Quantum mechanics theory and experiment
Beck, Mark
2012-01-01
This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...
Quantum Mechanics and Quantum Field Theory
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
Entropy, Topological Theories and Emergent Quantum Mechanics
Directory of Open Access Journals (Sweden)
D. Cabrera
2017-02-01
Full Text Available The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a ﬁnite dimensional Hilbert space of quantum states. Speciﬁcally, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological ﬁeld theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.
Random Matrix theory approach to Quantum mechanics
Chaitanya, K. V. S. Shiv
2015-01-01
In this paper, we give random matrix theory approach to the quantum mechanics using the quantum Hamilton-Jacobi formalism. We show that the bound state problems in quantum mechanics are analogous to solving Gaussian unitary ensemble of random matrix theory. This study helps in identify the potential appear in the joint probability distribution function in the random matrix theory as a super potential. This approach allows to extend the random matrix theory to the newly discovered exceptional ...
The quantum field theory interpretation of quantum mechanics
de la Torre, Alberto C.
2015-01-01
It is shown that adopting the \\emph{Quantum Field} ---extended entity in space-time build by dynamic appearance propagation and annihilation of virtual particles--- as the primary ontology the astonishing features of quantum mechanics can be rendered intuitive. This interpretation of quantum mechanics follows from the formalism of the most successful theory in physics: quantum field theory.
Quantum Mechanics as a Principle Theory
Bub, J
1999-01-01
I show how quantum mechanics, like the theory of relativity, can be understood as a 'principle theory' in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World (Cambridge: Cambridge University Press, 1999).
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Book Review Bohmian Mechanics and Quantum Theory
Jäger, G
1999-01-01
A review of "Bohmian Mechanics and Quantum Theory: An Appraisal" (James Cushing, Arthur Fine and Sheldon Goldstein, Eds.), an extensive collection of articles on Bohmian mechanics. In addition to broad, critical overviews of Bohmian mechanics, the reviewed collection contains extensions and hybrid versions of the theory, as are several detailed applications to practical situtations.
Holism, Physical Theories and Quantum Mechanics
Seevinck, M P
2004-01-01
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. I propose an operational criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if some determination (measurement) of the global properties in the theory which can be determined by global measurements, can not be implemented by local operations and classical communication. This approach is contrasted with the well known approaches to holism in terms of supervenience. I will argue that the latter have a limited scope and need to be extended using the criterion for holism proposed here in order to satisfactory address the issue for physical theories. I formalize this criterion for classical particle physics and Bohmian mechanics as represented on a Cartesian phase and configuration space, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum ope...
Quantum mechanics II a second course in quantum theory
Landau, Rubin H
2004-01-01
Here is a readable and intuitive quantum mechanics text that covers scattering theory, relativistic quantum mechanics, and field theory. This expanded and updated Second Edition - with five new chapters - emphasizes the concrete and calculable over the abstract and pure, and helps turn students into researchers without diminishing their sense of wonder at physics and nature.As a one-year graduate-level course, Quantum Mechanics II: A Second Course in Quantum Theory leads from quantum basics to basic field theory, and lays the foundation for research-oriented specialty courses. Used selectively, the material can be tailored to create a one-semester course in advanced topics. In either case, it addresses a broad audience of students in the physical sciences, as well as independent readers - whether advanced undergraduates or practicing scientists
Holism, physical theories and quantum mechanics
Seevinck, M. P.
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.
Quantum mechanics of 4-derivative theories
Energy Technology Data Exchange (ETDEWEB)
Salvio, Alberto [Universidad Autonoma de Madrid and Instituto de Fisica Teorica IFT-UAM/CSIC, Departamento de Fisica Teorica, Madrid (Spain); Strumia, Alessandro [Dipartimento di Fisica, Universita di Pisa (Italy); CERN, Theory Division, Geneva (Switzerland); INFN, Pisa (Italy)
2016-04-15
A renormalizable theory of gravity is obtained if the dimension-less 4-derivative kinetic term of the graviton, which classically suffers from negative unbounded energy, admits a sensible quantization. We find that a 4-derivative degree of freedom involves a canonical coordinate with unusual time-inversion parity, and that a correspondingly unusual representation must be employed for the relative quantum operator. The resulting theory has positive energy eigenvalues, normalizable wavefunctions, unitary evolution in a negative-norm configuration space. We present a formalism for quantum mechanics with a generic norm. (orig.)
Quantum mechanics of 4-derivative theories.
Salvio, Alberto; Strumia, Alessandro
2016-01-01
A renormalizable theory of gravity is obtained if the dimension-less 4-derivative kinetic term of the graviton, which classically suffers from negative unbounded energy, admits a sensible quantization. We find that a 4-derivative degree of freedom involves a canonical coordinate with unusual time-inversion parity, and that a correspondingly unusual representation must be employed for the relative quantum operator. The resulting theory has positive energy eigenvalues, normalizable wavefunctions, unitary evolution in a negative-norm configuration space. We present a formalism for quantum mechanics with a generic norm.
A mathematical theory for deterministic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, Gerard ' t [Institute for Theoretical Physics, Utrecht University (Netherlands); Spinoza Institute, Postbox 80.195, 3508 TD Utrecht (Netherlands)
2007-05-15
Classical, i.e. deterministic theories underlying quantum mechanics are considered, and it is shown how an apparent quantum mechanical Hamiltonian can be defined in such theories, being the operator that generates evolution in time. It includes various types of interactions. An explanation must be found for the fact that, in the real world, this Hamiltonian is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.
Bohmian mechanics and quantum theory an appraisal
Goldstein, Sheldon; Cushing, James T
1996-01-01
We are often told that quantum phenomena demand radical revisions of our scientific world view and that no physical theory describing well defined objects, such as particles described by their positions, evolving in a well defined way, let alone deterministically, can account for such phenomena. The great majority of physicists continue to subscribe to this view, despite the fact that just such a deterministic theory, accounting for all of the phe nomena of nonrelativistic quantum mechanics, was proposed by David Bohm more than four decades ago and has arguably been around almost since the inception of quantum mechanics itself. Our purpose in asking colleagues to write the essays for this volume has not been to produce a Festschrift in honor of David Bohm (worthy an undertaking as that would have been) or to gather together a collection of papers simply stating uncritically Bohm's views on quantum mechanics. The central theme around which the essays in this volume are arranged is David Bohm's vers...
Mossbauer neutrinos in quantum mechanics and quantum field theory
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Mossbauer neutrino oscillations. First, we compute the combined rate $\\Gamma$ of Mossbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for $\\Gamma$ is identical to the one obtained previously (Akhmedov et al., arXiv:0802.2513) for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Mossbauer neutrinos and show that the oscillation, coherence and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detecti...
Spinning Particles in Quantum Mechanics and Quantum Field Theory
Corradini, Olindo
2015-01-01
The first part of the lectures, given by O. Corradini, covers introductory material on quantum-mechanical Feynman path integrals, which are here derived and applied to several particle models. We start considering the nonrelativistic bosonic particle, for which we compute the exact path integrals for the case of the free particle and for the harmonic oscillator, and then describe perturbation theory for an arbitrary potential. We then move to relativistic particles, both bosonic and fermionic (spinning) particles. We first investigate them from the classical view-point, studying the symmetries of their actions, then consider their canonical quantization and path integrals, and underline the role these models have in the study of space-time quantum field theories (QFT), by introducing the "worldline" path integral representation of propagators and effective actions. We also describe a special class of spinning particles that constitute a first-quantized approach to higher-spin fields. Since the fifties the qua...
Quartic quantum theory: an extension of the standard quantum mechanics
Zyczkowski, Karol
2008-01-01
We propose an extended quantum theory, in which the number K of parameters necessary to characterize a quantum state behaves as fourth power of the number N of distinguishable states. As the simplex of classical N-point probability distributions can be embedded inside a higher dimensional convex body of mixed quantum states, one can further increase the dimensionality constructing the set of extended quantum states. The embedding proposed corresponds to an assumption that the physical system ...
Quartic quantum theory: an extension of the standard quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Zyczkowski, Karol [Institute of Physics, Jagiellonian University, Krakow (Poland); Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland)], E-mail: karol@tatry.if.uj.edu.pl
2008-09-05
We propose an extended quantum theory, in which the number K of parameters necessary to characterize a quantum state behaves as fourth power of the number N of distinguishable states. As the simplex of classical N-point probability distributions can be embedded inside a higher-dimensional convex body M{sub N}{sup Q} of mixed quantum states, one can further increase the dimensionality constructing the set of extended quantum states. The embedding proposed corresponds to an assumption that the physical system described in the N-dimensional Hilbert space is coupled with an auxiliary subsystem of the same dimensionality. The extended theory works for simple quantum systems and is shown to be a non-trivial generalization of the standard quantum theory for which K = N{sup 2}. Imposing certain restrictions on initial conditions and dynamics allowed in the quartic theory one obtains quadratic theory as a special case. By imposing even stronger constraints one arrives at the classical theory, for which K = N.
From Scalar Field Theories to Supersymmetric Quantum Mechanics
Bazeia, D
2016-01-01
In this work we report a new result that appears when one investigates the route that starts from a scalar field theory and ends on a supersymmetric quantum mechanics. The subject has been studied before in several distinct ways and here we unveil an interesting novelty, showing that the same scalar field model may describe distinct quantum mechanical problems.
Quantum mechanical theory behind "dark energy"?
Colin Johnson, R
2007-01-01
"The mysterious increase in the acceleration of the universe, when intuition says it should be slowing down, is postulated to be caused by dark energy - "dark" because it is undetected. Now a group of scientists in the international collaboration Essence has suggested that a quantum mechanical interpretation of Einstein's proposed "cosmological constant" is the simplest explanation for dark energy. The group measured dark energy to within 10 percent." (1,5 page)
Quantum mechanical generalization of the balistic electron wind theory
Lacina, A.
1980-06-01
The Fiks' quasiclassical theory of the electron wind force is quantum mechanically generalized. Within the framework of this generalization the space dependence of the electron wind force is calculated in the vicinity of an interface between two media. It is found that quantum corrections may be comparable with or even greater than corresponding quasiclassical values.
Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory
Dolce, Donatello
2016-01-01
In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In thi...
Bohmian mechanics. The physics and mathematics of quantum theory
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Fakultaet Mathematik; Teufel, Stefan [Tuebingen Univ. (Germany). Mathematisches Inst.
2009-07-01
Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schroedinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. (orig.)
A modified Lax-Phillips scattering theory for quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Strauss, Y., E-mail: ystrauss@cs.bgu.ac.il [Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva 8410501 (Israel)
2015-07-15
The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.
Neutrino oscillations: Quantum mechanics vs. quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Akhmedov, Evgeny Kh.; Kopp, Joachim
2010-01-01
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
Quantum Mechanics: Harbinger of a Non-Commutative Probability Theory?
Hiley, Basil J.
2014-01-01
In this paper we discuss the relevance of the algebraic approach to quantum phenomena first introduced by von Neumann before he confessed to Birkoff that he no longer believed in Hilbert space. This approach is more general and allows us to see the structure of quantum processes in terms of non-commutative probability theory, a non-Boolean structure of the implicate order which contains Boolean sub-structures which accommodates the explicate classical world. We move away from mechanical `wave...
Functional methods underlying classical mechanics, relativity and quantum theory
Kryukov, Alexey A.
2013-01-01
The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accou...
Generalized Poisson processes in quantum mechanics and field theory
Energy Technology Data Exchange (ETDEWEB)
Combe, P.; Rodriguez, R. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Faculte des Sciences de Luminy); Hoegh-Krohn, R.; Sirugue, M.; Sirugue-Collin, M.
1981-11-01
In section 2 we describe more carefully the generalized Poisson processes, giving a realization of the underlying probability space, and we characterize these processes by their characteristic functionals. Section 3 is devoted to the proof of the previous formula for quantum mechanical systems, with possibly velocity dependent potentials and in section 4 we give an application of the previous theory to some relativistic Bose field models.
Functional methods underlying classical mechanics, relativity and quantum theory
Kryukov, A.
2013-04-01
The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.
Quantum theory is classical mechanics with non-local existence
Hegseth, John
2009-01-01
I propose a new and direct connection between classical mechanics and quantum mechanics where I derive the quantum mechanical propagator from a variational principle. This variational principle is Hamilton's modified principle generalized to allow many paths due to the non-local existence of particles in phase space. This principle allows a physical system to evolve non-locally in phase space while still allowing a representation that uses many classical paths. Whereas a point in phase space represents a classical system's state, I represent the state of a non-local system by a mixed trajectory. This formulation naturally leads to the transactional interpretation for resolving the paradoxes of the measurement problem. This principle also suggests a more flexible framework for formulating theories based on invariant actions and provides a single conceptual framework for discussing many areas of science.
Principles of physics from quantum field theory to classical mechanics
Jun, Ni
2014-01-01
This book starts from a set of common basic principles to establish the formalisms in all areas of fundamental physics, including quantum field theory, quantum mechanics, statistical mechanics, thermodynamics, general relativity, electromagnetic field, and classical mechanics. Instead of the traditional pedagogic way, the author arranges the subjects and formalisms in a logical-sequential way, i.e. all the formulas are derived from the formulas before them. The formalisms are also kept self-contained. Most of the required mathematical tools are also given in the appendices. Although this book covers all the disciplines of fundamental physics, the book is concise and can be treated as an integrated entity. This is consistent with the aphorism that simplicity is beauty, unification is beauty, and thus physics is beauty. The book may be used as an advanced textbook by graduate students. It is also suitable for physicists who wish to have an overview of fundamental physics. Readership: This is an advanced gradua...
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Khrennikov, Andrei
2016-01-01
The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...
Khrennikov, Andrei
2017-02-01
The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations.
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
The quantum coherent mechanism for singlet fission: experiment and theory.
Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y
2013-06-18
The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline
Quantum theory and the flight from realism philosophical responses to quantum mechanics
Norris, Christopher
2002-01-01
This book is a critical introduction to the long-standing debate concerning the conceptual foundations of quantum mechanics and the problems it has posed for physicists and philosophers from Einstein to the present. Quantum theory has been a major infulence on postmodernism, and presents significant problems for realists. Keeping his own realist position in check, Christopher Norris subjects a wide range of key opponents and supporters of realism to a high and equal level of scrutiny. With a characteristic combination of rigour and intellectual generosity, he draws out the merits and weaknesses from opposing arguments. In a sequence of closely argued chapters, Norris examines the premises of orthodox quantum theory, as developed most influentially by Bohr and Heisenberg, and its impact on varous philosophical developments. These include the ideas developed by W.V Quine, Thomas Kuhn, Michael Dummett, Bas van Fraassen, and Hilary Puttnam. In each case, Norris argues, these thinkers have been influenced by the...
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Foundations of quantum mechanics an exploration of the physical meaning of quantum theory
Norsen, Travis
2017-01-01
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is acces sible to students with at least one semester of prior exposure to quantum (or...
Non-exponential decay in Quantum Mechanics and Quantum Field Theory
Giacosa, Francesco
2014-10-01
We describe some salient features as well as some recent developments concerning short-time deviations from the exponential decay law in the context of Quantum Mechanics by using the Lee Hamiltonian approach and Quantum Field Theory by using relativistic Lagrangians. In particular, the case in which two decay channels are present is analyzed: the ratio of decay probability densities, which is a constant equal to the ratio of decay widths in the exponential limit, shows in general sizable fluctuations which persist also at long times.
Non-exponential decay in Quantum Mechanics and Quantum Field Theory
Giacosa, Francesco
2013-01-01
We describe some salient features as well as some recent developments concerning short-time deviations from the exponential decay law in the context of Quantum Mechanics by using the Lee Hamiltonian approach and Quantum Field Theory by using relativistic Lagrangians. In particular, the case in which two decay channels are present is analyzed: the ratio of decay probability densities, which is a constant equal to the ratio of decay widths in the exponential limit, shows in general sizable fluctuations which persist also at long times.
Nielsen, M. A.
2000-01-01
Quantum information theory is the study of the achievable limits of information processing within quantum mechanics. Many different types of information can be accommodated within quantum mechanics, including classical information, coherent quantum information, and entanglement. Exploring the rich variety of capabilities allowed by these types of information is the subject of quantum information theory, and of this Dissertation. In particular, I demonstrate several novel limits to the informa...
Manning, Phillip
2011-01-01
The study of quantum theory allowed twentieth-century scientists to examine the world in a new way, one that was filled with uncertainties and probabilities. Further study also led to the development of lasers, the atomic bomb, and the computer. This exciting new book clearly explains quantum theory and its everyday uses in our world.
Nielsen, M A
1998-01-01
Quantum information theory is the study of the achievable limits of information processing within quantum mechanics. Many different types of information can be accommodated within quantum mechanics, including classical information, coherent quantum information, and entanglement. Exploring the rich variety of capabilities allowed by these types of information is the subject of quantum information theory, and of this Dissertation. In particular, I demonstrate several novel limits to the information processing ability of quantum mechanics. Results of especial interest include: the demonstration of limitations to the class of measurements which may be performed in quantum mechanics; a capacity theorem giving achievable limits to the transmission of classical information through a two-way noiseless quantum channel; resource bounds on distributed quantum computation; a new proof of the quantum noiseless channel coding theorem; an information-theoretic characterization of the conditions under which quantum error-cor...
Quantum mechanics as a measurement theory on biconformal space
Anderson, L B; Anderson, Lara B.; Wheeler, James T.
2004-01-01
Biconformal spaces contain the essential elements of quantum mechanics, making the independent imposition of quantization unnecessary. Based on three postulates characterizing motion and measurement in biconformal geometry, we derive standard quantum mechanics, and show how the need for probability amplitudes arises from the use of a standard of measurement. Additionally, we show that a postulate for unique, classical motion yields Hamiltonian dynamics with no measurable size changes, while a postulate for probabilistic evolution leads to physical dilatations manifested as measurable phase changes. Our results lead to the Feynman path integral formulation, from which follows the Schroedinger equation. We discuss the Heisenberg uncertainty relation and fundamental canonical commutation relations.
Mandl, F.
1992-07-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.
Bates, David Robert
1962-01-01
Quantum Theory: A Treatise in Three Volumes, I: Elements focuses on the principles, methodologies, and approaches involved in quantum theory, including quantum mechanics, linear combinations, collisions, and transitions. The selection first elaborates on the fundamental principles of quantum mechanics, exactly soluble bound state problems, and continuum. Discussions focus on delta function normalization, spherically symmetric potentials, rectangular potential wells, harmonic oscillators, spherically symmetrical potentials, Coulomb potential, axiomatic basis, consequences of first three postula
Relativistic quantum mechanics and introduction to field theory
Energy Technology Data Exchange (ETDEWEB)
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Theory of brain function, quantum mechanics and superstrings
Nanopoulos, Dimitri V.
1995-01-01
Recent developments/efforts to understand aspects of the brain function at the {\\em sub-neural} level are discussed. MicroTubules (MTs) participate in a wide variety of dynamical processes in the cell especially in bioinformation processes such as learning and memory, by possessing a well-known binary error-correcting code with 64 words. In fact, MTs and DNA/RNA are unique cell structures that possess a code system. It seems that the MTs' code system is strongly related to a kind of ``Mental Code" in the following sense. The MTs' periodic paracrystalline structure make them able to support a superposition of coherent quantum states, as it has been recently conjectured by Hameroff and Penrose, representing an external or mental order, for sufficient time needed for efficient quantum computing. Then the quantum superposition collapses spontaneously/dynamically through a new, string-derived mechanism for collapse proposed recently by Ellis, Mavromatos, and myself. At the moment of collapse, organized quantum exo...
Study of Planar Models in Quantum Mechanics, Field theory and Gravity
Kumar, Sarmistha
2014-01-01
Instantons, monopoles and vortices have become paradigms of topological structures in field theory and quantum mechanics, with important applications in particle physics, astrophysics, condensed matter physics and mathematics. We have discussed here the self-dual Chern-Simons theory specially in (2+1) dimensions. we start with a relevant topological quantum mechanical model (such as Landau problem consisting of two basic chiral oscillators) and extrapolate the analysis to (2+1)dimensional vector field theory. Aspects of selfdual symmetry in topologically massive gravity model were also considered using three different approaches. We have demonstrated how duality symmetric (or chiral) actions are already present in the quantum mechanical examples such as in usual harmonic oscillator. Using the chiral oscillator form, we will briefly develop the key concepts of the soldering mechanism. We have also discussed the non commutative property of such quantum models. Models involving higher order derivative of Abelian...
Quantum causality conceptual issues in the causal theory of quantum mechanics
Riggs, Peter J; French, Steven RD
2009-01-01
This is a treatise devoted to the foundations of quantum physics and the role that causality plays in the microscopic world governed by the laws of quantum mechanics. The book is controversial and will engender some lively debate on the various issues raised.
From $\\mathcal{PT}$ -symmetric quantum mechanics to conformal field theory
Indian Academy of Sciences (India)
Patrick Dorey; Clare Dunning; Roberto Tateo
2009-08-01
One of the simplest examples of a $\\mathcal{PT}$-symmetric quantum system is the scaling Yang–Lee model, a quantum field theory with cubic interaction and purely imaginary coupling. We give a historical review of some facts about this model in ≤ 2 dimensions, from its original definition in connection with phase transitions in the Ising model and its relevance to polymer physics, to the role it has played in studies of integrable quantum field theory and $\\mathcal{PT}$-symmetric quantum mechanics. We also discuss some more general results on $\\mathcal{PT}$-symmetric quantum mechanics and the ODE/IM correspondence, and mention applications to magnetic systems and cold atom physics.
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Zeh, H D
1999-01-01
This is a brief reply to Goldstein's article on ``Quantum Theory Without Observers'' in Physics Today. It is pointed out that Bohm's quantum mechanics is successful only because it keeps Schrödinger's (exact) wave mechanics unchanged, while the rest of it is observationally meaningless and solely based on classical prejudice.
Bastin, Ted
2009-07-01
List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H
Group theory in quantum mechanics an introduction to its present usage
Heine, Volker
1960-01-01
Group Theory in Quantum Mechanics: An Introduction to its Present Usage introduces the reader to the three main uses of group theory in quantum mechanics: to label energy levels and the corresponding eigenstates; to discuss qualitatively the splitting of energy levels as one starts from an approximate Hamiltonian and adds correction terms; and to aid in the evaluation of matrix elements of all kinds, and in particular to provide general selection rules for the non-zero ones. The theme is to show how all this is achieved by considering the symmetry properties of the Hamiltonian and the way in w
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
Aidas, Kestutis; Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth
2007-07-01
The theory of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach for gauge-origin independent calculations of the molecular magnetizability using Hartree-Fock or Density Functional Theory is presented. The method is applied to liquid water using configurations generated from classical Molecular Dynamics simulation to calculate the statistical averaged magnetizability. Based on a comparison with experimental data, treating only one water molecule quantum mechanically appears to be insufficient, while a quantum mechanical treatment of also the first solvation shell leads to good agreement between theory and experiment. This indicates that the gas-to-liquid phase shift for the molecular magnetizability is to a large extent of non-electrostatic nature.
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Suppressing Chaos of Warship Power System Based on the Quantum Mechanics Theory
Cong, Xinrong; Li, Longsuo
2014-08-01
Chaos control of marine power system is investigated by adding the Gaussian white noise to the system. The top Lyapunov exponent is computed to detect whether the classical system chaos or not, also the phase portraits are plotted to further verify the obtained results. The classical control of chaos and its quantum counterpart of the marine power system are investigated. The Hamiltonian of the controlled system is given to analyze the quantum counterpart of the classical system, which is based on the quantum mechanics theory.
A quantum-mechanical perspective on linear response theory within polarizable embedding
DEFF Research Database (Denmark)
List, Nanna Holmgaard; Norman, Patrick; Kongsted, Jacob
2017-01-01
We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole...
The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics
Holster, A. T.
2003-10-01
Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe.
Wilde, Mark M
2017-01-01
Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...
Yilmazer, Nusret Duygu; Korth, Martin
2013-07-11
Correctly ranking protein-ligand interactions with respect to overall free energy of binding is a grand challenge for virtual drug design. Here we compare the performance of various quantum chemical approaches for tackling this so-called "scoring" problem. Relying on systematically generated benchmark sets of large protein/ligand model complexes based on the PDBbind database, we show that the performance depends first of all on the general level of theory. Comparing classical molecular mechanics (MM), semiempirical quantum mechanical (SQM), and density functional theory (DFT) based methods, we find that enhanced SQM approaches perform very similar to DFT methods and substantially different from MM potentials.
Quantum mechanics before the big bang in heterotic-M-theory
Zanzi, Andrea
2016-01-01
In this letter we investigate the role played by quantum mechanics before the big-bang in heterotic-M-theory assuming an orbifold compactification of time. As we will see particles are localized around a black hole but only in regions where a constructive quantum interference takes place. We infer that the creation of this interference pattern is interesting for many reasons: (A) it is a mechanism to localize particles on $S^4$ branes; (B) the Casimir potential for the dilaton can be interpreted as a gravitational effective potential for a two-body problem; (C) the quantum interference is a new way to define the branes in heterotic-M-theory. Remarkably, a modified Schroedinger equation is obtained. The stabilization of the branes' position is related to the absence of a cosmological singularity.
Advanced Visual Quantum Mechanics
Thaller, Bernd
2005-01-01
Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [California Institute of Technology, Pasadena, California 91125 (United States)
2013-06-15
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Spin Matrix theory: a quantum mechanical model of the AdS/CFT correspondence
Harmark, Troels; Orselli, Marta
2014-11-01
We introduce a new quantum mechanical theory called Spin Matrix theory (SMT). The theory is interacting with a single coupling constant g and is based on a Hilbert space of harmonic oscillators with a spin index taking values in a Lie (super)algebra representation as well as matrix indices for the adjoint representation of U( N). We show that SMT describes super-Yang-Mills theory (SYM) near zero-temperature critical points in the grand canonical phase diagram. Equivalently, SMT arises from non-relativistic limits of SYM. Even though SMT is a non-relativistic quantum mechanical theory it contains a variety of phases mimicking the AdS/CFT correspondence. Moreover, the g → ∞ limit of SMT can be mapped to the supersymmetric sector of string theory on AdS5 × S 5. We study SU(2) SMT in detail. At large N and low temperatures it is a theory of spin chains that for small g resembles planar gauge theory and for large g a non-relativistic string theory. When raising the temperature a partial deconfinement transition occurs due to finite- N effects. For sufficiently high temperatures the partially deconfined phase has a classical regime. We find a matrix model description of this regime at any coupling g. Setting g = 0 it is a theory of N 2 + 1 harmonic oscillators while for large g it becomes 2 N harmonic oscillators.
Zeh, H. D.
1998-01-01
This is a brief reply to Goldstein's article on ``Quantum Theory Without Observers'' in Physics Today. It is pointed out that Bohm's pilot wave theory is successful only because it keeps Schr\\"odinger's (exact) wave mechanics unchanged, while the rest of it is observationally meaningless and solely based on classical prejudice.
Zeh, H. D.
1999-04-01
This is a brief reply to S. Goldstein's article "Quantum theory without observers" in Physics Today. It is pointed out that Bohm's pilot wave theory is successful only because it keeps Schrödinger's (exact) wave mechanics unchanged, while the rest of it is observationally meaningless and solely based on classical prejudice.
Ahn, Doyeol
2011-01-01
A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...
Wentzel, Gregor
2003-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Spin Matrix Theory: A quantum mechanical model of the AdS/CFT correspondence
Harmark, Troels
2014-01-01
We introduce a new quantum mechanical theory called Spin Matrix theory (SMT). The theory is interacting with a single coupling constant g and is based on a Hilbert space of harmonic oscillators with a spin index taking values in a Lie algebra representation as well as matrix indices for the adjoint representation of U(N). We show that SMT describes N=4 super-Yang-Mills theory (SYM) near zero-temperature critical points in the grand canonical phase diagram. Equivalently, SMT arises from non-relativistic limits of N=4 SYM. Even though SMT is a non-relativistic quantum mechanical theory it contains a variety of phases mimicking the AdS/CFT correspondence. Moreover, the infinite g limit of SMT can be mapped to the supersymmetric sector of string theory on AdS_5 x S^5. We study SU(2) SMT in detail. At large N and low temperatures it is a theory of spin chains that for small g resembles planar gauge theory and for large g a non-relativistic string theory. When raising the temperature a partial deconfinement transit...
Dirac, Paul A M
2001-01-01
The author of this concise, brilliant series of lectures on mathematical methods in quantum mechanics was one of the shining intellects in the field, winning a Nobel prize in 1933 for his pioneering work in the quantum mechanics of the atom. Beyond that, he developed the transformation theory of quantum mechanics (which made it possible to calculate the statistical distribution of certain variables), was one of the major authors of the quantum theory of radiation, codiscovered the Fermi-Dirac statistics, and predicted the existence of the positron.The four lectures in this book were delivered
Facing quantum mechanical reality.
Rohrlich, F
1983-09-23
Two recent precision experiments provide conclusive evidence against any local hidden variables theory and in favor of standard quantum mechanics. Therefore the epistemology and the ontology of quantum mechanics must now be taken more seriously than ever before. The consequences of the standard interpretation of quantum mechanics are summarized in nontechnical language. The implications of the finiteness of Planck's constant (h > 0) for the quantum world are as strange as the implications of the finiteness of the speed of light (c < infinity for space and time in relativity theory. Both lead to realities beyond our common experience that cannot be rejected.
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
Quantum mechanics in chemistry
Schatz, George C
2002-01-01
Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Bogolubov, Nikolaj N; Taneri, Ufuk
2008-01-01
The main fundamental principles characterizing the vacuum field structure are formulated, the modeling of the related vacuum medium and point charged particle dynamics by means of devised field theoretic tools is analyzed. The Maxwell electrodynamic theory is revisited and newly derived from the suggested vacuum field structure principles, the classical special relativity theory relationship between the energy and the corresponding point particle mass is revisited and newly obtained. The Lorentz force expression with respect to arbitrary non-inertial reference frames is revisited and discussed in detail, some new interpretations of relations between the special relativity theory and quantum mechanics are presented. The famous quantum-mechanical Schr\\"{o}dinger type equation for a relativistic point particle in the external potential field within the quasiclassical approximation as the Plank constant $\\hbar \\to 0$ is obtained.
Quantum Mechanics interpreted in Quantum Real Numbers
Corbett, J V; Corbett, John V; Durt, Thomas
2002-01-01
The concept of number is fundamental to the formulation of any physical theory. We give a heuristic motivation for the reformulation of Quantum Mechanics in terms of non-standard real numbers called Quantum Real Numbers. The standard axioms of quantum mechanics are re-interpreted. Our aim is to show that, when formulated in the language of quantum real numbers, the laws of quantum mechanics appear more natural, less counterintuitive than when they are presented in terms of standard numbers.
Quantum Mechanics in the Geometry of Space-Time Elementary Theory
Boudet, Roger
2011-01-01
This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered.The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.
Chang, Lay Nam; Minic, Djordje; Takeuchi, Tatsu
2012-01-01
We construct a discrete quantum mechanics using a vector space over the Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discrete quantum mechanics cannot be reproduced with any hidden variable theory.
Generation of families of spectra in PT-symmetric quantum mechanics and scalar bosonic field theory.
Schmidt, Steffen; Klevansky, S P
2013-04-28
This paper explains the systematics of the generation of families of spectra for the -symmetric quantum-mechanical Hamiltonians H=p(2)+x(2)(ix)(ε), H=p(2)+(x(2))(δ) and H=p(2)-(x(2))(μ). In addition, it contrasts the results obtained with those found for a bosonic scalar field theory, in particular in one dimension, highlighting the similarities to and differences from the quantum-mechanical case. It is shown that the number of families of spectra can be deduced from the number of non-contiguous pairs of Stokes wedges that display PT symmetry. To do so, simple arguments that use the Wentzel-Kramers-Brillouin approximation are used, and these imply that the eigenvalues are real. However, definitive results are in most cases presently only obtainable numerically, and not all eigenvalues in each family may be real. Within the approximations used, it is illustrated that the difference between the quantum-mechanical and the field-theoretical cases lies in the number of accessible regions in which the eigenfunctions decay exponentially. This paper reviews and implements well-known techniques in complex analysis and PT-symmetric quantum theory.
Teaching the Quantal Exposition of the Unified Quantum Theory of Mechanics and Thermodynamics
von Spakovsky, Michael R.
2006-01-01
The author presents his experience in teaching at a graduate level the quantal exposition of a new non-statistically based paradigm of physics and thermodynamics. This paradigm, called the Unified Quantum Theory of Mechanics and Thermodynamics, applies to all systems large or small (including one particle systems) either in a state of thermodynamic (i.e. stable) equilibrium or not in a state of thermodynamic equilibrium. It uses as its primitives inertial mass, force, and time and in...
Friedberg, R; Hohenberg, P C
2014-09-01
Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call 'compatible quantum theory (CQT)', consists of a 'microscopic' part (MIQM), which applies to a closed quantum system of any size, and a 'macroscopic' part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths ('c-truths'), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory
Friedberg, R.; Hohenberg, P. C.
2014-09-01
Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The
Quantum information theory mathematical foundation
Hayashi, Masahito
2017-01-01
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an impro...
Gripaios, Ben
2014-01-01
The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.
Jorgensen, PET
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
Aspects of Perturbation theory in Quantum Mechanics: The BenderWu Mathematica package
Sulejmanpasic, Tin
2016-01-01
We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu, and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use Mathematica package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 seconds, and 250 orders in 1-2h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), ...
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Zagoskin, Alexandre
2015-01-01
Written by Dr Alexandre Zagoskin, who is a Reader at Loughborough University, Quantum Mechanics: A Complete Introduction is designed to give you everything you need to succeed, all in one place. It covers the key areas that students are expected to be confident in, outlining the basics in clear jargon-free English, and then providing added-value features like summaries of key ideas, and even lists of questions you might be asked in your exam. The book uses a structure that is designed to make quantum physics as accessible as possible - by starting with its similarities to Newtonian physics, ra
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
Raedt, Hans De; Binder, K; Ciccotti, G
1996-01-01
The purpose of this set of lectures is to introduce the general concepts that are at the basis of the computer simulation algorithms that are used to study the behavior of condensed matter quantum systems. The emphasis is on the underlying concepts rather than on specific applications. Topics treate
Poles in the $S$-Matrix of Relativistic Chern-Simons Matter theories from Quantum Mechanics
Dandekar, Yogesh; Minwalla, Shiraz
2014-01-01
An all orders formula for the $S$-matrix for 2 $\\rightarrow$ 2 scattering in large N Chern-Simons theory coupled to a fundamental scalar has recently been conjectured. We find a scaling limit of the theory in which the pole in this $S$-matrix is near threshold. We argue that the theory must be well described by non-relativistic quantum mechanics in this limit, and determine the relevant Schroedinger equation. We demonstrate that the $S$-matrix obtained from this Schroedinger equation agrees perfectly with this scaling limit of the relativistic $S$-matrix; in particular the pole structures match exactly. We view this matching as a nontrivial consistency check of the conjectured field theory $S$-matrix.
The quantum mechanics of cosmology.
Hartle, James B.
The following sections are included: * INTRODUCTION * POST-EVERETT QUANTUM MECHANICS * Probability * Probabilities in general * Probabilities in Quantum Mechanics * Decoherent Histories * Fine and Coarse Grained Histories * Decohering Sets of Coarse Grained Histories * No Moment by Moment Definition of Decoherence * Prediction, Retrodiction, and History * Prediction and Retrodiction * The Reconstruction of History * Branches (Illustrated by a Pure ρ) * Sets of Histories with the Same Probabilities * The Origins of Decoherence in Our Universe * On What Does Decoherence Depend? * Two Slit Model * The Caldeira-Leggett Oscillator Model * The Evolution of Reduced Density Matrices * Towards a Classical Domain * The Branch Dependence of Decoherence * Measurement * The Ideal Measurement Model and the Copenhagen Approximation to Quantum Mechanics * Approximate Probabilities Again * Complex Adaptive Systems * Open Questions * GENERALIZED QUANTUM MECHANICS * General Features * Hamiltonian Quantum Mechanics * Sum-Over-Histories Quantum Mechanics for Theories with a Time * Differences and Equivalences between Hamiltonian and Sum-Over-Histories Quantum Mechanics for Theories with a Time * Classical Physics and the Classical Limit of Quantum Mechanics * Generalizations of Hamiltonian Quantum Mechanics * TIME IN QUANTUM MECHANICS * Observables on Spacetime Regions * The Arrow of Time in Quantum Mechanics * Topology in Time * The Generality of Sum Over Histories Quantum Mechanics * THE QUANTUM MECHANICS OF SPACETIME * The Problem of Time * General Covariance and Time in Hamiltonian Quantum Mechanics * The "Marvelous Moment" * A Quantum Mechanics for Spacetime * What we Need * Sum-Over-Histories Quantum Mechanics for Theories Without a Time * Sum-Over-Spacetime-Histories Quantum Mechanics * Extensions and Contractions * The Construction of Sums Over Spacetime Histories * Some Open Questions * PRACTICAL QUANTUM COSMOLOGY * The Semiclassical Regime * The Semiclassical Approximation
Theory of interacting quantum fields
Rebenko, Alexei L
2012-01-01
This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.
Probability in quantum mechanics
Directory of Open Access Journals (Sweden)
J. G. Gilson
1982-01-01
Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.
Quantum Mechanics in the Infrared
Radicevic, Djordje
2016-01-01
This paper presents an algebraic formulation of the renormalization group flow in quantum mechanics on flat target spaces. For any interacting quantum mechanical theory, the fixed point of this flow is a theory of classical probability, not a different effective quantum mechanics. Each energy eigenstate of the UV Hamiltonian flows to a probability distribution whose entropy is a natural diagnostic of quantum ergodicity of the original state. These conclusions are supported by various examples worked out in detail.
Robbin, J. M.
2007-07-01
he hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose Einstein condensates, and laser cooling and trapping of atoms, to name a few. Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses. The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe Bloch formula for charged particles in solids). The problems use mainly non-relativistic quantum mechanics and are organised into three
The Possibility of a New Metaphysics for Quantum Mechanics from Meinong's Theory of Objects
Graffigna, Matías
According to de Ronde it was Bohr's interpretation of Quantum Mechanics (QM) which closed the possibility of understanding physical reality beyond the realm of the actual, so establishing the Orthodox Line of Research. In this sense, it is not the task of any physical theory to look beyond the language and metaphysics supposed by classical physics, in order to account for what QM describes. If one wishes to maintain a realist position (though not nave) regarding physical theories, one seems then to be trapped by an array of concepts that do not allow to understand the main principles involved in the most successful physical theory thus far, mainly: the quantum postulate, the principle of indetermination and the superposition principle. If de Ronde is right in proposing QM can only be completed as a physical theory by the introduction of `new concepts' that admit as real a domain beyond actuality, then a new ontology that goes beyond Aristotelian and Newtonian actualism is needed. It was already in the early 20th century that misunderstood philosopher Alexius von Meinong proposed a Theory of Objects that admits a domain of being beyond existence-actuality. Member of the so called `School of Brentano', Meinong's concerns were oriented to provide an ontology of everything that can be thought of, and at the same time an intentionality theory of how objects are thought of. I wish to argue that in Meinong's theory of objects we find the rudiments of the ontology and the intentionality theory we need to account for QM's basic principles: mainly the possibility of predicating properties of non-entities, or in other words, the possibility of objectively describing a domain of what is, that is different from the domain of actual existence.
Stochastic theory of quantum mechanics and the Schr\\"odinger equation
Godart, Maurice
2016-01-01
We have advocated in a previous paper (Godart M. arXiv: 1206.2917v2[quant-ph] ) a version of the stochastic theory of quantum mechanics. It is indirectly based on a method proposed by Nelson to associate a Markov process with any solution of the Schroedinger equation. The debate began very soon on the question to know if the new theory based on that stochastic procees was equivalent to the orthodox Copenhagen version. We conclude in this paper that the answer is in the negative in agreement with the opinion of several physicists. We show however that the elementary solutions of the Schroedinger equation can be recovered formally from the stochastic theory in a great number of particular cases. We confirm also that this equation is no longer valid when a magnetic field is at work and that it must then give way to some other equation.
A new quantum mechanical theory of evolution of universe and life.
Nigam, M C
1990-10-01
Based upon the principles of ancient science of Life, which admits both consciousness and matter, a new Quantum Mechanical theory of evolution of universe and life is propounded. The theory advocates: Right from the time, the evolution of universe takes place, life also starts evolving energies and ethereal - consciousness (subtler and real) in anti-electrons, as the complimentary partners. The material body acquires electrons for cordoning of atomic nuclei and displaying its manifestation, in the three spatial dimensions in scale of time. The ethereal consciousness acquires anti electrons for gaining necessary energy for superimposing itself over any of the manifested bodies of equivalent electronic energy and deriving the bliss of materialization. The theory is based upon the solid foundation of the ancient science (ethereal consciousness) laid down by the ancient seekers of knowledge like Kapila and Caraka who interpret many of the riddles of modern science on the frontiers of various disciplines of knowledge.
Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics
Shizgal, Bernard
2015-01-01
This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...
Escobar-Ruiz, M. A.; Shuryak, E.; Turbiner, A. V.
2016-05-01
We develop a new semiclassical approach, which starts with the density matrix given by the Euclidean time path integral with fixed coinciding end points, and proceed by identifying classical (minimal Euclidean action) path, to be referred to as a flucton, which passes through this end point. Fluctuations around a flucton path are included, by standard Feynman diagrams, previously developed for instantons. We calculate the Green function and evaluate the one loop determinant both by direct diagonalization of the fluctuation equation and also via the trick with the Green functions. The two-loop corrections are evaluated by explicit Feynman diagrams, and some curious cancellation of logarithmic and polylog terms is observed. The results are fully consistent with large-distance asymptotics obtained in quantum mechanics. Two classic examples—quartic double-well and sine-Gordon potentials—are discussed in detail, while powerlike potential and quartic anharmonic oscillator are discussed in brief. Unlike other semiclassical methods, like WKB, we do not use the Schrödinger equation, and all the steps generalize to multidimensional or quantum fields cases straightforwardly.
General quantum-mechanical setting for field-antifield formalism as a hyper-gauge theory
Batalin, Igor A
2016-01-01
A general quantum-mechanical setting is proposed for the field-antifield formalism as a unique hyper-gauge theory in the field-antifield space. We formulate a Schr\\"{o}dinger-type equation to describe the quantum evolution in a "current time" purely formal in its nature. The corresponding Hamiltonian is defined in the form of a supercommutator of the delta-operator with a hyper-gauge Fermion. The initial wave function is restricted to be annihilated with the delta-operator. The Schr\\"{o}dinger's equation is resolved in a closed form of the path integral, whose action contains the symmetric Weyl's symbol of the Hamiltonian. We take the path integral explicitly in the case of being a hyper-gauge Fermion an arbitrary function rather than an operator.
General quantum-mechanical setting for field-antifield formalism as a hyper-gauge theory
Batalin, Igor A.; Lavrov, Peter M.
2016-09-01
A general quantum-mechanical setting is proposed for the field-antifield formalism as a unique hyper-gauge theory in the field-antifield space. We formulate a Schr\\"odinger-type equation to describe the quantum evolution in a "current time" purely formal in its nature. The corresponding Hamiltonian is defined in the form of a supercommutator of the delta-operator with a hyper-gauge Fermion. The initial wave function is restricted to be annihilated with the delta-operator. The Schr\\"odinger's equation is resolved in a closed form of the path integral, whose action contains the symmetric Weyl's symbol of the Hamiltonian. We take the path integral explicitly in the case of being a hyper-gauge Fermion an arbitrary function rather than an operator.
Group theory in quantum mechanics an introduction to its present usage
Heine, Volker
2007-01-01
Geared toward research students in physics and chemistry, this text introduces the three main uses of group theory in quantum mechanics: (1) to label energy levels and the corresponding eigenstates; (2) to discuss qualitatively the splitting of energy levels, starting from an approximate Hamiltonian and adding correction terms; and (3) to aid in the evaluation of matrix elements of all kinds.""The theme,"" states author Volker Heine, ""is to show how all this is achieved by considering the symmetry properties of the Hamiltonian and the way in which these symmetries are reflected in the wave fu
Quantum paradoxes quantum theory for the perplexed
Aharonov, Yakir
2005-01-01
A Guide through the Mysteries of Quantum Physics!Yakir Aharonov is one of the pioneers in measuring theory, the nature of quantum correlations, superselection rules, and geometric phases and has been awarded numerous scientific honors. The author has contributed monumental concepts to theoretical physics, especially the Aharonov-Bohm effect and the Aharonov-Casher effect. Together with Daniel Rohrlich of the Weizmann Institute, Israel, he has written a pioneering work on the remaining mysteries of quantum mechanics. From the perspective of a preeminent researcher in the fundamental aspects of quantum mechanics, the text combines mathematical rigor with penetrating and concise language
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Effectively Emergent Quantum Mechanics
Exirifard, Qasem
2008-01-01
We consider non minimal coupling between matters and gravity in modified theories of gravity. In contrary to the current common sense, we report that quantum mechanics can effectively emerge when the space-time geometry is sufficiently flat. In other words, quantum mechanics might play no role when and where the space-time geometry is highly curved. We study the first two simple models of Effectively Emergent Quantum Mechanics(EEQM): R-dependent EEQM and G-dependent EEQM where R is the Ricci scalar and G is the Gauss-Bonnet Lagrangian density. We discuss that these EEQM theories might be fine tuned to remain consistent with all the implemented experiments and performed observations. In particular, we observe that G-dependent EEQM softens the problem of quantum gravity.
Quantum mechanics using Fradkin's representation
Shajesh, K V; Milton, Kimball A.
2005-01-01
Fradkin's representation is a general method of attacking problems in quantum field theory, having as its basis the functional approach of Schwinger. As a pedagogical illustration of that method, we explicitly formulate it for quantum mechanics (field theory in one dimension) and apply it to the solution of Schrodinger's equation for the quantum harmonic oscillator.
Banks, Tom
2008-09-01
1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
The quantum theory of measurement
Busch, Paul; Mittelstaedt, Peter
1996-01-01
The amazing accuracy in verifying quantum effects experimentally has recently renewed interest in quantum mechanical measurement theory. In this book the authors give within the Hilbert space formulation of quantum mechanics a systematic exposition of the quantum theory of measurement. Their approach includes the concepts of unsharp objectification and of nonunitary transformations needed for a unifying description of various detailed investigations. The book addresses advanced students and researchers in physics and philosophy of science. In this second edition Chaps. II-IV have been substantially rewritten. In particular, an insolubility theorem for the objectification problem has been formulated in full generality, which includes unsharp object observables and unsharp pointers.
Quantum Field Theory Tools:. a Mechanism of Mass Generation of Gauge Fields
Flores-Baez, F. V.; Godina-Nava, J. J.; Ordaz-Hernandez, G.
We present a simple mechanism for mass generation of gauge fields for the Yang-Mills theory, where two gauge SU(N)-connections are introduced to incorporate the mass term. Variations of these two sets of gauge fields compensate each other under local gauge transformations with the local gauge transformations of the matter fields, preserving gauge invariance. In this way the mass term of gauge fields is introduced without violating the local gauge symmetry of the Lagrangian. Because the Lagrangian has strict local gauge symmetry, the model is a renormalizable quantum model. This model, in the appropriate limit, comes from a class of universal Lagrangians which define a new massive Yang-Mills theories without Higgs bosons.
Velentzas, Athanasios; Halkia, Krystallia; Skordoulis, Constantine
2007-01-01
This work investigates the presence of Thought Experiments (TEs) which refer to the theory of relativity and to quantum mechanics in physics textbooks and in books popularizing physics theories. A further point of investigation is whether TEs--as presented in popular physics books--can be used as an introduction to familiarize secondary school…
Mayato, R; Egusquiza, I
2002-01-01
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the theory. This book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory, such as the parametric (clock) time, tunneling times, decay times, dwell times, delay times, arrival times or jump times. This multiauthored book, written as an introductory guide for the non-initiated as well as a useful source of information for the expert, covers many of the open questions. A brief historical overview is to be found in the introduction. It is followed by 12 chapters devoted to conceptual and theoretical investigations as well as experimental issues in quantum-mechanical time measurements. This unique monograph should attract physicists as well as philosophers of science working in the foundations of quantum physics.
Mouloudakis, K; Kominis, I K
2017-02-01
Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.
Fractional statistics and quantum theory
Khare, Avinash
1997-01-01
This book explains the subtleties of quantum statistical mechanics in lower dimensions and their possible ramifications in quantum theory. The discussion is at a pedagogical level and is addressed to both graduate students and advanced research workers with a reasonable background in quantum and statistical mechanics. The main emphasis will be on explaining new concepts. Topics in the first part of the book includes the flux tube model of anyons, the braid group and quantum and statistical mechanics of noninteracting anyon gas. The second part of the book provides a detailed discussion about f
Time, chance and quantum theory
Sudbery, Anthony
2016-01-01
I propose an understanding of Everett and Wheeler's relative-state interpretation of quantum mechanics, which restores the feature of indeterminism to the theory. This incorporates a theory of probability as truth values in a many-valued logic for future statements, and a contextual theory of truth which gives objective and subjective perspectives equal validity.
Quantum electronics basic theory
Fain, V M; Sanders, J H
1969-01-01
Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
Discovering Quantum Mechanics Once Again
Duck, Ian M
2003-01-01
We expand on a recent development by Hardy, in which quantum mechanics is derived from classical probability theory supplemented by a single new axiom, Hardy's Axiom 5. Our scenario involves a `pretend world' with a `pretend' Heisenberg who seeks to construct a dynamical theory of probabilities and is lead -- seemingly inevitably -- to the Principles of Quantum Mechanics.
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
Algebra of Complex Vectors and Applications in Electromagnetic Theory and Quantum Mechanics
Directory of Open Access Journals (Sweden)
Kundeti Muralidhar
2015-08-01
Full Text Available A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (n — 1-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.
Quantum Transition-State Theory
Hele, Timothy J H
2014-01-01
This dissertation unifies one of the central methods of classical rate calculation, `Transition-State Theory' (TST), with quantum mechanics, thereby deriving a rigorous `Quantum Transition-State Theory' (QTST). The resulting QTST is identical to ring polymer molecular dynamics transition-state theory (RPMD-TST), which was previously considered a heuristic method, and whose results we thereby validate. The key step in deriving a QTST is alignment of the flux and side dividing surfaces in path-integral space to obtain a quantum flux-side time-correlation function with a non-zero $t\\to 0_+$ limit. We then prove that this produces the exact quantum rate in the absence of recrossing by the exact quantum dynamics, fulfilling the requirements of a QTST. Furthermore, strong evidence is presented that this is the only QTST with positive-definite Boltzmann statistics and therefore the pre-eminent method for computation of thermal quantum rates in direct reactions.
Fundamentals of quantum mechanics
House, J E
2017-01-01
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Hawking temperature: an elementary approach based on Newtonian mechanics and quantum theory
Pinochet, Jorge
2016-01-01
In 1974, the British physicist Stephen Hawking discovered that black holes have a characteristic temperature and are therefore capable of emitting radiation. Given the scientific importance of this discovery, there is a profuse literature on the subject. Nevertheless, the available literature ends up being either too simple, which does not convey the true physical significance of the issue, or too technical, which excludes an ample segment of the audience interested in science, such as physics teachers and their students. The present article seeks to remedy this shortcoming. It develops a simple and plausible argument that provides insight into the fundamental aspects of Hawking’s discovery, which leads to an approximate equation for the so-called Hawking temperature. The exposition is mainly intended for physics teachers and their students, and it only requires elementary algebra, as well as basic notions of Newtonian mechanics and quantum theory.
Dolev, S; Kolenda, N
2005-01-01
For more than a century, quantum mechanics has served as a very powerful theory that has expanded physics and technology far beyond their classical limits, yet it has also produced some of the most difficult paradoxes known to the human mind. This book represents the combined efforts of sixteen of today's most eminent theoretical physicists to lay out future directions for quantum physics. The authors include Yakir Aharonov, Anton Zeilinger; the Nobel laureates Anthony Leggett and Geradus 't Hooft; Basil Hiley, Lee Smolin and Henry Stapp. Following a foreword by Roger Penrose, the individual chapters address questions such as quantum non-locality, the measurement problem, quantum insights into relativity, cosmology and thermodynamics, and the possible bearing of quantum phenomena on biology and consciousness.
On quantum-mechanical unified theories of collisional spectral line broadening
Schuller, F.; Nienhuis, G.
1982-01-01
We compare the Baranger-type unified theory of line broadening with a quantum version of the binary-collision approach. For the simple model system of a two-state atom, where both treatments are well-defined, the binary-collision theory results only from the exact formalism after an inversion of an
Quantum mechanics with applications
Beard, David B
2014-01-01
This introductory text emphasizes Feynman's development of path integrals and its application to wave theory for particles. Suitable for undergraduate and graduate students of physics, the well-written, clear, and rigorous text was written by two of the nation's leading authorities on quantum physics. A solid foundation in quantum mechanics and atomic physics is assumed. Early chapters provide background in the mathematical treatment and particular properties of ordinary wave motion that also apply to particle motion. The close relation of quantum theory to physical optics is stressed. Subsequent sections emphasize the physical consequences of a wave theory of material properties, and they offer extensive applications in atomic physics, nuclear physics, solid state physics, and diatomic molecules. Four helpful Appendixes supplement the text.
Quantum Mechanics for Electrical Engineers
Sullivan, Dennis M
2011-01-01
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at
Determinism beneath Quantum Mechanics
Hooft, G
2002-01-01
Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.
Noncommutative quantum mechanics
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
Quantum information theory and quantum statistics
Energy Technology Data Exchange (ETDEWEB)
Petz, D. [Alfred Renyi Institute of Mathematics, Budapest (Hungary)
2008-07-01
Based on lectures given by the author, this book focuses on providing reliable introductory explanations of key concepts of quantum information theory and quantum statistics - rather than on results. The mathematically rigorous presentation is supported by numerous examples and exercises and by an appendix summarizing the relevant aspects of linear analysis. Assuming that the reader is familiar with the content of standard undergraduate courses in quantum mechanics, probability theory, linear algebra and functional analysis, the book addresses graduate students of mathematics and physics as well as theoretical and mathematical physicists. Conceived as a primer to bridge the gap between statistical physics and quantum information, a field to which the author has contributed significantly himself, it emphasizes concepts and thorough discussions of the fundamental notions to prepare the reader for deeper studies, not least through the selection of well chosen exercises. (orig.)
The development of elementary quantum theory
Capellmann, Herbert
2017-01-01
This book traces the evolution of the ideas that eventually resulted in the elementary quantum theory in 1925/26. Further, it discusses the essential differences between the fundamental equations of Quantum Theory derived by Born and Jordan, logically comprising Quantum Mechanics and Quantum Optics, and the traditional view of the development of Quantum Mechanics. Drawing on original publications and letters written by the main protagonists of that time, it shows that Einstein’s contributions from 1905 to 1924 laid the essential foundations for the development of Quantum Theory. Einstein introduced quantization of the radiation field; Born added quantized mechanical behavior. In addition, Born recognized that Quantum Mechanics necessarily required Quantum Optics; his radical concept of truly discontinuous and statistical quantum transitions (“quantum leaps”) was directly based on Einstein’s physical concepts.
Quantum theory analysis on microscopic mechanism of the interaction of laser with cell membrane
Institute of Scientific and Technical Information of China (English)
XU Lin; ZHANG Can-bang; WANG Sheng-yu; LI Ling; WANG Rui-li; ZHOU Ling-yun
2007-01-01
On the basis of liquid crystal model with the electric dipole moment of cell membrane,the microscopic mechanism of the electricity and thermology effects of interaction of laser with cell membrane is researched by electromagnetic, quantum mechanics and quantum statistics. We derive the formulas on the polarization effects and "temperature-rising effect" of laser-cell membrane interaction. The results of the theoretical research can explain some experiments.
Unified Theory of Annihilation-Creation Operators for Solvable (`Discrete') Quantum Mechanics
Odake, Satoru; Sasaki, Ryu
2006-01-01
The annihilation-creation operators $a^{(\\pm)}$ are defined as the positive/negative frequency parts of the exact Heisenberg operator solution for the `sinusoidal coordinate'. Thus $a^{(\\pm)}$ are hermitian conjugate to each other and the relative weights of various terms in them are solely determined by the energy spectrum. This unified method applies to most of the solvable quantum mechanics of single degree of freedom including those belonging to the `discrete' quantum mechanics.
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
Wang, Hao; Yang, Weitao
2016-06-14
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniform external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics' force fields and nontransferable molecule-specific atomic polarizabilities.
Gulden, Tobias
Increased interest in non-Hermitian quantum systems calls for the development of efficient methods to treat these. This interest was sparked by the introduction of PT-symmetry and the study of mathematical mappings which map conventional statistical or quantum mechanics onto non-Hermitian quantum operators. One of the most common methods in quantum mechanics is the semiclassial approximation which requires integration along trajectories that solve classical equations of motion. However in non-Hermitian systems these solutions are rarely attainable. We borrow concepts from algebraic topology to develop methods to avoid solving the equations of motion and avoid straightforward integration altogether. We apply these methods to solve the semiclassical problem for three largely dierent systems and demonstrate their usefulness for Hermitian and non-Hermitian systems alike.
Liu, Peng; Li, Chen; Wang, Dunyou
2017-09-25
The Cl(-) + CH3I → CH3Cl + I(-) reaction in water was studied using combined multi-level quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculations with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 kcal/mol and 19.0 kcal/mol respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.
Description of Unstable Systems in Relativistic Quantum Mechanics in the Lax-Phillips Theory
Horwitz, L P
1998-01-01
We discuss some of the experimental motivation for the need for semigroup decay laws, and the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips $S$-matrix. In the case of discrete (complex) spectrum of the generator of the semigroup, associated with resonances, the decay law is exactly exponential. The states corresponding to these resonances (eigenfunctions of the generator of the semigroup) lie in the Lax-Phillips Hilbert space, and therefore all physical properties of the resonant states can be computed. We show that the parametrized relativistic quantum theory is a natural setting for the realization of the Lax-Phillips theory.
An Introduction to Quantum Field Theory
Peskin, Michael E
1995-01-01
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the sta
Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics
Abramsky, Samson
2009-01-01
Our aim in this paper is to trace some of the surprising and beautiful connections which are beginning to emerge between a number of apparently disparate topics: Knot Theory, Categorical Quantum Mechanics, and Logic and Computation. We shall focus in particular on the following two topics: - The Temperley-Lieb algebra has always hitherto been presented as a quotient of some sort: either algebraically by generators and relations as in Jones' original presentation, or as a diagram algebra modulo planar isotopy as in Kauffman's presentation. We shall use tools from Geometry of Interaction, a dynamical interpretation of proofs under Cut Elimination developed as an off-shoot of Linear Logic, to give a direct description of the Temperley-Lieb category -- a "fully abstract presentation", in Computer Science terminology. This also brings something new to the Geometry of Interaction, since we are led to develop a planar version of it, and to verify that the interpretation of Cut-Elimination (the "Execution Formula", o...
Sindelka, Milan; Moiseyev, Nimrod
2006-04-27
We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in this paper is relevant to a variety of specific applications, such as alignment or orientation of molecules by lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular Hamiltonian suitable for description of the center of mass, rotational, vibrational, and electronic molecular motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an electromagnetic field is introduced. Special cases of the dc/ac-field limits are then discussed separately. Finally, we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated Born-Oppenheimer translational/rotational/vibrational molecular Hamiltonian.
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Hollowood, Timothy J.
2016-07-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists' laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr's quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.
Time Asymmetric Quantum Mechanics
Directory of Open Access Journals (Sweden)
Arno R. Bohm
2011-09-01
Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Classical and Quantum Theory of Photothermal Cavity Cooling of a Mechanical Oscillator
Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan
2010-01-01
Photothermal effects allow very efficient optomechanical coupling between mechanical degrees of freedom and photons. In the context of cavity cooling of a mechanical oscillator, the question of if the quantum ground state of the oscillator can be reached using photothermal back-action has been debated and remains an open question. Here we address this problem by complementary classical and quantum calculations. Both lead us to conclude that: first, the ground-state can indeed be reached using photothermal cavity cooling, second, it can be reached in a regime where the cavity detuning is small allowing a large amount of photons to enter the cavity.
Teaching the Quantal Exposition of the Unified Quantum Theory of Mechanics and Thermodynamics
Directory of Open Access Journals (Sweden)
Michael R. von Spakovsky
2006-09-01
Full Text Available
The author presents his experience in teaching at a graduate level the quantal exposition of a new non-statistically based paradigm of physics and thermodynamics. This paradigm, called the Unified Quantum Theory of Mechanics and Thermodynamics, applies to all systems large or small (including one particle systems either in a state of thermodynamic (i.e. stable equilibrium or not in a state of thermodynamic equilibrium. It uses as its primitives inertial mass, force, and time and introduces the laws of thermodynamics in the most unambiguous and general formulations found in the literature. Starting with a precise definition of system and of state followed by statements and corollaries of the laws of thermodynamics, the thermodynamic formalism is developed without circularity and ambiguity. In this quantal exposition of the new paradigm, a brief review of the formalism of thermodynamics as a general science not limited to stable equilibrium and large (macroscopic systems as well as a very brief summary of the three prevalent formalisms in classical physics are presented followed by a presentation and development of solutions for a number of elementary problems in quantum physics (e.g., a particle in a box, a harmonic oscillator, a rigid rotor, etc.. These solutions and the maximum entropy principle are then used in a constrained optimization to develop the canonical and grand canonical distributions for Fermi-Dirac and Bose-Einstein types of particles, i.e. for fermions and bosons. This is done without the use of analogies between statistical and thermodynamic results and without additional hypotheses such as the ergodic hypothesis of statistical mechanics. These distributions are then employed under various assumptions (i.e. the Boltzmann, constant-potential, point-particle, and continuous eigenvalue-spectrum approximations to derive the corresponding thermodynamic property expressions for perfect, semi-perfect (ideal, and Sommerfeld gases as
Bonitz, Michael
2016-01-01
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Quantum Cosmology: Effective Theory
Bojowald, Martin
2012-01-01
Quantum cosmology has traditionally been studied at the level of symmetry-reduced minisuperspace models, analyzing the behavior of wave functions. However, in the absence of a complete full setting of quantum gravity and detailed knowledge of specific properties of quantum states, it remained difficult to make testable predictions. For quantum cosmology to be part of empirical science, it must allow for a systematic framework in which corrections to well-tested classical equations can be derived, with any ambiguities and ignorance sufficiently parameterized. As in particle and condensed-matter physics, a successful viewpoint is one of effective theories, adapted to specific issues one encounters in quantum cosmology. This review presents such an effective framework of quantum cosmology, taking into account, among other things, space-time structures, covariance, the problem of time and the anomaly issue.
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
Epigenetics: Biology's Quantum Mechanics
Directory of Open Access Journals (Sweden)
Richard A Jorgensen
2011-04-01
Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
Quantum mechanics the theoretical minimum
Susskind, Leonard
2014-01-01
From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Energy Technology Data Exchange (ETDEWEB)
Sadovskii, Michael V.
2013-06-01
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
Sakurai, Jun John
2011-01-01
This best-selling classic provides a graduate-level, non-historical, modern introduction of quantum mechanical concepts. The author, J. J. Sakurai, was a renowned theorist in particle theory. This revision by Jim Napolitano retains the original material and adds topics that extend the text’s usefulness into the 21st century. The introduction of new material, and modification of existing material, appears in a way that better prepares the student for the next course in quantum field theory. You will still find such classic developments as neutron interferometer experiments, Feynman path integrals, correlation measurements, and Bell’s inequality. The style and treatment of topics is now more consistent across chapters.
Stochastic methods in quantum mechanics
Gudder, Stanley P
2005-01-01
Practical developments in such fields as optical coherence, communication engineering, and laser technology have developed from the applications of stochastic methods. This introductory survey offers a broad view of some of the most useful stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering. Starting with a history of quantum mechanics, it examines both the quantum logic approach and the operational approach, with explorations of random fields and quantum field theory.The text assumes a basic knowledge of fun
Quantum mechanics a modern development
Ballentine, Leslie E
2015-01-01
Although there are many textbooks that deal with the formal apparatus of quantum mechanics (QM) and its application to standard problems, none take into account the developments in the foundations of the subject which have taken place in the last few decades. There are specialized treatises on various aspects of the foundations of QM, but none that integrate those topics with the standard material. This book aims to remove that unfortunate dichotomy, which has divorced the practical aspects of the subject from the interpretation and broader implications of the theory. In this edition a new chapter on quantum information is added. As the topic is still in a state of rapid development, a comprehensive treatment is not feasible. The emphasis is on the fundamental principles and some key applications, including quantum cryptography, teleportation of states, and quantum computing. The impact of quantum information theory on the foundations of quantum mechanics is discussed. In addition, there are minor revisions ...
Analytical mechanics for relativity and quantum mechanics
Johns, Oliver Davis
2011-01-01
Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...
Quantum mechanics II advanced topics
Rajasekar, S
2015-01-01
Quantum Mechanics II: Advanced Topics uses more than a decade of research and the authors’ own teaching experience to expound on some of the more advanced topics and current research in quantum mechanics. A follow-up to the authors introductory book Quantum Mechanics I: The Fundamentals, this book begins with a chapter on quantum field theory, and goes on to present basic principles, key features, and applications. It outlines recent quantum technologies and phenomena, and introduces growing topics of interest in quantum mechanics. The authors describe promising applications that include ghost imaging, detection of weak amplitude objects, entangled two-photon microscopy, detection of small displacements, lithography, metrology, and teleportation of optical images. They also present worked-out examples and provide numerous problems at the end of each chapter.
Propensity, Probability, and Quantum Theory
Ballentine, Leslie E.
2016-08-01
Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.
Communication: quantum mechanics without wavefunctions.
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications-theoretical, computational, and interpretational-are discussed.
Introduction to quantum mechanics
Villaseñor, Eduardo J. S.
2008-01-01
The purpose of this contribution is to give a very brief introduction to Quantum Mechanics for an audience of mathematicians. I will follow Segal's approach to Quantum Mechanics paying special attention to algebraic issues. The usual representation of Quantum Mechanics on Hilbert spaces is also discussed.
The physics of quantum mechanics
Binney, James
2014-01-01
The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Reply to 'Comment on 'On the inconsistency of the Bohm-Gadella theory with quantum mechanics''
Energy Technology Data Exchange (ETDEWEB)
Madrid, Rafael de la [Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States)
2007-04-27
In this reply, we show that when we apply standard distribution theory to the Lippmann-Schwinger equation, the resulting spaces of test functions would comply with the Hardy axiom only if classic results of Paley and Wiener, of Gelfand and Shilov, and of the theory of ultradistributions were wrong. Also, we point out several differences between the 'standard method' of constructing rigged Hilbert spaces in quantum mechanics and the method used in time asymmetric quantum theory. (note)
Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.
Nottale, Laurent; Auffray, Charles
2008-05-01
In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential
Energy Technology Data Exchange (ETDEWEB)
Aastrup, Johannes; Moeller Grimstrup, Jesper
2016-10-15
We present quantum holonomy theory, which is a non-perturbative theory of quantum gravity coupled to fermionic degrees of freedom. The theory is based on a C*-algebra that involves holonomy-diffeo-morphisms on a 3-dimensional manifold and which encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Employing a Dirac type operator on the configuration space of Ashtekar connections we obtain a semi-classical state and a kinematical Hilbert space via its GNS construction. We use the Dirac type operator, which provides a metric structure over the space of Ashtekar connections, to define a scalar curvature operator, from which we obtain a candidate for a Hamilton operator. We show that the classical Hamilton constraint of general relativity emerges from this in a semi-classical limit and we then compute the operator constraint algebra. Also, we find states in the kinematical Hilbert space on which the expectation value of the Dirac type operator gives the Dirac Hamiltonian in a semi-classical limit and thus provides a connection to fermionic quantum field theory. Finally, an almost-commutative algebra emerges from the holonomy-diffeomorphism algebra in the same limit. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Experimental quantum field theory
Bell, J S
1977-01-01
Presented here, is, in the opinion of the author, the essential minimum of quantum field theory that should be known to cultivated experimental particle physicists. The word experimental describes not only the audience aimed at but also the level of mathematical rigour aspired to. (0 refs).
Negative entropy and information in quantum mechanics
Cerf, N. J.; Adami, C.
1995-01-01
A framework for a quantum mechanical information theory is introduced that is based entirely on density operators, and gives rise to a unified description of classical correlation and quantum entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional entropies can be negative when considering quantum entangled systems, a fact related to quantum non-separability. The possibility that negative (virtual) information can be carried by entangled particles sug...
Liu, Peng; Zhang, Jingxue; Wang, Dunyou
2017-06-07
A double-inversion mechanism of the F(-) + CH3I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol(-1) at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol(-1) calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol(-1), which agrees very well with the experimental value at 25.2 kcal mol(-1) in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.
Quantum Mechanics of Extended Objects
Sastry, R R
2000-01-01
We propose a quantum mechanics of extended objects that accounts for the finite extent of a particle defined via its Compton wavelength. The Hilbert space representation theory of such a quantum mechanics is presented and this representation is used to demonstrate the quantization of spacetime. The quantum mechanics of extended objects is then applied to two paradigm examples, the fuzzy (extended object) harmonic oscillator and the Yukawa potential. In the second example the phenomenological coupling constant of the $\\omega$ meson which mediates the short range and repulsive nucleon force as well as the repulsive core radius are theoretically predicted.
Energy Technology Data Exchange (ETDEWEB)
Lefrancois, M
2005-12-15
In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)
Crum's Theorem for `Discrete' Quantum Mechanics
Odake, Satoru; Sasaki, Ryu
2009-01-01
In one-dimensional quantum mechanics, or the Sturm-Liouville theory, Crum's theorem describes the relationship between the original and the associated Hamiltonian systems, which are iso-spectral except for the lowest energy state. Its counterpart in `discrete' quantum mechanics is formulated algebraically, elucidating the basic structure of the discrete quantum mechanics, whose Schr\\"odinger equation is a difference equation.
Undergraduate Lecture Notes in Topological Quantum Field Theory
2008-01-01
These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mechanics and basic electromagnetism. Keywords: quantum mechanics/field theory, path integral, Hodge decomposition, Chern-Simons and Yang-Mills gauge theories, conformal field theory
The formalisms of quantum mechanics an introduction
David, Francois
2015-01-01
These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The “standard” formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the other, are the standard tools used in most applications of quantum theory in physics and chemistry. Yet, other mathematical representations of quantum mechanics sometimes allow better comprehension and justification of quantum theory. This text focuses on two of such representations: the algebraic formulation of quantum mechanics and the “quantum logic” approach. Last but not least, some emphasis will also be put on understanding the relation between quantum physics and ...
Quantum Mechanics and Black Holes in Four-Dimensional String Theory
Ellis, Jonathan Richard; Nanopoulos, Dimitri V
1992-01-01
In previous papers we have shown how strings in a two-dimensional target space reconcile quantum mechanics with general relativity, thanks to an infinite set of conserved quantum numbers, ``W-hair'', associated with topological soliton-like states. In this paper we extend these arguments to four dimensions, by considering explicitly the case of string black holes with radial symmetry. The key infinite-dimensional W-symmetry is associated with the $\\frac{SU(1,1)}{U(1)}$ coset structure of the dilaton-graviton sector that is a model-independent feature of spherically symmetric four-dimensional strings. Arguments are also given that the enormous number of string {\\it discrete (topological)} states account for the maintenance of quantum coherence during the (non-thermal) stringy evaporation process, as well as quenching the large Hawking-Bekenstein entropy associated with the black hole. Defining the latter as the measure of the loss of information for an observer at infinity, who - ignoring the higher string qua...
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Quantum mechanical irreversibility and measurement
Grigolini, P
1993-01-01
This book is intended as a tutorial approach to some of the techniques used to deal with quantum dissipation and irreversibility, with special focus on their applications to the theory of measurements. The main purpose is to provide readers without a deep expertise in quantum statistical mechanics with the basic tools to develop a critical judgement on whether the major achievements in this field have to be considered a satisfactory solution of quantum paradox, or rather this ambitious achievement has to be postponed to when a new physics, more general than quantum and classical physics, will
Von Weizsäcker, Carl Friedrich
1988-01-01
1- presentation of quantum theory in present-day physics. 2- a flash-back on the history : from Planck to Copenhagen. 3- the Copenhagen interpretation. 4- reconstrucction of Abstract Quantum Theory. 5- recent interpretations. 6- the philosophy of the mind. 7- concrete quantum theory. 8- the non-locality. This second tape contains the debate following the talk of the professor.
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2007-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental ingredients f
Are Quantum Theory Questions Epistemic?
Directory of Open Access Journals (Sweden)
Viviana Yaccuzzi Polisena
2013-12-01
Full Text Available How to displace-move quantum theory [Ǭ] questions-problems to philosophy? Seeing the collapse of our society’s cultural-intellectual-morals, the philosophy of the 21st century has to contribute to the formation of new principles-formalisms: the big task of the contemporary philosophy ©] is to innovate, to transform the building of the knowledge! Which is the role of the contemporary philosopher? (Noam Chomsky. Building science so that it is more human, out of the scientific mercantilism so that it does not continue transgressing that which is most precious: the thought-life. The ideas that I propose demand a deep cultural-epistemiologicscientific-philosophical-ethical rethinking that goes from quantum entities up to life in society. The starting idea is «the quantum [Ǭ], the paradigm of the contemporary science ©]» (Bernard D’Espagnat. I propose to displace-move questions of the quantum theory [Ǭ]: spin, measure, layering to the field of philosophy (φ to build generic symbols. Can the contemporary episteme model the collapse of the ? For a philosopher, can understanding the importance and the behaviour of the spin bring something new to philosophy ? Can information of the states of the spin be used to observe in a holographic way the pattern energy-information contained in the quantum entities? Is quantum [Ǭ] physics mechanical?
Ulmer, W; Halberg, F; Schwarzkopff, O
2011-01-01
The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: 1. Diffusion of charged molecules in magnetic fields. 2. Quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. The methods of point 2 permit the treatment of molecular processes by circuits with characteristic resonances and 'beat-frequencies', which result from the primarily fast physical processes. As examples the tunneling processes between DNA base pairs (H bonds) and the ATP decomposition are considered.
Hidden-variable models for the spin singlet: I. Non-local theories reproducing quantum mechanics
Di Lorenzo, Antonio
2011-01-01
A non-local hidden variable model reproducing the quantum mechanical probabilities for a spin singlet is presented. The non-locality is concentrated in the distribution of the hidden variables. The model otherwise satisfies both the hypothesis of outcome independence, made in the derivation of Bell inequality, and of compliance with Malus's law, made in the derivation of Leggett inequality. It is shown through the prescription of a protocol that the non-locality can be exploited to send information instantaneously provided that the hidden variables can be measured, even though they cannot be controlled.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Some Issues in Quantum Information Theory
Institute of Scientific and Technical Information of China (English)
Run-Yao Duan; Zheng-Feng Ji; Yuan Feng; Ming-Sheng Ying
2006-01-01
Quantum information theory is a new interdisciplinary research field related to quantum mechanics, computer science, information theory, and applied mathematics. It provides completely new paradigms to do information processing tasks by employing the principles of quantum mechanics. In this review, we first survey some of the significant advances in quantum information theory in the last twenty years. We then focus mainly on two special subjects: discrimination of quantum objects and transformations between entanglements. More specifically, we first discuss discrimination of quantum states and quantum apparatus in both global and local settings. Secondly, we present systematical characterizations and equivalence relations of several interesting entanglement transformation phenomena, namely entanglement catalysis,multiple-copy entanglement transformation, and partial entanglement recovery.
Thermodynamics and the structure of quantum theory
Krumm, Marius; Barrett, Jonathan; Mueller, Markus P
2016-01-01
Despite its enormous empirical success, the formalism of quantum theory still raises fundamental questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it could we reasonably expect to find in some regimes of physics? Results in quantum gravity and general ideas of what a fundamental theory should look like suggest that thermodynamics plays a major role in the foundations of physics. In this paper, we address the question of which parts of quantum theory are already determined by compatibility with thermodynamics, and which aspects may still admit modification. We employ two postulates that any probabilistic theory with reasonable thermodynamic behavior should arguably satisfy. In the framework of generalized probabilistic theories, we show that these postulates already imply important aspects of quantum theory, like self-duality and analogues of projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories beyond quantum mechan...
Basdevant, Jean-Louis
2007-01-01
Beautifully illustrated and engagingly written, Lectures on Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant's style is clear and stimulating, in the manner of a brisk classroom lecture that students can follow with ease and enjoyment. Here is a sample of the book's style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be 'E = mc2'. Nevertheless, the formula 'E=hV' which was written in the same year 1905 by the same Albert Einstein, and which started quantum theory, concerns their daily life considerably more. In fact, of the three watershed years for physics toward the beginning of the 20th century - 1905: the Special Relativity of Einstein, Lorentz and Poincaré; 1915: the General Relativity of Einstein, with its extraordinary reflections on gravitation, space and time; and 1925: the full development of Quantum Mechanics - it is surely the last which has the mos...
Hollowood, Timothy J
2015-01-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950's development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrodinger cat states are the norm rather than curiosities generat...
Quantum theory of acoustoelectric interaction
DEFF Research Database (Denmark)
Mosekilde, Erik
1974-01-01
term, significant in the classical-collision-dominated regime only, the dielectric response function and the acoustic gain factor for a piezoelectrically active sound wave are obtained for the quantum and semiclassical-microscopic regimes. The manner in which the theory can be extended to the collision......Within the self-consistent-field approximation, a quantum-mechanical derivation is given for the dielectric response function of an arbitrarily degenerate free-electron gas which is subjected to a drift field. Neglecting in the equation of motion for the one-electron density operator a convection...
Zitterbewegung in quantum field theory
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Yong; Xiong Cai-Dong
2008-01-01
Traditionally,the zitterbewegung (ZB) of the Dirac electron has just been studied at the level of quantum mechanics.Seeing the fact that an old interest in ZB has recently been rekindled by the investigations on spintronic,graphene,and superconducting systems,etc.,this paper presents a quantum-field-theory investigation on ZB and obtains the con clusion that,the ZB of an electron arises from the influence of virtual electron-positron pairs (or vacuum fluctuations)on the electron.
Bohmian Mechanics and the Quantum Revolution
Goldstein, Sheldon
1995-01-01
This is a review-essay on ``Speakable and Unspeakable in Quantum Mechanics'' by John Bell and ``The Undivided Universe: An Ontological Interpretation of Quantum Mechanics'' by David Bohm and Basil Hiley. The views of these authors concerning the character of quantum theory and quantum reality---and, in particular, their approaches to the issues of nonlocality, the possibility of hidden variables, and the nature of and desiderata for a satisfactory scientific explanation of quantum phenomena--...
Quantum mechanics of materials
Energy Technology Data Exchange (ETDEWEB)
Cohen, M.L.; Heine, V.; Phillips, J.C.
1982-06-01
In the past 25 years, new quantum-mechanical methods have been developed for predicting the configuration of the valence electrons in an atom or an aggregate of many atoms, within the range of energy excitations in which the atoms form interatomic bonds. A theory specifying the configuration of the valence electrons has much to say about the bulk properties of matter that depends on the nature of the interatomic bonds. The new method regards the core electrons and the atomic nucleus as if they constituted a single particle without internal structure. The method is called the pseudopotential theory. A general quantum-mechanical prediction of the properties of a substance in terms of the additive properties of separate chemical bonds is not yet feasible for molecules. However, there is one realm where prediction is now practical: crystalline solids. The regularity of the lattice into which the atoms are organized in a crystal makes it possible to calculate the properties of a macroscopic solid. In other words, many properties of an elemental solid such as lead or a simple binary solid such as gallium arsenide can not be deduced from energy considerations alone. (SC)
Hoehn, Philipp A
2016-01-01
We reconstruct the explicit formalism of qubit quantum theory from elementary rules on an observer's information acquisition. Our approach is purely operational: we consider an observer O interrogating a system S with binary questions and define S's state as O's `catalogue of knowledge' about S; no ontic assumptions are necessary. From the rules we derive the state spaces for N qubits and show that (a) they coincide with the set of density matrices over N qubit Hilbert spaces; (b) states evolve unitarily under the group $\\rm{PSU}(2^N)$ according to the von Neumann evolution equation; and (c) the binary questions by means of which O interrogates the systems corresponds to projective measurements on Pauli operators with outcome probabilities given by the Born rule. Besides offering a novel conceptual perspective on qubit quantum theory, the reconstruction also unravels new structural insights. Namely, we show that, in a quadratic information measure, (d) qubits satisfy informational complementarity inequalities...
A Structurally Relativistic Quantum Theory. Part 1: Foundations
Grgin, Emile
2012-01-01
The apparent impossibility of extending non-relativistic quantum mechanics to a relativistic quantum theory is shown to be due to the insufficient structural richness of the field of complex numbers over which quantum mechanics is built. A new number system with the properties needed to support an inherently relativistic quantum theory is brought to light and investigated to a point sufficient for applications.
Energy Technology Data Exchange (ETDEWEB)
Khots, Boris, E-mail: bkhots@cccglobal.com [Compressor Controls Corp., Des Moines, Iowa (United States); Khots, Dmitriy, E-mail: dkhots@imathconsulting.com [iMath Consulting LLC Omaha, Nebraska (United States)
2014-12-10
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
Quantum mechanics for pedestrians
Pade, Jochen
2014-01-01
This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in detail current issues such as interaction-free quantum measurements, neutrino oscillations, various topics in the field of quantum information as well as fundamental problems and epistemological questions, such as the measurement problem, entanglement, Bell's inequality, decoherence, and the realism debate. A chapter on current interpretations of quantum mechanics concludes the book. To develop quickly and clearly the main principles of quantum mechanics and its mathematical formulation, there is a systematic change between wave mechanics and algebraic representation in the first chapters. The required mathematical tools are introduced step by step. Moreover, the appendix coll...
Quantum theory of human communication
Slowikowski, Wojtek; Nielsen, Erik B.
2004-01-01
We use notions and techniques of Quantum Field Theory to formulate and investigate basic concepts and mechanisms of human communication. We start with attitudes which correspond to photons frequencies, then we introduce states-of-mind which correspond to wave functions. Finally, by way of the second quantization, we come to states-of-opinions which correspond to states of quantized radiation fields. In the present paper we shall only investigate superpositions of pairs of coherent states (e.g...
Quantum cellular automata and free quantum field theory
D'Ariano, Giacomo Mauro; Perinotti, Paolo
2017-02-01
In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.
Operator methods in quantum mechanics
Schechter, Martin
2003-01-01
This advanced undergraduate and graduate-level text introduces the power of operator theory as a tool in the study of quantum mechanics, assuming only a working knowledge of advanced calculus and no background in physics. The author presents a few simple postulates describing quantum theory, gradually introducing the mathematical techniques that help answer questions important to the physical theory; in this way, readers see clearly the purpose of the method and understand the accomplishment. The entire book is devoted to the study of a single particle moving along a straight line. By posing q
Aastrup, Johannes
2015-01-01
We present quantum holonomy theory, which is a non-perturbative theory of quantum gravity coupled to fermionic degrees of freedom. The theory is based on a C*-algebra that involves holonomy-diffeomorphisms on a 3-dimensional manifold and which encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Employing a Dirac type operator on the configuration space of Ashtekar connections we obtain a semi-classical state and a kinematical Hilbert space via its GNS construction. We use the Dirac type operator, which provides a metric structure over the space of Ashtekar connections, to define a scalar curvature operator, from which we obtain a candidate for a Hamilton operator. We show that the classical Hamilton constraint of general relativity emerges from this in a semi-classical limit and we then compute the operator constraint algebra. Also, we find states in the kinematical Hilbert space on which the expectation value of the Dirac type operator gives the...
Hilbert space and quantum mechanics
Gallone, Franco
2015-01-01
The topics of this book are the mathematical foundations of non-relativistic quantum mechanics and the mathematical theory they require. The main characteristic of the book is that the mathematics is developed assuming familiarity with elementary analysis only. Moreover, all the proofs are carried out in detail. These features make the book easily accessible to readers with only the mathematical training offered by undergraduate education in mathematics or in physics, and also ideal for individual study. The principles of quantum mechanics are discussed with complete mathematical accuracy and an effort is made to always trace them back to the experimental reality that lies at their root. The treatment of quantum mechanics is axiomatic, with definitions followed by propositions proved in a mathematical fashion. No previous knowledge of quantum mechanics is required. This book is designed so that parts of it can be easily used for various courses in mathematics and mathematical physics, as suggested in the Pref...
Quantum mechanical theory of collisional ionization in the presence of intense laser radiation
Bellum, J. C.; George, T. F.
1978-01-01
The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.
Cini, M
2007-01-01
This book provides material for courses in theoretical physics for undergraduate and graduate students specializing in condensed matter, including experimentalists who want a thorough theoretical background; the advanced part should be of interest to research workers too. A good first course in quantum mechanics is assumed. Here a variety of many-body phenomena in condensed matter are discussed, with special attention paid to the understanding of strong correlation effects. This requires a variety of theoretical tools (diagram expansions, groups, recursion methods and more). The text, which arose naturally from teaching, is eminently readable and the mathematical treatments are explained in enough detail to be followed easily. Proofs of all the relevant theorems are provided, but the main emphasis is always on the physical meaning or applicability of the results. Many examples are provided for illustration and also serve as worked problems.
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Holography and Quantum Mechanics
Wang, X J
2002-01-01
It is illustrated that quantum mechanics can be interpreted as holographic projection of higher dimension classical gravity. In this explanation every quantum path in D-dimension is dual to a classical path of (D+1)-dimension gravity under definite holographic projection. I consider 2-dimension non-relativitic free particle and harmonic oscillator as two examples, and find their gravity dual. I conjecture that every quantum mechanics system has their dual gravity description.
Elementary Nonrelativistic Quantum Mechanics
Rosu, H C
2000-01-01
This is a graduate course on elementary quantum mechanics written for the benefit of undergraduate and graduate students. It is the English version of physics/0003106, which I did at the suggestion of several students from different countries. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Gol'dman, I I
2010-01-01
A comprehensive collection of problems of varying degrees of difficulty in nonrelativistic quantum mechanics, with answers and completely worked-out solutions. Among the topics: one-dimensional motion, transmission through a potential barrier, commutation relations, angular momentum and spin, and motion of a particle in a magnetic field. An ideal adjunct to any textbook in quantum mechanics, useful in courses in atomic and nuclear physics, mathematical methods in physics, quantum statistics and applied differential equations. 1961 edition.
Berkovitz, Joseph
Bruno de Finetti is one of the founding fathers of the subjectivist school of probability, where probabilities are interpreted as rational degrees of belief. His work on the relation between the theorems of probability and rationality is among the corner stones of modern subjective probability theory. De Finetti maintained that rationality requires that degrees of belief be coherent, and he argued that the whole of probability theory could be derived from these coherence conditions. De Finetti's interpretation of probability has been highly influential in science. This paper focuses on the application of this interpretation to quantum mechanics. We argue that de Finetti held that the coherence conditions of degrees of belief in events depend on their verifiability. Accordingly, the standard coherence conditions of degrees of belief that are familiar from the literature on subjective probability only apply to degrees of belief in events which could (in principle) be jointly verified; and the coherence conditions of degrees of belief in events that cannot be jointly verified are weaker. While the most obvious explanation of de Finetti's verificationism is the influence of positivism, we argue that it could be motivated by the radical subjectivist and instrumental nature of probability in his interpretation; for as it turns out, in this interpretation it is difficult to make sense of the idea of coherent degrees of belief in, and accordingly probabilities of unverifiable events. We then consider the application of this interpretation to quantum mechanics, concentrating on the Einstein-Podolsky-Rosen experiment and Bell's theorem.
Goldman, Iosif Ilich; Geilikman, B T
2006-01-01
This challenging book contains a comprehensive collection of problems in nonrelativistic quantum mechanics of varying degrees of difficulty. It features answers and completely worked-out solutions to each problem. Geared toward advanced undergraduates and graduate students, it provides an ideal adjunct to any textbook in quantum mechanics.
Molecular quantum dynamics from theory to applications
Gatti, Fabien
2014-01-01
Emphasizing fundamental educational concepts, this book offers an accessible introduction that covers eigenstates, wave packets, quantum mechanical resonances and more. Examples show that high-level experiments and theory must work closely together.
Gurau, R; Rivasseau, V
2008-01-01
We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.
Institute of Scientific and Technical Information of China (English)
Xiao-Feng Pang
2008-01-01
The properties and rules of motion of superconductive electrons in steady and time-dependent non-equilibrium states of superconductors are studied by using the Ginzberg-Landau (GL) equations and nonlinear quantum theory. In the absence of external fields, the superconductive electrons move in the solitons with certain energy and velocity in a uniform system, The superconductive electron is still a soliton under action of an electromagnetic field, but its amplitude, phase and shape are changed. Thus we conclude that super- conductivity is a result of motion of soliton of superconductive electrons. Since soliton has the feature of motion for retaining its energy and form, thus a permanent current occurs in superconductor. From these solutions of GL equations under action of an electromagnetic field, we gain the structure of vortex lines-magnetic flux lines observed experimentally in type-II superconductors. In the time-dependent non- equilibrium states of superconductor, the motions of superconductive electrons exhibit still the soliton features, but the shape and amplitude have changed. In an invariant electric-field, it moves in a constant acceleration. In the medium with dissipation, the superconductive electron behaves still like a soliton, although its form, amplitude, and velocity are altered. Thus we have to convince that the superconductive electron is essentially a soliton in both non-equilibrium and equilibrium superconductors.
Directory of Open Access Journals (Sweden)
Tadashi Okazaki
2015-01-01
Full Text Available We consider the multiple M2-branes wrapped on a compact Riemann surface and study the arising quantum mechanics by taking the limit where the size of the Riemann surface goes to zero. The IR quantum mechanical models resulting from the BLG-model and the ABJM-model compactified on a torus are N=16 and N=12 superconformal gauged quantum mechanics. After integrating out the auxiliary gauge fields we find OSp(16|2 and SU(1,1|6 quantum mechanics from the reduced systems. The curved Riemann surface is taken as a holomorphic curve in a Calabi–Yau space to preserve supersymmetry and we present a prescription of the topological twisting. We find the N=8 superconformal gauged quantum mechanics that may describe the motion of two wrapped M2-branes in a K3 surface.
Quantum mechanics for applied physics and engineering
Fromhold, Albert T
2011-01-01
This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch
The Linguistic Interpretation of Quantum Mechanics
Ishikawa, Shiro
2012-01-01
About twenty years ago, we proposed the mathematical formulation of Heisenberg's uncertainty principle, and further, we concluded that Heisenberg's uncertainty principle and EPR-paradox are not contradictory. This is true, however we now think that we should have argued about it under a certain firm interpretation of quantum mechanics. Recently we proposed the linguistic quantum interpretation (called quantum and classical measurement theory), which was characterized as a kind of metaphysical and linguistic turn of the Copenhagen interpretation. This turn from physics to language does not only extend quantum theory to classical systems but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics, in other words, quantum philosophy). In fact, we can consider that traditional philosophies have progressed toward quantum philosophy. In this paper, we first review the linguistic quantum interpretation, and further, clarify the relation between EPR-paradox and Heisenberg's uncertainty...
Quantum Information Theory - an Invitation
Werner, R. F.
2001-01-01
We give a non-technical introduction of the basic concepts of Quantum Information Theory along the distinction between possible and impossible machines. We then proceed to describe the mathematical framework of Quantum Information Theory. The capacities of a quantum channel for classical and for quantum information are defined in a unified scheme, and a mathematical characterization of all teleportation and dense coding schemes is given.
The Lagrangian in Quantum Mechanics
Dirac, P. A. M.
Quantum mechanics was built up on a foundation of analogy with the Hamiltonian theory of classical mechanics. This is because the classical notion of canonical coordinates and momenta was found to be one with a very simple quantum analogue, as a result of which the whole of the classical Hamiltonian theory, which is just a structure built up on this notion, could be taken over in all its details into quantum mechanics. Now there is an alternative formulation for classical dynamics, provided by the Lagrangian. This requires one to work in terms of coordinates and velocities instead of coordinates and momenta. The two formulations are, of course, closely related, but there are reasons for believing that the Lagrangian one is the more fundamental. In the first place the Lagrangian method allows one to collect together all the equations of motion and express them as the stationary property of a certain action function. (This action function is just the time-integral of the Lagrangian.) There is no corresponding action principle in terms of the coordinates and momenta of the Hamiltonian theory. Secondly the Lagrangian method can easily be expressed relativistically, on account of the action function being a relativistic invariant; while the Hamiltonian method is essentially non-relativistic in form, since it marks out a particular time variable as the canonical conjugate of the Hamiltonian function. For these reasons it would seem desirable to take up the question of what corresponds in the quantum theory to the Lagrangian method of the classical theory. A little consideration shows, however, that one cannot expect to be able to take over the classical Lagrangian equations in any very direct way. These equations involve partial derivatives of the Lagrangian with respect to the coordinates and velocities and no meaning can be given to such derivatives in quantum mechanics. The only differentiation process that can be carried out with respect to the dynamical variables of
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.
Mishima, K; Yamashita, K
2009-01-21
We have constructed free-time and fixed end-point optimal control theory for quantum systems and applied it to entanglement generation between rotational modes of two polar molecules coupled by dipole-dipole interaction. The motivation of the present work is to solve optimal control problems more flexibly by extending the popular fixed time and fixed end-point optimal control theory for quantum systems to free-time and fixed end-point optimal control theory. As a demonstration, the theory that we have constructed in this paper will be applied to entanglement generation in rotational modes of NaCl-NaBr polar molecular systems that are sensitive to the strength of entangling interactions. Our method will significantly be useful for the quantum control of nonlocal interaction such as entangling interaction, which depends crucially on the strength of the interaction or the distance between the two molecules, and other general quantum dynamics, chemical reactions, and so on.
Quantum Mechanics, is it magic
Ferrero, M; Sánchez-Gómez, J L
2008-01-01
We show that quantum mechanics is the first theory in human history that violates the basic a priori principles that have shaped human thought since immemorial times. Therefore although it is more contrary to magic than any body of knowledge could be, what could be called its magic precisely resides in this violation.
Memetics of Quantum Mechanical Interpretations
Chakrabarty, I
2006-01-01
Memes, self reproducing mental information and cognitive structures analogous to genes in biology, can be seen as the basis for an explanatory model of cultural and psychological behavior. Their properties and effects are evolutionary conditioned and ultimately seeks to promote their replication. To survive in a context the memes must meet certain conditions. We here propose a Memetics of Quantum Mechanical Interpretations, which have eluded mankind for a century now. We also see how the ideas of memes best fit the way scientific theories in general and Quantum Theory in particular propagates in the scientific brains and finds its expressions in the scientific community and effects the way we perceive Nature.
Quantum theory informational foundations and foils
Spekkens, Robert
2016-01-01
This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information. Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quant...
The quantum mechanics of materials
Cohen, M. L.; Heine, V.; Phillips, J. C.
1982-06-01
The prediction of the properties of materials from fundamental principles, i.e., quantum mechanics, by the use of pseudopotential theory is discussed. Following a review of previous difficulties encountered in the application of quantum theory to complex aggregates of matter, and the failures of early theories to resolve differences corresponding to important phase transitions in solids, the idea first proposed by Herring concerning the energy cancellation of valence electrons and the possibility of neglecting core electron effects is examined as the basis of pseudopotential theory. The application of the electron pseudopotential, representing the scattering strength of one atomic core with respect to a single Fourier component of one valence-electron wave, to the calculation of the scattering of an electron wave in crystalline solids is examined, and the derivation of structural properties from the pseudopotentials is discussed. Recent advances in pseudopotential theory explaining the properties of surface and interface structures, and the total energy of semiconducting materials are indicated.
Free Quantum Field Theory from Quantum Cellular Automata
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).
Principles of Quantum Mechanics
Landé, Alfred
2013-10-01
ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Quantum mechanics for mathematicians
Takhtajan, Leon A
2008-01-01
This book provides a comprehensive treatment of quantum mechanics from a mathematics perspective and is accessible to mathematicians starting with second-year graduate students. It addition to traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin, and it introduces the reader to functional methods in quantum mechanics. This includes the Feynman path integral approach to quantum mechanics, integration in functional spaces, the relation between Feynman and Wiener integrals, Gaussian integration and regularized determinants of differential operators, fermion systems and integration over anticommuting (Grassmann) variables, supersymmetry and localization in loop spaces, and supersymmetric derivation of the Atiyah-Singer formula for the index of the Dirac operator. Prior to this book, mathematicians could find these topics only in physics textbooks ...
Quantum Chaos and Statistical Mechanics
Srednicki, Mark
1994-01-01
We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.
Emergent quantum mechanics and emergent symmetries
Hooft, G. 't
2007-01-01
Quantum mechanics is ‘emergent’ if a statistical treatment of large scale phenomena in a locally deterministic theory requires the use of quantum operators. These quantum operators may allow for symmetry transformations that are not present in the underlying deterministic system. Such
Quantum mechanical Carnot engine
Bender, C M; Meister, B K
2000-01-01
A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.
Shen, Y.; Shen, Z. J.; Shen, G. T.; Yang, B. C.
1996-01-01
By the measurement theory of quantum mechanics and the method of Fourier transform,we proved that the wave function psi(x,y,z,t)= (8/((2(pi)(2L(exp (1/2)))(exp 3))(Phi(L,t,x)Phi(L,t,y)Phi(L,t,z)). According to the theory that the velocity of any particle can not be larger than the velocity of light and the Born interpretation, when absolute value of delta greater than (ct+ L),Phi(L,t,delta) = 0. But according to the calculation, we proved that for some delta, even if absolute value of delta is greater than (ct+L), Phi(L,t,delta) is not equal to 0.
Quantum mechanics foundations and applications
Swanson, Donald Gary
2006-01-01
Progressing from the fundamentals of quantum mechanics (QM) to more complicated topics, Quantum Mechanics: Foundations and Applications provides advanced undergraduate and graduate students with a comprehensive examination of many applications that pertain to modern physics and engineering.Based on courses taught by the author, this textbook begins with an introductory chapter that reviews historical landmarks, discusses classical theory, and establishes a set of postulates. The next chapter demonstrates how to find the appropriate wave functions for a variety of physical systems in one dimens
Directory of Open Access Journals (Sweden)
Asif Mahmood
2015-07-01
Full Text Available This quantum mechanical study was performed to assess the accuracy of level of theory for the prediction of UV/Visible spectra of aminoazobenzene dyes. Four solvation models (PCM, I-PCM, SCI-PCM and IEF-PCM and four functionals (CAM-B3LYP, LC-BLYP, BHandHLYP and PBE0 were tested. Double and triple zeta basis sets with and without polarization and diffuse functions were used. All the solvation models showed the same level of error in the prediction of UV/Visible spectra. Among the tested functionals, PBE0 showed a close agreement to experimental values. Among, different basis sets, 6-311++G showed best results.
Son, Hyeonho; Choi, Honggu; Oh, Kyunghwan
2017-01-01
In this paper, a free-space light propagation analysis between 3-dimensional (3-D) volumetric spaces is proposed. In contrast to conventional scalar diffraction, the proposed theory is based on quantum mechanical scattering providing a general volumetric analysis for the free-space light propagation. Assuming a plane wave light incidence, we obtained a new analytic formula for 3-D volumetric convolution, which provided a transfer function in a closed form used for caculating the electric fields at the observation points. The proposed method was consistent with the conventional numerical methods for a 2-dimensional aperture and can be further applied to exact calculation of diffraction fields from 3-D surfaces, providing a compact reconstruction algorithm for 3-D images in a computer generated hologram.
Mind, matter and quantum mechanics
Stapp, Henry P
2009-01-01
"Scientists other than quantum physicists often fail to comprehend the enormity of the conceptual change wrought by quantum theory in our basic conception of the nature of matter," writes Henry Stapp. Stapp is a leading quantum physicist who has given particularly careful thought to the implications of the theory that lies at the heart of modern physics. In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics allows causally effective conscious thought to be combined in a natural way with the physical brain made of neurons and atoms. The book is divided into four sections. The first consists of an extended introduction. Key foundational and somewhat more technical papers are included in the second part, together with a clear exposition of the "orthodox" interpretation of quantum mechanics. The third part addresses, in a non-technical fashion, the implications of the theory for some of the most profound questi...
Odake, Satoru; Sasaki, Ryu
2011-01-01
A comprehensive review of the discrete quantum mechanics with the pure imaginary shifts and the real shifts is presented in parallel with the corresponding results in the ordinary quantum mechanics. The main subjects to be covered are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modification), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creati...
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
Rosu, H C
2000-01-01
This is the first graduate course on elementary quantum mechanics in Internet written in Romanian for the benefit of Romanian speaking students (Romania and Moldova). It is a translation (with corrections) of the Spanish version of the course (physics/9808031, English translation is under consideration), which I did at the request of students of physics in Bucharest. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Psychophysical Interpretation of Quantum theory
Pradhan, Rajat K
2013-01-01
It is shown that the formalism of quantum theory naturally incorporates the psychophysical parallelism and thereby interprets itself, if the subjective aspects are taken as equal partners alongside the objective aspects as determinants of Reality as a Whole. The inevitable interplay of the subject (observer) and the object (observed) in making up Reality is brought out succinctly through a comprehensive psychophysical interpretation which includes in its bosom the truths of many of the major interpretations proposed so far as essential ingredients. At the heart of this novel approach lies the interpretation of the complex conjugate quantities such as the conjugate wave function {\\Psi}*(r, t), the bra vector , and the observable A etc. respectively. This brings out the psycho-physical parallelism lying hidden in the quantum mechanical formalism in a quite straightforward manner. The measurement process is shown to be a two-step process comprising objective interaction through the retarded waves and subjective ...
Bayesian Intersubjectivity and Quantum Theory
Pérez-Suárez, Marcos; Santos, David J.
2005-02-01
Two of the major approaches to probability, namely, frequentism and (subjectivistic) Bayesian theory, are discussed, together with the replacement of frequentist objectivity for Bayesian intersubjectivity. This discussion is then expanded to Quantum Theory, as quantum states and operations can be seen as structural elements of a subjective nature.
Tensor Fields in Relativistic Quantum Mechanics
Dvoeglazov, Valeriy V
2015-01-01
We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We discuss corresponding massless limits. We analize the quantum field theory taking into account the mass dimensions of the notoph and the photon. Next, we deduced the gravitational field equations from relativistic quantum mechanics.
Quantum mechanics as electrodynamics of curvilinear waves
2002-01-01
The suggested theory is the new quantum mechanics (QM) interpretation.The research proves that QM represents the electrodynamics of the curvilinear closed (non-linear) waves. It is entirely according to the modern interpretation and explains the particularities and the results of the quantum field theory.
Introduction to the quantum theory
Park, David
2005-01-01
More than a chance to gain new insights into physics, this book offers students the opportunity to look at what they already know about the subject in an improved way. Geared toward upper-level undergraduates and graduate students, this self-contained first course in quantum mechanics consists of two parts: the first covers basic theory, and the second part presents selected applications. Numerous problems of varying difficulty examine not only the steps of the proofs but also related ideas.Starting with an introduction that ventures beyond classical physics, the first part examines the physic
Introduction to the theory of quantum information processing
Bergou, János A
2013-01-01
Introduction to the Theory of Quantum Information Processing provides the material for a one-semester graduate level course on quantum information theory and quantum computing for students who have had a one-year graduate course in quantum mechanics. Many standard subjects are treated, such as density matrices, entanglement, quantum maps, quantum cryptography, and quantum codes. Also included are discussions of quantum machines and quantum walks. In addition, the book provides detailed treatments of several underlying fundamental principles of quantum theory, such as quantum measurements, the no-cloning and no-signaling theorems, and their consequences. Problems of various levels of difficulty supplement the text, with the most challenging problems bringing the reader to the forefront of active research. This book provides a compact introduction to the fascinating and rapidly evolving interdisciplinary field of quantum information theory, and it prepares the reader for doing active research in this area.
Algebraic Quantum Mechanics and Pregeometry
Hiley, D J B P G D B J
2006-01-01
We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as "generalized points" we suggest an approach that may make it possible to dispense with an a priori given space manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford Algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra in a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of "neighbourhood operators", which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.
Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C
2012-09-27
Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.
Tuluzov, I G
2011-01-01
A new constructivist approach to modeling in economics and theory of consciousness is proposed. The state of elementary object is defined as a set of its measurable consumer properties. A proprietor's refusal or consent for the offered transaction is considered as a result of elementary economic measurement. We were also able to obtain the classical interpretation of the quantum-mechanical law of addition of probabilities by introducing a number of new notions. The principle of "local equity" assumes the transaction completed (regardless of the result) of the states of transaction partners are not changed in connection with the reception of new information on proposed offers or adopted decisions (consent or refusal of the transaction). However it has no relation to the paradoxes of quantum theory connected with non-local interaction of entangled states. In the economic systems the mechanism of entangling has a classical interpretation, while the quantum-mechanical formalism of the description of states appear...
Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)
Chandra, N.; Temkin, A.
1975-01-01
A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.
Quantum Mechanics and determinism
Hooft, G. 't
2001-01-01
It is shown how to map the quantum states of a system of free scalar particles one-to-one onto the states of a completely deterministic model. It is a classical field theory with a large (global) gauge group. The mapping is now also applied to free Maxwell fields. Lorentz invariance is demonstrated.
Field redefinition invariance in quantum field theory
Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos
1994-01-01
We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...
Effectively calculable quantum mechanics
Bolotin, Arkady
2015-01-01
According to mathematical constructivism, a mathematical object can exist only if there is a way to compute (or "construct") it; so, what is non-computable is non-constructive. In the example of the quantum model, whose Fock states are associated with Fibonacci numbers, this paper shows that the mathematical formalism of quantum mechanics is non-constructive since it permits an undecidable (or effectively impossible) subset of Hilbert space. On the other hand, as it is argued in the paper, if...
Realism and Objectivism in Quantum Mechanics
Karakostas, Vassilios
2012-01-01
The present study attempts to provide a consistent and coherent account of what the world could be like, given the conceptual framework and results of contemporary quantum theory. It is suggested that standard quantum mechanics can, and indeed should, be understood as a realist theory within its domain of application. It is pointed out, however, that a viable realist interpretation of quantum theory requires the abandonment or radical revision of the classical conception of physical reality and its traditional philosophical presuppositions. It is argued, in this direction, that the conceptualization of the nature of reality, as arising out of our most basic physical theory, calls for a kind of contextual realism. Within the domain of quantum mechanics, knowledge of 'reality in itself', 'the real such as it truly is' independent of the way it is contextualized, is impossible in principle. In this connection, the meaning of objectivity in quantum mechanics is analyzed, whilst the important question concerning t...
Mechanics classical and quantum
Taylor, T T
2015-01-01
Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e
Critique of Conventional Relativistic Quantum Mechanics.
Fanchi, John R.
1981-01-01
Following an historical sketch of the development of relativistic quantum mechanics, a discussion of the still unresolved difficulties of the currently accepted theories is presented. This review is designed to complement and update the discussion of relativistic quantum mechanics presented in many texts used in college physics courses. (Author/SK)
Philosophic foundations of quantum mechanics
Reichenbach, Hans
1998-01-01
Physics concerns direct analysis of the physical world, while philosophy analyzes knowledge about the physical world. This volume combines both disciplines for a philosophical interpretation of quantum physics - an interpretation free from the imprecision of metaphysics, offering a view of the atomic world and its quantum mechanical results as concrete as the visible everyday world.Written by an internationally renowned philosopher who specialized in symbolic logic and the theory of relativity, this approach consists of three parts. The first section, which requires no background in math or p
Recoverability in quantum information theory
Wilde, Mark M
2015-01-01
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information...
Quantum theory of electroabsorption in semiconductor nanocrystals.
Tepliakov, Nikita V; Leonov, Mikhail Yu; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D
2016-01-25
We develop a simple quantum-mechanical theory of interband absorption by semiconductor nanocrystals exposed to a dc electric field. The theory is based on the model of noninteracting electrons and holes in an infinitely deep quantum well and describes all the major features of electroabsorption, including the Stark effect, the Franz-Keldysh effect, and the field-induced spectral broadening. It is applicable to nanocrystals of different shapes and dimensions (quantum dots, nanorods, and nanoplatelets), and will prove useful in modeling and design of electrooptical devices based on ensembles of semiconductor nanocrystals.
Towards a theory of intention: An application of quantum mechanics within psychotherapy
Van Wyck, Jennifer
This study incorporated grounded research methodology to analyze and code three fields of research: psychoneuroimmunology, psychokinesis, and guided imagery. The works of Tiller (2001, 2007) and Dyer (2004) were used as a validity check for the grounded theory results and provided further input into a final theory of intention. It was found that intention requires three elements to be most successful in producing targeted outcomes. These include consciousness, thought, and emotion. The emotional aspect of intention had previously been mentioned but never incorporated into earlier theories of intention and appears to be a new finding that has potentially strong implications. The paper concludes with a discussion of how the theory of intention can inform practice in the field of psychotherapy.
Quantum mechanics: Myths and facts
Nikolic, H
2006-01-01
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Quantum Mechanics: Myths and Facts
Nikolić, Hrvoje
2007-11-01
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Studies in quantum information theory
Menicucci, Nicolas C.
Quantum information theory started as the backdrop for quantum computing and is often considered only in relation to this technology, which is still in its infancy. But quantum information theory is only partly about quantum computing. While much of the interest in this field is spurred by the possible use of quantum computers for code breaking using fast factoring algorithms, to a physicist interested in deeper issues, it presents an entirely new set of questions based on an entirely different way of looking at the quantum world. This thesis is an exploration of several topics in quantum information theory. But it is also more than this. This thesis explores the new paradigm brought about by quantum information theory---that of physics as the flow of information. The thesis consists of three main parts. The first part describes my work on continuous-variable cluster states, a new platform for quantum computation. This begins with background material discussing classical and quantum computation and emphasizing the physical underpinnings of each, followed by a discussion of two recent unorthodox models of quantum computation. These models are combined into an original proposal for quantum computation using continuous-variable cluster states, including a proposed optical implementation. These are followed by a mathematical result radically simplifying the optical construction. Subsequent work simplifies this connection even further and provides a constructive proposal for scalable generation of large-scale cluster states---necessary if there is to be any hope of using this method in practical quantum computation. Experimental implementation is currently underway by my collaborators at The University of Virginia. The second part describes my work related to the physics of trapped ions, starting with an overview of the basic theory of linear ion traps. Although ion traps are often discussed in terms of their potential use for quantum computation, my work looks at their
Schwinger Algebra for Quaternionic Quantum Mechanics
Horwitz, L P
1997-01-01
It is shown that the measurement algebra of Schwinger, a characterization of the properties of Pauli measurements of the first and second kinds, forming the foundation of his formulation of quantum mechanics over the complex field, has a quaternionic generalization. In this quaternionic measurement algebra some of the notions of quaternionic quantum mechanics are clarified. The conditions imposed on the form of the corresponding quantum field theory are studied, and the quantum fields are constructed. It is shown that the resulting quantum fields coincide with the fermion or boson annihilation-creation operators obtained by Razon and Horwitz in the limit in which the number of particles in physical states $N \\to \\infty$.
Bohmian mechanics and the quantum revolution
Goldstein, S
1995-01-01
This is a review-essay on ``Speakable and Unspeakable in Quantum Mechanics'' by John Bell and ``The Undivided Universe: An Ontological Interpretation of Quantum Mechanics'' by David Bohm and Basil Hiley. The views of these authors concerning the character of quantum theory and quantum reality---and, in particular, their approaches to the issues of nonlocality, the possibility of hidden variables, and the nature of and desiderata for a satisfactory scientific explanation of quantum phenomena---are contrasted, with each other and with the orthodox approach to these issues.
Comments on quantum probability theory.
Sloman, Steven
2014-01-01
Quantum probability theory (QP) is the best formal representation available of the most common form of judgment involving attribute comparison (inside judgment). People are capable, however, of judgments that involve proportions over sets of instances (outside judgment). Here, the theory does not do so well. I discuss the theory both in terms of descriptive adequacy and normative appropriateness.
Localisation in Quantum Field Theory
Balachandran, A P
2016-01-01
In nonrelativistic quantum mechanics , Born's principle of localisation is as follows: For a single particle, if a wave function $\\psi_K$ vanishes outside a spatial region $K$, it is said to be localised in $K$. In particular if a spatial region $K'$ is disjoint from $K$, a wave function $\\psi_{K'}$ localised in $K'$ is orthogonal to $\\psi_K$. Such a principle of localisation does not exist compatibly with relativity and causality in quantum field theory (Newton and Wigner) or interacting point particles (Currie,Jordan and Sudarshan).It is replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with `continuous' spin. This review outlines the basic principles underlying symplectic localisation and shows or mentions its deep implications. In particular, it has the potential to affect...
Relativity, symmetry and the structure of quantum theory I Galilean quantum theory
Klink, William H
2015-01-01
Quantum theory is one of the most successful of all physical theories. Our everyday world is dominated by devices that function because of knowledge of the quantum world. Yet many, physicists and non-physicists alike, find the theory which explains the behavior of the quantum world baffling and strange. This book is the first in a series of three that argues that relativity and symmetry determine the structure of quantum theory. That is to say, the structure of quantum theory is what it is because of relativity and symmetry. There are different types of relativity, each leading to a particular type of quantum theory. This book deals specifically with what we call Newton relativity, the form of relativity built into Newtonian mechanics, and the quantum theory to which it gives rise, which we call Galilean (often misleadingly called non-relativistic) quantum theory. Key Features: • Meaning and significance of the term of relativity; discussion of the principle of relativity. • Relation of symmetry to relati...
Energy Technology Data Exchange (ETDEWEB)
Green, H.S. [Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, SA (Australia)
1998-12-31
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein`s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein`s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation. Copyright (1998) CSIRO Australia 33 refs.
Quantum Mechanics with Applications
Afnan, Iraj R
2011-01-01
The ebook introduces undergraduate students to the basic skills required to use non-relativistic quantum mechanics for bound and scattering problems in atomic, molecular and nuclear physics. Initial emphasis is on problems that admit analytic solutions. These results are then used in conjunction with symmetry to develop approximation methods for both bound and scattering problems. The text concentrates on the application of computational problems to introduce the basic concepts of quantum mechanics. These are then used to study more complex problems that can be reduced to one-body problems.
Kogan, VI; Gersch, Harold
2011-01-01
Written by a pair of distinguished Soviet mathematicians, this compilation presents 160 lucidly expressed problems in nonrelativistic quantum mechanics plus completely worked-out solutions. Some were drawn from the authors' courses at the Moscow Institute of Engineering, but most were prepared especially for this book. A high-level supplement rather than a primary text, it constitutes a masterful complement to advanced undergraduate and graduate texts and courses in quantum mechanics.The mathematics employed in the proofs of the problems-asymptotic expansions of functions, Green's functions, u
Saxon, David S
2012-01-01
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, m
No extension of quantum theory can have improved predictive power.
Colbeck, Roger; Renner, Renato
2011-08-02
According to quantum theory, measurements generate random outcomes, in stark contrast with classical mechanics. This raises the question of whether there could exist an extension of the theory that removes this indeterminism, as suspected by Einstein, Podolsky and Rosen. Although this has been shown to be impossible, existing results do not imply that the current theory is maximally informative. Here we ask the more general question of whether any improved predictions can be achieved by any extension of quantum theory. Under the assumption that measurements can be chosen freely, we answer this question in the negative: no extension of quantum theory can give more information about the outcomes of future measurements than quantum theory itself. Our result has significance for the foundations of quantum mechanics, as well as applications to tasks that exploit the inherent randomness in quantum theory, such as quantum cryptography.
Quantum mechanics of charged particle beam optics
Khan, Sameen Ahmed
2018-01-01
Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.
Basic Concepts of a Quantum Event Theory
Bostroem, K J
2004-01-01
A physical theory is proposed that obeys both the principles of special relativity and of quantum mechanics. Time and space are treated on exactly the same footing, namely as quantum mechanical observables on a Hilbert space. The theory is not based upon Lagrangian or Hamiltonian mechanics and cannot be formulated within the framework of unitary dynamics. As a most important aspect, the theory breaks with the concept of a continuously flowing time in favour of a discrete jump process in spacetime. All physical statements are formulated in terms of detector events rather than particle states. The physical object under consideration is a spinless particle in empty space. Yet the theory also accounts for particle-antiparticle pair creation and annihilation, and is therefore not a single-particle theory in the strict sense. The Maxwell equations are derived as a straightforward consequence of some fundamental commutation relations. In the non-relativistic limit, and in the limit of infinitely small time uncertain...
Ogihara, Yusuke; Yamamoto, Takeshi; Kato, Shigeki
2010-09-23
Triplet ketene exhibits a steplike structure in the experimentally observed dissociation rates, but its mechanism is still unknown despite many theoretical efforts in the past decades. In this paper we revisit this problem by quantum mechanically calculating the reaction probability with multireference-based electronic structure theory. Specifically, we first construct an analytical potential energy surface of triplet state by fitting it to about 6000 ab initio energies computed at the multireference second-order Mller-Plesset perturbation (MRMP2) level. We then evaluate the cumulative reaction probability by using the transition state wave packet method together with an adiabatically constrained Hamiltonian. The result shows that the imaginary barrier frequency on the triplet surface is 328i cm-1, which is close to the CCSD(T) result (321i cm-1) but is likely too large for reproducing the experimentally observed steps. Indeed, our calculated reaction probability exhibits no signature of steps, reflecting too strong tunneling effect along the reaction coordinate. Nevertheless, it is emphasized that the flatness of the potential profile in the transition-state region (which governs the degree of tunneling) depends strongly on the level of electronic structure calculation, thus leaving some possibility that the use of more accurate theories might lead to the observed steps. We also demonstrate that the triplet potential surface differs significantly between the CASSCF and MRMP2 results, particularly in the transition-state region. This fact seems to require more attention when studying the "nonadiabatic" scenario for the steps, in which the crossing seam between S0 and T1 surfaces is assumed to play a central role.
Quantum Semiotics: A Sign Language for Quantum Mechanics
Prashant
2006-01-01
Semiotics is the language of signs which has been used effectively in various disciplines of human scientific endeavor. It gives a beautiful and rich structure of language to express the basic tenets of any scientific discipline. In this article we attempt to develop from first principles such an axiomatic structure of semiotics for Quantum Mechanics. This would be a further enrichment to the already existing well understood mathematical structure of Quantum Mechanics but may give new insights and understanding to the theory and may help understand more lucidly the fundamentality of Nature which Quantum Theory attempts to explain.
Quantum Mechanics: Bell and Quantum Entropy for the Classroom
Pluch, Philipp
2014-01-01
In this article we are willing to give some first steps to quantum mechanics and a motivation of quantum mechanics and its interpretation for undergraduate students not from physics. After a short historical review in the development we discuss philosophical, physical and mathematical interpretation. We define local realism, locality and hidden variable theory which ends up in the EPR paradox, a place where questions on completeness and reality comes into play. The fundamental result of the last century was maybe Bell's that states that local realism is false if quantum mechanics is true. From this fact we can obtain the so called Bell inequalities. After a didactic example of the fact what these inequalities means we describe the key concept of quantum entanglement motivated here by quantum information theory. Also classical entropy and von Neuman entropy is discussed.
Elementary Concepts of Quantum Theory
Warren, J. W.
1974-01-01
Discusses the importance and difficulties of teaching basic quantum theory. Presents a discussion of wave-particle duality, indeterminacy, the nature of a quantized state of a system, and the exclusion principle. (MLH)
Quantum theory a wide spectrum
Manoukian, E B
2006-01-01
Suitable for instructors and graduate students in Physics, and researchers and professional scientists in Theoretical Physics, this textbook focuses on Quantum Theory. It includes traditional topics and contains numerous problems some of which are challenging enough for research
Introduction to quantum information theory
Nielsen, M. A.
2000-01-01
This is an expanded and revised text for a fifteen minute talk given at the University of Queensland Physics Camp, September 2000. The focus is on the goals and motivations for studying quantum information theory, rather than on technical results.
Quantum Theory is an Information Theory
D'Ariano, Giacomo M.; Perinotti, Paolo
2016-03-01
In this paper we review the general framework of operational probabilistic theories (OPT), along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
Institute of Scientific and Technical Information of China (English)
吴宁; 阮图南
1996-01-01
A quantum mechanical model with one bosonic degree of freedom is discussed in detail. Conventionally, when a quantum mechanical model is constructed, one must know the corresponding classical model. And by applying the correspondence between the classical Poisson brackets and the canonical commutator, the canonical quantization condition can be obtained. In the quantum model, study of the corresponding classical model is needed first. In this model, the Lagrangian is an operator gauge invariant. After localization, in order to keep gauge invariance, the operator gauge potential must be introduced. The Eular-Lagrange equation of motion of the dynamical argument gives the usual operator equation of motion. And the operator gauge potential just gjves a constraint. This constraint is just the usual canonical quantization condition.
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
Lectures on quantum field theory
Das, Ashok
2008-01-01
This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio
Making sense of quantum mechanics
Bricmont, Jean
2016-01-01
This book explains, in simple terms, with a minimum of mathematics, why things can appear to be in two places at the same time, why correlations between simultaneous events occurring far apart cannot be explained by local mechanisms, and why, nevertheless, the quantum theory can be understood in terms of matter in motion. No need to worry, as some people do, whether a cat can be both dead and alive, whether the moon is there when nobody looks at it, or whether quantum systems need an observer to acquire definite properties. The author’s inimitable and even humorous style makes the book a pleasure to read while bringing a new clarity to many of the longstanding puzzles of quantum physics.
The emerging quantum the physics behind quantum mechanics
Pena, Luis de la; Valdes-Hernandez, Andrea
2014-01-01
This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...
Algebraic-statistical approach to quantum mechanics
Slavnov, D A
2001-01-01
It is proposed the scheme of quantum mechanics, in which a Hilbert space and the linear operators are not primary elements of the theory. Instead of it certain variant of the algebraic approach is considered. The elements of noncommutative algebra (observables) and the nonlinear functionals on this algebra (physical states) are used as the primary constituents. The functionals associate with results of a particular measurement. It is suggested to consider certain ensembles of the physical states as quantum states of the standart quantum mechanics. It is shown that in such scheme the mathematical formalism of the standart quantum mechanics can be reproduced completely.
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Quantum mechanics in phase space
DEFF Research Database (Denmark)
Hansen, Frank
1984-01-01
A reformulation of quantum mechanics for a finite system is given using twisted multiplication of functions on phase space and Tomita's theory of generalized Hilbert algebras. Quantization of a classical observable h is achieved when the twisted exponential Exp0(-h) is defined as a tempered....... Generalized Weyl-Wigner maps related to the notion of Hamiltonian weight are studied and used in the formulation of a twisted spectral theory for functions on phase space. Some inequalities for Wigner functions on phase space are proven. A brief discussion of the classical limit obtained through dilations...
Prologue to super quantum mechanics something is rotten in the state of quantum mechanics
Vaguine, Victor
2012-01-01
Since its foundation more than eight decades ago, quantum mechanics has been plagued by enigmas, mysteries and paradoxes and held hostage by quantum positivism. This fact strongly suggests that something is fundamentally wrong with the quantum mechanics paradigm. The best scientific minds, such as Albert Einstein, Louis de Broglie, David Bohm, Richard Feynman and others have spent years of their professional lives attempting to find resolution to the quantum mechanics predicament, with not much success. A shift of the quantum mechanics paradigm toward a deeper physics theory is long overdue.
Energy Technology Data Exchange (ETDEWEB)
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.
Quantum field theory competitive models
Tolksdorf, Jürgen; Zeidler, Eberhard
2009-01-01
For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...
Correspondence Truth and Quantum Mechanics
Karakostas, Vassilios
2015-01-01
The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either 'true' or 'false', describing what is actually the case at a certain moment of time. Truth-value assignment in quantum mechanics, however, differs; it is known, by means of a variety of 'no go' theorems, that it is not possible to assign definite truth values to all propositions pertaining to a quantum system without generating a Kochen-Specker contradiction. In this respect, the Bub-Clifton 'uniqueness theorem' is utilized for arguing that truth-value definiteness is consistently restored with respect to a determinate sublattice of propositions defined by the state...
Quantum Model Theory (QMod): Modeling Contextual Emergent Entangled Interfering Entities
Aerts, Diederik
2012-01-01
In this paper we present 'Quantum Model Theory' (QMod), a theory we developed to model entities that entail the typical quantum effects of 'contextuality, 'superposition', 'interference', 'entanglement' and 'emergence'. This aim of QMod is to put forward a theoretical framework that has the technical power of standard quantum mechanics, namely it makes explicitly use of the standard complex Hilbert space and its quantum mechanical calculus, but is also more general than standard quantum mechanics, in the sense that it only uses this quantum calculus locally, i.e. for each context corresponding to a measurement. In this sense, QMod is a generalization of quantum mechanics, similar to how the general relativity manifold mathematical formalism is a generalization of special relativity and classical physics. We prove by means of a representation theorem that QMod can be used for any entity entailing the typical quantum effects mentioned above. Some examples of application of QMod in concept theory and macroscopic...
Ehrenfest's adiabatic hypothesis in Bohr's quantum theory
Pérez, Enric
2015-01-01
It is widely known that Paul Ehrenfest formulated and applied his adiabatic hypothesis in the early 1910s. Niels Bohr, in his first attempt to construct a quantum theory in 1916, used it for fundamental purposes in a paper which eventually did not reach the press. He decided not to publish it after having received the new results by Sommerfeld in Munich. Two years later, Bohr published "On the quantum theory of line-spectra." There, the adiabatic hypothesis played an important role, although it appeared with another name: the principle of mechanical transformability. In the subsequent variations of his theory, Bohr never suppressed this principle completely. We discuss the role of Ehrenfest's principle in the works of Bohr, paying special attention to its relation to the correspondence principle. We will also consider how Ehrenfest faced Bohr's uses of his more celebrated contribution to quantum theory, as well as his own participation in the spreading of Bohr's ideas.
Avoiding Negative Probabilities in Quantum Mechanics
Nyambuya, Golden Gadzirayi
2013-01-01
As currently understood since its discovery, the bare Klein-Gordon theory consists of negative quantum probabilities which are considered to be physically meaningless if not outright obsolete. Despite this annoying setback, these negative probabilities are what led the great Paul Dirac in 1928 to the esoteric discovery of the Dirac Equation. The Dirac Equation led to one of the greatest advances in our understanding of the physical world. In this reading, we ask the seemingly senseless question, "Do negative probabilities exist in quantum mechanics?" In an effort to answer this question, we arrive at the conclusion that depending on the choice one makes of the quantum probability current, one will obtain negative probabilities. We thus propose a new quantum probability current of the Klein-Gordon theory. This quantum probability current leads directly to positive definite quantum probabilities. Because these negative probabilities are in the bare Klein-Gordon theory, intrinsically a result of negative energie...
Hollowood, Timothy J
2013-01-01
We describe an interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description for macro-systems. The interpretation is a modal one, but does not suffer from the range of problems that plague other modal interpretations. The key feature is that quantum states carry an additional property assignment in the form of one the eigenvectors of the reduced density matrix which evolves evolves according to a stochastic process driven by the unmodified Schrodinger equation, but it is usually hidden from the emergent classical description due to the ergodic nature of its dynamics. However, during a quantum measurement, ergodicity is broken by decoherence and definite outcomes occur with probabilities that agree with the Born rule.
Scott, Tony C.
It has been shown that the Fokker-Wheeler-Feynman (FWF) model could be rewritten to yield a physically acceptable relativistic many-particle Lagrangian. Contrary to Wheeler and Feynman's postulates, the model satisfies causality and can be generalised to include arbitrary forces. The 1/c power series of the FWF Lagrangian to order (1/c) ^4 contains accelerations. A procedure of quantizing the theory for such a Lagrangian is presented and it is then found that the accelerations approximately introduce an independent harmonic mode which is in agreement with resonances recently observed in Positronium collisions processes. This result may be of fundamental physical importance and requires further investigation. However, the refinement of this calculation requires the creation of new computational tools. To this end, a new method is presented in which both the eigenfunctions and eigenenergies are determined algebraically as power series in the order parameter, where each coefficient of the series is obtained in closed form. This method avoids the complications of a basis set and makes extensive use of symbolic computation. It is then applied to two model problems, namely the one-body Dirac equation for testing purposes and a special case of the two-body Dirac equation for which one obtains previously unknown closed form solutions.
Soucek, Jiri
2010-01-01
In the paper the basic concepts of extended probability theory are introduced. The basic idea: the concept of an event as a subset of \\Omega is replaced with the concept of an event as a partition. The partition is any set of disjoint non-empty subsets of \\Omega (i.e. partition=subset+its decomposition). Interpretation: elements inside certain part are indistinguishable, while elements from different parts are distinguishable. There are incompatible events, e.g {{e1},{e2}} and {{e1,e2}}. This is logical incompatibility analogical to the impossibility to have and simultaneously not to have the which-way information in the given experiment. The context is the maximal set of mutually compatible events. Each experiment has associated its context. In each context the extended probability is reduced to classical probability. Then the quadratic representation of events, partitions and probability measures is developed. At the end the central concept of quadratic probability spaces (which extend Kolmogorov probabilit...
Advanced concepts in quantum mechanics
Esposito, Giampiero; Miele, Gennaro; Sudarshan, George
2015-01-01
Introducing a geometric view of fundamental physics, starting from quantum mechanics and its experimental foundations, this book is ideal for advanced undergraduate and graduate students in quantum mechanics and mathematical physics. Focusing on structural issues and geometric ideas, this book guides readers from the concepts of classical mechanics to those of quantum mechanics. The book features an original presentation of classical mechanics, with the choice of topics motivated by the subsequent development of quantum mechanics, especially wave equations, Poisson brackets and harmonic oscillators. It also presents new treatments of waves and particles and the symmetries in quantum mechanics, as well as extensive coverage of the experimental foundations.
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.
Razavy, Mohsen
2014-01-01
In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Introduction to quantum Thurston theory
Energy Technology Data Exchange (ETDEWEB)
Chekhov, L O [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation); Penner, R C [University of Southern California, Los Angeles (United States)
2003-12-31
This is a survey of the theory of quantum Teichmueller and Thurston spaces. The Thurston (or train track) theory is described and quantized using the quantization of coordinates for Teichmueller spaces of Riemann surfaces with holes. These surfaces admit a description by means of the fat graph construction proposed by Penner and Fock. In both theories the transformations in the quantum mapping class group that satisfy the pentagon relation play an important role. The space of canonical measured train tracks is interpreted as the completion of the space of observables in 3D gravity, which are the lengths of closed geodesics on a Riemann surface with holes. The existence of such a completion is proved in both the classical and the quantum cases, and a number of algebraic structures arising in the corresponding theories are discussed.
Recoverability in quantum information theory
Wilde, Mark
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.
The transactional interpretation of quantum mechanics
Cramer, John G.
2001-06-01
The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."
Superconducting quantum circuits theory and application
Deng, Xiuhao
Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons
A New Interpretation to The Quantum Mechanics
Feng, Yulei
2012-01-01
In this paper, we try to give a new interpretation to the quantum mechanics from the point of view of (non-relativistic) quantum field theory. After field quantization, we obtain the Heisenberg equations for the momentum and coordinate operators of the particles excited from the (Schrodinger) field. We then give the probability concepts of quantum mechanics on the base of a statistical assemble realizing the assemble interpretation. With these, we make a series of conceptual modifications to the standard quantum mechanics, especially the quantum measurement theory; in the end, we try to solve the EPR paradox with the use of our new ideas. In addition, we also give a field theoretical description to the double-slit interference experiment, obtaining the particle number distribution, in the appendix.
Measurements and mathematical formalism of quantum mechanics
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
A Matter of Principle: The Principles of Quantum Theory, Dirac's Equation, and Quantum Information
Plotnitsky, Arkady
2015-01-01
This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be be addressed as well in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac's work, which, in particular Dirac's derivation of his relativistic equation for the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall, however, also consider Heisenberg's derivation of quantum mechanics, which inspired Dirac. I argue that Heisenberg's and Dirac's work alike was guided by their adherence to and confidence in the fundamental principles of quantum theory. The final section of the article discusses the recent work by G. M. D' Ariano and his coworkers on the principles of quantum information theory, which extends quantum theory and its principles in a new direction. This extension enabled them to offer a new derivation of Dirac's equation from these principles alone...
Quantum mechanics and the psyche
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology
Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B.
1993-01-01
We investigate the origin of the arrow of time in quantum mechanics in the context of quantum cosmology. The ``Copenhagen'' quantum mechanics of measured subsystems incorporates a fundamental arrow of time. Extending discussions of Aharonov, Bergmann and Lebovitz, Griffiths, and others we investigate a generalized quantum mechanics for cosmology that utilizes both an initial and a final density matrix to give a time-neutral formulation without a fundamental arrow of time. Time asymmetries can arise for particular universes from differences between their initial and final conditions. Theories for both would be a goal of quantum cosmology. A special initial condition and a final condition of indifference would be sufficient to explain the observed time asymmetries of the universe. In this essay we ask under what circumstances a completely time symmetric universe, with T-symmetric initial and final condition, could be consistent with the time asymmetries of the limited domain of our experience. We discuss the ap...
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
Clarke, M. L.
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).
The physical principles of the quantum theory
Heisenberg, Werner
1949-01-01
The contributions of few contemporary scientists have been as far reaching in their effects as those of Nobel Laureate Werner Heisenberg. His matrix theory is one of the bases of modern quantum mechanics, while his ""uncertainty principle"" has altered our whole philosophy of science.In this classic, based on lectures delivered at the University of Chicago, Heisenberg presents a complete physical picture of quantum theory. He covers not only his own contributions, but also those of Bohr, Dirac, Bose, de Broglie, Fermi, Einstein, Pauli, Schrodinger, Somerfield, Rupp, ·Wilson, Germer, and others
Graduate Quantum Mechanics Reform
Carr, L D
2008-01-01
We address four main areas in which graduate quantum mechanics education in the U.S. can be improved: course content; textbook; teaching methods; and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all four of these areas. In particular, we have modified the content of the course to reflect progress in the field in the last 50 years, use modern textbooks that include such content, incorporate a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey (QMCS). We find that graduate students respond well to research-based techniques that have previously been tested mainly in introductory courses, and that they learn a great deal of the new content introduced in each ve...
A Naturally Renormalized Quantum Field Theory
2006-01-01
It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...
Conference on Mathematical Results in Quantum Mechanics
Exner, Pavel; Tater, Miloš; QMath-7
1999-01-01
At the age of almost three quarters of a century, quantum mechanics is by all accounts a mature theory. There were times when it seemed that it had borne its best fruit already and would give way to investigation of deeper levels of matter. Today this sounds like rash thinking. Modern experimental techniques have led to discoveries of numerous new quantum effects in solid state, optics and elsewhere. Quantum mechanics is thus gradually becoming a basis for many branches of applied physics, in this way entering our everyday life. While the dynamic laws of quantum mechanics are well known, a proper theoretical understanding requires methods which would allow us to de rive the abundance of observed quantum effects from the first principles. In many cases the rich structure hidden in the Schr6dinger equation can be revealed only using sophisticated tools. This constitutes a motivation to investigate rigorous methods which yield mathematically well-founded properties of quantum systems.
Reformulating and Reconstructing Quantum Theory
Hardy, Lucien
2011-01-01
We provide a reformulation of finite dimensional quantum theory in the circuit framework in terms of mathematical axioms, and a reconstruction of quantum theory from operational postulates. The mathematical axioms for quantum theory are the following: [Axiom 1] Operations correspond to operators. [Axiom 2] Every complete set of positive operators corresponds to a complete set of operations. The following operational postulates are shown to be equivalent to these mathematical axioms: [P1] Definiteness. Associated with any given pure state is a unique maximal effect giving probability equal to one. This maximal effect does not give probability equal to one for any other pure state. [P2] Information locality. A maximal measurement on a composite system is effected if we perform maximal measurements on each of the components. [P3] Tomographic locality. The state of a composite system can be determined from the statistics collected by making measurements on the components. [P4] Compound permutatability. There exis...
Division Algebras and Quantum Theory
Baez, John C
2011-01-01
Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the "three-fold way". It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly "complex" representations), those that are self-dual thanks to a symmetric bilinear pairing (which are "real", in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are...
Arfi, Badredine
2007-02-01
Most game-theoretic studies of strategic interaction assume independent individual strategies as the basic unit of analysis. This paper explores the effects of non-independence on strategic interaction. Two types of non-independence effects are considered. First, the paper considers subjective non-independence at the level of the individual actor by looking at how choice ambivalence shapes the decision-making process. Specifically, how do alternative individual choices superpose with one another to “constructively/destructively” shape each other's role within an actor's decision-making process? This process is termed as quantum superposition of alternative choices. Second, the paper considers how inter-subjective non-independence across actors engenders collective strategies among two or more interacting actors. This is termed as quantum entanglement of strategies. Taking into account both types of non-independence effect makes possible the emergence of a new collective equilibrium, without assuming signaling, prior “contract” agreement or third-party moderation, or even “cheap talk”. I apply these ideas to analyze the equilibrium possibilities of a situation wherein N actors play a quantum social game of cooperation. I consider different configurations of large- N quantum entanglement using the approach of density operator. I specifically consider the following configurations: star-shaped, nearest-neighbors, and full entanglement.
Scattering theory the quantum theory of nonrelativistic collisions
Taylor, John R
2006-01-01
This graduate-level text is intended for any student of physics who requires a thorough grounding in the quantum theory of nonrelativistic scattering. It is designed for readers who are already familiar with the general principles of quantum mechanics and who have some small acquaintance with scattering theory. Study of this text will allow students of atomic or nuclear physics to begin reading the literature and tackling real problems, with a complete grasp of the underlying principles. For students of high-energy physics, it provides the necessary background for later study of relativistic p
Quantum Field Theory, Revised Edition
Mandl, F.; Shaw, G.
1994-01-01
Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical
Relating the quantum mechanics of discrete systems to standard canonical quantum mechanics
Hooft, Gerard t
2012-01-01
Discrete quantum mechanics is here defined to be a quantum theory of wave functions defined on integers P_i and Q_i, while canonical quantum mechanics is assumed to be based on wave functions on the real numbers, R^n. We study reversible mappings from the position operators q_i and their quantum canonical operators p_i of a canonical theory, onto the discrete, commuting operators Q_i and P_i. In this paper we are particularly interested in harmonic oscillators. In the discrete system, these t...
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Holography, Quantum Geometry, and Quantum Information Theory
Directory of Open Access Journals (Sweden)
P. A. Zizzi
2000-03-01
Full Text Available Abstract: We interpret the Holographic Conjecture in terms of quantum bits (qubits. N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labelled by the spin-Ã‚Â½ representation of SU(2, which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons, and leads to a picture of the early inflationary universe in terms of quantum computation. A discrete micro-causality emerges, where the time parameter is being defined by the discrete increase of entropy. Then, the model is analysed in the framework of the theory of presheaves (varying sets on a causal set and we get a quantum history. A (bosonic Fock space of the whole history is considered. The Fock space wavefunction, which resembles a Bose-Einstein condensate, undergoes decoherence at the end of inflation. This fact seems to be responsible for the rather low entropy of our universe.
Formalism and Interpretation in Quantum Theory
Wilce, Alexander
2010-04-01
Quantum Mechanics can be viewed as a linear dynamical theory having a familiar mathematical framework but a mysterious probabilistic interpretation, or as a probabilistic theory having a familiar interpretation but a mysterious formal framework. These points of view are usually taken to be somewhat in tension with one another. The first has generated a vast literature aiming at a “realistic” and “collapse-free” interpretation of quantum mechanics that will account for its statistical predictions. The second has generated an at least equally large literature aiming to derive, or at any rate motivate, the formal structure of quantum theory in probabilistically intelligible terms. In this paper I explore, in a preliminary way, the possibility that these two programmes have something to offer one another. In particular, I show that a version of the measurement problem occurs in essentially any non-classical probabilistic theory, and ask to what extent various interpretations of quantum mechanics continue to make sense in such a general setting. I make a start on answering this question in the case of a rudimentary version of the Everett interpretation.
On the geometrization of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Tavernelli, Ivano, E-mail: ita@zurich.ibm.com
2016-08-15
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.
de Wit, Bernard
1990-01-01
After a brief and practical introduction to field theory and the use of Feynman diagram, we discuss the main concept in gauge theories and their application in elementary particle physics. We present all the ingredients necessary for the construction of the standard model.
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
2013-02-15
Matthew James, Andre Carvalho and Michael Hush completed some work analyzing cross-phase modulation using single photon quantum filtering techniques...ANU Michael Hush January – June, 2012, Postdoc, ANU Matthew R. James Professor, Australian National University Ian R. Petersen Professor...appear, IEEE Trans. Aut. Control., 2013. A. R. R. Carvalho, M. R. Hush , and M. R. James, “Cavity driven by a single photon: Conditional dynamics and
Quantum Mechanics Fundamentals and Applications to Technology
Singh, Jasprit
1996-01-01
Explore the relationship between quantum mechanics and information-age applications. This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulati
Philosophical foundations of interpretations of quantum mechanics
Bezlepkin, Evgeny
2016-01-01
It is demonstrated that the reason for the diversity of interpretations of quantum mechanics is that they are not connected by continuity relations with classical physics, and also the reason is the impossibility of operationalist definition of the vector of state. The problem lies in the incompatibility of the philosophical foundations of interpretations, which results in the difficulty of building a unified picture of the world. To solve the problem, we identify general philosophical foundation of interpretations of quantum mechanics and built their classification. We also show that in more general theories, the part of which is quantum mechanics, it is possible to integrate (reconcile) the philosophical foundations of interpretations.
Bananaworld quantum mechanics for primates
Bub, Jeffrey
2016-01-01
What on earth do bananas have to do with quantum mechanics? From a modern perspective, quantum mechanics is about strangely counterintuitive correlations between separated systems, which can be exploited in feats like quantum teleportation, unbreakable cryptographic schemes, and computers with enormously enhanced computing power. Schro?dinger coined the term "entanglement" to describe these bizarre correlations. Bananaworld -- an imaginary island with "entangled" bananas -- brings to life the fascinating discoveries of the new field of quantum information without the mathematical machinery of quantum mechanics. The connection with quantum correlations is fully explained in sections written for the non-physicist reader with a serious interest in understanding the mysteries of the quantum world. The result is a subversive but entertaining book that is accessible and interesting to a wide range of readers, with the novel thesis that quantum mechanics is about the structure of information. What we have discovered...
Scan Quantum Mechanics: Quantum Inertia Stops Superposition
Gato-Rivera, Beatriz
2015-01-01
A novel interpretation of the quantum mechanical superposition is put forward. Quantum systems scan all possible available states and switch randomly and very rapidly among them. The longer they remain in a given state, the larger the probability of the system to be found in that state during a measurement. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia $I_q$ reaches a critical value $I_{cr}$ for an observable, the switching among the different eigenvalues of that observable stops and the corresponding superposition comes to an end. Consequently, increasing the mass, temperature, gravitational force, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. The process could be reversible decreasing the size, temperature, gravitational force, etc. leading to...
Elements of quantum computing history, theories and engineering applications
Akama, Seiki
2015-01-01
A quantum computer is a computer based on a computational model which uses quantum mechanics, which is a subfield of physics to study phenomena at the micro level. There has been a growing interest on quantum computing in the 1990's, and some quantum computers at the experimental level were recently implemented. Quantum computers enable super-speed computation, and can solve some important problems whose solutions were regarded impossible or intractable with traditional computers. This book provides a quick introduction to quantum computing for readers who have no backgrounds of both theory of computation and quantum mechanics. “Elements of Quantum Computing” presents the history, theories, and engineering applications of quantum computing. The book is suitable to computer scientists, physicist, and software engineers.
Experimental status of quaternionic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Brumby, S.P.; Joshi, G.C.
1995-10-01
Analysis of the logical foundations of quantum mechanics indicates the possibility of constructing a theory using quaternionic Hilbert spaces. Whether this mathematical structure reflects reality is a matter for experiment to decide. The only direct search for quaternionic quantum mechanics yet carried out is reviewed and is proposed to look for quaternionic effects in correlated multi-particle systems. It is also discussed how such experiments might distinguish between the several quaternionic models proposed in the literature. 21 refs.
Some Mutant Forms of Quantum Mechanics
Takeuchi, Tatsu; Lewis, Zachary; Minic, Djordje
2013-01-01
We construct a `mutant' form of quantum mechanics on a vector space over the finite Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discretized quantum mechanics cannot be reproduced with any hidden variable theory. An alternative `mutation' is also suggested.
Are All Probabilities Fundamentally Quantum Mechanical?
Pradhan, Rajat Kumar
2011-01-01
The subjective and the objective aspects of probabilities are incorporated in a simple duality axiom inspired by observer participation in quantum theory. Transcending the classical notion of probabilities, it is proposed and demonstrated that all probabilities may be fundamentally quantum mechanical in the sense that they may all be derived from the corresponding amplitudes. The classical coin-toss and the quantum double slit interference experiments are discussed as illustrative prototype examples. Absence of multi-order quantum interference effects in multiple-slit experiments and the Experimental tests of complementarity in Wheeler's delayed-choice type experiments are explained using the involvement of the observer.
Quantum mechanics of leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Mendizabal Cofre, Sebastian
2010-08-15
Leptogenesis is an attractive mechanism that simultaneously explains the matterantimatter asymmetry of the universe as well as the small masses of the standard model neutrinos. This is performed by naturally extending the standard model with the insertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical Boltzmann equations. However, these equations suffer from basic conceptual problems and they lack to include many quantum phenomena, such as memory effects and coherence oscillations. In order to fully describe leptogenesis, a full quantum treatment is required. In this work we show how to address leptogenesis systematically in a purely quantum way. We start by studying scalar and fermionic excitations in a plasma by solving the Kadanoff-Baym equations of motion for Green's functions, with significant emphasis on the initial and boundary conditions of the solutions. We compute analytically the asymmetry generated from the departure of equilibrium of a particle in a thermal bath. The comparison with the semi-classical Boltzmann approach is also analysed, leading to a qualitative difference between both methods. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry, effects that cannot be studied with the Boltzmann equations. The insertion of standard model interactions like the decay widths for the particles of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes, i.e. we regain the Boltzmann equations. (orig.)
Semiclassical and quantum Liouville theory
Menotti, P
2006-01-01
We develop a functional integral approach to quantum Liouville field theory completely independent of the hamiltonian approach. To this end on the sphere topology we solve the Riemann-Hilbert problem for three singularities of finite strength and a fourth one infinitesimal, by determining perturbatively the Poincare' accessory parameters. This provides the semiclassical four point vertex function with three finite charges and a fourth infinitesimal. Some of the results are extended to the case of n finite charges and m infinitesimal. With the same technique we compute the exact Green function on the sphere on the background of three finite singularities. Turning to the full quantum problem we address the calculation of the quantum determinant on the background of three finite charges and of the further perturbative corrections. The zeta function regularization provides a theory which is not invariant under local conformal transformations. Instead by employing a regularization suggested in the case of the pseu...
Implementation of quantum game theory simulations using Python
Madrid S., A.
2013-05-01
This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.
Exactly Solvable Quantum Mechanics
Sasaki, Ryu
2014-01-01
A comprehensive review of exactly solvable quantum mechanics is presented with the emphasis of the recently discovered multi-indexed orthogonal polynomials. The main subjects to be discussed are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modifications), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, coherent states, various deformation schemes (multiple Darboux transformations) and the infinite families of multi-indexed orthogonal polynomials, the exceptional orthogonal polynomials, and deformed exactly solvable scattering problems.
Interpreting quantum theory a therapeutic approach
Friederich, Simon
2014-01-01
Is it possible to approach quantum theory in a 'therapeutic' vein that sees its foundational problems as arising from mistaken conceptual presuppositions? The book explores the prospects for this project and, in doing so, discusses such fascinating issues as the nature of quantum states, explanation in quantum theory, and 'quantum non-locality'.
Interpreting quantum theory a therapeutic approach
Friederich, S
2014-01-01
Is it possible to approach quantum theory in a 'therapeutic' vein that sees its foundational problems as arising from mistaken conceptual presuppositions? The book explores the prospects for this project and, in doing so, discusses such fascinating issues as the nature of quantum states, explanation in quantum theory, and 'quantum non-locality'.
Interference and inequality in quantum decision theory
Energy Technology Data Exchange (ETDEWEB)
Cheon, Taksu, E-mail: taksu.cheon@kochi-tech.ac.j [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan); Takahashi, Taiki, E-mail: ttakahashi@lynx.let.hokudai.ac.j [Laboratory of Social Psychology, Department of Behavioral Science, Faculty of Letters, Hokkaido University, N.10, W.7, Kita-ku, Sapporo 060-0810 (Japan)
2010-12-01
The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.
Quantum theory of plasmons in nanostructures
DEFF Research Database (Denmark)
Winther, Kirsten Trøstrup
. For a theoretical description of plasmon in such materials, where the electrons are heavily confined in one or more directions, a quantum mechanical description of the electrons in the material is necessary. In this thesis, the ab initio methods Density functional theory (DFT) and linear response time-dependent DFT......In this thesis, ab initio quantum-mechanical calculations are used to study the properties of plasmons in nanostructures that involve atomic length-scales. The plasmon is an electronic excitation that corresponds to oscillations in the electron charge density in metals, often visualized as water...... are applied to calculate the properties of plasmons in nanostructures in different dimensions. In order to identify and visualize localized plasmon modes, a method for calculating plasmon eigenmodes within the ab initio framework has been developed. In the studied materials, quantum mechanical effects...
Energy Technology Data Exchange (ETDEWEB)
Kinnebrock, Werner [Fachhochschule Rheinland-Pfalz (Germany)
2011-07-01
The past century changed the classical, scientific way of view enormously. The quantum theory broke with the imagination of continuity of all dynamical processes and gave space to completely new, nearly revolutionary approaches of thinking. Einstein's relativity theory put the absoluteness of time and space as well as the general validity of the Euclidean geometry in question. The absolute calculability, as it was formulated by Laplace, was by the influence of chaos theory proven as illusion. Computers made by the Mandelbrot set the presentation of new esthetic and never seen structures. Hilbert's century program of a complete formalization of mathematics failed because of the famous law of Goedel. It is the demand of this book to present all these theories and conclusions easily understandably and entertainingly.
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
Trace anomalies from quantum mechanics
Bastianelli, F; Bastianelli, Fiorenzo; Nieuwenhuizen, Peter van
1993-01-01
The 1-loop anomalies of a d-dimensional quantum field theory can be computed by evaluating the trace of the regulated path integral jacobian matrix, as shown by Fujikawa. In 1983, Alvarez-Gaum\\'e and Witten observed that one can simplify this evaluation by replacing the operators which appear in the regulator and in the jacobian by quantum mechanical operators with the same (anti)commutation relations. By rewriting this quantum mechanical trace as a path integral with periodic boundary conditions for a one-dimensional supersymmetric nonlinear sigma model, they obtained the chiral anomalies for spin 1/2 and 3/2 fields and selfdual antisymmetric tensors in d dimensions. In this article, we treat the case of trace anomalies for spin 0, 1/2 and 1 fields in a gravitational and Yang-Mills background. We do not introduce a supersymmetric sigma model, but keep the original Dirac matrices $\\g^\\m$ and internal symmetry generators $T^a$ in the path integral. As a result, we get a matrix-valued action. Gauge covariance o...
Fun with supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Freedman, B.; Cooper, F.
1984-04-01
One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup ..cap alpha../ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index ..delta.. which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if ..delta.. is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate ..delta.. for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references.
A new introductory quantum mechanics curriculum
Kohnle, Antje; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth
2013-01-01
The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of interpretive aspects of quantum mechanics and quantum information theory. This article gives an overview of the resources available at the IOP website. The core text is presented as around 80 articles co-authored by leading experts that are arranged in themes and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is part of the resource. Solutions to activities are available ...
Submicroscopic Deterministic Quantum Mechanics
Krasnoholovets, V
2002-01-01
So-called hidden variables introduced in quantum mechanics by de Broglie and Bohm have changed their initial enigmatic meanings and acquired quite reasonable outlines of real and measurable characteristics. The start viewpoint was the following: All the phenomena, which we observe in the quantum world, should reflect structural properties of the real space. Thus the scale 10^{-28} cm at which three fundamental interactions (electromagnetic, weak, and strong) intersect has been treated as the size of a building block of the space. The appearance of a massive particle is associated with a local deformation of the cellular space, i.e. deformation of a cell. The mechanics of a moving particle that has been constructed is deterministic by its nature and shows that the particle interacts with cells of the space creating elementary excitations called "inertons". The further study has disclosed that inertons are a substructure of the matter waves which are described by the orthodox wave \\psi-function formalism. The c...
Interpreting Quantum Theory : A Therapeutic Approach
Friederich, Simon
2014-01-01
Debates about the foundations of quantum theory usually circle around two main challenges: the so-called 'measurement problem' and a claimed tension between quantum theory and relativity theory that arises from the phenomena labelled 'quantum non-locality'. This work explores the possibility of a 't
Interpreting Quantum Theory : A Therapeutic Approach
Friederich, Simon
2014-01-01
Debates about the foundations of quantum theory usually circle around two main challenges: the so-called 'measurement problem' and a claimed tension between quantum theory and relativity theory that arises from the phenomena labelled 'quantum non-locality'. This work explores the possibility of a 't
The mathematical basis for deterministic quantum mechanics
Hooft, G. 't
2006-01-01
If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint
The mathematical basis for deterministic quantum mechanics
Hooft, G. 't
2007-01-01
If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is
Hierarchical theory of quantum adiabatic evolution
Zhang, Qi; Gong, Jiangbin; Wu, Biao
2014-12-01
Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau-Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory.
Gamification of Quantum Mechanics Teaching
Bjælde, Ole Eggers; Sherson, Jacob
2015-01-01
In this small scale study we demonstrate how a gamified teaching setup can be used effectively to support student learning in a quantum mechanics course. The quantum mechanics games were research games, which were played during lectures and the learning was measured with a pretest/posttest method with promising results. The study works as a pilot study to guide the planning of quantum mechanics courses in the future at Aarhus University in Denmark.
Quantum theory of Thomson scattering
Crowley, B. J. B.; Gregori, G.
2014-12-01
The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the non-relativistic regime, in which account is taken of the Kramers-Heisenberg polarization terms in the Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula for the double differential Thomson scattering cross section in an isotropic finite temperature multi-component system, this work also considers closely related phenomena such as absorption, refraction, Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential relationships between these quantities. In particular, the work introduces the concept of scattering strength and the strength-density field which replaces the normal particle density field in the standard treatment of scattering by a collection of similar particles and it is the decomposition of the strength-density correlation function into more familiar-looking components that leads to the final result. Comparisons are made with previous work, in particular that of Chihara [1].
The black hole information problem beyond quantum theory
Mueller, Markus P; Dahlsten, Oscar C O
2012-01-01
The origin of black hole entropy and the black hole information problem provide important clues for trying to piece together a quantum theory of gravity. Thus far, discussions on this topic have mostly assumed that in a consistent theory of gravity and quantum mechanics, quantum theory will be unmodified. Here, we examine the black hole information problem in the context of generalisations of quantum theory. In particular, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are special cases. We compute the time it takes information to escape a black hole, assuming that information is preserved. We find that under some very general assumptions, the arguments of Page (that information should escape the black hole after half the Hawking photons have been emitted), and the black-hole mirror result of Hayden and Preskill (that information can escape quickly) need to be modified. The modification is determined entirely by what we cal...
A Quantum Space behind Simple Quantum Mechanics
Directory of Open Access Journals (Sweden)
Chuan Sheng Chew
2017-01-01
Full Text Available In physics, experiments ultimately inform us about what constitutes a good theoretical model of any physical concept: physical space should be no exception. The best picture of physical space in Newtonian physics is given by the configuration space of a free particle (or the center of mass of a closed system of particles. This configuration space (as well as phase space can be constructed as a representation space for the relativity symmetry. From the corresponding quantum symmetry, we illustrate the construction of a quantum configuration space, similar to that of quantum phase space, and recover the classical picture as an approximation through a contraction of the (relativity symmetry and its representations. The quantum Hilbert space reduces into a sum of one-dimensional representations for the observable algebra, with the only admissible states given by coherent states and position eigenstates for the phase and configuration space pictures, respectively. This analysis, founded firmly on known physics, provides a quantum picture of physical space beyond that of a finite-dimensional manifold and provides a crucial first link for any theoretical model of quantum space-time at levels beyond simple quantum mechanics. It also suggests looking at quantum physics from a different perspective.
Factorization Method in Quantum Mechanics
Dong, Shi-Hai
2007-01-01
This Work introduces the factorization method in quantum mechanics at an advanced level with an aim to put mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the Reader’s disposal. For this purpose a comprehensive description is provided of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. Related to this classic method are the supersymmetric quantum mechanics, shape invariant potentials and group theoretical approaches. It is no exaggeration to say that this method has become the milestone of these approaches. In fact the Author’s driving force has been his desire to provide a comprehensive review volume that includes some new and significant results about the factorization method in quantum mechanics since the literature is inundated with scattered articles in this field, and to pave the Reader’s way into ...
Preskill, John
2016-01-01
This is the 10th and final chapter of my book on Quantum Information, based on the course I have been teaching at Caltech since 1997. An early version of this chapter (originally Chapter 5) has been available on the course website since 1998, but this version is substantially revised and expanded. The level of detail is uneven, as I've aimed to provide a gentle introduction, but I've also tried to avoid statements that are incorrect or obscure. Generally speaking, I chose to include topics that are both useful to know and relatively easy to explain; I had to leave out a lot of good stuff, but on the other hand the chapter is already quite long. This is a working draft of Chapter 10, which I will continue to update. See the URL on the title page for further updates and drafts of other chapters, and please send me an email if you notice errors. Eventually, the complete book will be published by Cambridge University Press.
Decoherence in quantum mechanics and quantum cosmology
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Energy Technology Data Exchange (ETDEWEB)
Whitaker, A [Department of Physics, Queen' s University, Belfast (United Kingdom)
2004-02-27
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried's well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. To sum up, Gottfried and Yan's book contains a vast amount of knowledge and understanding
An Axiomatic Basis for Quantum Mechanics
Cassinelli, Gianni; Lahti, Pekka
2016-10-01
In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivation are the co-ordinatization of generalized geometries and a theorem of Solér which characterizes Hilbert spaces among the orthomodular spaces. A generalized Wigner theorem is applied to reduce some of the assumptions of Solér's theorem to the theory of symmetry in quantum mechanics. Since this reduction is only partial we also point out the remaining open questions.
The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.
Plotnitsky, Arkady
2016-05-28
Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT.
Quantum mechanics and quantum information a guide through the quantum world
Fayngold, Moses
2013-01-01
Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.
An alternative theory for the Bohmian mechanics
Directory of Open Access Journals (Sweden)
MJ Kazemi
2012-09-01
Full Text Available In this article, a causal model on the basis of trajectory is introduced for description of quantum systems. This theory is structurally very similar to Bohme mechanics, and like Bohme theory reproduces all statistical consequences of standard quantum mechanics. Particle trajectories in this model are different from anticipated ones by Bohme model. Quantum potential (force form, which is given, is different from Bohme theory. Actually, this model will convert to Bohme theory by annihilating the free parameter ( μ . Theoretical properties of this model are investigated in the same way as Galilean invariance. Also, a precise comparison between this theory and Bohme mechanics is made, and some suggestions are presented (through transit time distribution for experimental distinction between these two models. Finally, extension of this theory is investigated
Noncommutative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Grosse, H. [Fakultaet fuer Physik, Universitaet Wien, Boltzmanngasse 5, 1090 Wien (Austria); Wulkenhaar, R. [Mathematisches Institut der Westfaelischen Wilhelms-Universitaet, Einsteinstrasse 62, 48149 Muenster (Germany)
2014-09-11
We summarize our recent construction of the φ{sup 4}-model on four-dimensional Moyal space. This is achieved by solving the quartic matrix model for a general external matrix in terms of the solution of a non-linear equation for the 2-point function and the eigenvalues of that matrix. The β-function vanishes identically. For the Moyal model, the theory of Carleman type singular integral equations reduces the construction to a fixed point problem. The resulting Schwinger functions in position space are symmetric and invariant under the full Euclidean group. The Schwinger 2-point function is reflection positive iff the diagonal matrix 2-point function is a Stieltjes function. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum inertia stops superposition: Scan Quantum Mechanics
Gato-Rivera, Beatriz
2017-08-01
Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.
A state-dependent noncontextuality inequality in algebraic quantum theory
Kitajima, Yuichiro
2017-08-01
The noncontextuality condition states that a value of any observable is independent of which other compatible observable is measured jointly with it. Klyachko, Can, Binicioğlu, and Shumovsky have introduced an inequality which holds if there is a noncontextual hidden variable theory. It is called KCBS inequality, which is state-dependent. Its violation shows a contradiction between predictions of quantum theory and noncontextual hidden variable theories. In the present paper, it is shown that there is a state which does not violate KCBS inequality in the case of quantum mechanics of finite degrees of freedom, and that any normal state violates it in the case of algebraic quantum field theory. It is a difference between quantum mechanics of finite degrees of freedom and algebraic quantum field theory from a point of view of KCBS inequality.
Lagrangian-Only Quantum Theory
Wharton, K B
2013-01-01
Despite the importance of the path integral, there have been relatively few attempts to look to the Lagrangian for a more realistic framework that might underlie quantum theory. While such realism is not available for the standard path integral or quantum field theory, a promising alternative is to only consider field histories for which the Lagrangian density is always zero. With this change, it appears possible to replace amplitudes with equally-weighted probabilities. This paper demonstrates a proof-of-principle for this approach, using a toy Lagrangian that corresponds to an arbitrary spin state. In this restricted framework one can derive both the Born rule and its limits of applicability. The fact that the Lagrangian obeys future boundary constraints also results in the first continuous, spacetime-based, hidden-variable description of a Bell-inequality-violating system.
Foundations of quantum theory and quantum information applications
Galvão, E F
2002-01-01
This thesis establishes a number of connections between foundational issues in quantum theory, and some quantum information applications. It starts with a review of quantum contextuality and non-locality, multipartite entanglement characterisation, and of a few quantum information protocols. Quantum non-locality and contextuality are shown to be essential for different implementations of quantum information protocols known as quantum random access codes and quantum communication complexity protocols. I derive sufficient experimental conditions for tests of these quantum properties. I also discuss how the distribution of quantum information through quantum cloning processes can be useful in quantum computing. Regarding entanglement characterisation, some results are obtained relating two problems, that of additivity of the relative entropy of entanglement, and that of identifying different types of tripartite entanglement in the asymptotic regime of manipulations of many copies of a given state. The thesis end...
Popper's test of Quantum Mechanics
Bramon, A
2005-01-01
A test of quantum mechanics proposed by K. Popper and dealing with two-particle entangled states emitted from a fixed source has been criticized by several authors. Some of them claim that the test becomes inconclusive once all the quantum aspects of the source are considered. Moreover, another criticism states that the predictions attributed to quantum mechanics in Popper's analysis are untenable. We reconsider these criticisms and show that, to a large extend, the `falsifiability' potential of the test remains unaffected.
The theoretical foundations of quantum mechanics
Baaquie, Belal E
2013-01-01
The Theoretical Foundations of Quantum Mechanics addresses fundamental issues that are not discussed in most books on quantum mechanics. This book focuses on analyzing the underlying principles of quantum mechanics and explaining the conceptual and theoretical underpinning of quantum mechanics. In particular, the concepts of quantum indeterminacy, quantum measurement and quantum superposition are analyzed to clarify the concepts that are implicit in the formulation of quantum mechanics. The Schrodinger equation is never solved in the book. Rather, the discussion on the fundamentals of quantum mechanics is treated in a rigorous manner based on the mathematics of quantum mechanics. The new concept of the interplay of empirical and trans-empirical constructs in quantum mechanics is introduced to clarify the foundations of quantum mechanics and to explain the counter-intuitive construction of nature in quantum mechanics. The Theoretical Foundations of Quantum Mechanics is aimed at the advanced undergraduate and a...
Semiclassical and quantum Liouville theory
Menotti, Pietro
2005-01-01
We develop a functional integral approach to quantum Liouville field theory completely independent of the hamiltonian approach. To this end on the sphere topology we solve the Riemann-Hilbert problem for three singularities of finite strength and a fourth one infinitesimal, by determining perturbatively the Poincare' accessory parameters. This provides the semiclassical four point vertex function with three finite charges and a fourth infinitesimal. Some of the results are extended to the cas...
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.
Presenting Nonreflexive Quantum Mechanics: Formalism and Metaphysics
Krause, Decio
2015-01-01
Nonreflexive quantum mechanics is a formulation of quantum theory based on a non-classical logic termed \\ita{nonreflexive logic} (a.k.a. `non-reflexive'). In these logics, the standard notion of identity, as encapsulated in classical logic and set theories, does not hold in full. The basic aim of this kind of approach to quantum mechanics is to take seriously the claim made by some authors according to whom quantum particles are \\ita{non-individuals} in some sense, and also to take into account the fact that they may be absolutely indistinguishable (or indiscernible). The nonreflexive formulation of quantum theory assumes these features of the objects already at the level of the underlying logic, so that no use is required of symmetrization postulates or other mathematical devices that serve to pretend that the objects are indiscernible (when they are not: all objects that obey classical logic are \\ita{individuals} in a sense). Here, we present the ideas of the development of nonreflexive quantum mechanics an...
Noncommutative Quantum Mechanics and Quantum Cosmology
Bastos, Catarina; Dias, Nuno; Prata, Joao Nuno
2009-01-01
We present a phase-space noncommutative version of quantum mechanics and apply this extension to Quantum Cosmology. We motivate this type of noncommutative algebra through the gravitational quantum well (GQW) where the noncommutativity between momenta is shown to be relevant. We also discuss some qualitative features of the GQW such as the Berry phase. In the context of quantum cosmology we consider a Kantowski-Sachs cosmological model and obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten (SW) map. The WDW equation is explicitly dependent on the noncommutative parameters, $\\theta$ and $\\eta$. We obtain numerical solutions of the noncommutative WDW equation for different values of the noncommutative parameters. We conclude that the noncommutativity in the momenta sector leads to a damped wave function implying that this type of noncommmutativity can be relevant for a selection of possible initial states for the universe.
Relativistic quantum information theory and quantum reference frames
Palmer, Matthew C
2013-01-01
This thesis is a compilation of research in relativistic quantum information theory, and research in quantum reference frames. The research in the former category provides a fundamental construction of quantum information theory of localised qubits in curved spacetimes. For example, this concerns quantum experiments on free-space photons and electrons in the vicinity of the Earth. From field theory a description of localised qubits that traverse classical trajectories in curved spacetimes is obtained, for photons and massive spin-1/2 fermions. The equations governing the evolution of the two-dimensional quantum state and its absolute phase are determined. Quantum information theory of these qubits is then developed. The Stern-Gerlach measurement formalism for massive spin-1/2 fermions is also derived from field theory. In the latter category of research, the process of changing reference frames is considered for the case where the reference frames are quantum systems. As part of this process, it is shown that...
Quantum mechanics of molecular structures
Yamanouchi, Kaoru
2012-01-01
At a level accessible to advanced undergraduates, this textbook explains the fundamental role of quantum mechanics in determining the structure, dynamics, and other properties of molecules. Readers will come to understand the quantum-mechanical basis for harmonic oscillators, angular momenta and scattering processes. Exercises are provided to help readers deepen their grasp of the essential phenomena.
Lecture Notes in Quantum Mechanics
Cohen, D
2006-01-01
These lecture notes cover undergraduate textbook topics (e.g. as in Sakurai), and also additional advanced topics at the same level of presentation. In particular: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; The adiabatic picture; Berry phase; Linear response theory; Kubo formula; Modern approach to scattering theory with mesoscopic orientation; Theory of the resolvent and the Green function; Gauge and Galilei Symmetries; Motion in magnetic field; Quantum Hall effect; Quantization of the electromagnetic field; Fock space formalism.
Origin of quantum randomness in the pilot wave quantum mechanics
Shtanov, Yuri
1997-01-01
We account for the origin of the laws of quantum probabilities in the de Broglie-Bohm (pilot wave) formulation of quantum theory by considering the property of ergodicity likely to characterise the dynamics of microscopic quantum systems.
On Finite $J$-Hermitian Quantum Mechanics
Lee, Sungwook
2014-01-01
In his recent paper arXiv:1312.7738, the author discussed $J$-Hermitian quantum mechanics and showed that $PT$-symmetric quantum mechanics is essentially $J$-Hermitian quantum mechanics. In this paper, the author discusses finite $J$-Hermitian quantum mechanics which is derived naturally from its continuum one and its relationship with finite $PT$-symmetric quantum mechanics.
Is String Interactions the Origin of Quantum Mechanics?
Bars, Itzhak
2014-01-01
String theory developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend open string field theory is a fully consistent definition of the theory - it is at least a self consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions, thus deriving rather than assuming the quantum commutation rules among the usual canonical quantum variables for all physical systems derivable from open string field theory. Morally we would apply such an argument to M-theory to cover all physics. If string or M-theory theory really underlies all physics, it seems that the door has been opened to an understanding of the origins of quantum mechanics.
Modern Approach to Quantum Mechanics
Townsend, John S.
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics lets professors expose their undergraduates to the excitement and insight of Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical, and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new: Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems gives students something new and interesting while providing elegant but straightforward examples of the essential structure of quantum mechanics. When wave mechanics is introduced later, students perceive it correctly as only one aspect of quantum mechanics and not the core of the subject. Praised for its pedagogical brilliance, clear writing, and careful explanations, this book is destined to become a landmark text.
Quantum Mechanics as Quantum Information (and only a little more)
Fuchs, C
2002-01-01
In this paper, I try once again to cause some good-natured trouble. The issue remains, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance. In this regard, no tool appears better calibrated for a direct assault than quantum information theory. Far from a strained application of the latest fad to a time-honored problem, this method holds promise precisely because a large part--but not all--of the structure of quantum theory has always concerned information. It is just that the physics community needs reminding. This paper, though taking quant-ph/0106166 as its core, corrects one mistake and offers several observations beyond the previous version. In particular, I identify one element of quantum mechanics that I would not label a subjective term in the theory--it is the in...
What information theory can tell us about quantum reality
Adami, C
1998-01-01
An investigation of Einstein's ``physical'' reality and the concept of quantum reality in terms of information theory suggests a solution to quantum paradoxes such as the Einstein-Podolsky-Rosen (EPR) and the Schroedinger-cat paradoxes. Quantum reality, the picture based on unitarily evolving wavefunctions, is complete, but appears incomplete from the observer's point of view for fundamental reasons arising from the quantum information theory of measurement. Physical reality, the picture based on classically accessible observables is, in the worst case of EPR experiments, unrelated to the quantum reality it purports to reflect. Thus, quantum information theory implies that only correlations, not the correlata, are physically accessible: the mantra of the Ithaca interpretation of quantum mechanics.
Potentiality, Actuality, and Quantum Mechanics
Directory of Open Access Journals (Sweden)
Boris Koznjak
2007-12-01
Full Text Available In this paper a possible interpretative value of Aristotle’s fundamental ontological doctrine of potentiality (δύναµις and actuality (ἐνέργεια is considered in the context of operationally undoubtedly the most successful but interpretatively still controversial theory of modern physics – quantum mechanics – especially regarding understanding the nature of the world, the phenomena of which it describes and predicts so successfully. In particular, beings of the atomic world are interpreted as real potential beings (δυνάµει ὄντα actualized by the measurement process in appropriate experimental arrangement, and the problem of actual beings (ἐνεργείᾳ ὄντα of the atomic world (better known as the measurement problem in quantum mechanics is considered in the context of Aristotle’s threefold requirement for the priority of actuality over potentiality – in time (χρόνος, definition or knowledge (λόγος, and substantiality (οὐσία.
Quantum cellular automaton theory of light
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-01
We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space-time and mechanics (D'Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts.
Quantum cellular automaton theory of light
Energy Technology Data Exchange (ETDEWEB)
Bisio, Alessandro, E-mail: alessandro.bisio@unipv.it; D’Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-15
We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space–time and mechanics (D’Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts.
A new interpretation of quantum mechanics
Golovko, V A
2016-01-01
The present paper is based upon equations obtained in an earlier paper by the author devoted to a new formulation of quantum electrodynamics. The equations describe the structure of the electron as well as its motion in external fields, interaction with a measuring apparatus inclusive, in a deterministic manner without any jumps. Quantum mechanics is an approximate theory because its equations follow from the above equations upon neglecting the self-field of the electron itself. Just this leads to paradoxes, seeming contradictions and jumps in quantum mechanics. The quantum mechanical wavefunction has a dual interpretation. In some problems the square of its modulus represents a real distribution of the electronic density while in others the same square determines the probability distribution of coordinates. It is shown why, given the different interpretations of the wavefunction, it satisfies one and the same Dirac or Schr\\"odinger equation. Description of many-electron systems is also considered in the star...
Quantum principal bundles and corresponding gauge theories
Durdevic, M
1995-01-01
A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.
Kisil, Vladimir V.
2004-01-01
The orbit method of Kirillov is used to derive the p-mechanical brackets [math-ph/0007030, quant-ph/0212101]. They generate the quantum (Moyal) and classic (Poisson) brackets on respective orbits corresponding to representations of the Heisenberg group. The extension of p-mechanics to field theory is made through the De Donder--Weyl Hamiltonian formulation. The principal step is the substitution of the Heisenberg group with Galilean. Keywords: Classic and quantum mechanics, Moyal brackets, Po...
The conceptual foundations of quantum mechanics
Eisenbud, Leonard
2007-01-01
This book provides a clear and logical path to understanding what quantum mechanics is about. It will be accessible to undergraduates with minimal mathematical preparation: all that is required is an open mind, a little algebra, and a first course in undergraduate physics. Quantum mechanics is arguably the most successful physical theory. It makes predictions of incredible accuracy. It provides the structure underlying all of our electronic technology, and much of our mastery over materials. But compared with Newtonian mechanics, or even relativity, its teachings seem obscure-they have no coun
Quantum Cohomology and Quantum Hydrodynamics from Supersymmetric Quiver Gauge Theories
Bonelli, Giulio; Tanzini, Alessandro; Vasko, Petr
2015-01-01
We study the connection between N = 2 supersymmetric gauge theories, quantum cohomology and quantum integrable systems of hydrodynamic type. We consider gauge theories on ALE spaces of A and D-type and discuss how they describe the quantum cohomology of the corresponding Nakajima's quiver varieties. We also discuss how the exact evaluation of local BPS observables in the gauge theory can be used to calculate the spectrum of quantum Hamiltonians of spin Calogero integrable systems and spin Intermediate Long Wave hydrodynamics. This is explicitly obtained by a Bethe Ansatz Equation provided by the quiver gauge theory in terms of its adjacency matrix.
Quantum cohomology and quantum hydrodynamics from supersymmetric quiver gauge theories
Bonelli, Giulio; Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr
2016-11-01
We study the connection between N = 2 supersymmetric gauge theories, quantum cohomology and quantum integrable systems of hydrodynamic type. We consider gauge theories on ALE spaces of A and D-type and discuss how they describe the quantum cohomology of the corresponding Nakajima's quiver varieties. We also discuss how the exact evaluation of local BPS observables in the gauge theory can be used to calculate the spectrum of quantum Hamiltonians of spin Calogero integrable systems and spin Intermediate Long Wave hydrodynamics. This is explicitly obtained by a Bethe Ansatz Equation provided by the quiver gauge theory in terms of its adjacency matrix.
Quantum theory allows for absolute maximal contextuality
Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán
2015-12-01
Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.
Mathematical foundation of quantum mechanics
Parthasarathy, K R
2005-01-01
This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations ...
The decoupling approach to quantum information theory
Dupuis, Frédéric
2010-01-01
Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and ha...
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Goyal, Philip; Skilling, John
2009-01-01
Complex numbers are an intrinsic part of the mathematical formalism of quantum theory, and are perhaps its most mysterious feature. In this paper, we show that it is possible to derive the complex nature of the quantum formalism directly from the assumption that a pair of real numbers is associated to each sequence of measurement outcomes, and that the probability of this sequence is a real-valued function of this number pair. By making use of elementary symmetry and consistency conditions, and without assuming that these real number pairs have any other algebraic structure, we show that these pairs must be manipulated according to the rules of complex arithmetic. We demonstrate that these complex numbers combine according to Feynman's sum and product rules, with the modulus-squared yielding the probability of a sequence of outcomes.
Topological strings from quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Grassi, Alba; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematique; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2014-12-15
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P{sup 2}, local P{sup 1} x P{sup 1} and local F{sub 1}. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics
Grössing, Gerhard
2015-10-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory
A first course in topos quantum theory
Energy Technology Data Exchange (ETDEWEB)
Flori, Cecilia [Perimeter Institute for Theoretical Studies, Waterloo, ON (Canada)
2013-06-01
Written by a leading researcher in the field. Concise course-tested textbook. Includes worked-out problems In the last five decades various attempts to formulate theories of quantum gravity have been made, but none has fully succeeded in becoming the quantum theory of gravity. One possible explanation for this failure might be the unresolved fundamental issues in quantum theory as it stands now. Indeed, most approaches to quantum gravity adopt standard quantum theory as their starting point, with the hope that the theory's unresolved issues will get solved along the way. However, these fundamental issues may need to be solved before attempting to define a quantum theory of gravity. The present text adopts this point of view, addressing the following basic questions: What are the main conceptual issues in quantum theory? How can these issues be solved within a new theoretical framework of quantum theory? A possible way to overcome critical issues in present-day quantum physics - such as a priori assumptions about space and time that are not compatible with a theory of quantum gravity, and the impossibility of talking about systems without reference to an external observer - is through a reformulation of quantum theory in terms of a different mathematical framework called topos theory. This course-tested primer sets out to explain to graduate students and newcomers to the field alike, the reasons for choosing topos theory to resolve the above-mentioned issues and how it brings quantum physics back to looking more like a ''neo-realist'' classical physics theory again.
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
Is string interaction the origin of quantum mechanics?
Directory of Open Access Journals (Sweden)
Itzhak Bars
2014-12-01
Full Text Available String theory was developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend that open string field theory is a fully consistent definition of the theory – it is at least a self-consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions. Thus, rather than assuming the quantum commutation rules among the usual canonical variables we derive them from the physical process of string interactions. Morally we could apply such an argument to M-theory to cover quantum mechanics for all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an explanation of the origins of quantum mechanics from the physical processes point of view.
A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation
Lomonaco, S J
2000-01-01
The purpose of these lecture notes is to provide readers, who have some mathematical background but little or no exposure to quantum mechanics and quantum computation, with enough material to begin reading the research literature in quantum computation and quantum information theory. This paper is a written version of the first of eight one hour lectures given in the American Mathematical Society (AMS) Short Course on Quantum Computation held in conjunction with the Annual Meeting of the AMS in Washington, DC, USA in January 2000, and will appear in the AMS PSAPM volume entitled "Quantum Computation." Part 1 of the paper is an introduction the to the concept of the qubit. Part 2 gives an introduction to quantum mechanics covering such topics as Dirac notation, quantum measurement, Heisenberg uncertainty, Schrodinger's equation, density operators, partial trace, multipartite quantum systems, the Heisenberg versus the Schrodinger picture, quantum entanglement, EPR paradox, quantum entropy. Part 3 gives a brief ...
Quantum mechanics in Hilbert space
Prugovecki, Eduard
2006-01-01
A critical presentation of the basic mathematics of nonrelativistic quantum mechanics, this text is suitable for courses in functional analysis at the advanced undergraduate and graduate levels. Its readable and self-contained form is accessible even to students without an extensive mathematical background. Applications of basic theorems to quantum mechanics make it of particular interest to mathematicians working in functional analysis and related areas.This text features the rigorous proofs of all the main functional-analytic statements encountered in books on quantum mechanics. It fills the
Linear operators for quantum mechanics
Jordan, Thomas F
2006-01-01
This compact treatment highlights the logic and simplicity of the mathematical structure of quantum mechanics. Suitable for advanced undergraduates and graduate students, it treats the language of quantum mechanics as expressed in the mathematics of linear operators.Originally oriented toward atomic physics, quantum mechanics became a basic language for solid-state, nuclear, and particle physics. Its grammar consists of the mathematics of linear operators, and with this text, students will find it easier to understand and use the language of physics. Topics include linear spaces and linear fun
BOOK REVIEWS: Quantum Mechanics: Fundamentals
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a
Quantum Theory of Continuum Optomechanics
Rakich, Peter
2016-01-01
We present the basic ingredients of continuum optomechanics, i.e. the suitable extension of cavity-optomechanical concepts to the interaction of photons and phonons in an extended waveguide. We introduce a real-space picture and argue which coupling terms may arise in leading order in the spatial derivatives. This picture allows us to discuss quantum noise, dissipation, and the correct boundary conditions at the waveguide entrance. The connections both to optomechanical arrays as well as to the theory of Brillouin scattering in waveguides are highlighted. We identify the 'strong coupling regime' of continuum optomechanics that may be accessible in future experiments.
Advanced quantum mechanics materials and photons
Dick, Rainer
2012-01-01
Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...
Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics
Jaksic, V; Pillet, C -A; Seiringer, R
2011-01-01
We extend the mathematical theory of quantum hypothesis testing to the general $W^*$-algebraic setting and explore its relation with recent developments in non-equilibrium quantum statistical mechanics. In particular, we relate the large deviation principle for the full counting statistics of entropy flow to quantum hypothesis testing of the arrow of time.
Anyons in quantum mechanics with a minimal length
Buisseret, Fabien
2016-01-01
The existence of anyons, \\textit{i.e.} quantum states with an arbitrary spin, is a generic feature of standard quantum mechanics in $(2+1)-$dimensional Minkowski spacetime. Here it is shown that relativistic anyons may exist also in quantum theories where a minimal length is present. The interplay between minimal length and arbitrary spin effects are discussed.
A first course in topos quantum theory
Flori, Cecilia
2013-01-01
In the last five decades various attempts to formulate theories of quantum gravity have been made, but none has fully succeeded in becoming the quantum theory of gravity. One possible explanation for this failure might be the unresolved fundamental issues in quantum theory as it stands now. Indeed, most approaches to quantum gravity adopt standard quantum theory as their starting point, with the hope that the theory’s unresolved issues will get solved along the way. However, these fundamental issues may need to be solved before attempting to define a quantum theory of gravity. The present text adopts this point of view, addressing the following basic questions: What are the main conceptual issues in quantum theory? How can these issues be solved within a new theoretical framework of quantum theory? A possible way to overcome critical issues in present-day quantum physics – such as a priori assumptions about space and time that are not compatible with a theory of quantum gravity, and the impossibility o...
Time Asymmetric Quantum Mechanics
National Research Council Canada - National Science Library
Arno R Bohm; Manuel Gadella; Piotr Kielanowski
2011-01-01
The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1...
Energy Technology Data Exchange (ETDEWEB)
Mills, R.L. [BlackLight Power, Inc., Cranbury, NJ (United States)
2001-10-01
addressed. It is time for the physical rather than the mathematical nature of the wave function to be determined. A theory of classical quantum mechanics (CQM) was derived from first principles by Mills (The grand unified theory of classical quantum mechanics. January 2000 ed; Cranbury, NJ, 2000, BlackLight Power, Inc., (Distributed by Amazon.com; Posted at www.blacklightpower.com)) that successfully applies physical laws on all scales. Using the classical wave equation with the constraint of nonradiation based on Maxwell's equations, CQM gives closed form physical solutions for the electron in atoms, the free electron, and the free electron in superfluid helium. The prediction of fractional principal quantum energy states of the electron in liquid helium match the photoconductivity and mobility observations without requiring that the electron is divisible. (author)
Quantum Theories of Self-Localization
Bernstein, Lisa Joan
In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.
Neutrix Calculus and Finite Quantum Field Theory
Ng, Y J
2004-01-01
In general, quantum field theories require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like QED are not convergent series, but are asymptotic series in their interaction couplings. We propose to apply neutrix calculus, developed by van der Corput and Hadamard in connection with asymptotic series, to tackle divergent integrals, yielding finite renormalizations for the parameters in quantum field theories. We observe that quantum gravity theories are rendered more manageable, and that both renormalizable field theories and effective field theories can be accommodated in the framework of neutrix calculus.
Quantum mechanics new approaches to selected topics
Lipkin, Harry J
2007-01-01
Acclaimed as ""excellent"" (Nature) and ""very original and refreshing"" (Physics Today), this collection of self-contained studies is geared toward advanced undergraduates and graduate students. Its broad selection of topics includes the Mössbauer effect, many-body quantum mechanics, scattering theory, Feynman diagrams, and relativistic quantum mechanics.Author Harry J. Lipkin, a well-known teacher at Israel's Weizmann Institute, takes an unusual approach by introducing many interesting physical problems and mathematical techniques at a much earlier point than in conventional texts. This meth
The role of quantum discord in quantum information theory
Energy Technology Data Exchange (ETDEWEB)
Streltsov, Alexander [ICFO - The Institute of Photonic Sciences, Castelldefels (Spain)
2014-07-01
Quantum correlations beyond entanglement - in particular represented by quantum discord - have become a major research field in the last few years. In this talk we report on the role of quantum discord in several fundamental tasks in quantum information theory. Starting with the role of quantum discord in the quantum measurement process, we also discuss its role in the tasks of information sharing and entanglement distribution. Finally, we also show the limits of these results and present possible ways to go beyond these limits.
Unusual signs in quantum field theory
O'Connell, Donal
Quantum field theory is by now a mature field. Nevertheless, certain physical phenomena remain difficult to understand. This occurs in some cases because well-established quantum field theories are strongly coupled and therefore difficult to solve; in other cases, our current understanding of quantum field theory seems to be inadequate. In this thesis, we will discuss various modifications of quantum field theory which can help to alleviate certain of these problems, either in their own right or as a component of a greater computational scheme. The modified theories we will consider all include unusual signs in some aspect of the theory. We will also discuss limitations on what we might expect to see in experiments, imposed by sign constraints in the customary formulation of quantum field theory.
Noncommunting observables in quantum detection and estimation theory
Helstrom, C. W.
1971-01-01
In quantum detection theory the optimum detection operators must commute; admitting simultaneous approximate measurement of noncommuting observables cannot yield a lower Bayes cost. The lower bounds on mean square errors of parameter estimates predicted by the quantum-mechanical Cramer-Rao inequality can also not be reduced by such means.
[The concepts of quantum theory can be introduced into psychophysiology].
Shuĭkin, N N
1998-01-01
There are some ideas in the quantum mechanics, which may be assimilated by psychophysiology. The concept of interference alternatives, advanced by Richard Feynman, may extend the subject matter of the notion of need. The quantum theory assumes virtual transitions. The idea of the physical virtual process may be the rational basis for subjective reality.
Quantum mechanics principles and formalism
McWeeny, Roy
2012-01-01
Focusing on main principles of quantum mechanics and their immediate consequences, this graduate student-oriented volume develops the subject as a fundamental discipline, opening with review of origins of Schrödinger's equations and vector spaces.
Quantum mechanical description of waveguides
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Yong; Xiong Cai-Dong; He Bing
2008-01-01
Applying the spinor representation of the electromagnetic field,this paper present a quantum-mechanical description of waveguides.As an example of application,a potential qubit generated by photon tunnelling is discussed.
Quantum Mechanics and Common Sense
Gantsevich, S V
2016-01-01
A physical picture for Quantum Mechanics which permits to conciliate it with the usual common sense is proposed. The picture agrees with the canonical Copenhagen interpretation making more clear its statements.
Quantum mechanics I the fundamentals
Rajasekar, S
2015-01-01
Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems.
Directory of Open Access Journals (Sweden)
Gift S.
2009-01-01
Full Text Available In this paper, a new Quantum Theory of Magnetic Interaction is proposed. This is done under a relaxation of the requirement of covariance for Lorentz Boost Transformations. A modified form of local gauge invariance in which fermion field phase is allowed to vary with each space point but not each time point, leads to the introduction of a new compensatory field different from the electromagnetic field associated with the photon. This new field is coupled to the magnetic flux of the fermions and has quanta called magnatons, which are massless spin 1 particles. The associated equation of motion yields the Poisson equation for magnetostatic potentials. The magnatons mediate the magnetic interaction between magnetic dipoles including magnets and provide plausi- ble explanations for the Pauli exclusion principle, Chemical Reactivity and Chemical Bonds. This new interaction has been confirmed by numerical experiments. It estab- lishes magnetism as a force entirely separate from the electromagnetic interaction and converts all of classical magnetism into a quantum theory.
Quantum mechanics in complex systems
Hoehn, Ross Douglas
. These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of
Motivating quantum field theory: the boosted particle in a box
Vutha, Amar C
2013-01-01
It is a maxim often stated, yet rarely illustrated, that the combination of special relativity and quantum mechanics necessarily leads to quantum field theory. An elementary illustration is provided, using the familiar particle in a box, boosted to relativistic speeds. It is shown that quantum fluctuations of momentum lead to energy fluctuations, that are inexplicable without a framework that endows the vacuum with dynamical degrees of freedom and allows particle creation/annihilation.
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the
Non-locality beyond quantum mechanics
Popescu, Sandu
2010-01-01
Quantum mechanics is, without any doubt, a tremendously successful theory: it started by explaining black-body radiation and the photoelectric effect, it explained the spectra of atoms, and then went on to explain chemical bonds, the structure of atoms and of the atomic nucleus, the properties of crystals and the elementary particles, and a myriad of other phenomena. Yet it is safe to say that we still lack a deep understanding of quantum mechanics – surprising and even puzzling new effects continue to be discovered with regularity. That we are surprised and puzzled is the best sign that we still don't understand; however, the veil over the mysteries of quantum mechanics is starting to lift a little.
Introductory Lectures on Quantum Field Theory
Alvarez-Gaumé, Luís
2014-01-01
In these lectures we present a few topics in Quantum Field Theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to Particle Physics and String Theory.
Einstein's strugges with quantum theory a reappraisal
Home, Dipankar
2007-01-01
Einstein’s Struggles with Quantum Theory: A Reappraisal by Dipankar Home and Andrew Whitaker provides a detailed account of Albert Einstein’s thinking in regard to quantum physics. Until recently, most of Einstein’s views on quantum physics were dismissed and even ridiculed; some critics even suggested that Einstein was not able to grasp the complexities of the formalism of quantum theory and subtleties of the standard interpretation of this theory known as the Copenhagen interpretation put forward by Niels Bohr and his colleagues. But was that true? Modern scholarship argues otherwise, insist Drs. Home and Whitaker, who painstakingly explain the questions Einstein raised as well as offer a detailed discussion of Einstein’s position and major contributions to quantum theory, connecting them with contemporary studies on fundamental aspects of this theory. This unique book presents a mathematical as well as a non-mathematical route through the theories, controversies, and investigations, making the disc...
Quantum mechanics in a nutshell
Mahan, Gerald D
2009-01-01
Covering the fundamentals as well as many special topics of current interest, this is the most concise, up-to-date, and accessible graduate-level textbook on quantum mechanics available. Written by Gerald Mahan, a distinguished research physicist and author of an acclaimed textbook on many-particle physics, Quantum Mechanics in a Nutshell is the distillation of many years' teaching experience. Emphasizing the use of quantum mechanics to describe actual quantum systems such as atoms and solids, and rich with interesting applications, the book proceeds from solving for the properties of a single particle in potential; to solving for two particles (the helium atom); to addressing many-particle systems. Applications include electron gas, magnetism, and Bose-Einstein Condensation; examples are carefully chosen and worked; and each chapter has numerous homework problems, many of them original
Statistical approach to quantum field theory an introduction
Wipf, Andreas
2013-01-01
Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an “experimental” tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems w...
Quantum theory at the crossroads reconsidering the 1927 Solvay conference
Bacciagaluppi, Guido
2009-01-01
We reconsider the crucial 1927 Solvay conference in the context of current research in the foundations of quantum theory. Contrary to folklore, the interpretation question was not settled at this conference and no consensus was reached; instead, a range of sharply conflicting views were presented and extensively discussed. Today, there is no longer an established or dominant interpretation of quantum theory, so it is important to re-evaluate the historical sources and keep the interpretation debate open. In this spirit, we provide a complete English translation of the original proceedings (lectures and discussions), and give background essays on the three main interpretations presented: de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schroedinger's wave mechanics. We provide an extensive analysis of the lectures and discussions that took place, in the light of current debates about the meaning of quantum theory. The proceedings contain much unexpected material, including extensive...
Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference
Bacciagaluppi, G; Bacciagaluppi, Guido; Valentini, Antony
2006-01-01
We reconsider the crucial 1927 Solvay conference in the context of current research in the foundations of quantum theory. Contrary to folklore, the interpretation question was not settled at this conference and no consensus was reached; instead, a range of sharply conflicting views were presented and extensively discussed. Today, there is no longer an established or dominant interpretation of quantum theory, so it is important to re-evaluate the historical sources and keep the interpretation debate open. In this spirit, we provide a complete English translation of the original proceedings (lectures and discussions), and give background essays on the three main interpretations presented: de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schroedinger's wave mechanics. We provide an extensive analysis of the lectures and discussions that took place, in the light of current debates about the meaning of quantum theory. The proceedings contain much unexpected material, including extensive...
Mathematical foundations of quantum mechanics
Mackey, George W
2004-01-01
Designed for students familiar with abstract mathematical concepts but possessing little knowledge of physics, this text focuses on generality and careful formulation rather than problem-solving. Its author, a member of the distinguished National Academy of Science, based this graduate-level text on the course he taught at Harvard University.Opening chapters on classical mechanics examine the laws of particle mechanics; generalized coordinates and differentiable manifolds; oscillations, waves, and Hilbert space; and statistical mechanics. A survey of quantum mechanics covers the old quantum
Quantum entanglement: theory and applications
Energy Technology Data Exchange (ETDEWEB)
Schuch, N.
2007-10-10
This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum
Theory of controlled quantum dynamics
De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio
1997-01-01
We introduce a general formalism, based on the stochastic formulation of quantum mechanics, to obtain localized quasi-classical wave packets as dynamically controlled systems, for arbitrary anharmonic potentials. The control is in general linear, and it amounts to introduce additional quadratic and linear time-dependent terms to the given potential. In this way one can construct for general systems either coherent packets moving with constant dispersion, or dynamically squeezed packets whose spreading remains bounded for all times. In the standard operatorial framework our scheme corresponds to a suitable generalization of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator.
Quantum theory, deformation and integrability
Carroll, R
2000-01-01
About four years ago a prominent string theorist was quoted as saying that it might be possible to understand quantum mechanics by the year 2000. Sometimes new mathematical developments make such understanding appear possible and even close, but on the other hand, increasing lack of experimental verification make it seem to be further distant. In any event one seems to arrive at new revolutions in physics and mathematics every year. This book hopes to convey some of the excitment of this period, but will adopt a relatively pedestrian approach designed to illuminate the relations between qua
The Quantum Theory of Magnetism
Majlis, Norberto
2000-01-01
This book is intended as a basic text for a two-term graduate course for physicists, engineers and chemists with a background in quantum and statistical mechanics. What sets it apart from other publications on the subject is its extensive use of Greenâ€™s function techniques and its detailed discussion of the application of the mean-field approximation and dipoleâ€"dipole interactions in one, two and three dimensions. A chapter each has been devoted to low-dimensional systems, surface magnetism and layered systems. A total of 60 exercises have also been included.
De Sitter Symmetry and Quantum Theory
Lev, Felix M
2011-01-01
De Sitter symmetry on quantum level implies that operators describing a given system satisfy commutation relations of the de Sitter algebra. This approach gives a new perspective on fundamental notions of quantum theory. We discuss applications of the approach to the cosmological constant problem, gravity and particle theory.
A nilpotent symmetry of quantum gauge theories
Lahiri, Amitabha
2001-09-01
For the Becchi-Rouet-Stora-Tyutin invariant extended action for any gauge theory, there exists another off-shell nilpotent symmetry. For linear gauges, it can be elevated to a symmetry of the quantum theory and used in the construction of the quantum effective action. Generalizations for nonlinear gauges and actions with higher-order ghost terms are also possible.
Quantum tunneling and field electron emission theories
Liang, Shi-Dong
2013-01-01
Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f
Quantum theory of the solid state
Callaway, Joseph
1991-01-01
This new edition presents a comprehensive, up-to-date survey of the concepts and methods in contemporary condensed matter physics, emphasizing topics that can be treated by quantum mechanical methods. The book features tutorial discussions of a number of current research topics.Also included are updated treatments of topics that have developed significantly within the past several years, such as superconductivity, magnetic impurities in metals, methods for electronic structure calculations, magnetic ordering in insulators and metals, and linear response theory. Advanced level graduate students
Energy Technology Data Exchange (ETDEWEB)
Bennett, C.L.
1987-11-01
It is pointed out that both classical Wheeler-Feynman electrodynamics and its finite quantized generalization inevitably lead to microscopic causality violation. As there is some evidence for such effects in proton Compton scattering, there is possibly reason to prefer such absorber theories of action at a distance over field theories as the more reasonable microscopic description of nature.
Quantum Mechanics and Narratability
Myrvold, Wayne C.
2016-07-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
The cellular automaton interpretation of quantum mechanics
't Hooft, Gerard
2016-01-01
This book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft. Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory. The book presents examples of models that are classical in essence, but can be analysed by the use of quantum techniques, and argues that even the Standard Model, together with gravitational interactions, might be viewed as a quantum mechanical approach to analysing a system that could be classical at its core. He shows how this approach, even though it is based on hidden variables, can be plausibly reconciled with Bell's theorem, and how the usual objections voiced against the idea of ‘superdeterminism' can be overcome, at least in principle. This framework elegantly explains - and automatically cures - the problems of...
Quantum mechanical coherence, resonance, and mind
Energy Technology Data Exchange (ETDEWEB)
Stapp, H.P.
1995-03-26
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Quantum mechanical coherence, resonance, and mind
Stapp, Henry P
1995-01-01
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Practical quantum mechanics modern tools and applications
Manousakis, Efstratios
2016-01-01
Quantum mechanics forms the foundation of all modern physics, including atomic, nuclear, and molecular physics, the physics of the elementary particles, condensed matter physics. Modern astrophysics also relies heavily on quantum mechanics. Quantum theory is needed to understand the basis for new materials, new devices, the nature of light coming from stars, the laws which govern the atomic nucleus, and the physics of biological systems. As a result the subject of this book is a required course for most physics graduate students. While there are many books on the subject, this book targets specifically graduate students and it is written with modern advances in various fields in mind. Many examples treated in the various chapters as well as the emphasis of the presentation in the book are designed from the perspective of such problems. For example, the book begins by putting the Schrodinger equation on a spatial discrete lattice and the continuum limit is also discussed, inspired by Hamiltonian lattice gauge ...
Haag's theorem in renormalised quantum field theories
Klaczynski, Lutz
2016-01-01
We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption.
Reconstruction and Reinvention in Quantum Theory
Dickson, Michael
2015-10-01
I consider the fact that there are a number of interesting ways to `reconstruct' quantum theory, and suggest that, very broadly speaking, a form of `instrumentalism' makes good sense of the situation. This view runs against some common wisdom, which dismisses instrumentalism as `cheap'. In contrast, I consider how an instrumentalist might think about the reconstruction theorems, and, having made a distinction between `reconstructing' quantum theory and `reinventing' quantum theory, I suggest that there is an adequate (not `cheap') instrumentalist approach to the theory (and to these theorems) that invokes both.
Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology
Barvinsky, A. O.
2014-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining...
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
The geometrical structure of quantum theory as a natural generalization of information geometry
Energy Technology Data Exchange (ETDEWEB)
Reginatto, Marcel [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
2015-01-13
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
Quantum field theory for the gifted amateur
Lancaster, Tom
2014-01-01
Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Quantum theory of the optical and electronic properties of semiconductors
Haug, Hartmut
2009-01-01
This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, the resu...
Noldus, Johan
2005-01-01
This paper can be seen as an exercise in how to adapt quantum mechanics from a strict relativistic perspective while being respectful and critical towards the experimental achievements of the contemporary theory. The result is a fully observer independent relativistic quantum mechanics for N particle systems without tachyonic solutions. A remaining worry for the moment is Bell's theorem.
Quantum mechanics emerging from stochastic dynamics of virtual particles
Tsekov, R
2015-01-01
It is demonstrated how quantum mechanics emerges from the stochastic dynamics of force-carriers. It is shown that the quantum Moyal equation corresponds to some dynamic correlations between the momentum of a real particle and the position of a virtual particle, which are not present in classical mechanics. The new concept throws light on the physical meaning of quantum theory, showing that the Planck constant square is a second-second cross-cumulant. The novel approach to quantum systems is extended to the relativistic case and an expression is derived for the relativistic mass in the Wigner quantum phase-space.
Beyond relativity and quantum mechanics: space physics
Lindner, Henry H.
2011-09-01
Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.
Galoisian Approach to Supersymmetric Quantum Mechanics
Acosta-Humanez, Primitivo B
2009-01-01
This thesis is concerning to the Differential Galois Theory point of view of the Supersymmetric Quantum Mechanics. The main object considered here is the non-relativistic stationary Schr\\"odinger equation, specially the integrable cases in the sense of the Picard-Vessiot theory and the main algorithmic tools used here are the Kovacic algorithm and the \\emph{algebrization method} to obtain linear differential equations with rational coefficients. We analyze the Darboux transformations, Crum iterations and supersymmetric quantum mechanics with their \\emph{algebrized} versions from a Galoisian approach. Applying the algebrization method and the Kovacic's algorithm we obtain the ground state, the set of eigenvalues, eigenfunctions, the differential Galois groups and eigenrings of some Schr\\"odinger equation with potentials such as exactly solvable and shape invariant potentials. Finally, we introduce one methodology to find exactly solvable potentials: to construct other potentials, we apply the algebrization alg...
Non-relativistic quantum mechanics
Puri, Ravinder R.
2017-01-01
This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail. Offers a new approach to learning quantum mechanics based on the history of quantum mechanics and its postu...
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion.
Framing difficulties in quantum mechanics
Modir, Bahar; Sayre, Eleanor C
2016-01-01
Students' difficulties in quantum mechanics may be the result of unproductive framing and not fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of the epistemological framing, we investigated four frames in our observational data: algorithmic math, conceptual math, algorithmic physics, and conceptual physics. We then used our framework to seek an underlying structure to the long lists of published difficulties that span many topics in quantum mechanics. We mapped descriptions of published difficulties into errors in epistemological framing and resource use. We analyzed descriptions of students' problem solving to find their frames, and compared students' framing to framing (and frame shifting) required by problem statements. We found three categories of error: mismatches between students' framing and problem statement framing; inappropriate or absent transiti...
Topological Strings from Quantum Mechanics
Grassi, Alba; Marino, Marcos
2014-01-01
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized theta function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P2, local P1xP1 and local F1. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Phys...
Dynamical symmetry breaking in quantum field theories
Miransky, Vladimir A
1993-01-01
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Renormalizable Quantum Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
Quantum gravity from theory to experimental search
Kiefer, Claus; Lämmerzahl, Claus
2003-01-01
The relation between quantum theory and the theory of gravitation remains one of the most outstanding unresolved issues of modern physics. According to general expectation, general relativity as well as quantum (field) theory in a fixed background spacetime cannot be fundamentally correct. Hence there should exist a broader theory comprising both in appropriate limits, i.e., quantum gravity. This book gives readers a comprehensive introduction accessible to interested non-experts to the main issues surrounding the search for quantum gravity. These issues relate to fundamental questions concerning the various formalisms of quantization; specific questions concerning concrete processes, like gravitational collapse or black-hole evaporation; and the all important question concerning the possibility of experimental tests of quantum-gravity effects.
Quantum field theory a tourist guide for mathematicians
Folland, Gerald B
2008-01-01
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theor...
A new introductory quantum mechanics curriculum
Kohnle, Antje; Bozhinova, Inna; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth
2014-01-01
The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum-mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of the interpretive aspects of quantum mechanics and quantum information theory. This paper gives an overview of the resources available from the IOP website. The core text includes around 80 articles which are co-authored by leading experts, arranged in themes, and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is included in the resource. Solutions to activities are available to instructors. The resources can be used in a variety of ways, from being supplemental to existing courses to forming a complete programme.
Remarks on osmosis, quantum mechanics, and gravity
Carroll, Robert
2011-01-01
Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.
Black holes and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)
2010-07-15
After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.
Quantum Field Theories and Prime Numbers Spectrum
Menezes, G
2012-01-01
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie on the critical line $\\Re(s)=1/2$. Hilbert and P\\'olya suggested a possible approach to prove it, based on spectral theory. Within this context, some authors formulated the question: is there a quantum mechanical system related to the sequence of prime numbers? In this Letter we assume that there is a class of hypothetical physical systems described by self-adjoint operators with countable infinite number of degrees of freedom with spectra given by the sequence of primes numbers. We prove a no-go theorem. We show that the generating functional of connected Schwinger functions of such theories cannot be constructed.
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
Quantum Theory without Planck's Constant
Ralston, John P
2012-01-01
Planck's constant was introduced as a fundamental scale in the early history of quantum mechanics. We find a modern approach where Planck's constant is absent: it is unobservable except as a constant of human convention. Despite long reference to experiment, review shows that Planck's constant cannot be obtained from the data of Ryberg, Davisson and Germer, Compton, or that used by Planck himself. In the new approach Planck's constant is tied to macroscopic conventions of Newtonian origin, which are dispensable. The precision of other fundamental constants is substantially improved by eliminating Planck's constant. The electron mass is determined about 67 times more precisely, and the unit of electric charge determined 139 times more precisely. Improvement in the experimental value of the fine structure constant allows new types of experiment to be compared towards finding "new physics." The long-standing goal of eliminating reliance on the artifact known as the International Prototype Kilogram can be accompl...
DEMYSTIFYING QUANTUM MECHANICS: Will there be hints from LHC?
CERN. Geneva
2007-01-01
All modern theories for particles, forces and even space-time itself, use the framework provided by quantum mechanics. The Standard Model is a quantized field theory. Even superstring theory is based on quantum mechanics. There is something odd about quantum mechanics: it brilliantly allows us to predict the outcome of experiments, yet it gives confusing statements about what really is going on inside particles and fields. Suppose we would be asking for a theory that allows us to describe what actually happens in less ambiguous terms, without destroying the magnificent successes of quantum mechanics, would this help us to answer some of the great mysteries of theoretical elementary particle physics?Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.
"It Ain't Necessarily So" - Interpretations and Misinterpretations of Quantum Theory
Stachel, John
After describing some recent misinterpretations of Bohr's views on quantum theory, largely based on their conflation with those of Heisenberg, a correct account of Bohr's approach is given in his own words. Then some guidelines toward a valid interpretation of quantization are discussed, including: the role of the quantum of action, the primacy of processes over states, the difference between classical and quantum ensembles, and between non-relativistic quantum mechanics and relativistic quantum field theory.