WorldWideScience

Sample records for quantum interference induced

  1. Collision-induced destructive quantum interference

    International Nuclear Information System (INIS)

    Yang Xihua; Sun Zhenrong; Zhang Shi'an; Ding Liang'en; Wang Zugeng

    2005-01-01

    We conduct theoretical studies on the collision-induced destructive quantum interference of two-colour two-photon transitions in an open rhomb-type five-level system with a widely separated doublet by the density matrix approach. The effects of the collision-induced decay rates, the ratio of the transition dipole moments and the energy separation of the doublet on the interference are analysed. It is shown that a narrow dip appears in the excitation spectrum due to the collision-induced destructive interference, and that the narrow interference dip still exists even when the collision broadening is comparable to the energy separation of the doublet. The physical origin of the collision-induced destructive quantum interference is analysed in the dressed-atom picture

  2. Quantum coherence generated by interference-induced state selectiveness

    OpenAIRE

    Garreau, Jean Claude

    2001-01-01

    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  3. Quantum Interference and Entanglement Induced by Multiple Scattering of Light

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Mortensen, Asger; Lodahl, Peter

    2010-01-01

    We report on the effects of quantum interference induced by the transmission of an arbitrary number of optical quantum states through a multiple-scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between two...... output modes. It is shown that quantum interference survives averaging over all ensembles of disorder and manifests itself as increased photon correlations due to photon antibunching. Furthermore, the existence of continuous variable entanglement correlations in a volume speckle pattern is predicted. Our...

  4. Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots

    Directory of Open Access Journals (Sweden)

    Si-Cong Tian

    2015-02-01

    Full Text Available Schemes for giant fifth-order nonlinearity via tunneling in both linear and triangular triple quantum dots are proposed. In both configurations, the real part of the fifth-order nonlinearity can be greatly enhanced, and simultaneously the absorption is suppressed. The analytical expression and the dressed states of the system show that the two tunnelings between the neighboring quantum dots can induce quantum interference, resulting in the giant higher-order nonlinearity. The scheme proposed here may have important applications in quantum information processing at low light level.

  5. Quantum Interference and Coherence Theory and Experiments

    CERN Document Server

    Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.

  6. IETS and quantum interference

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2014-01-01

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....

  7. Coupled field induced conversion between destructive and constructive quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong

    2016-12-15

    We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.

  8. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  9. Metasurface-Enabled Remote Quantum Interference.

    Science.gov (United States)

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

  10. Quantum interference in laser-induced nonsequential double ionization

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Wang, YanLan; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Xiao, ZhiLei; Sun, RenPing; Lai, XuanYang; Hu, ShiLin; Liu, MingQing; Shu, Zheng; Wang, XiaoDong; Li, WeiDong; Becker, Wilhelm; Liu, XiaoJun; Chen, Jing

    2017-09-01

    Quantum interference plays an important role in various intense-laser-driven atomic phenomena, e.g., above-threshold ionization and high-order-harmonic generation, and provides a useful tool in ultrafast imaging of atomic and molecular structure and dynamics. However, it has eluded observation in nonsequential double ionization (NSDI), which serves as an ideal prototype to study electron-electron correlation. Thus far, NSDI usually could be well understood from a semiclassical perspective, where all quantum aspects have been ignored after the first electron has tunneled. Here we perform coincidence measurements for NSDI of xenon subject to laser pulses at 2400 nm. It is found that the intensity dependence of the asymmetry parameter between the yields in the second and fourth quadrants and those in the first and third quadrants of the electron-momentum-correlation distributions exhibits a peculiar fast oscillatory structure, which is beyond the scope of the semiclassical picture. Our theoretical analysis indicates that this oscillation can be attributed to interference between the contributions of different excited states in the recollision-excitation-with-subsequent-ionization channel. Our work demonstrates the significant role of quantum interference in NSDI and may create an additional pathway towards manipulation and imaging of the ultrafast atomic and molecular dynamics in intense laser fields.

  11. Quantum interference in laser spectroscopy of highly charged lithiumlike ions

    Science.gov (United States)

    Amaro, Pedro; Loureiro, Ulisses; Safari, Laleh; Fratini, Filippo; Indelicato, Paul; Stöhlker, Thomas; Santos, José Paulo

    2018-02-01

    We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2 s →2 p →2 s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes 79+207Pb and 80+209Bi due to experimental interest, as well as other examples of isotopes with lower Z , namely 56+141Pr and 64+165Ho. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.

  12. Further Study of Λ-Related Quantum Interference of Π-State Diatomic on Collision-Induced Rotational Energy Transfer

    International Nuclear Information System (INIS)

    Li Yongqing; Song Peng; Chen Yuehui; Wang Weili; Ma Fengcai

    2005-01-01

    In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys. Lett. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (A 1 Π, v = 3) with inert gases, which originates from the difference between the two Λ-related collision potential energy surfaces. The interference angle, which measures the degree of coherence, is presented in this paper. Based on the time-dependent first order Born approximation, taking into account the anisotropic Lennard-Jones interaction potentials, the relation of the interference angle with the factors, including experimental temperature, partner, and rotational quantum number, are obtained. The changing tendencies with them are discussed. This theoretical model is important to understanding and performing this kind of experiment.

  13. Quantum interference induced by initial system–environment correlations

    International Nuclear Information System (INIS)

    Man, Zhong-Xiao; Smirne, Andrea; Xia, Yun-Jie; Vacchini, Bassano

    2012-01-01

    We investigate the quantum interference induced by a relative phase in the correlated initial state of a system which consists in a two-level atom interacting with a damped mode of the radiation field. We show that the initial relative phase has significant effects on both the evolution of the atomic excited-state population and the information flow between the atom and the reservoir, as quantified by the trace distance. Furthermore, by considering two two-level atoms interacting with a common damped mode of the radiation field, we highlight how initial relative phases can affect the subsequent entanglement dynamics. -- Highlights: ► We study the effect of initial correlations in system–bath excitation transfer. ► We study the information flow from the bath to the system via the trace distance. ► We show how entanglement dynamics can be controlled via initial relative phases.

  14. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    International Nuclear Information System (INIS)

    Tian, Si-Cong; Tong, Cun-Zhu; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang; Wan, Ren-Gang

    2015-01-01

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process

  15. Excitonic quantum interference in a quantum dot chain with rings.

    Science.gov (United States)

    Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang

    2008-04-16

    We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.

  16. Electromagnetically induced interference in a superconducting flux qubit

    International Nuclear Information System (INIS)

    Du lingjie; Yu Yang; Lan Dong

    2013-01-01

    Interaction between quantum two-level systems (qubits) and electromagnetic fields can provide additional coupling channels to qubit states. In particular, the interwell relaxation or Rabi oscillations, resulting, respectively, from the multi- or single-mode interaction, can produce effective crossovers, leading to electromagnetically induced interference in microwave driven qubits. The environment is modeled by a multimode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillations, Rabi-oscillation-induced interference involves more complicated and modulated photon exchange thus offers an alternative means to manipulate the qubit, with more controllable parameters including the strength and position of the tunnel coupling. It also provides a testing ground for exploring nonlinear quantum phenomena and quantum state manipulation in qubits either with or without crossover structure.

  17. Quantum interference experiments with complex organic molecules

    International Nuclear Information System (INIS)

    Eibenberger, S. I.

    2015-01-01

    Matter-wave interference with complex particles is a thriving field in experimental quantum physics. The quest for testing the quantum superposition principle with highly complex molecules has motivated the development of the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI). This interferometer has enabled quantum interference with large organic molecules in an unprecedented mass regime. In this doctoral thesis I describe quantum superposition experiments which we were able to successfully realize with molecules of masses beyond 10 000 amu and consisting of more than 800 atoms. The typical de Broglie wavelengths of all particles in this thesis are in the order of 0.3-5 pm. This is significantly smaller than any molecular extension (nanometers) or the delocalization length in our interferometer (hundreds of nanometers). Many vibrational and rotational states are populated since the molecules are thermally highly excited (300-1000 K). And yet, high-contrast quantum interference patterns could be observed. The visibility and position of these matter-wave interference patterns is highly sensitive to external perturbations. This sensitivity has opened the path to extensive studies of the influence of internal molecular properties on the coherence of their associated matter waves. In addition, it enables a new approach to quantum-assisted metrology. Quantum interference imprints a high-contrast nano-structured density pattern onto the molecular beam which allows us to resolve tiny shifts and dephasing of the molecular beam. I describe how KDTL interferometry can be used to investigate a number of different molecular properties. We have studied vibrationally-induced conformational changes of floppy molecules and permanent electric dipole moments using matter-wave deflectometry in an external electric field. We have developed a new method for optical absorption spectroscopy which uses the recoil of the molecules upon absorption of individual photons. This allows us to

  18. Quantum interference effects in a cavity QED system

    International Nuclear Information System (INIS)

    Akram, Uzma; Ficek, Z

    2003-01-01

    We consider the effect of quantum interference on population distribution and photon statistics of a cavity field interacting with dressed states of a strongly driven three-level atom. We analyse three coupling configurations of the cavity field to the driven atom, with the cavity frequency tuned to the outer Rabi sideband, the inner Rabi sideband and the central frequency of the 'singly dressed' three-level atom. The quantum doubly dressed states for each configuration are identified and the population distribution and photon statistics are interpreted in terms of transitions among these dressed states and their populations. We find that the population distribution depends strongly on quantum interference and the cavity damping. For the cavity field tuned to the outer or inner Rabi sidebands the cavity damping induces transitions between the dressed states which are forbidden for the ordinary spontaneous emission. Moreover, we find that in the case of the cavity field coupled to the inner Rabi sideband the population distribution is almost Poissonian with a large average number of photons that can be controlled by quantum interference. This system can be considered as a one-atom dressed-state laser with controlled intensity

  19. Quantum interference and coherent control in dissipative atomic systems

    International Nuclear Information System (INIS)

    Paspalakis, E.

    1999-01-01

    In this thesis we study the effects of quantum interference arising from dissipative processes in atomic systems. First, we identify quantum interference phenomena arising from decay mechanisms. Second, we use dynamical methods (the properties of laser fields) to obtain a tailored response of systems in which such interferences are present. We are mainly concerned with two dissipative processes: spontaneous emission and ionization. First, we study the effects of quantum interference arising from spontaneous emission on the population dynamics and the spontaneous emission spectrum of several multi-level systems. Coherent 'phase' control methods for manipulating the response of systems involving spontaneous emission interference are also proposed. Several interesting phenomena are identified such as partial and total quenching of spontaneous emission, phase dependent population dynamics and coherent population trapping. Next, we consider the process of laser-induced continuum structure, where an atom is coupled by two laser fields to the same electronic continuum. An {it ab initio}, non-perturbative study of this process in helium using the R-Matrix Floquet theory is presented. The results of our numerical calculations are compared with those obtained by simple perturbative models and with recent experimental results. The possibility of coherent population transfer via a continuum of states is then analyzed. We study two distinct atomic systems. A laser-induced continuum structure scheme (unstructured continuum) and a bichromatically driven autoionizing scheme (structured continuum). We find that the same conditions which lead to 'dark' states in these systems lead to efficient population transfer. We also identify parameters detrimental to the transfer efficiency and propose methods to overcome them. Finally, we study short pulse propagation in systems involving interfering dissipation mechanisms. We show that the existence of dark states can lead to loss-free and

  20. Quantum interference in plasmonic circuits.

    Science.gov (United States)

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  1. General Quantum Interference Principle and Duality Computer

    International Nuclear Information System (INIS)

    Long Guilu

    2006-01-01

    In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.

  2. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits

    International Nuclear Information System (INIS)

    Bonneau, D; Engin, E; O'Brien, J L; Thompson, M G; Ohira, K; Suzuki, N; Yoshida, H; Iizuka, N; Ezaki, M; Natarajan, C M; Tanner, M G; Hadfield, R H; Dorenbos, S N; Zwiller, V

    2012-01-01

    Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-on-insulator material system, where quantum interference and the manipulation of quantum states of light are demonstrated in components orders of magnitude smaller than previous implementations. Two-photon quantum interference is presented in a multi-mode interference coupler, and the manipulation of entanglement is demonstrated in a Mach-Zehnder interferometer, opening the way to an all-silicon photonic quantum technology platform. (paper)

  3. Two-state vector formalism and quantum interference

    International Nuclear Information System (INIS)

    Hashmi, F A; Li, Fu; Zhu, Shi-Yao; Zubairy, M Suhail

    2016-01-01

    We show that two-state vector formalism (TSVF), applied to quantum systems that make use of delicate interference effects, can lead to paradoxes. We consider a few schemes of nested Mach–Zehnder interferometers that make use of destructive interference. A particular interpretation of TSVF applied to these schemes makes predictions that are contradictory to quantum theory and can not always be verified. Our results suggest that TSVF might not be a suitable tool to describe quantum systems that make use of delicate quantum interference effects. (paper)

  4. A trajectory-based understanding of quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain)], E-mail: asanz@imaff.cfmac.csic.es, E-mail: s.miret@imaff.cfmac.csic.es

    2008-10-31

    Interference is one of the most fundamental features which characterizes quantum systems. Here we provide an exhaustive analysis of the interfere dynamics associated with wave-packet superpositions from both the standard quantum-mechanical perspective and the Bohmian one. From this analysis, clear and insightful pictures of the physics involved in these kind of processes are obtained, which are of general validity (i.e., regardless of the type of wave packets considered) in the understanding of more complex cases where interference is crucial (e.g., scattering problems, slit diffraction, quantum control scenarios or, even, multipartite interactions). In particular, we show how problems involving wave-packet interference can be mapped onto problems of wave packets scattered off potential barriers.

  5. 'Quantum interference with slits' revisited

    Science.gov (United States)

    Rothman, Tony; Boughn, Stephen

    2011-01-01

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.

  6. Landau damping effects on collision-induced quantum interference in electron-hole plasmas

    International Nuclear Information System (INIS)

    Hwa-Min, Kim; Young-Dae, Jung

    2007-01-01

    The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle θ L = π/4. (authors)

  7. Landau damping effects on collision-induced quantum interference in electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hwa-Min, Kim [Daegu Univ. Catholic, Dept. of Electronics Engineering (Korea, Republic of); Young-Dae, Jung [Hanyang Univ., Dept. of Applied Physics, Seoul (Korea, Republic of)

    2007-07-15

    The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle {theta}{sub L} = {pi}/4. (authors)

  8. Electron quantum interferences and universal conductance fluctuations

    International Nuclear Information System (INIS)

    Benoit, A.; Pichard, J.L.

    1988-05-01

    Quantum interferences yield corrections to the classical ohmic behaviour predicted by Boltzmann theory in electronic transport: for instance the well-known ''weak localization'' effects. Furthermore, very recently, quantum interference effects have been proved to be responsible for statistically different phenomena, associated with Universal Conductance Fluctuations and observed on very small devices [fr

  9. Quantum interference effects for the electronic fluctuations in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.G.G.S. [Universidade Federal da Paraiba (UFPB), Rio Tinto, PB (Brazil). Departamento de Ciencias Exatas; Hussein, M.S. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Barbosa, A.L.R. [Universidade Federal Rural de Pernambuco (UAEADTec/UFRPE), Recife, PE (Brazil). Unidade Academica de Ensino a Distancia. Pos-Graduacao em Fisica Aplicada

    2014-07-01

    For the main quantum interference term of coherent electronic transport, we study the effect of temperature, perpendicular and/or parallel magnetic fields, spin-orbit coupling and tunneling rates in both metallic grains and mesoscopic heterostructures. We show that the Zeeman effects determines a crucial way to characterize the quantum interference phenomena of the noise for anisotropic systems (mesoscopic heterostructures), qualitatively distinct from those observed in isotropic structures (metallic grains). (author)

  10. Quantum interference effects for the electronic fluctuations in quantum dots

    International Nuclear Information System (INIS)

    Ramos, J.G.G.S.; Hussein, M.S.; Barbosa, A.L.R.

    2014-01-01

    For the main quantum interference term of coherent electronic transport, we study the effect of temperature, perpendicular and/or parallel magnetic fields, spin-orbit coupling and tunneling rates in both metallic grains and mesoscopic heterostructures. We show that the Zeeman effects determines a crucial way to characterize the quantum interference phenomena of the noise for anisotropic systems (mesoscopic heterostructures), qualitatively distinct from those observed in isotropic structures (metallic grains). (author)

  11. Two-photon quantum interference in a Michelson interferometer

    International Nuclear Information System (INIS)

    Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi

    2005-01-01

    We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms

  12. Time-dependent description of quantum interference nanotransistor

    International Nuclear Information System (INIS)

    Konopka, M.; Bokes, P.

    2012-01-01

    In this contribution we have presented simulations of electron current response to applied gate potentials in a ring-shaped quantum interference device. Such device could function like a current-switching quantum-interference transistor. We demonstrated capability of our approach to describe this kind of system keeping full quantum coherence in the description for extended periods of time. This have been achieved thanks to the unique feature of our method which allows for explicit simulations of small quantum subsystems with open boundary conditions. Further generalisation of the method is needed to reduce the number of basis set functions required to describe the system. (authors)

  13. Thermooptic two-mode interference device for reconfigurable quantum optic circuits

    Science.gov (United States)

    Sahu, Partha Pratim

    2018-06-01

    Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.

  14. Quantum eraser for three-slit interference

    Indian Academy of Sciences (India)

    Naveed Ahmad Shah

    2017-11-09

    Nov 9, 2017 ... Abstract. It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a set-up where this path information is 'erased', the interference can reappear. Such a set-up is ...

  15. Generalized quantum interference of correlated photon pairs

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  16. Phase-space interference in extensive and nonextensive quantum heat engines

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Paternostro, Mauro; Mustecaplioglu, Ozgur E.

    2018-01-01

    Quantum interference is at the heart of what sets the quantum and classical worlds apart. We demonstrate that quantum interference effects involving a many-body working medium is responsible for genuinely nonclassical features in the performance of a quantum heat engine. The features with which...

  17. Quantum interference vs. quantum chaos in the nuclear shell model

    International Nuclear Information System (INIS)

    Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E

    2015-01-01

    In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%

  18. Controlling quantum interference in phase space with amplitude

    OpenAIRE

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-01-01

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n?=?2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space a...

  19. Quantum Interference and Selectivity through Biological Ion Channels.

    Science.gov (United States)

    Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin

    2017-01-30

    The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17-53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference.

  20. Quantum interferences reconstruction with low homodyne detection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Martina; Randi, Francesco [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Titimbo, Kelvin; Zimmermann, Klaus; Benatti, Fabio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Kourousias, Georgios; Curri, Alessio [Sincrotrone Trieste S.C.p.A., Trieste (Italy); Floreanini, Roberto [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Parmigiani, Fulvio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy); University of Cologne, Institute of Physics II, Cologne (Germany); Fausti, Daniele [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy)

    2016-12-15

    Optical homodyne tomography consists in reconstructing the quantum state of an optical field from repeated measurements of its amplitude at different field phases (homodyne data). The experimental noise, which unavoidably affects the homodyne data, leads to a detection efficiency η<1. The problem of reconstructing quantum states from noisy homodyne data sets prompted an intense scientific debate about the presence or absence of a lower homodyne efficiency bound (η>0.5) below which quantum features, like quantum interferences, cannot be retrieved. Here, by numerical experiments, we demonstrate that quantum interferences can be effectively reconstructed also for low homodyne detection efficiency. In particular, we address the challenging case of a Schroedinger cat state and test the minimax and adaptive Wigner function reconstruction technique by processing homodyne data distributed according to the chosen state but with an efficiency η>0.5. By numerically reproducing the Schroedinger's cat interference pattern, we give evidence that quantum state reconstruction is actually possible in these conditions, and provide a guideline for handling optical tomography based on homodyne data collected by low efficiency detectors. (orig.)

  1. Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions

    Science.gov (United States)

    Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B.; Elbing, Mark; Mayor, Marcel; Bryce, Martin R.; Thoss, Michael; Weber, Heiko B.

    2012-08-01

    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

  2. Towards quantum computation with multi-particle interference

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Vincenzo; Schleich, Wolfgang P. [Institut fuer Quantenphysik, Universitaet Ulm (Germany); Shih, Yanhua [Univ. of Maryland, Baltimore County, Baltimore, MD (Germany). Dept. of Physics

    2012-07-01

    One of the main challenges in quantum computation is the realization of entangled states with a large number of particles. We have experimentally demonstrated a novel factoring algorithm which relies only on optical multi-path interference and on the periodicity properties of Gauss sums with continuous arguments. An interesting implementation of such a method can, in principle, take advantage of matter-wave interferometers characterized by long-time evolution of a BEC in microgravity. A more recent approach to factorization aims to achieve an exponential speed-up without entanglement by exploiting multi-particle m-order interference. In this case, the basic requirement for quantum computation is interference of an exponentially large number of multi-particle amplitudes.

  3. Quantitative criterion for quantum interference within spontaneous emission modification of a driven ladder atom

    International Nuclear Information System (INIS)

    Liu Jiaren; Zhang Zhiyi; Xiao George; Grover, C P

    2003-01-01

    The spontaneous emission spectrum of a ladder three-level atom with an upper transition driven by a coherent field is calculated under a universal model where various decays, any incoherent pumping and coherent driving are taken into account. The analytical expression for the spectrum profile is given on the basis of the quantum regression theorem. To our knowledge, it is the first time that the quantitative criterion condition Ω ab - γ ac vertical bar, under which quantum destructive interference induced by the coherent driving field occurs, is deduced for the modification of spontaneous emission from the middle level to the ground level. The roles and limits of incoherent pumping, coherent driving and experimental configuration are discussed for realizing the quantum interference and reducing the Doppler effects

  4. Readout of the atomtronic quantum interference device

    Science.gov (United States)

    Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi

    2018-01-01

    A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.

  5. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    Science.gov (United States)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  6. Understanding quantum interference in general nonlocality

    International Nuclear Information System (INIS)

    Wang Haijun

    2011-01-01

    In this paper we attempt to give a new understanding of quantum double-slit interference of fermions in the framework of general nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-(inter)action of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-action is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schroedinger current and Dirac current, respectively, both of which are relevant to topology. The gap between these two cases corresponds to the fermion magnetic moment, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and nonperturbative self-actions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all. And by comparison with the special formalism of Schroedinger current, the coupling strength of self-action in the limit is found to be ∞. In the perturbative case, the interference from self-action turns out to be the same as that from the standard approach of quantum theory. Then comparing the corresponding coefficients quantitatively we conclude that the coupling strength of self-action in this case falls in the interval [0, 1].

  7. 'Quantum interference with slits' revisited

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, Tony [Princeton University, Princeton, NJ 08544 (United States); Boughn, Stephen, E-mail: trothman@princeton.ed, E-mail: sboughn@haverford.ed [Haverford College, Haverford, PA 09140 (United States)

    2011-01-15

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.

  8. Real-time single-molecule imaging of quantum interference.

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus

    2012-03-25

    The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.

  9. Generalized Multiphoton Quantum Interference

    Directory of Open Access Journals (Sweden)

    Max Tillmann

    2015-10-01

    Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.

  10. Experimental statistical signature of many-body quantum interference

    Science.gov (United States)

    Giordani, Taira; Flamini, Fulvio; Pompili, Matteo; Viggianiello, Niko; Spagnolo, Nicolò; Crespi, Andrea; Osellame, Roberto; Wiebe, Nathan; Walschaers, Mattia; Buchleitner, Andreas; Sciarrino, Fabio

    2018-03-01

    Multi-particle interference is an essential ingredient for fundamental quantum mechanics phenomena and for quantum information processing to provide a computational advantage, as recently emphasized by boson sampling experiments. Hence, developing a reliable and efficient technique to witness its presence is pivotal in achieving the practical implementation of quantum technologies. Here, we experimentally identify genuine many-body quantum interference via a recent efficient protocol, which exploits statistical signatures at the output of a multimode quantum device. We successfully apply the test to validate three-photon experiments in an integrated photonic circuit, providing an extensive analysis on the resources required to perform it. Moreover, drawing upon established techniques of machine learning, we show how such tools help to identify the—a priori unknown—optimal features to witness these signatures. Our results provide evidence on the efficacy and feasibility of the method, paving the way for its adoption in large-scale implementations.

  11. Quantum interference of electrically generated single photons from a quantum dot.

    Science.gov (United States)

    Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J

    2010-07-09

    Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.

  12. Quantum interference of ballistic carriers in one-dimensional semiconductor rings

    International Nuclear Information System (INIS)

    Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.

    2000-01-01

    Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru

  13. Nonmonotonic quantum-to-classical transition in multiparticle interference

    DEFF Research Database (Denmark)

    Ra, Young-Sik; Tichy, Malte; Lim, Hyang-Tag

    2013-01-01

    Quantum-mechanical wave–particle duality implies that probability distributions for granular detection events exhibit wave-like interference. On the single-particle level, this leads to self-interference—e.g., on transit across a double slit—for photons as well as for large, massive particles...... that interference fades away monotonically with increasing distinguishability—in accord with available experimental evidence on the single- and on the many-particle level. Here, we demonstrate experimentally and theoretically that such monotonicity of the quantum-to-classical transition is the exception rather than...

  14. "Quantum Interference with Slits" Revisited

    Science.gov (United States)

    Rothman, Tony; Boughn, Stephen

    2011-01-01

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…

  15. Graphene quantum interference photodetector

    Directory of Open Access Journals (Sweden)

    Mahbub Alam

    2015-03-01

    Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  16. Parton showers with quantum interference

    CERN Document Server

    Nagy, Zoltan

    2007-01-01

    We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations.

  17. Parton showers with quantum interference

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2007-01-01

    We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations

  18. Fraunhofer regime of operation for superconducting quantum interference filters

    DEFF Research Database (Denmark)

    Shadrin, A.V.; Constantinian, K.Y.; Ovsyannikov, G.A.

    2008-01-01

    Series arrays of superconducting quantum interference devices (SQUIDs) with incommensurate loop areas, so-called superconducting quantum interference filters (SQIFs), are investigated in the kilohertz and the gigahertz frequency range. In SQIFs made of high-T-c bicrystal junctions the flux...... range of more than 60 dB in the kilohertz range. In the 1-2 GHz range the estimated power gain is 20 dB and the magnetic flux noise level is as low as 10(-4)Phi(0)....

  19. Optical bistability via quantum interference from incoherent pumping and spontaneous emission

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Sadighi-Bonabi, R.

    2011-01-01

    We theoretically investigate the optical bistability (OB) in a V-type three-level atomic system confined in a unidirectional ring cavity via incoherent pumping field. It is shown that the threshold of optical bistability can be controlled by the rate of an incoherent pumping field and by interference mechanism arising from the spontaneous emission and incoherent pumping field. We demonstrate that the optical bistability converts to optical multi-stability (OM) by the quantum interference mechanism. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. → The threshold of optical bistability can be controlled by the quantum interferences. → OB converts to optical multi-stability (OM) by the quantum interferences. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  20. Spin separation driven by quantum interference in ballistic rings

    International Nuclear Information System (INIS)

    Bellucci, S; Onorato, P

    2008-01-01

    We propose an all-electrical nanoscopic structure where a pure spin current is induced in the transverse probes attached to a quantum-coherent ballistic quasi-one-dimensional ring when conventional unpolarized charge current is injected through its longitudinal leads. The study is essentially based on the spin-orbit coupling (SOC) arising from the laterally confining electric field (β-SOC). This sets the basic difference with other works employing mesoscopic rings with the conventional Rashba SO term (α-SOC). The β-SOC ring generates oscillations of the predicted spin Hall current due to spin-sensitive quantum-interference effects caused by the difference in phase acquired by opposite spins states traveling clockwise and counterclockwise. We focus on single-channel transport and solve analytically the spin polarization of the current. We relate the presence of a polarized spin current with the peaks in the longitudinal conductance.

  1. Electrochemical control of quantum interference in anthraquinone-based molecular switches

    DEFF Research Database (Denmark)

    Markussen, Troels; Schiøtz, Jakob; Thygesen, Kristian Sommer

    2010-01-01

    Using first-principles calculations we analyze the electronic transport properties of a recently proposed anthraquinone-based electrochemical switch. Robust conductance on/off ratios of several orders of magnitude are observed due to destructive quantum interference present in the anthraquinone...... of hopping via the localized orbitals. The topology of the tight-binding model, which is dictated by the symmetries of the molecular orbitals, determines the amount of quantum interference....

  2. Quantum Anatomy of the Classical Interference of n-Photon States in a Mach-Zehnder Interferometer

    International Nuclear Information System (INIS)

    Ramírez-Cruz, N; Velázquez, V; Bastarrachea-Magnani, M A

    2016-01-01

    In this work we present the theory for the quantum interference of states with an arbitrary number of photons in a Mach-Zehnder interferometer. We express the mathematical description of the interference in an algebraic way. We show the interference pattern of an average of a n photons input state corresponds to the classical interference pattern, which tells us the last comes from a quantum interference statistical average. Then, we propose to use this scheme to study the statistical transition from quantum to classical interference. (paper)

  3. Quantum Physics A First Encounter Interference, Entanglement, and Reality

    CERN Document Server

    Scarani, Valerio

    2006-01-01

    The essential features of quantum physics, largely debated since its discovery, are presented in this book, through the description (without mathematics) of recent experiments. Putting the accent on physical phenomena, this book clarifies the historical issues (delocalisation, interferences) and reaches out to modern topics (quantum cryptography, non-locality and teleportation); the debate on interpretations is serenely reviewed. - ;Quantum physics is often perceived as a weird and abstract theory, which physicists must use in order to make correct predictions. But many recent experiments have shown that the weirdness of the theory simply mirrors the weirdness of phenomena: it is Nature itself, and not only our description of it, that behaves in an astonishing way. This book selects those, among these typical quantum phenomena, whose rigorous description requires neither the formalism, nor an important. background in physics. The first part of the book deals with the phenomenon of single-particle interference...

  4. Multimode Interference: Identifying Channels and Ridges in Quantum Probability Distributions

    OpenAIRE

    O'Connell, Ross C.; Loinaz, Will

    2004-01-01

    The multimode interference technique is a simple way to study the interference patterns found in many quantum probability distributions. We demonstrate that this analysis not only explains the existence of so-called "quantum carpets," but can explain the spatial distribution of channels and ridges in the carpets. With an understanding of the factors that govern these channels and ridges we have a limited ability to produce a particular pattern of channels and ridges by carefully choosing the ...

  5. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    Science.gov (United States)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  6. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    Science.gov (United States)

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  7. Observation of quantum interference in molecular charge transport

    DEFF Research Database (Denmark)

    Guedon, Constant M.; Valkenier, Hennie; Markussen, Troels

    2012-01-01

    for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid p-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface......, and find that the degree of interference can be controlled by simple chemical modifications of the molecular wire....

  8. Optical bistability using quantum interference in V-type atoms

    International Nuclear Information System (INIS)

    Anton, M A; Calderon, Oscar G

    2002-01-01

    The behaviour of a V-type three-level atomic system in a ring cavity driven by a coherent field is studied. We consider a V configuration under conditions such that interference between decay channels is important. We find that when quantum interference is taken into account, optical bistability can be realized with a considerable decrease in the threshold intensity and the cooperative parameter. On the other hand, we also include the finite bandwidth of the driving field and study its role in the optical bistable response. It is found that at certain linewidths of the driving field optical bistability is obtained even if the system satisfies the trapping condition and the threshold intensity can be controlled. Furthermore, a change from the optical bistability due to quantum interference to the usual bistable behaviour based on saturation occurs as the driving field linewidth increases

  9. Quantum interference of probabilities and hidden variable theories

    International Nuclear Information System (INIS)

    Srinivas, M.D.

    1984-01-01

    One of the fundamental contributions of Louis de Broglie, which does not get cited often, has been his analysis of the basic difference between the calculus of the probabilities as predicted by quantum theory and the usual calculus of probabilities - the one employed by most mathematicians, in its standard axiomatised version due to Kolmogorov. This paper is basically devoted to a discussion of the 'quantum interference of probabilities', discovered by de Broglie. In particular, it is shown that it is this feature of the quantum theoretic probabilities which leads to some serious constraints on the possible 'hidden-variable formulations' of quantum mechanics, including the celebrated theorem of Bell. (Auth.)

  10. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....

  11. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    Science.gov (United States)

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  12. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    International Nuclear Information System (INIS)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying; Gong, Qihuang

    2014-01-01

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.

  13. Two-particle interference in standard and Bohmian quantum mechanics

    International Nuclear Information System (INIS)

    Guay, E; Marchildon, L

    2003-01-01

    The compatibility of standard and Bohmian quantum mechanics has recently been challenged in the context of two-particle interference, both from a theoretical and an experimental point of view. We analyse different setups proposed and derive corresponding exact forms for Bohmian equations of motion. The equations are then solved numerically, and shown to reproduce standard quantum-mechanical results

  14. Temperature effects on quantum interference in molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Thygesen, Kristian Sommer

    2014-01-01

    A number of experiments have demonstrated that destructive quantum interference (QI) effects in molecular junctions lead to very low conductances even at room temperature. On the other hand, another recent experiment showed increasing conductance with temperature which was attributed to decoheren...

  15. Perspectives for quantum interference with biomolecules and biomolecular clusters

    International Nuclear Information System (INIS)

    Geyer, P; Sezer, U; Rodewald, J; Mairhofer, L; Dörre, N; Haslinger, P; Eibenberger, S; Brand, C; Arndt, M

    2016-01-01

    Modern quantum optics encompasses a wide field of phenomena that are either related to the discrete quantum nature of light, the quantum wave nature of matter or light–matter interactions. We here discuss new perspectives for quantum optics with biological nanoparticles. We focus in particular on the prospects of matter-wave interferometry with amino acids, nucleotides, polypeptides or DNA strands. We motivate the challenge of preparing these objects in a ‘biomimetic’ environment and argue that hydrated molecular beam sources are promising tools for quantum-assisted metrology. The method exploits the high sensitivity of matter-wave interference fringes to dephasing and shifts in the presence of external perturbations to access and determine molecular properties. (invited comment)

  16. Cross-conjugation and quantum interference: a general correlation?

    DEFF Research Database (Denmark)

    Valkenier, Hennie; Guedon, Constant M.; Markussen, Troels

    2014-01-01

    We discuss the relationship between the pi-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated...

  17. Quantum interference in the system of Lorentzian and Fano magnetoexciton resonances in GaAs

    International Nuclear Information System (INIS)

    Siegner, U.; Mycek, M.; Glutsch, S.; Chemla, D.S.

    1995-01-01

    Using femtosecond four-wave mixing (FWM), we study the coherent dynamics of Lorentzian and Fano magnetoexciton resonances in GaAs. For unperturbed Lorentzian magnetoexcitons, we find that the time-integrated FWM signal decays due to dephasing processes as expected for Lorentzian resonances. The time-integrated FWM signal from a single Fano magnetoexciton resonance, however, decays quasi-instantaneously although the dephasing time of the Fano resonance is much longer than the time resolution of the experiment. This fast decay is the manifestation of destructive quantum interference. Although destructive quantum interference in our system is closely related to the dynamics of Fano resonances, for the simultaneous excitation of Lorentzian and Fano magnetoexciton resonances destructive quantum interference also strongly affects the dynamics of Lorentzian magnetoexcitons due to quantum-mechanical coupling between the two types of resonances

  18. Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules

    DEFF Research Database (Denmark)

    Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer

    2011-01-01

    Quantum interference (QI) in molecular transport junctions can lead to dramatic reductions of the electron transmission at certain energies. In a recent work [Markussen et al., Nano Lett., 2010, 10, 4260] we showed how the presence of such transmission nodes near the Fermi energy can be predicted...... solely from the structure of a conjugated molecule when the energies of the atomic pz orbitals do not vary too much. Here we relax the assumption of equal on-site energies and generalize the graphical scheme to molecules containing different atomic species. We use this diagrammatic scheme together......, the transmission functions of functionalized aromatic molecules generally display a rather complex nodal structure due to the interplay between molecular topology and the energy of the side group orbital....

  19. Quantum diffraction and interference of spatially correlated photon pairs and its Fourier-optical analysis

    International Nuclear Information System (INIS)

    Shimizu, Ryosuke; Edamatsu, Keiichi; Itoh, Tadashi

    2006-01-01

    We present one- and two-photon diffraction and interference experiments involving parametric down-converted photon pairs. By controlling the divergence of the pump beam in parametric down-conversion, the diffraction-interference pattern produced by an object changes from a quantum (perfectly correlated) case to a classical (uncorrelated) one. The observed diffraction and interference patterns are accurately reproduced by Fourier-optical analysis taking into account the quantum spatial correlation. We show that the relation between the spatial correlation and the object size plays a crucial role in the formation of both one- and two-photon diffraction-interference patterns

  20. Quantum interference between multi photon absorption pathways in organic solid

    International Nuclear Information System (INIS)

    Rebane, A.; Christensson, N.; Drobizhev, M.; Stepanenko, Y.; Spangler, C.W.

    2007-01-01

    We demonstrate spatial interference fringe pattern by simultaneous one- and three-photon absorption of UV and near-IR femtosecond pulses in thin film organic solid at room temperature. We use organic dendrimers that are specially designed to have strong fluorescence and very large three-photon absorption cross-section. High fringe visibility allows the quantum interference to be observed by eye

  1. Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring

    International Nuclear Information System (INIS)

    Everitt, M.J.; Clark, T.D.; Stiffell, P.B.; Prance, R.J.; Prance, H.; Vourdas, A.; Ralph, J.F.

    2004-01-01

    In this paper we explore the quantum behavior of a superconducting quantum-interference device (SQUID) ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring

  2. Quantum Optical Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  3. Quantum theory of two-photon wavepacket interference in a beamsplitter

    International Nuclear Information System (INIS)

    Wang, Kaige

    2006-01-01

    A general theory is derived for the interference of a two-photon wavepacket in a beamsplitter. The theory is presented in the Schroedinger picture so that the quantum nature of the two-photon interference is explicitly revealed. We find that the topological symmetry of the probability-amplitude spectrum of the two-photon wavepacket dominates the nature of the two-photon interference, which may be distinguished by the increase or decrease of the coincidence probability in the absence of interference. However, two-photon entanglement can be identified by the nature of the interference. We demonstrate the necessary and sufficient conditions for perfect two-photon interference. It is shown that a two-photon entangled state with an anti-symmetric spectrum passes through a 50/50 beamsplitter with perfect transparency. The theory provides us with a unified understanding of the various two-photon interference effects. (topical review)

  4. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    Science.gov (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  5. Quantum transport in bilayer graphene. Fabry-Perot interferences and proximity-induced superconductivity

    International Nuclear Information System (INIS)

    Du, Renjun

    2015-01-01

    Bilayer graphene (BLG) p-n junctions made of hBN-BLG-hBN (hexagonal boron nitride) heterostructures enable ballistic transport over long distances. We investigate Fabry-Perot interferences, and detect that the bilayer-like anti-Klein tunneling transits into single-layer-like Klein tunneling when tuning the Fermi level towards the band edges. Furthermore, the proximity-induced superconductivity has been studied in these devices with Al leads.

  6. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Felle, M. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Penty, R. V. [Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2015-09-28

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.

  7. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    International Nuclear Information System (INIS)

    Felle, M.; Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2015-01-01

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons

  8. Phases, quantum interferences and effective vector meson masses in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Soyeur, M.

    1996-12-31

    We discuss the prospects for observing the mass of {rho}- and {omega}-mesons around nuclear matter density by studying their coherent photoproduction in nuclear targets and subsequent in-medium decay into e{sup +}e{sup -}pairs. The quantum interference of {rho} and {omega}-mesons in the e{sup +}e{sup -}channel and the interference between Bethe-Heitler pairs and dielectrons from vector meson decays are of particular interest. (author). 21 refs.

  9. Engineering two-photon high-dimensional states through quantum interference

    Science.gov (United States)

    Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-01-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685

  10. Destructive quantum interference in spin tunneling problems

    OpenAIRE

    von Delft, Jan; Henley, Christopher L.

    1992-01-01

    In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...

  11. Interference of Light in a Michelson-Morley Interferometer: A Quantum Optical Approach

    Directory of Open Access Journals (Sweden)

    Ø. Langangen

    2012-01-01

    Full Text Available The temporal coherence interference properties of light as revealed by single detector intensity measurements in a Michelson-Morley interferometer (MMI is often described in terms of classical optics. We show, in a pedagogical manner, how such features of light also can be understood in terms of a more general quantum-optics framework. If a thermal reference source is used in the MMI local oscillator port in combination with a thermal source in the signal port, the interference pattern revealed by single detector intensity measurements shows a distinctive dependence on the differences in the temperature of the two sources. A related method has actually been used to perform high-precision measurements of the cosmic microwave background radiation. The general quantum-optics framework allows us to consider any initial quantum state. As an example, we consider the interference of single photons as a tool to determine the peak angular-frequency of a single-photon pulse interfering with a single-photon reference pulse. A similar consideration for laser pulses, in terms of coherent states, leads to a different response in the detector. The MMI experimental setup is therefore an example of an optical device where one, in terms of intensity measurements, can exhibit the difference between classical and quantum-mechanical light.

  12. Animal magnetocardiography using superconducting quantum interference device gradiometers assisted with magnetic nanoparticle injection: A sensitive method for early detecting electromagnetic changes induced by hypercholesterolemia

    Science.gov (United States)

    Wu, C. C.; Hong, B. F.; Wu, B. H.; Yang, S. Y.; Horng, H. E.; Yang, H. C.; Tseng, W. Y. Isaac; Tseng, W. K.; Liu, Y. B.; Lin, L. C.; Lu, L. S.; Lee, Y. H.

    2007-01-01

    In this work, the authors used a superconducting quantum interference device (SQUID) magnetocardiography (MCG) system consisted of 64-channel low-transition-temperature SQUID gradiometers to detect the MCG signals of hepercholesterolemic rabbits. In addition, the MCG signals were recorded before and after the injection of magnetic nanoparticles into the rabbits' ear veins to investigate the effects of magnetic nanoparticles on the MCG signals. These MCG data were compared to those of normal rabbits to reveal the feasibility for early detection of the electromagnetic changes induced by hypercholesterolemia using MCG with the assistance of magnetic nanoparticle injection.

  13. Interference effects on quantum light group velocity in cavity induced transparency

    International Nuclear Information System (INIS)

    Eilam, Asaf; Thanopulos, Ioannis

    2015-01-01

    We investigate the propagation of a quantized probe field in a dense medium composed of three-level Λ-type systems under cavity electromagnetically induced transparency conditions. We treat the medium as composed of collective states of the three-level systems while the light-medium interaction occurs within clusters of such collective states depending on the photon number state of the probe field. We observe slower group velocity for lower photon number input probe field only under conditions of no interference between different clusters of collective states in the system. (paper)

  14. Nonlinear-optical generation of short-wavelength radiation controlled by laser-induced interference structures

    International Nuclear Information System (INIS)

    Popov, A K; Kimberg, V V

    1998-01-01

    A study is reported of the combined influence of laser-induced resonances in the energy continuum, of splitting of discrete resonances in the field of several strong radiations, and of absorption of the initial and generated radiations on totally resonant parametric conversion to the short-wavelength range. It is shown that the radiation power can be increased considerably by interference processes involving quantum transitions. (nonlinear optical phenomena and devices)

  15. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  16. Quasiparticle Interference Studies of Quantum Materials.

    Science.gov (United States)

    Avraham, Nurit; Reiner, Jonathan; Kumar-Nayak, Abhay; Morali, Noam; Batabyal, Rajib; Yan, Binghai; Beidenkopf, Haim

    2018-06-03

    Exotic electronic states are realized in novel quantum materials. This field is revolutionized by the topological classification of materials. Such compounds necessarily host unique states on their boundaries. Scanning tunneling microscopy studies of these surface states have provided a wealth of spectroscopic characterization, with the successful cooperation of ab initio calculations. The method of quasiparticle interference imaging proves to be particularly useful for probing the dispersion relation of the surface bands. Herein, how a variety of additional fundamental electronic properties can be probed via this method is reviewed. It is demonstrated how quasiparticle interference measurements entail mesoscopic size quantization and the electronic phase coherence in semiconducting nanowires; helical spin protection and energy-momentum fluctuations in a topological insulator; and the structure of the Bloch wave function and the relative insusceptibility of topological electronic states to surface potential in a topological Weyl semimetal. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantum Interference between Autonomous Single-Photon Sources from Doppler-Broadened Atomic Ensemble

    OpenAIRE

    Jeong, Teak; Lee, Yoon-Seok; Park, Jiho; Kim, Heonoh; Moon, Han Seb

    2017-01-01

    To realize a quantum network based on quantum entanglement swapping, bright and completely autonomous sources are essentially required. Here, we experimentally demonstrate Hong-Ou-Mandel (HOM) quantum interference between two independent bright photon pairs generated via the spontaneous four-wave mixing in Doppler-broadened ladder-type 87Rb atoms. Bright autonomous heralded single photons are operated in a continuous-wave (CW) mode with no synchronization or supplemental filters. The four-fol...

  18. Disordered-quantum-walk-induced localization of a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.

    2011-01-01

    We present an approach to induce localization of a Bose-Einstein condensate in a one-dimensional lattice under the influence of unitary quantum-walk evolution using disordered quantum coin operation. We introduce a discrete-time quantum-walk model in which the interference effect is modified to diffuse or strongly localize the probability distribution of the particle by assigning a different set of coin parameters picked randomly for each step of the walk, respectively. Spatial localization of the particle or state is explained by comparing the variance of the probability distribution of the quantum walk in position space using disordered coin operation to that of the walk using an identical coin operation for each step. Due to the high degree of control over quantum coin operation and most of the system parameters, ultracold atoms in an optical lattice offer opportunities to implement a disordered quantum walk that is unitary and induces localization. Here we present a scheme to use a Bose-Einstein condensate that can be evolved to the superposition of its internal states in an optical lattice and control the dynamics of atoms to observe localization. This approach can be adopted to any other physical system in which controlled disordered quantum walk can be implemented.

  19. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    Science.gov (United States)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  20. Dynamic analysis of optical soliton pair and four-wave mixing via Fano interference in multiple quantum wells

    International Nuclear Information System (INIS)

    Yan, Wei; Qu, Junle; Niu, H B

    2014-01-01

    We perform a time-dependent analysis of the formation and stable propagation of an ultraslow optical soliton pair, and four-wave mixing (FWM) via tunable Fano interference in double-cascade type semiconductor multiple quantum wells (SMQWs). By using the probability amplitude method to describe the interaction of the system, we demonstrate that the electromagnetically induced transparency (EIT) can be controlled by Fano interference in the linear case and the strength of Fano interference has an important effect on the group velocity and amplitude of the soliton pair in the nonlinear case. Then, when the signal field is removed, the dynamic FWM process is analyzed in detail, and we find that the strength of Fano interference also has an important effect on the FWM’s efficiency: the maximum FWM efficiency is ∼28% in appropriate conditions. The investigations are promising for practical applications in optical devices and optical information processing for solid systems. (paper)

  1. Intermode traces - fundamental interference phenomenon in quantum and wave physics

    NARCIS (Netherlands)

    Kaplan, A.E.; Stifter, P.; Leeuwen, van K.A.H.; Lamb, W.E.; Schleich, W.P.

    1998-01-01

    Highly regular spatio-temporal or multi-dimensional patterns in the quantum mechanical probability or classical field intensity distributions can appear due to pair interference between individual eigen-modes of the system forming the so called intermode traces. These patterns are strongly

  2. Quantum interference effects in nanostructured Au

    CERN Document Server

    Pratumpong, P; Evans, S D; Johnson, S; Howson, M A

    2002-01-01

    We present results on the magnetoresistance and temperature dependence of the resistivity for nanostructured Au produced by chemical means. The magnetoresistance was typical of highly disordered metals exhibiting quantum interference effects. We fitted the data and were able to determine the spin-orbit scattering relaxation time to be 10 sup - sup 1 sup 2 s and we found the inelastic scattering time at 10 K to be 10 sup - sup 1 sup 1 s. The inelastic scattering rate varied as T sup 3 between 4 and 20 K, which is typical for electron-phonon scattering in disordered metals.

  3. Constructive and destructive quantum interference sensitive to quantum vacuum mode structure in a metallic waveguide

    International Nuclear Information System (INIS)

    Shen Jianqi

    2011-01-01

    Quantum vacuum mode structure can be changed due to length scale fluctuation of the cross section of a metallic waveguide. Such a structure change in vacuum modes (particularly in cutoff vacuum modes) would lead to dramatic enhancement or inhibition of spontaneous emission decay of atoms and, if the waveguide is filled with a dilute atomic vapor consisting of quantum-coherent atoms of a four-level tripod-configuration system, an optical wave propagating inside the waveguide can be coherently manipulated by tunable constructive and destructive quantum interference between two control transitions (driven by two control fields) in a quite unusual way (e.g., the optical response, in which a three-level dark state is involved, is sensitive to the waveguide dimension variations at certain positions of resonance of the atomic spontaneous emission decay rate). Therefore, an intriguing effect that can be employed to designs of new photonic and quantum optical devices could be achieved based on the present mechanisms of quantum-vacuum manipulation and quantum coherence control.

  4. Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Muhammad; Irfan, Muhammad [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Qamar, Shahid, E-mail: shahid_qamar@pieas.edu.pk [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2012-07-15

    In this paper, we propose a scheme to realize three-qubit quantum phase gate of one qubit simultaneously controlling two target qubits using four-level superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. The two lowest levels Divides 0 Right-Pointing-Angle-Bracket and Divides 1 Right-Pointing-Angle-Bracket of each SQUID are used to represent logical states while the higher energy levels Divides 2 Right-Pointing-Angle-Bracket and Divides 3 Right-Pointing-Angle-Bracket are utilized for gate realization. Our scheme does not require adiabatic passage, second order detuning, and the adjustment of the level spacing during gate operation which reduce the gate time significantly. The scheme is generalized for an arbitrary n-qubit quantum phase gate. We also apply the scheme to implement three-qubit quantum Fourier transform.

  5. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.

    Science.gov (United States)

    Reindl, Marcus; Jöns, Klaus D; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo

    2017-07-12

    Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar "artificial atoms" have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.

  6. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  7. Medical applications of superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Uehara, Gen

    2011-01-01

    SQUIDs (Superconducting Quantum Interference Devices) are applied to clinical areas and basic medical science fields because of their potential for measuring a minute magnetic signal from the human body. Magnetoencephalography, one of their applications, is used for the functional mapping of the brain cortex before surgery and the localization of focus of epilepsy. Recently, their applications to the early-stage detection of dementia and the localization of brain ischemia are suggested. Another application of SQUIDs is magnetospinography, which detects the conduction block in spinal cord signal propagation. (author)

  8. Constructive interference between disordered couplings enhances multiparty entanglement in quantum Heisenberg spin glass models

    International Nuclear Information System (INIS)

    Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R; Sen, Aditi; Sen, Ujjwal

    2016-01-01

    Disordered systems form one of the centrestages of research in many body sciences and lead to a plethora of interesting phenomena and applications. A paradigmatic disordered system consists of a one-dimensional array of quantum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with natural or engineered quenched disordered couplings in an external magnetic field. These systems allow disorder-induced enhancement for bipartite and multipartite observables. Here we show that simultaneous application of independent quenched disorders results in disorder-induced enhancement, while the same is absent with individual application of the same disorders. We term the phenomenon as constructive interference and the corresponding parameter stretches as the Venus regions. Interestingly, it has only been observed for multiparty entanglement and is absent for the single- and two-party physical quantities. (paper)

  9. Electromagnetically Induced Transparency in Circuit Quantum Electrodynamics with Nested Polariton States

    Science.gov (United States)

    Long, Junling; Ku, H. S.; Wu, Xian; Gu, Xiu; Lake, Russell E.; Bal, Mustafa; Liu, Yu-xi; Pappas, David P.

    2018-02-01

    Quantum networks will enable extraordinary capabilities for communicating and processing quantum information. These networks require a reliable means of storage, retrieval, and manipulation of quantum states at the network nodes. A node receives one or more coherent inputs and sends a conditional output to the next cascaded node in the network through a quantum channel. Here, we demonstrate this basic functionality by using the quantum interference mechanism of electromagnetically induced transparency in a transmon qubit coupled to a superconducting resonator. First, we apply a microwave bias, i.e., drive, to the qubit-cavity system to prepare a Λ -type three-level system of polariton states. Second, we input two interchangeable microwave signals, i.e., a probe tone and a control tone, and observe that transmission of the probe tone is conditional upon the presence of the control tone that switches the state of the device with up to 99.73% transmission extinction. Importantly, our electromagnetically induced transparency scheme uses all dipole allowed transitions. We infer high dark state preparation fidelities of >99.39 % and negative group velocities of up to -0.52 ±0.09 km /s based on our data.

  10. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  11. Evaluation of the magnetic properties of cosmetic contact lenses with a superconducting quantum interference device.

    Science.gov (United States)

    Kuroda, Kagayaki; Shirakawa, Naoki; Yoshida, Yoshiyuki; Tawara, Kazuya; Kobayashi, Akihiro; Nakai, Toshiharu

    2014-01-01

    We evaluated the magnetization of 21 cosmetic contact lens samples that included various coloring materials with a superconducting quantum interference device with regard to magnetic resonance (MR) safety. We found 7 samples were ferromagnetic; two had both ferromagnetic and diamagnetic properties; and the rest were diamagnetic. The saturated magnetization of the most ferromagnetic sample was 15.0 µJ/T, which yielded a magnetically induced displacement force of 90.0 µN when the spatial gradient of the static magnetic field was 6.0 T/m. The force was less than one-third of the gravitational force.

  12. Quantum walk on the line as an interference phenomenon

    International Nuclear Information System (INIS)

    Knight, Peter L.; Roldan, Eugenio; Sipe, J. E.

    2003-01-01

    We show that the coined quantum walk on a line can be understood as an interference phenomenon, can be classically implemented, and indeed already has been. The walk is essentially two independent walks associated with the different coin sides, coupled only at initiation. There is a simple analogy between the evolution of walker positions and the propagation of light in a dispersive optical fiber

  13. Quantum Interference in the Longitudinal Oscillations of the Total Spin of a Dimeric Molecular Nanomagnet

    Science.gov (United States)

    Ramsey, Christopher; Del Barco, Enrique; Hill, Stephen; Shah, Sonali; Beedle, Christopher; Hendrickson, David

    2008-03-01

    The synthetic flexibility of molecular magnets allows one to systematically produce samples with desirable properties such as those with entangled spin states for implementation in quantum logic gates. Here we report direct evidence of quantum oscillations of the total spin length of a dimeric molecular nanomagnet through the observation of quantum interference associated with tunneling trajectories between states having different spin quantum numbers. As we outline, this is a consequence of the unique characteristics of a molecular Mn12 wheel which behaves as a (weak) ferromagnetic exchange-coupled molecular dimer: each half of the molecule acts as a single-molecule magnet (SMM), while the weak coupling between the two halves gives rise to an additional internal spin degree of freedom within the molecule, namely that its total spin may fluctuate. This extra degree of freedom accounts for several magnetization tunneling resonances that cannot be explained within the usual giant spin approximation. More importantly, the observation of quantum interference provides unambiguous evidence for the quantum mechanical superposition involving entangled states of both halves of the wheel.

  14. Interferences, ghost images and other quantum correlations according to stochastic optics

    International Nuclear Information System (INIS)

    Fonseca da Silva, Luciano; Dechoum, Kaled

    2012-01-01

    There are an extensive variety of experiments in quantum optics that emphasize the non-local character of the coincidence measurements recorded by spatially separated photocounters. These are the cases of ghost image and other interference experiments based on correlated photons produced in, for instance, the process of parametric down-conversion or photon cascades. We propose to analyse some of these correlations in the light of stochastic optics, a local formalism based on classical electrodynamics with added background fluctuations that simulate the vacuum field of quantum electrodynamics, and raise the following question: can these experiments be used to distinguish between quantum entanglement and classical correlations? - Highlights: ► We analyse some quantum correlations in the light of stochastic optics. ► We study how vacuum fluctuations can rule quantum correlations. ► Many criteria cannot be considered a boundary between quantum and classical theories. ► Non-locality is a misused term in relation to many observed experiments.

  15. A parabolic model to control quantum interference in T-shaped molecular junctions

    DEFF Research Database (Denmark)

    Nozaki, Daijiro; Sevincli, Haldun; Avdoshenko, Stanislav M.

    2013-01-01

    Quantum interference (QI) effects in molecular devices have drawn increasing attention over the past years due to their unique features observed in the conductance spectrum. For the further development of single molecular devices exploiting QI effects, it is of great theoretical and practical...... interest to develop simple methods controlling the emergence and the positions of QI effects like anti-resonances or Fano line shapes in conductance spectra. In this work, starting from a well-known generic molecular junction with a side group (T-shaped molecule), we propose a simple graphical method...... to visualize the conditions for the appearance of quantum interference, Fano resonances or anti-resonances, in the conductance spectrum. By introducing a simple graphical representation (parabolic diagram), we can easily visualize the relation between the electronic parameters and the positions of normal...

  16. Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED

    International Nuclear Information System (INIS)

    Li Hong-Yi; Wu Chun-Wang; Chen Yu-Bo; Lin Yuan-Gen; Chen Ping-Xing; Li Cheng-Zu

    2013-01-01

    We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity—SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology

  17. Quantum coherence phenomena in semiconductor quantum dots: quantum interference, decoherence and Rabi oscillation

    International Nuclear Information System (INIS)

    Htoon, H.; Shih, C.K.; Takagahara, T.

    2003-01-01

    We performed extensive studies on quantum decoherence processes of excitons trapped in the various excited states of SAQDs. Energy level structure and dephasing times of excited states were first determined by conducting photoluminescence excitation spectroscopy and wave-packet interferometry on a large number of individual SAQDs. This large statistical basis allows us to extract the correlation between the energy level structure and dephasing times. The major decoherence mechanisms and their active regime were identified from this correlation. A significant suppression of decoherence was also observed in some of the energetically isolated excited states, providing an experimental evidence for the theoretical prediction, known as 'phonon bottleneck effect'. Furthermore, we observed the direct experimental evidence of Rabi oscillation in these excited states with long decoherence times. In addition, a new type of quantum interference (QI) phenomenon was discovered in the wave-packet interferometry experiments performed in the strong excitation regime where the non-linear effects of Rabi oscillation become important. Detailed theoretical investigations attribute this phenomenon to the coherent dynamics resulting from the interplay of Rabi oscillation and QI

  18. Quantum interference magnetoconductance of polycrystalline germanium films in the variable-range hopping regime

    Science.gov (United States)

    Li, Zhaoguo; Peng, Liping; Zhang, Jicheng; Li, Jia; Zeng, Yong; Zhan, Zhiqiang; Wu, Weidong

    2018-06-01

    Direct evidence of quantum interference magnetotransport in polycrystalline germanium films in the variable-range hopping (VRH) regime is reported. The temperature dependence of the conductivity of germanium films fulfilled the Mott VRH mechanism with the form of ? in the low-temperature regime (?). For the magnetotransport behaviour of our germanium films in the VRH regime, a crossover, from negative magnetoconductance at the low-field to positive magnetoconductance at the high-field, is observed while the zero-field conductivity is higher than the critical value (?). In the regime of ?, the magnetoconductance is positive and quadratic in the field for some germanium films. These features are in agreement with the VRH magnetotransport theory based on the quantum interference effect among random paths in the hopping process.

  19. Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer

    Directory of Open Access Journals (Sweden)

    Yang XF

    2010-01-01

    Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.

  20. The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hatef Ali

    2010-01-01

    Full Text Available Abstract In this work, the absorption coefficient of a metallic photonic crystal doped with nanoparticles has been obtained using numerical simulation techniques. The effects of quantum interference and the concentration of doped particles on the absorption coefficient of the system have been investigated. The nanoparticles have been considered as semiconductor quantum dots which behave as a four-level quantum system and are driven by a single coherent laser field. The results show that changing the position of the photonic band gap about the resonant energy of the two lower levels directly affects the decay rate, and the system can be switched between transparent and opaque states if the probe laser field is tuned to the resonance frequency. These results provide an application for metallic nanostructures in the fabrication of new optical switches and photonic devices.

  1. Optical precursors with tunneling-induced transparency in asymmetric quantum wells

    International Nuclear Information System (INIS)

    Peng Yandong; Qi Yihong; Yao Haifeng; Niu Yueping; Gong Shangqing

    2011-01-01

    A scheme for separating optical precursors from a square-modulated laser pulse through an asymmetric double Al x Ga 1-x As/GaAs quantum-well structure via resonant tunneling is proposed. Destructive interference inhibits linear absorption, and a tunneling-induced transparency (TIT) window appears with normal dispersion, which delays the main pulse; then optical precursors are obtained. Due to resonant tunneling, constructive interference for nonlinear susceptibility is created. The enhanced dispersion in a narrow TIT window is about one order of magnitude larger than that of the linear case. In this case, the main pulse is much delayed and the precursor signals are easier to obtain. Moreover, the main pulse builds up due to the gain introduced by the enhanced cross-nonlinearity.

  2. Method of making an improved superconducting quantum interference device

    International Nuclear Information System (INIS)

    Wu, C.T.; Falco, C.M.; Kampwirth, R.T.

    1977-01-01

    An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper

  3. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  4. Fermion-induced quantum critical points.

    Science.gov (United States)

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-08-22

    A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.

  5. Is the classical law of the addition of probabilities violated in quantum interference?

    International Nuclear Information System (INIS)

    Arsenovic, Dusan; Bozic, Mirjana; Vuskovic, Lepsa

    2002-01-01

    We analyse and compare the positive and negative arguments on whether quantum interference violates the classical law of the addition of probabilities. The analysis takes into account the results of recent interference experiments in neutron, electron and atom optics. Nonclassical behaviour of atoms was found in atomic experiments where the measurements included their time of arrival and space distribution. We determine probabilities of elementary events associated with the nonclassical behaviour of particles in interferometers. We show that the emergence of the interference pattern in the process of accumulation of such elementary events is consistent with the classical law of the addition of probabilities

  6. Influence of the Dzyaloshinskii-Moriya exchange interaction on quantum phase interference of spins

    Science.gov (United States)

    Wernsdorfer, Wolfgang; Stamatatos, T. C.; Christou, G.

    2009-03-01

    Magnetization measurements of a Mn12mda wheel single-molecule magnet (SMM) with a spin ground state of S = 7 show resonant tunneling and quantum phase interference, which are established by studying the tunnel rates as a function of a transverse field applied along the hard magnetization axis. We show how the Dzyaloshinskii-Moriya (DM) exchange interaction can affect the tunneling transitions and quantum phase interference of a SMM. Of particular novelty and importance is the phase-shift observed in the tunnel probabilities of some transitions as a function of the DM vector orientation. Such observations are of importance to potential applications of SMMs that hope to take advantage of the tunneling processes that such molecules can undergo. Ref.: W. Wernsdorfer, T.C. Stamatatos, G. Christou, Phys. Rev. Lett., 101, (28 Nov. 2008).

  7. Proximity effect bilayer nano superconducting quantum interference devices for millikelvin magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Blois, A., E-mail: a.blois@ucl.ac.uk; Rozhko, S.; Romans, E. J. [London Centre for Nanotechnology, University College London (UCL), 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Hao, L.; Gallop, J. C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2013-12-21

    Superconducting quantum interference devices (SQUIDs) incorporating thin film nanobridges as weak links have sensitivities approaching that required for single spin detection at 4.2 K. However, due to thermal hysteresis they are difficult to operate at much lower temperatures which hinder their application to many quantum measurements. To overcome this, we have developed nanoscale SQUIDs made from titanium-gold proximity bilayers. We show that their electrical properties are consistent with a theoretical model developed for heat flow in bilayers and demonstrate that they enable magnetic measurements to be made on a sample at system temperatures down to 60 mK.

  8. Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    OpenAIRE

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-01-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enabl...

  9. Quantum interference and control of the optical response in quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)

    2013-11-25

    We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.

  10. Frequency dependence of quantum path interference in non-collinear high-order harmonic generation

    International Nuclear Information System (INIS)

    Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi

    2016-01-01

    High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)

  11. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve.

    Science.gov (United States)

    Ma, Jing-Min; Zhao, Jia; Zhang, Kai-Cheng; Peng, Ya-Jing; Chi, Feng

    2011-03-28

    Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively.PACS numbers:

  12. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve

    Directory of Open Access Journals (Sweden)

    Ma Jing-Min

    2011-01-01

    Full Text Available Abstract Spin-dependent transport through a quantum-dot (QD ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers:

  13. A superconducting quantum interference device based read-out of a subattonewton force sensor operating at millikelvin temperatures

    International Nuclear Information System (INIS)

    Usenko, O.; Vinante, A.; Wijts, G.; Oosterkamp, T. H.

    2011-01-01

    We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic temperature. The technique is based on the use of a superconducting quantum interference device to detect the magnetic flux change induced by a magnetized particle attached on the end of the resonator. Unlike conventional interferometric techniques, our detection scheme does not involve direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of 0.5 aN/√(Hz).

  14. Quantum interference metrology at deep-UV wavelengths using phase-controlled ultrashort laser pulses

    NARCIS (Netherlands)

    Zinkstok, R. Th; Witte, S.; Ubachs, W.; Hogervorst, W.; Eikema, K. S E

    2005-01-01

    High-resolution metrology at wavelengths shorter than ultraviolet is in general hampered by a limited availability of appropriate laser sources. It is demonstrated that this limitation can be overcome by quantum-interference metrology with frequency up-converted ultrafast laser pulses. The required

  15. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3......)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule...

  16. On-chip quantum interference of a superconducting microsphere

    Science.gov (United States)

    Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.

    2018-04-01

    We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.

  17. Electromagnetic interference-induced instability in CPP-GMR read heads

    International Nuclear Information System (INIS)

    Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A.; Mewes, T.; Mewes, C.K.A.; Kruesubthaworn, A.

    2016-01-01

    Electromagnetic interference (EMI) has been a significant issue for the current perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read heads because it can cause magnetic failure. Furthermore, the magnetic noise induced by the spin transfer torque (STT) effect has played an important role in the CPP read heads because it can affect the stability of the heads. Accordingly, this work proposed an investigation of the magnetic instabilities induced by EMI through the STT effect in a CPP-GMR read head via micromagnetic simulations. The magnetization fluctuation caused by EMI was examined, and then, magnetic noise was evaluated by using power spectral density analysis. It was found that the magnetization orientation can be fluctuated by EMI in close proximity to the head. The results also showed a multimode spectral density. The main contributions of the spectral density were found to originate at the edges of the stripe height sides due to the characteristics of the demagnetization field inside the free layer. Hence, the magnetic instabilities produced by EMI become a significant factor that essentially impacts the reliability of the CPP-GMR read heads. - Highlights: • The instability induced by electromagnetic interference in read head is examined. • The magnetization orientation can be fluctuated by electromagnetic interference. • The electromagnetic interference can induce additional noise spectra to the system. • The noise is mainly located at stripe height of the read head. • The noise induced by electromagnetic interference is a crucial factor for the head.

  18. Electromagnetic interference-induced instability in CPP-GMR read heads

    Energy Technology Data Exchange (ETDEWEB)

    Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A. [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Mewes, T.; Mewes, C.K.A. [Department of Physics and Astronomy, MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Kruesubthaworn, A., E-mail: anankr@kku.ac.th [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-08-15

    Electromagnetic interference (EMI) has been a significant issue for the current perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read heads because it can cause magnetic failure. Furthermore, the magnetic noise induced by the spin transfer torque (STT) effect has played an important role in the CPP read heads because it can affect the stability of the heads. Accordingly, this work proposed an investigation of the magnetic instabilities induced by EMI through the STT effect in a CPP-GMR read head via micromagnetic simulations. The magnetization fluctuation caused by EMI was examined, and then, magnetic noise was evaluated by using power spectral density analysis. It was found that the magnetization orientation can be fluctuated by EMI in close proximity to the head. The results also showed a multimode spectral density. The main contributions of the spectral density were found to originate at the edges of the stripe height sides due to the characteristics of the demagnetization field inside the free layer. Hence, the magnetic instabilities produced by EMI become a significant factor that essentially impacts the reliability of the CPP-GMR read heads. - Highlights: • The instability induced by electromagnetic interference in read head is examined. • The magnetization orientation can be fluctuated by electromagnetic interference. • The electromagnetic interference can induce additional noise spectra to the system. • The noise is mainly located at stripe height of the read head. • The noise induced by electromagnetic interference is a crucial factor for the head.

  19. Description of classical and quantum interference in view of the concept of flow line

    OpenAIRE

    Davidovic, M.; Sanz, A. S.; Bozic, M.

    2015-01-01

    © 2015, Springer Science+Business Media New York. Bohmian mechanics, a hydrodynamic formulation of quantum mechanics, relies on the concept of trajectory, which evolves in time in compliance with dynamical information conveyed by the wave function. Here, this appealing idea is considered to analyze both classical and quantum interference, thus providing an alternative and more intuitive framework to understand the time evolution of waves either in terms of the flow of energy (for instance, fo...

  20. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    2017-01-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  1. Spectroscopy of systems of two identical atoms: effects of quantum interference

    International Nuclear Information System (INIS)

    Makarov, A.A.; Yudson, V.I.

    2017-01-01

    Several effects of quantum interference in spectroscopy of a system of two atoms are discussed. (i) In the system of spatially separated atoms in a one-dimensional (1D) geometry (a single-mode waveguide or photon crystal), a (meta)stable excited entangled state can be formed, its decay being very sensitive to the distance between the atoms and to perturbations which cause a difference between their resonance frequencies. (ii) In a system of closely located atoms in 3D space, the extreme sensitivity of absorption and fluorescence spectra to the direction of the applied magnetic field is demonstrated. These theoretical predictions can be useful for the quantum information processing and ultrasensitive measurements.

  2. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  3. Ballistic transport and quantum interference in InSb nanowire devices

    International Nuclear Information System (INIS)

    Li Sen; Huang Guang-Yao; Guo Jing-Kun; Kang Ning; Xu Hong-Qi; Caroff, Philippe

    2017-01-01

    An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron’s wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations. (paper)

  4. Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source

    DEFF Research Database (Denmark)

    Gerhardt, Stefan; Iles-Smith, Jake; McCutcheon, Dara

    2018-01-01

    We report a joint experimental and theoretical study of the interference properties of a single-photon source based on a In(Ga)As quantum dot embedded in a quasiplanar GaAs microcavity. Using resonant laser excitation with a pulse separation of 2 ns, we find near-perfect interference of the emitt...... in excitonic Rabi oscillations....

  5. Quantum phase slip interference device based on a shaped superconducting nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zorin, Alexander; Hongisto, Terhi [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2012-07-01

    As was predicted by Mooij and Nazarov, the superconducting nanowires may exhibit, depending on the impedance of external electromagnetic environment, not only quantum slips of phase, but also the quantum-mechanically dual effect of coherent transfer of single Cooper pairs. We propose and realize a transistor-like superconducting circuit including two serially connected segments of a narrow (10 nm by 18 nm) nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a high external impedance (>>h/e{sup 2}∼25.8 kΩ) and, eventually, a charge bias regime. Virtual quantum phase slips in two narrow segments of the wire lead in this case to quantum interference of voltages on these segments making this circuit dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUID) and remarkable periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUID). The obtained experimental results and the model of this QPS transistor will be presented.

  6. Interference-exact radiative transfer equation

    DEFF Research Database (Denmark)

    Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani

    2017-01-01

    Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....

  7. Interference of Photons from a Weak Laser and a Quantum Dot

    Science.gov (United States)

    Ritchie, David; Bennett, Anthony; Patel, Raj; Nicoll, Christine; Shields, Andrew

    2010-03-01

    We demonstrate two-photon interference from two unsynchronized sources operating via different physical processes [1]. One source is spontaneous emission from the X^- state of an electrically-driven InAs/GaAs single quantum dot with μeV linewidth, the other stimulated emission from a laser with a neV linewidth. We mix the emission from these sources on a balanced non-polarising beam splitter and measure correlations in the photons that exit using Si-avalanche photodiodes and a time-correlated counting card. By periodically switching the polarisation state of the weak laser we simultaneously measure the correlation for parallel and orthogonally polarised sources, corresponding to maximum and minimum degrees of interference. When the two sources have the same intensity, a reduction in the correlation function at time zero for the case of parallel photon sources clearly indicates this interference effect. To quantify the degree of interference, we develop a theory that predicts the correlation function. Data and experiment are then compared for a range of intensity ratios. Based on this analysis we infer a wave-function overlap of 91%, which is remarkable given the fundamental differences between the two sources. [1] Bennett A. J et al Nature Physics, 5, 715--717 (2009).

  8. Influence of Fano interference and incoherent processes on optical bistability in a four-level quantum dot nanostructure

    International Nuclear Information System (INIS)

    Hossein Asadpour, Seyyed; Solookinejad, G; Panahi, M; Ahmadi Sangachin, E

    2016-01-01

    Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily. (paper)

  9. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    Science.gov (United States)

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  10. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    Science.gov (United States)

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  11. Quantum Interference Oscillations of the Superparamagnetic Blocking in an Fe8 Molecular Nanomagnet

    Science.gov (United States)

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-08-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enable us to quantify such mixing. We find that the weight of excited multiplets in the magnetic ground state of Fe8 amounts to approximately 11.6%.

  12. Kvantová interference

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan

    2003-01-01

    Roč. 48, č. 4 (2003), s. 99-103 ISSN 0447-6441 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : interference * quantum cryptography * quantum computing * quantum teleportation Subject RIV: BH - Optics, Masers, Lasers

  13. Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter.

    Science.gov (United States)

    Fülöp, G; Domínguez, F; d'Hollosy, S; Baumgartner, A; Makk, P; Madsen, M H; Guzenko, V A; Nygård, J; Schönenberger, C; Levy Yeyati, A; Csonka, S

    2015-11-27

    Cooper pair splitting (CPS) is a process in which the electrons of the naturally occurring spin-singlet pairs in a superconductor are spatially separated using two quantum dots. Here, we investigate the evolution of the conductance correlations in an InAs CPS device in the presence of an external magnetic field. In our experiments the gate dependence of the signal that depends on both quantum dots continuously evolves from a slightly asymmetric Lorentzian to a strongly asymmetric Fano-type resonance with increasing field. These experiments can be understood in a simple three-site model, which shows that the nonlocal CPS leads to symmetric line shapes, while the local transport processes can exhibit an asymmetric shape due to quantum interference. These findings demonstrate that the electrons from a Cooper pair splitter can propagate coherently after their emission from the superconductor and how a magnetic field can be used to optimize the performance of a CPS device. In addition, the model calculations suggest that the estimate of the CPS efficiency in the experiments is a lower bound for the actual efficiency.

  14. High-performance magnetic field sensor based on superconducting quantum interference filters

    Science.gov (United States)

    Caputo, P.; Oppenländer, J.; Häussler, Ch.; Tomes, J.; Friesch, A.; Träuble, T.; Schopohl, N.

    2004-08-01

    We have developed an absolute magnetic field sensor using a superconducting quantum interference filter (SQIF) made of high-Tc grain-boundary Josephson junctions. The device shows the typical magnetic-field-dependent voltage response V(B ), which is a sharp deltalike dip in the vicinity of zero-magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B0≈0 to a value B ≈B1, which is about the average value of the Earth's magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ≈B1, and the further shielding of the SQIF results in a shift of the dip towards B0≈0. The low hysteresis observed in the sequence of experiments (less than 5% of B1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-Tc SQIFs in magnetometry.

  15. Quantum imaging with undetected photons.

    Science.gov (United States)

    Lemos, Gabriela Barreto; Borish, Victoria; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton

    2014-08-28

    Information is central to quantum mechanics. In particular, quantum interference occurs only if there exists no information to distinguish between the superposed states. The mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Here we introduce and experimentally demonstrate a quantum imaging concept based on induced coherence without induced emission. Our experiment uses two separate down-conversion nonlinear crystals (numbered NL1 and NL2), each illuminated by the same pump laser, creating one pair of photons (denoted idler and signal). If the photon pair is created in NL1, one photon (the idler) passes through the object to be imaged and is overlapped with the idler amplitude created in NL2, its source thus being undefined. Interference of the signal amplitudes coming from the two crystals then reveals the image of the object. The photons that pass through the imaged object (idler photons from NL1) are never detected, while we obtain images exclusively with the signal photons (from NL1 and NL2), which do not interact with the object. Our experiment is fundamentally different from previous quantum imaging techniques, such as interaction-free imaging or ghost imaging, because now the photons used to illuminate the object do not have to be detected at all and no coincidence detection is necessary. This enables the probe wavelength to be chosen in a range for which suitable detectors are not available. To illustrate this, we show images of objects that are either opaque or invisible to the detected photons. Our experiment is a prototype in quantum information--knowledge can be extracted by, and about, a photon that is never detected.

  16. Automatic adjustment of bias current for direct current superconducting quantum interference device

    International Nuclear Information System (INIS)

    Makie-Fukuda, K.; Hotta, M.; Okajima, K.; Kado, H.

    1993-01-01

    A new method of adjusting the bias current of dc superconducting quantum interference device (SQUID) is described. It is shown that the signal-to-noise ratio of a SQUID magnetometer connected in a flux-locked loop configuration is proportional to the second harmonic of the output signal from the SQUID. A circuit configuration that can automatically optimize a SQUID's bias current by measuring this second harmonic and adjusting the bias current accordingly is proposed

  17. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  18. The Relation between Structure and Quantum Interference in Single Molecule Junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer

    2010-01-01

    Quantum interference (QI) of electron pathways has recently attracted increased interest as an enabling tool for single-molecule electronic devices. Although various molecular systems have been shown to exhibit QI effects and a number of methods have been proposed for its analysis, simple...... guidelines linking the molecular structure to QI effects in the phase-coherent transport regime have until now been lacking. In the present work we demonstrate that QI in aromatic molecules is intimately related to the topology of the molecule’s π system and establish a simple graphical scheme to predict...

  19. Character of quantum interference on superconducting circuits made of V3Si

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.; Prishchepa, S.L.

    1981-01-01

    The characteristics of circuits formed by two parallel superconducting bridge-type contacts made of V 3 Si are studied. The bridges made of V 3 Si films having the 1-30 μm width and 1-2 μm length and the circuits of different areas have been located in a magnetic field perpendicular to the film plane. Current oscillations through the circuit during magnetic field variations have shown themselves through periodic changes in output voltage of the circuit. The attained value of the voltage oscillation amplitude on the parallel bridge-type contacts is 60 μV. For the first time the periodic voltage oscillations are obtained using such circuits during variations of the external magnetic field. The oscillation period is defined by the quantum of magnetic flux. Perspectiveness of V 3 Si for construction of superconducting quantum interference devices is shown [ru

  20. Enhanced quantum interference transport in gold films with random antidot arrays

    Directory of Open Access Journals (Sweden)

    Zhaoguo Li

    2016-09-01

    Full Text Available We report on the quantum interference transport of randomly distributed antidot arrays, which were prepared on gold films via the focused ion beam direct writing method. The temperature dependence of the gold films’ resistances with and without random antidot arrays were described via electron–phonon interaction theory. Compared with the pristine gold films, we observed an unexpected enhancement of the weak localization signature in the random antidot array films. The physical mechanism behind this enhancement may originate from the enhancement of electron–electron interactions or the suppression of electron–phonon interactions; further evidence is required to determine the exact mechanism.

  1. Role of dressed-state interference in electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Khan, Sumanta; Bharti, Vineet; Natarajan, Vasant

    2016-01-01

    Highlights: • Role of dressed-state interference is investigated on lambda, ladder and vee type EIT systems. • The effect of interference decreases with increasing Rabi frequency of the control laser. • Dressed-state interference plays an important role in lambda system and a negligible role in ladder and vee systems. - Abstract: Electromagnetically induced transparency (EIT) in three-level systems uses a strong control laser on one transition to modify the absorption of a weak probe laser on a second transition. The control laser creates dressed states whose decay pathways show interference. We study the role of dressed-state interference in causing EIT in the three types of three-level systems—lambda (Λ), ladder (Ξ), and vee (V). In order to get realistic values for the linewidths of the energy levels involved, we consider appropriate hyperfine levels of "8"7Rb. For such realistic systems, we find that dressed-state interference causes probe absorption—given by the imaginary part of the susceptibility—to go to zero in a Λ system, but plays a negligible role in Ξ and V systems.

  2. Role of dressed-state interference in electromagnetically induced transparency

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sumanta; Bharti, Vineet; Natarajan, Vasant

    2016-12-16

    Highlights: • Role of dressed-state interference is investigated on lambda, ladder and vee type EIT systems. • The effect of interference decreases with increasing Rabi frequency of the control laser. • Dressed-state interference plays an important role in lambda system and a negligible role in ladder and vee systems. - Abstract: Electromagnetically induced transparency (EIT) in three-level systems uses a strong control laser on one transition to modify the absorption of a weak probe laser on a second transition. The control laser creates dressed states whose decay pathways show interference. We study the role of dressed-state interference in causing EIT in the three types of three-level systems—lambda (Λ), ladder (Ξ), and vee (V). In order to get realistic values for the linewidths of the energy levels involved, we consider appropriate hyperfine levels of {sup 87}Rb. For such realistic systems, we find that dressed-state interference causes probe absorption—given by the imaginary part of the susceptibility—to go to zero in a Λ system, but plays a negligible role in Ξ and V systems.

  3. Theory of fourfold interference with photon pairs from spatially separated sources

    International Nuclear Information System (INIS)

    Zhang, Hui Rong; Wang, Ruo Peng

    2007-01-01

    We present a theory for fourfold quantum interference of photons generated from independent spontaneous parametric down-conversion processes. Closed-form expressions for fourfold quantum interference patterns and visibility are found. The theoretical result for fourfold quantum interference patterns is in good agreement with experimental data reported. Detailed numerical calculations for the dependence of fourfold quantum interference visibility on experimentally controllable parameters are carried out. It is found out that higher visibility can be achieved for small biphoton width, short pump pulse coherence time, and narrow bandwidth of spectral filters. The optimal condition for obtaining at the same time higher fourfold interference visibility and intensity is also discussed

  4. Unravelling the role of quantum interference in the weak-field laser phase modulation control of photofragment distributions

    DEFF Research Database (Denmark)

    García-Vela, Alberto; Henriksen, Niels Engholm

    2016-01-01

    The role played by quantum interference in the laser phase modulation coherent control of photofragment distributions in the weak-field regime is investigated in detail in this work. The specific application involves realistic wave packet calculations of the transient vibrational populations of t...

  5. Experimental occlusal interference induces long-term masticatory muscle hyperalgesia in rats.

    Science.gov (United States)

    Cao, Ye; Xie, Qiu-Fei; Li, Kai; Light, Alan R; Fu, Kai-Yuan

    2009-08-01

    Temporomandibular joint or related masticatory muscle pain represents the most common chronic orofacial pain condition. Patients frequently report this kind of pain after dental alterations in occlusion. However, lack of understanding of the mechanisms of occlusion-related temporomandibular joint and muscle pain prevents treating this problem successfully. To explore the relationship between improper occlusion (occlusal interference) and masticatory muscle pain, we created an occlusal interference animal model by directly bonding a crown to a maxillary molar to raise the masticating surface of the tooth in rats. We raised the occlusal surface to three different heights (0.2, 0.4, and 0.6mm), and for one month we quantitatively measured mechanical nociceptive thresholds of the temporal and masseter muscles on both sides. Results showed a stimulus-response relationship between the height of occlusal interference and muscle hyperalgesia. Removal of the crown 6 days after occlusal interference showed that the removal at this time could not terminate the 1 month duration of mechanical hyperalgesia in the masticatory muscles. Lastly, we systemically administered NMDA antagonist MK801 (0.2, 0.1, and 0.05 mg/kg) to the treated rats and found that MK801 dose dependently attenuated the occlusal interference-induced hyperalgesia. These findings suggest that occlusal interference is directly related to masticatory muscle pain, and that central sensitization mechanisms are involved in the maintenance of the occlusal interference-induced mechanical hyperalgesia.

  6. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    Science.gov (United States)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  7. Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Li Gaoxiang; Evers, Joerg; Keitel, Christoph H

    2005-01-01

    We investigate the spontaneous-emission properties of a two-level atom embedded in a three-dimensional anisotropic photonic crystal. In addition to the modified density of states, the atom is driven by a coherent intense low-frequency field (LFF), which creates additional multiphoton decay channels with the exchange of two low-frequency photons and one spontaneous photon during an atomic transition. Due to the low frequency of the applied field, the various transition pathways may interfere with each other and thus give rise to a modified system dynamics. We find that even if all the atomic (bare and induced) transition frequencies are in the conducting band of the photonic crystal, there still may exist a photon-atom bound state in coexistence with propagating modes. The system also allows us to generate narrow lines in the spontaneous-emission spectrum. This spectrum is a function of the distance of the observer from the atom due to the band gap in the photonic crystal. The system properties depend on three characteristic frequencies, which are influenced by quantum interference effects. Thus these results can be attributed to a combination of interference and band-gap effects

  8. De Broglie wavelets versus Schroedinger wave functions: A ribbon model approach to quantum theory and the mechanisms of quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jau

    1996-02-01

    As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.

  9. On the self-interference in electron scattering: Copenhagen, Bohmian and geometrical interpretations of quantum mechanics

    Science.gov (United States)

    Tavernelli, Ivano

    2018-06-01

    Self-interference embodies the essence of the particle-wave formulation of quantum mechanics (QM). According to the Copenhagen interpretation of QM, self-interference by a double-slit requires a large transverse coherence of the incident wavepacket such that it covers the separation between the slits. Bohmian dynamics provides a first step in the separation of the particle-wave character of matter by introducing deterministic trajectories guided by a pilot wave that follows the time-dependent Schrödinger equation. In this work, I present a new description of the phenomenon of self-interference using the geometrical formulation of QM introduced in Tavernelli (2016). In particular, this formalism removes the need for the concept of wavefunction collapse in the interpretation of the act of measurement i.e., the emergence of the classical world. The three QM formulations (Schrödinger, Bohmian, and geometrical) are applied to the description of the scattering of a free electron by a hydrogen atom and a double-slit. The corresponding interpretations of self-interference are compared and discussed.

  10. Control of quantum interference of an excitonic wave in a chlorophyll chain with a chlorophyll ring

    International Nuclear Information System (INIS)

    Hong, Suc-Kyoung; Nam, Seog-Woo; Yeon, Kyu-Hwang

    2010-01-01

    The quantum interference of an excitonic wave and its coherent control in a nanochain with a nanoring are studied. The nanochain is comprised of six chlorophylls, where four chlorophylls compose the nanoring and two chlorophylls are attached at two opposite sites on the nanoring. The exciton dynamics and the correlation of the excitation between chlorophylls are analyzed for a given configurational arrangement and dipolar orientation of the chlorophylls. The results of this study show that the excitation at specified chlorophylls is suppressed or enhanced by destructive or constructive interference of the excitonic wave in the chlorophyll nanochain.

  11. Experimental demonstration of squeezed-state quantum averaging

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Madsen, Lars Skovgaard; Sabuncu, Metin

    2010-01-01

    We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The averaged variances are prepared probabilistically by means of linear optical interference and measurement-induced conditioning. We verify that the implemented...

  12. On the possible detection of quantum-mechanical interferences between gravitational forces and nucleus-nucleus Coulomb forces

    International Nuclear Information System (INIS)

    Silveira, R. da

    1996-07-01

    Possible effects of quantum-mechanical interferences between gravitational forces and the nucleus-nucleus Coulomb interaction are discussed. It is shown that, although very small, these effects could be measured using low energy scattering between identical heavy nuclei, e.g. for the system 208 Pb + 208 Pb (E L = 5 MeV). (author)

  13. Quantumness beyond quantum mechanics

    International Nuclear Information System (INIS)

    Sanz, Ángel S

    2012-01-01

    Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).

  14. Intervention of radiation‐induced skin fibrosis by RNA interference

    DEFF Research Database (Denmark)

    Nawroth, Isabel

    ‐α (TNFα) production by macrophages might promote RIF. RNA interference (RNAi) is an evolutionary conserved gene‐silencing mechanism capable of degrading mRNA containing a homologous sequence to an exogenously introduced double stranded small interfering RNA (siRNA). These siRNAs can induce RNAi...... and inhibit the expression of target proteins. Therefore, siRNAs are considered as promising therapeutics for treatment of various diseases including genetic and viral diseases, and cancer. In this study, the therapeutic potential of RNA interference was investigated as an intervention strategy for radiation......‐induced skin fibrosis. Chitosan‐based nanoparticles (or polyplexes) formed by self‐assembly with siRNA were applied to overcome extracellular and intracellular barriers and deliver siRNA site‐specific. In this work we show that intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα...

  15. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    Science.gov (United States)

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  16. Principles of quantum interference

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1990-01-01

    A new approach to quantum state determination is developed using data in the form of observed eigenvectors. An exceedingly natural inversion of such data results when the quantum probability rule is recognised as a conditional. The reversal of this conditional via Bayesian methods results in an inferred probability density over states which readily reduces to a density matrix estimator. The inclusion of concepts drawn from communication theory then defines an optimal state determination problem which is explored on Hilbert spaces of arbitrary finite dimensionality. 33 refs

  17. Quantum Plasmonics: Quantum Information at the Nanoscale

    Science.gov (United States)

    2016-11-06

    A schematic of the plasmonic Hong-Ou-Mandel experiment conducted is shown in Figure 2, utilizing a plasmonic beam splitter designed for a 50-50...Bunching of photons at the output port of a 4-port beam splitter due to quantum interference. In order to reach the quantum regime, the coincidence...ports of a 4-port beam splitter , as shown in Figure 1. Quantum interference manifests itself via both photons detected in the same output port

  18. Entanglement and quantum superposition induced by a single photon

    Science.gov (United States)

    Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying

    2018-03-01

    We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.

  19. A method for quantitative nondestructive evaluation using high critical temperature superconducting quantum interference device

    International Nuclear Information System (INIS)

    Kojima, Fumio; Nagashima, Yoshinori; Suzuki, Daisuke; Kasai, Naoko

    1998-01-01

    This paper is concerned with a computational method for detecting and characterizing defect shapes in conducting materials using superconducting quantum interference device (SQUID). The mathematical model is described by electrical potential problems with mixed boundary condition. The model output is then represented by Biot-Savart's law. The estimation scheme is proposed for reconstructing defect shapes in sample materials with defect. Successful numerical results are reported in order to show the feasibility of the proposed algorithms. (author)

  20. A method for quantitative nondestructive evaluation using high critical temperature superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Fumio; Nagashima, Yoshinori [Osaka Inst. of Tech. (Japan); Suzuki, Daisuke; Kasai, Naoko

    1998-06-01

    This paper is concerned with a computational method for detecting and characterizing defect shapes in conducting materials using superconducting quantum interference device (SQUID). The mathematical model is described by electrical potential problems with mixed boundary condition. The model output is then represented by Biot-Savart`s law. The estimation scheme is proposed for reconstructing defect shapes in sample materials with defect. Successful numerical results are reported in order to show the feasibility of the proposed algorithms. (author)

  1. Prediction of quantum interference in molecular junctions using a parabolic diagram: Understanding the origin of Fano and anti-resonances

    DEFF Research Database (Denmark)

    Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevincli, Haldun

    2013-01-01

    Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple...... rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method...... to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions...

  2. Phase-dependent quantum interference between different pathways in bichromatic harmonic generation

    International Nuclear Information System (INIS)

    Jun, Cai; Li-Ming, Wang; Hao-Xue, Qiao

    2009-01-01

    This paper studies the harmonic generation of the hydrogen atom subjected to a collinear bichromatic laser field by numerically solving the time-dependent Schrödinger equation using the split-operator pseudo-spectral method. By adding a frequency variation to the additional field, the contributions of different pathways to particular order harmonic generation can be isolated. The quantum interference pattern between harmonic pathways, which influences the harmonic intensity, is found to be either constructive or destructive with respect to different relative phase of the two field components. Detailed description of up to the 35th-order harmonics and the harmonic pathways for a wide range of field parameters is presented. (atomic and molecular physics)

  3. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao; Volkan Demir, Hilmi

    2014-01-01

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  4. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Volkan Demir, Hilmi, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  5. Tuning quantum measurements to control chaos.

    Science.gov (United States)

    Eastman, Jessica K; Hope, Joseph J; Carvalho, André R R

    2017-03-20

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.

  6. Inducing Strong Non-Linearities in a Phonon Trapping Quartz Bulk Acoustic Wave Resonator Coupled to a Superconducting Quantum Interference Device

    Directory of Open Access Journals (Sweden)

    Maxim Goryachev

    2018-04-01

    Full Text Available A quartz Bulk Acoustic Wave resonator is designed to coherently trap phonons in such a way that they are well confined and immune to suspension losses so they exhibit extremely high acoustic Q-factors at low temperature, with Q × f products of order 10 18 Hz. In this work we couple such a resonator to a Superconducting Quantum Interference Device (SQUID amplifier and investigate effects in the strong signal regime. Both parallel and series connection topologies of the system are investigated. The study reveals significant non-Duffing response that is associated with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic structure of the spectrum in both incident power and frequency. The result gives an insight into the open loop behaviour of a future Cryogenic Quartz Oscillator in the strong signal regime.

  7. Trajectory description of the quantum–classical transition for wave packet interference

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-08-15

    The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.

  8. Rotational population patterns and searches for the nuclear SQUID (Superconducting Quantum Interference Device)

    International Nuclear Information System (INIS)

    Canto, L.F.; Donangelo, R.J.; Farhan, A.R.; Guidry, M.W.; Rasmussen, J.O.; Ring, P.; Stoyer, M.A.

    1989-11-01

    This paper presents new theoretical results for rotational population patterns in the nuclear SQUID effect. (The term nuclear SQUID is in analogy to the solid-state Superconducting Quantum Interference Devices.) The SQUID effect is an interesting new twist to an old quest to understand Coriolis anti-pairing (CAP) effects in nuclear rotational bands. Two-neutron transfer reaction cross sections among high-spin states have long been touted as more specific CAP probes than other nuclear properties. Heavy projectiles like Sn or Pb generally are recommended to pump the deformed nucleus to as high spin as possible for transfer. The interference and sign reversal of 2n transfer amplitudes at high spin, as predicted in the early SQUID work imposes the difficult requirement of Coulomb pumping to near back-bending spins at closest approach. For Pb on rare earths we find a dramatic departure from sudden-approximation, so that the population depression occurs as low as final spin 10h. 14 refs., 8 figs

  9. Young's double-slit interference with two-color biphotons.

    Science.gov (United States)

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  10. Role of inter-tube coupling and quantum interference on electrical transport in carbon nanotube junctions

    Science.gov (United States)

    Tripathy, Srijeet; Bhattacharyya, Tarun Kanti

    2016-09-01

    Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.

  11. Transmission resonances in a semiconductor-superconductor junction quantum interference structure

    International Nuclear Information System (INIS)

    Takagaki, Y.; Tokura, Y.

    1996-01-01

    Transport properties in a quantum resonator structure of a normal-conductor endash superconductor (NS) junction are calculated. Quasiparticles in a cavity region undergo multiple reflections due to an abrupt change in the width of the wire and the NS interface. Quantum interference of the reflections modulates the nominal normal reflection probability at the NS boundary. We show that various NS structures can be regarded as the quantum resonator because of the absence of propagation along the NS interface. When the incident energy coincides with the quasibound state energy levels, the zero-voltage conductance exhibits peaks for small voltages applied to the NS junction. The transmission peaks change to dips of nearly perfect reflection when the applied voltage exceeds a critical value. Two branches of the resonance, which are roughly characterized by electron and hole wavelengths, emerge from the individual dip, and the energy difference between them increases with increasing voltage. The electronlike and holelike resonance dips originating from different quasibound states at zero-voltage cross one after another when the voltage approaches the superconducting gap. We find that both crossing and anticrossing can be produced. It is shown that the individual resonance state in the NS system is associated with two zeros and two poles in the complex energy plane. The behavior of the resonance is explained in terms of splitting and merging of the zero-pole pairs. We examine the Green close-quote s function of a one-dimensional NS system in order to find out how the transmission properties are influenced by the scattering from the NS interface. copyright 1996 The American Physical Society

  12. Quantum optics and fundamentals of quantum theory

    International Nuclear Information System (INIS)

    Dusek, M.

    1997-01-01

    Quantum optics has opened up new opportunities for experimental verification of the basic principles of quantum mechanics, particularly in the field of quantum interference and so-called non-local phenomena. The results of the experiments described provide unambiguous support to quantum mechanics. (Z.J.)

  13. Overcoming correlation fluctuations in two-photon interference experiments with differently bright and independently blinking remote quantum emitters

    Science.gov (United States)

    Weber, Jonas H.; Kettler, Jan; Vural, Hüseyin; Müller, Markus; Maisch, Julian; Jetter, Michael; Portalupi, Simone L.; Michler, Peter

    2018-05-01

    As a fundamental building block for quantum computation and communication protocols, the correct verification of the two-photon interference (TPI) contrast between two independent quantum light sources is of utmost importance. Here, we experimentally demonstrate how frequently present blinking dynamics and changes in emitter brightness critically affect the Hong-Ou-Mandel-type (HOM) correlation histograms of remote TPI experiments measured via the commonly utilized setup configuration. We further exploit this qualitative and quantitative explanation of the observed correlation dynamics to establish an alternative interferometer configuration, which is overcoming the discussed temporal fluctuations, giving rise to an error-free determination of the remote TPI visibility. We prove full knowledge of the obtained correlation by reproducing the measured correlation statistics via Monte Carlo simulations. As an exemplary system, we make use of two pairs of remote semiconductor quantum dots; however, the same conclusions apply for TPI experiments with flying qubits from any kind of remote solid-state quantum emitters.

  14. Classical and quantum contents of solvable game theory on Hilbert space

    International Nuclear Information System (INIS)

    Cheon, Taksu; Tsutsui, Izumi

    2006-01-01

    A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation

  15. The Role of Antisymmetric Exchange on the Quantum Interference between States of Different Spin Length in a dimeric Molecular Nanomagnet.

    Science.gov (United States)

    Del Barco, Enrique

    2009-03-01

    We report direct evidence of quantum oscillations of the total spin length of a dimeric molecular nanomagnet through the observation of quantum interference associated with tunneling trajectories between states having different spin quantum numbers. As we outline, this is a consequence of the unique characteristics of a molecular Mn12 wheel which behaves as a (weak) ferromagnetic exchange-coupled molecular dimer: each half of the molecule acts as a single-molecule magnet (SMM), while the weak coupling between the two halves gives rise to an additional internal spin degree of freedom within the molecule, namely that its total spin may fluctuate. This extra degree of freedom accounts for several magnetization tunneling resonances that cannot be explained within the usual giant spin approximation. More importantly, the observation of quantum interference provides unambiguous evidence for the quantum mechanical superposition involving entangled states of both halves of the wheel. Magnetization results obtained in two other versions of this compound, in which the ligands have been modified, show that slight variations of the relative distance between the Mn ions determine whether the molecule behaves as a rigid magnetic unit of spin S = 7 or as two exchange-coupled halves of spin S = 7/2. We analyze the effect of the Dzyaloshinskii-Moriya antisymmetric exchange interaction in a molecule with a centre of inversion symmetry and propose a formal model to account for the observed broken degeneracy that preserves the molecular inversion symmetry.

  16. Decoherence in quantum cosmology

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    1989-01-01

    We discuss the manner in which the gravitational field becomes classical in quantum cosmology. This involves two steps. First, one must show that the quantum state of the gravitational field becomes strongly peaked about a set of classical configurations. Second, one must show that the system is in one of a number of states of a relatively permanent nature that have negligible interference with each other. This second step involves decoherence---destruction of the off-diagonal terms in the density matrix, representing interference. To introduce the notion of decoherence, we discuss it in the context of the quantum theory of measurement, following the environment-induced superselection approach of Zurek. We then go on to discuss the application of these ideas to quantum cosmology. We show, in a simple homogeneous isotropic model, that the density matrix of the Universe will decohere if the long-wavelength modes of an inhomogeneous massless scalar field are traced out. These modes effectively act as an environment which continuously ''monitors'' the scale factor. The coherence width is very small except in the neighborhood of a classical bounce. This means that one cannot really say that a classical solution bounces because the notion of classical spacetime does not apply. The coherence width decreases as the scale factor increases, which has implications for the arrow of time. We also show, using decoherence arguments, that the WKB component of the wave function of the Universe which represents expanding universes has negligible interference with the collapsing component. This justifies the usual assumption that they may be treated separately

  17. Exact Results on Quantum Interference and Magnetoconductance in Variable-Range Hopping

    Science.gov (United States)

    Lin, Yeong-Lieh; Nori, Franco

    1997-03-01

    We study quantum interference effects on the transition strength for strongly localized electrons hopping on 2D square and 3D cubic lattices in a magnetic field B. In 2D, we obtain closed-form expressions for the tunneling probability between two arbitrary sites by exactly summing the corresponding phase factors of all directed paths connecting them. An analytic expression for the magnetoconductance, as an explicit function of the magnetic flux, is derived. A positive MC is clearly observed when turning on the magnetic field. When the strength of B reaches a certain value, which is inversely proportional to twice the hopping length, the MC is increased by a factor of two compared to that at zero field. The periodicity in the flux of the MC is found to be equal to hc/2e. In the experimentally important 3D case, we show how the interference patterns and the small-B behavior of the magnetoconductance vary according to the orientation of B. Furthermore, for a 3D sample, the effect on the low-flux MC due to the randomness of the angles between the hopping direction and the orientation of B is examined analytically.(Y.-L. Lin and F. Nori, Phys. Rev. Lett. 76), 4580 (1996); Phys. Rev. B 53, 15543 (1996).

  18. Interference and inequality in quantum decision theory

    International Nuclear Information System (INIS)

    Cheon, Taksu; Takahashi, Taiki

    2010-01-01

    The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.

  19. Interference and inequality in quantum decision theory

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Taksu, E-mail: taksu.cheon@kochi-tech.ac.j [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan); Takahashi, Taiki, E-mail: ttakahashi@lynx.let.hokudai.ac.j [Laboratory of Social Psychology, Department of Behavioral Science, Faculty of Letters, Hokkaido University, N.10, W.7, Kita-ku, Sapporo 060-0810 (Japan)

    2010-12-01

    The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.

  20. Retrieval-induced forgetting and interference between cues: training a cue-outcome association attenuates retrieval by alternative cues.

    Science.gov (United States)

    Ortega-Castro, Nerea; Vadillo, Miguel A

    2013-03-01

    Some researchers have attempted to determine whether situations in which a single cue is paired with several outcomes (A-B, A-C interference or interference between outcomes) involve the same learning and retrieval mechanisms as situations in which several cues are paired with a single outcome (A-B, C-B interference or interference between cues). Interestingly, current research on a related effect, which is known as retrieval-induced forgetting, can illuminate this debate. Most retrieval-induced forgetting experiments are based on an experimental design that closely resembles the A-B, A-C interference paradigm. In the present experiment, we found that a similar effect may be observed when items are rearranged such that the general structure of the task more closely resembles the A-B, C-B interference paradigm. This result suggests that, as claimed by other researchers in the area of contingency learning, the two types of interference, namely A-B, A-C and A-B, C-B interference, may share some basic mechanisms. Moreover, the type of inhibitory processes assumed to underlie retrieval-induced forgetting may also play a role in these phenomena. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. On the possibility of a quantum bremsstrahlung induced self-modulation of a relativistic beam channeling in crystals

    International Nuclear Information System (INIS)

    Vysotskij, V.I.; Vorontsov, V.I.; Kuz'min, R.N.

    1987-01-01

    Physical predictions and quantitative estimations of a new physical effect - the phenomenon of quantum bremsstrahlung induced selfmodulation of a fast beam channeling in the crystals are considered and carried out. The occurrence of induced self-modulation results from nonstationary interference of proper waves of a channeled particle in the range of mutual coherence and with account of difference of selective bremsstrahlung losses of these waves. The modulation frequency for superrelativistic particles is shown to lie within the range from soft X-ray to hard gamma range. It proceeds from the estimations that modulation at these frequencies is preserved within the limits of macroscopically large ranges after the crystal attaining several meters. The maximum frequency of modulation for nonrelativistic heavy particles (protons) corresponds to the optical range

  2. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  3. Analytic methods for field induced tunneling in quantum wells

    Indian Academy of Sciences (India)

    Analytic methods for field induced tunneling in quantum wells with arbitrary potential profiles ... Electric field induced tunneling is studied in three different types of quantum wells by solving time-independent effective mass ... Current Issue : Vol.

  4. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Science.gov (United States)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  5. Classical Limit and Quantum Logic

    Science.gov (United States)

    Losada, Marcelo; Fortin, Sebastian; Holik, Federico

    2018-02-01

    The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.

  6. Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction

    International Nuclear Information System (INIS)

    Yang, C.-P.; Han Siyuan

    2006-01-01

    We show a way to realize an arbitrary rotation gate in a three-level superconducting quantum interference device (SQUID) qubit using resonant interaction. In this approach, the two logical states of the qubit are represented by the two lowest levels of the SQUID and a higher-energy intermediate level is utilized for the gate manipulation. By considering spontaneous decay from the intermediate level during the gate operation, we present a formula for calculating average fidelity over all possible initial states. Finally, based on realistic system parameters, we show that an arbitrary rotation gate can be achieved with a high fidelity in a SQUID

  7. Experimental occlusal interferences. Part III. Mandibular rotations induced by a rigid interference.

    Science.gov (United States)

    Rassouli, N M; Christensen, L V

    1995-10-01

    A rigid intercuspal interference (minimum mean height of 0.24 mm) was placed on either the right or left mandibular second premolar and first molar of 12 subjects. During brisk and forceful biting on the interference, rotational electrognathography measured maximum torque of the right and left mandibular condyles in the frontal and horizontal planes of orientation. All subjects showed frontal plan upward rotation (mean of 0.7 degrees) of the mandibular condyle contralateral to the interference. In 33% of the subjects there was no horizontal plane backward rotation. In 58% of the subjects there was horizontal plane backward rotation (mean of 0.5 degrees) of the mandibular condyle ipsilateral to the interference, and in one subject (8%) there was backward horizontal plane rotation (0.1 degree) of the mandibular condyle contralateral to the interference. It was inferred that the masseter muscle, ipsilateral to the interference, generated negative work in order to decelerate frontal plane 'unseating' of the mandibular condyle ipsilateral to the interference. It was inferred that the masseter muscle, contralateral to the interference, produced positive work in order to accelerate frontal plane 'seating' of the mandibular condyle contralateral to the interference. Finally, it was speculated that the impact forces of frontal plane 'seating' of the mandibular condyle, contralateral to the interference, might lead to 'vacuum sticking' of the temporomandibular joint disc because of the formation of negative hydrostatic pressures.

  8. Interference contrast in multi-source few photon optics

    OpenAIRE

    Laskowski, Wieslaw; Wiesniak, Marcin; Zukowski, Marek; Bourennane, Mohamed; Weinfurter, Harald

    2009-01-01

    Many recent experiments employ several parametric down conversion (PDC) sources to get multiphoton interference. Such interference has applications in quantum information. We study here how effects due to photon statistics, misalignment, and partial distinguishability of the PDC pairs originating from different sources may lower the interference contrast in the multiphoton experiments.

  9. Field-free molecular orientation induced by single-cycle THz pulses: the role of resonance and quantum interference

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm

    2013-01-01

    distributions of the pulses at the rotational resonance frequencies play an important role. Furthermore, we investigate the interference between multiple rotational excitation pathways following prealignment with a nonresonant 800-nm femtosecond pulse. It is shown that such interference can lead...

  10. Induced electric dipole in a quantum ring

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, L.; Furtado, Claudio, E-mail: furtado@fisica.ufpb.br

    2013-12-02

    In this contribution, we investigate the quantum dynamics of a neutral particle confined in a quantum ring potential. We use two different field configurations for induced electric dipole in the presence of electric and magnetic fields and a general confining potential, for which we solve the Schrödinger equation and obtain the complete set of eigenfunctions and eigenvalues.

  11. Topos quantum theory on quantization-induced sheaves

    International Nuclear Information System (INIS)

    Nakayama, Kunji

    2014-01-01

    In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-based expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation

  12. Coincidence Imaging and interference with coherent Gaussian beams

    Institute of Scientific and Technical Information of China (English)

    CAI Yang-jian; ZHU Shi-yao

    2006-01-01

    we present a theoretical study of coincidence imaging and interference with coherent Gaussian beams The equations for the coincidence image formation and interference fringes are derived,from which it is clear that the imaging is due to the corresponding focusing in the two paths .The quality and visibility of the images and fringes can be high simultaneously.The nature of the coincidence imaging and interference between quantum entangled photon pairs and coherent Gaussian beams are different .The coincidence image with coherent Gaussian beams is due to intensity-intensity correspondence,a classical nature,while that with entangled photon pairs is due to the amplitude correlation a quantum nature.

  13. Anisotropic Magnetoresistance and Anisotropic Tunneling Magnetoresistance due to Quantum Interference in Ferromagnetic Metal Break Junctions

    DEFF Research Database (Denmark)

    Bolotin, Kirill; Kuemmeth, Ferdinand; Ralph, D

    2006-01-01

    We measure the low-temperature resistance of permalloy break junctions as a function of contact size and the magnetic field angle in applied fields large enough to saturate the magnetization. For both nanometer-scale metallic contacts and tunneling devices we observe large changes in resistance w...... with the angle, as large as 25% in the tunneling regime. The pattern of magnetoresistance is sensitive to changes in bias on a scale of a few mV. We interpret the effect as a consequence of conductance fluctuations due to quantum interference....

  14. Interference effect in the resonant emission of a semiconductor microcavity

    Science.gov (United States)

    Cassabois, G.; Bogani, F.; Triques, A. L.; Delalande, C.; Roussignol, Ph.

    2001-07-01

    We present a phenomenological description of the coherent emission from a semiconductor microcavity in the strong-coupling regime. We consider two main contributions which are calculated in the framework of the semiclassical approach of the linear dispersion theory: reflectivity corresponds to the response of a uniform microcavity while resonant Rayleigh scattering (RRS) arises from disorder. Our simulations are compared to experimental results obtained at normal incidence in a backscattering geometry by means of cw spectroscopy and interferometric correlation with subpicosecond resolution. In this geometry, a fair agreement is reached assuming interferences between the two aforementioned contributions. This interference effect gives evidence of the drastic modification of the RRS emission pattern of the embedded quantum well induced by the Fabry-Pérot cavity.

  15. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  16. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-01-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems

  17. Time-resolved measurement of the quantum states of photons using two-photon interference with short-time reference pulses

    International Nuclear Information System (INIS)

    Ren Changliang; Hofmann, Holger F.

    2011-01-01

    To fully utilize the energy-time degree of freedom of photons for optical quantum-information processes, it is necessary to control and characterize the temporal quantum states of the photons at extremely short time scales. For measurements of the temporal coherence of the quantum states beyond the time resolution of available detectors, two-photon interference with a photon in a short-time reference pulse may be a viable alternative. In this paper, we derive the temporal measurement operators for the bunching statistics of a single-photon input state with a photon from a weak coherent reference pulse. It is shown that the effects of the pulse shape of the reference pulse can be expressed in terms of a spectral filter selecting the bandwidth within which the measurement can be treated as an ideal projection on eigenstates of time. For full quantum tomography, temporal coherence can be determined by using superpositions of reference pulses at two different times. Moreover, energy-time entanglement can be evaluated based on the two-by-two entanglement observed in the coherences between pairs of detection times.

  18. Spontaneous compactification in 2D induced quantum gravity

    International Nuclear Information System (INIS)

    Elizalde, E.; Odintsov, S.D.

    1992-01-01

    In this paper spontaneous compactification - on a R 1 x S 1 background - in 2D induced quantum gravity (considered as a toy model for more fundamental quantum gravity) is analyzed in the gauge-independent effective action formalism. It is shown that such compactification is stable, in contradistinction to multidimensional quantum gravity on a R degrees x S 1 (D-> 2) background - which is known to be one-loop unstable

  19. An impurity-induced gap system as a quantum data bus for quantum state transfer

    International Nuclear Information System (INIS)

    Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.

    2014-01-01

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer

  20. Optical properties of a tip-induced quantum dot

    NARCIS (Netherlands)

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Fomin, V.M.; Wolter, J.H.; Devreese, J.T.; Miura, N.; Ando, T.

    2001-01-01

    We have performed optical spectroscopy measurements on an STM-tip-induced quantum dot. The dominant confinement in the (hole) quantum dot is in the direction parallel to the tip axis. Electron confinement is achieved by a sub-surface AlGaAs barrier. Current dependent measurements indicate that

  1. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  2. A voltage biased superconducting quantum interference device bootstrap circuit

    International Nuclear Information System (INIS)

    Xie Xiaoming; Wang Huiwu; Wang Yongliang; Dong Hui; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhaeusser, Andreas; Mueck, Michael

    2010-01-01

    We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ 0 Hz -1/2 and a magnetic field resolution of less than 3 fT Hz -1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.

  3. Experimental occlusal interferences. Part IV. Mandibular rotations induced by a pliable interference.

    Science.gov (United States)

    Christensen, L V; Rassouli, N M

    1995-11-01

    In 12 subjects, a pliable, yet unbreakable, intercuspal interference (aluminum shim onlay splint; uniform height of 0.25 mm) was placed between either the right or left maxillary and mandibular second premolars and first molars. During brief and forceful biting (dynamic chewing stroke of about 20 kg force) the interference emulated a semisoft food bolus, and at the end of biting (subsequent static clenching stroke of about 20 kg force) it emulated a rigid metal interference. During dynamic/static biting, rotational electrognathography measured maximum frontal and horizontal plane torque of the right and left mandibular condyles. Eleven subjects (92%) showed frontal plane upward rotation (mean of 1.0 degree) of the condyle contralateral to the interference, and one subject (8%) showed frontal plane upward rotation (0.4 degree) of the condyle ipsilateral to the interference. Two subjects (17%) showed no horizontal plane rotation; seven subjects (58%) showed backward rotation (mean of 0.4 degree) of the condyle contralateral to the interference; and three subjects (25%) showed backward rotation (mean of 0.3 degree) of the condyle ipsilateral to the interference. It is suggested that, in the presence of an occlusal interference, mastication may have both short- and long-term detrimental effects.

  4. Indistinguishability and interference in the coherent control of atomic and molecular processes

    International Nuclear Information System (INIS)

    Gong Jiangbin; Brumer, Paul

    2010-01-01

    The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible 'which-way' information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable, it is first shown that creating useful coherence between nondegenerate states of a molecule for subsequent quantum interference manipulation cannot be achieved by collisions between atoms or molecules that are prepared in momentum and energy eigenstates. Coherence can, however, be transferred from light fields to atoms or molecules. Using a particular coherent control scenario, it is shown that this coherence transfer and the subsequent coherent phase control can be readily realized by the most classical states of light, i.e., coherent states of light. It is further demonstrated that quantum states of light may suppress the extent of phase-sensitive coherent control by leaking out some which-way information while 'incoherent interference control' scenarios proposed in the literature have automatically ensured the indistinguishability of multiple excitation pathways. The possibility of quantum coherence in photodissociation product states is also understood in terms of the disentanglement between photodissociation fragments. Results offer deeper insights into quantum coherence generation in atomic and molecular processes.

  5. Quantum optical measurements with undetected photons through vacuum field indistinguishability.

    Science.gov (United States)

    Lee, Sun Kyung; Yoon, Tai Hyun; Cho, Minhaeng

    2017-07-26

    Quantum spectroscopy and imaging with undetected idler photons have been demonstrated by measuring one-photon interference between the corresponding entangled signal fields from two spontaneous parametric down conversion (SPDC) crystals. In this Report, we present a new quantum optical measurement scheme utilizing three SPDC crystals in a cascading arrangement; here, neither the detection of the idler photons which interact with materials of interest nor their conjugate signal photons which do not interact with the sample is required. The coherence of signal beams in a single photon W-type path-entangled state is induced and modulated by indistinguishabilities of the idler beams and crucially the quantum vacuum fields. As a result, the optical properties of materials or objects interacting with the idler beam from the first SPDC crystal can be measured by detecting second-order interference between the signal beams generated by the other two SPDC crystals further down the set-up. This gedankenexperiment illustrates the fundamental importance of vacuum fields in generating an optical tripartite entangled state and thus its crucial role in quantum optical measurements.

  6. Geometric phases and quantum computation

    International Nuclear Information System (INIS)

    Vedral, V.

    2005-01-01

    Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)

  7. Fidelity induced distance measures for quantum states

    International Nuclear Information System (INIS)

    Ma Zhihao; Zhang Fulin; Chen Jingling

    2009-01-01

    Fidelity plays an important role in quantum information theory. In this Letter, we introduce new metric of quantum states induced by fidelity, and connect it with the well-known trace metric, Sine metric and Bures metric for the qubit case. The metric character is also presented for the qudit (i.e., d-dimensional system) case. The CPT contractive property and joint convex property of the metric are also studied.

  8. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots

    International Nuclear Information System (INIS)

    Huang Liang; Yang Rui; Lai Yingcheng; Ferry, David K

    2013-01-01

    Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed ‘coexistence’ of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices. (paper)

  9. Detection-dependent six-photon Holland-Burnett state interference

    Science.gov (United States)

    Jin, Rui-Bo; Fujiwara, Mikio; Shimizu, Ryosuke; Collins, Robert J.; Buller, Gerald S.; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Takeoka, Masahiro; Sasaki, Masahide

    2016-11-01

    The NOON state, and its experimental approximation the Holland-Burnett state, have important applications in phase sensing measurement with enhanced sensitivity. However, most of the previous Holland-Burnett state interference (HBSI) experiments only investigated the area of the interference pattern in the region immediately around zero optical path length difference, while the full HBSI pattern over a wide range of optical path length differences has not yet been well explored. In this work, we experimentally and theoretically demonstrate up to six-photon HBSI and study the properties of the interference patterns over a wide range of optical path length differences. It was found that the shape, the coherence time and the visibility of the interference patterns were strongly dependent on the detection schemes. This work paves the way for applications which are based on the envelope of the HBSI pattern, such as quantum spectroscopy and quantum metrology.

  10. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  11. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

    Science.gov (United States)

    Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel

    2017-02-01

    We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.

  12. Disorder-induced quantum bond percolation

    International Nuclear Information System (INIS)

    Nishino, Shinya; Katsuno, Shuji; Goda, Masaki

    2009-01-01

    We investigate the effects of off-diagonal disorder on localization properties in quantum bond percolation networks on cubic lattices, motivated by the finding that the off-diagonal disorder does not always enhance the quantum localization of wavefunctions. We numerically construct a diagram of the 'percolation threshold', distinguishing extended states from localized states as a function of two degrees of disorder, by using the level statistics and finite-size scaling. The percolation threshold increases in a characteristic way on increasing the disorder in the connected bonds, while it gradually decreases on increasing the disorder in the disconnected bonds. Furthermore, the exchange of connected and disconnected bonds induced by the disorder causes a dramatic change of the percolation threshold.

  13. Revealing past memories: proactive interference and ketamine-induced memory deficits.

    Science.gov (United States)

    Chrobak, James J; Hinman, James R; Sabolek, Helen R

    2008-04-23

    Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events ("episodes"). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5-100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5-25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25-100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.

  14. Vacuum-induced quantum memory in an opto-electromechanical system

    Science.gov (United States)

    Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun

    2018-03-01

    We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.

  15. Quantum pumping induced by disorder in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Jihong [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Huaiming, E-mail: hmguo@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China)

    2016-07-01

    The topological property in one dimension is protected by symmetry. Based on a concrete model, we study the effect of disorder preserving or breaking the symmetry and show the nature of symmetry protecting in the one dimensional topological phase. A stable quantum pumping can be constructed within the topological model. It is shown that an integer charge is pumped across a periodic chain in a cyclic process. Furthermore we find that not only the quantum pumping is stable to on-site disorder, but also can be induced by it. These results may be realized experimentally using quasicrystals. - Highlights: • We study the effect of disorder preserving or breaking the symmetry. • We show that an integer charge is pumped across a periodic chain in a cyclic process. • Not only the quantum pumping is stable to on-site disorder, but also can be induced by it.

  16. Quantum control of light using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Andre, A; Eisaman, M D; Walsworth, R L; Zibrov, A S; Lukin, M D

    2005-01-01

    We present an overview of recent theoretical and experimental work on the control of the propagation and quantum properties of light using electromagnetically induced transparency in atomic ensembles. Specifically, we discuss techniques for the generation and storage of few-photon quantum-mechanical states of light as well as novel approaches to manipulate weak pulses of light via enhanced nonlinear optical processes

  17. Quantum-mechanical interference in charge exchange between hydrogen and graphene-like surfaces

    International Nuclear Information System (INIS)

    Romero, M; Iglesias-García, A; Goldberg, E C

    2012-01-01

    The neutral to negative charge fluctuation of a hydrogen atom in front of a graphene surface is calculated by using the Anderson model within an infinite intra atomic Coulomb repulsion approximation. We perform an ab initio calculation of the Anderson hybridization function that allows investigation of the effect of quantum-mechanical interference related to the Berry phase inherent to the graphene band structure. We find that consideration of the interaction of hydrogen on top of many C atoms leads to a marked asymmetry of the imaginary part of the hybridization function with respect to the Fermi level. Consequently, Fano factors larger than one and strongly dependent on the energy around the Fermi level are predicted. Moreover, the suppression of the hybridization for energies above the Fermi level can explain the unexpected large negative ion formation measured in the scattering of protons by graphite-like surfaces. (paper)

  18. Retrieval-induced forgetting and interference between cues:Training a cue-outcome association attenuates retrieval by alternative cues

    OpenAIRE

    Ortega-Castro, Nerea; Vadillo Nistal, Miguel

    2013-01-01

    Some researchers have attempted to determine whether situations in which a single cue is paired with several outcomes (A-B, A-C interference or interference between outcomes) involve the same learning and retrieval mechanisms as situations in which several cues are paired with a single outcome (A-B, C-B interference or interference between cues). Interestingly, current research on a related effect, which is known as retrieval-induced forgetting, can illuminate this debate. Most retrieval-indu...

  19. Information flow due to controlled interference in entangled systems

    Indian Academy of Sciences (India)

    Abstract. We point out that controlled quantum interference corresponds to measurement in an incomplete basis and implies a nonlocal transfer of classical information. A test of whether such a generalized measurement is permissible in quantum theory is presented.

  20. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    Science.gov (United States)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  1. The Simplest Double Slit: Interference and Entanglement in Double Photoionization of H2

    Energy Technology Data Exchange (ETDEWEB)

    Akoury; Kreidi, K.; Jahnke; Weber, Th.; Staudte; Schoffler, M.; Neumann, N.; Titze; Schmidt, L. Ph. H.; Czasch; Jagutzki, O.; Costa Fraga, R. A.; Grisenti; Diez Muino, R.; Cherepkov, N. A.; Semenov; Ranitovic, P.; Cocke; Osipov, T.; Adaniya; Thompson, J. C.; Prior; Belkacem, A.; Landers; Schmidt-Bocking, H.; Dorner, R.

    2007-09-18

    The wave nature of particles is rarely seen in nature. One reason is their very short de Broglie wavelengths in most situations. However, even with wavelengths close to the size of their surroundings, they couple to their environment, e.g. by gravity, Coulomb interaction, or thermal radiation. These couplings shift the phase of the waves, often in an uncontrolled way, hence yielding varying amounts of decoherence i.e. loss of phase integrity. Decoherence is thought to be a main cause of the transition from quantum to classical behavior. How much interaction is necessary and how big an environment is needed to induce the onset of classical behavior? Here we show that a photoelectron and two protons form a minimum particle/slit system, and that a minimum environment can be no more than a single additional electron. We observe interference 'fringes' in the angular distribution of a single electron and the loss of fringe visibility caused by its Coulomb interaction with a second electron. While, at the same time, the correlated momenta of the entangled electron pair continue to exhibit quantum interference.

  2. Quantum erasure with causally disconnected choice.

    Science.gov (United States)

    Ma, Xiao-Song; Kofler, Johannes; Qarry, Angie; Tetik, Nuray; Scheidl, Thomas; Ursin, Rupert; Ramelow, Sven; Herbst, Thomas; Ratschbacher, Lothar; Fedrizzi, Alessandro; Jennewein, Thomas; Zeilinger, Anton

    2013-01-22

    The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.

  3. Tests of non-local interferences in kaon physics at asymmetric φ-factories

    International Nuclear Information System (INIS)

    Eberhard, P.H.

    1993-01-01

    Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K S → K L regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric φ-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed

  4. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  5. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Directory of Open Access Journals (Sweden)

    Yong He

    2017-06-01

    Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  6. Parasitic effects in superconducting quantum interference device-based radiation comb generators

    Energy Technology Data Exchange (ETDEWEB)

    Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Solinas, P., E-mail: paolo.solinas@spin.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-12-07

    We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.

  7. Induced bipartite entanglement from three qubit states and quantum teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae-Kil; Son, Jin-Woo; Cha, Seong-Keuck [Kyungnam University, Masan (Korea, Republic of)

    2010-06-15

    Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite entanglement in all three qubit states. The entanglement of quantum state is also well known to play an important role in various quantum information processes. Then, the following question naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in real quantum information processing? We try to give an answer to this question from two aspects. First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-Horne-Zeilinger and W states. If the entanglement is the only physical resource for information processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W states are equally good. Second, we choose the bipartite teleportation scheme as an example of quantum information processing using the mixture as a quantum channel and compute the average fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight discrepancy seems to imply that entanglement is not the only resource for quantum information processing.

  8. Induced bipartite entanglement from three qubit states and quantum teleportation

    International Nuclear Information System (INIS)

    Park, Dae-Kil; Son, Jin-Woo; Cha, Seong-Keuck

    2010-01-01

    Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite entanglement in all three qubit states. The entanglement of quantum state is also well known to play an important role in various quantum information processes. Then, the following question naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in real quantum information processing? We try to give an answer to this question from two aspects. First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-Horne-Zeilinger and W states. If the entanglement is the only physical resource for information processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W states are equally good. Second, we choose the bipartite teleportation scheme as an example of quantum information processing using the mixture as a quantum channel and compute the average fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight discrepancy seems to imply that entanglement is not the only resource for quantum information processing.

  9. Vacuum-induced coherence in quantum dot systems

    Science.gov (United States)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  10. Quantum reality theory and philosophy

    CERN Document Server

    Allday, Jonathan

    2009-01-01

    PrefaceIntroductionAuthorPart I Our First Quantum Object: Light Some Opening Thoughts A Little Light Reading Lasers and Video Cameras Photons An Interference Experiment with Photons Interference as a Wave Effect Mach-Zehnder with Photons Delayed Choice Summary Endnotes Interlude 1: Another Interference Experiment Particles Electrons The Electron Gun The Stern-Gerlach Experiment Turning Things Round Things Get More Puzzling So, Where Did It Go? What Does It All Mean? Some Indications with Other Particles The Long and the Short of It Summary Endnotes Quantum States Where Are We Now? Describing C

  11. Quantum Physics Without Quantum Philosophy

    CERN Document Server

    Dürr, Detlef; Zanghì, Nino

    2013-01-01

    It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.

  12. Macroscopic quantum interference in the conventional and coherent quantum 1/F effect with negative quantum entropy states

    International Nuclear Information System (INIS)

    Handel, P.H.

    1998-01-01

    The author's recent application of the new Quantum Information Theory Approach (QIT) to Infra Quantum Physics (IQP) explains for the first time the apparent lack of unitarity caused by the entropy increase in the Quantum 1/f Effect (Q1/fE). This allows for a better understanding of the quantum 1/f effect in this paper, showing no resultant entropy increase and therefore no violation of unitarity. This new interpretation involves the concept of von Neumann Quantum Entropy, including the new negative conditional entropy concept for quantum entangled states introduced by QIT. The Q1/fE was applied to many high-tech systems, in particular to ultra small electronic devices. The present paper explains how the additional entropy implied by the Q1/fE arises in spite of the entropy-conserving evolution of the system. On this basis, a general derivation of the conventional and coherent quantum 1/f effect is given. (author)

  13. Dirac gap-induced graphene quantum dot in an electrostatic potential

    Science.gov (United States)

    Giavaras, G.; Nori, Franco

    2011-04-01

    A spatially modulated Dirac gap in a graphene sheet leads to charge confinement, thus enabling a graphene quantum dot to be formed without the application of external electric and magnetic fields [G. Giavaras and F. Nori, Appl. Phys. Lett. 97, 243106 (2010)]. This can be achieved provided the Dirac gap has a local minimum in which the states become localized. In this work, the physics of such a gap-induced dot is investigated in the continuum limit by solving the Dirac equation. It is shown that gap-induced confined states couple to the states introduced by an electrostatic quantum well potential. Hence the region in which the resulting hybridized states are localized can be tuned with the potential strength, an effect which involves Klein tunneling. The proposed quantum dot may be used to probe quasirelativistic effects in graphene, while the induced confined states may be useful for graphene-based nanostructures.

  14. Quantum entanglement and quantum teleportation

    International Nuclear Information System (INIS)

    Shih, Y.H.

    2001-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)

  15. Communication: Finding destructive interference features in molecular transport junctions

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Matthew G., E-mail: mgreuter@u.northwestern.edu [Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Hansen, Thorsten [Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK 2100 Copenhagen (Denmark)

    2014-11-14

    Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule–electrode couplings, and we demonstrate its utility with several examples.

  16. Group-III vacancy induced InxGa1-xAs quantum dot interdiffusion

    International Nuclear Information System (INIS)

    Djie, H. S.; Wang, D.-N.; Ooi, B. S.; Hwang, J. C. M.; Gunawan, O.

    2006-01-01

    The impact of group-III vacancy diffusion, generated during dielectric cap induced intermixing, on the energy state transition and the inhomogeneity reduction in the InGaAs/GaAs quantum-dot structure is investigated. We use a three-dimensional quantum-dot diffusion model and photoluminescence data to determine the thermal and the interdiffusion properties of the quantum dot. The band gap energy variation related to the dot uniformity is found to be dominantly affected by the height fluctuation. A group-III vacancies migration energy H m for InGaAs quantum dots of 1.7 eV was deduced. This result is similar to the value obtained from the bulk and GaAs/AlGaAs quantum-well materials confirming the role of SiO 2 capping enhanced group-III vacancy induced interdiffusion in the InGaAs quantum dots

  17. Interference of identical particles from entanglement to boson-sampling

    International Nuclear Information System (INIS)

    Tichy, Malte C

    2014-01-01

    Progress in the reliable preparation, coherent propagation and efficient detection of many-body states has recently brought collective quantum phenomena of many identical particles into the spotlight. This tutorial introduces the physics of many-boson and many-fermion interference required for the description of current experiments and for the understanding of novel approaches to quantum computing. The field is motivated via the two-particle case, for which the uncorrelated, classical dynamics of distinguishable particles is compared to the quantum behaviour of identical bosons and fermions. Bunching of bosons is opposed to anti-bunching of fermions, while both species constitute equivalent sources of bipartite two-level entanglement. The realms of indistinguishable and distinguishable particles are connected by a monotonic transition, on a scale defined by the coherence length of the interfering particles. As we move to larger systems, any attempt to understand many particles via the two-particle paradigm fails: in contrast to two-particle bunching and anti-bunching, the very same signatures can be exhibited by bosons and fermions, and coherent effects dominate over statistical behaviour. The simulation of many-boson interference, termed boson-sampling, entails a qualitatively superior computational complexity when compared to fermions. The problem can be tamed by an artificially designed symmetric instance, which allows a systematic understanding of coherent bosonic and fermionic signatures for arbitrarily large particle numbers, and a means to stringently assess many-particle interference. The hierarchy between bosons and fermions also characterizes multipartite entanglement generation, for which bosons again clearly outmatch fermions. Finally, the quantum-to-classical transition between many indistinguishable and many distinguishable particles features non-monotonic structures, which dismisses the single-particle coherence length as unique indicator for

  18. RNA interference prevents lipopolysaccharide-induced preprotachykinin gene expression

    International Nuclear Information System (INIS)

    Lai, Y.-L.; Yu, S.C.; Chen, M.-J.

    2003-01-01

    We showed previously that lipopolysaccharide (LPS) induces noncholinergic airway hyperreactivity to capsaicin via an upregulation of tachykinin synthesis. This study was designed to test whether double-stranded preprotachykinin (ds PPT) RNA, RNA interference (RNAi), prevents the LPS-induced alterations. First, cultured primary nodose ganglial cells of newborn Brown-Norway rats were divided into four groups: control; LPS; LPS+RNAi; and LPS+RNAi+liposome. Second, young Brown-Norway rats for the in vivo study were divided into three groups (control; LPS; and LPS+RNAi), and ds PPT RNA was microinjected bilaterally into the nodose ganglia in the LPS+RNAi group. Then, ganglial cells were collected from the culture whereas the nodose ganglia and lungs were sampled from the animals, and PPT mRNA and substance P (SP) levels were analyzed. Also, airway reactivity to capsaicin was performed in vivo. LPS induced significant increases in PPT mRNA and SP levels in vitro and in vivo and an increase in airway reactivity to capsaicin in vivo. However, ds PPT RNA, but not scrambled RNA, prevented all LPS-induced alterations. The effect of ds PPT RNA was not enhanced by liposome in vitro. Therefore, we demonstrated that the local application of RNAi prevents effectively the activation of the noncholinergic system modulating the lungs/airways

  19. Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity.

    Science.gov (United States)

    Okawara, Hiroki; Yamada, Kei; Asada, Hideki

    2012-12-07

    Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on the latitude and direction of the interferometer on Earth in orbital motion around the Sun. Daily and seasonal variations in phase shifts are predicted with an estimate of the size of the effects, wherefore neutron interferometry with ~5 m arm length and ~10(-4) phase measurement accuracy would place a bound on a CS parameter comparable to the Gravity Probe B satellite.

  20. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    Science.gov (United States)

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  1. Anisotropic photoconductivity and current deflection induced in Bi12SiO20 by high contrast interference pattern

    DEFF Research Database (Denmark)

    Kukhtarev, N.V.; Lyuksyutov, S; Buchhave, Preben

    1996-01-01

    We have predicted and observed an anisotropic photocurrent induced in the cubic crystal Bi/sub 12/SiO/sub 20/ by a high-contrast interference pattern. The transverse current detected when the interference pattern is tilted is caused by deflection of the direct current generated by an external...

  2. Transport and quantum interference in ferromagnetic (Ga,Mn)As nanostructures; Transportuntersuchungen von Quanteninterferenzeffekten in ferromagnetischen (Ga,Mn)As Nanostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Konrad

    2007-09-15

    In the framework of the thesis presented here for the first time quantum interference effects in ferromagnetic semiconductors could be uniquely detected. For this wire and ring structures with line widths of few nanometers were fabricated and universal conductivity fluctuations and Aharonov-Bohm oscillations at very low temperatures (<20 mK) were studied. From the analysis of the temperature and length dependence of the fluctuations knowledge about the coherence length and the scattering processes connected with this could be obtained.

  3. Sequent Calculus Representations for Quantum Circuits

    Directory of Open Access Journals (Sweden)

    Cameron Beebe

    2016-06-01

    Full Text Available When considering a sequent-style proof system for quantum programs, there are certain elements of quantum mechanics that we may wish to capture, such as phase, dynamics of unitary transformations, and measurement probabilities. Traditional quantum logics which focus primarily on the abstract orthomodular lattice theory and structures of Hilbert spaces have not satisfactorily captured some of these elements. We can start from 'scratch' in an attempt to conceptually characterize the types of proof rules which should be in a system that represents elements necessary for quantum algorithms. This present work attempts to do this from the perspective of the quantum circuit model of quantum computation. A sequent calculus based on single quantum circuits is suggested, and its ability to incorporate important conceptual and dynamic aspects of quantum computing is discussed. In particular, preserving the representation of phase helps illustrate the role of interference as a resource in quantum computation. Interference also provides an intuitive basis for a non-monotonic calculus.

  4. Cross-polarisation discrimination-induced interference in dual-polarised high-capacity satellite communication systems

    Directory of Open Access Journals (Sweden)

    Abdulkareem Sarki Karasuwa

    2016-05-01

    Full Text Available The design of spectrally-efficient, high-throughput satellite (HTS systems with capacity approaching one terabit per second requires operating at Ka-band frequencies and above, where there are several gigahertz of allocated radio spectrum, using multiple spot beams with dual orthogonal polarisation mode. At these high frequencies, rain attenuation poses a major obstacle to the design of high-availability satellite links which are needed for the realisation of ubiquitous broadband multimedia communication services including high-speed Internet access at rural and remote locations. Furthermore, depolarisation-induced interference in such systems could have a performance-limiting impact if a co-channel cross-polar signal combines with system noise to drive the carrier-to-noise-plus-interference ratio (CNIR below an acceptable threshold. This paper employs real measurement data to investigate the impact of depolarisation-induced interference on dual-polarised HTS systems for temperate and tropical climatic regions. Scenarios that cause significant system performance degradation are analysed, including the effects of signal frequency, antenna size, and regional rainfall rate. The impact of depolarisation on system performance is quantified by the reductions in the CNIR and link availability of a dual-polarised system when compared with those of a similarly-dimensioned single-polarised system.

  5. Tunneling induced dark states and the controllable resonance fluorescence spectrum in quantum dot molecules

    International Nuclear Information System (INIS)

    Tian, Si-Cong; Tong, Cun-Zhu; Ning, Yong-Qiang; Qin, Li; Liu, Yun; Wan, Ren-Gang

    2014-01-01

    Optical spectroscopy, a powerful tool for probing and manipulating quantum dots (QDs), has been used to investigate the resonance fluorescence spectrum from linear triple quantum dot molecules controlled by tunneling, using atomic physics methods. Interesting features such as quenching and narrowing of the fluorescence are observed. In such molecules the tunneling between the quantum dots can also induce a dark state. The results are explained by the transition properties of the dressed states generated by the coupling of the laser and the tunneling. Unlike the atomic system, in such quantum dot molecules quantum coherence can be induced using tunneling, requiring no coupling lasers, which will allow tunneling controllable quantum dot molecules to be applied to quantum optics and photonics. (paper)

  6. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    Science.gov (United States)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  7. Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case

    International Nuclear Information System (INIS)

    Anderson, B.P.; Dholakia, K.; Wright, E.M.

    2003-01-01

    We theoretically investigate the ground-state properties and quantum dynamics of a pair of adjacent ring-shaped Bose-Einstein condensates that are coupled via tunneling. This device, which is the analog of a symmetric superconducting quantum interference device, is the simplest version of what we term an atomic-phase interference device (APHID). The two-ring APHID is shown to be sensitive to rotation

  8. Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fai, L. C.

    2018-02-01

    We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.

  9. Quantum fermions and quantum field theory from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, Christof

    2012-01-01

    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.

  10. Hong–Ou–Mandel interference with two independent weak coherent states

    International Nuclear Information System (INIS)

    Chen Hua; An Xue-Bi; Wu Juan; Yin Zhen-Qiang; Wang Shuang; Chen Wei; Han Zhen-Fu

    2016-01-01

    Recently, the Hong–Ou–Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is ≤ 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection. (paper)

  11. Four photon interference experiment for the testing of the Greenberger-Horne-Zeilinger theorem

    International Nuclear Information System (INIS)

    Shih, Y.H.; Rubin, M.H.

    1993-01-01

    The theory of a four photon interference experiment is investigated for the testing of the Greenberger-Horne-Zeilinger (GHZ) theorem. The strong correlation in the GHZ theorem is due to the multi-particle Einstein-Podolsky-Rosen type entangled quantum state. We present the theory to construct the four photon EPR state for space-time variables. The four photon nonlocal quantum interference effect itself is also of great interest. (orig.)

  12. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  13. Quantum spin transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Schindler, Christoph

    2012-01-01

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  14. Measurement of gravity and gauge fields using quantum mechanical probes

    International Nuclear Information System (INIS)

    Anandan, J.

    1986-01-01

    The author considers the question of which quantities are observed when the gravitational and gauge fields are measured by a quantum mechanical probe. The motion of a quantum mechanical particle can be constructed, via Huyghens' principle, by the interference of secondary wavelets. Three types of interference phenomena are considered: interference of two coherent beams separated in space-time during part of their motion; interference of two coherent beams which are in the same region in spacetime but differ in energy or mass; and the Josphson effect and its generalization. The author shows how to determine the gravitational field by means of quantum interference. The corresponding problem for gauge fields is treated and a simple proof of the previously proved theorem for the reconstruction of the connection from the holonomy transformations is presented. A heuristic principle for the gravitational interaction of two quantum mechanical particles is formulated which implies the equivalence of inertial and active gravitational masses

  15. Emulating weak localization using a solid-state quantum circuit.

    Science.gov (United States)

    Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M

    2014-10-14

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  16. Quantum Zeno subspaces induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Militello, B.; Scala, M.; Messina, A. [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2011-08-15

    We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.

  17. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    Science.gov (United States)

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  18. Electron Interference in Ballistic Graphene Nanoconstrictions

    DEFF Research Database (Denmark)

    Baringhaus, Jens; Settnes, Mikkel; Aprojanz, Johannes

    2016-01-01

    We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed...

  19. Advances in biomagnetic research using high- T{sub c} superconducting quantum interference devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong-Chang [Department of Physics/Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan (China); Horng, Herng-Er; Yang, S Y [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Liao, Shu-Hsien, E-mail: hcyang@phys.ntu.edu.t [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2009-09-15

    This review reports the advances of biomagnetic research using high- T{sub c} superconducting quantum interference devices (SQUIDs). It especially focuses on SQUID-detected magnetocardiography (MCG), magnetically labeled immunoassays (MLIs) as well as nuclear magnetic resonance and imaging (NMR/MRI). The progress in MCG that scientists have made and the encountered challenges are discussed here. This study includes the early detection of the electromagnetic change in cardiac activity in animal studies of hypercholesterolemic rabbits, which suggests the possibility of early diagnosis of cardiac disease in clinical applications. The progress on MLIs using measurements of remanence, magnetic relaxation and magnetic susceptibility reduction is presented. The wash-free immunomagnetic reduction shows both high sensitivity and high specificity. NMR/MRI of high spectral resolution and of high signal-to-noise ratio are addressed and discussed. The proton-phosphate J-coupling of trimethyl phosphate ((CH{sub 3}){sub 3}PO{sub 4}) in one shot in microtesla fields is demonstrated. The prospects of biomagnetic applications are addressed. (topical review)

  20. Geometric origin of dynamically induced freezing of quantum evolution

    International Nuclear Information System (INIS)

    Matos-Abiague, A.; Berakdar, J.

    2006-01-01

    The phenomenon of dynamical, field-induced freezing of quantum evolution is discussed. It occurs when a time-dependent state is dynamically driven in such a way that the evolution of the corresponding wave function is effectively localized within a small region in the projective Hilbert space. As a consequence, the dynamics of the system is frozen and the expectation values of all physical observables hardly change with time. Necessary and sufficient conditions for inducing dynamical freezing are inferred from a general analysis of the geometry of quantum evolution. The relevance of the dynamical freezing for a sustainable in time, dynamical control is discussed and exemplified by a study of the coherent control of the kicked rotor motion

  1. Low-intensity interference effects and hidden-variable theories

    Energy Technology Data Exchange (ETDEWEB)

    Buonomano, V [Universidade Estadual de Campinas (Brazil). Inst. de Matematica

    1978-05-11

    The double-slit interference experiment and other similar experiments in the low-intensity limit (that is, one photon in the apparatus at a time) are examined in the spirit of Bell's work from the point of view of hidden-variable theories. It is found that there exists a class of hidden-variable theories which disagrees with quantum mechanics for a certain type of interference experiment. A manufactured conceptualization of this class, which is a particle view of interference, is described. An experiment, which appears to be feasible, is proposed to examine this disagreement.

  2. Interference of laser-induced resonances in the continuous structures of a helium atom

    International Nuclear Information System (INIS)

    Magunov, A I; Strakhova, S I

    2003-01-01

    Coherent effects in the interference of overlapping laser-induced resonances in helium atoms are considered. The simultaneous action of single-mode radiation of the 294-nm second harmonic of a cw dye laser and a 1064-nm Nd:YAG laser on helium atoms provides the overlap of two resonances induced by transitions from the 1s2s 1 S and 1s4s 1 S helium levels. The shape of the overlapping laser-induced resonances in the rotating-wave approximation is described by analytic expressions, which depend on the laser radiation intensities and the ratio of laser frequencies. (nonlinear optical phenomena)

  3. Linearity of high-Tc dc superconducting quantum interference device operated in a flux-locked loop

    International Nuclear Information System (INIS)

    Nichols, D.G.; Dantsker, E.; Kleiner, R.; Mueck, M.; Clarke, J.

    1996-01-01

    Measurements have been made of the linearity of a high transition temperature dc superconducting quantum interference device (SQUID) operated at 77 K with 130 kHz flux modulation in a flux-locked loop. The degree of nonlinearity was determined from harmonic generation. A sinusoidal magnetic flux with harmonic content less than -130 dB was applied to the SQUID, which was cooled in a magnetic field below 10 -7 T, and the harmonics at the output of the flux-locked loop were measured with a spectrum analyzer. For input signals at frequencies up to 248 Hz and amplitudes up to 20Φ 0 rms (Φ 0 is the flux quantum), the second, third, and fourth harmonics were each at least 115 dB below the fundamental. At higher frequencies the harmonic content began to increase because of the reduction in the open-loop gain of the flux-locked loop. The magnitude of the harmonics was not measurably changed when the SQUID was cooled in a field of 100 μT. The amplitudes of the even harmonics depended critically on the amplitude of the 130 kHz flux modulation, and became zero when its peak-to-peak value was precisely Φ 0 /2. copyright 1996 American Institute of Physics

  4. Splitting efficiency and interference effects in a Cooper pair splitter based on a triple quantum dot with ferromagnetic contacts

    Science.gov (United States)

    Bocian, Kacper; Rudziński, Wojciech; Weymann, Ireneusz

    2018-05-01

    We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green's function formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel magnetoresistance on the gate and bias voltages applied to the system. We show that the system's transport properties are strongly affected by spin dependence of tunneling processes and quantum interference between different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms leading to these effects are thoroughly discussed.

  5. Imaging electron wave functions inside open quantum rings.

    Science.gov (United States)

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  6. Mixing-induced quantum non-Markovianity and information flow

    Science.gov (United States)

    Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano

    2018-04-01

    Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.

  7. Induced gravity in quantum theory in a curved space

    International Nuclear Information System (INIS)

    Etim, E.

    1983-01-01

    The reason for interest in the unorthodox view of first order (about R(x)) gravity as a matter-induced quantum effect is really to find an argument not to quantise it. According to this view quantum gravity should be constructed with an action which is, at least, quadratic in the scalar curvature R(x). Such a theory will not contain a dimensional parameter, like Newton's constant, and would probably be renormalisable. This lecture is intended to acquaint the non-expert with the phenomenon of induction of the scalar curvature term in the matter Lagrangian in a curved space in both relativistic and non-relativistic quantum theories

  8. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    Science.gov (United States)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  9. Is It Possible to Find Complete Interference Once Which-Way Information is Obtainable?

    CERN Document Server

    Snyder, D M

    2004-01-01

    The most widely-known formulation of the quantum eraser that used a variant of the double-slit experiment in quantum mechanics is reviewed. Instead of obtaining the expected distribution pattern based on a typical Young-type interference pattern originating at a double slit, which-way information and its associated one-hump distribution is first developed through the release of a photon by a "particle" unrelated to the "particle's" position or momentum prior to the "particle's" passage through the double-slit. Quantum erasure occurs subsequent to the release of the photon resulting in the loss of which-way information. Interestingly, sub-interference patterns (offset by a phase difference) occur that sum to the overall one-hump distribution characteristic of which-way information. This paper explores the possibility of performing quantum erasure using a single form of quantum erasure in an experiment instead of the two possibilities for quantum erasure usually employed (e.g., whether the photon is eliminated ...

  10. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light

    DEFF Research Database (Denmark)

    Smolka, Stephan; Huck, Alexander; Andersen, Ulrik Lund

    2009-01-01

    and negative spatial quantum correlations are observed when varying the quantum state incident to the multiple scattering medium, and the strength of the correlations is controlled by the number of photons. The experimental results are in excellent agreement with recent theoretical proposals by implementing......We present the experimental realization of spatial quantum correlations of photons that are induced by multiple scattering of squeezed light. The quantum correlation relates photons propagating along two different light paths through the random medium and is infinite in range. Both positive...... the full quantum model of multiple scattering....

  11. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-conjugated molecules. We nd that the vibrational modes that would be expected to dominate, following the propensity, rules are very weak. Instead, other modes are found to be the dominant ones. We study this phenomenon for a number of cross-conjugated molecules, and link these ndings to the anti...

  12. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  13. A priori which-way information in quantum interference with unstable particles

    International Nuclear Information System (INIS)

    Krause, D.E.; Fischbach, E.; Rohrbach, Z.J.

    2014-01-01

    If an unstable particle used in a two-path interference experiment decays before reaching a detector, which-way information becomes available that reduces the detected interference fringe visibility V. Here we argue that even when an unstable particle does not decay while in the interferometer, a priori which-way information is still available in the form of path predictability P which depends on the particle's decay rate Γ. We further demonstrate that in a matter-wave Mach–Zehnder interferometer using an excited atom with an appropriately tuned cavity, P is related to V through the duality relation P 2 +V 2 =1. - Highlights: • Even undecayed unstable particles exhibit novel interference effects. • Interference is studied in a Mach–Zehnder interferometer with a cavity. • More which-way information is available when using unstable particles. • A relation between which-way information and interference is satisfied

  14. Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions.

    Science.gov (United States)

    Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu

    2017-08-11

    The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.

  15. Second-order temporal interference of two independent light beams at an asymmetrical beam splitter

    International Nuclear Information System (INIS)

    Liu Jianbin; Wang Jingjing; Xu Zhuo

    2017-01-01

    The second-order temporal interference of classical and nonclassical light at an asymmetrical beam splitter is discussed based on two-photon interference in Feynman’s path integral theory. The visibility of the second-order interference pattern is determined by the properties of the superposed light beams, the ratio between the intensities of these two light beams, and the reflectivity of the asymmetrical beam splitter. Some requirements about the asymmetrical beam splitter have to be satisfied in order to ensure that the visibility of the second-order interference pattern of nonclassical light beams exceeds the classical limit. The visibility of the second-order interference pattern of photons emitted by two independent single-photon sources is independent of the ratio between the intensities. These conclusions are important for the researches and applications in quantum optics and quantum information when an asymmetrical beam splitter is employed. (paper)

  16. Complementarity and quantum walks

    International Nuclear Information System (INIS)

    Kendon, Viv; Sanders, Barry C.

    2005-01-01

    We show that quantum walks interpolate between a coherent 'wave walk' and a random walk depending on how strongly the walker's coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker and the capacity to demonstrate the interpolation between wave walk and random walk depending on the strength of measurement

  17. Highly Nonclassical Quantum States and Environment Induced Decoherence

    Science.gov (United States)

    Foldi, Peter

    2004-06-01

    In this thesis concrete quantum systems are investigated in the framework of the environment induced decoherence. The focus is on the dynamics of highly nonclassical quantum states, the Wigner function of which are negative over some regions of their domains. One of the chosen physical systems is a diatomic molecule, where the potential energy of the nuclei is an anharmonic function of their distance. A system of two-level atoms, which can be important from the viewpoint of quantum information technology, is also investigated. A method is described that is valid in both systems and can determine the characteristic time of the decoherence in a dynamical way. The direction of the decoherence and its relation to energy dissipation is also studied. Finally, a scheme is proposed that can prepare decoherence-free states using the experimental techniques presently available.

  18. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Akai, Tomohiro; Takemoto, Makoto; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Ikeda, Yoshio; Suzuki, Shuichi

    2010-01-01

    We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm 2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods. (cross-disciplinary physics and related areas of science and technology)

  19. Quantum teleportation and multi-photon entanglement

    International Nuclear Information System (INIS)

    Pan, J.-W.

    1999-08-01

    The present thesis is the result of theoretical and experimental work on the physics of multiparticle interference. The theoretical results show that a quantum network with simple quantum logic gates and a handful of qubits enables one to control and manipulate quantum entanglement. Because of the present absence of quantum gate for two independently produced photons, in the mean time we also present a practical way to generate and identify multiparticle entangled state. The experimental work has thoroughly developed the necessary techniques to study novel multiparticle interference phenomena. By making use of the pulsed source for polarization entangled photon pairs, in this thesis we report for the first time the experimental realization of quantum teleportation, of entanglement swapping and of production of these-particle entanglement. Using the three-particle entanglement source, here we also present the first experimental realization of a test of local realism without inequalities. The methods developed in these experiments are of great significance both for exploring the field of quantum information and for future experiments on the fundamental tests of quantum mechanics. (author)

  20. Quantum-Classical Correspondence Principle for Work Distributions

    Directory of Open Access Journals (Sweden)

    Christopher Jarzynski

    2015-09-01

    Full Text Available For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper, we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.

  1. [Trigeminal purinergic P2X4 receptor involved in experimental occlusal interference-induced hyperalgesia in rat masseter muscle].

    Science.gov (United States)

    Xu, Xiaoxiang; Cao, Ye; Ding, Tingting; Fu, Kaiyuan; Xie, Qiufei

    2016-03-01

    To explore the expression of purinergic p2X4 receptor (P2X4R) in trigeminal ganglion of rats after occlusal interference. Investigation of peripheral receptor mechanism of occlusal interference-induced masticatory muscle pain will aid the development of drug intervention against this condition. Experimental occlusal interference was established by application of 0.4 mm metal crown to the upper right first molar of male Sprague-Dawley rats. Real-time PCR assay was used to investigate P2X4R mRNA level in trigeminal ganglion in rats with occlusal interference for 3, 7, 10 and 14 days and in control rats without occlusal interference (n=5 in each). Retrograde labelling combining immunofluorescence was performed to evaluate the percentage of P2X4R-positive cells in masseter afferent neurons (n=5 in each group). Graded concentrations of P2XR antagonist TNP-ATP (0.1, 10, 125, 250, 500 μmol/L) or saline (n=5 in each group) was administrated in right masseter and the mechanical sensitivity of bilateral masseters was measured before occlusal interference application, before the injection, and 30 min as well as 60 min after the injection. Compared with control rats (P2X4R mRNA: right side: 1.00±0.26, left side: 0.94± 0.21; percentage of P2X4R-positive masseter afferents: right side: [64.3±6.3]%, left side: [67.7±5.8]%), the level of P2X4R mRNA in bilateral trigeminal ganglia (right side: 5.98±3.56; left side: 5.06±2.88) of rats with occlusal interference for 7 days up-regulated (Pocclusal interference-induced masseter hyperalgesia.

  2. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    Science.gov (United States)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  3. Modification of Brueschweiler quantum searching algorithm and realization by NMR experiment

    International Nuclear Information System (INIS)

    Yang Xiaodong; Wei Daxiu; Luo Jun; Miao Xijia

    2002-01-01

    In recent years, quantum computing research has made big progress, which exploit quantum mechanical laws, such as interference, superposition and parallelism, to perform computing tasks. The most inducing thing is that the quantum computing can provide large rise to the speedup in quantum algorithm. Quantum computing can solve some problems, which are impossible or difficult for the classical computing. The problem of searching for a specific item in an unsorted database can be solved with certain quantum algorithm, for example, Grover quantum algorithm and Brueschweiler quantum algorithm. The former gives a quadratic speedup, and the latter gives an exponential speedup comparing with the corresponding classical algorithm. In Brueschweiler quantum searching algorithm, the data qubit and the read-out qubit (the ancilla qubit) are different qubits. The authors have studied Brueschweiler algorithm and proposed a modified version, in which no ancilla qubit is needed to reach exponential speedup in the searching, the data and the read-out qubit are the same qubits. The modified Brueschweiler algorithm can be easier to design and realize. The authors also demonstrate the modified Brueschweiler algorithm in a 3-qubit molecular system by Nuclear Magnetic Resonance (NMR) experiment

  4. Interatomic interaction effects on second-order momentum correlations and Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms

    Science.gov (United States)

    Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi

    2018-05-01

    Identification and understanding of the evolution of interference patterns in two-particle momentum correlations as a function of the strength of interatomic interactions are important in explorations of the nature of quantum states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas into potential control and utilization of correlated quantum states as quantum-information resources. With the use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and quantum-information science.

  5. Decoherence, environment-induced superselection, and classicality of a macroscopic quantum superposition generated by quantum cloning

    International Nuclear Information System (INIS)

    De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolo

    2009-01-01

    The high resilience to decoherence shown by a recently discovered macroscopic quantum superposition (MQS) generated by a quantum-injected optical parametric amplifier and involving a number of photons in excess of 5x10 4 motivates the present theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on |α> and N-photon maximally entangled states (NOON), in the perspective of the comprehensive theory of the subject by Zurek. In that perspective the concepts of 'pointer state' and 'environment-induced superselection' are applied to the new scheme.

  6. Quantum Dynamics in the HMF Model

    Science.gov (United States)

    Plestid, Ryan; O'Dell, Duncan

    2017-04-01

    The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.

  7. Automated Freedom from Interference Analysis for Automotive Software

    OpenAIRE

    Leitner-Fischer , Florian; Leue , Stefan; Liu , Sirui

    2016-01-01

    International audience; Freedom from Interference for automotive software systems developed according to the ISO 26262 standard means that a fault in a less safety critical software component will not lead to a fault in a more safety critical component. It is an important concern in the realm of functional safety for automotive systems. We present an automated method for the analysis of concurrency-related interferences based on the QuantUM approach and tool that we have previously developed....

  8. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation.

    Directory of Open Access Journals (Sweden)

    Kristel Kaer

    Full Text Available Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.

  9. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    Science.gov (United States)

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  10. Inductance mode characteristics of a ceramic YBa2Cu3O7-x radio-frequency superconducting quantum interference device at 77 K

    DEFF Research Database (Denmark)

    Il'ichev, E. V.; Andreev, A. V.; Jacobsen, Claus Schelde

    1993-01-01

    Experimental results on some radio-frequency superconducting quantum interference device (rf-SQUID) signal properties are presented. The quantum interferometer was made of ceramic YBa2Cu3O7−x and was due to a low critical current operated in the inductance or nonhysteretic mode. With bias current...... as reference, amplitude variation, and phase shift of the voltage over the tank circuit coupled to the SQUID were measured simultaneously. It is shown that there is qualitative agreement between calculations based on the resistivity shunted junction model and the data. Moreover, using phase detection, signal...... instabilities predicted for the rf-SQUID inductance mode were observed. These signal instabilities may be exploited to enhance the transfer coefficient for measured flux-to-output signal. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  11. Interference effects of categorization on decision making.

    Science.gov (United States)

    Wang, Zheng; Busemeyer, Jerome R

    2016-05-01

    Many decision making tasks in life involve a categorization process, but the effects of categorization on subsequent decision making has rarely been studied. This issue was explored in three experiments (N=721), in which participants were shown a face stimulus on each trial and performed variations of categorization-decision tasks. On C-D trials, they categorized the stimulus and then made an action decision; on X-D trials, they were told the category and then made an action decision; on D-alone trials, they only made an action decision. An interference effect emerged in some of the conditions, such that the probability of an action on the D-alone trials (i.e., when there was no explicit categorization before the decision) differed from the total probability of the same action on the C-D or X-D trials (i.e., when there was explicit categorization before the decision). Interference effects are important because they indicate a violation of the classical law of total probability, which is assumed by many cognitive models. Across all three experiments, a complex pattern of interference effects systematically occurred for different types of stimuli and for different types of categorization-decision tasks. These interference effects present a challenge for traditional cognitive models, such as Markov and signal detection models, but a quantum cognition model, called the belief-action entanglement (BAE) model, predicted that these results could occur. The BAE model employs the quantum principles of superposition and entanglement to explain the psychological mechanisms underlying the puzzling interference effects. The model can be applied to many important and practical categorization-decision situations in life. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  13. Quantum correlations induced by multiple scattering of quadrature squeezed light

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2006-01-01

    Propagating quadrature squeezed light through a multiple scattering random medium is found to induce pronounced spatial quantum correlations that have no classical analogue. The correlations are revealed in the number of photons transported through the sample that can be measured from the intensity...... fluctuations of the total transmission or reflection. In contrast, no pronounced spatial quantum correlations appear in the quadrature amplitudes where excess noise above the shot noise level is found....

  14. Quantum Spin Transport in Mesoscopic Interferometer

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2007-10-01

    Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.

  15. Non-equilibrium study of spin wave interference in systems with both Rashba and Dresselhaus (001) spin-orbit coupling

    International Nuclear Information System (INIS)

    Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien

    2014-01-01

    We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern

  16. Quantum equivalence of a driven triple-well Van der Pol oscillator: A QTM study

    International Nuclear Information System (INIS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2014-01-01

    Highlights: • Quantum–classical correspondence is manifested at strong external coupling regime. • Suppression of classical chaos takes place in quantum domain. • Quantum chaos promotes quantum diffusion. • Quantum localisation is realised when interference effects are dominant. - Abstract: A quantum mechanical analogue of the classically chaotic triple-well oscillator under the influence of an external field and parametric excitation has been studied by using the quantum theory of motion. The on the fly calculations show the correspondence between some dynamical aspects of the classical and quantum oscillators along with a strictly quantum mechanical behaviour in case of diffusion and tunneling. Suitable external conditions have been obtained which can either assist or suppress the movement of quantum particles from one well to another. Quantum interference effects play a critical role in determining the nature of the quantum dynamics and in the presence of strong coupling to the external forces, quantum interference effects reduce drastically leading to decoherence of the quantum wave packet. In such situations, quantum dynamical features qualitatively resemble the corresponding classical dynamical behaviour and a correspondence between classical and quantum dynamics is obtained

  17. Detection of bacteria in suspension using a superconducting Quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.

    2003-06-09

    We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.

  18. Detection of bacteria in suspension using a superconducting Quantum interference device

    International Nuclear Information System (INIS)

    Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.

    2003-01-01

    We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 ± 1.1) x 10 6 L. monocytogenes for a 20 (micro)L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 ± 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria

  19. Fingerprints of transverse and longitudinal coupling between induced open quantum dots in the longitudinal magnetoconductance through antidot lattices

    Science.gov (United States)

    Ujevic, Sebastian; Mendoza, Michel

    2010-07-01

    We propose numerical simulations of longitudinal magnetoconductance through a finite antidot lattice located inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal magnetoconductance and the generation of transversal couplings between the induced open quantum dots in the system. The system presents longitudinal magnetoconductance maps with crossovers (between transversal bands) and closings (longitudinal decoupling) of fundamental quantum states related to the open quantum dots induced by the antidot lattice. A relationship is observed between the distribution of antidots and the formed conductance bands, allowing a systematic follow up of the bands as a function of the applied magnetic field and quantum point-contact width. We observed a high conductance intensity [between n and (n+1) quantum of conductance, n=1,2,… ] in the regions of crossover and closing of states. This suggests transversal couplings between the induced open quantum dots of the system that can be modulated by varying both the antidots potential and the quantum point-contact width. A new continuous channel (not expected) is induced by the variation in the contact width and generate Fano resonances in the conductance. These resonances can be manipulated by the applied magnetic field.

  20. The role of outcome inhibition in interference between outcomes: a contingency-learning analogue of retrieval-induced forgetting.

    Science.gov (United States)

    Vadillo, Miguel A; Orgaz, Cristina; Luque, David; Cobos, Pedro L; López, Francisco J; Matute, Helena

    2013-05-01

    Current associative theories of contingency learning assume that inhibitory learning plays a part in the interference between outcomes. However, it is unclear whether this inhibitory learning results in the inhibition of the outcome representation or whether it simply counteracts previous excitatory learning so that the outcome representation is neither activated nor inhibited. Additionally, these models tend to conceptualize inhibition as a relatively transient and cue-dependent state. However, research on retrieval-induced forgetting suggests that the inhibition of representations is a real process that can be relatively independent of the retrieval cue used to access the inhibited information. Consistent with this alternative view, we found that interference between outcomes reduces the retrievability of the target outcome even when the outcome is associated with a novel (non-inhibitory) cue. This result has important theoretical implications for associative models of interference and shows that the empirical facts and theories developed in studies of retrieval-induced forgetting might be relevant in contingency learning and vice versa. © 2012 The British Psychological Society.

  1. Quantum control limited by quantum decoherence

    International Nuclear Information System (INIS)

    Xue, Fei; Sun, C. P.; Yu, S. X.

    2006-01-01

    We describe quantum controllability under the influences of the quantum decoherence induced by the quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle with its controlled system and then cause quantum decoherence in the controlled system. In competition with this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed quantum control process. In association with the phase uncertainty and the standard quantum limit, a general model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite energy within a finite time. It is also shown that if the operations of quantum control are to be determined by the initial state of the controller, then due to the decoherence which results from the quantum control itself, there exists a low bound for quantum controllability

  2. Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED

    International Nuclear Information System (INIS)

    Yang Chuiping; Han Siyuan

    2004-01-01

    A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation

  3. Field-induced magnetic instability and quantum criticality in the antiferromagnet CeCu2Ge2.

    Science.gov (United States)

    Liu, Yi; Xie, Donghua; Wang, Xiaoying; Zhu, Kangwei; Yang, Ruilong

    2016-01-13

    The magnetic quantum criticality in strongly correlated electron systems has been considered to be closely related with the occurrence of unconventional superconductivity. Control parameters such as magnetic field, pressure or chemical doping are frequently used to externally tune the quantum phase transition for a deeper understanding. Here we report the research of a field-induced quantum phase transition using conventional bulk physical property measurements in the archetypal antiferromagnet CeCu2Ge2, which becomes superconductive under a pressure of about 10 GPa with Tc ~ 0.64 K. We offer strong evidence that short-range dynamic correlations start appearing above a magnetic field of about 5 T. Our demonstrations of the magnetic instability and the field-induced quantum phase transition are crucial for the quantum criticality, which may open a new route in experimental investigations of the quantum phase transition in heavy-fermion systems.

  4. Cosmological implications of modified gravity induced by quantum metric fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, Yat Sen School, Guangzhou (China); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Liang, Shi-Dong [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Material and Technology, Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Guangzhou (China)

    2016-08-15

    We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors. (orig.)

  5. Pipeline grounding condition: A control of pipe-to-soil potential for AC interference induced corrosion reduction

    CSIR Research Space (South Africa)

    Adedeji, KB

    2017-02-01

    Full Text Available The interference effect from high voltage overhead lines on nearby metallic pipelines is a major challenge for utility owners due to the induced AC potentials on metallic pipelines. Nevertheless, numerous mitigation techniques have been proposed...

  6. [Changes of productions of energy metabolism in masseter of rats induced by occlusal interference].

    Science.gov (United States)

    Xu, X X; Cao, Y; Fu, K Y; Xie, Q F

    2017-02-18

    To investigate the effect of occlusal interference on the energy metabolism of masticatory muscle by studying the changes of adenosine triphosphate (ATP), adenosine diphosphate (ADP), inosine monophosphate (IMP), phosphocreatine, creatine, lactate and pH level in masseter muscles of rats after occlusal interference. Fifty male Sprague-Dawley rats were randomly assigned into experimental group (n=40) and control group (n=10). In experimental group, 0.4 mm thick metal crown was cemented to the upper right first molar of the rat, and maintained for 3, 7, 10, 14 d separately (n=10 for each time point). No occlusal interference was applied for control group. Bilateral masseter muscles of all the rats were acquired under general anesthesia. The samples of 5 rats in each group were fully homogenized with 0.4 mol/L perchlorate (10 mL/g). The homogenates were centrifuged, filtered and analyzed for ATP, ADP, IMP, phosphocreatine, creatine and lactate content by high performance liquid chromatography. The other samples in each group were mixed with homogenates containing 5 mmol/L sodium iodoacetate (10 mL/g), then homogenized and measured for pH value by pH meter in thermostatic water bathunder 37 degrees centigrade. Compared with control group, ATP content in bilateral masseter of the rats increased 3 d after occlusal interference [right side:(5.36±0.13) μmol/g,left side:(5.77±0.25) μmol/g] (Pocclusal interference (Pocclusal interference and maintained the low level on 10 and 14 d [right side:(10.70±0.71) μmol/g, (11.57±0.52) μmol/g, (10.74±1.39) μmol/g, left side:(10.05±0.57) μmol/g, (10.75±1.12)μmol/g, (10.61±1.15) μmol/g](Pocclusal interference was observed (P>0.05). Occlusal interference influences the content of energy metabolites in masticatory muscle of rats, which may be related to the pathological process of masticatory muscles induced by occlusal interference, such as muscle pain, dysfunction and altered fiber architecture.

  7. Diffraction and interference of single de Broglie-wavelets. Deterministic wave mechanics

    International Nuclear Information System (INIS)

    Barut, A.O.

    1993-05-01

    Wavelets are localized nonspreading solutions of massless wave equations which move like massive quantum particles. They form a bridge between classical mechanics of point particles and wave functions of probabilistic quantum mechanics, both of which can be obtained by limiting processes. Here we develop a theory of the propagation of wavelets in the presence of boundaries and derive interference phenomena of quantum theory from the behavior of single events with ''hidden parameters''. (author). 8 refs, 1 fig

  8. Some illustrative examples of Mayer's interference in the path integral

    International Nuclear Information System (INIS)

    Fizichev, P.P.

    1983-01-01

    A new technique is proposed for evaluation of path integrals by means of a discretization procedure. It is based on the previously established necessity to single out the set of classical trajectories along which the summation is performed. The notion of Mayer interference is introduced and is illustrated on a number of simple examples. It is shown that the choice of the set of paths induced a corresponding quantization prosymmetries of the problem. The possibility is shown of extracting information about the space of quantum states from the path integral. A class of paths is established the summation over which in the framework of the suggested approach leads to the well-known results for the motion is a homogeneous field and for the harmonic oscillator

  9. Induced transparencies in metamaterial waveguides doped with quantum dots

    International Nuclear Information System (INIS)

    Singh, Mahi R; Brzozowski, Marek; Racknor, Chris

    2015-01-01

    The light-mater interaction in quantum dots doped artificial electromagnetic materials such as metamaterial waveguides has been studied. The effect of surface plasmon polaritons (SPPs) on the absorption coefficient of quantum dots in metamaterial waveguides is investigated. The waveguides are made by sandwiching a metamaterial slab between two dielectric material layers. An ensemble of quantum dots are deposited near the waveguide interfaces. The transfer matrix method is used to calculate the SSPs in the waveguide and the density matrix method and Schrödinger equation method are used to calculate the absorption spectrum. It is found that when the thickness of the metamaterial slab is greater than the SPP wavelength the SPP energy is degenerate. However when the thickness of the slab is smaller than that of the SPP wavelength the degeneracy of SPP state splits into odd and even SPP modes due the surface mode interaction (SMI) of the waveguide. We also found that the absorption spectrum has a minima (transparent state) which is due to strong coupling between excitons in quantum dots and SPPs in the waveguide. This transparent state is called the SPP induced transparency. However when the thickness of the slab is smaller than that of the SPP wavelength one transparent state in the absorption spectrum split into two transparent states due to the surface mode interaction. This type of transparency is called the SMI induced transparency. Transparent states can be achieved by applying pulse stress field or an intense laser pulse field. Hence present findings can be used to fabricate the metamaterial optical sensors and switches. (paper)

  10. Disorder and decoherence in coined quantum walks

    International Nuclear Information System (INIS)

    Zhang Rong; Qin Hao; Tang Bao; Xue Peng

    2013-01-01

    This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks. (topical review - quantum information)

  11. Skyrmion burst and multiple quantum walk in thin ferromagnetic films

    International Nuclear Information System (INIS)

    Ezawa, Motohiko

    2011-01-01

    We propose a new type of quantum walk in thin ferromagnetic films. A giant Skyrmion collapses to a singular point in a thin ferromagnetic film, emitting spin waves, when external magnetic field is increased beyond the critical one. After the collapse the remnant is a quantum walker carrying spin S. We determine its time evolution and show the diffusion process is a continuous-time quantum walk. We also analyze an interference of two quantum walkers after two Skyrmion bursts. The system presents a new type of quantum walk for S>1/2, where a quantum walker breaks into 2S quantum walkers. -- Highlights: → A giant Skyrmion collapses to a singular point by applying strong magnetic field. → Quantum walk is realized in thin ferromagnetic films by Skyrmion collapsing. → Quantum walks for S=1/2 and 1 are exact solvable, where S represents the spin. → Quantum walks for >1/2 presents a new type of quantum walks, i.e., 'multiple quantum walks'. → Skyrmion bursts which occur simultaneously exhibit an interference as a manifestation of quantum walk.

  12. Some instructive examples of Mayer's interference in path integral

    International Nuclear Information System (INIS)

    Fiziev, P.P.

    1984-01-01

    A new technique of path integral evaluation by a discretization procedure is proposed. It is based on the requirement, found previously, to single out the set of classical trajectories over which the summation is performed. The notion of Mayer's interference is introduced and illustrated by a number of simple examples. The choice of the set of paths is shown to induce a corresponding quantization procedure and this line is followed to demonstrate its connection with the symmetries of the problem. The possibility of extracting information on the space of quantum states from path integrals has been reviewed. A class of paths has been found; the summation over these paths within the framework of the suggested approach produces the well known results for the motion in a homogeneous field and for the harmonic oscillator

  13. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.

    Science.gov (United States)

    Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  14. Quantum Computer Games: Schrodinger Cat and Hounds

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  15. Superalgebras, their quantum deformations and the induced representation method

    International Nuclear Information System (INIS)

    Nguyen Anh Ky.

    1996-08-01

    In this paper some introductory concepts and basic definitions of the Lie superalgebras and their quantum deformations are exposed. Especially the induced representation methods in both cases are described. Up to now, based on the Kac representation theory we have succeeded in constructing representations of several higher rank superalgebras. When representations of quantum superalgebras are concerned, we develop a method which can be applied not only to the one-parametric quantum deformations but also to the multi-parametric ones. Here, being illustrations of the above-mentioned methods, the superalgebra gl(2/1) and its (one-parametric) quantum deformation U q [gl(2/1)] are considered as their finite-dimensional representations are investigated in detail and constructed explicitly. Also, it is shown that the finite-dimensional representations obtained constitute classes of all irreducible (typical and non-typical) finite-dimensional representations of gl(2/1) and U q [gl(2/1)]. Some of the detailed results may be simple but they are given for the first time. (author). 64 refs

  16. Can Two-Photon Interference be Considered the Interference of Two Photons?

    International Nuclear Information System (INIS)

    Pittman, T.B.; Strekalov, D.V.; Migdall, A.; Rubin, M.H.; Sergienko, A.V.; Shih, Y.H.

    1996-01-01

    We report on a open-quote open-quote postponed compensation close-quote close-quote experiment in which the observed two-photon entangled state interference cannot be pictured in terms of the overlap of the two individual photon wave packets of a parametric down-conversion pair on a beam splitter. In the sense of a quantum eraser, the distinguishability of the different two-photon Feynman amplitudes leading to a coincidence detection is removed by delaying the compensation until after the output of an unbalanced two-photon interferometer. copyright 1996 The American Physical Society

  17. On kinetic description of electromagnetic processes in a quantum plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Vladimirov, S. V.; Kompaneets, R.

    2011-01-01

    A nonlinear kinetic equation for nonrelativistic quantum plasma with electromagnetic interaction of particles is obtained in the Hartree's mean-field approximation. It is cast in a convenient form of Vlasov-Boltzmann-type equation with ''quantum interference integral'', which allows for relatively straightforward modification of existing classical Vlasov codes to incorporate quantum effects (quantum statistics and quantum interference of overlapping particles wave functions), without changing the bulk of the codes. Such modification (upgrade) of existing Vlasov codes may provide a direct and effective path to numerical simulations of nonlinear electrostatic and electromagnetic phenomena in quantum plasmas, especially of processes where kinetic effects are important (e.g., modulational interactions and stimulated scattering phenomena involving plasma modes at short wavelengths or high-order kinetic modes, dynamical screening and interaction of charges in quantum plasma, etc.) Moreover, numerical approaches involving such modified Vlasov codes would provide a useful basis for theoretical analyses of quantum plasmas, as quantum and classical effects can be easily separated there.

  18. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    Science.gov (United States)

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Quantum Computers: A New Paradigm in Information Technology

    OpenAIRE

    Mahesh S. Raisinghani

    2001-01-01

    The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference). Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, i...

  20. Time dilation in quantum systems and decoherence

    International Nuclear Information System (INIS)

    Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav

    2017-01-01

    Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered. (paper)

  1. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    Science.gov (United States)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  2. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    Science.gov (United States)

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  3. Interference-induced angle-independent acoustical transparency

    International Nuclear Information System (INIS)

    Qi, Lehua; Yu, Gaokun; Wang, Ning; Wang, Xinlong; Wang, Guibo

    2014-01-01

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtz resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves

  4. Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective

    Science.gov (United States)

    Zhao, Xin; Geskin, Victor; Stadler, Robert

    2017-03-01

    Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.

  5. Two narrow bandwidth photons interfering in an electromagnetically induced transparency (EIT) system

    International Nuclear Information System (INIS)

    Wang Fuyuan; Shi Baosen; Lu Xiaosong; Guo Guangcan

    2008-01-01

    In this paper, we have analysed in detail the quantum interference of the degenerate narrowband two-photon state by using a Mach–Zehnder interferometer, in which an electromagnetically induced transparency (EIT) medium is placed in one of two interfering beams. Our results clearly show that it is possible to coherently keep the quantum state at a single photon level in the EIT process, especially when the transparent window of the EIT medium is much larger than the bandwidth of the single photon. This shows that the EIT medium is possibly a kind of memory or repeater for the narrowband photons in the areas of quantum communication and quantum computer. This kind of experiment is feasible within the current technology

  6. Interferometric modulation of quantum cascade interactions

    Science.gov (United States)

    Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio

    2018-05-01

    We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.

  7. Quantum cryptography: towards realization in realistic conditions

    International Nuclear Information System (INIS)

    Imoto, M.; Koashi, M.; Shimizu, K.; Huttner, B.

    1997-01-01

    Many of quantum cryptography schemes have been proposed based on some assumptions such as no transmission loss, no measurement error, and an ideal single photon generator. We have been trying to develop a theory of quantum cryptography considering realistic conditions. As such attempts, we propose quantum cryptography with coherent states, quantum cryptography with two-photon interference, and generalization of two-state cryptography to two-mixed-state cases. (author)

  8. Environment-induced decoherence and the transition from quantum to classical

    International Nuclear Information System (INIS)

    Paz, J.P.; Zurek, W.H.

    2001-01-01

    We study dynamics of quantum open systems, paying special attention to these aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection (einselection) in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the 'standard lore' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law - it is shown - can be traced to the same phenomena that allow for the restoration of the correspondence principle in de-cohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out. (authors)

  9. Understand quantum mechanics

    International Nuclear Information System (INIS)

    Omnes, R.

    2000-01-01

    The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)

  10. Quantum gases and optical speckle: a new tool to simulate disordered quantum systems

    International Nuclear Information System (INIS)

    Bouyer, P

    2010-01-01

    Fifty years ago, Philip Anderson (1958 Phys. Rev. 109 1492) predicted that the introduction of impurities or defects in a conducting material could induce a sudden transition from conductor to insulator. He suggested that electrons that would move freely inside the solid do not simply diffuse on the defects as expected for classical particles but can be completely stopped. Instead of a simple decrease in the conductivity, a total cancellation of the conductivity occurs past a certain amount of disorder. The origin of this phase transition is a fundamental quantum phenomenon, interference between the many quantum amplitudes associated with various trajectories of the electron in the disordered material. This original result is essentially based on a mathematical argument, and after fifty years there are still many open questions (Lagendijk et al 2009 Phys. Today 62 (8) 24). This article provides an overview of how ultracold atoms, when combined with complex optical potential, can provide powerful tools to answer some of them (Aspect and Inguscio 2009 Phys. Today 62 (8) 30).

  11. Self-induced coherence in a single pair of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Anna; Machnikowski, Pawel [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2011-04-15

    We study self-induced coherence (SIC) in a system composed of two coupled quantum dots (QDs). SIC consists in a coherent transfer of excitation between two systems (atoms or QDs) resulting from their collective interaction with the quantum electromagnetic vacuum. This leads to population trapping in a delocalized, optically inactive state. We focus on the effect of a difference in transition energies and coupling between the two emitters on the evolution of exciton occupation in the two QD system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    International Nuclear Information System (INIS)

    Jin, L.

    2016-01-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  13. Probing the limits of the quantum world

    International Nuclear Information System (INIS)

    Arndt, Markus; Zeilinger, Anton; Hornberger, K.

    2005-01-01

    Molecules with over 100 atoms can be made to interfere, according to recent experiments that study the transition from the quantum to the classical world. Ever since quantum theory was developed during the first quarter of the 20th century, we have lived with a strange division. Objects in our daily lives behave 'normally' - they appear to obey classical physics - whereas microscopic objects can behave counter intuitively and reveal intriguing features of quantum physics. But where exactly is the boundary between the quantum and classical worlds - if, indeed, there is one? If quantum physics is a universal theory, why is it respectable to talk about the quantum behaviour of electrons but not, say, of footballs? One way of answering these questions is to carry out sensitive interferometry experiments, in which a beam of molecules is sent down two different paths and then brought back together again. These experiments reveal that the molecules have both a 'wave' and 'particle' nature, and display quantum behaviour. Recent research by our group has shown, in fact, that molecules with as many as 100 atoms can interfere with one another. These experiments illustrate one of the most unusual aspects of quantum theory, namely that objects can exist in a superposition of different states. (U.K.)

  14. Quantum cryptography: towards realization in realistic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Imoto, M; Koashi, M; Shimizu, K [NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 (Japan); Huttner, B [Universite de Geneve, GAP-optique, 20, Rue de l` Ecole de Medecine CH1211, Geneve 4 (Switzerland)

    1997-05-11

    Many of quantum cryptography schemes have been proposed based on some assumptions such as no transmission loss, no measurement error, and an ideal single photon generator. We have been trying to develop a theory of quantum cryptography considering realistic conditions. As such attempts, we propose quantum cryptography with coherent states, quantum cryptography with two-photon interference, and generalization of two-state cryptography to two-mixed-state cases. (author) 15 refs., 1 fig., 1 tab.

  15. Electrostatic and Quantum Transport Simulations of Quantum Point Contacts in the Integer Quantum Hall Regime

    Science.gov (United States)

    Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard

    Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.

  16. Noise-induced transition in a quantum system

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pulak Kumar [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Barik, Debashis [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Ray, Deb Shankar [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2005-07-04

    We examine the noise-induced transition in a fluctuating bistable potential of a driven quantum system in thermal equilibrium. Making use of a Wigner canonical thermal distribution for description of the statistical properties of the thermal bath, we explore the generic effects of quantization like vacuum field fluctuation and tunneling in the characteristic stationary probability distribution functions undergoing transition from unimodal to bimodal nature and in signal-to-noise ratio characterizing the cooperative effect among the noise processes and the weak periodic signal.

  17. Noise-induced transition in a quantum system

    International Nuclear Information System (INIS)

    Ghosh, Pulak Kumar; Barik, Debashis; Ray, Deb Shankar

    2005-01-01

    We examine the noise-induced transition in a fluctuating bistable potential of a driven quantum system in thermal equilibrium. Making use of a Wigner canonical thermal distribution for description of the statistical properties of the thermal bath, we explore the generic effects of quantization like vacuum field fluctuation and tunneling in the characteristic stationary probability distribution functions undergoing transition from unimodal to bimodal nature and in signal-to-noise ratio characterizing the cooperative effect among the noise processes and the weak periodic signal

  18. Quantum interference of position and momentum: A particle propagation paradox

    Science.gov (United States)

    Hofmann, Holger F.

    2017-08-01

    Optimal simultaneous control of position and momentum can be achieved by maximizing the probabilities of finding their experimentally observed values within two well-defined intervals. The assumption that particles move along straight lines in free space can then be tested by deriving a lower limit for the probability of finding the particle in a corresponding spatial interval at any intermediate time t . Here, it is shown that this lower limit can be violated by quantum superpositions of states confined within the respective position and momentum intervals. These violations of the particle propagation inequality show that quantum mechanics changes the laws of motion at a fundamental level, providing a different perspective on causality relations and time evolution in quantum mechanics.

  19. Observation of Fano-Type Interference in a Coupled Cavity-Atom System

    International Nuclear Information System (INIS)

    Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu

    2016-01-01

    We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)

  20. Localization of firearm projectiles in the human body using a superconducting quantum interference device magnetometer: A theoretical study

    Science.gov (United States)

    Hall Barbosa, C.

    2004-06-01

    A technique had been previously developed, based on magnetic field measurements using a superconducting quantum interference device sensor, to localize in three dimensions steel needles lost in the human body. In all six cases that were treated until now, the technique allowed easy surgical localization of the needles with high accuracy. The technique decreases, by a large factor, the surgery time for foreign body extraction, and also reduces the generally high odds of failure. The method is accurate, noninvasive, and innocuous, and with clear clinical importance. Despite the importance of needle localization, the most prevalent foreign body in the modern society is the firearm projectile (bullet), generally composed of lead, a paramagnetic material, thus not presenting a remanent magnetic field as steel needles do. On the other hand, since lead is a good conductor, eddy current detection techniques can be employed, by applying an alternating magnetic field with the aid of excitation coils. The primary field induces eddy currents on the lead, which in turn generate a secondary magnetic field that can be detected by a magnetometer, and give information about position and volume of the conducting foreign body. In this article we present a theoretical study for the development of a localization technique for lead bullets inside the human body. Initially, we present a model for the secondary magnetic field generated by the bullet, given a known applied field. After that, we study possible excitation systems, and propose a localization algorithm based on the detected magnetic field.

  1. Quantum probabilities of composite events in quantum measurements with multimode states

    International Nuclear Information System (INIS)

    Yukalov, V I; Sornette, D

    2013-01-01

    The problem of defining quantum probabilities of composite events is considered. This problem is of great importance for the theory of quantum measurements and for quantum decision theory, which is a part of measurement theory. We show that the Lüders probability of consecutive measurements is a transition probability between two quantum states and that this probability cannot be treated as a quantum extension of the classical conditional probability. The Wigner distribution is shown to be a weighted transition probability that cannot be accepted as a quantum extension of the classical joint probability. We suggest the definition of quantum joint probabilities by introducing composite events in multichannel measurements. The notion of measurements under uncertainty is defined. We demonstrate that the necessary condition for mode interference is the entanglement of the composite prospect together with the entanglement of the composite statistical state. As an illustration, we consider an example of a quantum game. Special attention is paid to the application of the approach to systems with multimode states, such as atoms, molecules, quantum dots, or trapped Bose-condensed atoms with several coherent modes. (paper)

  2. Theoretical consideration of the use of mode entangled states to beat the minimal period of an interference pattern

    International Nuclear Information System (INIS)

    Podoshvedov, Sergey A

    2005-01-01

    We propose to use multi-photon mode entangled states to beat the minimal period of an interference pattern. Using the multi-photon mode entangled states, we show that it is possible to observe an interference effect with a period of minimum size λ/2N in an N-photon absorbing substrate. In the framework of the method developed, we propose a simple scheme for a quantum encoder with a two-photon quantum channel for producing a desired N-photon mode entangled state on which to write an interference pattern with a smaller period, as compared with the one in the case of the use of classical light

  3. Electric currents induced by twisted light in Quantum Rings.

    Science.gov (United States)

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  4. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.

    Science.gov (United States)

    Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T

    2017-01-01

    We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.

  5. Experimental demonstration of quantum contextuality with nonentangled photons

    International Nuclear Information System (INIS)

    Liu, B. H.; Huang, Y. F.; Gong, Y. X.; Sun, F. W.; Zhang, Y. S.; Li, C. F.; Guo, G. C.

    2009-01-01

    We present an experimental test of quantum contextuality by using two-photon product states. The experimental results show that the noncontextual hidden-variable theories are violated by nonentangled states in spite of the local hidden-variable theories can be violated or not. We find that the Hong-Ou-Mandel-type quantum interference effect causes the quantum contextuality.

  6. Electrically Induced Two-Photon Transparency in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hayat, Alex; Nevet, Amir; Orenstein, Meir

    2009-01-01

    We demonstrate experimentally two-photon transparency, achieved by current injection into a semiconductor quantum-well structure which exhibits two-photon emission. The two-photon induced luminescence is progressively reduced by the injected current, reaching the point of two-photon transparency - a necessary condition for semiconductor two-photon gain and lasing. These results agree with our calculations.

  7. Fingerprints of transversal and longitudinal coupling between induced open quantum dots in the longitudinal magneto-conductance through anti-dot lattices

    International Nuclear Information System (INIS)

    Ujevic, Sebastian; Mendoza, Michel

    2011-01-01

    Full text. We propose numerical simulations of longitudinal magneto conductance through a finite anti dot lattice located inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal magneto conductance and the generation of transversal couplings between the induced open quantum dots in the system. The system presents longitudinal magneto conductance maps with crossovers (between transversal bands) and closings (longitudinal decoupling) of fundamental quantum states related to the open quantum dots induced by the anti dot lattice. A relationship is observed between the distribution of anti dots and the formed conductance bands, allowing a systematic follow-up of the bands as a function of the applied magnetic field and quantum point contact width. We observed a high conductance intensity (between n- and (n + 1)-quantum of conductance, n = 1; 2...) in the regions of crossover and closing of states. This suggests transversal couplings between the induced open quantum dots of the system that can be modulated by varying both the anti dots potential and the quantum point contact width. A new continuous channel (not expected) is induced by the variation of the contact width and generate Fano resonances in the conductance. These resonances can be manipulated by the applied magnetic field

  8. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.

    Science.gov (United States)

    Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing

    2018-03-14

    Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.

  9. Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires

    Science.gov (United States)

    Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey

    2005-06-01

    In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.

  10. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    Science.gov (United States)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  11. Plasmon resonance-induced photoluminescence enhancement of CdTe/Cds quantum dots thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wu, Yangqing; Xu, Jun; Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2016-11-30

    Highlights: • CdTe/CdS quantum dots/Au nano-rods nano-composite films were fabricated. • PL intensity of the quantum dots films was enhanced due to Au nanorods. • Internal quantum efficiency increased due to localized surface plasmon resonance. • The lifetimes of quantum dots films decreased after interaction with Au nano-rods. - Abstract: CdTe/CdS quantum dots/Au nano-rods nano-composite films were fabricated on planar Si substrates. The optical properties of all samples were investigated and the corresponding simulations were studied. It was found that the photoluminescence intensity of the CdTe/CdS quantum dots films was enhanced about 9-fold after the incorporation of Au nano-rods, the internal quantum efficiency increased from 24.3% to 35.2% due to the localized surface plasmon resonance. The time-resolved luminescence decay curves showed that the lifetimes of CdTe/CdS quantum dots films decreased to 2.8 ns after interaction with Au nano-rods. The results of finite-difference time-domain simulation indicated that Au nano-rods induced the localization of electric field, which enhanced the PL intensity of quantum dots films in the vicinity of Au nano-rods.

  12. [Characteristics of experimental occlusal interference-induced masticatory mechanical hyperalgesia of rats].

    Science.gov (United States)

    Li, Xuejiao; Cao, Ye; Xie, Qiufei

    2014-10-01

    To investigate the relationship between the existence of occlusal interference and masticatory muscle hyperalgesia by exploring the stimulus-response relationship between the duration of occlusal interference and masticatory muscle mechanical withdrawal threshold. Occlusal interference with 0.4 mm-thick crowns on rat molars was removed under anaesthesia at 2, 3, 4, 5, and 6 d after wear, and masticatory muscle mechanical withdrawal threshold was tested at 1, 3, 5, 7, 10, 14, 21 and 28 d. Decreased mechanical withdrawal thresholds were detected in temporal muscles and masseter muscles on both sides following occlusal interference (P 0.05). No significant differences were detected between the contralateral side with the ipsilateral side (P occlusal interference at 5 d, and the existence of the occlusal interference is positively correlated with the duration of the mechanical hyperalgesia.

  13. Quantum mechanics theory and experiment

    CERN Document Server

    Beck, Mark

    2012-01-01

    This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...

  14. The physics of quantum mechanics

    CERN Document Server

    Binney, James

    2014-01-01

    The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be

  15. Slow Light Using Electromagnetically Induced Transparency from Spin Coherence in [110] Strained Quantum Wells

    Science.gov (United States)

    Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin

    2005-03-01

    The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).

  16. Quantum voting and violation of Arrow's impossibility theorem

    Science.gov (United States)

    Bao, Ning; Yunger Halpern, Nicole

    2017-06-01

    We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.

  17. Modification and control of the spontaneous emission from an M-type atom embedded in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Lue Xinyou

    2011-01-01

    We describe the spontaneous emission properties of an M-type five-level atom embedded in a photonic crystal (PC), which is coherently driven by two external laser fields. It leads to two types of quantum interference: reservoir-induced interference and laser-induced interference. Considering different detunings of atomic transition frequencies from band edges, we reveal some interesting phenomena such as spectral-line enhancement, spectral-line suppression, spectral-line narrowing, reservoir-induced cancellation of spontaneous emission and the appearance of dark lines, which originate from the quantum interference effects and the control of external laser fields. These investigations suggest possible applications in quantum optics, optical communications and in the fabrication of novel optoelectronic devices.

  18. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    Science.gov (United States)

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  19. Can quantum imaging be classically simulated?

    OpenAIRE

    D'Angelo, Milena; Shih, Yanhua

    2003-01-01

    Quantum imaging has been demonstrated since 1995 by using entangled photon pairs. The physics community named these experiments "ghost image", "quantum crypto-FAX", "ghost interference", etc. Recently, Bennink et al. simulated the "ghost" imaging experiment by two co-rotating k-vector correlated lasers. Did the classical simulation simulate the quantum aspect of the "ghost" image? We wish to provide an answer. In fact, the simulation is very similar to a historical model of local realism. The...

  20. Universal quantum computation in a semiconductor quantum wire network

    International Nuclear Information System (INIS)

    Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta

    2010-01-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.

  1. Resolving semantic and proactive interference in memory over the short-term.

    Science.gov (United States)

    Atkins, Alexandra S; Berman, Marc G; Reuter-Lorenz, Patricia A; Lewis, Richard L; Jonides, John

    2011-07-01

    Interference is a major source of short-term errors of memory. The present investigation explores the relationship between two important forms of interference: proactive interference (PI), induced by the need to reject recently studied items no longer relevant to task performance, and semantic interference (SI), induced by the need to reject lures sharing a meaningful relationship with current memoranda. We explore the possibility that shared cognitive control processes are recruited to resolve both forms of interference. In Experiment 1, we find that the requirement to engage in articulatory suppression during the retention interval of tasks that induce either PI or SI increases both forms of interference similarly and selectively. In Experiment 2, we develop a task to examine PI and SI within the same experimental context. The results show interactive effects between factors that lead to the two forms of interference. Taken together, these findings support contextual-cuing models of short-term remembering (Nairne, Annual Review of Psychology, 53, 53-81 2002), where the context in which retrieval occurs can influence susceptibility to interference. Lastly, we discuss several theoretical hypotheses concerning the cognitive control processes that are recruited to resolve SI and PI in short-term remembering.

  2. Quantum decision theory as quantum theory of measurement

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Sornette, D.

    2008-01-01

    We present a general theory of quantum information processing devices, that can be applied to human decision makers, to atomic multimode registers, or to molecular high-spin registers. Our quantum decision theory is a generalization of the quantum theory of measurement, endowed with an action ring, a prospect lattice and a probability operator measure. The algebra of probability operators plays the role of the algebra of local observables. Because of the composite nature of prospects and of the entangling properties of the probability operators, quantum interference terms appear, which make actions noncommutative and the prospect probabilities nonadditive. The theory provides the basis for explaining a variety of paradoxes typical of the application of classical utility theory to real human decision making. The principal advantage of our approach is that it is formulated as a self-consistent mathematical theory, which allows us to explain not just one effect but actually all known paradoxes in human decision making. Being general, the approach can serve as a tool for characterizing quantum information processing by means of atomic, molecular, and condensed-matter systems

  3. Resonance fluorescence and quantum interference of a single NV center

    Science.gov (United States)

    Ma, Yong-Hong; Zhang, Xue-Feng; Wu, E.

    2017-11-01

    The detection of a single nitrogen-vacancy center in diamond has attracted much interest, since it is expected to lead to innovative applications in various domains of quantum information, including quantum metrology, information processing and communications, as well as in various nanotechnologies, such as biological and subdiffraction limit imaging, and tests of entanglement in quantum mechanics. We propose a novel scheme of a single NV center coupled with a multi-mode superconducting microwave cavity driven by coherent fields in squeezed vacuum. We numerically investigate the spectra in-phase quadrature and out-of-phase quadrature for different driving regimes with or without detunings. It shows that the maximum squeezing can be obtained for optimal Rabi fields. Moreover, with the same parameters, the maximum squeezing is greatly increased when the detunings are nonzero compared to the resonance case.

  4. Relationship between electromagnetically-induced transparency and Autler–Townes splitting in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Zuo Zhan-Chun; Wu Ling-An; Fu Pan-Ming

    2015-01-01

    We study the relationship between electromagnetically-induced transparency (EIT) and Autler–Townes (AT) splitting in a cascade three-level Doppler-broadened system. By comparing the absorption spectrum with the fluorescence excitation spectrum, it is found that for a Doppler-broadened system, EIT resonance cannot be explained as the result of quantum interference, unlike the case of a homogeneously broadened system. Instead, the macroscopic polarization interference plays an important role in determining the spectra of EIT and AT splitting, which can be explained within the same framework when being detected by the absorption spectra. (paper)

  5. REM sleep rescues learning from interference

    Science.gov (United States)

    McDevitt, Elizabeth A.; Duggan, Katherine A.; Mednick, Sara C.

    2015-01-01

    Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost. PMID:25498222

  6. Experimental entanglement of 25 individually accessible atomic quantum interfaces.

    Science.gov (United States)

    Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming

    2018-04-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.

  7. Real-time dynamics of dissipative quantum systems

    International Nuclear Information System (INIS)

    Chow, K.S.

    1988-01-01

    The first part of this thesis motivates a real time approach to the dynamics of dissipative quantum systems. We review previous imaginary time methods for calculating escape rates and discuss their applications to the analysis of data in macroscopic quantum tunneling experiments. In tunneling experiments on heavily damped Superconducting Quantum Interference Devices, the instanton method gave results that compare reasonably well with data. In tunneling experiments on weakly damped Current Biased Josephson Junctions, two problems arise. First, the classical limit of the instanton result disagrees with the classical rate of thermal activation. Second, the instanton method cannot predict the microwave enhancement of escape rates. In the third chapter, we discuss our real time approach to the dynamics of dissipative systems in terms of a kinetic equation for the reduced density matrix. We demonstrate some known equilibrium properties of dissipative systems through the kinetic equation and derived the bath induced widths and energy shifts. In the low damping limit, the kinetic equation reduces to a much simpler master equation. The classical limit of the master equation is completely equivalent to the Fokker-Planck equation that describes thermal activation. In the fourth chapter, we apply the master equation to the problem of tunneling and resonance enhancement of tunneling in weakly damped current biased Josephson junctions. In the classical regime, microwaves of the appropriate frequency induce resonances between many neighboring levels and an asymmetrical resonance peak is measured. We can calibrate the junction parameters by fitting the stationary solution of the master equation to the classical resonance data. In the quantum regime, the stationary solution of the master equation, predicts well-resolved resonance peaks which agree very well with the observed data

  8. Sleep can reduce proactive interference.

    Science.gov (United States)

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2014-01-01

    Sleep has repeatedly been connected to processes of memory consolidation. While extensive research indeed documents beneficial effects of sleep on memory, little is yet known about the role of sleep for interference effects in episodic memory. Although two prior studies reported sleep to reduce retroactive interference, no sleep effect has previously been found for proactive interference. Here we applied a study format differing from that employed by the prior studies to induce a high degree of proactive interference, and asked participants to encode a single list or two interfering lists of paired associates via pure study cycles. Testing occurred after 12 hours of diurnal wakefulness or nocturnal sleep. Consistent with the prior work, we found sleep in comparison to wake did not affect memory for the single list, but reduced retroactive interference. In addition we found sleep reduced proactive interference, and reduced retroactive and proactive interference to the same extent. The finding is consistent with the view that arising benefits of sleep are caused by the reactivation of memory contents during sleep, which has been suggested to strengthen and stabilise memories. Such stabilisation may make memories less susceptible to competition from interfering memories at test and thus reduce interference effects.

  9. Statistical ensembles in quantum mechanics

    International Nuclear Information System (INIS)

    Blokhintsev, D.

    1976-01-01

    The interpretation of quantum mechanics presented in this paper is based on the concept of quantum ensembles. This concept differs essentially from the canonical one by that the interference of the observer into the state of a microscopic system is of no greater importance than in any other field of physics. Owing to this fact, the laws established by quantum mechanics are not of less objective character than the laws governing classical statistical mechanics. The paradoxical nature of some statements of quantum mechanics which result from the interpretation of the wave functions as the observer's notebook greatly stimulated the development of the idea presented. (Auth.)

  10. Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference

    Science.gov (United States)

    Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2018-03-01

    Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

  11. Zwitters: Particles between quantum and classical

    International Nuclear Information System (INIS)

    Wetterich, C.

    2012-01-01

    We describe both quantum particles and classical particles in terms of a classical statistical ensemble, with a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. Then interference and tunneling are found within classical statistics. Zwitters are (effective) one-particle states for which the time evolution interpolates between quantum and classical particles. Experimental bounds on a small parameter can test quantum mechanics. -- Highlights: ► Quantum particles can be described within classical statistics. ► Classical particles are formulated in quantum formalism. ► Zwitters interpolate between classical and quantum particles. ► Zwitters allow for quantitative tests of quantum mechanics. ► Zwitters could be effective one-particle descriptions of droplets.

  12. Designing artificial 2D crystals with site and size controlled quantum dots.

    Science.gov (United States)

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  13. Quantum theory of measurements as quantum decision theory

    International Nuclear Information System (INIS)

    Yukalov, V I; Sornette, D

    2015-01-01

    Theory of quantum measurements is often classified as decision theory. An event in decision theory corresponds to the measurement of an observable. This analogy looks clear for operationally testable simple events. However, the situation is essentially more complicated in the case of composite events. The most difficult point is the relation between decisions under uncertainty and measurements under uncertainty. We suggest a unified language for describing the processes of quantum decision making and quantum measurements. The notion of quantum measurements under uncertainty is introduced. We show that the correct mathematical foundation for the theory of measurements under uncertainty, as well as for quantum decision theory dealing with uncertain events, requires the use of positive operator-valued measure that is a generalization of projection-valued measure. The latter is appropriate for operationally testable events, while the former is necessary for characterizing operationally uncertain events. In both decision making and quantum measurements, one has to distinguish composite nonentangled events from composite entangled events. Quantum probability can be essentially different from classical probability only for entangled events. The necessary condition for the appearance of an interference term in the quantum probability is the occurrence of entangled prospects and the existence of an entangled strategic state of a decision maker or of an entangled statistical state of a measuring device

  14. Counting statistics of many-particle quantum walks

    Science.gov (United States)

    Mayer, Klaus; Tichy, Malte C.; Mintert, Florian; Konrad, Thomas; Buchleitner, Andreas

    2011-06-01

    We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.

  15. Counting statistics of many-particle quantum walks

    International Nuclear Information System (INIS)

    Mayer, Klaus; Tichy, Malte C.; Buchleitner, Andreas; Mintert, Florian; Konrad, Thomas

    2011-01-01

    We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.

  16. Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, S M; Safari, L; Mahmoudi, M [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Sahrai, M, E-mail: sahrai@tabrizu.ac.i [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-08-28

    The effect of quantum interference on the optical properties of a pumped-probe three-level V-type atomic system is investigated. The probe absorption, dispersion, group index and optical bistability beyond the two-photon resonance condition are discussed. It is found that the optical properties of a medium in the frequency of the probe field, in general, are phase independent. The phase dependence arises from a scattering of the coupling field into the probe field at a frequency which in general differs from the probe field frequency. It is demonstrated that beyond the two-photon resonance condition the phase sensitivity of the medium will disappear.

  17. [Experimental occlusal interference induces the expression of protein gene products and substance P in masseter muscles of rats].

    Science.gov (United States)

    Cao, Ye; Li, Kai; Fu, Kai-yuan; Xie, Qiu-fei

    2010-02-18

    To investigate the peripheral mechanism by studying the histological changes of masseter muscles using HE stains and substance P (SP) and protein gene product 9.5 (PGP9.5) immunohistochemical stains. Fifteen male Sprague-Dawley were randomly assigned into occlusal interference group (n=12) and control group (n=3). In occlusal interference group, 0.4 mm thick crowns were bonded to the rats' first molar of the maxillary. In the control group, rats were anesthetized and mouths were forced open for about 5 min but restorations were not applied. 1, 5, 10, and 21 d after 0.4 mm occlusal alteration treatment, mechanical pain thresholds of bilateral masseter muscles were quantitatively measured by modified electronic anesthesiometer in control group and occlusal interference group. The rats were euthanized by transcardiac perfusion after deep anesthetization at different time points. The paraffin sections of masseter muscles were made and processed for HE, SP, and PGP9.5 immunohistochemical staining. Decreased head withdrawal threshold to mechanical pressure was detected in masseter muscles on both sides following occlusal interference. Histological stains of masseter muscles presented intact following occlusal interference, and no inflammatory cells were observed in both sides. Intensely stained PGP9.5 was observed at 1 d in occlusal interference groups and maintained until the end of the experiment. SP expression was the most obviously increased at 5 d in both sides and gradually decreased to the level of control. Experimental occlusal interference-induced masticatory muscle pain is associated with peripheral sensitization of nociceptive neurons rather than muscle damage and inflammation.

  18. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  19. Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.

    2002-01-01

    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part that is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief, our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high-efficiency conversion. With appropriate phase matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states vertical bar 0> and vertical bar 2> is always very small

  20. Neurogenesis-mediated forgetting minimizes proactive interference.

    Science.gov (United States)

    Epp, Jonathan R; Silva Mera, Rudy; Köhler, Stefan; Josselyn, Sheena A; Frankland, Paul W

    2016-02-26

    Established memories may interfere with the encoding of new memories, particularly when existing and new memories overlap in content. By manipulating levels of hippocampal neurogenesis, here we show that neurogenesis regulates this form of proactive interference. Increasing hippocampal neurogenesis weakens existing memories and, in doing so, facilitates the encoding of new, conflicting (but not non-conflicting) information in mice. Conversely, decreasing neurogenesis stabilizes existing memories, and impedes the encoding of new, conflicting information. These results suggest that reduced proactive interference is an adaptive benefit of neurogenesis-induced forgetting.

  1. New progress of fundamental aspects in quantum mechanics

    International Nuclear Information System (INIS)

    Sun Changpu

    2001-01-01

    The review recalls the conceptual origins of various interpretations of quantum mechanics. With the focus on quantum measurement problems, new developments of fundamental quantum theory are described in association with recent experiments such as the decoherence process in cavity quantum electrodynamics 'which-way' detection using the Bragg scattering of cold atoms, and quantum interference using the small quantum system of molecular C 60 . The fundamental problems include the quantum coherence of a macroscopic object, the von Neumann chain in quantum measurement, the Schroedinger cat paradox, et al. Many land math experiments have been accomplished with possible important applications in quantum information. The most recent research on the new quantum theory by G.'t Hooft is reviewed, as well as future prospects of quantum mechanics

  2. Are Quantum Models for Order Effects Quantum?

    Science.gov (United States)

    Moreira, Catarina; Wichert, Andreas

    2017-12-01

    The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.

  3. Influence of interface-included disorder on classical quantum conductivity of CdTe:In epitaxial layers

    International Nuclear Information System (INIS)

    Lusakowski, J.; Karpierz, K.; Grynberg, M.; Karczewski, G.; Wojtowicz, T.; Contreras, S.; Callen, O.

    1997-01-01

    An influence of disorder originated from the substrate/layer interface on electrical properties of CdTe:In layers was investigated by means of the Hall effect and magnetoresistance measurements at low temperatures. An estimation of a scattering rate due to interface induced disorder is given. Characteristic features of a magnetic field dependence of magnetoresistance are explained by an influence of quantum interference of scattered electron waves both in the hopping and the free electron conductivity regimes. (author)

  4. Many-particle interference beyond many-boson and many-fermion statistics

    International Nuclear Information System (INIS)

    Tichy, Malte C; Tiersch, Markus; Mintert, Florian; Buchleitner, Andreas

    2012-01-01

    Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell multiport beam splitter. The law shows that counting events are governed by widely species-independent interference, such that bosons and fermions can even exhibit identical interference signatures, while their statistical character remains subordinate. Recent progress in the preparation of tailored many-particle states of bosonic and fermionic atoms promises experimental verification and applications in novel many-particle interferometers. (paper)

  5. Investigation and reduction of excess low-frequency noise in rf superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Mueck, M.; Heiden, C.; Clarke, J.

    1994-01-01

    A detailed study has been made of the low-frequency excess noise of rf superconducting quantum interference devices (SQUIDs), fabricated from thin niobium films and operated at 4.2 K, with rf bias frequencies of 0.15, 1.7, and 3 GHz. When the SQUIDs were operated in an open-loop configuration in the absence of low-frequency flux modulation, the demodulated rf voltage exhibited a substantial level 1/f noise, which was essentially independent of the rf bias frequency. As the rf bias frequency was increased, the crossover frequency at which the 1/f noise power was equal to the white noise power moved to higher frequencies, because of the reduction in white noise. On the other hand, when the SQUID was flux modulated at 50 kHz and operated in a flux locked loop, no 1/f noise was observed at frequencies above 0.5 Hz. A detailed description of how the combination of rf bias and flux modulation removes 1/f noise due to critical current fluctuations is given. Thus, the results demonstrate that the 1/f noise observed in these SQUIDs is generated by critical current fluctuations, rather than by the hopping of flux vortices in the niobium films

  6. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.

    Science.gov (United States)

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-01

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.

  7. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture.

    Science.gov (United States)

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-22

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  8. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  9. Quantum Computation and Algorithms

    International Nuclear Information System (INIS)

    Biham, O.; Biron, D.; Biham, E.; Grassi, M.; Lidar, D.A.

    1999-01-01

    It is now firmly established that quantum algorithms provide a substantial speedup over classical algorithms for a variety of problems, including the factorization of large numbers and the search for a marked element in an unsorted database. In this talk I will review the principles of quantum algorithms, the basic quantum gates and their operation. The combination of superposition and interference, that makes these algorithms efficient, will be discussed. In particular, Grover's search algorithm will be presented as an example. I will show that the time evolution of the amplitudes in Grover's algorithm can be found exactly using recursion equations, for any initial amplitude distribution

  10. The issue of phases in quantum measurement theory

    International Nuclear Information System (INIS)

    Pati, Arun Kumar

    1999-01-01

    The issue of phases is always very subtle in quantum world and many of the curious phenomena are due to the existence of the phase of the quantum mechanical wave function. We investigate the issue of phases in quantum measurement theory and predict a new effect of fundamental importance. We call a quantum system under goes a quantum Zeno dynamics when the unitary evolution of a quantum system is interrupted by a sequence of measurements. In particular, we investigate the effect of repeated measurements on the geometric phase and show that the quantum Zeno dynamics can inhibit its development under a large number of measurement pulses. It is interesting to see that neither the total phase nor the dynamical phase goes to zero under large number of measurements. This new effect we call as the 'quantum Zeno Phase effect' in analogous to the quantum Zeno effect where the repeated measurements inhibit the transition probability. This 'quantum Zeno Phase effect' can be proved within von Neumann's collapse mechanism as well as using a continuous measurement model. So the effect is really independent of any particular measurement model considered. Since the geometric phase attributes a memory to a quantum system our results also proves that the path dependent memory of a system can be erased by a sequence of measurements. The quantum Zeno Phase effect provides a way to control and manipulate the phase of a wave function in an interference set up. Finally, we stress that the quantum Zeno Phase effect can be tested using neutron, photon and atom interference experiments with the presently available technology. (Author)

  11. Quantum oscillations and ferromagnetic hysteresis observed in iron filled multiwall carbon nanotubes.

    Science.gov (United States)

    Barzola-Quiquia, J; Klingner, N; Krüger, J; Molle, A; Esquinazi, P; Leonhardt, A; Martínez, M T

    2012-01-13

    We report on the electrical transport properties of single multiwall carbon nanotubes with and without an iron filling as a function of temperature and magnetic field. For the iron filled nanotubes the magnetoresistance shows a magnetic behavior induced by iron, which can be explained by taking into account a contribution of s-d hybridization. In particular, ferromagnetic-like hysteresis loops were observed up to 50 K for the iron filled multiwall carbon nanotubes. The magnetoresistance shows quantum interference phenomena such as universal conductance fluctuations and weak localization effects.

  12. On Einsteinization of background curved space in the induced quantum gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1989-09-01

    It is shown within the induced quantum gravity approach that approximate invariance of the vacuum (up to topological terms) under rescaling of background tetrads requires that these tetrads should satisfy the Einstein equation with the Newton and cosmological constants defined by low energy parameters. (author). 7 refs

  13. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  14. On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, K. S.; Radchenko, I. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Korol' kov, A. V. [Academy of Cryptography (Russian Federation); Kulik, S. P., E-mail: sergei.kulik@gmail.com [Moscow State University (Russian Federation); Molotkov, S. N., E-mail: sergei.molotkov@gmail.com [Academy of Cryptography (Russian Federation)

    2013-05-15

    The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.

  15. On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography

    International Nuclear Information System (INIS)

    Kravtsov, K. S.; Radchenko, I. V.; Korol’kov, A. V.; Kulik, S. P.; Molotkov, S. N.

    2013-01-01

    The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.

  16. From quantum dots to quantum circuits

    International Nuclear Information System (INIS)

    Ensslin, K.

    2008-01-01

    Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse

  17. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces

    Science.gov (United States)

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-01

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  18. Quantum confinement-induced tunable exciton states in graphene oxide.

    Science.gov (United States)

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology.

  19. Suppression of tunneling by interference in half-integer--spin particles

    OpenAIRE

    Loss, Daniel; DiVincenzo, David P.; Grinstein, G.

    1992-01-01

    Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.

  20. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    Science.gov (United States)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  1. Fundamental aspects of quantum theory

    International Nuclear Information System (INIS)

    Gorini, V.; Frigerio, A.

    1986-01-01

    This book presents information on the following topics: general problems and crucial experiments; the classical behavior of measuring instruments; quantum interference effect for two atoms radiating a single photon; quantization and stochastic processes; quantum Markov processes driven by Bose noise; chaotic behavior in quantum mechanics; quantum ergodicity and chaos; microscopic and macroscopic levels of description; fundamental properties of the ground state of atoms and molecules; n-level systems interacting with Bosons - semiclassical limits; general aspects of gauge theories; adiabatic phase shifts for neutrons and photons; the spins of cyons and dyons; round-table discussion the the Aharonov-Bohm effect; gravity in quantum mechanics; the gravitational phase transition; anomalies and their cancellation; a new gauge without any ghost for Yang-Mills Theory; and energy density and roughening in the 3-D Ising ferromagnet

  2. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    Science.gov (United States)

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  3. Beam Splitter for Spin Waves in Quantum Spin Network

    OpenAIRE

    Yang, S.; Song, Z.; Sun, C. P.

    2005-01-01

    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a $Y$-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.

  4. Teaching Quantum Uncertainty

    Science.gov (United States)

    Hobson, Art

    2011-01-01

    An earlier paper introduces quantum physics by means of four experiments: Youngs double-slit interference experiment using (1) a light beam, (2) a low-intensity light beam with time-lapse photography, (3) an electron beam, and (4) a low-intensity electron beam with time-lapse photography. It's ironic that, although these experiments demonstrate…

  5. Quantum two- and three-person duels

    International Nuclear Information System (INIS)

    Flitney, Adrian P; Abbott, Derek

    2004-01-01

    In game theory, a popular model of a struggle for survival among three competing agents is a truel, or three-person generalization of a duel. Adopting the ideas recently developed in quantum game theory, we present a quantum scheme for the problems of duels and truels. In the classical case, the outcome is sensitive to the precise rules under which the truel is performed and can be counterintuitive. These aspects carry over into our quantum scheme, but interference amongst the players' strategies can arise, leading to game equilibria different from the classical case

  6. Tensor network states in time-bin quantum optics

    Science.gov (United States)

    Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl

    2018-06-01

    The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.

  7. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  8. Entanglement of distant superconducting quantum interference device rings

    International Nuclear Information System (INIS)

    Zukarnain, Z Ahmad; Konstadopoulou, A; Vourdas, A; Migliore, R; Messina, A

    2005-01-01

    We consider two distant mesoscopic SQUID rings, approximated with two-level systems, interacting with two-mode microwaves. The Hamiltonian of the system is used to calculate its time evolution. The cases with microwaves which at t = 0 are in separable states (classically correlated) or entangled states (quantum mechanically correlated) are studied. It is shown that the Josephson currents in the two SQUID rings are also correlated

  9. Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions

    Science.gov (United States)

    Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen

    2018-05-01

    Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.

  10. Phase-controlled coherent population trapping in superconducting quantum circuits

    International Nuclear Information System (INIS)

    Cheng Guang-Ling; Wang Yi-Ping; Chen Ai-Xi

    2015-01-01

    We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. (paper)

  11. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase...

  12. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems

    International Nuclear Information System (INIS)

    Hoerhammer, C.

    2007-01-01

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  13. Evidence for a Field-induced Quantum Spin Liquid in $\\alpha$-RuCl$_3$

    OpenAIRE

    Baek, S. -H.; Do, S. -H.; Choi, K. -Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; Brink, Jeroen van den; Büchner, B.

    2017-01-01

    We report a $^{35}$Cl nuclear magnetic resonance study in the honeycomb lattice, $\\alpha$-RuCl$_3$, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that $\\alpha$-RuCl$_3$ exhibits a magnetic field-induced QSL. For fields larger than $\\sim 10$ T a spin-gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly...

  14. The effect of spin induced magnetization on Jeans instability of viscous and resistive quantum plasma

    International Nuclear Information System (INIS)

    Sharma, Prerana; Chhajlani, R. K.

    2014-01-01

    The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In the case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed

  15. Neutron interferometry lessons in experimental quantum mechanics, wave-particle duality, and entanglement

    CERN Document Server

    Rauch, Helmut

    2015-01-01

    The quantum interference of de Broglie matter waves is probably one of the most startling and fundamental aspects of quantum mechanics. It continues to tax our imaginations and leads us to new experimental windows on nature. Quantum interference phenomena are vividly displayed in the wide assembly of neutron interferometry experiments, which have been carried out since the first demonstration of a perfect silicon crystal interferometer in 1974. Since the neutron experiences all four fundamental forces of nature (strong, weak, electromagnetic, and gravitational), interferometry with neutrons provides a fertile testing ground for theory and precision measurements. Many Gedanken experiments of quantum mechanics have become real due to neutron interferometry. Quantum mechanics is a part of physics where experiment and theory are inseparably intertwined. This general theme permeates the second edition of this book. It discusses more than 40 neutron interferometry experiments along with their theoretical motivation...

  16. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical

  17. First-Order 0-π Quantum Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot

    Directory of Open Access Journals (Sweden)

    Romain Maurand

    2012-02-01

    Full Text Available We study a carbon-nanotube quantum dot embedded in a superconducting-quantum-interference-device loop in order to investigate the competition of strong electron correlations with a proximity effect. Depending on whether local pairing or local magnetism prevails, a superconducting quantum dot will exhibit a positive or a negative supercurrent, referred to as a 0 or π Josephson junction, respectively. In the regime of a strong Coulomb blockade, the 0-to-π transition is typically controlled by a change in the discrete charge state of the dot, from even to odd. In contrast, at a larger tunneling amplitude, the Kondo effect develops for an odd-charge (magnetic dot in the normal state, and quenches magnetism. In this situation, we find that a first-order 0-to-π quantum phase transition can be triggered at a fixed valence when superconductivity is brought in, due to the competition of the superconducting gap and the Kondo temperature. The superconducting-quantum-interference-device geometry together with the tunability of our device allows the exploration of the associated phase diagram predicted by recent theories. We also report on the observation of anharmonic behavior of the current-phase relation in the transition regime, which we associate with the two accessible superconducting states. Our results finally demonstrate that the spin-singlet nature of the Kondo state helps to enhance the stability of the 0 phase far from the mixed-valence regime in odd-charge superconducting quantum dots.

  18. Memory Reactivation Enables Long-Term Prevention of Interference.

    Science.gov (United States)

    Herszage, Jasmine; Censor, Nitzan

    2017-05-22

    The ability of the human brain to successively learn or perform two competing tasks constitutes a major challenge in daily function. Indeed, exposing the brain to two different competing memories within a short temporal offset can induce interference, resulting in deteriorated performance in at least one of the learned memories [1-4]. Although previous studies have investigated online interference and its effects on performance [5-13], whether the human brain can enable long-term prevention of future interference is unknown. To address this question, we utilized the memory reactivation-reconsolidation framework [2, 12] stemming from studies at the synaptic level [14-17], according to which reactivation of a memory enables its update. In a set of experiments, using the motor sequence learning task [18] we report that a unique pairing of reactivating the original memory (right hand) in synchrony with novel memory trials (left hand) prevented future interference between the two memories. Strikingly, these effects were long-term and observed a month following reactivation. Further experiments showed that preventing future interference was not due to practice per se, but rather specifically depended on a limited time window induced by reactivation of the original memory. These results suggest a mechanism according to which memory reactivation enables long-term prevention of interference, possibly by creating an updated memory trace integrating original and novel memories during the reconsolidation time window. The opportunity to induce a long-term preventive effect on memories may enable the utilization of strategies optimizing normal human learning, as well as recovery following neurological insults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Interaction-induced effects in the nonlinear coherent response of quantum-well excitons

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner

    1999-01-01

    Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...

  20. Measurements of a potential interference with laser-induced fluorescence measurements of ambient OH from the ozonolysis of biogenic alkenes

    Science.gov (United States)

    Rickly, Pamela; Stevens, Philip S.

    2018-01-01

    Reactions of the hydroxyl radical (OH) play a central role in the chemistry of the atmosphere, and measurements of its concentration can provide a rigorous test of our understanding of atmospheric oxidation. Several recent studies have shown large discrepancies between measured and modeled OH concentrations in forested areas impacted by emissions of biogenic volatile organic compounds (BVOCs), where modeled concentrations were significantly lower than measurements. A potential reason for some of these discrepancies involves interferences associated with the measurement of OH using the laser-induced fluorescence-fluorescence assay by gas expansion (LIF-FAGE) technique in these environments. In this study, a turbulent flow reactor operating at atmospheric pressure was coupled to a LIF-FAGE cell and the OH signal produced from the ozonolysis of α-pinene, β-pinene, ocimene, isoprene, and 2-methyl-3-buten-2-ol (MBO) was measured. To distinguish between OH produced from the ozonolysis reactions and any OH artifact produced inside the LIF-FAGE cell, an external chemical scrubbing technique was used, allowing for the direct measurement of any interference. An interference under high ozone (between 2 × 1013 and 10 × 1013 cm-3) and BVOC concentrations (between approximately 0.1 × 1012 and 40 × 1012 cm-3) was observed that was not laser generated and was independent of the ozonolysis reaction time. For the ozonolysis of α- and β-pinene, the observed interference accounted for approximately 40 % of the total OH signal, while for the ozonolysis of ocimene the observed interference accounted for approximately 70 % of the total OH signal. Addition of acetic acid to the reactor eliminated the interference, suggesting that the source of the interference in these experiments involved the decomposition of stabilized Criegee intermediates (SCIs) inside the FAGE detection cell. Extrapolation of these measurements to ambient concentrations suggests that these interferences

  1. Generalized Hofmann quantum process fidelity bounds for quantum filters

    Science.gov (United States)

    Sedlák, Michal; Fiurášek, Jaromír

    2016-04-01

    We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.

  2. Neutron multiwave interference with many resonance coils: a test experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chetverikov, Yu.O.; Axelrod, L.A.; Syromyatnikov, A.V.; Kraan, W.H.; Rekveldt, M.Th.; Grigoriev, S.V

    2004-07-15

    A test experiment on neutron multiwave interference based on Ramsey's resonance method of 'separated oscillating fields' has been performed. A neutron passes through N successive resonant coils (h{omega}{sub 0}=2{mu}{sub n}B{sub 0}), which flip the neutron spin with a probability {rho} smaller than 1. These coils are separated by path lengths L, over which a homogeneous field B{sub 1} is present. Since the spin-flip probability {rho} is smaller than 1, the number of waves for a neutron is doubled after each flipper, so as to produce 2{sup N} neutron waves at the end of the setup. The phase difference between any pair of waves is a multiple of a 'phase quantum' determined by the line integral of the field difference B{sub 1}-B{sub 0} over the length L. Highly regular patterns of the quantum mechanical probability R in (B{sub 1},{rho})--space appear owing to pairwise interference between individual waves.

  3. Control of the inversionless gain and refractive index in a V-type atom via squeezed vacuum and quantum interference

    International Nuclear Information System (INIS)

    Anton, M.A.; Calderon, Oscar G.; Carreno, F.

    2004-01-01

    In this paper we analyze the steady-state populations and gain lineshape of a V-type three-level atom with a closely spaced excited doublet. The atom is driven by a strong coherent field, a weak probe, and a single broadband squeezed vacuum. We focus our attention in the interplay between the quantum interference and the squeezed field on the probe gain. It is shown that the relative phases between the two coherent fields and the squeezed field play an important role in the optical properties of the atom. Specifically, we find that the probe can experience gain without population inversion for proper values of the parameters characterizing the squeezed field and in the absence of incoherent pumping. The system can be tailored to exhibit multiple dispersion regimes accompanied by negligible gain or absorption over a large bandwidth, a desirable feature for obtaining propagation of pulses with negligible distortion

  4. Quantum-induced interactions in the moduli space of degenerate BPS domain walls

    International Nuclear Information System (INIS)

    Alonso-Izquierdo, A.; Guilarte, J. Mateos

    2014-01-01

    In this paper quantum effects are investigated in a very special two-scalar field model having a moduli space of BPS topological defects. In a (1+1)-dimensional space-time the defects are classically degenerate in mass kinks, but in (3+1) dimensions the kinks become BPS domain walls, all of them sharing the same surface tension at the classical level. The heat kernel/zeta function regularization method will be used to control the divergences induced by the quantum kink and domain wall fluctuations. A generalization of the Gilkey-DeWitt-Avramidi heat kernel expansion will be developed in order to accommodate the infrared divergences due to zero modes in the spectra of the second-order kink and domain wall fluctuation operators, which are respectively N=2×N=2 matrix ordinary or partial differential operators. Use of these tools in the spectral zeta function associated with the Hessian operators paves the way to obtain general formulas for the one-loop kink mass and domain wall tension shifts in any (1+1)- or (3+1)-dimensional N-component scalar field theory model. Application of these formulae to the BPS kinks or domain walls of the N=2 model mentioned above reveals the breaking of the classical mass or surface tension degeneracy at the quantum level. Because the main parameter distinguishing each member in the BPS kink or domain wall moduli space is essentially the distance between the centers of two basic kinks or walls, the breaking of the degeneracy amounts to the surge in quantum-induced forces between the two constituent topological defects. The differences in surface tension induced by one-loop fluctuations of BPS walls give rise mainly to attractive forces between the constituent walls except if the two basic walls are very far apart. Repulsive forces between two close walls only arise if the coupling approaches the critical value from below

  5. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    Science.gov (United States)

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  6. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  7. Contextual approach to quantum formalism

    CERN Document Server

    Khrennikov, Andrei

    2009-01-01

    The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physical conditions), one can reproduce all distinct features of quantum probabilities such as the interference of probabilities and the violation of Bell’s inequality. Moreover, by starting with a formula for the interference of probabilities (which generalizes the well known classical formula of total probability), one can construct the representation of contextual probabilities by complex probability amplitudes or, in the abstract formalism, by normalized vectors of the complex Hilbert space or its hyperbolic generalization. Thus the Hilbert space representation of probabilities can be naturally derived from classical probabilistic assumptions. An important chapter of the book critically reviews known no-go theorems...

  8. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    Science.gov (United States)

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  9. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  10. Quantum stochastic calculus associated with quadratic quantum noises

    International Nuclear Information System (INIS)

    Ji, Un Cig; Sinha, Kalyan B.

    2016-01-01

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus

  11. Quantum stochastic calculus associated with quadratic quantum noises

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju, Chungbuk 28644 (Korea, Republic of); Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-64, India and Department of Mathematics, Indian Institute of Science, Bangalore-12 (India)

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.

  12. Fault-tolerant quantum repeater with atomic ensembles and linear optics

    International Nuclear Information System (INIS)

    Chen Zengbing; Zhao Bo; Chen Yuao; Schmiedmayer, Joerg; Pan Jianwei

    2007-01-01

    We present a detailed analysis of a robust quantum repeater architecture building on the original Duan-Lukin-Cirac-Zoller (DLCZ) protocol [L.M. Duan et al. Nature (London) 414, 413 (2001)]. The architecture is based on two-photon Hong-Ou-Mandel-type interference which relaxes the long-distance interferometric stability requirements by about seven orders of magnitude, from subwavelength for the single photon interference required by DLCZ to the coherence length of the photons, thereby removing the weakest point in the DLCZ scheme. Our proposal provides an exciting possibility for robust and realistic long-distance quantum communication

  13. Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Tyszka, K.; Moraru, D.; Samanta, A.; Mizuno, T.; Tabe, M.; Jabłoński, R.

    2015-01-01

    We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots

  14. Observation of Interference in Charge Exchange Scattering in He2++He+ Collisions

    International Nuclear Information System (INIS)

    Kruedener, S.; Melchert, F.; Diemar, K.v.; Pfeiffer, A.; Huber, K.; Salzborn, E.; Uskov, D.B.; Presnyakov, L.P.

    1997-01-01

    We report the first observation of interference in charge exchange collisions between two ions. Employing the crossed-beams technique in conjunction with signal recovery methods, angular differential cross sections have been measured for charge transfer in He 2+ +He + collisions at barycentric energies between 0.5 and 10.2keV. The oscillatory structure observed is in agreement with quantum calculations and can be interpreted in terms of interference between scattering into gerade and ungerade molecular states, which arise due to the identity of the nuclear charges. copyright 1997 The American Physical Society

  15. Introduction to modern theoretical physics. Volume II. Quantum theory and statistical physics

    International Nuclear Information System (INIS)

    Harris, E.G.

    1975-01-01

    The topics discussed include the history and principles, some solvable problems, and symmetry in quantum mechanics, interference phenomena, approximation methods, some applications of nonrelativistic quantum mechanics, relativistic wave equations, quantum theory of radiation, second quantization, elementary particles and their interactions, thermodynamics, equilibrium statistical mechanics and its applications, the kinetic theory of gases, and collective phenomena

  16. Designing, programming, and optimizing a (small) quantum computer

    Science.gov (United States)

    Svore, Krysta

    In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.

  17. Cavity quantum electrodynamics of a quantum dot in a micropillar cavity: comparison between experiment and theory

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Reitzenstein, S.

    2010-01-01

    The coupling between a quantum dot (QD) and a micropillar cavity is experimentally investigated by performing time-resolved, correlation, and two-photon interference measurements. The Jaynes-Cummings model including dissipative Lindblad terms and dephasing is analyzed, and all the parameters...

  18. Tortious Interference with Contract versus "Efficient" Breach: Theory and Empirical Evidence.

    OpenAIRE

    McChesney, Fred S

    1999-01-01

    Tortious interference is bothersome, normatively and positively, to scholars espousing the economic model of "efficient breach" of contract because it penalizes third-party inducements to breach. Scholars nonetheless find innovative second-best arguments to justify the coexistence of tortious interference with "efficient" breach. This article shows normatively why tortious interference would be part of a first-best legal system. Tortious interference provides property protection to contract r...

  19. Observation of electromagnetically induced Talbot effect in an atomic system

    Science.gov (United States)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-01-01

    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  20. Striped morphologies induced by magnetic impurities in d-wave superconductors

    International Nuclear Information System (INIS)

    Zuo Xianjun

    2011-01-01

    Research Highlights: → We investigate striped morphologies induced by magnetic impurities in d-wave superconductors (DSCs). → For the single-impurity and two-impurity cases, modulated checkerboard pattern and stripe-like structures are induced. → When more magnetic impurities are inserted, more complex modulated structures could be induced, including rectilinear and right-angled stripes and quantum-corral-like structures. → Impurities could induce complex striped morphologies in DSCs. - Abstract: We study striped morphologies induced by magnetic impurities in d-wave superconductors (DSCs) near optimal doping by self-consistently solving the Bogoliubov-de Gennes equations based on the t - t' - U - V model. For the single-impurity case, it is found that the stable ground state is a modulated checkerboard pattern. For the two-impurity case, the stripe-like structures in order parameters are induced due to the impurity-pinning effect. The modulations of DSC and charge orders share the same period of four lattice constants (4a), which is half the period of modulations in the coexisting spin order. Interestingly, when three or more impurities are inserted, the impurities could induce more complex striped morphologies due to quantum interference. Further experiments of magnetic impurity substitution in DSCs are expected to check these results.

  1. Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray.

    Science.gov (United States)

    Sun, Shuzhen; Qi, Dong; Yang, Yingying; Ji, Ping; Kong, Jingjing; Wu, Qingting

    2016-03-02

    P2X3 receptor plays a role in nociception transmission of orofacial pain in temporomandibular disorder patients. A previous study found that P2X3 receptors in masseter muscle afferent neurons and the trigeminal ganglia were involved in masseter muscle pain induced by inflammation caused by chemical agents or eccentric muscle contraction. In this study, we attempted to investigate changes in P2X3 receptors in the trigeminal subnucleus caudalis (Vc) and midbrain periaqueductal gray (PAG) in relation to the hyperalgesia of masseter muscles induced by occlusal interference. Experimental occlusal interference by crown application was established in 30 rats and another 30 rats were treated as sham controls. On days 1, 3, 7, 14, and 28 after crown application, the mechanical pain threshold was examined by von-Frey filaments. The expression of the P2X3 receptor in Vc and PAG was investigated by immunohistochemistry and quantitative PCR. We found that mechanical pain threshold of bilateral masseter muscles decreased significantly after occlusal interference, which remained for the entire experimental period. The mRNA expression of the P2X3 receptor increased significantly and the number of P2X3R-positive neurons increased markedly in Vc and PAG accordingly. These results indicate that the upregulated expression of P2X3 receptors in Vc and PAG may contribute toward the development of orofacial pain induced by occlusal interference and P2X3 receptors in the PAG may play a key role in the supraspinal antiociception effect.

  2. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Two-Photon Ghost Image and Interference-Diffraction

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  4. Fingerprint extraction from interference destruction terahertz spectrum.

    Science.gov (United States)

    Xiong, Wei; Shen, Jingling

    2010-10-11

    In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.

  5. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    Science.gov (United States)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  6. The quantum divide why Schrödinger's cat is either dead or alive

    CERN Document Server

    Gerry, Christopher C

    2013-01-01

    Using a selection of key experiments performed over the past 30 years or so, we present a discussion of the strikingly counter-intuitive phenomena of the quantum world that defy explanation in terms of everyday "common sense" reasoning, and we provide the corresponding quantum mechanical explanations with a very elementary use of associated formalism. Most, but certainly not all, of the experiments we describe are optical experiments involving a very small number of photons (particles of light). We begin with experiments on the wave-particle duality of electrons, proceed to experiments on the particle nature of light and single photon interference, delayed choice experiments and interaction-free detection, then go on to experiments involving the interference of two photons, quantum entanglement and Bell's Theorem, quantum teleportation, large-scale quantum effects and the divide between the classical and quantum worlds, addressing the question as to whether or not there is such a divide.

  7. Exciton-plasmon quantum metastates: self-induced oscillations of plasmon fields in the absence of decoherence in nanoparticle molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, S. M., E-mail: seyed.sadeghi@uah.edu [University of Alabama in Huntsville, Department of Physics and Nano and Mirco Device Center (United States)

    2016-02-15

    We investigate formation of unique quantum states (metastates) in quantum dot-metallic nanoparticle systems via self-induced coherent dynamics generated by interaction of these systems with a visible and an infrared laser fields. In such metastates, the quantum decoherence rates of the quantum dots can become zero and even negative while they start to rapidly change with time. Under these conditions, the energy dissipation rates and plasmon fields of the nanoparticle systems undergo undamped oscillations with gigahertz frequency, while the amplitudes of both visible and the infrared laser fields are considered to be time-independent. These dynamics also lead to variation of the plasmon absorption of the metallic nanoparticles between high and nearly zero values, forming electromagnetically induced transparency oscillations. We show that under these conditions, the effective transition energies and broadening of the quantum dots undergo oscillatory dynamics, highlighting the unique aspects of the metastates. These results extend the horizon for investigation of light-matter interaction in the presence of zero or negative polarization dephasing rates with strong time dependency.

  8. Full revivals in 2D quantum walks

    International Nuclear Information System (INIS)

    Stefanak, M; Jex, I; Kollar, B; Kiss, T

    2010-01-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  9. Individuation in Quantum Mechanics and Space-Time

    Science.gov (United States)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  10. Interference lithography for optical devices and coatings

    Science.gov (United States)

    Juhl, Abigail Therese

    Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self

  11. Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting

    Science.gov (United States)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-01

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a ``super pressing'' state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  12. Control of quantum phenomena: past, present and future

    International Nuclear Information System (INIS)

    Brif, Constantin; Chakrabarti, Raj; Rabitz, Herschel

    2010-01-01

    Quantum control is concerned with active manipulation of physical and chemical processes on the atomic and molecular scale. This work presents a perspective of progress in the field of control over quantum phenomena, tracing the evolution of theoretical concepts and experimental methods from early developments to the most recent advances. Among numerous theoretical insights and technological improvements that produced the present state-of-the-art in quantum control, there have been several breakthroughs of foremost importance. On the technology side, the current experimental successes would be impossible without the development of intense femtosecond laser sources and pulse shapers. On the theory side, the two most critical insights were (i) realizing that ultrafast atomic and molecular dynamics can be controlled via manipulation of quantum interferences and (ii) understanding that optimally shaped ultrafast laser pulses are the most effective means for producing the desired quantum interference patterns in the controlled system. Finally, these theoretical and experimental advances were brought together by the crucial concept of adaptive feedback control (AFC), which is a laboratory procedure employing measurement-driven, closed-loop optimization to identify the best shapes of femtosecond laser control pulses for steering quantum dynamics towards the desired objective. Optimization in AFC experiments is guided by a learning algorithm, with stochastic methods proving to be especially effective. AFC of quantum phenomena has found numerous applications in many areas of the physical and chemical sciences, and this paper reviews the extensive experiments. Other subjects discussed include quantum optimal control theory, quantum control landscapes, the role of theoretical control designs in experimental realizations and real-time quantum feedback control. The paper concludes with a perspective of open research directions that are likely to attract significant attention in

  13. The effects of trait impulsivity on proactive and reactive interference control.

    Science.gov (United States)

    Xiang, Ling; Chen, Yan; Chen, Antao; Zhang, Fenghua; Xu, Fuming; Wang, Baoxi

    2018-02-01

    The current study used event-related brain potentials (ERPs) to explore whether self-reported trait impulsivity in healthy individuals might be differentially related to proactive and reactive interference control. Participants with high and low impulsivity (HI and LI, respectively) performed a modified version of the prime-target interference task. Proactive interference control was induced in the mostly incongruent (MI) context and reactive interference control was induced in the mostly congruent (MC) context. Although the behavioral data revealed no difference between HI and LI individuals in terms of the interference effects (incongruent - congruent) under both contexts, the ERP results showed that impulsivity has a different influence on the interference effects under different task contexts. In the MC context, the interference effects on the medial frontal negativity (MFN) and the negative sustained potential (N-SP) were greater, while that on the positive sustained potential (P-SP) were smaller in the HI compared to those in the LI group. This suggests that high levels of impulsivity might be associated with a reduced efficiency of the processes supporting reactive control to resolve interference when interference is not expected. In contrast, the three ERP indices (MFN, P-SP, and N-SP) of interference processing in the MI context were insensitive to variations in impulsivity. This suggests that HI individuals might be as effective as LI individuals in recruiting proactive control for sustained active maintenance of task goals to anticipate and prevent interference throughout the experimental blocks where interference occurs frequently. In conclusion, these results indicate that impulsivity has a more negative influence on reactive interference control than on proactive interference control. Copyright © 2017. Published by Elsevier B.V.

  14. To argumentate in quantum physics. Instruction-specific argumentation aids; Argumentieren in der Quantenphysik. Unterrichtsspezifische Argumentationshilfen

    Energy Technology Data Exchange (ETDEWEB)

    Friege, Gunnar; Scholz, Ruediger (eds.)

    2017-07-01

    In this book aids for the instruction of quantum physics are described. Especially considered are the conception of the photon, quantum interference, entanglement, the photoelectric effect, and coincidence experiments. (HSI)

  15. Quantum demultiplexer of quantum parameter-estimation information in quantum networks

    Science.gov (United States)

    Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang

    2018-05-01

    The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

  16. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    Science.gov (United States)

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  17. Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations

    Energy Technology Data Exchange (ETDEWEB)

    Granata, Carmine, E-mail: carmine.granata@cnr.it; Vettoliere, Antonio

    2016-02-19

    The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In

  18. High temperature radio-frequency superconducting quantum interference device system for detection of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Pretzell, Alf

    2012-01-01

    This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.

  19. Vacillations induced by interference of stationary and traveling planetary waves

    Science.gov (United States)

    Salby, Murry L.; Garcia, Rolando R.

    1987-01-01

    The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.

  20. Non-invasive and high-sensitivity scanning detection of magnetic nanoparticles in animals using high-Tc scanning superconducting-quantum-interference-device biosusceptometry.

    Science.gov (United States)

    Chieh, J J; Hong, C Y

    2011-08-01

    Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.

  1. Interferometric Computation Beyond Quantum Theory

    Science.gov (United States)

    Garner, Andrew J. P.

    2018-03-01

    There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.

  2. ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings

    International Nuclear Information System (INIS)

    Rodolfo, B.

    1999-01-01

    These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non-disturbing and Schroedinger-cat-like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy, Science and Technology database

  3. Motor learning interference is proportional to occlusion of LTP-like plasticity.

    Science.gov (United States)

    Cantarero, Gabriela; Tang, Byron; O'Malley, Rebecca; Salas, Rachel; Celnik, Pablo

    2013-03-13

    Learning interference occurs when learning something new causes forgetting of an older memory (retrograde interference) or when learning a new task disrupts learning of a second subsequent task (anterograde interference). This phenomenon, described in cognitive, sensory, and motor domains, limits our ability to learn multiple tasks in close succession. It has been suggested that the source of interference is competition of neural resources, although the neuronal mechanisms are unknown. Learning induces long-term potentiation (LTP), which can ultimately limit the ability to induce further LTP, a phenomenon known as occlusion. In humans we quantified the magnitude of occlusion of anodal transcranial direct current stimulation-induced increased excitability after learning a skill task as an index of the amount of LTP-like plasticity used. We found that retention of a newly acquired skill, as reflected by performance in the second day of practice, is proportional to the magnitude of occlusion. Moreover, the degree of behavioral interference was correlated with the magnitude of occlusion. Individuals with larger occlusion after learning the first skill were (1) more resilient to retrograde interference and (2) experienced larger anterograde interference when training a second task, as expressed by decreased performance of the learned skill in the second day of practice. This effect was not observed if sufficient time elapsed between training the two skills and LTP-like occlusion was not present. These findings suggest competition of LTP-like plasticity is a factor that limits the ability to remember multiple tasks trained in close succession.

  4. Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    DEFF Research Database (Denmark)

    DiCarlo, L.; M. Marcus, C.; Harris jr, J.

    2003-01-01

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current...... that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic...

  5. Quantum-to-classical transition and gravity-induced instabilities (in progress)

    International Nuclear Information System (INIS)

    Lima, William C.C.

    2013-01-01

    Full text: It has been argued that gravitational fields produced by realistic matter distributions can induce the vacuum fluctuations of some non-minimally coupled free scalar field to go through a phase of exponential amplification. For the particular case of the formation of a neutron star, the energy density of the field in its initial vacuum state rivals the one of the star in a lapse of just a few milliseconds after the effect has been triggered. From this point on back reaction effects must be taken into account in order to predict the fate of both the star and scalar field. Classical analyses have shown that, at least for some values of the mass-radius ratio of the star and the non-minimal coupling parameter, a non-null scalar field profile could stabilize the system. The aim of our study is to shed some light on the back reaction process from the perspective of the quantum-to-classical transition that will occur once the classical background spacetime reacts to the unstable quantum field. In particular, the transition to a classical regime requires the specification of a well-defined classical initial state for the field. This can be accomplished analyzing the quantum state of the field around the time back reaction effects become important. (author)

  6. Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl_{3}.

    Science.gov (United States)

    Baek, S-H; Do, S-H; Choi, K-Y; Kwon, Y S; Wolter, A U B; Nishimoto, S; van den Brink, Jeroen; Büchner, B

    2017-07-21

    We report a ^{35}Cl nuclear magnetic resonance study in the honeycomb lattice α-RuCl_{3}, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α-RuCl_{3} exhibits a magnetic-field-induced QSL. For fields larger than ∼10  T, a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ∼50  K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.

  7. Evidence for a Field-Induced Quantum Spin Liquid in α -RuCl3

    Science.gov (United States)

    Baek, S.-H.; Do, S.-H.; Choi, K.-Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; van den Brink, Jeroen; Büchner, B.

    2017-07-01

    We report a 35Cl nuclear magnetic resonance study in the honeycomb lattice α -RuCl3 , a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α -RuCl3 exhibits a magnetic-field-induced QSL. For fields larger than ˜10 T , a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ˜50 K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.

  8. One-step implementation of the Toffoli gate via quantum Zeno dynamics

    International Nuclear Information System (INIS)

    Shao Xiaoqiang; Wang Hongfu; Chen Li; Zhang Shou; Yeon, Kyu-Hwang

    2009-01-01

    Based on the quantum Zeno dynamics, we present a scheme for one-step implementation of a Toffoli gate via manipulating three rf superconducting quantum interference device (SQUID) qubits to resonantly interact with a superconducting cavity. The effects of decoherence such as spontaneous emission and the loss of cavity are also considered.

  9. Reflections on Friction in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Yair Rezek

    2010-08-01

    Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.

  10. Dirac's aether in relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Petroni, N.C.; Bari Univ.; Vigier, J.P.

    1984-01-01

    The paper concerns Dirac's aether model, based on a stochastic covariant distribution of subquantum motions. Stochastic derivation of the relativistic quantum equations; deterministic nonlocal interpretation of the Aspect-Rapisarda experiments on the EPR paradox; and photon interference with itself; are all discussed. (U.K.)

  11. Observing quantum trajectories: From Mott’s problem to quantum Zeno effect and back

    Energy Technology Data Exchange (ETDEWEB)

    Gosson, Maurice de, E-mail: maurice.de.gosson@univie.ac.at [University of Vienna, Faculty of Mathematics (NuHAG) Oskar-Morgenstern-Platz 1, 1090 Vienna (Austria); Hiley, Basil [Physics Department, University College, London, Gower Street, London WC1E 6BT (United Kingdom); TPRU, Birkbeck, University of London, Malet Street, London WC1E 7HX (United Kingdom); Cohen, Eliahu [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL (United Kingdom)

    2016-11-15

    The experimental results of Kocsis et al., Mahler et al. and the proposed experiments of Morley et al. show that it is possible to construct “trajectories” in interference regions in a two-slit interferometer. These results call for a theoretical re-appraisal of the notion of a “quantum trajectory” first introduced by Dirac and in the present paper we re-examine this notion from the Bohm perspective based on Hamiltonian flows. In particular, we examine the short-time propagator and the role that the quantum potential plays in determining the form of these trajectories. These trajectories differ from those produced in a typical particle tracker and the key to this difference lies in the active suppression of the quantum potential necessary to produce Mott-type trajectories. We show, using a rigorous mathematical argument, how the active suppression of this potential arises. Finally we discuss in detail how this suppression also accounts for the quantum Zeno effect.

  12. Quantum memory Write, read and reset

    CERN Document Server

    Wu Tai Tsun; Wu, Tai Tsun; Yu, Ming Lun

    2002-01-01

    A model is presented for the quantum memory, the content of which is a pure quantum state. In this model, the fundamental operations of writing on, reading, and resetting the memory are performed through scattering from the memory. The requirement that the quantum memory must remain in a pure state after scattering implies that the scattering is of a special type, and only certain incident waves are admissible. An example, based on the Fermi pseudo-potential in one dimension, is used to demonstrate that the requirements on the scattering process are consistent and can be satisfied. This model is compared with the commonly used model for the quantum memory; the most important difference is that the spatial dimensions and interference play a central role in the present model.

  13. Quantum and classical control of single photon states via a mechanical resonator

    International Nuclear Information System (INIS)

    Basiri-Esfahani, Sahar; Myers, Casey R; Combes, Joshua; Milburn, G J

    2016-01-01

    Optomechanical systems typically use light to control the quantum state of a mechanical resonator. In this paper, we propose a scheme for controlling the quantum state of light using the mechanical degree of freedom as a controlled beam splitter. Preparing the mechanical resonator in non-classical states enables an optomechanical Stern–Gerlach interferometer. When the mechanical resonator has a small coherent amplitude it acts as a quantum control, entangling the optical and mechanical degrees of freedom. As the coherent amplitude of the resonator increases, we recover single photon and two-photon interference via a classically controlled beam splitter. The visibility of the two-photon interference is particularly sensitive to coherent excitations in the mechanical resonator and this could form the basis of an optically transduced weak-force sensor. (paper)

  14. Effect of the change in the interface structure of Pd(100)/SrTiO{sub 3} for quantum-well induced ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sakuragi, Shunsuke, E-mail: sakuragi@az.appi.keio.ac.jp [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-0061 (Japan); Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Sato, Tetsuya [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-0061 (Japan)

    2017-02-01

    Measurements of temperature dependent magnetization of Pd(100) ultrathin films on SrTiO{sub 3}(100) substrates which shows quantum-well induced ferromagnetism were performed. We observed the jump in magnetization of Pd(100) due to the structural phase transition of SrTiO{sub 3}, and then, the disappearance of ferromagnetism after temperature-cycle repetition. X-ray reflectivity measurement revealed that the density of a few layers in the Pd film decreased near the Pd/SrTiO{sub 3} interface after temperature cycles. This suggests that the structural change affects the quantum-well induced ferromagnetism, and lowering of the crystallinity of Pd at the interface has a negative effect on quantum-well induced ferromagnetism of Pd(100) ultrathin films. - Highlights: • Interface manipulation of quantum-well induced ferromagnetism was performed. • Ferromagnetic Pd(100) ultrathin films on SrTiO{sub 3} substrate were prepared. • The structural phase transition of SrTiO{sub 3} degraded gradually the interface structure. • Change in the interface structure caused change in the magnetic moment of Pd. • Magnetic change was interpreted by modulation in the effective thickness of the film.

  15. Statistical quasi-particle theory for open quantum systems

    Science.gov (United States)

    Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2018-04-01

    This paper presents a comprehensive account on the recently developed dissipaton-equation-of-motion (DEOM) theory. This is a statistical quasi-particle theory for quantum dissipative dynamics. It accurately describes the influence of bulk environments, with a few number of quasi-particles, the dissipatons. The novel dissipaton algebra is then followed, which readily bridges the Schrödinger equation to the DEOM theory. As a fundamental theory of quantum mechanics in open systems, DEOM characterizes both the stationary and dynamic properties of system-and-bath interferences. It treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that could be experimentally measurable. Examples are the linear or nonlinear Fano interferences and the Herzberg-Teller vibronic couplings in optical spectroscopies. This review covers the DEOM construction, the underlying dissipaton algebra and theorems, the physical meanings of dynamical variables, the possible identifications of dissipatons, and some recent advancements in efficient DEOM evaluations on various problems. The relations of the present theory to other nonperturbative methods are also critically presented.

  16. Fermion-induced quantum critical points

    OpenAIRE

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-01-01

    A unified theory of quantum critical points beyond the conventional Landau?Ginzburg?Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau?Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such t...

  17. Resonant electronic transport through a triple quantum-dot with Λ-type level structure under dual radiation fields

    International Nuclear Information System (INIS)

    Guan, Chun; Xing, Yunhui; Zhang, Chao; Ma, Zhongshui

    2014-01-01

    Due to quantum interference, light can transmit through dense atomic media, a phenomenon known as electromagnetically induced transparency (EIT). We propose that EIT is not limited to light transmission and there is an electronic analog where resonant transparency in charge transport in an opaque structure can be induced by electromagnetic radiation. A triple-quantum-dots system with Λ-type level structure is generally opaque due to the level in the center dot being significantly higher and therefore hopping from the left dot to the center dot is almost forbidden. We demonstrate that an electromagnetically induced electron transparency (EIET) in charge of transport can indeed occur in the Λ-type system. The direct evidence of EIET is that an electron can travel from the left dot to the right dot, while the center dot apparently becomes invisible. We analyze EIET and the related shot noise in both the zero and strong Coulomb blockade regimes. It is found that the EIET (position, height, and symmetry) can be tuned by several controllable parameters of the radiation fields, such as the Rabi frequencies and detuning frequencies. The result offers a transparency/opaque tuning technique in charge transport using interfering radiation fields

  18. Direct observation of interlayer Josephson vortices in heavily Pb-doped Bi2Sr2CaCu2Oy by scanning superconducting quantum interference device microscopy

    International Nuclear Information System (INIS)

    Kasai, Junpei; Hasegawa, Tetsuya; Okazaki, Noriaki; Koinuma, Hideomi; Nakayama, Yuri; Shimoyama, Jun-ichi; Kishio, Kohji; Motohashi, Teruki; Matsumoto, Yuji

    2006-01-01

    Josephson vortices trapped in cross-sectional edge surfaces of Pb 0.6 Bi 1.4 Sr 2 CaCu 2 O y has been directly observed by using a scanning superconducting quantum interference device (SQUID) microscope. The magnetic field distribution B z around each vortex is substantially anisotropic, compared with the usual vortex in the ab-plane, and is extended over 100 μm toward the in-plane direction. By fitting a theoretical B z function to experimental ones, c-axis penetration depth λ c was estimated to be 11.2 ±0.7 μm, which is in good agreement with the literature value, 12.6 μm, obtained from the Josephson plasma edge frequency. (author)

  19. Representations of quantum bicrossproduct algebras

    International Nuclear Information System (INIS)

    Arratia, Oscar; Olmo, Mariano A del

    2002-01-01

    We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra

  20. Mode locking of electron spin coherences in singly charged quantum dots.

    Science.gov (United States)

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.