Quantum mechanics theory and experiment
Beck, Mark
2012-01-01
This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...
Measurement theory in quantum mechanics
International Nuclear Information System (INIS)
Klein, G.
1980-01-01
It is assumed that consciousness, memory and liberty (within the limits of the quantum mechanics indeterminism) are fundamental properties of elementary particles. Then, using this assumption it is shown how measurements and observers may be introduced in a natural way in the quantum mechanics theory. There are no longer fundamental differences between macroscopic and microscopic objects, between classical and quantum objects, between observer and object. Thus, discrepancies and paradoxes have disappeared from the conventional quantum mechanics theory. One consequence of the cumulative memory of the particles is that the sum of negentropy plus information is a constant. Using this theory it is also possible to explain the 'paranormal' phenomena and what is their difference from the 'normal' ones [fr
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
Stochastic theories of quantum mechanics
International Nuclear Information System (INIS)
De la Pena, L.; Cetto, A.M.
1991-01-01
The material of this article is organized into five sections. In Sect. I the basic characteristics of quantum systems are briefly discussed, with emphasis on their stochastic properties. In Sect. II a version of stochastic quantum mechanics is presented, to conclude that the quantum formalism admits an interpretation in terms of stochastic processes. In Sect. III the elements of stochastic electrodynamics are described, and its possibilities and limitations as a fundamental theory of quantum systems are discussed. Section IV contains a recent reformulation that overcomes the limitations of the theory discussed in the foregoing section. Finally, in Sect. V the theorems of EPR, Von Neumann and Bell are discussed briefly. The material is pedagogically presented and includes an ample list of references, but the details of the derivations are generally omitted. (Author)
Entropy, Topological Theories and Emergent Quantum Mechanics
Directory of Open Access Journals (Sweden)
D. Cabrera
2017-02-01
Full Text Available The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a ﬁnite dimensional Hilbert space of quantum states. Speciﬁcally, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological ﬁeld theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.
Stochastic mechanics and quantum theory
International Nuclear Information System (INIS)
Goldstein, S.
1987-01-01
Stochastic mechanics may be regarded as both generalizing classical mechanics to processes with intrinsic randomness, as well as providing the sort of detailed description of microscopic events declared impossible under the traditional interpretation of quantum mechanics. It avoids the many conceptual difficulties which arise from the assumption that quantum mechanics, i.e., the wave function, provides a complete description of (microscopic) physical reality. Stochastic mechanics presents a unified treatment of the microscopic and macroscopic domains, in which the process of measurement plays no special physical role and which reduces to Newtonian mechanics in the macroscopic limit
Learning quantum field theory from elementary quantum mechanics
International Nuclear Information System (INIS)
Gosdzinsky, P.; Tarrach, R.
1991-01-01
The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem
Quantum mechanics as total physical theory
International Nuclear Information System (INIS)
Slavnov, D.A.
2002-01-01
It is shown that the principles of the total physical theory and conclusions of the standard quantum mechanics are not at such an antagonistic variance as it is usually accepted. The axioms, which make it possible to plot the renewed mathematical scheme of the quantum mechanics are formulated within the frames of the algebraic approach. The above scheme includes the standard mathematical apparatus of the quantum mechanics. Simultaneously there exists the mathematical object, which adequately describes the individual experiment. The examples of applying the proposed scheme is presented [ru
Emergence of classical theories from quantum mechanics
International Nuclear Information System (INIS)
Hájícek, P
2012-01-01
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.
Nonlocal quantum field theory and stochastic quantum mechanics
International Nuclear Information System (INIS)
Namsrai, K.
1986-01-01
This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)
A mathematical theory for deterministic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, Gerard ' t [Institute for Theoretical Physics, Utrecht University (Netherlands); Spinoza Institute, Postbox 80.195, 3508 TD Utrecht (Netherlands)
2007-05-15
Classical, i.e. deterministic theories underlying quantum mechanics are considered, and it is shown how an apparent quantum mechanical Hamiltonian can be defined in such theories, being the operator that generates evolution in time. It includes various types of interactions. An explanation must be found for the fact that, in the real world, this Hamiltonian is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.
Quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Jegerlehner, F.
1975-01-01
At first a heuristic understanding is given how the relation between quantum field theory and statistical mechanics near phase transitions comes about. A long range scale invariant theory is constructed, critical indices are calculated and the relations among them are proved, field theoretical Kadanoff-scale transformations are formulated and scaling corrections calculated. A precise meaning to many of Kadanoffs considerations and a model matching Wegners phenomenological scheme is given. It is shown, that soft parametrization is most transparent for the discussion of scaling behaviour. (BJ) [de
Quantum mechanics, group theory, and C60
International Nuclear Information System (INIS)
Rioux, F.
1994-01-01
The recent discovery of a new allotropic form of carbon and its production in macroscopic amounts has generated a tremendous amount of research activity in chemistry, physics, and material science. It has also provided educators with an exciting new vehicle for breathing fresh life into some old, well-established methods and principles. Recently, for example, Boo demonstrated the power of group theory in classifying existing and hypothetical fullerenes by their symmetries. In a similar spirit this note describes a model for the electronic structure of C 60 based on the most elementary principles of quantum mechanics and group theory
Econophysics: from Game Theory and Information Theory to Quantum Mechanics
Jimenez, Edward; Moya, Douglas
2005-03-01
Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.
Moessbauer neutrinos in quantum mechanics and quantum field theory
International Nuclear Information System (INIS)
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Moessbauer neutrino oscillations. First, we compute the combined rate Γ of Moessbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for Γ is identical to the one obtained previously [1] for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Moessbauer neutrinos and show that the oscillation, coherence, and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detection cross section, including localization and Lamb-Moessbauer terms, cannot be predicted in quantum mechanics and have to be put in by hand.
Exponential complexity and ontological theories of quantum mechanics
International Nuclear Information System (INIS)
Montina, A.
2008-01-01
Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods
The birth and growth of quantum theory. From quantum hypothesis to quantum mechanics
International Nuclear Information System (INIS)
Peng Huanwu
2001-01-01
The short history covers the birth and early growth of quantum theory from 1900 to 1928, beginning with Planck's formula and the quantum hypothesis for the black-body radiation. After a description of the rise and decline of the old quantum theory in connection with its application in spectroscopy, two paths based on the rigorous formulation of the correspondence principle leading to matrix mechanics (1925) and Dirac's non-commuting q-numbers (1925) are explained. Another path based on the generalization of the wave-particle aspect of light quanta is then shown to lead to wave mechanics (1926). Among the works during the early growth of quantum mechanics in 1927-1928, representation theory, the uncertainty principle, two-electron problems, and Dirac's relativistic theory of electrons are discussed
Macroscopic quantum mechanics: theory and experimental concepts of optomechanics
International Nuclear Information System (INIS)
Chen Yanbei
2013-01-01
Rapid experimental progress has recently allowed the use of light to prepare macroscopic mechanical objects into nearly pure quantum states. This research field of quantum optomechanics opens new doors towards testing quantum mechanics, and possibly other laws of physics, in new regimes. In the first part of this article, I will review a set of techniques of quantum measurement theory that are often used to analyse quantum optomechanical systems. Some of these techniques were originally designed to analyse how a classical driving force passes through a quantum system, and can eventually be detected with an optimal signal-to-noise ratio—while others focus more on the quantum-state evolution of a mechanical object under continuous monitoring. In the second part of this article, I will review a set of experimental concepts that will demonstrate quantum mechanical behaviour of macroscopic objects—quantum entanglement, quantum teleportation and the quantum Zeno effect. Taking the interplay between gravity and quantum mechanics as an example, I will review a set of speculations on how quantum mechanics can be modified for macroscopic objects, and how these speculations—and their generalizations—might be tested by optomechanics. (invited review)
Theory of “Weak Value" and Quantum Mechanical Measurements
Shikano, Yutaka
2012-01-01
Comment: to be published from "Measurements in Quantum Mechanics", edited by M. R. Pahlavani (InTech, 2012) Chapter 4 page 75. Yutaka Shikano (2012). ISBN: 978-953-51-0058-4 Available from: http://www.intechopen.com/articles/show/title/theory-of-weak-value-and-quantum-mechanical-measurement
Quantum mechanical theory behind "dark energy"?
Colin Johnson, R
2007-01-01
"The mysterious increase in the acceleration of the universe, when intuition says it should be slowing down, is postulated to be caused by dark energy - "dark" because it is undetected. Now a group of scientists in the international collaboration Essence has suggested that a quantum mechanical interpretation of Einstein's proposed "cosmological constant" is the simplest explanation for dark energy. The group measured dark energy to within 10 percent." (1,5 page)
International Nuclear Information System (INIS)
Rebhan, E.
2005-01-01
The present second volume treats quantum mechanics, relativistic quantum mechanics, the foundations of quantum-field and elementary-particle theory as well as thermodynamics and statistics. Both volumes comprehend all fields, which are usually offered in a course about theoretical physics. In all treated fields a very careful introduction to the basic natural laws forms the starting point, whereby it is thoroughly analysed, which of them is based on empirics, which is logically deducible, and which role play basic definitions. Extendingly the matter extend of the corresponding courses starting from the relativistic quantum theory an introduction to the elementary particles is developed. All problems are very thoroughly and such extensively studied, that each step is singularly reproducible. On motivation and good understandability is cared much about. The mixing of mathematical difficulties with problems of physical nature often obstructive in the learning is so circumvented, that important mathematical methods are presented in own chapters (for instance Hilbert spaces, Lie groups). By means of many examples and problems (for a large part with solutions) the matter worked out is deepened and exercised. Developments, which are indeed important, but seem for the first approach abandonable, are pursued in excurses. This book starts from courses, which the author has held at the Heinrich-Heine university in Duesseldorf, and was in many repetitions fitted to the requirements of the students. It is conceived in such a way, that it is also after the study suited as dictionary or for the regeneration
Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction
International Nuclear Information System (INIS)
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.
2004-01-01
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory
Bohmian mechanics. The physics and mathematics of quantum theory
International Nuclear Information System (INIS)
Duerr, Detlef; Teufel, Stefan
2009-01-01
Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schroedinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. (orig.)
Bohmian mechanics. The physics and mathematics of quantum theory
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Fakultaet Mathematik; Teufel, Stefan [Tuebingen Univ. (Germany). Mathematisches Inst.
2009-07-01
Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schroedinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. (orig.)
A possible realization of Einstein's causal theory underlying quantum mechanics
International Nuclear Information System (INIS)
Yussouff, M.
1979-06-01
It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)
Resconi, Germano; Klir, George J.; Pessa, Eliano
Recognizing that syntactic and semantic structures of classical logic are not sufficient to understand the meaning of quantum phenomena, we propose in this paper a new interpretation of quantum mechanics based on evidence theory. The connection between these two theories is obtained through a new language, quantum set theory, built on a suggestion by J. Bell. Further, we give a modal logic interpretation of quantum mechanics and quantum set theory by using Kripke's semantics of modal logic based on the concept of possible worlds. This is grounded on previous work of a number of researchers (Resconi, Klir, Harmanec) who showed how to represent evidence theory and other uncertainty theories in terms of modal logic. Moreover, we also propose a reformulation of the many-worlds interpretation of quantum mechanics in terms of Kripke's semantics. We thus show how three different theories — quantum mechanics, evidence theory, and modal logic — are interrelated. This opens, on one hand, the way to new applications of quantum mechanics within domains different from the traditional ones, and, on the other hand, the possibility of building new generalizations of quantum mechanics itself.
Klink, William H.; Schweiger, Wolfgang
2018-03-01
This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.
BMN gauge theory as a quantum mechanical system
DEFF Research Database (Denmark)
Beisert, N.; Kristjansen, C.; Plefka, J.
2003-01-01
We rigorously derive an effective quantum mechanical Hamiltonian from N = 4 gauge theory in the BMN limit. Its eigenvalues yield the exact one-loop anomalous dimensions of scalar two-impurity BMN operators for all genera. It is demonstrated that this reformulation vastly simplifies computations. ...
Quantum mechanics non-relativistic theory
Landau, Lev Davidovich
1977-01-01
This edition has been completely revised to include some 20% of new material. Important recent developments such as the theory of Regge poles are now included. Many problems with solutions have been added to those already contained in the book.
Is quantum theory a form of statistical mechanics?
Adler, S. L.
2007-05-01
We give a review of the basic themes of my recent book: Adler S L 2004 Quantum Theory as an Emergent Phenomenon (Cambridge: Cambridge University Press). We first give motivations for considering the possibility that quantum mechanics is not exact, but is instead an accurate asymptotic approximation to a deeper level theory. For this deeper level, we propose a non-commutative generalization of classical mechanics, that we call "trace dynamics", and we give a brief survey of how it works, considering for simplicity only the bosonic case. We then discuss the statistical mechanics of trace dynamics and give our argument that with suitable approximations, the Ward identities for trace dynamics imply that ensemble averages in the canonical ensemble correspond to Wightman functions in quantum field theory. Thus, quantum theory emerges as the statistical thermodynamics of trace dynamics. Finally, we argue that Brownian motion corrections to this thermodynamics lead to stochastic corrections to the Schrödinger equation, of the type that have been much studied in the "continuous spontaneous localization" model of objective state vector reduction. In appendices to the talk, we give details of the existence of a conserved operator in trace dynamics that encodes the structure of the canonical algebra, of the derivation of the Ward identities, and of the proof that the stochastically-modified Schrödinger equation leads to state vector reduction with Born rule probabilities.
Algebraic methods in statistical mechanics and quantum field theory
Emch, Dr Gérard G
2009-01-01
This systematic algebraic approach concerns problems involving a large number of degrees of freedom. It extends the traditional formalism of quantum mechanics, and it eliminates conceptual and mathematical difficulties common to the development of statistical mechanics and quantum field theory. Further, the approach is linked to research in applied and pure mathematics, offering a reflection of the interplay between formulation of physical motivations and self-contained descriptions of the mathematical methods.The four-part treatment begins with a survey of algebraic approaches to certain phys
The Misapplication of Probability Theory in Quantum Mechanics
Racicot, Ronald
2014-03-01
This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.
Quantum theory and microscopic mechanics. I
International Nuclear Information System (INIS)
Yussouff, M.
1984-08-01
The need for theoretical descriptions and experimental observations on 'small' individual systems is emphasized. It is shown that the mathematical basis for microscopic mechanics is very simple in one dimension. The square well problem is discussed to clarify general points about stationary states and the continuity of (p'/p) across potential boundaries in the applications of microscopic mechanics. (author)
The Quantum Mechanics Solver How to Apply Quantum Theory to Modern Physics
Basdevant, Jean-Louis
2006-01-01
The Quantum Mechanics Solver grew from topics which are part of the final examination in quantum theory at the Ecole Polytechnique at Palaiseau near Paris, France. The aim of the text is to guide the student towards applying quantum mechanics to research problems in fields such as atomic and molecular physics, condensed matter physics, and laser physics. Advanced undergraduates and graduate students will find a rich and challenging source for improving their skills in this field.
Jets and Metastability in Quantum Mechanics and Quantum Field Theory
Farhi, David
I give a high level overview of the state of particle physics in the introduction, accessible without any background in the field. I discuss improvements of theoretical and statistical methods used for collider physics. These include telescoping jets, a statistical method which was claimed to allow jet searches to increase their sensitivity by considering several interpretations of each event. We find that indeed multiple interpretations extend the power of searches, for both simple counting experiments and powerful multivariate fitting experiments, at least for h → bb¯ at the LHC. Then I propose a method for automation of background calculations using SCET by appropriating the technology of Monte Carlo generators such as MadGraph. In the third chapter I change gears and discuss the future of the universe. It has long been known that our pocket of the standard model is unstable; there is a lower-energy configuration in a remote part of the configuration space, to which our universe will, eventually, decay. While the timescales involved are on the order of 10400 years (depending on how exactly one counts) and thus of no immediate worry, I discuss the shortcomings of the standard methods and propose a more physically motivated derivation for the decay rate. I then make various observations about the structure of decays in quantum field theory.
Quantum mechanics and field theory with fractional spin and statistics
International Nuclear Information System (INIS)
Forte, S.
1992-01-01
Planar systems admit quantum states that are neither bosons nor fermions, i.e., whose angular momentum is neither integer nor half-integer. After a discussion of some examples of familiar models in which fractional spin may arise, the relevant (nonrelativistic) quantum mechanics is developed from first principles. The appropriate generalization of statistics is also discussed. Some physical effects of fractional spin and statistics are worked out explicitly. The group theory underlying relativistic models with fractional spin and statistics is then introduced and applied to relativistic particle mechanics and field theory. Field-theoretical models in 2+1 dimensions are presented which admit solitons that carry fractional statistics, and are discussed in a semiclassical approach, in the functional integral approach, and in the canonical approach. Finally, fundamental field theories whose Fock states carry fractional spin and statistics are discussed
Stochastic theory for classical and quantum mechanical systems
International Nuclear Information System (INIS)
Pena, L. de la; Cetto, A.M.
1975-01-01
From first principles a theory of stochastic processes in configuration space is formulated. The fundamental equations of the theory are an equation of motion which generalizes Newton's second law and an equation which expresses the condition of conservation of matter. Two types of stochastic motion are possible, both described by the same general equations, but leading in one case to classical Brownian motion behavior and in the other to quantum mechanical behavior. The Schroedinger equation, which is derived with no further assumption, is thus shown to describe a specific stochastic process. It is explicitly shown that only in the quantum mechanical process does the superposition of probability amplitudes give rise to interference phenomena; moreover, the presence of dissipative forces in the Brownian motion equations invalidates the superposition principle. At no point are any special assumptions made concerning the physical nature of the underlying stochastic medium, although some suggestions are discussed in the last section
Generalized Poisson processes in quantum mechanics and field theory
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Hoegh-Krohn, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille
1981-01-01
In section 2 we describe more carefully the generalized Poisson processes, giving a realization of the underlying probability space, and we characterize these processes by their characteristic functionals. Section 3 is devoted to the proof of the previous formula for quantum mechanical systems, with possibly velocity dependent potentials and in section 4 we give an application of the previous theory to some relativistic Bose field models. (orig.)
Topological field theories and quantum mechanics on commutative space
International Nuclear Information System (INIS)
Lefrancois, M.
2005-12-01
In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)
From Quantum Mechanics to Quantum Field Theory: The Hopf route
Energy Technology Data Exchange (ETDEWEB)
Solomon, A I [Physics and Astronomy Department, Open University, Milton Keynes MK7 6AA (United Kingdom); Duchamp, G H E [Institut Galilee, LIPN, CNRS UMR 7030 99 Av. J.-B. Clement, F-93430 Villetaneuse (France); Blasiak, P; Horzela, A [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Division of Theoretical Physics, ul. Eliasza-Radzikowskiego 152, PL 31-342 Krakow (Poland); Penson, K A, E-mail: a.i.solomon@open.ac.uk, E-mail: gduchamp2@free.fr, E-mail: pawel.blasiak@ifj.edu.pl, E-mail: andrzej.horzela@ifj.edu.pl, E-mail: penson@lptl.jussieu.fr [Lab.de Phys.Theor. de la Matiere Condensee, University of Paris VI (France)
2011-03-01
We show that the combinatorial numbers known as Bell numbers are generic in quantum physics. This is because they arise in the procedure known as Normal ordering of bosons, a procedure which is involved in the evaluation of quantum functions such as the canonical partition function of quantum statistical physics, inter alia. In fact, we shall show that an evaluation of the non-interacting partition function for a single boson system is identical to integrating the exponential generating function of the Bell numbers, which is a device for encapsulating a combinatorial sequence in a single function. We then introduce a remarkable equality, the Dobinski relation, and use it to indicate why renormalisation is necessary in even the simplest of perturbation expansions for a partition function. Finally we introduce a global algebraic description of this simple model, giving a Hopf algebra, which provides a starting point for extensions to more complex physical systems.
Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory
Plotnitsky, Arkady
2015-10-01
These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.
Functional methods underlying classical mechanics, relativity and quantum theory
International Nuclear Information System (INIS)
Kryukov, A
2013-01-01
The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.
International Nuclear Information System (INIS)
Remler, E.A.
1977-01-01
A gauge-invariant version of the Wigner representation is used to relate relativistic mechanics, statistical mechanics, and quantum field theory in the context of the electrodynamics of scalar particles. A unified formulation of quantum field theory and statistical mechanics is developed which clarifies the physics interpretation of the single-particle Wigner function. A covariant form of Ehrenfest's theorem is derived. Classical electrodynamics is derived from quantum field theory after making a random-phase approximation. The validity of this approximation is discussed
Principles of physics from quantum field theory to classical mechanics
Jun, Ni
2014-01-01
This book starts from a set of common basic principles to establish the formalisms in all areas of fundamental physics, including quantum field theory, quantum mechanics, statistical mechanics, thermodynamics, general relativity, electromagnetic field, and classical mechanics. Instead of the traditional pedagogic way, the author arranges the subjects and formalisms in a logical-sequential way, i.e. all the formulas are derived from the formulas before them. The formalisms are also kept self-contained. Most of the required mathematical tools are also given in the appendices. Although this book covers all the disciplines of fundamental physics, the book is concise and can be treated as an integrated entity. This is consistent with the aphorism that simplicity is beauty, unification is beauty, and thus physics is beauty. The book may be used as an advanced textbook by graduate students. It is also suitable for physicists who wish to have an overview of fundamental physics. Readership: This is an advanced gradua...
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Scattering theory in quantum mechanics and asymptotic completeness
International Nuclear Information System (INIS)
Combes, J.M.
1977-07-01
A trial for describing the status of the scattering theory in quantum mechanics is given. The S matrix being defined, its unitarity is a consequence of the asymptotic completeness relation which is one of the mean problems discussed. It is shown that the multichannel scattering theory can be reformulated in the two Hilbert space formalism with a suitable choice of H 0 and J (one-body problem and N-body systems). Time-dependent methods try to solve directly the existence problem for wave-operators without recourse to resolvent methods. Emphasis is put on the fact that the success of such a method can be traced to its semi-classical aspect in the sense that the stationary phase method is a special way to single-out from the quantum dynamics the contribution of classical orbits
Introduction to nonequilibrium statistical mechanics with quantum field theory
International Nuclear Information System (INIS)
Kita, Takafumi
2010-01-01
In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (1) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (2) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (3) to derive an expression of nonequilibrium entropy that evolves with time. In stage (1), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keldysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Φ-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Φ-derivable approximation, i.e., an issue of how to handle the 'Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy'. Aim (2) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems can be handled microscopically with
F-theory Yukawa couplings and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Oikonomou, V.K.
2012-01-01
The localized fermions on the intersection curve Σ of D7-branes, are connected to a N=2 supersymmetric quantum mechanics algebra. Due to this algebra the fields obey a global U(1) symmetry. This symmetry restricts the proton decay operators and the neutrino mass terms. Particularly, we find that several proton decay operators are forbidden and the Majorana mass term is the only one allowed in the theory. A special SUSY QM algebra is studied at the end of the paper. In addition we study the impact of a non-trivial holomorphic metric perturbation on the localized solutions along each matter curve. Moreover, we study the connection of the localized solutions to an N=2 supersymmetric quantum mechanics algebra when background fluxes are turned on.
Adler, Stephen L
2004-01-01
Quantum mechanics is our most successful physical theory. However, it raises conceptual issues that have perplexed physicists and philosophers of science for decades. This 2004 book develops an approach, based on the proposal that quantum theory is not a complete, final theory, but is in fact an emergent phenomenon arising from a deeper level of dynamics. The dynamics at this deeper level are taken to be an extension of classical dynamics to non-commuting matrix variables, with cyclic permutation inside a trace used as the basic calculational tool. With plausible assumptions, quantum theory is shown to emerge as the statistical thermodynamics of this underlying theory, with the canonical commutation/anticommutation relations derived from a generalized equipartition theorem. Brownian motion corrections to this thermodynamics are argued to lead to state vector reduction and to the probabilistic interpretation of quantum theory, making contact with phenomenological proposals for stochastic modifications to Schr�...
Moretti, Valter
2017-01-01
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing ...
Statistical mechanics view of quantum chromodynamics: Lattice gauge theory
International Nuclear Information System (INIS)
Kogut, J.B.
1984-01-01
Recent developments in lattice gauge theory are discussed from a statistial mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of QCD will be discussed and a few remarks concerning future directions of the field will be made
International Nuclear Information System (INIS)
Rae, A.I.M.
1981-01-01
This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)
Is Quantum Mechanics a Complete Theory?: A Philosophical ...
African Journals Online (AJOL)
In 1935, Einstein, Podolsky, and Rosen published their thought experiment I a paper entitled, “Can Quantum – Mechanical Description of Physical Reality be considered complete?”. At that time, Bohr, Heisenberg, and the proponents of the Copenhagen interpretation of Quantum mechanics, were saying that Quantum ...
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Quaternionic quantum field theory
International Nuclear Information System (INIS)
Adler, S.L.
1986-01-01
In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Quantum theory and the flight from realism philosophical responses to quantum mechanics
Norris, Christopher
2002-01-01
This book is a critical introduction to the long-standing debate concerning the conceptual foundations of quantum mechanics and the problems it has posed for physicists and philosophers from Einstein to the present. Quantum theory has been a major infulence on postmodernism, and presents significant problems for realists. Keeping his own realist position in check, Christopher Norris subjects a wide range of key opponents and supporters of realism to a high and equal level of scrutiny. With a characteristic combination of rigour and intellectual generosity, he draws out the merits and weaknesses from opposing arguments. In a sequence of closely argued chapters, Norris examines the premises of orthodox quantum theory, as developed most influentially by Bohr and Heisenberg, and its impact on varous philosophical developments. These include the ideas developed by W.V Quine, Thomas Kuhn, Michael Dummett, Bas van Fraassen, and Hilary Puttnam. In each case, Norris argues, these thinkers have been influenced by the...
Foundations of quantum mechanics an exploration of the physical meaning of quantum theory
Norsen, Travis
2017-01-01
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is acces sible to students with at least one semester of prior exposure to quantum (or...
Scattering theory in quantum mechanics. Physical principles and mathematical methods
International Nuclear Information System (INIS)
Amrein, W.O.; Jauch, J.M.; Sinha, K.B.
1977-01-01
A contemporary approach is given to the classical topics of physics. The purpose is to explain the basic physical concepts of quantum scattering theory, to develop the necessary mathematical tools for their description, to display the interrelation between the three methods (the Schroedinger equation solutions, stationary scattering theory, and time dependence) to derive the properties of various quantities of physical interest with mathematically rigorous methods
A deformation quantization theory for noncommutative quantum mechanics
International Nuclear Information System (INIS)
Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz
2010-01-01
We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
Relativistic quantum mechanics and introduction to field theory
Energy Technology Data Exchange (ETDEWEB)
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Relativistic quantum mechanics and introduction to field theory
International Nuclear Information System (INIS)
Yndurain, F.J.
1996-01-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources
On possibility of agreement of quantum mechanics with classical probability theory
International Nuclear Information System (INIS)
Slavnov, D.A.
2006-01-01
Paper describes a scheme to carry out a construction of the quantum mechanics where the quantum system is assumed to be a pattern of the open classical subsystems. It enables to make use both of the formal classical logic and the classical probability theory in the quantum mechanics. On the other hand, in terms of the mentioned approach one manages to ensure complete reconstruction of the quantum mechanics standard mathematical tool specifying its application limits. The problem dealing with the quantum state reduction is scrutinized [ru
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics, 2nd edition
International Nuclear Information System (INIS)
Robbin, J M
2007-01-01
he hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose-Einstein condensates, and laser cooling and trapping of atoms, to name a few. Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses. The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe-Bloch formula for charged particles in solids). The problems use mainly non-relativistic quantum mechanics and are organised into three
International Nuclear Information System (INIS)
Hund, F.
1980-01-01
History of quantum theory from quantum representations (1900) to the formation of quantum mechanics is systematically stated in the monograph. A special attention is paid to the development of ideas of quantum physics, given are schemes of this development. Quantum theory is abstractly presented as the teaching about a role, which value h characterizing elementary quantum of action, plays in the nature: in statistics - as a unit for calculating the number of possible states; in corpuscular-wave dualism for light - as a value determining the interaction of light and substance and as a component of atom dynamics; in corpuscular-wave dualism for substance. Accordingly, history of the quantum theory development is considered in the following sequence: h discovery; history of quantum statistics, history of light quanta and initial atom dynamics; crysis of this dynamics and its settlement; substance waves and in conclusion - the completion of quantum mechanics including applications and its further development
Theory of brain function, quantum mechanics and superstrings
Nanopoulos, Dimitri V.
1995-01-01
Recent developments/efforts to understand aspects of the brain function at the {\\em sub-neural} level are discussed. MicroTubules (MTs) participate in a wide variety of dynamical processes in the cell especially in bioinformation processes such as learning and memory, by possessing a well-known binary error-correcting code with 64 words. In fact, MTs and DNA/RNA are unique cell structures that possess a code system. It seems that the MTs' code system is strongly related to a kind of ``Mental Code" in the following sense. The MTs' periodic paracrystalline structure make them able to support a superposition of coherent quantum states, as it has been recently conjectured by Hameroff and Penrose, representing an external or mental order, for sufficient time needed for efficient quantum computing. Then the quantum superposition collapses spontaneously/dynamically through a new, string-derived mechanism for collapse proposed recently by Ellis, Mavromatos, and myself. At the moment of collapse, organized quantum exo...
International Nuclear Information System (INIS)
Ghatak, A.K.; Lokanathan, S.
1975-01-01
This textbook on quantum mechanics is intended for students at the graduate and post-graduate level. A balanced account of theory and applications is presented. Emphasis is laid on making results plausible and methods to be followed in solving problems. The various chapters in the book are devoted to the following: (1) Wave particle duality and uncertainty principle (2) Wave packets and time-dependent Schroedinger equation (3) Simple solutions of Schroedinger equation (4) Vector spaces and linear operators : Dirac notation (5) Angular momentum and spin (6) Addition of angular momenta (7) Time independent perturbation theory (8) The variational method (9) The WKB approximation (10) Elementary theory of scattering (11) Time-dependent perturbation theory (12) Motion in a magnetic field (13) Interaction of radiation with matter and (14) Relativistic theory. (A.K.)
M(atrix) theory: matrix quantum mechanics as a fundamental theory
International Nuclear Information System (INIS)
Taylor, Washington
2001-01-01
This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of gravity that is believed to underlie all superstring theories. M theory is currently the most plausible candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a realistic fashion. Evidence for M theory is still only circumstantial -- no complete background-independent formulation of the theory exists as yet. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a different guise as the discrete light-cone quantization of M theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects (branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed
Studies on quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Zhang, S.
1987-01-01
This dissertation is a summary of research in various areas of theoretical physics and is divided into three parts. In the first part, quantum fluctuations of the recently proposed superconducting cosmic strings are studied. It is found that vortices on the string world sheet represent an important class of fluctuation modes which tend to disorder the system. Both heuristic arguments and detailed renormalization group analysis reveal that these vortices do not appear in bound pairs but rather from a gas of free vortices. Based on this observation we argue that this fluctuation mode violates the topological conservation law on which superconductivity is based. Anomalies and topological aspects of supersymmetric quantum field theories are studied in the second part of this dissertation. Using the superspace formulation of the N = 1 spinning string, we obtain a path integral measure which is free from the world-sheet general coordinate as well as the supersymmetry anomalies and therefore determine the conformal anomaly and critical dimension of the spinning string. We also apply Fujikawa's formalism to computer the chiral anomaly in conformal as well as ordinary supergravity. Finally, we given a Noether-method construction of the supersymmetrized Chern-Simons term in five dimensional supergravity. In the last part of this dissertation, the soliton excitations in the quarter-filled Peierls-Hubbard model are investigated in both the large and the small U limit. For a strictly one dimensional system at zero temperature, we find that solitons in both limits are in one-to-one correspondence, while in the presence of weak three dimensional couplings or at finite temperature, the large U systems differ qualitatively from the small U systems in that the spin associated with the solitons ceases to be a sharp quantum observable
Particles, fields and quantum theory
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1982-01-01
The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
The quantum mechanics solver. How to apply quantum theory to modern physics. 2. ed.
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.
2006-01-01
The Quantum Mechanics Solver uniquely illustrates the application of quantum mechanical concepts to various fields of modern physics. It aims at encouraging the reader to apply quantum mechanics to research problems in fields such as molecular physics, condensed matter physics or laser physics. Advanced undergraduates and graduate students will find a rich and challenging source of material for further exploration. This book consists of a series of problems concerning present-day experimental or theoretical questions on quantum mechanics. All of these problems are based on actual physical examples, even if sometimes the mathematical structure of the models under consideration is simplified intentionally in order to get hold of the physics more rapidly. The new edition features new themes, such as the progress in measuring neutrino oscillations, quantum boxes, the quantum thermometer etc. Secondly, it includes a brief summary on the basics of quantum mechanics and the formalism we use. Finally, the problems under three main themes: Elementary Particles, Nuclei and Atoms; Quantum Entanglement and Measurement; and Complex Systems. (orig.)
Quantum causality conceptual issues in the causal theory of quantum mechanics
Riggs, Peter J; French, Steven RD
2009-01-01
This is a treatise devoted to the foundations of quantum physics and the role that causality plays in the microscopic world governed by the laws of quantum mechanics. The book is controversial and will engender some lively debate on the various issues raised.
Apocrypha of standard scattering theory (SST) and quantum mechanics of the de Broglie wave packet
International Nuclear Information System (INIS)
Ignatovich, V.K.
2001-01-01
It is shown that the Standard Scattering Theory (SST) does not correspond to the principles of Standard Quantum Mechanics (SQM). A more consistent theory is formulated. Some new results are obtained. Reflection and transmission of the de Broglie wave packet by thin layers of matter is considered
International Nuclear Information System (INIS)
Banai, M.
1983-11-01
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is argued that the quantum space-time models of Banai introduced in an earlier paper is formulated in terms of Davis' quantum relativity. Then it is shown that the recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce in a consistent way the quantum space-time model (the 'canonically quantized Minkowski space') proposed by Banai earlier. The main new aspect of the quantum mechanics of the quantum relativistic particles is, in this model of space-time, that it provides a true mass eigenvalue problem and, that the excited mass states of such particles can be interpreted as classifically relativistic (massive) quantum particles ('elementary particles'). The question of field theory over quantum relativistic models of space-time is also discussed. Finally, it is suggested that 'quarks' should be considered as quantum relativistic particles. (author)
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
International Nuclear Information System (INIS)
Sukhanov, A.D.
2004-01-01
Generalized correlations of the Schroedinger indefinitenesses are shown to have the meaning of the fundamental restrictions as to characteristics of space of states in any probability-like theory. Quantum mechanics, as well as, theory of the brownian movement at arbitrary space of time fall in the category of the mentioned theories. One compared correlations of coordinates-pulse indefinitenesses within the mentioned theory with the similar correlation of indefinitenesses for microparticle under the Gaussian wave packet state. One determined that in case of profound distinction in mathematical tools of two theories one observes their conceptual resemblance. It manifests itself under the alternative conditions - short times in one theory correspond to long ones in another theory and vice versa, while in any of the mentioned theories uncontrollable effect of either quantum or thermal type is of crucial importance [ru
Khrennikov, Andrei
2017-02-01
The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations. In classical mechanics the phase space description can be considered as the ontic description, here states are given by points λ =(x , p) of phase space. The dynamics of the ontic state is given by the system of Hamiltonian equations.We can also consider probability distributions on the phase space (or equivalently random variables valued in it). We call them probabilistic ontic states. Dynamics of probabilistic ontic states is given by the Liouville equation.In classical physics we can (at least in principle) measure both the coordinate and momentum and hence ontic states can be treated as epistemic states as well (or it is better to say that here epistemic states can be treated as ontic states). Probabilistic ontic states represent probabilities for outcomes of joint measurement of position and momentum.However, this was a very special, although very important, example of
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
The many-body content of quantum gauge theories and its connection to mass generation mechanisms
International Nuclear Information System (INIS)
Natoli, C.R.; Palumbo, F.
1985-01-01
The aim of the paper is to get more knowledge about many-body systems and their properties, about many-body content of quantum gauge theories and its connection with mass generation mechanisms. The way to achieve this is to perform the galilean limit of the relativistic theory by sending the speed of light c to infinity. This limiting process exposes the low energy behaviour of the relativistic theory
International Nuclear Information System (INIS)
Pavel Bona
2000-01-01
The work can be considered as an essay on mathematical and conceptual structure of nonrelativistic quantum mechanics which is related here to some other (more general, but also to more special and 'approximative') theories. Quantum mechanics is here primarily reformulated in an equivalent form of a Poisson system on the phase space consisting of density matrices, where the 'observables', as well as 'symmetry generators' are represented by a specific type of real valued (densely defined) functions, namely the usual quantum expectations of corresponding selfjoint operators. It is shown in this paper that inclusion of additional ('nonlinear') symmetry generators (i. e. 'Hamiltonians') into this reformulation of (linear) quantum mechanics leads to a considerable extension of the theory: two kinds of quantum 'mixed states' should be distinguished, and operator - valued functions of density matrices should be used in the role of 'nonlinear observables'. A general framework for physical theories is obtained in this way: By different choices of the sets of 'nonlinear observables' we obtain, as special cases, e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear) quantum mechanics, or nonlinear extensions of quantum mechanics; also various 'quasiclassical approximations' to quantum mechanics are all sub theories of the presented extension of quantum mechanics - a version of the extended quantum mechanics. A general interpretation scheme of extended quantum mechanics extending the usual statistical interpretation of quantum mechanics is also proposed. Eventually, extended quantum mechanics is shown to be (included into) a C * -algebraic (hence linear) quantum theory. Mathematical formulation of these theories is presented. The presentation includes an analysis of problems connected with differentiation on infinite-dimensional manifolds, as well as a solution of some problems connected with the work with only densely defined unbounded
Bastin, Ted
2009-07-01
List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Quantum set theory and applications
International Nuclear Information System (INIS)
Rodriguez, E.
1984-01-01
The work of von Neumann tells us that the logic of quantum mechanics is not Boolenan. This suggests the formulation of a quantum theory of sets based on quantum logic much as modern set theory is based on Boolean logic. In the first part of this dissertation such a quantum set theory is developed. In the second part, quantum set theory is proposed as a universal language for physics. A quantum topology and the beginnings of a quantum geometry are developed in this language. Finally, a toy model is studied. It gives indications of possible lines for progress in this program
Interpretation of quantum mechanics by the double solution theory
International Nuclear Information System (INIS)
Broglie, L. de.
1987-01-01
English translation of one of Louis de Broglie's latest articles, as a kind of gift to all physicists abroad who are not well acquainted with the double solution theory, or do not read French. Our readers will appreciate the deep physical insight expressed in this tentative theory of wave-particle dualism, a major problem unsolved to everyone's satisfaction
Formal scattering theory approach to S-matrix relations in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Amado, R.D.; Cannata, F.; Dedonder, J.P.
1988-01-01
Combining the methods of scattering theory and supersymmetric quantum mechanics we obtain relations between the S matrix and its supersymmetric partner. These relations involve only asymptotic quantities and do not require knowledge of the dynamical details. For example, for coupled channels with no threshold differences the relations involve the asymptotic normalization constant of the bound state removed by supersymmetry
A quantum-mechanical perspective on linear response theory within polarizable embedding
DEFF Research Database (Denmark)
List, Nanna Holmgaard; Norman, Patrick; Kongsted, Jacob
2017-01-01
We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole...
An introduction to conformal invariance in quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Boyanovsky, D.; Naon, C.M.
1990-01-01
The subject of conformal invariance provides an extraordinarly successful and productive symbiosis between statistical mechanics and quantum field theory. The main goal of this paper, which is tailored to a wide audience, is to give an introduction to such vast subject (C.P.)
Advanced Visual Quantum Mechanics
Thaller, Bernd
2005-01-01
Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.
Probabilistic structure of quantum theory
International Nuclear Information System (INIS)
Burzynski, A.
1989-01-01
The fundamental ideas of quantum theory are presented. It is shown that two approaches to quantum theory: Heisenberg's matrix mechanics and Schroedinger's wave mechanics, can be formulated by means of the theory of operators in Hilbert space. Some remarks on Hilbert spaces, diadic and projection operators are done. States, probabilities and observables of quantum systems are discussed and time evolution of quantum states is analysed. Some remarks on two-component systems and symmetries are given. 21 refs. (M.F.W.)
The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics
International Nuclear Information System (INIS)
Holster, A T
2003-01-01
Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe
Wilde, Mark M
2017-01-01
Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...
Ahn, Doyeol
2011-01-01
A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...
Weinberg, Steven
2015-09-01
Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.
Dirac, Paul Adrien Maurice
1964-01-01
The author of this concise, brilliant series of lectures on mathematical methods in quantum mechanics was one of the shining intellects in the field, winning a Nobel prize in 1933 for his pioneering work in the quantum mechanics of the atom. Beyond that, he developed the transformation theory of quantum mechanics (which made it possible to calculate the statistical distribution of certain variables), was one of the major authors of the quantum theory of radiation, codiscovered the Fermi-Dirac statistics, and predicted the existence of the positron.The four lectures in this book were delivered
Quantum mechanics in chemistry
Schatz, George C
2002-01-01
Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt
Some applicationS of non-Hermitian operators in quantum mechanics and quantum field theory
International Nuclear Information System (INIS)
Recami, E.; Rodrigues, W.A. Jr.; Smrz, P.
1983-01-01
Due to the possibility of rephrasing it in terms of Lie-admissible algebras, some work done in the past in collaboration with A., Agodi, M., Baldo and V.S., Olkhovsky is here reported. Such work led to the introduction of non-Hermitian operators in (classical and relativistic) quantum theory. In particular: (i) the association of unstable states (decaying 'Resonances') with the eigenvectors of non-Hermitian hamiltonians; (ii) the problem of the four position operators for relativistic spin-zero particles are dealth with
International Nuclear Information System (INIS)
Bogolubov, N.N. Jr.; Prykarpatsky, A.K.; Ufuk Taneri
2008-07-01
The main fundamental principles characterizing the vacuum field structure are formulated and the modeling of the related vacuum medium and charged point particle dynamics by means of de- vised field theoretic tools are analyzed. The Maxwell electrodynamic theory is revisited and newly derived from the suggested vacuum field structure principles and the classical special relativity theory relationship between the energy and the corresponding point particle mass is revisited and newly obtained. The Lorentz force expression with respect to arbitrary non-inertial reference frames is revisited and discussed in detail, and some new interpretations of relations between the special relativity theory and quantum mechanics are presented. The famous quantum-mechanical Schroedinger type equations for a relativistic point particle in the external potential and magnetic fields within the quasiclassical approximation as the Planck constant (h/2π) → 0 and the light velocity c → ∞ are obtained. (author)
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Khots, Boris; Khots, Dmitriy
2014-12-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Maximally causal quantum mechanics
International Nuclear Information System (INIS)
Roy, S.M.
1998-01-01
We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics. (author)
Introduction to quantum field theory
Alvarez-Gaumé, Luís
1994-01-01
The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.
False vacuum decay in quantum mechanics and four dimensional scalar field theory
Bezuglov, Maxim
2018-04-01
When the Higgs boson was discovered in 2012 it was realized that electroweak vacuum may suffer a possible metastability on the Planck scale and can eventually decay. To understand this problem it is important to have reliable predictions for the vacuum decay rate within the framework of quantum field theory. For now, it can only be done at one loop level, which is apparently is not enough. The aim of this work is to develop a technique for the calculation of two and higher order radiative corrections to the false vacuum decay rate in the framework of four dimensional scalar quantum field theory and then apply it to the case of the Standard Model. To achieve this goal, we first start from the case of d=1 dimensional QFT i.e. quantum mechanics. We show that for some potentials two and three loop corrections can be very important and must be taken into account. Next, we use quantum mechanical example as a template for the general d=4 dimensional theory. In it we are concentrating on the calculations of bounce solution and corresponding Green function in so called thin wall approximation. The obtained Green function is then used as a main ingredient for the calculation of two loop radiative corrections to the false vacuum decay rate.
Schürmann, Michael
2008-01-01
This volume contains the revised and completed notes of lectures given at the school "Quantum Potential Theory: Structure and Applications to Physics," held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald from February 26 to March 10, 2007. Quantum potential theory studies noncommutative (or quantum) analogs of classical potential theory. These lectures provide an introduction to this theory, concentrating on probabilistic potential theory and it quantum analogs, i.e. quantum Markov processes and semigroups, quantum random walks, Dirichlet forms on C* and von Neumann algebras, and boundary theory. Applications to quantum physics, in particular the filtering problem in quantum optics, are also presented.
International Nuclear Information System (INIS)
Hanson, Andrew J; Sabry, Amr; Ortiz, Gerardo; Tai, Yu-Tsung
2014-01-01
We explore finite-field frameworks for quantum theory and quantum computation. The simplest theory, defined over unrestricted finite fields, is unnaturally strong. A second framework employs only finite fields with no solution to x 2 + 1 = 0, and thus permits an elegant complex representation of the extended field by adjoining i=√(−1). Quantum theories over these fields recover much of the structure of conventional quantum theory except for the condition that vanishing inner products arise only from null states; unnaturally strong computational power may still occur. Finally, we are led to consider one more framework, with further restrictions on the finite fields, that recovers a local transitive order and a locally-consistent notion of inner product with a new notion of cardinal probability. In this framework, conventional quantum mechanics and quantum computation emerge locally (though not globally) as the size of the underlying field increases. Interestingly, the framework allows one to choose separate finite fields for system description and for measurement: the size of the first field quantifies the resources needed to describe the system and the size of the second quantifies the resources used by the observer. This resource-based perspective potentially provides insights into quantitative measures for actual computational power, the complexity of quantum system definition and evolution, and the independent question of the cost of the measurement process. (paper)
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Spontaneous symmetry breaking in local gauge quantum field theory; the Higgs mechanism
International Nuclear Information System (INIS)
Strocchi, F.
1977-01-01
Spontaneous symmetry breakings in indefinite metric quantum field theories are analyzed and a generalization of the Goldstone theorem is proved. The case of local gauge quantum field theories is discussed in detail and a characterization is given of the occurrence of the Higgs mechanism versus the Goldstone mechanism. The Higgs phenomenon is explained on general grounds without the introduction of the so-called Higgs fields. The basic property is the relation between the local internal symmetry group and the local group of gauge transformations of the second kind. Spontaneous symmetry breaking of c-number gauge transformations of the second kind is shown to always occur if there are charged local fields. The implications about the absence of mass gap in the Wightman functions and the occurrence of massless particles associated with the unbroken generators in the Higgs phenomenon are discussed. (orig.) [de
Griffiths, Robert B.
2001-11-01
Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics
Relativistic quantum mechanics
International Nuclear Information System (INIS)
Ollitrault, J.Y.
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)
International Nuclear Information System (INIS)
Friedberg, R; Hohenberg, P C
2014-01-01
Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Quantum information theory mathematical foundation
Hayashi, Masahito
2017-01-01
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an impro...
Jorgensen, Palle E T
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
International Nuclear Information System (INIS)
Kiefer, C.
2004-01-01
The following topics are dealt with: Particles and waves, the superposition principle and probability interpretation, the uncertainty relation, spin, the Schroedinger equation, wave functions, symmetries, the hydrogen atom, atoms with many electrons, Schroedinger's cat and the Einstein-podolsky-Rosen problem, the Bell inequalities, the classical limit, quantum systems in the electromagnetic field, solids and quantum liquids, quantum information, quantum field theory, quantum theory and gravitation, the mathematical formalism of quantum theory. (HSI)
Chester, Marvin
2003-01-01
Introductory text examines the classical quantum bead on a track: its state and representations; operator eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and bead in a spherical shell. Also, spin, matrices and structure of quantum mechanics; simplest atom; indistinguishable particles; and stationary-state perturbation theory.
Philosophy of physics quantum theory
Maudlin, Tim
2019-01-01
In this book, Tim Maudlin, one of the worlds leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term quantum theory is a misnomer. A proper physical theory should clearly describe what is there and what it doesyet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic ...
Classicality in quantum mechanics
International Nuclear Information System (INIS)
Dreyer, Olaf
2007-01-01
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity
Classicality in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)
2007-05-15
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
Axiomation of quantum mechanics
International Nuclear Information System (INIS)
Kotecky, R.
1975-01-01
Deeper understanding of the basic structure of the formalism of the modern quantum theory (as has been established during its 50 years' stormy development) has been brought about by its axiomatization - by founding the formalism merely on experimentally directly accountable postulates without referring to historical development, without any a priori nonessential or empirically nonexplicable assumptions. A summary is given of the common formalism of quantum mechanics and its most significant axiomatizations. The assumptions are discussed under which respective axiomatically described abstract structures may be modelled by means of the common formalisn of quantum theory (established on the theory of Hilbert spaces). (author)
Raedt, Hans De; Binder, K; Ciccotti, G
1996-01-01
The purpose of this set of lectures is to introduce the general concepts that are at the basis of the computer simulation algorithms that are used to study the behavior of condensed matter quantum systems. The emphasis is on the underlying concepts rather than on specific applications. Topics
International Nuclear Information System (INIS)
Zalialiutdinov, T; Baukina, Yu; Solovyev, D; Labzowsky, L
2014-01-01
The theory of multiphoton cascade transitions with two-photon links is considered within two different approaches: quantum electrodynamical (QED) and phenomenological quantum mechanical (QM). A problem of regularization of the cascade contributions is investigated in detail. It is argued that the correct regularization should include both initial and intermediate level widths in the singular energy denominators. This result follows both from the QED and from the QM approach. Particular transitions nl → 1s + 2γ with nl = 3s, 4s, 3d, 4d and nl → 1s + 3γ with nl = 3p, 4p are considered as examples. The importance of the proper cascade regularization is also demonstrated. (paper)
Probability in quantum mechanics
Directory of Open Access Journals (Sweden)
J. G. Gilson
1982-01-01
Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
The Possibility of a New Metaphysics for Quantum Mechanics from Meinong's Theory of Objects
Graffigna, Matías
According to de Ronde it was Bohr's interpretation of Quantum Mechanics (QM) which closed the possibility of understanding physical reality beyond the realm of the actual, so establishing the Orthodox Line of Research. In this sense, it is not the task of any physical theory to look beyond the language and metaphysics supposed by classical physics, in order to account for what QM describes. If one wishes to maintain a realist position (though not nave) regarding physical theories, one seems then to be trapped by an array of concepts that do not allow to understand the main principles involved in the most successful physical theory thus far, mainly: the quantum postulate, the principle of indetermination and the superposition principle. If de Ronde is right in proposing QM can only be completed as a physical theory by the introduction of `new concepts' that admit as real a domain beyond actuality, then a new ontology that goes beyond Aristotelian and Newtonian actualism is needed. It was already in the early 20th century that misunderstood philosopher Alexius von Meinong proposed a Theory of Objects that admits a domain of being beyond existence-actuality. Member of the so called `School of Brentano', Meinong's concerns were oriented to provide an ontology of everything that can be thought of, and at the same time an intentionality theory of how objects are thought of. I wish to argue that in Meinong's theory of objects we find the rudiments of the ontology and the intentionality theory we need to account for QM's basic principles: mainly the possibility of predicating properties of non-entities, or in other words, the possibility of objectively describing a domain of what is, that is different from the domain of actual existence.
Microcanonical quantum field theory
International Nuclear Information System (INIS)
Strominger, A.
1983-01-01
Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent
Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics
Shizgal, Bernard
2015-01-01
This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...
Quantum mechanics. 2. printing (paperback).
International Nuclear Information System (INIS)
Lipkin, H.J.
1986-01-01
Intended for a first year graduate course in quantum mechanics, this collection of topics can also be considered as a set of self-contained 'monographs for pedestrians' on the Moessbauer effect, many-body quantum mechanics, kaon physics, scattering theory, Feynman diagrams, symmetries and relativistic quantum mechanics. (Auth.)
International Nuclear Information System (INIS)
Omnes, R.
2000-01-01
The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Quantum paradoxes quantum theory for the perplexed
Aharonov, Yakir
2005-01-01
A Guide through the Mysteries of Quantum Physics!Yakir Aharonov is one of the pioneers in measuring theory, the nature of quantum correlations, superselection rules, and geometric phases and has been awarded numerous scientific honors. The author has contributed monumental concepts to theoretical physics, especially the Aharonov-Bohm effect and the Aharonov-Casher effect. Together with Daniel Rohrlich of the Weizmann Institute, Israel, he has written a pioneering work on the remaining mysteries of quantum mechanics. From the perspective of a preeminent researcher in the fundamental aspects of quantum mechanics, the text combines mathematical rigor with penetrating and concise language
Weinberg, Steven
2013-01-01
Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a concise introduction to modern quantum mechanics. Ideally suited to a one-year graduate course, this textbook is also a useful reference for researchers. Readers are introduced to the subject through a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach. The textbook covers many topics not often found in other books on the subject, including alternatives to the Copenhagen interpretation, Bloch waves and band structure, the Wigner–Eckart theorem, magic numbers, isospin symmetry, the Dirac theory of constrained canonical systems, general scattering theory, the optical theorem, the 'in-in' formalism, the Berry phase, Landau levels, entanglement and quantum computing. Problems are included at the ends of chapters, with solutions available for instructors at www.cam...
Local realistic theories and quantum mechanics for the two-neutral-kaon system
International Nuclear Information System (INIS)
Dalitz, R.H.; Garbarino, G.
2001-01-01
The predictions of local realistic theories for the observables concerning the evolution of a K 0 K-bar 0 quantum entangled pair (created in the decay of the phi-meson) are discussed. It is shown, in agreement with Bell's theorem, that the most general local hidden-variable model fails in reproducing the whole set of quantum-mechanical joint probabilities. We achieve these conclusion by employing two different approaches. In the first approach, the local realistic observables are deduced from the most general premises concerning locality and realism, and Bell-like inequalities are not employed. The other approach makes use of Bell's inequalities. In the first approach, under particular conditions for the detection times, the discrepancy between quantum mechanics and local realism for the time-dependent asymmetry turns out to be not less than 20%. A similar incompatibility can be made evident by means of a Bell-type test by employing both Wigner's and (once properly normalized probabilities are used) Clauser-Horne-Shimony-Holt's inequalities. Because of its relatively low experimental accuracy, the data obtained by the CPLEAR collaboration for the asymmetry parameter do not yet allow a decisive test of local realism. Such a test, both with and without the use of Bell's inequalities, should be feasible in the future at the Frascati PHI-factory
The essentials of quantum mechanics
International Nuclear Information System (INIS)
Omnes, R.
2006-09-01
This book is an introduction to quantum mechanics, the author explains the foundation, interpretation and today limits of this science. The consequences of quantum concepts are reviewed through the lens of recent experimental data. In that way, issues like wave-particle duality, uncertainty principle, decoherence, relationship with classical mechanics or the unicity of reality, issues that were difficult to grasp before, appear now clearer. The book has been divided into 8 chapters: 1) possibility and chance, 2) quantum formalism, 3) fundamental quantum concepts, 4) how to deal with quantum mechanics, 5) decoherence theory, 6) the quantum logic system, 7) the emergence of classical physics, and 8) quantum measurements. (A.C.)
International Nuclear Information System (INIS)
Basdevant, J.L.
1983-01-01
From important experiment descriptions (sometimes, intentionally simplified), the essential concepts in Quantum Mechanics are first introduced. Wave function notion is described, Schroedinger equation is established, and, after applications rich in physical signification, quantum state and Hilbert space formalism are introduced, which will help to understand many essential phenomena. Then the quantum mechanic general formulation is written and some important consequences are deduced. This formalism is applied to a simple physical problem series (angular momentum, hydrogen atom, etc.) aiming at assimilating the theory operation and its application [fr
Quantum mechanics with spontaneous localization and the quantum theory of measurement
International Nuclear Information System (INIS)
Benatti, F.; Ghirardi, G.C.; Rimini, A.; Weber, T.
1986-10-01
Recently a modification of quantum dynamics allowing a unified description of microscopic and macroscopic systems has been introduced. We investigate here the consequences of this approach for the measurement problem. We show that in this way one gets a consistent and objective solution of the problem of the wave packet reduction. (author)
Metabolic activation and carcinogenicity of polycyclic hydrocarbons: A new quantum mechanical theory
International Nuclear Information System (INIS)
Mohammad, S.N.
1986-01-01
This investigation aims to describe a quantum mechanical theory of cancer, which, on the basis of certain electronic indices calculated for the parent compound, would give prediction of its P-450 mediated metabolic activation and would provide better representation of its relative carcinogenic potency when activated to its PUM. The author's theory is based on the assumption that electronic charge distribution of activated species resembles at least qualitatively the charge distribution of the parent compound, and a careful analysis of electronic characteristics of the parent compound would suffice to give reasonable estimation of the carcinogenic activities of the metabolic products. The details of the theoretical method is given and the results for some alternant and non-alternant PAHs are presented
Multiscale Monte Carlo algorithms in statistical mechanics and quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Lauwers, P G
1990-12-01
Conventional Monte Carlo simulation algorithms for models in statistical mechanics and quantum field theory are afflicted by problems caused by their locality. They become highly inefficient if investigations of critical or nearly-critical systems, i.e., systems with important large scale phenomena, are undertaken. We present two types of multiscale approaches that alleveate problems of this kind: Stochastic cluster algorithms and multigrid Monte Carlo simulation algorithms. Another formidable computational problem in simulations of phenomenologically relevant field theories with fermions is the need for frequently inverting the Dirac operator. This inversion can be accelerated considerably by means of deterministic multigrid methods, very similar to the ones used for the numerical solution of differential equations. (orig.).
The quantum theory of measurement
Busch, Paul; Mittelstaedt, Peter
1996-01-01
The amazing accuracy in verifying quantum effects experimentally has recently renewed interest in quantum mechanical measurement theory. In this book the authors give within the Hilbert space formulation of quantum mechanics a systematic exposition of the quantum theory of measurement. Their approach includes the concepts of unsharp objectification and of nonunitary transformations needed for a unifying description of various detailed investigations. The book addresses advanced students and researchers in physics and philosophy of science. In this second edition Chaps. II-IV have been substantially rewritten. In particular, an insolubility theorem for the objectification problem has been formulated in full generality, which includes unsharp object observables and unsharp pointers.
Digestible quantum field theory
Smilga, Andrei
2017-01-01
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...
Mayato, R; Egusquiza, I
2002-01-01
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the theory. This book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory, such as the parametric (clock) time, tunneling times, decay times, dwell times, delay times, arrival times or jump times. This multiauthored book, written as an introductory guide for the non-initiated as well as a useful source of information for the expert, covers many of the open questions. A brief historical overview is to be found in the introduction. It is followed by 12 chapters devoted to conceptual and theoretical investigations as well as experimental issues in quantum-mechanical time measurements. This unique monograph should attract physicists as well as philosophers of science working in the foundations of quantum physics.
Quantum mechanics selected topics
Perelomov, Askold Mikhailovich
1998-01-01
It can serve as a good supplement to any quantum mechanics textbook, filling the gap between standard textbooks and higher-level books on the one hand and journal articles on the other. This book provides a detailed treatment of the scattering theory, multidimensional quasi-classical approximation, non-stationary problems for oscillators and the theory of unstable particles. It will be useful for postgraduate students and researchers who wish to find new, interesting information hidden in the depths of non-relativistic quantum mechanics.
Liu, Peng; Li, Chen; Wang, Dunyou
2017-10-19
The Cl - + CH 3 I → CH 3 Cl + I - reaction in water was studied using combined multilevel quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculated with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 and 19.0 kcal/mol, respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.
International Nuclear Information System (INIS)
Mancini, F.
1986-01-01
Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)
A textbook of quantum mechanics
International Nuclear Information System (INIS)
Mathews, P.M.; Venkatesan, K.
1977-01-01
After briefly surveying the inadequacy of the classical ideas and elementary older quantum theory, the ideas of wave mechanics, the postulates of quantum mechanics, exactly soluble problems, approximation techniques, scattering theory, angular momentum, time dependent problems and the basic ideas of relativistic quantum mechanics are discussed. The book is meant for the Master of Science degree course students of Indian Universities. (M.G.B.)
Mouloudakis, K.; Kominis, I. K.
2017-02-01
Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.
Mouloudakis, K; Kominis, I K
2017-02-01
Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
Fractional statistics and quantum theory
Khare, Avinash
1997-01-01
This book explains the subtleties of quantum statistical mechanics in lower dimensions and their possible ramifications in quantum theory. The discussion is at a pedagogical level and is addressed to both graduate students and advanced research workers with a reasonable background in quantum and statistical mechanics. The main emphasis will be on explaining new concepts. Topics in the first part of the book includes the flux tube model of anyons, the braid group and quantum and statistical mechanics of noninteracting anyon gas. The second part of the book provides a detailed discussion about f
Fundamentals of quantum mechanics
House, J E
2017-01-01
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Algebra of Complex Vectors and Applications in Electromagnetic Theory and Quantum Mechanics
Directory of Open Access Journals (Sweden)
Kundeti Muralidhar
2015-08-01
Full Text Available A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (n — 1-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.
Quantum electronics basic theory
Fain, V M; Sanders, J H
1969-01-01
Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Fundamentals of quantum mechanics
Erkoc, Sakir
2006-01-01
HISTORICAL EXPERIMENTS AND THEORIESDates of Important Discoveries and Events Blackbody RadiationPhotoelectrice Effect Quantum Theory of Spectra TheComptone Effect Matterwaves, the de Broglie HypothesisThe Davisson -Germer Experiment Heisenberg's Uncertainity PrincipleDifference Between Particles and Waves Interpretation of the Wavefunction AXIOMATIC STRUCTURE OF QUANTUM MECHANICSThe Necessity of Quantum TheoryFunction Spaces Postulates of Quantum Mechanics The Kronecker Delta and the Dirac Delta Function Dirac Notation OBSERVABLES AND SUPERPOSITIONFree Particle Particle In A Box Ensemble Average Hilbert -Space Interpretation The Initial Square Wave Particle Beam Superposition and Uncertainty Degeneracy of States Commutators and Uncertainty TIME DEVELOPMENT AND CONSERVATION THEOREMSTime Development of State Functions, The Discrete Case The Continuous Case, Wave Packets Particle Beam Gaussian Wave Packet Free Particle Propagator The Limiting Cases of the Gaussian Wave Packets Time Development of Expectation Val...
Dolev, S; Kolenda, N
2005-01-01
For more than a century, quantum mechanics has served as a very powerful theory that has expanded physics and technology far beyond their classical limits, yet it has also produced some of the most difficult paradoxes known to the human mind. This book represents the combined efforts of sixteen of today's most eminent theoretical physicists to lay out future directions for quantum physics. The authors include Yakir Aharonov, Anton Zeilinger; the Nobel laureates Anthony Leggett and Geradus 't Hooft; Basil Hiley, Lee Smolin and Henry Stapp. Following a foreword by Roger Penrose, the individual chapters address questions such as quantum non-locality, the measurement problem, quantum insights into relativity, cosmology and thermodynamics, and the possible bearing of quantum phenomena on biology and consciousness.
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1993-01-01
The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs
Phase space quantum mechanics and maximal acceleration
International Nuclear Information System (INIS)
Caianiello, E.
1989-01-01
My presentation is a synopsis of work done since 1979 in search of connections among information theory, systems theory, quantum mechanics and other matters. The aim was 'to extract geometry from quantum mechanics'. (orig./HSI)
Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory
Energy Technology Data Exchange (ETDEWEB)
Singh, Pardeep; Kaur, Harjeet [Guru Nanak Dev University, Department of Physics, Amritsar (India)
2016-11-15
The fission-fragment mass distribution is analysed for the {sup 208}Pb({sup 18}O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schroedinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process. (orig.)
Hawking temperature: an elementary approach based on Newtonian mechanics and quantum theory
Pinochet, Jorge
2016-01-01
In 1974, the British physicist Stephen Hawking discovered that black holes have a characteristic temperature and are therefore capable of emitting radiation. Given the scientific importance of this discovery, there is a profuse literature on the subject. Nevertheless, the available literature ends up being either too simple, which does not convey the true physical significance of the issue, or too technical, which excludes an ample segment of the audience interested in science, such as physics teachers and their students. The present article seeks to remedy this shortcoming. It develops a simple and plausible argument that provides insight into the fundamental aspects of Hawking’s discovery, which leads to an approximate equation for the so-called Hawking temperature. The exposition is mainly intended for physics teachers and their students, and it only requires elementary algebra, as well as basic notions of Newtonian mechanics and quantum theory.
On the summation of divergent perturbation series in quantum mechanics and field theory
International Nuclear Information System (INIS)
Kazakov, D.I.; Popov, V.S.
2002-01-01
The possibility of recovering the Gell-Mann-Low function in the asymptotic strong-coupling regime by known first-order perturbation-theory (PT) terms β n and their asymptotics β-tilde n as n → ∞ is investigated. Conditions are formulated that are necessary for recovering the required function at the physical level of rigor: (1) a large number of PT coefficients are known whose asymptotics has already been established, and (2) there is no intermediate asymptotics. Higher orders of PT, their asymptotic behavior, and power corrections are calculated in quantum mechanical problems that involve divergent PT series (including series for a funnel potential, the φ 4 (0) model, and the Stark effect in a strong field). The scalar field theory φ 4 (4) is considered in the MS and MOM regularization schemes. It is shown that one cannot make any definite conclusion about the asymptotics of the Gell-Mann-Low function as g → ∞ on the basis of information available for the above theory
Relativistic Quantum Mechanics
International Nuclear Information System (INIS)
Antoine, J-P
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Quantum Mechanics for Electrical Engineers
Sullivan, Dennis M
2011-01-01
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at
An Introduction to Quantum Theory
Greensite, Jeff
2017-02-01
Written in a lucid and engaging style, the author takes readers from an overview of classical mechanics and the historical development of quantum theory through to advanced topics. The mathematical aspects of quantum theory necessary for a firm grasp of the subject are developed in the early chapters, but an effort is made to motivate that formalism on physical grounds. Including animated figures and their respective Mathematica® codes, this book provides a complete and comprehensive text for students in physics, maths, chemistry and engineering needing an accessible introduction to quantum mechanics. Supplementary Mathematica codes available within Book Information
Quantum theory without reduction
International Nuclear Information System (INIS)
Cini, Marcello; Levy-Leblond, J.-M.
1990-01-01
Quantum theory offers a strange, and perhaps unique, case in the history of science. Although research into its roots has provided important results in recent years, the debate goes on. Some theorists argue that quantum theory is weakened by the inclusion of the so called 'reduction of the state vector' in its foundations. Quantum Theory without Reduction presents arguments in favour of quantum theory as a consistent and complete theory without this reduction, and which is capable of explaining all known features of the measurement problem. This collection of invited contributions defines and explores different aspects of this issue, bringing an old debate into a new perspective, and leading to a more satisfying consensus about quantum theory. (author)
Noncommutative quantum mechanics
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
International Nuclear Information System (INIS)
Mitter, H.
1979-01-01
This book is an introduction into quantum mechanics. After a general introduction the algebraic calculus of quantum mechanics in the framework of the Dirac brackets is described, whereby the probabilistic interpretation is introduced. Then some simple examples are described in this framework. After a description of the wave representation the general formalism of quantum mechanics is described. Then the Schroedinger equation is introduced. The angular momentum in quantum mechanics is then explicitely discussed. After a treatment of simple one- and two-body problems the parity and the probability current are discussed. Then the approximation methods are described. Finally some applications in atomic physics, simples many-body problems, and the scattering theory are dealed with. In the appendix the delta-function, orthogonal functions, the higher symmetry of the hydrogen problem, and the Galilei transformation in quantum mechanics are described. Every chapter conteins exercise problems. (HSI) [de
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
Nonequilibrium quantum field theories
International Nuclear Information System (INIS)
Niemi, A.J.
1988-01-01
Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)
On quantum mechanics for macroscopic systems
International Nuclear Information System (INIS)
Primas, H.
1992-01-01
The parable of Schroedinger's cat may lead to several up-to date questions: how to treat open systems in quantum theory, how to treat thermodynamically irreversible processes in the quantum mechanics framework, how to explain, following the quantum theory, the existence, phenomenologically evident, of classical observables, what implies the predicted existence by the quantum theory of non localized macroscopic material object ?
The development of elementary quantum theory
Capellmann, Herbert
2017-01-01
This book traces the evolution of the ideas that eventually resulted in the elementary quantum theory in 1925/26. Further, it discusses the essential differences between the fundamental equations of Quantum Theory derived by Born and Jordan, logically comprising Quantum Mechanics and Quantum Optics, and the traditional view of the development of Quantum Mechanics. Drawing on original publications and letters written by the main protagonists of that time, it shows that Einstein’s contributions from 1905 to 1924 laid the essential foundations for the development of Quantum Theory. Einstein introduced quantization of the radiation field; Born added quantized mechanical behavior. In addition, Born recognized that Quantum Mechanics necessarily required Quantum Optics; his radical concept of truly discontinuous and statistical quantum transitions (“quantum leaps”) was directly based on Einstein’s physical concepts.
Quantum information theory and quantum statistics
International Nuclear Information System (INIS)
Petz, D.
2008-01-01
Based on lectures given by the author, this book focuses on providing reliable introductory explanations of key concepts of quantum information theory and quantum statistics - rather than on results. The mathematically rigorous presentation is supported by numerous examples and exercises and by an appendix summarizing the relevant aspects of linear analysis. Assuming that the reader is familiar with the content of standard undergraduate courses in quantum mechanics, probability theory, linear algebra and functional analysis, the book addresses graduate students of mathematics and physics as well as theoretical and mathematical physicists. Conceived as a primer to bridge the gap between statistical physics and quantum information, a field to which the author has contributed significantly himself, it emphasizes concepts and thorough discussions of the fundamental notions to prepare the reader for deeper studies, not least through the selection of well chosen exercises. (orig.)
Toy Models of a Nonassociative Quantum Mechanics
International Nuclear Information System (INIS)
Dzhunushaliev, V.
2007-01-01
Toy models of a nonassociative quantum mechanics are presented. The Heisenberg equation of motion is modified using a nonassociative commutator. Possible physical applications of a nonassociative quantum mechanics are considered. The idea is discussed that a nonassociative algebra could be the operator language for the nonperturbative quantum theory. In such approach the nonperturbative quantum theory has observables and un observables quantities.
International Nuclear Information System (INIS)
Rovelli, C.
1996-01-01
I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the open-quotes measurement problemclose quotes) could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion that generates the unease with quantum mechanics is the notion of open-quotes observer-independent stateclose quotes of a system, or open-quotes observer-independent values of physical quantities.close quotes I reformulate the problem of the open-quotes interpretation of quantum mechanicsclose quotes as the problem of deriving the formalism from a set of simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete
Fundamental aspects of quantum theory
International Nuclear Information System (INIS)
Gorini, V.; Frigerio, A.
1986-01-01
This book presents information on the following topics: general problems and crucial experiments; the classical behavior of measuring instruments; quantum interference effect for two atoms radiating a single photon; quantization and stochastic processes; quantum Markov processes driven by Bose noise; chaotic behavior in quantum mechanics; quantum ergodicity and chaos; microscopic and macroscopic levels of description; fundamental properties of the ground state of atoms and molecules; n-level systems interacting with Bosons - semiclassical limits; general aspects of gauge theories; adiabatic phase shifts for neutrons and photons; the spins of cyons and dyons; round-table discussion the the Aharonov-Bohm effect; gravity in quantum mechanics; the gravitational phase transition; anomalies and their cancellation; a new gauge without any ghost for Yang-Mills Theory; and energy density and roughening in the 3-D Ising ferromagnet
Quantum mechanics in curved space-time and its consequences for the theory on the flat space-time
International Nuclear Information System (INIS)
Tagirov, E.A.
1997-01-01
Thus, the structure is extracted from the initial general-relativistic setting of the quantum theory of the scalar field φ that can be considered as quantum mechanics in V 1,3 in the Schroedinger picture, which includes relativistic corrections not only in the Hamiltonian of the Schroedinger equation but also in the operators of primary observables. In the terms pertaining to these corrections the operators differ from their counterparts resulting from quantization of a classical spinless particle. In general, they do not commute at all and thus the quantum phase space loses the feature that half its coordinates retain a manifold structure, which Biedenharn called 'a miracle of quantization'. This non-commutativity expands up to the exact (in the sense 'non-asymptotic in c -2 ') quantum mechanics of a free motion in the Minkowski space-time if curvilinear coordinates are taken as observables, which are necessary if non-inertial frames of references are considered
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
Einstein and the quantum theory
International Nuclear Information System (INIS)
Pais, A.
1979-01-01
The following topics are discussed: The light-quantum hypothesis and its gradual evolution into the photon concept. Early history of the photoelectric effect. The theoretical and experimental reasons why the resistance to the photon was stronger and more protracted than for any other particle proposed to date. Einstein's position regarding the Bohr--Kramers--Slater suggestion, the last bastion of resistance to the photon. Einstein's analysis of fluctuations around thermal equilibrium and his proposal of a duality between particles and waves, in 1909 for electromagnetic radiation (the first time this duality was ever stated) and in January 1925 for matter (prior to quantum mechanics and for reasons independent of those given earlier by de Broglie). His demonstration that long-known specific heat anomalies are quantum effects. His role in the evolution of the third law of thermodynamics. His new derivation of Planck's law in 1917 which also marks the beginning of his concern with the failure of classical causality. His role as one of the founders of quantum statistics and his discovery of the first example of a phase transition derived by using purely statistical methods. His position as a critic of quantum mechanics. Initial doubts on the consistency of quantum mechanics (1926--1930). His view maintained from 1930 until the end of his life: quantum mechanics is logically consistent and quite successful but it is incomplete. His attitude toward success. His criterion of objective reality. Differences in the roles relativity and quantum theory played in Einstein's life. His vision regarding quantum theory in the context of a unified field theory. His last autobiographical sketch, written a few months before his death, concluding with a statement about the quantum theory, a subject to which (by his own account) he had given more thought than even to general relativity
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1989-01-01
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
Quantum mechanics with quantum time
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)
Introduction to quantum statistical mechanics
International Nuclear Information System (INIS)
Bogolyubov, N.N.; Bogolyubov, N.N.
1980-01-01
In a set of lectures, which has been delivered at the Physical Department of Moscow State University as a special course for students represented are some basic ideas of quantum statistical mechanics. Considered are in particular, the Liouville equations in classical and quantum mechanics, canonical distribution and thermodynamical functions, two-time correlation functions and Green's functions in the theory of thermal equilibrium
QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES
International Nuclear Information System (INIS)
Geiger, G.
2000-01-01
The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory
Quantum mechanics and its limits
International Nuclear Information System (INIS)
Lamehi-Rachti, M.; Mittig, W.
1977-01-01
Bell has shown (Bell's inequality) that local hidden variable theories lead to predictions in contradiction with quantum mechanics. This has been tested in low energy proton-proton scattering by the simultaneous measurement of the polarisation of the two protons. The results are in agreement with quantum mechanics and thus in contradiction with the inequality of Bell [fr
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
Directory of Open Access Journals (Sweden)
Sam P De Visser
2013-12-01
Full Text Available Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical versus electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.
Time Asymmetric Quantum Mechanics
Directory of Open Access Journals (Sweden)
Arno R. Bohm
2011-09-01
Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Quantum relativity theory and quantum space-time
International Nuclear Information System (INIS)
Banai, M.
1984-01-01
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)
The informationally-complete quantum theory
Chen, Zeng-Bing
2014-01-01
Quantum mechanics is a cornerstone of our current understanding of nature and extremely successful in describing physics covering a huge range of scales. However, its interpretation remains controversial since the early days of quantum mechanics. What does a quantum state really mean? Is there any way out of the so-called quantum measurement problem? Here we present an informationally-complete quantum theory (ICQT) and the trinary property of nature to beat the above problems. We assume that ...
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Quantum mechanics a fundamental approach
Wan, K Kong
2018-01-01
The mathematical formalism of quantum theory in terms of vectors and operators in infinite-dimensional complex vector spaces is very abstract. The definitions of many mathematical quantities used do not seem to have an intuitive meaning. This makes it difficult to appreciate the mathematical formalism and hampers the understanding of quantum mechanics. This book provides intuition and motivation to the mathematics of quantum theory, introducing the mathematics in its simplest and familiar form, for instance, with three-dimensional vectors and operators, which can be readily understood. Feeling confident about and comfortable with the mathematics used helps readers appreciate and understand the concepts and formalism of quantum mechanics. Quantum mechanics is presented in six groups of postulates. A chapter is devoted to each group of postulates with a detailed discussion. Systems with superselection rules, and some conceptual issues such as quantum paradoxes and measurement, are also discussed. The book conc...
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
International Nuclear Information System (INIS)
Weinberg, Steven
2015-01-01
Quantum mechanics represents the central revolution of modern natural science and reaches in its importance farely beyond physics. Neither chemistry nor biology on the molecular scale would be understandable without it. Modern information technology from the laptop over the mobile telephone and the flat screen until the supercomputer would be unthinkable without quantum-mechanical effects. It desribes the world on the atomic and subatomic scale and is by this the starting point of our modern worldview. The Nobel-prize carrier Steven Weinberg has done ever among others by his theory of the unification of the weak and the electromagnetic interaction one of the most important contributions to this revolution. In this book he reproduces his personal view of quantum mechanics, which captivates by its strictly logic construction, precise linguistic representation, and mathematical clearness and completeness. This book appeals to studyings of natural sciences, especially of physics. Accompanied is the test by exercise problems, which allow the studying to apply immediately the knowledge, but also test their understanding. Because of its precision and clearness ''Lectures on Quantum Mechanics'' by Weinberg is also essentially suited for the self-study.
International Nuclear Information System (INIS)
Jabeen, S.; Raza, S.M.; Ahmed, M.A.; Zai, M.Y.; Akbar, S.; Jafri, Y.Z.
2012-01-01
We studied Faujasite type molecular sieves by using Fermi Dirac statistics and the quantum theory of dielectricity. We developed an empirical relationship for quantum capacitance which follows an inverse Gaussian profile in the frequency range of 66 Hz - 3 MHz. We calculated quantum capacitance, sample crystal momentum, charge quantization and quantized energy of Faujasite type molecular sieves in the frequency range of 0.1 Hz - 10/sup 4/ MHz. Our calculations for diameter of sodalite and super-cages of Faujasite type molecular sieves are in agreement with experimental results reported in this manuscript. We also calculated quantum polarizability, quantized molecular field, orientational polarizability and deformation polarizability by using experimental results of Ligia Frunza etal. The phonons are over damped in the frequency range 0.1 Hz - 10 kHz and become a source for producing cages in the Faujasite type molecular sieves. Ion exchange recovery processes occur due to over damped phonon excitations in Faujasite type molecular sieves and with increasing temperatures. (author)
Mathur, Vishnu S
2008-01-01
NEED FOR QUANTUM MECHANICS AND ITS PHYSICAL BASIS Inadequacy of Classical Description for Small Systems Basis of Quantum Mechanics Representation of States Dual Vectors: Bra and Ket Vectors Linear Operators Adjoint of a Linear Operator Eigenvalues and Eigenvectors of a Linear Operator Physical Interpretation Observables and Completeness Criterion Commutativity and Compatibility of Observables Position and Momentum Commutation Relations Commutation Relation and the Uncertainty ProductAppendix: Basic Concepts in Classical MechanicsREPRESENTATION THEORY Meaning of Representation How to Set up a Representation Representatives of a Linear Operator Change of Representation Coordinate Representation Replacement of Momentum Observable p by -ih d/dqIntegral Representation of Dirac Bracket A2|F|A1> The Momentum Representation Dirac Delta FunctionRelation between the Coordinate and Momentum RepresentationsEQUATIONS OF MOTIONSchrödinger Equation of Motion Schrödinger Equation in the Coordinate Representation Equation o...
Quantum mechanics the theoretical minimum
Susskind, Leonard
2014-01-01
From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
International Nuclear Information System (INIS)
Cisneros S, A.; McIntosh, H.V.
1982-01-01
A discussion of the nature of quantum mechanical resonances is presented from the point of view of the spectral theory of operators. In the case of Bohr-Feshbach resonances, graphs are presented to illustrate the theory showing the decay of a doubly excited metastable state and the excitation of the resonance by an incident particle with proper energy. A characterization of resonances is given as well as a procedure to determine widths using the spectral density function. A sufficient condition is given for the validity of the Breit-Wigner formula for Bohr-Feshbach resonances. (author)
Bonitz, Michael
2016-01-01
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
International Nuclear Information System (INIS)
Holland, P.
2001-01-01
Pursuing the Hamiltonian formulation of the De Broglie-Bohm (deBB) theory presented in the preceding paper, the Hamilton-Jacobi (HJ) theory of the wave-particle system is developed. It is shown how to derive a HJ equation for the particle, which enables trajectories to be computed algebraically using Jacobi's method. Using Liouville's equation in the HJ representation it was found the restriction on the Jacobi solutions which implies the quantal distribution. This gives a first method for interpreting the deBB theory in HJ terms. A second method proceeds via an explicit solution of the field+particle HJ equation. Both methods imply that the quantum phase may be interpreted as an incomplete integral. Using these results and those of the first paper it is shown how Schroedinger's equation can be represented in Liouvilian terms, and vice versa. The general theory of canonical transformations that represent quantum unitary transformations is given, and it is shown in principle how the trajectory theory may be expressed in other quantum representations. Using the solution found for the total HJ equation, an explicit solution for the additional field containing a term representing the particle back-reaction is found. The conservation of energy and momentum in the model is established, and weak form of the action-reaction principle is shown to hold. Alternative forms for the Hamiltonian are explored and it is shown that, within this theoretical context, the deBB theory is not unique. The theory potentially provides an alternative way of obtaining the classical limit
Quantum information and relativity theory
International Nuclear Information System (INIS)
Peres, Asher; Terno, Daniel R.
2004-01-01
This article discusses the intimate relationship between quantum mechanics, information theory, and relativity theory. Taken together these are the foundations of present-day theoretical physics, and their interrelationship is an essential part of the theory. The acquisition of information from a quantum system by an observer occurs at the interface of classical and quantum physics. The authors review the essential tools needed to describe this interface, i.e., Kraus matrices and positive-operator-valued measures. They then discuss how special relativity imposes severe restrictions on the transfer of information between distant systems and the implications of the fact that quantum entropy is not a Lorentz-covariant concept. This leads to a discussion of how it comes about that Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory is, of course, necessary for a consistent description of interactions. Its structure implies a fundamental tradeoff between detector reliability and localizability. Moreover, general relativity produces new and counterintuitive effects, particularly when black holes (or, more generally, event horizons) are involved. In this more general context the authors discuss how most of the current concepts in quantum information theory may require a reassessment
Estimation of high orders of the perturbation theory in quantum mechanics
International Nuclear Information System (INIS)
Seznec, Reynald.
1978-01-01
First of all the simple case of an integral of one variable (zero-dimensional model) is examined to illustrate the methods and concepts used. A system n quantum oscillators 0(n) (spherical model) is then studied. A theory of perturbations around the saddle point dominating the functional integral is developed (theory of perturbations around the instanton). The fluctuation propagator is calculated explicitly. Some properties of the corresponding Feynman diagrams are also investigated. Methods are proposed to generalize the calculations to more complicated potentials. As an example of application the calculations of the first correction to the Lipatovian term are given for the spherical model [fr
Stochastic methods in quantum mechanics
Gudder, Stanley P
2005-01-01
Practical developments in such fields as optical coherence, communication engineering, and laser technology have developed from the applications of stochastic methods. This introductory survey offers a broad view of some of the most useful stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering. Starting with a history of quantum mechanics, it examines both the quantum logic approach and the operational approach, with explorations of random fields and quantum field theory.The text assumes a basic knowledge of fun
Energy Technology Data Exchange (ETDEWEB)
Tang, Jau
1996-02-01
As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.
Quantum mechanics a modern development
Ballentine, Leslie E
2015-01-01
Although there are many textbooks that deal with the formal apparatus of quantum mechanics (QM) and its application to standard problems, none take into account the developments in the foundations of the subject which have taken place in the last few decades. There are specialized treatises on various aspects of the foundations of QM, but none that integrate those topics with the standard material. This book aims to remove that unfortunate dichotomy, which has divorced the practical aspects of the subject from the interpretation and broader implications of the theory. In this edition a new chapter on quantum information is added. As the topic is still in a state of rapid development, a comprehensive treatment is not feasible. The emphasis is on the fundamental principles and some key applications, including quantum cryptography, teleportation of states, and quantum computing. The impact of quantum information theory on the foundations of quantum mechanics is discussed. In addition, there are minor revisions ...
Sadovskii, Michael V
2013-01-01
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
International Nuclear Information System (INIS)
Yuille, A.L.
1980-11-01
Topics in the Yang-Mills theories of strong interactions and the quantum theories of gravity are examined, using the path integral approach, including; Yang-Mills instantons in curved spacetimes, Israel-Wilson metrics, Kaehler spacetimes, instantons and anti-instantons. (U.K.)
Analytical mechanics for relativity and quantum mechanics
Johns, Oliver Davis
2011-01-01
Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...
Quantum mechanics II advanced topics
Rajasekar, S
2015-01-01
Quantum Mechanics II: Advanced Topics uses more than a decade of research and the authors’ own teaching experience to expound on some of the more advanced topics and current research in quantum mechanics. A follow-up to the authors introductory book Quantum Mechanics I: The Fundamentals, this book begins with a chapter on quantum field theory, and goes on to present basic principles, key features, and applications. It outlines recent quantum technologies and phenomena, and introduces growing topics of interest in quantum mechanics. The authors describe promising applications that include ghost imaging, detection of weak amplitude objects, entangled two-photon microscopy, detection of small displacements, lithography, metrology, and teleportation of optical images. They also present worked-out examples and provide numerous problems at the end of each chapter.
New foundation of quantum theory
International Nuclear Information System (INIS)
Schmutzer, E.
1976-01-01
A new foundation of quantum theory is given on the basis of the formulated 'Principle of Fundamental Covariance', combining the 'Principle of General Relativity' (coordinate-covariance in space-time) and the 'Principle of Operator-Covariance' (in Hilbert space). The fundamental quantum laws proposed are: (1) time-dependent simultaneous laws of motion for the operators, general states and eigenstates, (2) commutation relations, (3) time-dependent eigenvalue equations. All these laws fulfill the Principle of Fundamental Covariance (in non-relativistic quantum mechanics with restricted coordinate transformations). (author)
International Nuclear Information System (INIS)
Kinnebrock, Werner
2011-01-01
The past century changed the classical, scientific way of view enormously. The quantum theory broke with the imagination of continuity of all dynamical processes and gave space to completely new, nearly revolutionary approaches of thinking. Einstein's relativity theory put the absoluteness of time and space as well as the general validity of the Euclidean geometry in question. The absolute calculability, as it was formulated by Laplace, was by the influence of chaos theory proven as illusion. Computers made by the Mandelbrot set the presentation of new esthetic and never seen structures. Hilbert's century program of a complete formalization of mathematics failed because of the famous law of Goedel. It is the demand of this book to present all these theories and conclusions easily understandably and entertainingly.
Communication: Quantum mechanics without wavefunctions
Energy Technology Data Exchange (ETDEWEB)
Schiff, Jeremy [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Poirier, Bill [Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States) and Department of Physics, Texas Tech University, Box 41051, Lubbock, Texas 79409-1051 (United States)
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
Communication: Quantum mechanics without wavefunctions
International Nuclear Information System (INIS)
Schiff, Jeremy; Poirier, Bill
2012-01-01
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
Quantum mechanics. An introduction
International Nuclear Information System (INIS)
Lesch, H.
2008-01-01
The following topics are dealt with: The way to quantum mechanics starting from thermal radiation and the stability of matter, Heisenberg's uncertainty relation, the impact of quantum mechanics on technology, the description of the big bang by means of quantum mechanics
Emergent mechanics, quantum and un-quantum
Ralston, John P.
2013-10-01
There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications
International Nuclear Information System (INIS)
Zinn-Justin, J.; Freie Univ. Berlin
1981-01-01
In this review I present a method to estimate the large order behavior of perturbation theory in quantum mechanics and field theory. The basic idea, due to Lipatov, is to relate the large order behavior to (in general complex) instanton contributions to the path integral representation of Green's functions. I explain the method first in the case of a simple integral and of the anharmonic oscillator and recover the results of Bender and Wu. I apply it then to the PHI 4 field theory. I study general potentials and boson field theories. I show, following Parisi, how the method can be generalized to theories with fermions. Finally I outline the implications of these results for the summability of the series. In particular I explain a method to sum divergent series based on a Borel transformation. In a last section I compare the larger order behavior predictions to actual series calculation. I present also some numerical examples of series summation. (orig.)
Quantum Mechanics as Classical Physics
Sebens, CT
2015-01-01
Here I explore a novel no-collapse interpretation of quantum mechanics which combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
The physics of quantum mechanics
Binney, James
2014-01-01
The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be
Propensity, Probability, and Quantum Theory
Ballentine, Leslie E.
2016-08-01
Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Quantum optics and fundamentals of quantum theory
International Nuclear Information System (INIS)
Dusek, M.
1997-01-01
Quantum optics has opened up new opportunities for experimental verification of the basic principles of quantum mechanics, particularly in the field of quantum interference and so-called non-local phenomena. The results of the experiments described provide unambiguous support to quantum mechanics. (Z.J.)
Quantum group gauge theory on quantum spaces
International Nuclear Information System (INIS)
Brzezinski, T.; Majid, S.
1993-01-01
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)
Nuclear Quantum Gravitation - The Correct Theory
Kotas, Ronald
2016-03-01
Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/
Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.
Nottale, Laurent; Auffray, Charles
2008-05-01
In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential
Stochastic incompleteness of quantum mechanics
International Nuclear Information System (INIS)
Suppes, P.; Zanotti, M.
1976-01-01
This article brings out in as conceptually clear terms as possible what seems to be a major incompleteness in the probability theory of particles offered by classical quantum mechanics. The exact nature of this incompleteness is illustrated by consideration of some simple quantum-mechanical examples. In addition, these examples are contrasted with the fundamental assumptions of Brownian motion in classical physics on the one hand, and with a controversey of a deecade ago in mathematical physchology. The central claim is that clasical quantum mechanics is radically incomplete in its probabilistic account of the motion of particles. In the last part of the article the time-dependent joint distribution of position and momentum of the linear harmonic oscillator is derived, and it is shown how the apparently physically paradoxical statistical independence of position and momentum has a natural explanation. The explanation is given within the framework of the non-quantum-mechanical stochastic theory constructed for such oscillators. (Auth.)
International Nuclear Information System (INIS)
Torre, A.C. de la; Mirabella, D.; Izus, G.
1990-01-01
The so called diffraction experiments are explained making no reference to any wave whatsoever. It is proposed that these waves are a mere mathematical artifact without any physical reality. If propensities and transmission between them are accepted as a physical reality, then the wave concept can be set aside along with duality and complementarity, thus eliminating controversy on the interpretation of quantum mechanics. An outline is made of the formulation of the theory based on the preparation of the system according to propensities and the transmission between them. (Author). 19 refs., 1 fig
General principles of quantum mechanics
International Nuclear Information System (INIS)
Pauli, W.
1980-01-01
This book is a textbook for a course in quantum mechanics. Starting from the complementarity and the uncertainty principle Schroedingers equation is introduced together with the operator calculus. Then stationary states are treated as eigenvalue problems. Furthermore matrix mechanics are briefly discussed. Thereafter the theory of measurements is considered. Then as approximation methods perturbation theory and the WKB approximation are introduced. Then identical particles, spin, and the exclusion principle are discussed. There after the semiclassical theory of radiation and the relativistic one-particle problem are discussed. Finally an introduction is given into quantum electrodynamics. (HSI)
Some remarks on quantum coherence theory
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)
Liu, Peng; Zhang, Jingxue; Wang, Dunyou
2017-06-07
A double-inversion mechanism of the F - + CH 3 I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol -1 at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol -1 calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol -1 , which agrees very well with the experimental value at 25.2 kcal mol -1 in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.
The formalisms of quantum mechanics an introduction
David, Francois
2015-01-01
These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The “standard” formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the other, are the standard tools used in most applications of quantum theory in physics and chemistry. Yet, other mathematical representations of quantum mechanics sometimes allow better comprehension and justification of quantum theory. This text focuses on two of such representations: the algebraic formulation of quantum mechanics and the “quantum logic” approach. Last but not least, some emphasis will also be put on understanding the relation between quantum physics and ...
Quantum mechanical irreversibility and measurement
Grigolini, P
1993-01-01
This book is intended as a tutorial approach to some of the techniques used to deal with quantum dissipation and irreversibility, with special focus on their applications to the theory of measurements. The main purpose is to provide readers without a deep expertise in quantum statistical mechanics with the basic tools to develop a critical judgement on whether the major achievements in this field have to be considered a satisfactory solution of quantum paradox, or rather this ambitious achievement has to be postponed to when a new physics, more general than quantum and classical physics, will
Stochastic quantum mechanics and quantum spacetime
International Nuclear Information System (INIS)
Prugovecki, E.
1984-01-01
This monograph deals in part with the physical, mathematical and epistemological reasons behind the failure of past theoretical frameworks, including conventional relativistic quantum mechanics, to bring about a conssistent unification of relativity with quantum theory. The assessment of the past record is set in an historical perspective by citing from original sources, some of which might be partly forgotten or are not that well known, but forcefully illustrate the motivations and goals of the foudners of relativity and quantum theory as they set about developing their respetive disciplines. The proposed framework for unification, which constitutes the bulk of this book, embraces classical as well as quantum theories by implementing an epsitemic idea first put forth by M. Born, namely that all deterministic values for measurable quantitites. The framework gives rise to a whole range of yet unresearched problems, whose solutions are bound to shed some light on the relationship between relativity and quantum theories of the most fundamental physical and mathematical leves. (author). refs.; figs.; tabs
Energy Technology Data Exchange (ETDEWEB)
Lefrancois, M
2005-12-15
In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)
Quantum Mechanics and Black Holes in Four-Dimensional String Theory
Ellis, Jonathan Richard; Nanopoulos, Dimitri V
1992-01-01
In previous papers we have shown how strings in a two-dimensional target space reconcile quantum mechanics with general relativity, thanks to an infinite set of conserved quantum numbers, ``W-hair'', associated with topological soliton-like states. In this paper we extend these arguments to four dimensions, by considering explicitly the case of string black holes with radial symmetry. The key infinite-dimensional W-symmetry is associated with the $\\frac{SU(1,1)}{U(1)}$ coset structure of the dilaton-graviton sector that is a model-independent feature of spherically symmetric four-dimensional strings. Arguments are also given that the enormous number of string {\\it discrete (topological)} states account for the maintenance of quantum coherence during the (non-thermal) stringy evaporation process, as well as quenching the large Hawking-Bekenstein entropy associated with the black hole. Defining the latter as the measure of the loss of information for an observer at infinity, who - ignoring the higher string qua...
A 'general boundary' formulation for quantum mechanics and quantum gravity
International Nuclear Information System (INIS)
Oeckl, Robert
2003-01-01
I propose to formalize quantum theories as topological quantum field theories in a generalized sense, associating state spaces with boundaries of arbitrary (and possibly finite) regions of space-time. I further propose to obtain such 'general boundary' quantum theories through a generalized path integral quantization. I show how both, non-relativistic quantum mechanics and quantum field theory can be given a 'general boundary' formulation. Surprisingly, even in the non-relativistic case, features normally associated with quantum field theory emerge from consistency conditions. This includes states with arbitrary particle number and pair creation. I also note how three-dimensional quantum gravity is an example for a realization of both proposals and suggest to apply them to four-dimensional quantum gravity
Basdevant, Jean-Louis
2007-01-01
Beautifully illustrated and engagingly written, Lectures on Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant's style is clear and stimulating, in the manner of a brisk classroom lecture that students can follow with ease and enjoyment. Here is a sample of the book's style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be 'E = mc2'. Nevertheless, the formula 'E=hV' which was written in the same year 1905 by the same Albert Einstein, and which started quantum theory, concerns their daily life considerably more. In fact, of the three watershed years for physics toward the beginning of the 20th century - 1905: the Special Relativity of Einstein, Lorentz and Poincaré; 1915: the General Relativity of Einstein, with its extraordinary reflections on gravitation, space and time; and 1925: the full development of Quantum Mechanics - it is surely the last which has the mos...
International Nuclear Information System (INIS)
Harder, M.
2005-01-01
The chase after a world formula is presently the most iridescent task for natural science. By the development of a radical new scientistic theory, unifying not only relativity and quantum theory as also astrophysics and string theory to a common view, the author lances the first serious candidate for a TOE (Theory of Everything) in the scientific discussion. The General Theory of Duality (GDT) offers not only surprising answers to fundamental questions of physics, but also discovers the smallest component of our universe, which is still known since a longer time, which we ignored: Planck's Constant. May be possible that by this book a new world view in physics can be created. (GL)
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Consistent histories and operational quantum theory
International Nuclear Information System (INIS)
Rudolph, O.
1996-01-01
In this work a generalization of the consistent histories approach to quantum mechanics is presented. We first critically review the consistent histories approach to nonrelativistic quantum mechanics in a mathematically rigorous way and give some general comments about it. We investigate to what extent the consistent histories scheme is compatible with the results of the operational formulation of quantum mechanics. According to the operational approach, nonrelativistic quantum mechanics is most generally formulated in terms of effects, states, and operations. We formulate a generalized consistent histories theory using the concepts and the terminology which have proven useful in the operational formulation of quantum mechanics. The logical rule of the logical interpretation of quantum mechanics is generalized to the present context. The algebraic structure of the generalized theory is studied in detail
Intermediate spectral theory and quantum dynamics
de Oliveira, Cesar R
2008-01-01
The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-...
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2005-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental
Are Quantum Theory Questions Epistemic?
Directory of Open Access Journals (Sweden)
Viviana Yaccuzzi Polisena
2013-12-01
Full Text Available How to displace-move quantum theory [Ǭ] questions-problems to philosophy? Seeing the collapse of our society’s cultural-intellectual-morals, the philosophy of the 21st century has to contribute to the formation of new principles-formalisms: the big task of the contemporary philosophy ©] is to innovate, to transform the building of the knowledge! Which is the role of the contemporary philosopher? (Noam Chomsky. Building science so that it is more human, out of the scientific mercantilism so that it does not continue transgressing that which is most precious: the thought-life. The ideas that I propose demand a deep cultural-epistemiologicscientific-philosophical-ethical rethinking that goes from quantum entities up to life in society. The starting idea is «the quantum [Ǭ], the paradigm of the contemporary science ©]» (Bernard D’Espagnat. I propose to displace-move questions of the quantum theory [Ǭ]: spin, measure, layering to the field of philosophy (φ to build generic symbols. Can the contemporary episteme model the collapse of the ? For a philosopher, can understanding the importance and the behaviour of the spin bring something new to philosophy ? Can information of the states of the spin be used to observe in a holographic way the pattern energy-information contained in the quantum entities? Is quantum [Ǭ] physics mechanical?
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Wu Ta You
1962-01-01
This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati
Quantum mechanics and computation
International Nuclear Information System (INIS)
Cirac Sasturain, J. I.
2000-01-01
We review how some of the basic principles of Quantum Mechanics can be used in the field of computation. In particular, we explain why a quantum computer can perform certain tasks in a much more efficient way than the computers we have available nowadays. We give the requirements for a quantum system to be able to implement a quantum computer and illustrate these requirements in some particular physical situations. (Author) 16 refs
Quantum mechanics for pedestrians
Pade, Jochen
2014-01-01
This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in detail current issues such as interaction-free quantum measurements, neutrino oscillations, various topics in the field of quantum information as well as fundamental problems and epistemological questions, such as the measurement problem, entanglement, Bell's inequality, decoherence, and the realism debate. A chapter on current interpretations of quantum mechanics concludes the book. To develop quickly and clearly the main principles of quantum mechanics and its mathematical formulation, there is a systematic change between wave mechanics and algebraic representation in the first chapters. The required mathematical tools are introduced step by step. Moreover, the appendix coll...
Operator methods in quantum mechanics
Schechter, Martin
2003-01-01
This advanced undergraduate and graduate-level text introduces the power of operator theory as a tool in the study of quantum mechanics, assuming only a working knowledge of advanced calculus and no background in physics. The author presents a few simple postulates describing quantum theory, gradually introducing the mathematical techniques that help answer questions important to the physical theory; in this way, readers see clearly the purpose of the method and understand the accomplishment. The entire book is devoted to the study of a single particle moving along a straight line. By posing q
Probabilistic and Statistical Aspects of Quantum Theory
Holevo, Alexander S
2011-01-01
This book is devoted to aspects of the foundations of quantum mechanics in which probabilistic and statistical concepts play an essential role. The main part of the book concerns the quantitative statistical theory of quantum measurement, based on the notion of positive operator-valued measures. During the past years there has been substantial progress in this direction, stimulated to a great extent by new applications such as Quantum Optics, Quantum Communication and high-precision experiments. The questions of statistical interpretation, quantum symmetries, theory of canonical commutation re
Energy Technology Data Exchange (ETDEWEB)
Khots, Boris, E-mail: bkhots@cccglobal.com [Compressor Controls Corp., Des Moines, Iowa (United States); Khots, Dmitriy, E-mail: dkhots@imathconsulting.com [iMath Consulting LLC Omaha, Nebraska (United States)
2014-12-10
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
International Nuclear Information System (INIS)
Khots, Boris; Khots, Dmitriy
2014-01-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided
Hilbert space and quantum mechanics
Gallone, Franco
2015-01-01
The topics of this book are the mathematical foundations of non-relativistic quantum mechanics and the mathematical theory they require. The main characteristic of the book is that the mathematics is developed assuming familiarity with elementary analysis only. Moreover, all the proofs are carried out in detail. These features make the book easily accessible to readers with only the mathematical training offered by undergraduate education in mathematics or in physics, and also ideal for individual study. The principles of quantum mechanics are discussed with complete mathematical accuracy and an effort is made to always trace them back to the experimental reality that lies at their root. The treatment of quantum mechanics is axiomatic, with definitions followed by propositions proved in a mathematical fashion. No previous knowledge of quantum mechanics is required. This book is designed so that parts of it can be easily used for various courses in mathematics and mathematical physics, as suggested in the Pref...
Entangled states in quantum mechanics
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
International Nuclear Information System (INIS)
D'Agostino, S.
1992-01-01
In the 50s, Schroedinger proposed a new conception of a continuous theory of Quantum Mechanics, which remarkably modified his 1926 ideas on ondulatory mechanics. The lack of individuality of the atomic particles presented in the new statistics, and in Heisenberg's Indeterminacy Relations, was by him considered as an aspect of a more general crisis in the anthology itself of classical atomism. Unlike his 1926 ideas, he proposed now to represent the wave equation in an n-dimensional space and he considered second-quantization technique as the proper mathematical tool for his new physical conception. Although he accepted that space-time discontinuities and casual gaps may appear here and there on the observational level (e.g. in the Indeterminacy Relations), he was convinced that they could be made compatible with a continuous pure theory, provided one accepted a suitable conception of the theory's epistemiological status. For him, only a continuous theory satisfied the conditions for a complete theory. On these matters, he thought he was somehow orthodox to the ideas of Hertz and Boltzmann, which were also reflected in the teaching of Exner. (author). 69 refs
Introduction to quantum mechanics
Phillips, A C
2003-01-01
Introduction to Quantum Mechanics is an introduction to the power and elegance of quantum mechanics. Assuming little in the way of prior knowledge, quantum concepts are carefully and precisely presented, and explored through numerous applications and problems. Some of the more challenging aspects that are essential for a modern appreciation of the subject have been included, but are introduced and developed in the simplest way possible.Undergraduates taking a first course on quantum mechanics will find this text an invaluable introduction to the field and help prepare them for more adv
Morse theory interpretation of topological quantum field theories
International Nuclear Information System (INIS)
Labastida, J.M.F.
1989-01-01
Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)
Laskin, Nick
2018-01-01
Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...
Gravitation, Thermodynamics, and Quantum Theory
Wald, Robert M.
1999-01-01
During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Quantum mechanical theory of collisional ionization in the presence of intense laser radiation
Bellum, J. C.; George, T. F.
1978-01-01
The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.
Energy Technology Data Exchange (ETDEWEB)
Hoehn, Philipp [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Vienna (Austria); Wever, Christopher [Institute for Theoretical Particle Physics, Karlsruhe (Germany)
2016-07-01
In contrast to relativity, quantum theory has evaded a commonly accepted apprehension, in part because of the lack of physical statements that fully characterize it. In an attempt to remedy the situation, we summarize a novel reconstruction of the explicit formalism of quantum theory (for arbitrarily many qubits) from elementary rules on an observer's information acquisition. Our approach is purely operational: we consider an observer O interrogating a system S with binary questions and define S's state as O's ''catalogue of knowledge'' about S; no ontic assumptions are necessary. From the rules, one can derive, among other things, the state spaces, the unitary group, the von Neumann evolution and show that the binary questions correspond to Pauli operators. The reconstruction also offers new structural insights in the form of novel informational charges and informational complementarity relations which define the state spaces and the unitary group. This reconstruction permits a new perspective on quantum theory.
Learn Quantum Mechanics with Haskell
Directory of Open Access Journals (Sweden)
Scott N. Walck
2016-11-01
Full Text Available To learn quantum mechanics, one must become adept in the use of various mathematical structures that make up the theory; one must also become familiar with some basic laboratory experiments that the theory is designed to explain. The laboratory ideas are naturally expressed in one language, and the theoretical ideas in another. We present a method for learning quantum mechanics that begins with a laboratory language for the description and simulation of simple but essential laboratory experiments, so that students can gain some intuition about the phenomena that a theory of quantum mechanics needs to explain. Then, in parallel with the introduction of the mathematical framework on which quantum mechanics is based, we introduce a calculational language for describing important mathematical objects and operations, allowing students to do calculations in quantum mechanics, including calculations that cannot be done by hand. Finally, we ask students to use the calculational language to implement a simplified version of the laboratory language, bringing together the theoretical and laboratory ideas.
Locality and quantum mechanics.
Unruh, W G
2018-07-13
It is argued that it is best not to think of quantum mechanics as non-local, but rather that it is non-realistic.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Frappier, Mélanie
2018-03-01
A century after its inception, quantum mechanics continues to puzzle us with dead-and-alive cats, waves "collapsing" into particles, and "spooky action at a distance." In his first book, What Is Real?, science writer and astrophysicist Adam Becker sets out to explore why the physics community is still arguing today about quantum mechanics's true meaning.
Goldman, Iosif Ilich; Geilikman, B T
2006-01-01
This challenging book contains a comprehensive collection of problems in nonrelativistic quantum mechanics of varying degrees of difficulty. It features answers and completely worked-out solutions to each problem. Geared toward advanced undergraduates and graduate students, it provides an ideal adjunct to any textbook in quantum mechanics.
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
Quantum information theory. Mathematical foundation. 2. ed.
International Nuclear Information System (INIS)
Hayashi, Masahito
2017-01-01
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.
Quantum information theory. Mathematical foundation. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Masahito [Nagoya Univ. (Japan). Graduate School of Mathematics
2017-07-01
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.
Einstein and interpretation of quantum field theory
International Nuclear Information System (INIS)
Kashlyun, F.
1982-01-01
The main problems of the quantum theory, the basis of which was laid by Planck in 1900 as a result of the discovery of elementary quantum of action, are examined. The most important Einstein contributions to the quantum theory are enumerated. The Einstein work about the light quanta, proved wave-particle dualism, stated one of the most complicated problems to the physics. The work on the specific heat capacity of solids shows that the quantum theory should be beyond the limits of the narrow range of the problems on black radiation. The works on the equilibrium of radiation have convincingly demonstrates statistical character of the radiation processes and have marked the way to Heizenberg form of the quantum mechanics. Einstein generalized the idea of wave-particle dualism to the ordinary gas. It helped to prepare the Schroedinger form of quantum mechanics
Pseudo-Hermitian Representation of Quantum Mechanics
International Nuclear Information System (INIS)
Mustafazade, A.
2008-01-01
I will outline a formulation of quantum mechanics in which the inner product on the Hilbert space of a quantum system is treated as a degree of freedom. I will outline some of the basic mathematical and conceptual features of the resulting theory and discuss some of its applications. In particular, I will present a quantum mechanical analogue of Einstein's field equations that links the inner product of the Hilbert space and the Hamiltonian of the system and discuss how the resulting theory can be used to address a variety of problems in classical electrodynamics, relativistic quantum mechanics, and quantum computation
Quantum mechanics for applied physics and engineering
Fromhold, Albert T
2011-01-01
This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch
Stochastic processes and quantum theory
International Nuclear Information System (INIS)
Klauder, J.R.
1975-01-01
The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)
Molecular quantum dynamics from theory to applications
Gatti, Fabien
2014-01-01
Emphasizing fundamental educational concepts, this book offers an accessible introduction that covers eigenstates, wave packets, quantum mechanical resonances and more. Examples show that high-level experiments and theory must work closely together.
Mathematical concepts of quantum mechanics. 2. ed.
International Nuclear Information System (INIS)
Gustafson, Stephen J.; Sigal, Israel Michael
2011-01-01
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory. (orig.)
Quantum: information theory: technological challenge
International Nuclear Information System (INIS)
Calixto, M.
2001-01-01
The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs
Analogies between classical statistical mechanics and quantum mechanics
International Nuclear Information System (INIS)
Uehara, M.
1986-01-01
Some analogies between nonequilibrium classical statistical mechanics and quantum mechanics, at the level of the Liouville equation and at the kinetic level, are commented on. A theorem, related to the Vlasov equation applied to a plasma, is proved. The theorem presents an analogy with Ehrenfest's theorem of quantum mechanics. An analogy between the plasma kinetic theory and Bohm's quantum theory with 'hidden variables' is also shown. (Author) [pt
Probable Inference and Quantum Mechanics
International Nuclear Information System (INIS)
Grandy, W. T. Jr.
2009-01-01
In its current very successful interpretation the quantum theory is fundamentally statistical in nature. Although commonly viewed as a probability amplitude whose (complex) square is a probability, the wavefunction or state vector continues to defy consensus as to its exact meaning, primarily because it is not a physical observable. Rather than approach this problem directly, it is suggested that it is first necessary to clarify the precise role of probability theory in quantum mechanics, either as applied to, or as an intrinsic part of the quantum theory. When all is said and done the unsurprising conclusion is that quantum mechanics does not constitute a logic and probability unto itself, but adheres to the long-established rules of classical probability theory while providing a means within itself for calculating the relevant probabilities. In addition, the wavefunction is seen to be a description of the quantum state assigned by an observer based on definite information, such that the same state must be assigned by any other observer based on the same information, in much the same way that probabilities are assigned.
Fundamental Principle for Quantum Theory
Khrennikov, Andrei
2002-01-01
We propose the principle, the law of statistical balance for basic physical observables, which specifies quantum statistical theory among all other statistical theories of measurements. It seems that this principle might play in quantum theory the role that is similar to the role of Einstein's relativity principle.
Supersymmetry in quantum mechanics
Cooper, Fred; Sukhatme, Uday
2001-01-01
This invaluable book provides an elementary description of supersymmetric quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. It gives physicists a fresh outlook and new ways of handling quantum-mechanical problems, and also leads to improved approximation techniques for dealing with potentials of interest in all branches of physics. The algebraic approach to obtaining eigenstates is elegant and important, and all physicists should become familiar with this. The book has been written in such a way that it can be easily appreciated by
Mathematics and quantum mechanics
International Nuclear Information System (INIS)
Santander, M.
2000-01-01
Several episodes in the relation between Mathematics and Quantum Mechanics are discussed; and the emphasis is put in the existence of multiple and sometimes unexpected connections between ideas originating in Mathematics and in Quantum Physics. The question of the unresasonable effectiveness of Mathematics in Physics is also presented in the same light. (Author) 3 refs
Quantum mechanics in matrix form
Ludyk, Günter
2018-01-01
This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.
Quantum theory informational foundations and foils
Spekkens, Robert
2016-01-01
This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information. Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quant...
International Nuclear Information System (INIS)
Efimov, G.V.
1976-01-01
The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version
Polymer quantum mechanics and its continuum limit
International Nuclear Information System (INIS)
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-01-01
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model
Quantum mechanics reality and separability
International Nuclear Information System (INIS)
Selleri, F.; Tarozzi, G.
1981-01-01
For many decades, there has been a debate about which one should be the correct interpretation of Quantum Mechanics. With regard to this question, the Copenhagen-Goettingen interpretation was in conflict with the interpretation given by Einstein and other physicists. The so-called problem of ''completeness'' of the theory in particular was under investigation. The development of this controversial problem, from the Von Neumann theorem up to the discovery of Bell inequality is reviewed in this article and it is discussed how these events marked the beginning of a new era for the researches on Quantum Mechanics. (author)
Beyond conventional quantum mechanics
International Nuclear Information System (INIS)
Ghirardi, C.
1991-10-01
The author reviews some recent attempts to overcome the conceptual difficulties encountered by trying to interpret quantum mechanics as giving a complete, objective and unified description of natural phenomena. 38 refs
International Nuclear Information System (INIS)
Basdevant, J.L.
1983-01-01
This book is the second part of the physic lectures on quantum mechanics from Ecole Polytechnique. It contains some physic complements a little more thoroughly studied, mathematical complements to which refer, and an exercise and problem collection [fr
Relativistic quantum mechanics of leptons and fields
International Nuclear Information System (INIS)
Grandy, W.T. Jr.
1991-01-01
This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory
Mind, matter and quantum mechanics
Stapp, Henry P
2009-01-01
"Scientists other than quantum physicists often fail to comprehend the enormity of the conceptual change wrought by quantum theory in our basic conception of the nature of matter," writes Henry Stapp. Stapp is a leading quantum physicist who has given particularly careful thought to the implications of the theory that lies at the heart of modern physics. In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics allows causally effective conscious thought to be combined in a natural way with the physical brain made of neurons and atoms. The book is divided into four sections. The first consists of an extended introduction. Key foundational and somewhat more technical papers are included in the second part, together with a clear exposition of the "orthodox" interpretation of quantum mechanics. The third part addresses, in a non-technical fashion, the implications of the theory for some of the most profound questi...
Quantum Theory finally reconciled with Special Relativity
Tommasini, Daniele
2001-01-01
In 1935 Einstein, Podolsky and Rosen (EPR) pointed out that Quantum Mechanics apparently implied some mysterious, instantaneous action at a distance. This paradox is supposed to be related to the probabilistic nature of the theory, but since deterministic alternatives involving "Hidden Variables" hardly agree with the experiments, the scientific community is now accepting this ``quantum nonlocality" as if it were a reality. However, I have argued recently that Quantum Electrodynamics is free ...
A general theory of quantum relativity
International Nuclear Information System (INIS)
Minic, Djordje; Tze, C.-H.
2004-01-01
The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics
Shen, Y.; Shen, Z. J.; Shen, G. T.; Yang, B. C.
1996-01-01
By the measurement theory of quantum mechanics and the method of Fourier transform,we proved that the wave function psi(x,y,z,t)= (8/((2(pi)(2L(exp (1/2)))(exp 3))(Phi(L,t,x)Phi(L,t,y)Phi(L,t,z)). According to the theory that the velocity of any particle can not be larger than the velocity of light and the Born interpretation, when absolute value of delta greater than (ct+ L),Phi(L,t,delta) = 0. But according to the calculation, we proved that for some delta, even if absolute value of delta is greater than (ct+L), Phi(L,t,delta) is not equal to 0.
International Nuclear Information System (INIS)
Levin, F.S.; Krueger, H.
1977-01-01
The dissociation energy D/sub e/ and the equilibrium proton-proton separation R/sub eq/ of H 2 are calculated using the methods of arrangement-channel quantum mechanics. This theory is the channel component version of the channel-coupling array approach to many-body scattering, applied to bound-state problems. In the approximation used herein, the wave function is identical to that of the classic Heitler-London-Sugiura valence-bond calculation, which gave D/sub e/ = 3.14 eV and R/sub eq/ = 1.65a 0 , values accurate to 34% and 17.8%, respectively. The present method yields D/sub e/ = 4.437 eV and R/sub eq/ approx. = 1.42a 0 , accurate to 6.5% and 1%, respectively. Some implications of these results are discussed
Is Quantum Gravity a Super-Quantum Theory?
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu
2013-01-01
We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.
Recent developments in quantum mechanics
International Nuclear Information System (INIS)
Piron, C.
1989-01-01
It is essentially a review of recent progress in Quantum Mechanics obtained by the ''Geneva School'', put all together in a synthesis for the first time. During these twelve last years Quantum Mechanics has developed deeply in three aspects: 1) the interpretation has been completely clarified but many ''senior'' physicists delight in the mystery of their school-days Quantum Mechanics and do not want to change their minds. 2) The formalism has been developed and generalized to many (if it is not all) physical situations. 3) Many new rules of calculation have been developed. In conclusion many paradoxes and/or unsolved problems have been solved and many calculations which usually appear just as tricks can be explained and justified. I want here to give a brief survey of each one of these three points and to end by some examples which show the power and the efficiency of this new theory. (orig.)
Supersymmetric symplectic quantum mechanics
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
International Nuclear Information System (INIS)
Landsberg, P.T.
1988-01-01
It is suggested that an oversight occurred in classical mechanics when time-derivatives of observables were treated on the same footing as the undifferentiated observables. Removal of this oversight points in the direction of quantum mechanics. Additional light is thrown on uncertainty relations and on quantum mechanics, as a possible form of a subtle statistical mechanics, by the formulation of a classical uncertainty relation for a very simple model. The existence of universal motion, i.e., of zero-point energy, is lastly made plausible in terms of a gravitational constant which is time-dependent. By these three considerations an attempt is made to link classical and quantum mechanics together more firmly, thus giving a better understanding of the latter
Classical- and quantum mechanical Coulomb scattering
International Nuclear Information System (INIS)
Gratzl, W.
1987-01-01
Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)
Holomorphic anomaly and quantum mechanics
Codesido, Santiago; Mariño, Marcos
2018-02-01
We show that the all-orders WKB periods of one-dimensional quantum mechanical oscillators are governed by the refined holomorphic anomaly equations of topological string theory. We analyze in detail the double-well potential and the cubic and quartic oscillators, and we calculate the WKB expansion of their quantum free energies by using the direct integration of the anomaly equations. We reproduce in this way all known results about the quantum periods of these models, which we express in terms of modular forms on the WKB curve. As an application of our results, we study the large order behavior of the WKB expansion in the case of the double well, which displays the double factorial growth typical of string theory.
Introduction to the quantum theory
Park, David
2005-01-01
More than a chance to gain new insights into physics, this book offers students the opportunity to look at what they already know about the subject in an improved way. Geared toward upper-level undergraduates and graduate students, this self-contained first course in quantum mechanics consists of two parts: the first covers basic theory, and the second part presents selected applications. Numerous problems of varying difficulty examine not only the steps of the proofs but also related ideas.Starting with an introduction that ventures beyond classical physics, the first part examines the physic
Quantum mechanical theory of positron production in heavy ion collisions with nuclear contact
International Nuclear Information System (INIS)
Heinz, U.
1986-01-01
The interplay between atomic and nuclear interactions in heavy ion collisions with nuclear contact is studied. The general theoretical description is outlined and analyzed in a number of different limits (semiclassical approximation, DWBA, fully quantal description). The two most important physical mechanisms for generating atomic-nuclear interference, i.e., energy conservation and the introduction of additional phase shifts by nuclear reactions, are extracted. The resulting typical coupling matrix elements are analyzed for their relative importance in atomic and nuclear excitations. The description of nuclear influence on atomic excitations in terms of a classical time delay caused by nuclear reactions is reviewed, and its relationship to the underlying quantal character of the nuclear reaction is discussed. The theory is applied to spontaneous positron emission in supercritical heavy-ion collisions (Z/sub tot/ ≥ 173). It is shown that nuclear contact can lead to line structures in the positron energy spectra if the probability distribution for nuclear delay times caused by the contact has contributions for T ≥ 10 -19 sec. We explicitly evaluate a model where a pocket in the internuclear potential near the touching configuration leads to formation of nuclear molecules, and predict a resonance-like excitation function for the positron peak. 25 refs., 7 figs
Supersymmetry and quantum mechanics
International Nuclear Information System (INIS)
Cooper, F.; Sukhatme, U.
1995-01-01
In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable and an array of powerful new approximation methods for handling potentials which are not exactly solvable. In this report, we review the theoretical formulation of supersymmetric quantum mechanics and discuss many applications. Exactly solvable potentials can be understood in terms of a few basic ideas which include supersymmetric partner potentials, shape invariance and operator transformations. Familiar solvable potentials all have the property of shape invariance. We describe new exactly solvable shape invariant potentials which include the recently discovered self-similar potentials as a special case. The connection between inverse scattering, isospectral potentials and supersymmetric quantum mechanics is discussed and multi-soliton solutions of the KdV equation are constructed. Approximation methods are also discussed within the framework of supersymmetric quantum mechanics and in particular it is shown that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials. Supersymmetry ideas give particularly nice results for the tunneling rate in a double well potential and for improving large N expansions. We also discuss the problem of a charged Dirac particle in an external magnetic field and other potentials in terms of supersymmetric quantum mechanics. Finally, we discuss structures more general than supersymmetric quantum mechanics such as parasupersymmetric quantum mechanics in which there is a symmetry between a boson and a para-fermion of order p. ((orig.))
Towards a quantum theory without 'quantization'
International Nuclear Information System (INIS)
Deutsch, D.; Texas Univ., Austin
1984-01-01
The paper argues the case for a quantum formulism without a reference to classical theory, in order to make progress with quantum theory. Quantum theory without classical theory; some elaboration of the pure quantum theory; and perturbation theory and the correspondence principle; are all discussed. (U.K.)
International Nuclear Information System (INIS)
Nguyen, Van Hieu; Nguyen, Bich Ha
2014-01-01
Since very early works on plasma oscillations in solids, it was known that in collective excitations (fluctuations of the charge density) of the electron gas there exists the resonance appearing as a quasiparticle of a special type called the plasmon. The elaboration of the quantum theory of plasmon in the framework of the canonical formalism is the purpose of the present work. We start from the establishment of the Lagrangian of the system of itinerant electrons in metal and the definition of the generalized coordinates and velocities of this system. Then we determine the expression of the Hamiltonian and perform the quantization procedure in the canonical formalism. By means of this rigorous method we can derive the expressions of the Hamiltonians of the interactions of plasmon with photon and all quasiparticles in solid from the first principles. (papers)
Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)
Chandra, N.; Temkin, A.
1975-01-01
A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.
Topics in string theory and quantum gravity
Alvarez-Gaume, Luis
1992-01-01
These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...
Time Dependent Quantum Mechanics
Morrison, Peter G.
2012-01-01
We present a systematic method for dealing with time dependent quantum dynamics, based on the quantum brachistochrone and matrix mechanics. We derive the explicit time dependence of the Hamiltonian operator for a number of constrained finite systems from this formalism. Once this has been achieved we go on to calculate the wavevector as a function of time, in order to demonstrate the use of matrix methods with respect to several concrete examples. Interesting results are derived for elliptic ...
The relation between classical and quantum mechanics
International Nuclear Information System (INIS)
Taylor, Peter.
1984-01-01
The thesis examines the relationship between classical and quantum mechanics from philosophical, mathematical and physical standpoints. Arguments are presented in favour of 'conjectural realism' in scientific theories, distinguished by explicit contextual structure and empirical testability. The formulations of classical and quantum mechanics, based on a general theory of mechanics is investigated, as well as the mathematical treatments of these subjects. Finally the thesis questions the validity of 'classical limits' and 'quantisations' in intertheoretic reduction. (UK)
Manin's quantum spaces and standard quantum mechanics
International Nuclear Information System (INIS)
Floratos, E.G.
1990-01-01
Manin's non-commutative coordinate algebra of quantum groups is shown to be identical, for unitary coordinates, with the conventional operator algebras of quantum mechanics. The deformation parameter q is a pure phase for unitary coordinates. When q is a root of unity. Manin's algebra becomes the matrix algebra of quantum mechanics for a discretized and finite phase space. Implications for quantum groups and the associated non-commutative differential calculus of Wess and Zumino are discussed. (orig.)
Fundamentals of Quantum Mechanics
Tang, C. L.
2005-06-01
Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors
Holistic aspects of quantum mechanics
International Nuclear Information System (INIS)
Pietschmann, H.
1987-01-01
Aspects of quantum mechanics irreconcilable with classical physics are outlined. Quantum mechanics started with a negative statement about reality, namely: it is impossible to determine momentum and position of a particle simultaneously. Meanwhile it has generated an impressive body of predictions which can be tested and have been confirmed by suitable experiments. As a consequence a naive, local, materialistic concept of reality must be abolished and a novel approach, the holistic is introduced. This is illustrated by some examples e.g. the Pauli exclusion principle for electrons, the electron capture decay of 135 La as a model of the wavefunction reduction, the Bohr radius of the atom, electron localisation in the atom. An example from the quantum field theory is the calculation of magnetic moments of electron and muon where a particle cannot be considered separately and all other particles must be taken into account. (G.Q.)
Philosophic foundations of quantum mechanics
Reichenbach, Hans
1998-01-01
Physics concerns direct analysis of the physical world, while philosophy analyzes knowledge about the physical world. This volume combines both disciplines for a philosophical interpretation of quantum physics - an interpretation free from the imprecision of metaphysics, offering a view of the atomic world and its quantum mechanical results as concrete as the visible everyday world.Written by an internationally renowned philosopher who specialized in symbolic logic and the theory of relativity, this approach consists of three parts. The first section, which requires no background in math or p
Quantum theory of measurements as quantum decision theory
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2015-01-01
Theory of quantum measurements is often classified as decision theory. An event in decision theory corresponds to the measurement of an observable. This analogy looks clear for operationally testable simple events. However, the situation is essentially more complicated in the case of composite events. The most difficult point is the relation between decisions under uncertainty and measurements under uncertainty. We suggest a unified language for describing the processes of quantum decision making and quantum measurements. The notion of quantum measurements under uncertainty is introduced. We show that the correct mathematical foundation for the theory of measurements under uncertainty, as well as for quantum decision theory dealing with uncertain events, requires the use of positive operator-valued measure that is a generalization of projection-valued measure. The latter is appropriate for operationally testable events, while the former is necessary for characterizing operationally uncertain events. In both decision making and quantum measurements, one has to distinguish composite nonentangled events from composite entangled events. Quantum probability can be essentially different from classical probability only for entangled events. The necessary condition for the appearance of an interference term in the quantum probability is the occurrence of entangled prospects and the existence of an entangled strategic state of a decision maker or of an entangled statistical state of a measuring device
Dynamical parasupersymmetries in quantum mechanics
International Nuclear Information System (INIS)
Durand, S.; Vinet, L.
1990-01-01
This paper reports on supersymmetric field theories that have the distinctive feature of being invariant under transformations that mix bosonic and fermionic variables. Reduction to 0 + 1 dimensions yields mechanical models with an analogous invariance. In this case, the Grassmannian variables are interpreted as describing (classically) the spin degrees of freedom of the particles involved. After canonical quantization, the corresponding quantities obey the standard anticommutation relations of fermionic creation and annihilation operators. It is known that paraquantitization offers alternative to the usual quantization scheme. In this framework, one can expect that it is possible to construct parasupersymmetric theories, that is, theories which are invariant under transformations between bosonic and parafermionic variables. As a matter of fact, Rubakov and Spiridonov has recently shown how the parasupersymmetric generalization of supersymmetric Quantum Mechanics proceeds. In this case, the fermionic creation and annihilation operators obey paracommutation relations. The applications of supersymmetric Quantum Mechanics are many. One might hope that its parasupersymmetric generalization will be as useful. The elaboration of parasupersymmeric Quantum Mechanics moreover has led to new mathematical constructs; indeed, the symmetry generators realize algebras involving products of degree higher than 2
Salam, Abdus; Wigner, E. P.
2010-03-01
Preface; List of contributors; Bibliography of P. A. M. Dirac; 1. Dirac in Cambridge R. J. Eden and J. C. Polkinghorne; 2. Travels with Dirac in the Rockies J. H. Van Vleck; 3. 'The golden age of theoretical physics': P. A. M. Dirac's scientific work from 1924 to 1933 Jagdish Mehra; 4. Foundation of quantum field theory Res Jost; 5. The early history of the theory of electron: 1897-1947 A. Pais; 6. The Dirac equation A. S. Wightman; 7. Fermi-Dirac statistics Rudolph Peierls; 8. Indefinite metric in state space W. Heisenberg; 9. On bras and kets J. M. Jauch; 10. The Poisson bracket C. Lanczos; 11. La 'fonction' et les noyaux L. Schwartz; 12. On the Dirac magnetic poles Edoardo Amadli and Nicola Cabibbo; 13. The fundamental constants and their time variation Freeman J. Dyson; 14. On the time-energy uncertainty relation Eugene P. Wigner; 15. The path-integral quantisation of gravity Abdus Salam and J. Strathdee; Index; Plates.
Hidden variables and locality in quantum theory
International Nuclear Information System (INIS)
Shiva, Vandana.
1978-12-01
The status of hidden variables in quantum theory has been debated since the 1920s. The author examines the no-hidden-variable theories of von Neumann, Kochen, Specker and Bell, and finds that they all share one basic assumption: averaging over the hidden variables should reproduce the quantum mechanical probabilities. Von Neumann also makes a linearity assumption, Kochen and Specker require the preservation of certain functional relations between magnitudes, and Bell proposes a locality condition. It has been assumed that the extrastatistical requirements are needed to serve as criteria of success for the introduction of hidden variables because the statistical condition is trivially satisfied, and that Bell's result is based on a locality condition that is physically motivated. The author shows that the requirement of weak locality, which is not physically motivated, is enough to give Bell's result. The proof of Bell's inequality works equally well for any pair of commuting magnitudes satisfying a condition called the degeneracy principle. None of the no-hidden-variable proofs apply to a class of hidden variable theories that are not phase-space reconstructions of quantum mechanics. The author discusses one of these theories, the Bohm-Bub theory, and finds that hidden variable theories that re all the quantum statistics, for single and sequential measurements, must introduce a randomization process for the hidden variables after each measurement. The philosophical significance of this theory lies in the role it can play in solving the conceptual puzzles posed by quantum theory
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Quantum field theory and the standard model
Schwartz, Matthew D
2014-01-01
Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...
International Nuclear Information System (INIS)
O'Carroll, M.
1993-01-01
The author considers models of statistical mechanics and quantum field theory (in the Euclidean formulation) which are treated using renormalization group methods and where the action is a small perturbation of a quadratic action. The author obtains multiscale formulas for the generating and correlation functions after n renormalization group transformations which bring out the relation with the nth effective action. The author derives and compares the formulas for different RGs. The formulas for correlation functions involve (1) two propagators which are determined by a sequence of approximate wave function renormalization constants and renormalization group operators associated with the decomposition into scales of the quadratic form and (2) field derivatives of the nth effective action. For the case of the block field open-quotes δ-functionclose quotes RG the formulas are especially simple and for asymptotic free theories only the derivatives at zero field are needed; the formulas have been previously used directly to obtain bounds on correlation functions using information obtained from the analysis of effective actions. The simplicity can be traced to an open-quotes orthogonality-of-scalesclose quotes property which follows from an implicit wavelet structure. Other commonly used RGs do not have the open-quotes orthogonality of scalesclose quotes property. 19 refs
Intrinsic irreversibility in quantum theory
International Nuclear Information System (INIS)
Prigogine, I.; Petrosky, T.Y.
1987-01-01
Quantum theory has a dual structure: while solutions of the Schroedinger equation evolve in a deterministic and time reversible way, measurement introduces irreversibility and stochasticity. This presents a contrast to Bohr-Sommerfeld-Einstein theory, in which transitions between quantum states are associated with spontaneous and induced transitions, defined in terms of stochastic processes. A new form of quantum theory is presented here, which contains an intrinsic form of irreversibility, independent of observation. This new form applies to situations corresponding to a continuous spectrum and to quantum states with finite life time. The usual non-commutative algebra associated to quantum theory is replaced by more general algebra, in which operators are also non-distributive. Our approach leads to a number of predictions, which hopefully may be verified or refuted in the next years. (orig.)
The birth of quantum mechanics
International Nuclear Information System (INIS)
Mehra, J.
1976-01-01
In an attempt to give an exact mathematical formulation of Bohr's Correspondence Principle, Heisenberg (June 1925) discovered the rules governing the behaviour of quantum- theoretical magnitudes. In fall 1925 Born, Heisenberg and Jordan and, independently, Dirac, formulated consistent algebraic schemes of quantum mechanics. Early in 1926 Schroedinger developed wave mechanics. In quick succession were discovered: Born's probability interpretation of the wave function, the transformation theory of Dirac, Jordan and F. London, Heisenberg's Uncertainty Relations and Bohr's Principle of Complementarity. By September 1927 the basis of a complete theory of atomic phenomena had been established. Aspects of this development, in which Heisenberg played a central role, are presented here as a tribute to his memory. (Author)
Fundamental principles of quantum theory
International Nuclear Information System (INIS)
Bugajski, S.
1980-01-01
After introducing general versions of three fundamental quantum postulates - the superposition principle, the uncertainty principle and the complementarity principle - the question of whether the three principles are sufficiently strong to restrict the general Mackey description of quantum systems to the standard Hilbert-space quantum theory is discussed. An example which shows that the answer must be negative is constructed. An abstract version of the projection postulate is introduced and it is demonstrated that it could serve as the missing physical link between the general Mackey description and the standard quantum theory. (author)
Towards a theory of intention: An application of quantum mechanics within psychotherapy
Van Wyck, Jennifer
This study incorporated grounded research methodology to analyze and code three fields of research: psychoneuroimmunology, psychokinesis, and guided imagery. The works of Tiller (2001, 2007) and Dyer (2004) were used as a validity check for the grounded theory results and provided further input into a final theory of intention. It was found that intention requires three elements to be most successful in producing targeted outcomes. These include consciousness, thought, and emotion. The emotional aspect of intention had previously been mentioned but never incorporated into earlier theories of intention and appears to be a new finding that has potentially strong implications. The paper concludes with a discussion of how the theory of intention can inform practice in the field of psychotherapy.
Quantum groups, quantum categories and quantum field theory
Fröhlich, Jürg
1993-01-01
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.
Saxon, David S
2012-01-01
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, m
Quantum measurement and algebraic quantum field theories
International Nuclear Information System (INIS)
DeFacio, B.
1976-01-01
It is shown that the physics and semantics of quantum measurement provide a natural interpretation of the weak neighborhoods of the states on observable algebras without invoking any ideas of ''a reading error'' or ''a measured range.'' Then the state preparation process in quantum measurement theory is shown to give the normal (or locally normal) states on the observable algebra. Some remarks are made concerning the physical implications of normal state for systems with an infinite number of degrees of freedom, including questions on open and closed algebraic theories
Quantum theory, groups and representations an introduction
Woit, Peter
2017-01-01
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific ...
Interferometric Computation Beyond Quantum Theory
Garner, Andrew J. P.
2018-03-01
There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.
Quantum mechanics of charged particle beam optics
Khan, Sameen Ahmed
2018-01-01
Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.
Reconstruction of abstract quantum theory
International Nuclear Information System (INIS)
Drieschner, M.; Goernitz, T.; von Weizsaecker, C.F.
1988-01-01
Understanding quantum theory as a general theory of prediction, we reconstruct abstract quantum theory. Abstract means the general frame of quantum theory, without reference to a three-dimensional position space, to concepts like particle or field, or to special laws of dynamics. Reconstruction is the attempt to do this by formulating simple and plausible postulates on prediction in order to derive the basic concepts of quantum theory from them. Thereby no law of classical physics is presupposed which would then have to be quantized. We briefly discuss the relationship of theory and interpretation in physics and the fundamental role of time as a basic concept for physics. Then a number of assertions are given, formulated as succinctly as possible in order to make them easily quotable and comparable. The assertations are arranged in four groups: heuristic principles, verbal definitions of some terms, three basic postulates, and consequences. The three postulates of separable alternatives, indeterminism, and kinematics are the central points of this work. These brief assertions are commented upon, and their relationship with the interpretation of quantum theory is discussed. Also given are an outlook on the further development into concrete quantum theory and some philosophical reflections
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
International Nuclear Information System (INIS)
Whitaker, A
2004-01-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried's well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. To sum up, Gottfried and Yan's book contains a vast amount of knowledge and understanding. The
Path Integrals in Quantum Mechanics
International Nuclear Information System (INIS)
Louko, J
2005-01-01
Jean Zinn-Justin's textbook Path Integrals in Quantum Mechanics aims to familiarize the reader with the path integral as a calculational tool in quantum mechanics and field theory. The emphasis is on quantum statistical mechanics, starting with the partition function Tr exp(-β H) and proceeding through the diffusion equation to barrier penetration problems and their semiclassical limit. The 'real time' path integral is defined via analytic continuation and used for the path-integral representation of the nonrelativistic S-matrix and its perturbative expansion. Holomorphic and Grassmannian path integrals are introduced and applied to nonrelativistic quantum field theory. There is also a brief discussion of path integrals in phase space. The introduction includes a brief historical review of path integrals, supported by a bibliography with some 40 entries. As emphasized in the introduction, mathematical rigour is not a central issue in the book. This allows the text to present the calculational techniques in a very readable manner: much of the text consists of worked-out examples, such as the quartic anharmonic oscillator in the barrier penetration chapter. At the end of each chapter there are exercises, some of which are of elementary coursework type, but the majority are more in the style of extended examples. Most of the exercises indeed include the solution or a sketch thereof. The book assumes minimal previous knowledge of quantum mechanics, and some basic quantum mechanical notation is collected in an appendix. The material has a large overlap with selected chapters in the author's thousand-page textbook Quantum Field Theory and Critical Phenomena (2002 Oxford: Clarendon). The stand-alone scope of the present work has, however, allowed a more focussed organization of this material, especially in the chapters on, respectively, holomorphic and Grassmannian path integrals. In my view the book accomplishes its aim admirably and is eminently usable as a textbook
Testing the foundations of quantum mechanics
Gisin, Nicolas; CERN. Geneva
1999-01-01
Quantum mechanics is certainly one of the most fascinating field of physics. In recent years, the new field of "quantum information processing" based on the most fundamental aspect of quantum mechanics, like linearity and entanglement, even increased and its peculiarities. In this series of 4 lectures we shall present some of the issues and experiments that test quantum theory. Entanglement leads, on the one hand side, to the measurement problem, to the EPR paradox and to quantum nonlocality ( distant systems). We will derive the Bell inequality, present experimental results that provide huge evidence in favor of quantum nonlocality and discuss some loopholes that are still open. On the other side, entanglement offers many new possibilities for information processing. Indeed, it provides means to carry out tasks that are either impossible classically (like quantum cryptography and quantum teleportation) or that would require significantly more steps to perform on a classical computer (like searching a databas...
Dirac's equation and the nature of quantum field theory
International Nuclear Information System (INIS)
Plotnitsky, Arkady
2012-01-01
This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.
Progress in the axiomatic quantum field theory
International Nuclear Information System (INIS)
Vladimirov, V.S.; Polivanov, M.K.
1975-01-01
The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras
Making sense of quantum mechanics
Bricmont, Jean
2016-01-01
This book explains, in simple terms, with a minimum of mathematics, why things can appear to be in two places at the same time, why correlations between simultaneous events occurring far apart cannot be explained by local mechanisms, and why, nevertheless, the quantum theory can be understood in terms of matter in motion. No need to worry, as some people do, whether a cat can be both dead and alive, whether the moon is there when nobody looks at it, or whether quantum systems need an observer to acquire definite properties. The author’s inimitable and even humorous style makes the book a pleasure to read while bringing a new clarity to many of the longstanding puzzles of quantum physics.
Contiguity and quantum theory of measurement
Energy Technology Data Exchange (ETDEWEB)
Green, H.S. [Adelaide Univ., SA (Australia). Dept. of Mathematical Physics]|[Adelaide Univ., SA (Australia). Dept. of Physics
1995-12-31
This paper presents a comprehensive treatment of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction representation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy. 28 refs.
Contiguity and quantum theory of measurement
International Nuclear Information System (INIS)
Green, H.S.; Adelaide Univ., SA
1995-01-01
This paper presents a comprehensive treatment of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction representation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy. 28 refs
The emerging quantum the physics behind quantum mechanics
Pena, Luis de la; Valdes-Hernandez, Andrea
2014-01-01
This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...
Supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Crombrugghe, M. de; Rittenberg, V.
1982-12-01
We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions. (orig.)
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
Search for violations of quantum mechanics
International Nuclear Information System (INIS)
Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.; Srednicki, M.
1984-01-01
The treatment of quantum effects in gravitational fields indicates that pure states may evolve into mixed states, and Hawking has proposed modification of the axioms of field theory which incorporate the corresponding violation of quantum mechanics. In this paper we propose a modified hamiltonian equation of motion for density matrices and use it to interpret upper bounds on the violation of quantum mechanics in different phenomenological situations. We apply our formalism to the K 0 -anti K 0 system and to long baseline neutron interferometry experiments. In both cases we find upper bounds of about 2x10 -21 GeV on contributions to the single particle 'hamiltonian' which violate quantum mechanical coherence. We discuss how these limits might be improved in the future, and consider the relative significance of other successful tests of quantum mechanics. An appendix contains model estimates of the magnitude of effects violating quantum mechanics. (orig.)
Quantum mechanics in phase space
DEFF Research Database (Denmark)
Hansen, Frank
1984-01-01
A reformulation of quantum mechanics for a finite system is given using twisted multiplication of functions on phase space and Tomita's theory of generalized Hilbert algebras. Quantization of a classical observable h is achieved when the twisted exponential Exp0(-h) is defined as a tempered....... Generalized Weyl-Wigner maps related to the notion of Hamiltonian weight are studied and used in the formulation of a twisted spectral theory for functions on phase space. Some inequalities for Wigner functions on phase space are proven. A brief discussion of the classical limit obtained through dilations...
A catastrophe in quantum mechanics
International Nuclear Information System (INIS)
Ignatovich, V.K.
2004-01-01
The standard scattering theory (SST) in nonrelativistic quantum mechanics (QM) is analyzed. Self-contradictions of SST are deconstructed. A direct way to calculate scattering probability without introduction of a finite volume is discussed. Substantiation of SST in textbooks with the help of wave packets is shown to be incomplete. A complete theory of wave packet scattering on a fixed center is presented, and its similarity to the plane wave scattering is demonstrated. The neutron scattering on a monatomic gas is investigated, and several problems are pointed out. A catastrophic ambiguity of the cross section is revealed, and a way to resolve this ambiguity is discussed
Prologue to super quantum mechanics something is rotten in the state of quantum mechanics
Vaguine, Victor
2012-01-01
Since its foundation more than eight decades ago, quantum mechanics has been plagued by enigmas, mysteries and paradoxes and held hostage by quantum positivism. This fact strongly suggests that something is fundamentally wrong with the quantum mechanics paradigm. The best scientific minds, such as Albert Einstein, Louis de Broglie, David Bohm, Richard Feynman and others have spent years of their professional lives attempting to find resolution to the quantum mechanics predicament, with not much success. A shift of the quantum mechanics paradigm toward a deeper physics theory is long overdue.
History and future. In commemoration of quantum theory's centenary
International Nuclear Information System (INIS)
Zhou Guangzhao
2001-01-01
The history of the discovery of quantum theory and the debate around its interpretation is reviewed. The strong influence of quantum mechanics on the development of science ad philosophy is emphasized and its impact on social technological and economic development is discussed. Possible directions for further development of quantum theory are also mentioned
Quantum-mechanical computers and uncomputability
International Nuclear Information System (INIS)
Lloyd, S.
1993-01-01
The time evolution operator for any quantum-mechanical computer is diagonalizable, but to obtain the diagonal decomposition of a program state of the computer is as hard as actually performing the computation corresponding to the program. In particular, if a quantum-mechanical system is capable of universal computation, then the diagonal decomposition of program states is uncomputable. As a result, in a universe in which local variables support universal computation, a quantum-mechanical theory for that universe that supplies its spectrum cannot supply the spectral decomposition of the computational variables. A ''theory of everything'' can be simultaneously correct and fundamentally incomplete
Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide
International Nuclear Information System (INIS)
Kukushkin, S A; Osipov, A V
2017-01-01
The paper focuses on the study of transformation of silicon crystal into silicon carbide crystal via substitution reaction with carbon monoxide gas. As an example, the Si(1 0 0) surface is considered. The cross section of the potential energy surface of the first stage of transformation along the reaction pathway is calculated by the method of nudged elastic bands. It is found that in addition to intermediate states associated with adsorption of CO and SiO molecules on the surface, there is also an intermediate state in which all the atoms are strongly bonded to each other. This intermediate state significantly reduces the activation barrier of transformation down to 2.6 eV. The single imaginary frequencies corresponding to the two transition states of this transformation are calculated, one of which is reactant-like, whereas the other is product-like. By methods of quantum chemistry of solids, the second stage of this transformation is described, namely, the transformation of precarbide silicon into silicon carbide. Energy reduction per one cell is calculated for this ‘collapse’ process, and bond breaking energy is also found. Hence, it is concluded that the smallest size of the collapsing islet is 30 nm. It is shown that the chemical bonds of the initial silicon crystal are coordinately replaced by the bonds between Si and C in silicon carbide, which leads to a high quality of epitaxy and a low concentration of misfit dislocations. (paper)
Theoretical physics. Quantum mechanics
International Nuclear Information System (INIS)
Rebhan, Eckhard
2008-01-01
From the first in two comprehensive volumes appeared Theoretical Physics of the author by this after Mechanics and Electrodynamics also Quantum mechanics appears as thinner single volume. First the illustrative approach via wave mechanics is reproduced. The more abstract Hilbert-space formulation introduces the author later by postulates, which are because of the preceding wave mechanics sufficiently plausible. All concepts of quantum mechanics, which contradict often to the intuitive understanding formed by macroscopic experiences, are extensively discussed and made by means of many examples as well as problems - in the largest part provided with solutions - understandable. To the interpretation of quantum mechanics an extensive special chapter is dedicated. this book arose from courses on theoretical physics, which the author has held at the Heinrich-Heine University in Duesseldorf, and was in numerous repetitions fitted to the requirement of the studyings. it is so designed that it is also after the study suited as reference book or for the renewing. All problems are very thoroughly and such extensively studied that each step is separately reproducible. About motivation and good understandability is cared much
Stohler, Michael Lehman
2002-01-01
Non-cooperative quantum games have received much attention recently. This thesis defines and divides current works into two major categories of gaming techniques with close attention paid to Nash equilibria, form and possibilities for the payoff functions, and the benefits of using a quantum strategy. In addition to comparing and contrasting these techniques, new applications and calculations are discussed. Finally, the techniques are expanded into 3 x 3 games which allows the study of non-transitive strategies in quantum games.
Quantum mechanics from elementary view
International Nuclear Information System (INIS)
Fischer, Karl
2009-01-01
This book offers an introduction to quantum mechanics as well as interesting supplements up to the beginnings of quantum field theory. A comprehensive mathematical block facilitates the access. It is rich on examples and otherwise mostly not findable calculations, which make it so transparent in its results. It likes the historical relations and brings so the feeling how much has been grown from the past. It brings also a short outline about relativity theory up to the understanding of the term ''metrics''. The spotlight holds the term product space, by means of which quantum mechanics is put together to a practicable theory. A simpler notation for instance at the Dirac equation facilitates also the understanding. On the mathematical side it is above all the term distributive law as well as the term linear combination, which lead so simple transparent definitions fast to more general. Generally it is tried to find an as possible elementary access to at least not elementary connections. So may it be for many both instructive and interesting
Modular groups in quantum field theory
International Nuclear Information System (INIS)
Borchers, H.-J.
2000-01-01
The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)
Renormalisation in Quantum Mechanics, Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.
2001-01-01
We suggest how to construct non-perturbatively a renormalized action in quantum mechanics. We discuss similarties and differences with the standard effective action. We propose that the new quantum action is suitable to define and compute quantum instantons and quantum chaos.
Introduction to quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.
1988-01-01
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Quantum mechanics and electrodynamics
Zamastil, Jaroslav
2017-01-01
This book highlights the power and elegance of algebraic methods of solving problems in quantum mechanics. It shows that symmetries not only provide elegant solutions to problems that can be solved exactly, but also substantially simplify problems that must be solved approximately. Furthermore, the book provides an elementary exposition of quantum electrodynamics and its application to low-energy physics, along with a thorough analysis of the role of relativistic, magnetic, and quantum electrodynamic effects in atomic spectroscopy. Included are essential derivations made clear through detailed, transparent calculations. The book’s commitment to deriving advanced results with elementary techniques, as well as its inclusion of exercises will enamor it to advanced undergraduate and graduate students.
Randomness and locality in quantum mechanics
International Nuclear Information System (INIS)
Bub, J.
1976-01-01
This paper considers the problem of representing the statistical states of a quantum mechanical system by measures on a classical probability space. The Kochen and Specker theorem proves the impossibility of embedding the possibility structure of a quantum mechanical system into a Boolean algebra. It is shown that a hidden variable theory involves a Boolean representation which is not an embedding, and that such a representation cannot recover the quantum statistics for sequential probabilities without introducing a randomization process for the hidden variables which is assumed to apply only on measurement. It is suggested that the relation of incompatability is to be understood as a type of stochastic independence, and that the indeterminism of a quantum mechanical system is engendered by the existence of independent families of properties. Thus, the statistical relations reflect the possibility structure of the system: the probabilities are logical. The hidden variable thesis is influenced by the Copenhagen interpretation of quantum mechanics, i.e. by some version of the disturbance theory of measurement. Hence, the significance of the representation problem is missed, and the completeness of quantum mechanics is seen to turn on the possibility of recovering the quantum statistics by a hidden variable scheme which satisfies certain physically motivated conditions, such as locality. Bell's proof that no local hidden variable theory can reproduce the statistical relations of quantum mechanics is considered. (Auth.)
International Nuclear Information System (INIS)
Testard, D.; Centre National de la Recherche Scientifique, 13 - Marseille
1977-09-01
For a finite non zero temperature state in Statistical Mechanics it is proved that the factor obtained in the corresponding representation of the quasilocal algebra has the property of Araki. The same result also holds for the 'wedge-algebras' of a hermitian scalar Wightman field
Positive Nonlinear Dynamical Group Uniting Quantum Mechanics and Thermodynamics
Beretta, Gian Paolo
2006-01-01
We discuss and motivate the form of the generator of a nonlinear quantum dynamical group 'designed' so as to accomplish a unification of quantum mechanics (QM) and thermodynamics. We call this nonrelativistic theory Quantum Thermodynamics (QT). Its conceptual foundations differ from those of (von Neumann) quantum statistical mechanics (QSM) and (Jaynes) quantum information theory (QIT), but for thermodynamic equilibrium (TE) states it reduces to the same mathematics, and for zero entropy stat...
Quantum decision theory as quantum theory of measurement
International Nuclear Information System (INIS)
Yukalov, V.I.; Sornette, D.
2008-01-01
We present a general theory of quantum information processing devices, that can be applied to human decision makers, to atomic multimode registers, or to molecular high-spin registers. Our quantum decision theory is a generalization of the quantum theory of measurement, endowed with an action ring, a prospect lattice and a probability operator measure. The algebra of probability operators plays the role of the algebra of local observables. Because of the composite nature of prospects and of the entangling properties of the probability operators, quantum interference terms appear, which make actions noncommutative and the prospect probabilities nonadditive. The theory provides the basis for explaining a variety of paradoxes typical of the application of classical utility theory to real human decision making. The principal advantage of our approach is that it is formulated as a self-consistent mathematical theory, which allows us to explain not just one effect but actually all known paradoxes in human decision making. Being general, the approach can serve as a tool for characterizing quantum information processing by means of atomic, molecular, and condensed-matter systems
The reality problem in quantum mechanics
International Nuclear Information System (INIS)
Flamm, D.
1988-01-01
A series of 12 lectures on quantum mechanics and its inter-pretations: The more specific part begins with chapter 8: spin and polarization measurements; the Einstein-Podolski-Rosen paradoxon; Bell's inequations; interpretations of quantum theory; the role of the observer and the wave function of the world. 40 refs., 11 figs. (qui)
Energy Technology Data Exchange (ETDEWEB)
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.
Quantum Information Theory - an Invitation
Werner, Reinhard F.
Quantum information and quantum computers have received a lot of public attention recently. Quantum computers have been advertised as a kind of warp drive for computing, and indeed the promise of the algorithms of Shor and Grover is to perform computations which are extremely hard or even provably impossible on any merely ``classical'' computer.In this article I shall give an account of the basic concepts of quantum information theory is given, staying as much as possible in the area of general agreement.The article is divided into two parts. The first (up to the end of Sect. 2.5) is mostly in plain English, centered around the exploration of what can or cannot be done with quantum systems as information carriers. The second part, Sect. 2.6, then gives a description of the mathematical structures and of some of the tools needed to develop the theory.
Quantum Link Models and Quantum Simulation of Gauge Theories
International Nuclear Information System (INIS)
Wiese, U.J.
2015-01-01
This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)
Some remarks on general covariance of quantum theory
International Nuclear Information System (INIS)
Schmutzer, E.
1977-01-01
If one accepts Einstein's general principle of relativity (covariance principle) also for the sphere of microphysics (quantum, mechanics, quantum field theory, theory of elemtary particles), one has to ask how far the fundamental laws of traditional quantum physics fulfil this principle. Attention is here drawn to a series of papers that have appeared during the last years, in which the author criticized the usual scheme of quantum theory (Heisenberg picture, Schroedinger picture etc.) and presented a new foundation of the basic laws of quantum physics, obeying the 'principle of fundamental covariance' (Einstein's covariance principle in space-time and covariance principle in Hilbert space of quantum operators and states). (author)
Radiation reaction in nonrelativistic quantum theory
International Nuclear Information System (INIS)
Sharp, D.H.
1979-01-01
Some recent work is reviewed on the quantum theory of radiation reaction. The starting point is the Heisenberg operator equation of motion for a nonrelativistic point electron coupled to the quantized electromagnetic field. It is shown that this equation, in contrast to its classical counterpart, leads to a finite value for the electrostatic self-energy of a point electron and, for values of the fine structure constant α approximately less than 1, admits neither runaway behavior nor noncausal motion. Furthermore, the correspondence limit of the solution to the quantum mechanical equation of motion agrees with that of the Lorentz--Dirac theory in the classical regime, but without the imposition of additional conditions and with no possibility of observable noncausality. Thus, a consistent picture of a classical point electron emerges in the correspondence limit of the quantum mechanical theory. 17 references
International Nuclear Information System (INIS)
Doncheski, M.A.; Robinett, R.W.
2002-01-01
Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by T rev =9μa 2 /4(h/2π) where a and μ are the length of one side and the mass of the point particle, respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60 deg. -60 deg. -60 deg. ) triangle, such as the half equilateral (30 deg. -60 deg. -90 deg.) triangle and other 'foldings', which have related energy spectra and revival structures
International Nuclear Information System (INIS)
Choi, B.H.; Poe, R.T.
1985-01-01
We present a systematic formulation of the atom--surface scattering dynamics which includes the vibrational states of the atoms in the solid (phonons). The properties of the total scattering wave function of the system, a representation of the interaction potential matrix, and the characteristics of the independent physical solutions are all derived from the translational invariance of the full Hamiltonian. The scattering equations in the integral forms as well as the related Green functions were also obtained. The configurational representations of the Green functions, in particular, are quite different from those of the conventional scattering theory where the collision partners are spatially localized. Various versions of the integral expression of scattering, transition, and reactance matrices were also obtained. They are useful for introducing approximation schemes. From the present formulation, some specific theoretical schemes which are more realistic compared to those that have been employed so far and at the same time capable of yielding effective ab initio computation are derived in the following paper. The time reversal invariance and the microscopic reversibility of the atom--surface scattering were discussed. The relations between the in and outgoing scattering wave functions which are satisfied in the atom--surface system and important in the transition matrix methods were presented. The phonon annihilation and creation, and the adsorption and desorption of the atom are related through the time reversal invariance, and thus the microscopic reversibility can be tested by the experiment
Quantum mechanics from general relativity
International Nuclear Information System (INIS)
Sachs, M.
1986-01-01
A generalization of quantum mechanics is demonstrated in the context of general relativity, following from a generally covariant field theory of inertia. Nonrelativistically, the formalism corresponds with linear quantum mechanics. In the limit of special relativity, nonlinearity remains and several new features are derived: (1) Particle-antiparticle pairs do not annihilate; an exact bound state solution is derived corresponding with all experimental facts about annihilation/creation - which, in approximation, gives the blackbody radiation spectrum for a sea of such pairs. (2) A result is proven, without approximation, that is physically equivalent to the Pauli exclusion principle - which, in linear approximation, gives the totally antisymmetrised many-body wave function and Fermi-Dirac statistics. (3) The hydrogen spectrum is derived, including the Lamb shifts, in agreement with experiment; new results are found for high energy electron-proton scattering. (4) Finally, several applications to the elementary particle domain are demonstrated, in agreement with results from experimental high energy physics. (Auth.)
International Nuclear Information System (INIS)
Vladimirov, V.S.; Volovich, I.V.
1988-01-01
Quantum mechanics above the field of p-adic numbers is constructed. Three formulations of p-adic quantum mechanics are considered: 1) quantum mechanics with complex-valued wave functions and p-adic coordinates and pulses; an approach based on Weyl representation is suggested; 2) the probability (Euclidean) formulation; 3) the secondary quantization representation (Fock representation) with p-adic wave functions
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
The transactional interpretation of quantum mechanics
Cramer, John G.
2001-06-01
The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."
Statistical algebraic approach to quantum mechanics
International Nuclear Information System (INIS)
Slavnov, D.A.
2001-01-01
The scheme for plotting the quantum theory with application of the statistical algebraic approach is proposed. The noncommutative algebra elements (observed ones) and nonlinear functionals on this algebra (physical state) are used as the primary constituents. The latter ones are associated with the single-unit measurement results. Certain physical state groups are proposed to consider as quantum states of the standard quantum mechanics. It is shown that the mathematical apparatus of the standard quantum mechanics may be reproduced in such a scheme in full volume [ru
Razavy, Mohsen
2014-01-01
In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
Measurements and mathematical formalism of quantum mechanics
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
Quantum field theory in a semiotic perspective
International Nuclear Information System (INIS)
Dosch, H.G.
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Quantum mechanics a comprehensive text for chemistry
Arora, Kishor
2010-01-01
This book contains 14 chapters. The text includes the inadequacy of classical mechanics and covers basic and fundamental concepts of quantum mechanics including concepts of transitional, vibration rotation and electronic energies, introduction to concepts of angular momenta, approximatemethods and their application concepts related to electron spin, symmetery concepts and quantum mechanics and ultimately the book features the theories of chemical bonding and use of softwares in quantum mechanics. the text of the book is presented in a lucid manner with ample examples and illustrations wherever
Elementary quantum field theory
International Nuclear Information System (INIS)
Thirring, W.; Henley, E.M.
1975-01-01
The first section of the book deals with the mathematical and physical description of a quantum field with the Bose-Einstein statistics and discusses observables, invariants of the field, and inner symmetries. The second section develops further methods for solvable interactions of a quantum field with static source. Section 3 explains with the aid of the Chew-Low model especially pion-nucleon scattering, static properties of nucleons, electromagnetic phenomena, and nuclear forces. (BJ/LN) [de
Quantum mechanics and the psyche
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
On quantum gravity and the many-worlds interpretation of quantum mechanics
International Nuclear Information System (INIS)
Smolin, L.
1984-01-01
The paper examines the interpretation of quantum mechanics and the quantum theory of gravity. Foundational problems in quantum gravity; the many-worlds interpretation of quantum mechanics; the role of observation in the many-worlds and in the minimal relative state interpretations; and advantages of the many-worlds interpretation; are all discussed. (U.K.)
Supersymmetry in quantum mechanics
International Nuclear Information System (INIS)
Lahiri, A.; Roy, P.K.; Bagghi, B.
1990-01-01
A pedagogical review on supersymmetry in quantum mechanics is presented which provides a comprehensive coverage of the subject. First, the key ingredients of the quantization of the systems with anticommuting variables are discussed. The supersymmetric Hamiltonian in quantum mechanics is then constructed by emphasizing the role of partner potentials and the superpotentials. The authors also make explicit the mathematical formulation of the Hamiltonian by considering in detail the N = 1 and N = 2 supersymmetric (quantum) mechanics. Supersymmetry is then discussed in the context of one-dimensional problems and the importance of the factorization method is highlighted. They treat in detail the technique of constructing a hierarchy of Hamiltonians employing the so-called 'shape-invariance' of potentials. To make transparent the relationship between supersymmetry and solvable potentials, they also solve several examples. They then go over the formulation of supersymmetry in radial problems, paying a special attention to the Coulomb and isotropic oscillator potentials. They show that the ladder operator technique may be suitable modified in higher dimensions for generating isospectral Hamiltonians. Next, the criteria for the breaking of supersymmetry is considered and their range of applicability is examined by suitably modifying he definition of Witten's index. Finally, the authors perform some numerical calculations for a class of potentials to show how a modified WKB approximation works in supersymmetric cases
Applications of supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Rietdijk, R.H.
1992-01-01
The central subject of the thesis is the spinning particle model. It is a theory describing in a pseudoclassical way a Dirac particle which moves in an arbitrary d-dimensional space-time.In addition to space-time coordinates, the particle has spin which is described in terms of anti-commuting coordinates. Along the particles world line there is a super-symmetry between the fermionic spin variables and the bosonic position coordinates of the particle. It is straightforward to quantisize this model giving rise to supersymmetric quantum mechanics. The model does indeed describe a particle with spin 1/2, like a quark or an electron. There are two aspects of this model which is studied extensively in this thesis. First, to investigate the symmetries of the spinning particle on an arbitrary Riemannian manifold. Second, attention is drawn to the application of supersymmetric quantum mechanical models (i.e. spinning particle models) defined on an arbitrary Riemannian manifold to the calculation of anomalies in quantum field theories defined on the same manifold. (author). 49 refs.; 7 figs
The theory of quantum information
Watrous, John
2018-01-01
This largely self-contained book on the theory of quantum information focuses on precise mathematical formulations and proofs of fundamental facts that form the foundation of the subject. It is intended for graduate students and researchers in mathematics, computer science, and theoretical physics seeking to develop a thorough understanding of key results, proof techniques, and methodologies that are relevant to a wide range of research topics within the theory of quantum information and computation. The book is accessible to readers with an understanding of basic mathematics, including linear algebra, mathematical analysis, and probability theory. An introductory chapter summarizes these necessary mathematical prerequisites, and starting from this foundation, the book includes clear and complete proofs of all results it presents. Each subsequent chapter includes challenging exercises intended to help readers to develop their own skills for discovering proofs concerning the theory of quantum information.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
International Nuclear Information System (INIS)
Clarke, M L
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism). (paper)
Recoverability in quantum information theory
Wilde, Mark
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.
Superconducting quantum circuits theory and application
Deng, Xiuhao
Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons
Modern logic and quantum mechanics
International Nuclear Information System (INIS)
Garden, R.W.
1984-01-01
The book applies the methods of modern logic and probabilities to ''interpreting'' quantum mechanics. The subject is described and discussed under the chapter headings: classical and quantum mechanics, modern logic, the propositional logic of mechanics, states and measurement in mechanics, the traditional analysis of probabilities, the probabilities of mechanics and the model logic of predictions. (U.K.)
Stochastic quantum mechanics and quantum spacetime
International Nuclear Information System (INIS)
Prugovecki, E.
1984-01-01
This monograph's principal intent is to provide a systematic and self-contained introduction to an alternative unification of relativity with quantum theory based on stochastic phase spaces and stochastic geometries, and presented at a level accessible to graduate students in theoretical and mathematical physics as well as to professional physicists and mathematicians. The proposed framework for unification embraces classical as well as quantum theories by implementing an epistemic idea first put forth by M. Born, namely that all physical theories should be formulated in terms of stochastic rather than deterministic values for measurable quantities. The framework gives rise to a whole range of yet unresearched problems, whose solutions are bound to shed some light on the relationship between relativity and quantum theories of the most fundamental physical and mathematical levels. (Auth.)
Dual field theories of quantum computation
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N
Spectral methods in quantum field theory
International Nuclear Information System (INIS)
Graham, Noah; Quandt, Markus; Weigel, Herbert
2009-01-01
This concise text introduces techniques from quantum mechanics, especially scattering theory, to compute the effects of an external background on a quantum field in general, and on the properties of the quantum vacuum in particular. This approach can be succesfully used in an increasingly large number of situations, ranging from the study of solitons in field theory and cosmology to the determination of Casimir forces in nano-technology. The method introduced and applied in this book is shown to give an unambiguous connection to perturbation theory, implementing standard renormalization conditions even for non-perturbative backgrounds. It both gives new theoretical insights, for example illuminating longstanding questions regarding Casimir stresses, and also provides an efficient analytic and numerical tool well suited to practical calculations. Last but not least, it elucidates in a concrete context many of the subtleties of quantum field theory, such as divergences, regularization and renormalization, by connecting them to more familiar results in quantum mechanics. While addressed primarily at young researchers entering the field and nonspecialist researchers with backgrounds in theoretical and mathematical physics, introductory chapters on the theoretical aspects of the method make the book self-contained and thus suitable for advanced graduate students. (orig.)
Weak Quantum Theory: Formal Framework and Selected Applications
International Nuclear Information System (INIS)
Atmanspacher, Harald; Filk, Thomas; Roemer, Hartmann
2006-01-01
Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli
International Nuclear Information System (INIS)
Mandeep Kaur; Singh, BirBikram; Sukhmanpreet Kaur
2017-01-01
The liquid drop energy (V_L_D_M) along with shell corrections (δU) plays an important role to give the proper understanding of binding energies of atomic nuclei. It is relevant mention here that to study the excited state decay of nuclear systems Gupta and collaborators developed dynamical cluster decay model (DCM) by refitting the binding energies at T=0, to get temperature dependent binding energies with shell corrections included, for the same. Also, in literature different types of temperature dependent binding energies formulas are available. In DCM, the temperature dependent binding energies have been included as given by Davidson et al. In the process, shell corrections, δU were also calculated along with VLDM to reproduce the available experimental binding energies at T=0. It is relevant to mention here that the nuclear shell structure plays main role in the process of cluster radioactivity (CR) as very well explored by the quantum mechanical fragmentation theory (QMFT)-based preformed cluster decay model (PCM), which is the special case of DCM at T=0. Within PCM, Gupta and collaborators also studied the role of deformations or orientations in the decay of number of radioactive nuclei in trans-lead region, specifically, which lead to doubly magic "2"0"8Pb daughter nucleus through emission of clusters i.e. "1"4C, "1"8","2"0O, "2"2Ne, "2"3F, "2"4","2"6 Ne, "2"8","3"0Mg and "3"2","3"4Si, along with many other CR decays. As mentioned earlier, the nuclear shell structure plays an important role in the decay of radioactive nuclei to doubly magic "2"0"8Pb through cluster
Thermodynamics and the structure of quantum theory
International Nuclear Information System (INIS)
Krumm, Marius; Müller, Markus P; Barnum, Howard; Barrett, Jonathan
2017-01-01
Despite its enormous empirical success, the formalism of quantum theory still raises fundamental questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it could we reasonably expect to find in some regimes of physics? Here we address these questions by studying how compatibility with thermodynamics constrains the structure of quantum theory. We employ two postulates that any probabilistic theory with reasonable thermodynamic behaviour should arguably satisfy. In the framework of generalised probabilistic theories, we show that these postulates already imply important aspects of quantum theory, like self-duality and analogues of projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories beyond quantum mechanics. Using a thought experiment by von Neumann, we show that these theories admit a consistent thermodynamic notion of entropy, and prove that the second law holds for projective measurements and mixing procedures. Furthermore, we study additional entropy-like quantities based on measurement probabilities and convex decomposition probabilities, and uncover a relation between one of these quantities and Sorkin’s notion of higher-order interference. (paper)
Supersymmetric quantum mechanics: another nontrivial quantum superpotential
International Nuclear Information System (INIS)
Cervero, J.M.
1991-01-01
A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)
Postulates of quantum mechanics
International Nuclear Information System (INIS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.
1977-01-01
Postulates of quantum mechanics and physical interpretation on observables and their measurement are presented. The physical content of Schroedinger equation, the superposition principle and the physical forecastings are also exposed. In complement are also presented: physical study of a particle in a infinite potential well; study of probability current; mean deviations of two conjugate observables; measurements on a part only of a physical system; density operator; evolution operator; Heisenberg and Schoredinger pictures; gauge invariance; propagator of the Schroedinger equation; unsteady levels lifetime; bound states of a particle in a potential well of any shape; non-bound states of a particle in a well or a potential barrier of some shape; quantum properties of a particle in a one-dimensional periodic structure [fr
Quantum mechanics, relativity and casuality
International Nuclear Information System (INIS)
Tati, T.
1976-01-01
In quantum mechanics, the state is prepared by a measurement on a spacelike surface sigma. What is that determine the surface sigma on which the measurement prepares the stae. It si considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning casuality or conservation of probability due to the fact that the velocity of reduction of a wave packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing casual relations. An experimental to discriminate between the above-mentioned two cases and to test the existence of the universal timelike vector is proposed
Quantum mechanics, relativity and causality
International Nuclear Information System (INIS)
Tati, Takao.
1975-07-01
In quantum mechanics, the state is prepared by a measurement on a space-like surface sigma. What is that determines the surface sigma on which the measurement prepares the state It is considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning causality or conservation of probability due to that the velocity of reduction of wave-packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing causal relations. We propose an experiment to discriminate between the above-mentioned two cases and to test the existence of the universal time-like vector. (auth.)
General covariance and quantum theory
International Nuclear Information System (INIS)
Mashhoon, B.
1986-01-01
The extension of the principle of relativity to general coordinate systems is based on the hypothesis that an accelerated observer is locally equivalent to a hypothetical inertial observer with the same velocity as the noninertial observer. This hypothesis of locality is expected to be valid for classical particle phenomena as well as for classical wave phenomena but only in the short-wavelength approximation. The generally covariant theory is therefore expected to be in conflict with the quantum theory which is based on wave-particle duality. This is explicitly demonstrated for the frequency of electromagnetic radiation measured by a uniformly rotating observer. The standard Doppler formula is shown to be valid only in the geometric optics approximation. A new definition for the frequency is proposed, and the resulting formula for the frequency measured by the rotating observer is shown to be consistent with expectations based on the classical theory of electrons. A tentative quantum theory is developed on the basis of the generalization of the Bohr frequency condition to include accelerated observers. The description of the causal sequence of events is assumed to be independent of the motion of the observer. Furthermore, the quantum hypothesis is supposed to be valid for all observers. The implications of this theory are critically examined. The new formula for frequency, which is still based on the hypothesis of locality, leads to the observation of negative energy quanta by the rotating observer and is therefore in conflict with the quantum theory
Bananaworld quantum mechanics for primates
Bub, Jeffrey
2016-01-01
What on earth do bananas have to do with quantum mechanics? From a modern perspective, quantum mechanics is about strangely counterintuitive correlations between separated systems, which can be exploited in feats like quantum teleportation, unbreakable cryptographic schemes, and computers with enormously enhanced computing power. Schro?dinger coined the term "entanglement" to describe these bizarre correlations. Bananaworld -- an imaginary island with "entangled" bananas -- brings to life the fascinating discoveries of the new field of quantum information without the mathematical machinery of quantum mechanics. The connection with quantum correlations is fully explained in sections written for the non-physicist reader with a serious interest in understanding the mysteries of the quantum world. The result is a subversive but entertaining book that is accessible and interesting to a wide range of readers, with the novel thesis that quantum mechanics is about the structure of information. What we have discovered...
Arfi, Badredine
2007-02-01
Most game-theoretic studies of strategic interaction assume independent individual strategies as the basic unit of analysis. This paper explores the effects of non-independence on strategic interaction. Two types of non-independence effects are considered. First, the paper considers subjective non-independence at the level of the individual actor by looking at how choice ambivalence shapes the decision-making process. Specifically, how do alternative individual choices superpose with one another to “constructively/destructively” shape each other's role within an actor's decision-making process? This process is termed as quantum superposition of alternative choices. Second, the paper considers how inter-subjective non-independence across actors engenders collective strategies among two or more interacting actors. This is termed as quantum entanglement of strategies. Taking into account both types of non-independence effect makes possible the emergence of a new collective equilibrium, without assuming signaling, prior “contract” agreement or third-party moderation, or even “cheap talk”. I apply these ideas to analyze the equilibrium possibilities of a situation wherein N actors play a quantum social game of cooperation. I consider different configurations of large- N quantum entanglement using the approach of density operator. I specifically consider the following configurations: star-shaped, nearest-neighbors, and full entanglement.
Recent trials to verify quantum mechanics
International Nuclear Information System (INIS)
Paty, M.
1974-01-01
An account of the experiments which deal with the verification of Quantum Mechanics and the hidden variable problem is made. First, the well-known EPR paradox is recalled which, in spite of its refutation by Bohr, was the starting point of the questionning on the completeness of Quantum Mechanics and of hidden variable theories; and then Bell's theorem, which shows that the two approaches, Quantum Mechanics and hidden variables, can be put in contradiction. Thereafter the various types of experiments which have been carried out on that subject, mostly concerning the correlation measurements between two photons emitted by a quantum system are described. The most recent experimental results are diverging, some of them to confirm and some others to contradict quantum mechanics. A review of these is given; and a discussion is presented about their possible implications [fr
A mathematical primer on quantum mechanics
Teta, Alessandro
2018-01-01
This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and s...
What is Quantum Mechanics? A Minimal Formulation
Friedberg, R.; Hohenberg, P. C.
2018-03-01
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called "microscopic theory", applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleason's theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.
Experimental status of quaternionic quantum mechanics
International Nuclear Information System (INIS)
Brumby, S.P.; Joshi, G.C.
1995-01-01
Analysis of the logical foundations of quantum mechanics indicates the possibility of constructing a theory using quaternionic Hilbert spaces. Whether this mathematical structure reflects reality is a matter for experiment to decide. The only direct search for quaternionic quantum mechanics yet carried out is reviewed and is proposed to look for quaternionic effects in correlated multi-particle systems. It is also discussed how such experiments might distinguish between the several quaternionic models proposed in the literature. 21 refs
A mathematical companion to quantum mechanics
Sternberg, Shlomo
2019-01-01
This original 2018 work, based on the author's many years of teaching at Harvard University, examines mathematical methods of value and importance to advanced undergraduates and graduate students studying quantum mechanics. Topics include the Fourier transform, the spectral theorem for bounded self-joint operators, unbounded operators and semigroups, Weyl's theorem, the Rayleigh-Ritz method, one dimensional quantum mechanics, Ruelle's theorem, scattering theory, and many other subjects.
Uncertainty and complementarity in axiomatic quantum mechanics
International Nuclear Information System (INIS)
Lahti, P.J.
1980-01-01
An investigation of the uncertainty principle and the complementarity principle is carried through. The physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. Two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. (author)
Relativistic quantum mechanics an introduction to relativistic quantum fields
Maiani, Luciano
2016-01-01
Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Quantum mechanics of leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Mendizabal Cofre, Sebastian
2010-08-15
Leptogenesis is an attractive mechanism that simultaneously explains the matterantimatter asymmetry of the universe as well as the small masses of the standard model neutrinos. This is performed by naturally extending the standard model with the insertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical Boltzmann equations. However, these equations suffer from basic conceptual problems and they lack to include many quantum phenomena, such as memory effects and coherence oscillations. In order to fully describe leptogenesis, a full quantum treatment is required. In this work we show how to address leptogenesis systematically in a purely quantum way. We start by studying scalar and fermionic excitations in a plasma by solving the Kadanoff-Baym equations of motion for Green's functions, with significant emphasis on the initial and boundary conditions of the solutions. We compute analytically the asymmetry generated from the departure of equilibrium of a particle in a thermal bath. The comparison with the semi-classical Boltzmann approach is also analysed, leading to a qualitative difference between both methods. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry, effects that cannot be studied with the Boltzmann equations. The insertion of standard model interactions like the decay widths for the particles of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes, i.e. we regain the Boltzmann equations. (orig.)
Quantum mechanics of leptogenesis
International Nuclear Information System (INIS)
Mendizabal Cofre, Sebastian
2009-07-01
Leptogenesis is an attractive mechanism that simultaneously explains the matterantimatter asymmetry of the universe as well as the small masses of the standard model neutrinos. This is performed by naturally extending the standard model with the insertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical Boltzmann equations. However, these equations suffer from basic conceptual problems and they lack to include many quantum phenomena, such as memory effects and coherence oscillations. In order to fully describe leptogenesis, a full quantum treatment is required. In this work we show how to address leptogenesis systematically in a purely quantum way. We start by studying scalar and fermionic excitations in a plasma by solving the Kadanoff-Baym equations of motion for Green's functions, with significant emphasis on the initial and boundary conditions of the solutions. We compute analytically the asymmetry generated from the departure of equilibrium of a particle in a thermal bath. The comparison with the semi-classical Boltzmann approach is also analysed, leading to a qualitative difference between both methods. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry, effects that cannot be studied with the Boltzmann equations. The insertion of standard model interactions like the decay widths for the particles of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes, i.e. we regain the Boltzmann equations. (orig.)
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Mind, matter, and quantum mechanics
International Nuclear Information System (INIS)
Stapp, H.P.
1982-01-01
A theory of psychophysical phenomena is proposed. It resolves simultaneously four basic problems of science, namely the problems of the connections between: (1) mind and matter, (2), quantum theory and reality, (3) relativity theory and ''becoming,'' and (4) relativity theory and Bell's theorem
Is there a quantum theory of gravity
International Nuclear Information System (INIS)
Strominger, A.
1984-01-01
The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)
Classical Mechanics as Nonlinear Quantum Mechanics
International Nuclear Information System (INIS)
Nikolic, Hrvoje
2007-01-01
All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics
International Nuclear Information System (INIS)
Yurke, B.; Denker, J.S.
1984-01-01
A general approach, within the framework of canonical quantization, is described for analyzing the quantum behavior of complicated electronic circuits. This approach is capable of dealing with electrical networks having nonlinear or dissipative elements. The techniques are used to analyze a degenerate parametric amplifier, a device capable of generating squeezed coherent state signals. A circuit capable of performing back-action-evading electrical measurements is also discussed. (author)
Elements of quantum computing history, theories and engineering applications
Akama, Seiki
2015-01-01
A quantum computer is a computer based on a computational model which uses quantum mechanics, which is a subfield of physics to study phenomena at the micro level. There has been a growing interest on quantum computing in the 1990's, and some quantum computers at the experimental level were recently implemented. Quantum computers enable super-speed computation, and can solve some important problems whose solutions were regarded impossible or intractable with traditional computers. This book provides a quick introduction to quantum computing for readers who have no backgrounds of both theory of computation and quantum mechanics. “Elements of Quantum Computing” presents the history, theories, and engineering applications of quantum computing. The book is suitable to computer scientists, physicist, and software engineers.
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Probing noncommutative theories with quantum optical experiments
Directory of Open Access Journals (Sweden)
Sanjib Dey
2017-11-01
Full Text Available One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.
Quantum theory of multiscale coarse-graining.
Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A
2018-03-14
Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.
Quantum theory of multiscale coarse-graining
Han, Yining; Jin, Jaehyeok; Wagner, Jacob W.; Voth, Gregory A.
2018-03-01
Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.
Quantum mechanics. Introduction. 6. rev. and enl. ed.
International Nuclear Information System (INIS)
Greiner, W.
2005-01-01
The following topics are dealt with: Quantization of physical quantities, radiation laws, the wave aspect of matter, mathematical foundations of quantum mechanics, ther Schroedinger equation, the harmonic oscillator, the transition from classical to quantum mechanics, a charged particle in the electromagnetic field, the hydrogen atom, perturbation theory and approximation procedures, spin, a nonrelativistic wave equation with spin, systems of identical particles, the formal scheme of quantum mechanics, conceptions and philosophical problems of quantum mechanics. (HSI)
Fun with supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Freedman, B.; Cooper, F.
1984-04-01
One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup α/ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index Δ which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if Δ is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate Δ for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references
Implementation of quantum game theory simulations using Python
Madrid S., A.
2013-05-01
This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.
Quantum control and representation theory
International Nuclear Information System (INIS)
Ibort, A; Perez-Pardo, J M
2009-01-01
A new notion of controllability for quantum systems that takes advantage of the linear superposition of quantum states is introduced. We call such a notion von Neumann controllability, and it is shown that it is strictly weaker than the usual notion of pure state and operator controllability. We provide a simple and effective characterization of it by using tools from the theory of unitary representations of Lie groups. In this sense, we are able to approach the problem of control of quantum states from a new perspective, that of the theory of unitary representations of Lie groups. A few examples of physical interest and the particular instances of compact and nilpotent dynamical Lie groups are discussed
A quantum information approach to statistical mechanics
International Nuclear Information System (INIS)
Cuevas, G.
2011-01-01
The field of quantum information and computation harnesses and exploits the properties of quantum mechanics to perform tasks more efficiently than their classical counterparts, or that may uniquely be possible in the quantum world. Its findings and techniques have been applied to a number of fields, such as the study of entanglement in strongly correlated systems, new simulation techniques for many-body physics or, generally, to quantum optics. This thesis aims at broadening the scope of quantum information theory by applying it to problems in statistical mechanics. We focus on classical spin models, which are toy models used in a variety of systems, ranging from magnetism, neural networks, to quantum gravity. We tackle these models using quantum information tools from three different angles. First, we show how the partition function of a class of widely different classical spin models (models in different dimensions, different types of many-body interactions, different symmetries, etc) can be mapped to the partition function of a single model. We prove this by first establishing a relation between partition functions and quantum states, and then transforming the corresponding quantum states to each other. Second, we give efficient quantum algorithms to estimate the partition function of various classical spin models, such as the Ising or the Potts model. The proof is based on a relation between partition functions and quantum circuits, which allows us to determine the quantum computational complexity of the partition function by studying the corresponding quantum circuit. Finally, we outline the possibility of applying quantum information concepts and tools to certain models of dis- crete quantum gravity. The latter provide a natural route to generalize our results, insofar as the central quantity has the form of a partition function, and as classical spin models are used as toy models of matter. (author)
Interpreting quantum theory a therapeutic approach
Friederich, S
2014-01-01
Is it possible to approach quantum theory in a 'therapeutic' vein that sees its foundational problems as arising from mistaken conceptual presuppositions? The book explores the prospects for this project and, in doing so, discusses such fascinating issues as the nature of quantum states, explanation in quantum theory, and 'quantum non-locality'.
Interference and inequality in quantum decision theory
International Nuclear Information System (INIS)
Cheon, Taksu; Takahashi, Taiki
2010-01-01
The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.
Interference and inequality in quantum decision theory
Energy Technology Data Exchange (ETDEWEB)
Cheon, Taksu, E-mail: taksu.cheon@kochi-tech.ac.j [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan); Takahashi, Taiki, E-mail: ttakahashi@lynx.let.hokudai.ac.j [Laboratory of Social Psychology, Department of Behavioral Science, Faculty of Letters, Hokkaido University, N.10, W.7, Kita-ku, Sapporo 060-0810 (Japan)
2010-12-01
The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.
Quantum theory needs no 'Interpretation'
International Nuclear Information System (INIS)
Fuchs, Christopher A.; Peres, Asher
2000-01-01
Purpose of this article is to stress the fact that Quantum Theory does not need an interpretation other than being an algorithm for computing probabilities associated with macroscopic phenomena and measurements. It does not ''describ'' reality, and the wave function is not objective entity, it only gives the evolution of our probabilities for the outcomes potential experiments. (AIP) (c)
Topics in quantum field theory
Dams, C.J.F.
2006-01-01
In this PhD-thesis some topics in quantum field theory are considered. The first chapter gives a background to these topics. The second chapter discusses renormalization. In particular it is shown how loop calculations can be performed when using the axial gauge fixing. Fermion creation and
Quantum theory of noncommutative fields
International Nuclear Information System (INIS)
Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.
2003-01-01
Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)
Energy Technology Data Exchange (ETDEWEB)
Kinnebrock, Werner [Fachhochschule Rheinland-Pfalz (Germany)
2011-07-01
The past century changed the classical, scientific way of view enormously. The quantum theory broke with the imagination of continuity of all dynamical processes and gave space to completely new, nearly revolutionary approaches of thinking. Einstein's relativity theory put the absoluteness of time and space as well as the general validity of the Euclidean geometry in question. The absolute calculability, as it was formulated by Laplace, was by the influence of chaos theory proven as illusion. Computers made by the Mandelbrot set the presentation of new esthetic and never seen structures. Hilbert's century program of a complete formalization of mathematics failed because of the famous law of Goedel. It is the demand of this book to present all these theories and conclusions easily understandably and entertainingly.
Bell's theorem and quantum mechanics
Rosen, Nathan
1994-02-01
Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor
Quantum mechanics and Bell's inequalities
International Nuclear Information System (INIS)
Jones, R.T.; Adelberger, E.G.
1994-01-01
Santos argues that, if one interprets probabilities as ratios of detected events to copies of the physical system initially prepared, the quantum mechanical predictions for the classic tests of Bell's inequalities do not violate the inequalities. Furthermore, he suggests that quantum mechanical states which do violate the inequalities are not physically realizable. We discuss a physically realizable experiment, meeting his requirements, where quantum mechanics does violate the inequalities
New progress of fundamental aspects in quantum mechanics
International Nuclear Information System (INIS)
Sun Changpu
2001-01-01
The review recalls the conceptual origins of various interpretations of quantum mechanics. With the focus on quantum measurement problems, new developments of fundamental quantum theory are described in association with recent experiments such as the decoherence process in cavity quantum electrodynamics 'which-way' detection using the Bragg scattering of cold atoms, and quantum interference using the small quantum system of molecular C 60 . The fundamental problems include the quantum coherence of a macroscopic object, the von Neumann chain in quantum measurement, the Schroedinger cat paradox, et al. Many land math experiments have been accomplished with possible important applications in quantum information. The most recent research on the new quantum theory by G.'t Hooft is reviewed, as well as future prospects of quantum mechanics
Classical trajectories and quantum field theory
International Nuclear Information System (INIS)
Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno
2005-01-01
The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)
Dynamic localization in quantum dots: Analytical theory
International Nuclear Information System (INIS)
Basko, D.M.; Skvortsov, M.A.; Kravtsov, V.E.
2003-02-01
We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-dependent perturbation φ(t). Assuming the dot to be described by random matrix theory for GOE we find the quantum correction to the energy absorption rate as a function of the dephasing time t φ . If φ(t) is a sum of d harmonics with incommensurate frequencies, the correction behaves similarly to that to the conductivity δσ d (t φ ) in the d-dimensional Anderson model of the orthogonal symmetry class. For a generic periodic perturbation the leading quantum correction is absent as in the systems of the unitary symmetry class, unless φ(-t+τ)=φ(t+τ) for some τ, which falls into the quasi-1d orthogonal universality class. (author)
Statistical ensembles in quantum mechanics
International Nuclear Information System (INIS)
Blokhintsev, D.
1976-01-01
The interpretation of quantum mechanics presented in this paper is based on the concept of quantum ensembles. This concept differs essentially from the canonical one by that the interference of the observer into the state of a microscopic system is of no greater importance than in any other field of physics. Owing to this fact, the laws established by quantum mechanics are not of less objective character than the laws governing classical statistical mechanics. The paradoxical nature of some statements of quantum mechanics which result from the interpretation of the wave functions as the observer's notebook greatly stimulated the development of the idea presented. (Auth.)
Conceptual foundations of quantum mechanics
International Nuclear Information System (INIS)
Shimony, A.
1989-01-01
Radical innovation in the quantum mechanical framework such as objective indefiniteness, objective chance, objective probability, potentiality, entanglement and quantum nonlocality are discussed and related to the standard formalism. Examples are given which though problematic in classical mechanics are simply explained with these new concepts. Evidence is presented that the conceptual innovations of quantum mechanics cannot be separated from its predictive power. Proposals for solving ''the reduction of the wave packet'' anomaly are presented. Further radical innovations in quantum mechanics are anticipated. (U.K.)
Proceedings of the international colloquium on modern quantum field theory II
International Nuclear Information System (INIS)
Das, S.R.; Mandal, G.; Mukhi, S.; Wadia, S.R.
1995-01-01
In the second International Colloquium on Modern Quantum Field Theory an attempt was made to cover a broad spectrum of topics in theoretical physics that included string theory, quantum gravity, statistical mechanics, condensed matter theory, complexity, lattice gauge theory and epistemological aspects of quantum mechanics. Papers relevant to INIS in the published proceedings are indexed separately
International Nuclear Information System (INIS)
Reznik, B.
1999-01-01
Time plays an unusual role in quantum theory, and the measurement of time is very different from the measurement of other physical qualities associated with a particle. As an example, the measurability of when something occurred is conceptually fraught with difficulties within the theory. Time must be measured by clocks, and one must somehow cause the occurrence of the event of interest to interact with a clock to record when that event occurred. But that interaction carries with it an inevitable perturbation of the event itself. I will argue that in addition to the usual ΔtΔE > ℎ associated with the accuracy of any clock, there is an additional ΔtE > ℎ uncertainty in the measurement of the time of arrival of a particle. Furthermore this constraint arises because the timing device can itself prevent the event from ever occurring at all. I will compare time measurements involving physical clocks, with attempts to construct a time operator and describe new difficulties associated with the latter approach
Calculating the C operator in PT-symmetric quantum mechanics
International Nuclear Information System (INIS)
Bender, C.M.
2004-01-01
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT-symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition it is cumbersome to calculate C in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This new method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method can be used to calculate the C operator in quantum field theory. The C operator is a new time-independent observable in PT-symmetric quantum field theory. (author)
Studies in the Theory of Quantum Games
Iqbal, Azhar
2005-03-01
Theory of quantum games is a new area of investigation that has gone through rapid development during the last few years. Initial motivation for playing games, in the quantum world, comes from the possibility of re-formulating quantum communication protocols, and algorithms, in terms of games between quantum and classical players. The possibility led to the view that quantum games have a potential to provide helpful insight into working of quantum algorithms, and even in finding new ones. This thesis analyzes and compares some interesting games when played classically and quantum mechanically. A large part of the thesis concerns investigations into a refinement notion of the Nash equilibrium concept. The refinement, called an evolutionarily stable strategy (ESS), was originally introduced in 1970s by mathematical biologists to model an evolving population using techniques borrowed from game theory. Analysis is developed around a situation when quantization changes ESSs without affecting corresponding Nash equilibria. Effects of quantization on solution-concepts other than Nash equilibrium are presented and discussed. For this purpose the notions of value of coalition, backwards-induction outcome, and subgame-perfect outcome are selected. Repeated games are known to have different information structure than one-shot games. Investigation is presented into a possible way where quantization changes the outcome of a repeated game. Lastly, two new suggestions are put forward to play quantum versions of classical matrix games. The first one uses the association of De Broglie's waves, with travelling material objects, as a resource for playing a quantum game. The second suggestion concerns an EPR type setting exploiting directly the correlations in Bell's inequalities to play a bi-matrix game.
Decoherence in quantum mechanics and quantum cosmology
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Quantum theory in vector bundles
International Nuclear Information System (INIS)
Mayer, M.E.
1986-01-01
This paper describes a framework capable of accomodating quantum gauge theory (QGT), based on recent insights on the cohomological interpretation of ghosts, BRS-transformations, anomalies, and Schwinger terms. The hope is that the approach will lead to a trial marriage of quantum theory and gravity. Some points that are stressed are: nonabelian QGT is subtler than QED; in spite of their BRS-variance, the Yang-Mills potential together with the ghost-form are needed in addition to the field theory; the ghost form together with their Lagrange multiplier in a Lagrangian formalism makes its appearance through the BRS cohomology; and, in QGT one can treat the connection form, the curvature form and the ghost form in one of several ways
Hierarchical theory of quantum adiabatic evolution
International Nuclear Information System (INIS)
Zhang, Qi; Wu, Biao; Gong, Jiangbin
2014-01-01
Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau–Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory. (paper)
Can quantum mechanics be an emergent phenomenon?
Blasone, Massimo; Jizba, Petr; Scardigli, Fabio
2009-06-01
We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.
Can quantum mechanics be an emergent phenomenon?
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo [INFN, Gruppo Collegato di Salerno, DMI, Universita di Salerno, Fisciano - 84084 (Italy); Jizba, Petr [ITP, Freie Universitaet Berlin, Arnimallee 14 D-14195 Berlin (Germany); Scardigli, Fabio, E-mail: blasone@sa.infn.i, E-mail: jizba@physik.fu-berlin.d, E-mail: fabio@phys.ntu.edu.t [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)
2009-06-01
We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.
Can quantum mechanics be an emergent phenomenon?
International Nuclear Information System (INIS)
Blasone, Massimo; Jizba, Petr; Scardigli, Fabio
2009-01-01
We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.
Density operators in quantum mechanics
International Nuclear Information System (INIS)
Burzynski, A.
1979-01-01
A brief discussion and resume of density operator formalism in the way it occurs in modern physics (in quantum optics, quantum statistical physics, quantum theory of radiation) is presented. Particularly we emphasize the projection operator method, application of spectral theorems and superoperators formalism in operator Hilbert spaces (Hilbert-Schmidt type). The paper includes an appendix on direct sums and direct products of spaces and operators, and problems of reducibility for operator class by using the projection operators. (author)
Quantum mechanics and quantum information a guide through the quantum world
Fayngold, Moses
2013-01-01
Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.
Janssens, B.
2010-01-01
This PHD thesis is concerned partly with uncertainty relations in quantum probability theory, partly with state estimation in quantum stochastics, and partly with natural bundles in differential geometry. The laws of quantum mechanics impose severe restrictions on the performance of measurement.
The quantum double in integrable quantum field theory
International Nuclear Information System (INIS)
Bernard, D.; LeClair, A.
1993-01-01
Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)
Observer dependence of quantum states in relativistic quantum field theories
International Nuclear Information System (INIS)
Malin, S.
1982-01-01
Quantum states can be understood as either (i) describing quantum systems or (ii) representing observers' knowledge about quantum systems. These different meanings are shown to imply different transformation properties in relativistic field theories. The rules for the reduction of quantum states and the transformation properties of quantum states under Lorentz transformations are derived for case (ii). The results obtained are applied to a quantum system recently presented and analyzed by Aharonov and Albert. It is shown that the present results, combined with Aharonov and Albert's, amount to a proof of Bohr's view that quantum states represent observers' knowledge about quantum systems
The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.
Plotnitsky, Arkady
2016-05-28
Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. © 2016 The Author(s).
Correlation inequalities for the Yukawa2 quantum field theory
International Nuclear Information System (INIS)
Rosen, L.
1981-01-01
Correlation inequalities have been useful in statistical mechanics and quantum field theory. In particular, in the case of strongly coupled bose quantum field models such as P(phi) 2 , correlation inequalities provide the best control of the infinite volume limit. The author reports on work in which the FKG inequality was established in the Yukawa 2 quantum field theory. An elementary proof of the first Griffiths inequality is also given. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
D`Agostino, S. [Rome Univ. (Italy)
1992-12-31
In the 50s, Schroedinger proposed a new conception of a continuous theory of Quantum Mechanics, which remarkably modified his 1926 ideas on ondulatory mechanics. The lack of individuality of the atomic particles presented in the new statistics, and in Heisenberg`s Indeterminacy Relations, was by him considered as an aspect of a more general crisis in the anthology itself of classical atomism. Unlike his 1926 ideas, he proposed now to represent the wave equation in an n-dimensional space and he considered second-quantization technique as the proper mathematical tool for his new physical conception. Although he accepted that space-time discontinuities and casual gaps may appear here and there on the observational level (e.g. in the Indeterminacy Relations), he was convinced that they could be made compatible with a continuous pure theory, provided one accepted a suitable conception of the theory`s epistemiological status. For him, only a continuous theory satisfied the conditions for a complete theory. On these matters, he thought he was somehow orthodox to the ideas of Hertz and Boltzmann, which were also reflected in the teaching of Exner. (author). 69 refs.
To a causal formulation of quantum mechanics
International Nuclear Information System (INIS)
Brody, T.A.; Cetto, A.M.; Pena, L. de la
1979-01-01
This paper consists of two parts. In the first one we analyze the elements that a theory of quantum mechanics (QM) must contain in order to provide a physical explanation of the most notable quantum features (random behaviour, wave-particle duality, discrete spectra). We conclude that the theory that possesses the qualitative elements required is stochastic electrodynamics (SED), according to which the quantum behavior of the electron arises from its interaction with the stochastic electromagnetic background fiel associated with the zero-point energy. In the second part we show that the postulates of SED are suitable for the construction of a theory of the motion of the electron from which QM may be derived as an approximate description; hence, the mathematical formalism of QM too is justified by SED. Thus, the present theory generalizes QM and moreover, provides an objective statistical interpretation of it. (author)
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field
Foundations of Quantum Mechanics and Quantum Computation
Aspect, Alain; Leggett, Anthony; Preskill, John; Durt, Thomas; Pironio, Stefano
2013-03-01
I ask the question: What can we infer about the nature and structure of the physical world (a) from experiments already done to test the predictions of quantum mechanics (b) from the assumption that all future experiments will agree with those predictions? I discuss existing and projected experiments related to the two classic paradoxes of quantum mechanics, named respectively for EPR and Schrödinger's Cat, and show in particular that one natural conclusion from both types of experiment implies the abandonment of the concept of macroscopic counterfactual definiteness.
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.
On Galilean covariant quantum mechanics
International Nuclear Information System (INIS)
Horzela, A.; Kapuscik, E.; Kempczynski, J.; Joint Inst. for Nuclear Research, Dubna
1991-08-01
Formalism exhibiting the Galilean covariance of wave mechanics is proposed. A new notion of quantum mechanical forces is introduced. The formalism is illustrated on the example of the harmonic oscillator. (author)
Logical foundation of quantum mechanics
International Nuclear Information System (INIS)
Stachow, E.W.
1980-01-01
The subject of this article is the reconstruction of quantum mechanics on the basis of a formal language of quantum mechanical propositions. During recent years, research in the foundations of the language of science has given rise to a dialogic semantics that is adequate in the case of a formal language for quantum physics. The system of sequential logic which is comprised by the language is more general than classical logic; it includes the classical system as a special case. Although the system of sequential logic can be founded without reference to the empirical content of quantum physical propositions, it establishes an essential part of the structure of the mathematical formalism used in quantum mechanics. It is the purpose of this paper to demonstrate the connection between the formal language of quantum physics and its representation by mathematical structures in a self-contained way. (author)
Theories of Matter, Space and Time, Volume 2; Quantum theories
Evans, N.; King, S. F.
2018-06-01
This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.
A critical analysis of the quantum theory of measurement
International Nuclear Information System (INIS)
Fer, F.
1984-01-01
Keeping strictly in the positivist and probabilistic, hence hilbertian frame of Quantum Mechanics, the author tries to ascertain whether or not Quantum Mechanics, starting from its axioms, reaches the aim of any physical theory, that is, comparison with experiment. The answer is: no, as long as it keeps close to the existing axiomatics, and also to accurate mathematics. (Auth.)
Quasi Hopf quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Mack, G.; Schomerus, V.
1991-05-01
In quantum theory, internal symmetries more general than groups are possible. We show that quasitriangular quasi Hopf algebras G * as introduced by Drinfeld permit a consistent formulation of a transformation law of states in the physical Hilbert space H, of invariance of the ground state, and of a transformation law of field operators which is consistent with local braid relations of field operators as proposed by Froehlich. All this remains true when Drinfelds axioms are suitably weakened in order to build in truncated tensor products. Conversely, all the axioms of a weak quasitriangular quasi Hopf algebra are motivated from what physics demands of a symmetry. Unitarity requires in addition that G * admits a * -operation with certain properties. Invariance properties of Greens functions follow from invariance of the ground state and covariance of field operators as usual. Covariant adjoints and covariant products of field operators can be defined. The R-matrix elements in the local braid relations are in general operators in H. They are determined by the symmetry up to a phase factor. Quantum group algebras like U q (sl 2 ) with vertical strokeqvertical stroke=1 are examples of symmetries with special properties. We show that a weak quasitriangular quasi Hopf algebra G * is canonically associated with U q (sl 2 ) if q P =-1. We argue that these weak quasi Hopf algebras are the true symmetries of minimal conformal models. Their dual algebras G ('functions on the group') are neither commutative nor associative. (orig.)
Quantum mechanics and the physical reality concept
International Nuclear Information System (INIS)
von Borzeszkowski, H.H.; Wahsner, R.
1988-01-01
The difference between the measurement bases of classical and quantum mechanics is often interpreted as a loss of reality arising in quantum mechanics. In this paper it is shown that this apparent loss occurs only if one believes that refined everyday experience determines the Euclidean space as the real space, instead of considering this space, both in classical and quantum mechanics, as a theoretical construction needed for measurement and representing one part of a dualistic space conception. From this point of view, Einstein's program of a unified field theory can be interpreted as the attempt to find a physical theory that is less dualistic. However, if one regards this dualism as resulting from the requirements of measurements, one can hope for a weakening of the dualism but not expect to remove it completely
Nozières, Philippe
1999-01-01
Originally published as two separate volumes, The Theory of Quantum Liquids is a classic text that attempts to describe the qualitative and unifying aspects of an extremely broad and diversified field. Volume I deals with 'normal' Fremi liquids, such as 3He and electrons in metals. Volume II consists of a detailed treatment of Bose condensation and liquid 4He, including the development of a Bose liquid theory and a microscopic basis for the two-fluid model, and the description of the elementary excitations of liquid HeII.
From quantum gravity to quantum field theory via noncommutative geometry
International Nuclear Information System (INIS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2014-01-01
A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)
Quantum backreaction in string theory
International Nuclear Information System (INIS)
Evnin, O.
2012-01-01
There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
The pursuit of locality in quantum mechanics
Hodkin, Malcolm
The rampant success of quantum theory is the result of applications of the 'new' quantum mechanics of Schrodinger and Heisenberg (1926-7), the Feynman-Schwinger-Tomonaga Quantum Electro-dynamics (1946-51), the electro-weak theory of Salaam, Weinberg, and Glashow (1967-9), and Quantum Chromodynamics (1973-); in fact, this success of 'the' quantum theory has depended on a continuous stream of brilliant and quite disparate mathematical formulations. In this carefully concealed ferment there lie plenty of unresolved difficulties, simply because in churning out fabulously accurate calculational tools there has been no sensible explanation of all that is going on. It is even argued that such an understanding is nothing to do with physics. A long-standing and famous illustration of this is the paradoxical thought-experiment of Einstein, Podolsky and Rosen (1935). Fundamental to all quantum theories, and also their paradoxes, is the location of sub-microscopic objects; or, rather, that the specification of such a location is fraught with mathematical inconsistency. This project encompasses a detailed, critical survey of the tangled history of Position within quantum theories. The first step is to show that, contrary to appearances, canonical quantum mechanics has only a vague notion of locality. After analysing a number of previous attempts at a 'relativistic quantum mechanics', two lines of thought are considered in detail. The first is the work of Wan and students, which is shown to be no real improvement on the iisu.al 'nonrelativistic' theory. The second is based on an idea of Dirac's - using backwards-in-time light-cones as the hypersurface in space-time. There remain considerable difficulties in the way of producing a consistent scheme here. To keep things nicely stirred up, the author then proposes his own approach - an adaptation of Feynman's QED propagators. This new approach is distinguished from Feynman's since the propagator or Green's function is not obtained
The conceptual foundations of quantum mechanics
Eisenbud, Leonard
2007-01-01
This book provides a clear and logical path to understanding what quantum mechanics is about. It will be accessible to undergraduates with minimal mathematical preparation: all that is required is an open mind, a little algebra, and a first course in undergraduate physics. Quantum mechanics is arguably the most successful physical theory. It makes predictions of incredible accuracy. It provides the structure underlying all of our electronic technology, and much of our mastery over materials. But compared with Newtonian mechanics, or even relativity, its teachings seem obscure-they have no coun
Quantum mechanics as applied mathematical statistics
International Nuclear Information System (INIS)
Skala, L.; Cizek, J.; Kapsa, V.
2011-01-01
Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.
A second course in topos quantum theory
Flori, Cecilia
2018-01-01
This advanced course, a sequel to the first volume of this lecture series on topos quantum theory, delves deeper into the theory, addressing further technical aspects and recent advances. These include, but are not limited to, the development of physical quantities and self-adjoint operators; insights into the quantization process; the description of an alternative, covariant version of topos quantum theory; and last but not least, the development of a new concept of spacetime. The book builds on the concepts introduced in the first volume (published as Lect. Notes Phys. 868), which presents the main building blocks of the theory and how it could provide solutions to interpretational problems in quantum theory, such as: What are the main conceptual issues in quantum theory? And how can these issues be solved within a new theoretical framework of quantum theory? These two volumes together provide a complete, basic course on topos quantum theory, offering a set of mathematical tools to readers interested in tac...
Mind, matter and quantum mechanics. 3. ed.
International Nuclear Information System (INIS)
Stapp, Henry P.
2009-01-01
''Scientists other than quantum physicists often fail to comprehend the enormity of the conceptual change wrought by quantum theory in our basic conception of the nature of matter,'' writes Henry Stapp. Stapp is a leading quantum physicist who has given particularly careful thought to the implications of the theory that lies at the heart of modern physics. In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics allows causally effective conscious thought to be combined in a natural way with the physical brain made of neurons and atoms. The book is divided into four sections. The first consists of an extended introduction. Key foundational and somewhat more technical papers are included in the second part, together with a clear exposition of the ''orthodox'' interpretation of quantum mechanics. The third part addresses, in a non-technical fashion, the implications of the theory for some of the most profound questions that mankind has contemplated: How does the world come to be just what it is and not something else? How should humans view themselves in a quantum universe? What will be the impact on society of the revised scientific image of the nature of man? The final part contains a mathematical appendix for the specialist and a glossary of important terms and ideas for the interested layman. This third edition has been significantly expanded with two new chapters covering the author's most recent work. (orig.)
String theory and quantum gravity '92
International Nuclear Information System (INIS)
Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.
1993-01-01
These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs
Applications of quantum information theory to quantum gravity
International Nuclear Information System (INIS)
Smolin, L.
2005-01-01
Full text: I describe work by and with Fotini Markopoulou and Olaf Dreyeron the application of quantum information theory to quantum gravity. A particular application to black hole physics is described, which treats the black hole horizon as an open system, in interaction with an environment, which are the degrees of freedom in the bulk spacetime. This allows us to elucidate which quantum states of a general horizon contribute to the entropy of a Schwarzchild black hole. This case serves as an example of how methods from quantum information theory may help to elucidate how the classical limit emerges from a background independent quantum theory of gravity. (author)
Operational resource theory of total quantum coherence
Yang, Si-ren; Yu, Chang-shui
2018-01-01
Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.
Mathematical foundation of quantum mechanics
Parthasarathy, K R
2005-01-01
This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations ...
Theories of quantum gravity: Pt. 1
International Nuclear Information System (INIS)
Aragone, C.
1990-01-01
Superstrings continue to be a source of inspiration for the basic understanding of quantum gravity. They seem to provide a more fundamental arena than quantum field theory. Even though we still do not have a theory of everything, string concepts bring a new theoretical richness to research in quantum and classical gravity. Papers presented at the session on this subject are reviewed. (author)
Why do we need quantum theory?
International Nuclear Information System (INIS)
Ballo, P.; Racko, J.; Harmatha, L.
2014-01-01
A good starting point of this consideration can be a question 'Why do we need quantum theory?'. What is wrong with just using the methods of classical mechanics or electrodynamics. Although there are a number of arguments for quantum theory, many people still accept the quantum theory as an intellectual achievement having many arguments for own truth. Many of them are based on superstition of elegance of classical theory. As said Ludwig Boltzmann 'Elegance should be left to shoemakers and tailors, we should keep the law of mathematics'. The aim of this paper is to discuss some arguments for quantum mechanics which are mostly technical and maybe mathematical rigorous. Whereas some mathematics overstate the beginning let's are start with a little theory. In this discussion we will use the interaction representation (also known as the Dirac picture) which is an interactive picture between the Schroedinger and the Heisenberg picture. Although it sounds ominously, it is a very effective tool in cases where the influences of disturbance simultaneously changing both the wave function and observed variable. In this case the solution is to use with the aim to express many-body solution of the Schroedinger equation. The interaction representation constructs the solution of Schroedinger equation as the solution of the free particle problem plus some unknown interaction part. In our discussion we will use a hypothetical system (not very far from reality) which contains a mixture of dissipative and other (yet unknown) subsystems with very different qualities. It has been shown that right in this configuration the interaction representation is very useful. (authors)
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2015-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Molecular quantum dynamics. From theory to applications
International Nuclear Information System (INIS)
Gatti, Fabien
2014-01-01
calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.
Molecular quantum dynamics. From theory to applications
Energy Technology Data Exchange (ETDEWEB)
Gatti, Fabien (ed.) [Montpellier 2 Univ. (France). Inst. Charles Gerhardt - CNRS 5253
2014-09-01
introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.
Coherent states in quantum mechanics
International Nuclear Information System (INIS)
Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques
2001-12-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Quantum mechanics and experience
Albert, David Z
1992-01-01
The more science tells us about the world, the stranger it looks. Ever since physics first penetrated the atom, early in this century, what it found there has stood as a radical and unanswered challenge to many of our most cherished conceptions of nature. It has literally been called into question since then whether or not there are always objective matters of fact about the whereabouts of subatomic particles, or about the locations of tables and chairs, or even about the very contents of our thoughts. A new kind of uncertainty has become a principle of science. This book is an original and provocative investigation of that challenge, as well as a novel attempt at writing about science in a style that is simultaneously elementary and deep. It is a lucid and self-contained introduction to the foundations of quantum mechanics, accessible to anyone with a high school mathematics education, and at the same time a rigorous discussion of the most important recent advances in our understanding of that subject, some...
Improving the gaussian effective potential: quantum mechanics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Thomaz, M.T.; Lemos, N.A.
1990-08-01
In order to gain intuition for variational problems in field theory, we analyze variationally the quantum-mechanical anharmonic oscillator [(V(x)sup(k) - sub(2) x sup(2) + sup(λ) - sub(4) λ sup(4)]. Special attention is paid to improvements to the Gaussian effective potential. (author)
Quantum mechanics is compatible with realism
International Nuclear Information System (INIS)
Burgos, M.E.
1987-01-01
A new paradox of quantum mechanics has recently been proposed by an author claiming that any attempt to inject realism in physical theory is bound to lead to inconsistencies. In this paper the author shows that the mentioned paradox is not such a one and that at present there are no reasons to reject realism
De Broglie's causal interpretations of quantum mechanics
International Nuclear Information System (INIS)
Ben-Dov, Y.
1989-01-01
In this article we trace the history of de Broglie's two causal interpretations of quantum mechanics, namely the double solution and the pilot wave theories, at the two periods in which he developed them: 1924-27 and 1952 onwards. Examining the reasons for which he always preferred the first theory to the second, reasons that are mainly concerned with the question of the physical nature of the quantum wave function, we try to show the continuity and the coherence of his underlying vision
Topological strings from quantum mechanics
International Nuclear Information System (INIS)
Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki
2014-12-01
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P 2 , local P 1 x P 1 and local F 1 . In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
Mathematical methods in quantum and statistical mechanics
International Nuclear Information System (INIS)
Fishman, L.
1977-01-01
The mathematical structure and closed-form solutions pertaining to several physical problems in quantum and statistical mechanics are examined in some detail. The J-matrix method, introduced previously for s-wave scattering and based upon well-established Hilbert Space theory and related generalized integral transformation techniques, is extended to treat the lth partial wave kinetic energy and Coulomb Hamiltonians within the context of square integrable (L 2 ), Laguerre (Slater), and oscillator (Gaussian) basis sets. The theory of relaxation in statistical mechanics within the context of the theory of linear integro-differential equations of the Master Equation type and their corresponding Markov processes is examined. Several topics of a mathematical nature concerning various computational aspects of the L 2 approach to quantum scattering theory are discussed
Towards quantum gravity via quantum field theory. Problems and perspectives
Energy Technology Data Exchange (ETDEWEB)
Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)
2016-07-01
General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.
Contact geometry and quantum mechanics
Herczeg, Gabriel; Waldron, Andrew
2018-06-01
We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.
Quantum mechanics in Hilbert space
Prugovecki, Eduard
1981-01-01
A critical presentation of the basic mathematics of nonrelativistic quantum mechanics, this text is suitable for courses in functional analysis at the advanced undergraduate and graduate levels. Its readable and self-contained form is accessible even to students without an extensive mathematical background. Applications of basic theorems to quantum mechanics make it of particular interest to mathematicians working in functional analysis and related areas.This text features the rigorous proofs of all the main functional-analytic statements encountered in books on quantum mechanics. It fills the