of making imbalanced compensated drill bit

    International Nuclear Information System (INIS)

    Brett, J.F.; Warren, T.M.

    1991-01-01

    This patent describes a method for making a drill bit of the type having a bearing zone on a side portion of a bit body and a cutting zone with cutters mounted on the bit body. It comprises: mounting a preselected number of cutters within the cutting zone on the bit body; generating a model of the geometry of the bit body and cutters mounted thereon; calculating the imbalance force which would occur in the bit body under defined drilling parameters; using the imbalance force and model to calculate the position of at least one additional cutter which when mounted within the cutting zone on the bit body in the calculated position would create a net imbalance force directed towards the bearing zone; and mounting an additional cutter within the cutting zone on the bit body in the position so calculated

  3. Cheat-sensitive commitment of a classical bit coded in a block of m × n round-trip qubits

    Science.gov (United States)

    Shimizu, Kaoru; Fukasaka, Hiroyuki; Tamaki, Kiyoshi; Imoto, Nobuyuki

    2011-08-01

    This paper proposes a quantum protocol for a cheat-sensitive commitment of a classical bit. Alice, the receiver of the bit, can examine dishonest Bob, who changes or postpones his choice. Bob, the sender of the bit, can examine dishonest Alice, who violates concealment. For each round-trip case, Alice sends one of two spin states |S±⟩ by choosing basis S at random from two conjugate bases X and Y. Bob chooses basis C ∈ {X,Y} to perform a measurement and returns a resultant state |C±⟩. Alice then performs a measurement with the other basis R (≠S) and obtains an outcome |R±⟩. In the opening phase, she can discover dishonest Bob, who unveils a wrong basis with a faked spin state, or Bob can discover dishonest Alice, who infers basis C but destroys |C±⟩ by setting R to be identical to S in the commitment phase. If a classical bit is coded in a block of m × n qubit particles, impartial examinations and probabilistic security criteria can be achieved.

  4. Noise-dependent optimal strategies for quantum metrology

    Science.gov (United States)

    Huang, Zixin; Macchiavello, Chiara; Maccone, Lorenzo

    2018-03-01

    For phase estimation using qubits, we show that for some noise channels, the optimal entanglement-assisted strategy depends on the noise level. We note that there is a nontrivial crossover between the parallel-entangled strategy and the ancilla-assisted strategy: in the former the probes are all entangled; in the latter the probes are entangled with a noiseless ancilla but not among themselves. The transition can be explained by the fact that separable states are more robust against noise and therefore are optimal in the high-noise limit, but they are in turn outperformed by ancilla-assisted ones.

  5. Bits extraction for palmprint template protection with Gabor magnitude and multi-bit quantization

    NARCIS (Netherlands)

    Mu, Meiru; Shao, X.; Ruan, Qiuqi; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2013-01-01

    In this paper, we propose a method of fixed-length binary string extraction (denoted by LogGM_DROBA) from low-resolution palmprint image for developing palmprint template protection technology. In order to extract reliable (stable and discriminative) bits, multi-bit equal-probability-interval

  6. Minimum Energy Decentralized Estimation in a Wireless Sensor Network with Correlated Sensor Noises

    Directory of Open Access Journals (Sweden)

    Krasnopeev Alexey

    2005-01-01

    Full Text Available Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC. Sensor observations are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown parameter. We require the decentralized estimator to have a mean-squared error ( that is within a constant factor to that of the best linear unbiased estimator (BLUE. We minimize the total sensor transmitted energy by selecting sensor quantization levels using the knowledge of noise covariance matrix while meeting the target requirement. Computer simulations show that our designs can achieve energy savings up to when compared to the uniform quantization strategy whereby each sensor generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.

  7. Minimum Energy Decentralized Estimation in a Wireless Sensor Network with Correlated Sensor Noises

    Directory of Open Access Journals (Sweden)

    Krasnopeev Alexey

    2005-01-01

    Full Text Available Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC. Sensor observations are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown parameter. We require the decentralized estimator to have a mean-squared error (MSE that is within a constant factor to that of the best linear unbiased estimator (BLUE. We minimize the total sensor transmitted energy by selecting sensor quantization levels using the knowledge of noise covariance matrix while meeting the target MSE requirement. Computer simulations show that our designs can achieve energy savings up to 70 % when compared to the uniform quantization strategy whereby each sensor generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.

  8. Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Sano, K.; Muramatsu, Y.; Yamanashi, Y.; Yoshikawa, N.; Zen, N.; Ohkubo, M.

    2014-01-01

    Highlights: • We proposed single-flux-quantum (SFQ) time-to-digital converters (TDCs) for TOF-MS. • SFQ TDC can measure time intervals between multiple signals with high-resolution. • SFQ TDC can directly convert the time intervals into binary data. • We designed two types of SFQ TDCs to reduce the jitter. • The jitter is reduced to less than 100 ps. - Abstract: We have been developing a high-resolution superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter (TDC). The SFQ TDC can measure time intervals between multiple input signals and directly convert them into binary data. In our previous study, 24-bit SFQ TDC with a 3 × 24-bit First-In First-Out (FIFO) buffer was designed and implemented using the AIST Nb standard process 2 (STP2), whose time resolution and dynamic range are 100 ps and 1.6 ms, respectively. In this study we reduce the jitter of the TDC by using two different approaches: one uses an on-chip clock generator with an on-chip low-pass filter for reducing the noise in the bias current, and the other uses a low-jitter external clock source at room temperature. We confirmed that the jitter is reduced to less than 100 ps in the latter approach

  9. Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sano, K., E-mail: sano-kyosuke-cw@ynu.jp [Department Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Muramatsu, Y.; Yamanashi, Y.; Yoshikawa, N. [Department Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Zen, N.; Ohkubo, M. [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-09-15

    Highlights: • We proposed single-flux-quantum (SFQ) time-to-digital converters (TDCs) for TOF-MS. • SFQ TDC can measure time intervals between multiple signals with high-resolution. • SFQ TDC can directly convert the time intervals into binary data. • We designed two types of SFQ TDCs to reduce the jitter. • The jitter is reduced to less than 100 ps. - Abstract: We have been developing a high-resolution superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter (TDC). The SFQ TDC can measure time intervals between multiple input signals and directly convert them into binary data. In our previous study, 24-bit SFQ TDC with a 3 × 24-bit First-In First-Out (FIFO) buffer was designed and implemented using the AIST Nb standard process 2 (STP2), whose time resolution and dynamic range are 100 ps and 1.6 ms, respectively. In this study we reduce the jitter of the TDC by using two different approaches: one uses an on-chip clock generator with an on-chip low-pass filter for reducing the noise in the bias current, and the other uses a low-jitter external clock source at room temperature. We confirmed that the jitter is reduced to less than 100 ps in the latter approach.

  10. Integrated Quantum Optics: Experiments towards integrated quantum-light sources and quantum-enhanced sensing

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk

    The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum-enhanced se...... is presented and an optimized device design is proposed. The devices have been fabricated and tested optically and preliminary interrogations of the output quantum noise have been performed....

  11. A Novel Multiple-Bits Collision Attack Based on Double Detection with Error-Tolerant Mechanism

    Directory of Open Access Journals (Sweden)

    Ye Yuan

    2018-01-01

    Full Text Available Side-channel collision attacks are more powerful than traditional side-channel attack without knowing the leakage model or establishing the model. Most attack strategies proposed previously need quantities of power traces with high computational complexity and are sensitive to mistakes, which restricts the attack efficiency seriously. In this paper, we propose a multiple-bits side-channel collision attack based on double distance voting detection (DDVD and also an improved version, involving the error-tolerant mechanism, which can find all 120 relations among 16 key bytes when applied to AES (Advanced Encryption Standard algorithm. In addition, we compare our collision detection method called DDVD with the Euclidean distance and the correlation-enhanced collision method under different intensity of noise, which indicates that our detection technique performs better in the circumstances of noise. Furthermore, 4-bit model of our collision detection method is proven to be optimal in theory and in practice. Meanwhile the corresponding practical attack experiments are also performed on a hardware implementation of AES-128 on FPGA board successfully. Results show that our strategy needs less computation time but more traces than LDPC method and the online time for our strategy is about 90% less than CECA and 96% less than BCA with 90% success rate.

  12. Entanglement enhancement through multirail noise reduction for continuous-variable measurement-based quantum-information processing

    Science.gov (United States)

    Su, Yung-Chao; Wu, Shin-Tza

    2017-09-01

    We study theoretically the teleportation of a controlled-phase (cz) gate through measurement-based quantum-information processing for continuous-variable systems. We examine the degree of entanglement in the output modes of the teleported cz-gate for two classes of resource states: the canonical cluster states that are constructed via direct implementations of two-mode squeezing operations and the linear-optical version of cluster states which are built from linear-optical networks of beam splitters and phase shifters. In order to reduce the excess noise arising from finite-squeezed resource states, teleportation through resource states with different multirail designs will be considered and the enhancement of entanglement in the teleported cz gates will be analyzed. For multirail cluster with an arbitrary number of rails, we obtain analytical expressions for the entanglement in the output modes and analyze in detail the results for both classes of resource states. At the same time, we also show that for uniformly squeezed clusters the multirail noise reduction can be optimized when the excess noise is allocated uniformly to the rails. To facilitate the analysis, we develop a trick with manipulations of quadrature operators that can reveal rather efficiently the measurement sequence and corrective operations needed for the measurement-based gate teleportation, which will also be explained in detail.

  13. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    Science.gov (United States)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  14. High bit rate germanium single photon detectors for 1310nm

    Science.gov (United States)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  15. Quantum Illumination-Based Target Detection and Discrimination

    Science.gov (United States)

    2014-06-30

    photodiode with an estimated quantum efficiency of 85% and an ultralow-noise transimpedance amplifier . Compared with to our initial QI measurements...demonstrated high signal-to-noise ratio (SNR) quantum-illumination target detection in a lossy, noisy environment using an optical parametric amplifier ...Research Triangle Park, NC 27709-2211 quantum communication, target detection, entanglement, parametric downconversion, optical parametric amplifiers

  16. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    Science.gov (United States)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  17. Quantum mean-field decoding algorithm for error-correcting codes

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi; Saika, Yohei; Okada, Masato

    2009-01-01

    We numerically examine a quantum version of TAP (Thouless-Anderson-Palmer)-like mean-field algorithm for the problem of error-correcting codes. For a class of the so-called Sourlas error-correcting codes, we check the usefulness to retrieve the original bit-sequence (message) with a finite length. The decoding dynamics is derived explicitly and we evaluate the average-case performance through the bit-error rate (BER).

  18. Quantum property testing

    NARCIS (Netherlands)

    Buhrman, H.; Fortnow, L.; Newman, I.; Röhrig, H.

    2008-01-01

    A language L has a property tester if there exists a probabilistic algorithm that given an input x queries only a small number of bits of x and distinguishes the cases as to whether x is in L and x has large Hamming distance from all y in L. We define a similar notion of quantum property testing and

  19. Some conservative estimates in quantum cryptography

    International Nuclear Information System (INIS)

    Molotkov, S. N.

    2006-01-01

    Relationship is established between the security of the BB84 quantum key distribution protocol and the forward and converse coding theorems for quantum communication channels. The upper bound Q c ∼ 11% on the bit error rate compatible with secure key distribution is determined by solving the transcendental equation H(Q c )=C-bar(ρ)/2, where ρ is the density matrix of the input ensemble, C-bar(ρ) is the classical capacity of a noiseless quantum channel, and H(Q) is the capacity of a classical binary symmetric channel with error rate Q

  20. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  1. A 14-bit 50 MS/s sample-and-hold circuit for pipelined ADC

    International Nuclear Information System (INIS)

    Yue Sen; Zhao Yiqiang; Pang Ruilong; Sheng Yun

    2014-01-01

    A high performance sample-and-hold (S/H) circuit used in a pipelined analog-to-digital converter (ADC) is presented. Capacitor flip-around architecture is used in this S/H circuit with a novel gain-boosted differential folded cascode operational transconductance amplifier. A double-bootstrapped switch is designed to improve the performance of the circuit. The circuit is implemented using a 0.18 μm 1P6M CMOS process. Measurement results show that the effective number of bits is 14.03 bits, the spurious free dynamic range is 94.62 dB, the signal to noise and distortion ratio is 86.28 dB, and the total harmonic distortion is −91:84 dB for a 5 MHz input signal with 50 MS/s sampling rate. A pipeline ADC with the designed S/H circuit has been implemented. (semiconductor integrated circuits)

  2. Continuous variable quantum key distribution with modulated entangled states

    DEFF Research Database (Denmark)

    Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes...... based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...

  3. A holistic approach to bit preservation

    DEFF Research Database (Denmark)

    Zierau, Eld

    2012-01-01

    Purpose: The purpose of this paper is to point out the importance of taking a holistic approach to bit preservation when setting out to find an optimal bit preservation solution for specific digital materials. In the last decade there has been an increasing awareness that bit preservation, which ...

  4. Room-temperature quantum noise limited spectrometry and methods of the same

    Science.gov (United States)

    Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.

    2018-05-15

    According to one embodiment, a heterodyne detection system for detecting light, includes: a first input aperture configured to receive first light from a scene input; a second input aperture configured to receive second light from a local oscillator input; a broadband local oscillator configured to provide the second light to the second input aperture; a dispersive element configured to disperse the first light and the second light; and a final condensing lens coupled to a detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the detector. The detector is configured to sense a frequency difference between the first light and the second light; and the final condensing lens comprises a plasmonic condensing lens. Methods for forming a plasmonic condensing lens to enable room temperature quantum noise limited spectrometry are also disclosed.

  5. Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates

    NARCIS (Netherlands)

    De Groot, P.C.; Ashhab, S.; Lupascu, A.; DiCarlo, L.; Nori, F.; Harmans, C.J.P.M.; Mooij, J.E.

    2012-01-01

    We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we have recently proposed and demonstrated, consists of driving two transversely coupled quantum bits (qubits) with a driving field that is resonant with one

  6. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures.

    Science.gov (United States)

    Zhu, Rui; Lai, Maoli

    2011-11-16

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  7. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures

    Science.gov (United States)

    Zhu, Rui; Lai, Maoli

    2011-11-01

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  8. Source-Independent Quantum Random Number Generation

    Science.gov (United States)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  9. A quantum extended Kalman filter

    International Nuclear Information System (INIS)

    Emzir, Muhammad F; Woolley, Matthew J; Petersen, Ian R

    2017-01-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements. (paper)

  10. A quantum extended Kalman filter

    Science.gov (United States)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2017-06-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.

  11. Dissipation Assisted Quantum Memory with Coupled Spin Systems

    Science.gov (United States)

    Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail

    2009-05-01

    Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.

  12. Quantum information theory with Gaussian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, O.

    2006-04-06

    This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

  13. Quantum information theory with Gaussian systems

    International Nuclear Information System (INIS)

    Krueger, O.

    2006-01-01

    This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

  14. Shor's quantum factoring algorithm on a photonic chip.

    Science.gov (United States)

    Politi, Alberto; Matthews, Jonathan C F; O'Brien, Jeremy L

    2009-09-04

    Shor's quantum factoring algorithm finds the prime factors of a large number exponentially faster than any other known method, a task that lies at the heart of modern information security, particularly on the Internet. This algorithm requires a quantum computer, a device that harnesses the massive parallelism afforded by quantum superposition and entanglement of quantum bits (or qubits). We report the demonstration of a compiled version of Shor's algorithm on an integrated waveguide silica-on-silicon chip that guides four single-photon qubits through the computation to factor 15.

  15. Error characterization and quantum control benchmarking in liquid state NMR using quantum information processing techniques

    Science.gov (United States)

    Laforest, Martin

    Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for

  16. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array

    Science.gov (United States)

    Jingjing, Wang; Zemin, Feng; Rongjin, Xu; Chixiao, Chen; Fan, Ye; Jun, Xu; Junyan, Ren

    2016-05-01

    A low power 9 bit 100 MS/s successive approximation register analog-to-digital converter (SAR ADC) with custom capacitor array is presented. A brand-new 3-D MOM unit capacitor is used as the basic capacitor cell of this capacitor array. The unit capacitor has a capacitance of 1 fF. Besides, the advanced capacitor array structure and switch mode decrease the power consumption a lot. To verify the effectiveness of this low power design, the 9 bit 100 MS/s SAR ADC is implemented in TSMC IP9M 65 nm LP CMOS technology. The measurement results demonstrate that this design achieves an effective number of bits (ENOB) of 7.4 bit, a signal-to-noise plus distortion ratio (SNDR) of 46.40 dB and a spurious-free dynamic range (SFDR) of 62.31 dB at 100 MS/s with 1 MHz input. The SAR ADC core occupies an area of 0.030 mm2 and consumes 0.43 mW under a supply voltage of 1.2 V. The figure of merit (FOM) of the SAR ADC achieves 23.75 fJ/conv. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  17. Quantum dynamics characteristic and the flow of information for an open quantum system under relativistic motion

    Science.gov (United States)

    Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu

    2018-03-01

    In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.

  18. Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics

    Science.gov (United States)

    Garbaczewski, Piotr; Klauder, John R.; Olkiewicz, Robert

    1995-05-01

    The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for the temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schrödinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feynman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard ``free'' case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schrödinger problem, the ``free noise'' can also be extended to any infinitely divisible probability law, as covered by the Lévy-Khintchine formula. Since the relativistic Hamiltonians ||∇|| and √-Δ+m2 -m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schrödinger evolution is analyzed in detail. The relativistic covariance of related wave equations is exploited to demonstrate how the associated stochastic jump processes comply with the principles of special relativity.

  19. Quantum control using genetic algorithms in quantum communication: superdense coding

    International Nuclear Information System (INIS)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-01-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations. (paper)

  20. Signal-to-noise ratio and detective quantum efficiency determination by and alternative use of photographic detectors

    International Nuclear Information System (INIS)

    Burgudzhiev, Z.; Koleva, D.

    1986-01-01

    A known theoretical model of an alternative use of silver-halogenid pnotographic emulsions in which the number of the granulas forming the photographic image is used as a detector output instead of the microdensiometric blackening density is applied to some real photographic emulsions. It is found that by this use the Signal-to-Noise ratio of the photographic detector can be increased to about 5 times while its detective quantum efficiency can reach about 20%, being close to that of some photomultipliers