Fraunhofer regime of operation for superconducting quantum interference filters
DEFF Research Database (Denmark)
Shadrin, A.V.; Constantinian, K.Y.; Ovsyannikov, G.A.;
2008-01-01
Series arrays of superconducting quantum interference devices (SQUIDs) with incommensurate loop areas, so-called superconducting quantum interference filters (SQIFs), are investigated in the kilohertz and the gigahertz frequency range. In SQIFs made of high-T-c bicrystal junctions the flux-to-vol...
Multilayer MgB2 superconducting quantum interference filter magnetometers
Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.; Xi, X. X.; Chen, Ke
2016-04-01
We report two types of all-MgB2 superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB2 superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm2. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ˜16 V/T at 3 K and a field noise of ˜110 pT/Hz1/2 above 100 Hz at 10 K. In a second configuration, the SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm2 to 25 μm2 and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ˜70 pT/Hz1/2 above 100 Hz at 20 K.
DEFF Research Database (Denmark)
Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro
2014-01-01
Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....
Holographic interference filters
Diehl, Damon W.
Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.
Interference of Quantum Market Strategies
Piotrowski, E W; Syska, J
2003-01-01
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper is devoted to the analysis of interference of quantum strategies in quantum market games.
Quantum interference in polyenes
Tsuji, Yuta; Hoffmann, Roald; Movassagh, Ramis; Datta, Supriyo
2014-12-01
The explicit form of the zeroth Green's function in the Hückel model, approximated by the negative of the inverse of the Hückel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments - if coherence in probe connections can be arranged - in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.
Quantum interference in polyenes
Energy Technology Data Exchange (ETDEWEB)
Tsuji, Yuta; Hoffmann, Roald, E-mail: rh34@cornell.edu [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853 (United States); Movassagh, Ramis [Department of Mathematics, Northeastern University, Boston, Massachusetts 02115, USA and Department of Mathematics, Massachusetts Institute of Technology, Building E18, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307 (United States); Datta, Supriyo [School of Electrical and Computer Engineering, Purdue University, Electrical Engineering Building, 465 Northwestern Ave., West Lafayette, Indiana 47907-2035 (United States)
2014-12-14
The explicit form of the zeroth Green's function in the Hückel model, approximated by the negative of the inverse of the Hückel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments – if coherence in probe connections can be arranged – in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.
Graphene quantum interference photodetector.
Alam, Mahbub; Voss, Paul L
2015-01-01
In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach-Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.
Graphene quantum interference photodetector
Directory of Open Access Journals (Sweden)
Mahbub Alam
2015-03-01
Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.
Filtering algorithm for dotted interferences
Energy Technology Data Exchange (ETDEWEB)
Osterloh, K., E-mail: kurt.osterloh@bam.de [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Buecherl, T.; Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany); Zscherpel, U.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Bock, S. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany)
2011-09-21
An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.
Signal interference RF photonic bandstop filter.
Aryanfar, Iman; Choudhary, Amol; Shahnia, Shayan; Pagani, Mattia; Liu, Yang; Marpaung, David; Eggleton, Benjamin J
2016-06-27
In the microwave domain, signal interference bandstop filters with high extinction and wide stopbands are achieved through destructive interference of two signals. Implementation of this filtering concept using RF photonics will lead to unique filters with high performance, enhanced tuning range and reconfigurability. Here we demonstrate an RF photonic signal interference filter, achieved through the combination of precise synthesis of stimulated Brillouin scattering (SBS) loss with advanced phase and amplitude tailoring of RF modulation sidebands. We achieve a square-shaped, 20-dB extinction RF photonic filter over a tunable bandwidth of up to 1 GHz with a central frequency tuning range of 16 GHz using a low SBS loss of ~3 dB. Wideband destructive interference in this novel filter leads to the decoupling of the filter suppression from its bandwidth and shape factor. This allows the creation of a filter with all-optimized qualities.
Interference Phenomena in Quantum Information
Stefanak, Martin
2010-01-01
One of the key features of quantum mechanics is the interference of probability amplitudes. The reason for the appearance of interference is mathematically very simple. It is the linear structure of the Hilbert space which is used for the description of quantum systems. In terms of physics we usually talk about the superposition principle valid for individual and composed quantum objects. So, while the source of interference is understandable it leads in fact to many counter-intuitive physical phenomena which puzzle physicists for almost hundred years. The present thesis studies interference in two seemingly disjoint fields of physics. However, both have strong links to quantum information processing and hence are related. In the first part we study the intriguing properties of quantum walks. In the second part we analyze a sophisticated application of wave packet dynamics in atoms and molecules for factorization of integers. The main body of the thesis is based on the original contributions listed separately...
Quantum Interference in Graphene Nanoconstrictions.
Gehring, Pascal; Sadeghi, Hatef; Sangtarash, Sara; Lau, Chit Siong; Liu, Junjie; Ardavan, Arzhang; Warner, Jamie H; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A
2016-07-13
We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Pérot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.
"Quantum Interference with Slits" Revisited
Rothman, Tony
2010-01-01
Marcella [arXiv:quant-ph/0703126] has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.
"Quantum Interference with Slits" Revisited
Rothman, Tony; Boughn, Stephen
2011-01-01
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…
"Quantum Interference with Slits" Revisited
Rothman, Tony; Boughn, Stephen
2011-01-01
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…
Quantum Diffusion, Measurement and Filtering
Belavkin, V P
1993-01-01
A brief presentation of the basic concepts in quantum probability theory is given in comparison to the classical one. The notion of quantum white noise, its explicit representation in Fock space, and necessary results of noncommutative stochastic analysis and integration are outlined. Algebraic differential equations that unify the quantum non Markovian diffusion with continuous non demolition observation are derived. A stochastic equation of quantum diffusion filtering generalising the classical Markov filtering equation to the quantum flows over arbitrary *-algebra is obtained. A Gaussian quantum diffusion with one dimensional continuous observation is considered.The a posteriori quantum state difusion in this case is reduced to a linear quantum stochastic filter equation of Kalman-Bucy type and to the operator Riccati equation for quantum correlations. An example of continuous nondemolition observation of the coordinate of a free quantum particle is considered, describing a continuous collase to the statio...
Silicon superconducting quantum interference device
Energy Technology Data Exchange (ETDEWEB)
Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)
2015-08-17
We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.
``Quantum'' interference with bouncing drops
Bohr, Tomas; Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens
2013-11-01
In a series of recent papers (most recently) Yves Couder and collaborators have explored the dynamics of walking drops on the surface of a vibrated bath of silicon oil and have demonstrated a close analogy to quantum phenomena. The bouncing drop together with the surface wave that it excites seems to be very similar to the pilot wave envisaged by de Broglie for quantum particles. In particular, have studied a double slit experiment with walking drops, where an interference pattern identical to the quantum version is found even though it is possible to follow the orbits of the drops and unambigously determine which slit it goes through, something which in quantum mechanics would be ruled out by the Heisenberg uncertainly relations. We have repeated the experiment and present a somewhat more complicated picture. Theoretically, we study a Schrödinger equation with a source term originating from a localised ``particle'' being simultaneously guided by the wave. We present simple solutions to such a field theory and discuss the fundamental difficulties met by such a theory in order to comply with quantum mechanics.
Relay self interference minimisation using tapped filter
Jazzar, Saleh
2013-05-01
In this paper we introduce a self interference (SI) estimation and minimisation technique for amplify and forward relays. Relays are used to help forward signals between a transmitter and a receiver. This helps increase the signal coverage and reduce the required transmitted signal power. One problem that faces relays communications is the leaked signal from the relay\\'s output to its input. This will cause an SI problem where the new received signal at the relay\\'s input will be added with the unwanted leaked signal from the relay\\'s output. A Solution is proposed in this paper to estimate and minimise this SI which is based upon using a tapped filter at the destination. To get the optimum weights for this tapped filter, some channel parameters must be estimated first. This is performed blindly at the destination without the need of any training. This channel parameter estimation method is named the blind-self-interference-channel-estimation (BSICE) method. The next step in the proposed solution is to estimate the tapped filter\\'s weights. This is performed by minimising the mean squared error (MSE) at the destination. This proposed method is named the MSE-Optimum Weight (MSE-OW) method. Simulation results are provided in this paper to verify the performance of BSICE and MSE-OW methods. © 2013 IEEE.
General Quantum Interference Principle and Duality Computer
Institute of Scientific and Technical Information of China (English)
LONG Gui-Lu
2006-01-01
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of thesub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer,the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer,it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented:the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.
Gravitational and rotational effects in quantum interference
Energy Technology Data Exchange (ETDEWEB)
Anandan, J.
1977-03-15
The phase shift due to gravitation and rotation in the quantum interference of two coherent beams is obtained relativistically and compared with the recent experiment of Colella, Overhauser, and Werner. A general expression relating the quantum phase shift to the transverse acceleration of a classical particle in the plane of interference for an arbitrary interaction with any external field is given. This can serve as a correspondence principle between quantum physics and classical physics. The phase shift due to the coupling of spin to curvature of space-time is deduced and written explicitly for the special case of a Schwarzschild field. The last result implies that a massless spinning particle can have at most two helicity states and its world line in a gravitational field is a null geodesic. Finally, new experiments are proposed to test the effect of rotation on quantum interference and to obtain direct evidence of the equivalence principle in quantum mechanics.
Quantum interference from remotely trapped ions
Energy Technology Data Exchange (ETDEWEB)
Gerber, S; Rotter, D; Hennrich, M; Blatt, R [Institute for Experimental Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Rohde, F; Schuck, C; Almendros, M; Gehr, R; Dubin, F; Eschner, J [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av del Canal OlImpic, E-08860 Castelldefels (Spain)], E-mail: francois.dubin@icfo.es
2009-01-15
We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, Ca{sup +} and Ba{sup +}. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference.
Scattering Induced Quantum Interference of Multiple Quantum Optical States
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Wubs, Martijn; Mortensen, N. Asger;
2011-01-01
Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum...... interference induced by the transmission of quantized light through a multiple-scattering medium will persist even after averaging over an ensemble of scattering samples....
High-Q Bandpass Comb Filter for Mains Interference Extraction
Directory of Open Access Journals (Sweden)
Neycheva T.
2009-12-01
Full Text Available This paper presents a simple digital high-Q bandpass comb filter for power-line (PL or other periodical interference extraction. The filter concept relies on a correlated signal average resulting in alternating constructive and destructive spectrum interference i.e. the so-called comb frequency response. The presented filter is evaluated by Matlab simulations with real ECG signal contaminated with low amplitude PL interference. The made simulations show that this filter accurately extract the PL interference. It has high-Q notches only at PL odd harmonics and is appropriate for extraction of any kind of odd harmonic interference including rectangular shape. The filter is suitable for real-time operation with popular low-cost microcontrollers.
Quantum Radiation Reaction: From Interference to Incoherence.
Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger
2016-01-29
We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.
Quantum radiation reaction: from interference to incoherence
Dinu, Victor; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger
2015-01-01
We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.
Quantum interference between transverse spatial waveguide modes
Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal
2017-01-01
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.
Quantum interference between transverse spatial waveguide modes
Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal
2017-01-01
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing. PMID:28106036
Understanding quantum interference in General Nonlocality
Wanng, Hai-Jhun
2010-01-01
In this paper we attempt to give an understanding of quantum double-slit interference of fermions in the framework of General Nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-interaction of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-interaction is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schr\\"odinger current and Dirac current respectively, both of which are relevant to topology. The gap between these two cases corresponds to a spin-current effect, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and non-perturbative self-interactions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all.
Nonclassical Paths in Quantum Interference Experiments
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Heuristic explanation of quantum interference experiments
Guowen, W
2005-01-01
A particle is described as a non-spreading wave packet satisfying a linear equation within the framework of special relativity. Young's and other interference experiments are explained with a hypothesis that there is a coupling interaction between the peaked and non-peaked pieces of the wave packet. This explanation of the interference experiments provides a realistic interpretation of quantum mechanics. The interpretation implies that there is physical reality of particles and no wave function collapse. It also implies that neither classical mechanics nor current quantum mechanics is a complete theory for describing physical reality and the Bell inequalities are not the proper touchstones for reality and locality. The problems of the boundary between the macro-world and micro-world and the de-coherence in the transition region (meso-world) between the two are discussed. The present interpretation of quantum mechanics is consistent with the physical aspects of the Copenhagen interpretation, such as, the super...
Many-body quantum interference on hypercubes
Dittel, Christoph; Keil, Robert; Weihs, Gregor
2017-03-01
Beyond the regime of distinguishable particles, many-body quantum interferences influence quantum transport in an intricate manner. However, symmetries of the single-particle transformation matrix alleviate this complexity and even allow the analytic formulation of suppression laws, which predict final states to occur with a vanishing probability due to total destructive interference. Here we investigate the symmetries of hypercube graphs and their generalisations with arbitrary identical subgraphs on all vertices. We find that initial many-particle states, which are invariant under self-inverse symmetries of the hypercube, lead to a large number of suppressed final states. The condition for suppression is determined solely by the initial symmetry, while the fraction of suppressed states is given by the number of independent symmetries of the initial state. Our findings reveal new insights into particle statistics for ensembles of indistinguishable bosons and fermions and may represent a first step towards many-particle quantum protocols in higher-dimensional structures.
Polarization control based interference microwave photonic filters
Madziar, Krzysztof; Galwas, Bogdan
2016-12-01
In this paper we present a concept of multi-line Microwave Photonic Filter (MPF) based on polarization beam splitting and polarization control in each line. Coefficients of investigated filter are determined by attenuation of its lines and that on the other hand can be manipulated by change of the polarization in the fiber. Presented results involve scattering parameters (S21) measurements of optical path over polarization control unit rotation, scattering parameters (S21) characteristics of investigated filter and transmission optimization capabilities.
Radio VLBI and the quantum interference paradox
Singal, Ashok K
2016-01-01
We address here the question of interference of radio signals from astronomical sources like distant quasars, in a very long baseline interferometer (VLBI), where two (or more) distantly located radio telescopes (apertures), receive simultaneous signal from the sky. In an equivalent optical two-slit experiment, it is generally argued that for the photons involved in the interference pattern on the screen, it is not possible, even in principle, to ascertain which of the two slits a particular photon went through. It is argued that any procedure to ascertain this destroys the interference pattern. But in the case of the modern radio VLBI, it is a routine matter to record the phase and amplitude of the voltage outputs from the two radio antennas on a recording media separately and then do the correlation between the two recorded signals later in an offline manner. Does this not violate the quantum interference principle? We provide a resolution of this problem here.
Parameter Estimation, Model Reduction and Quantum Filtering
Chase, Bradley A
2009-01-01
This dissertation explores the topics of parameter estimation and model reduction in the context of quantum filtering. Chapters 2 and 3 provide a review of classical and quantum probability theory, stochastic calculus and filtering. Chapter 4 studies the problem of quantum parameter estimation and introduces the quantum particle filter as a practical computational method for parameter estimation via continuous measurement. Chapter 5 applies these techniques in magnetometry and studies the estimator's uncertainty scalings in a double-pass atomic magnetometer. Chapter 6 presents an efficient feedback controller for continuous-time quantum error correction. Chapter 7 presents an exact model of symmetric processes of collective qubit systems.
Quantum Interference of Multiple Beams Induced by Multiple Scattering
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter
2011-01-01
We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging.......We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging....
rf superconducting quantum interference device metamaterials
Lazarides, N.; Tsironis, G. P.
2007-04-01
A rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing its tuning by a slight change of the intensity of the applied field.
Spiral holographic imaging through quantum interference
Tang, Jie; Ming, Yang; Hu, Wei; Lu, Yan-qing
2017-07-01
Spiral holographic imaging in the Hong-Ou-Mandel interference scheme is introduced. Using spontaneous parametric down-conversion as a source of photon pairs, we analyze the joint orbital angular momentum spectrum of a reference photon and the photon encoding information of the object. The first-order interference of light beams in standard holographic imaging is replaced by the quantum interference of two-photon probability amplitudes. The difficulty in retrieving the amplitude and phase structure of an unknown photon is thereby avoided as classical interferometric techniques such as optical holography do not apply. Our results show that the full information of the object's transmission function can be recorded in the spiral hologram, which originates directly from the joint orbital angular momentum spectrum. This presents a lateral demonstration of compressive imaging and can potentially be used for remote sensing.
Strong Correlation of Fluorescence Photons without Quantum Interference
Institute of Scientific and Technical Information of China (English)
HU Xiang-Ming; WANG Fei
2007-01-01
It has been predicted that a driven three-level V atom can emit strongly correlated fluorescence photons in the presence of quantum interference. Here we examine the effects of quantum interference on the intensity correlation of fluorescence photons emitted from a driven three-level A atom. Unexpectedly, strong correlation occurs without quantum interference. The quantum interference tends to reduce the correlation function to a normal level. The essential difference between these two cases is traced to the different effects of quantum interference on coherent population trapping (CPT). For the V atom, quantum interference and coherent excitation combine to lead to CPT. For the A atom, however, the quantum interference tends to spoil CPT while the coherent excitation induces the effect.
Quantum search via superconducting quantum interference devices in a cavity
Institute of Scientific and Technical Information of China (English)
Lu Yan; Dong Ping; Xue Zheng-Yuan; Cao Zhuo-Liang
2007-01-01
We propose a scheme for implementing the Grover search algorithm with two superconducing quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity system and the required interaction time is very short. The simplicity of the process and the reduction of the interaction time are important for restraining decoherence.
An Adaptive Kalman Filter Excisor for Suppressing Narrowband Interference
1993-11-01
interferences in- connues. Le filtre de Kalman doit alors "apprendre" ý ajuster un de ses param~tres pour effectuer le meilleur traitement. L’erreur est...4"L l B"• -- -- - - -.- ,_, . An~. A)7cQ 0 -QGOP II liii 111111 IIa( Naional 06fenso I ’ I Deence nitonals I "It AN ADAPTIVE KALMAN FILTER EXCISOR...Ottawa 0 A o~ oO Best Available COpy 4INational Defense Defence nationals AN ADAPTIVE KALMAN FILTER EXCISOR FOR SUPPRESSING NARROWBAND INTERFERENCE by
Quantum Model for the Selectivity Filter in K$^{+}$ Ion Channel
Cifuentes, A A
2013-01-01
In this work, we present a quantum transport model for the selectivity filter in the KcsA potassium ion channel. This model is fully consistent with the fact that two conduction pathways are involved in the translocation of ions thorough the filter, and we show that the presence of a second path may actually bring advantages for the filter as a result of quantum interference. To highlight interferences and resonances in the model, we consider the selectivity filter to be driven by a controlled time-dependent external field which changes the free energy scenario and consequently the conduction of the ions. In particular, we demonstrate that the two-pathway conduction mechanism is more advantageous for the filter when dephasing in the transient configurations is lower than in the main configurations. As a matter of fact, K$^+$ ions in the main configurations are highly coordinated by oxygen atoms of the filter backbone and this increases noise. Moreover, we also show that, for a wide range of driving frequencie...
Directory of Open Access Journals (Sweden)
Luís BRAVO PEREIRA
2010-09-01
Full Text Available For many years filters like the Kodak Wratten E series, or the equivalent Schneider B+W 415, were used as standard UV cut filters, necessary to obtain good quality on UV Fluorescence photography. The only problem with the use of these filters is that, when they receive the UV radiation that they should remove, they present themselves an internal fluorescence as side effect, that usually reduce contrast and quality on the final image. This article presents the results of our experiences on using some innovative filters, that appeared available on the market in recent years, projected to adsorb UV radiation even more efficiently than with the mentioned above pigment based standard filters: the interference filters for UV rejection (and, usually, for IR rejection too manufactured using interference layers, that present better results than the pigment based filters. The only problem with interference filters type is that they are sensitive to the rays direction and, because of that, they are not adequate to wide-angle lenses. The internal fluorescence for three filters: the B+W 415 UV cut (equivalent to the Kodak Wratten 2E, pigment based, the B+W 486 UV IR cut (an interference type filter, used frequently on digital cameras to remove IR or UV and the Baader UVIR rejection filter (two versions of this interference filter were used had been tested and compared. The final quality of the UV fluorescence images seems to be of a superior quality when compared to the images obtained with classic filters.
Quantum Interference and Entanglement Induced by Multiple Scattering of Light
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Mortensen, Asger; Lodahl, Peter
2010-01-01
We report on the effects of quantum interference induced by the transmission of an arbitrary number of optical quantum states through a multiple-scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between tw...
Filter Based Interference Mitigation in Multi Band-OFDM
Directory of Open Access Journals (Sweden)
Avila J.
2014-02-01
Full Text Available This study aims at to mitigate the interference between the primary user and secondary user in the wireless environment. This becomes necessary task because with the growing demand for bandwidth for wireless connectivity, it has become essential to come up with innovative solutions to tackle the demand. Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM offers a compelling answer for higher bandwidth and data rate requirements. The performance of multi band OFDM has been tarnished by narrow band interference due to the existence of primary users in the UWB spectrum. This occurs due to the leakage of spectral interference power. Despite the fact that Multiband OFDM has the inherent capability to mitigate the interference, independent mitigation techniques become necessary when the interference level is too high. In this study, interference mitigation is carried out by filtering action at the receiver. Results of simulation are compared to analyze the performance of the filters. Further steps have been taken out to enhance the performance of multiband OFDM system which in turn will be helpful in mitigating the interference.
Quantum interference in an interfacial superconductor
Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M. R. V. L.; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya. M.; Vandersypen, Lieven M. K.; Caviglia, Andrea D.
2016-10-01
The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (Tc; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-Tc superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.
Stable Quantum Filters with Scattering Phenomena
Institute of Scientific and Technical Information of China (English)
W. U. Ahamed; C. Kambhampati
2008-01-01
Quantum neural network filters for signal processing have received a lot of interest in the recent past. The implementations of these filters had a number of design parameters that led to numerical inefficiencies. At the same time the solution procedures employed were explicit in that the evolution of the time-varying functions had to be controlled. This often led to numerical instabilities. This paper outlines a procedure for improving the stability, numerical efficiency, and the accuracy of quantum neural network filters. Two examples are used to illustrate the principles employed.
Interference Cancellation in Aircraft Cockpit by Adaptive Filters
Directory of Open Access Journals (Sweden)
Arun C.
2016-01-01
Full Text Available This paper investigates on the development and implementation of adaptive noise cancellation (ANC algorithm meant for mitigating the high level engine noise in the cockpit of an aircraft, which makes the speech signal unintelligible. Adaptive filters configured as interference canceller have the potential application in mitigating the above interference. A comparative study of Gradient based adaptive Infinite Impulse Response (IIR algorithm and its modified version is performed using MATLAB simulator in terms of converging speed. From the simulation result the best IIR algorithm is used for implementation in Performance Optimized with Enhanced RISC PC (Power PC 7448.
Euclidean Quantum Mechanics and Universal Nonlinear Filtering
Directory of Open Access Journals (Sweden)
Bhashyam Balaji
2009-02-01
Full Text Available An important problem in applied science is the continuous nonlinear filtering problem, i.e., the estimation of a Langevin state that is observed indirectly. In this paper, it is shown that Euclidean quantum mechanics is closely related to the continuous nonlinear filtering problem. The key is the configuration space Feynman path integral representation of the fundamental solution of a Fokker-Planck type of equation termed the Yau Equation of continuous-continuous filtering. A corollary is the equivalence between nonlinear filtering problem and a time-varying Schr¨odinger equation.
Time-domain quantum interference in graphene
Fillion-Gourdeau, François; Gagnon, Denis; Lefebvre, Catherine; MacLean, Steve
2016-09-01
The electron momentum density obtained from the Schwinger-like mechanism is evaluated for a graphene sample immersed in a homogeneous time-dependent electric field. Based on the analogy between graphene low-energy electrons and quantum electrodynamics (QED), numerical techniques borrowed from strong field QED are employed and compared to approximate analytical approaches. It is demonstrated that for some range of experimentally accessible parameters, the pair production proceeds by sequences of adiabatic evolutions followed by nonadiabatic Landau-Zener transitions, reminiscent of the Kibble-Zurek mechanism describing topological defect density in second order phase transitions. For some field configurations, this yields interference patterns in momentum space which are explained in terms of the adiabatic-impulse model and the Landau-Zener-Stückelberg interferometry.
Classical and quantum interference in multiband optical Bloch oscillations
Longhi, S
2010-01-01
Classical and quantum interference of light propagating in arrays of coupled waveguides and undergoing multiband optical Bloch oscillations (BOs) with negligible Zener tunneling is theoretically investigated. In particular, it is shown that Mach-Zehnder-like interference effects spontaneously arise in multiband BOs owing to beam splitting and subsequent beam recombination occurring in one BO cycle. As a noteworthy example of quantum interference, we discuss the doubling of interference fringes in photon counting rates for a correlated photon pair undergoing two-band BOs, a phenomenon analogous to the manifestation of the de Broglie wavelength of an entangled biphoton state observed in quantum Mach-Zehnder interferometry.
Parameter estimation, model reduction and quantum filtering
Chase, Bradley A.
This thesis explores the topics of parameter estimation and model reduction in the context of quantum filtering. The last is a mathematically rigorous formulation of continuous quantum measurement, in which a stream of auxiliary quantum systems is used to infer the state of a target quantum system. Fundamental quantum uncertainties appear as noise which corrupts the probe observations and therefore must be filtered in order to extract information about the target system. This is analogous to the classical filtering problem in which techniques of inference are used to process noisy observations of a system in order to estimate its state. Given the clear similarities between the two filtering problems, I devote the beginning of this thesis to a review of classical and quantum probability theory, stochastic calculus and filtering. This allows for a mathematically rigorous and technically adroit presentation of the quantum filtering problem and solution. Given this foundation, I next consider the related problem of quantum parameter estimation, in which one seeks to infer the strength of a parameter that drives the evolution of a probe quantum system. By embedding this problem in the state estimation problem solved by the quantum filter, I present the optimal Bayesian estimator for a parameter when given continuous measurements of the probe system to which it couples. For cases when the probe takes on a finite number of values, I review a set of sufficient conditions for asymptotic convergence of the estimator. For a continuous-valued parameter, I present a computational method called quantum particle filtering for practical estimation of the parameter. Using these methods, I then study the particular problem of atomic magnetometry and review an experimental method for potentially reducing the uncertainty in the estimate of the magnetic field beyond the standard quantum limit. The technique involves double-passing a probe laser field through the atomic system, giving
Ruling Out Multi-Order Interference in Quantum Mechanics
Sinha, Urbasi; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor
2010-01-01
Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule, one of the axioms of quantum mechanics could be violated. Born's rule predicts that quantum interference, as shown by a double slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multi-path, i.e. higher order interferences thus leading to a deviation from the theory. We performed a three slit experiment with photons and bounded the magnitude of three path interference to less than 10-2 of the expected two-path interference, thus ruling out third and higher order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semi-classical and quantum regimes.
Ruling out multi-order interference in quantum mechanics.
Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor
2010-07-23
Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule--one of the axioms of quantum mechanics--could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10(-2) of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes.
General relativistic effects in quantum interference of "clocks"
Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2016-01-01
Quantum mechanics and general relativity have been each successfully tested in numerous experiments. However, the regime where both theories are jointly required to explain physical phenomena remains untested by laboratory experiments, and is also not fully understood by theory. This contribution reviews recent ideas for a new type of experiments: quantum interference of "clocks", which aim to test novel quantum effects that arise from time dilation. "Clock" interference experiments could be realised with atoms or photons in near future laboratory experiments.
A tilted interference filter in a converging beam
Löfdahl, Mats G; Kiselman, Dan
2011-01-01
Context. Narrow-band interference filters can be tuned toward shorter wavelengths by tilting them from the perpendicular to the optical axis. This can be used as a cheap alternative to real tunable filters, such as Fabry-P\\'erot interferometers and Lyot filters. At the Swedish 1-m Solar Telescope, such a setup is used to scan through the blue wing of the Ca II H line. Because the filter is mounted in a converging beam, the incident angle varies over the pupil, which causes a variation of the transmission over the pupil, different for each wavelength within the passband. This causes broadening of the filter transmission profile and degradation of the image quality. Aims. We want to characterize the properties of our filter, at normal incidence as well as at different tilt angles. Knowing the broadened profile is important for the interpretation of the solar images. Compensating the images for the degrading effects will improve the resolution and remove one source of image contrast degradation. In particular, w...
Determination of SATI Instrument Filter Parameters by Processing Interference Images
Atanassov, Atanas Marinov
2010-01-01
This paper presents a method for determination of interference filter parameters such as the effective refraction index and the maximal transmittance wavelength on the basis of image processing of a spectrogram produced by Spectrometer Airglow Temperature Imager instrument by means of data processing. The method employs the radial sections for determination of points from the crests and valleys in the spectrograms. These points are involved in the least square method for determination of the centres and radii of the crests and valleys. The use of the image radial sections allows to determine the maximal number of crests and valleys in the spectrogram. The application of the least square fitting leads to determination of the image centers and radii of the crests and valleys with precision higher than one pixel. The nocturnal course of the filter parameters produced by this method is presented and compared with that of the known ones. The values of the filter parameters thus obtained are closer to the laborator...
Quantum filtering of optical coherent states
DEFF Research Database (Denmark)
Wittmann, C.; Elser, D.; Andersen, Ulrik Lund
2008-01-01
We propose and experimentally demonstrate nondestructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis......, probabilistically filtered out. We consider three different filters based on on-off detection, phase stabilized, and phase randomized homodyne detection. We find that on-off detection, optimal in the ideal theoretical setting, is superior to the homodyne strategy also in a practical setting....
Enhanced Kerr nonlinearity via quantum interference from spontaneous emission
Energy Technology Data Exchange (ETDEWEB)
Asadpour, S.H., E-mail: S.Hosein.Asadpour@gmail.com [Young Researchers Club, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali (Iran, Islamic Republic of); Sahrai, M. [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Soltani, A. [School of Engineering and Emerging Technologies, University of Tabriz, Tabriz (Iran, Islamic Republic of); Hamedi, H.R. [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2012-01-02
A novel atom configuration is proposed for a giant Kerr nonlinearity in zero linear and nonlinear probe absorption. It is shown that without coherent control field and just by quantum interference of spontaneous emission, a giant Kerr nonlinearity can be obtained. -- Highlights: ► The quantum interference from spontaneous emission is considered in a four-level medium. ► The giant Kerr nonlinearity in the zero linear and nonlinear absorption is obtained. ► The quantum interference effect on group velocity is then investigated.
Interference and interactions in open quantum dots
Bird, J P; Ferry, D K; Moura, A P S; Lai, Y C; Indlekofer, K M
2003-01-01
In this report, we review the results of our joint experimental and theoretical studies of electron-interference, and interaction, phenomena in open electron cavities known as quantum dots. The transport through these structures is shown to be heavily influenced by the remnants of their discrete density of states, elements of which remain resolved in spite of the strong coupling that exists between the cavity and its reservoirs. The experimental signatures of this density of states are discussed at length in this report, and are shown to be related to characteristic wavefunction scarring, involving a small number of classical orbits. A semiclassical analysis of this behaviour shows it to be related to the effect of dynamical tunnelling, in which electrons are injected into the dot tunnel through classically forbidden regions of phase space, to access isolated regular orbits. The dynamical tunnelling gives rise to the formation of long-lived quasi-bound states in the open dots, and the many-body implications a...
Interference and inequality in quantum decision theory
Energy Technology Data Exchange (ETDEWEB)
Cheon, Taksu, E-mail: taksu.cheon@kochi-tech.ac.j [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan); Takahashi, Taiki, E-mail: ttakahashi@lynx.let.hokudai.ac.j [Laboratory of Social Psychology, Department of Behavioral Science, Faculty of Letters, Hokkaido University, N.10, W.7, Kita-ku, Sapporo 060-0810 (Japan)
2010-12-01
The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.
Quantum Interference between Transverse Spatial Waveguide Modes
Mohanty, Aseema; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal
2016-01-01
Integrated quantum optics has drastically reduced the size of table-top optical experiments to the chip-scale, allowing for demonstrations of large-scale quantum information processing and quantum simulation. However, despite these advances, practical implementations of quantum photonic circuits remain limited because they consist of large networks of waveguide interferometers that path encode information which do not easily scale. Increasing the dimensionality of current quantum systems using higher degrees of freedom such as transverse spatial field distribution, polarization, time, and frequency to encode more information per carrier will enable scalability by simplifying quantum computational architectures, increasing security and noise tolerance in quantum communication channels, and simulating richer quantum phenomena. Here we demonstrate a scalable platform for photonic quantum information processing using waveguide quantum circuit building blocks based on the transverse spatial mode degree of freedom:...
Using quantum filters as edge detectors in infrared images
Bolaños Marín, Daniela
2014-06-01
Some new filters inspired in quantum models are used as edge detectors in infrared images. In this case, Bessel, Hermite and Morse filters will be applied to detect edges and fibrillar structures in infrared images. The edge detectors will be built by the Laplacian of the mentioned quantum filters. Furthermore, using curvature operators, curvature detectors and amplifiers of contrast will be constructed to analyze infrared images. The quantum filter prototyping will be done using computer algebra software, specifically Maple and its package, ImageTools. The quantum filters will be applied to infrared images using the technique of convolutions and blurred derivatives. It is expected that designed quantum filters will be useful for analysis and processing of infrared images. As future investigations, we propose to design plugins with the quantum filters that can be incorporated into the program ImageJ, which will facilitate the use of the quantum filters for the infrared image processing.
Quantum Interference and Selectivity through Biological Ion Channels
Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin
2017-01-01
The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17–53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference. PMID:28134331
Interference filter with amorphous silicon layer and direct laser recording on it
Kutanov, A.; Sydyk uluu, Nurbek; Snimshikov, I.; Kazakbaeva, Z.
2016-08-01
The interference spectral filters with amorphous silicon layer deposited by magnetron sputtering on the reflective metal layer on a glass substrate are developed. Interference filter select from white light source components corresponding to quasimonochromatic wavelength with a narrow bandwidth. The thickness of the amorphous silicon layer determines the center wavelength of the pass band of the filter. It proposed to use interference filter with amorphous silicon layer for direct laser recoding on it. Results on direct laser recording on amorphous silicon layer of the interference filter by single-mode Blu Ray laser (X = 405 nm) with high contrast reflected image are demonstrated.
Revisiting the target-constrained interference-minimized filter (TCIMF)
Chang, Chein-I.; Ren, Hsuan; Hsueh, Mingkai; Du, Qian; D"Amico, Francis M.; Jensen, James O.
2003-12-01
The Orthogonal Subspace Projection (OSP) and Constrained Energy Minimization (CEM) have been used in hyperpsectral target detection and classification. A target-constrained interference-minimized filter (TCIMF) was recently proposed to extend the CEM to improve signal detectability to annihilating undesired target signal sources as the way carried out in the OSP. In this paper, we revisit the TCIMF from a signal processing viewpoint where signals can be characterized by three types of information sources, desired target sources and undesired target sources, both of which are provided a priori, and interferers which are unknown interfering sources. By virtue of such signal decomposition, we chan show that the TCIMF is actually a generalization of the OSP and CEM. In particular, we investigate assumptions made for the OSP and CEM in terms of these three types of signal sources and exploit insights into their filter design. As will be shown in this paper, the OSP and the CEM perform the same tasks by operating different levels of information and both can be viewed as special cases of the TCIMF.
Quantum interference of independently generated telecom-band single photons
Energy Technology Data Exchange (ETDEWEB)
Patel, Monika [Center for Photonic Communication and Computing, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3112 (United States); Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N. [Center for Photonic Communication and Computing, Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3118 (United States); Kumar, Prem [Center for Photonic Communication and Computing, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3112, USA and Center for Photonic Communication and Computing, Department of Electrical Engineering (United States)
2014-12-04
We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.
Complementarity in temporal ghost interference and temporal quantum eraser
Cho, Kiyoung; Noh, Jaewoo
2015-06-01
We present a theory for the complementarity in temporal interference and quantum erasure. We consider the case of entangled biphoton where we can get the information of single photon's arrival time without making a disturbing measurement. We find a mathematical equation for the complementary relation for a temporal double slit experiment. We also propose a quantum eraser scheme that will elucidate that the complementarity is originated from the quantum entanglement.
An exact factorization perspective on quantum interferences in nonadiabatic dynamics
Curchod, Basile F. E.; Agostini, Federica; Gross, E. K. U.
2016-07-01
Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrast to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.
An Exact Factorization Perspective on Quantum Interferences in Nonadiabatic Dynamics
Curchod, Basile F E; Gross, E K U
2016-01-01
Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface - the exact surface on which the nuclear dynamics takes place - using an exactly-solvable model to reproduce different conditions for quantum interferences. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrast to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics the one of the exact nuclear probability density.
General relativistic effects in quantum interference of “clocks”
Zych, M.; Pikovski, I.; Costa, F.; Brukner, Č.
2016-06-01
Quantum mechanics and general relativity have been each successfully tested in numerous experiments. However, the regime where both theories are jointly required to explain physical phenomena remains untested by laboratory experiments, and is also not fully understood by theory. This contribution reviews recent ideas for a new type of experiments: quantum interference of “clocks”, which aim to test novel quantum effects that arise from time dilation. “Clock” interference experiments could be realised with atoms or photons in near future laboratory experiments.
Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming
Chang, John
Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic
Nonmonotonic quantum-to-classical transition in multiparticle interference
DEFF Research Database (Denmark)
Ra, Young-Sik; Tichy, Malte; Lim, Hyang-Tag
2013-01-01
Quantum-mechanical wave–particle duality implies that probability distributions for granular detection events exhibit wave-like interference. On the single-particle level, this leads to self-interference—e.g., on transit across a double slit—for photons as well as for large, massive particles...... that interference fades away monotonically with increasing distinguishability—in accord with available experimental evidence on the single- and on the many-particle level. Here, we demonstrate experimentally and theoretically that such monotonicity of the quantum-to-classical transition is the exception rather than...... the rule whenever more than two particles interfere. As the distinguishability of the particles is continuously increased, different numbers of particles effectively interfere, which leads to interference signals that are, in general, nonmonotonic functions of the distinguishability of the particles...
Two-photon interference between disparate sources for quantum networking
McMillan, A. R.; Labonté, L.; Clark, A. S.; Bell, B.; Alibart, O.; Martin, A.; Wadsworth, W. J.; Tanzilli, S.; Rarity, J. G.
2013-06-01
Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80 +/- 4%, which paves the way to hybrid universal quantum networks.
Generating nonclassical quantum input field states with modulating filters
Energy Technology Data Exchange (ETDEWEB)
Gough, John E. [Aberystwyth University, Department of Physics, Aberystwyth, Wales (United Kingdom); Zhang, Guofeng [The Hong Kong Polytechnic University, Department of Applied Mathematics, Hong Kong (China)
2015-12-15
We give explicit constructions of quantum dynamical filters which generate nonclassical states (coherent states, cat states, shaped single and multi-photon states) of quantum optical fields as inputs to general quantum Markov systems. The filters will be quantum harmonic oscillators damped by the input fields, and we exploit the fact that the cascaded filter and system will have a Lindbladian that is naturally Wick-ordered in the filter modes. In particular the initialization of the modulating filter will determine the signal state generated. (orig.)
MSK modulated filter bank multicarrier system with mitigated subcarrier interference
Liu, Bo; Zhang, Lijia; Xin, Xiangjun
2017-01-01
This paper proposes a novel minimum shift keying (MSK) modulated filter bank multi-carrier (FBMC) system. It can improve the signal performance by suppressing the interference among subcarriers. The spectral efficiency can be improved due to the absence of cyclic prefix in the system. In the experiment, a 15.67 Gb/s MSK-FBMC signal is transmitted over 80 km single mode fiber successfully. The performance of FBMC based multicarrier system outperforms that of fast Fourier transforms (FFT) based multicarrier system by 0.9 dB. Compared with QPSK mapping, 1 dB optical signal to noise ratio (OSNR) improvement is obtained with MSK mapping under a normalized residual frequency offset of 0.2.
Self-limiting filters for band-selective interferer rejection or cognitive receiver protection
Energy Technology Data Exchange (ETDEWEB)
Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.
2017-03-07
The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.
Quantum Interference in Time-Delayed Nonsequential Double Ionization
Maxwell, A S
2015-01-01
We perform a systematic analysis of quantum interference in nonsequential double ionization focusing on the recollision-excitation with subsequent ionization (RESI) mechanism, employing the strong-field approximation (SFA). We find that interference has a major influence on the shape, localization and symmetry of the correlated electron momentum distributions. In particular, the fourfold symmetry with regard to the parallel momentum components observed in previous SFA studies is broken. Two types of interference are observed and thoroughly analyzed, namely that caused by electron indistinguishability and intra-cycle events, and that stemming from different excitation channels. We find that interference is most prominent around the diagonal and anti-diagonal in the parallel-momentum plane and provide fully analytical expressions for most interference patterns encountered. We also show that this interference can be controlled by an appropriate choice of phase and excited-state geometry. This leads a to myriad o...
Magnetophotorefractive effect and interference filters in lithium niobate
Energy Technology Data Exchange (ETDEWEB)
Dam-Hansen, C.
1996-03-01
This thesis deals with the fundamental photorefractive and photovoltaic properties of iron-doped lithium niobate crystals. Experimental observations of a strong magnetic field effect on the energy coupling and grating formation in a vectorial interaction scheme are presented. To the author`s knowledge these are the first reported results in the field. It is shown that an enhancement of the diffraction efficiency of 60% is possible by applying even a moderate magnetic field of 0.23 T. A new theoretical model of the magnetophotorefractive effect in the vectorial interaction scheme is presented. It describes the space-charge field formation, two-wave mixing and grating formation under the influence of an externally applied magnetic field. Good agreement with the experimental results and the first measurement of nondiagonal components of the magnetophotovoltaic tensor are reported. A theoretical model for the temperature properties of photorefractive interference filters with subangstrom bandwidths are presented and compared favourably with experimental investigations. A novel method for determining the spectral response of these filters from a combined thermal and angular response measurements is described. (au) 9 tabs., 30 ills., 84 refs.
Spying on photons with photons: quantum interference and information
Ataman, Stefan
2016-07-01
The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.
Spying on photons with photons: quantum interference and information
Ataman, Stefan
2016-01-01
The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100 % visibility if the quantum state is carefully engineered.
Quantum interference of molecules -- probing the wave nature of matter
Venugopalan, Anu
2012-01-01
The double slit interference experiment has been famously described by Richard Feynman as containing the "only mystery of quantum mechanics". The history of quantum mechanics is intimately linked with the discovery of the dual nature of matter and radiation. While the double slit experiment for light is easily undertsood in terms of its wave nature, the very same experiment for particles like the electron is somewhat more difficult to comprehend. By the 1920s it was firmly established that electrons have a wave nature. However, for a very long time, most discussions pertaining to interference experiments for particles were merely gedanken experiments. It took almost six decades after the establishment of its wave nature to carry out a 'double slit interference' experiment for electrons. This set the stage for interference experiments with larger particles. In the last decade there has been spectacular progress in matter-wave interefernce experiments. Today, molecules with over a hundred atoms can be made to i...
Cross-conjugation and quantum interference: a general correlation?
DEFF Research Database (Denmark)
Valkenier, Hennie; Guedon, Constant M.; Markussen, Troels
2014-01-01
We discuss the relationship between the pi-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated...... interference occurs can be tuned by the choice of side group. The latter provides an outlook for future devices in this fascinating field connecting chemistry and physics....
Superluminal light propagation via quantum interference in decay channels
Arun, R.
2016-01-01
We examine the propagation of a weak probe light through a coherently driven $Y$-type system. Under the condition that the excited atomic levels decay via same vacuum modes, the effects of quantum interference in decay channels are considered. It is found that the interference in decay channels results in a lossless anomalous dispersion between two gain peaks. We demonstrate that the probe pulse propagation can in principle be switched from subluminal to superluminal due to the decay-induced ...
Phases, quantum interferences and effective vector meson masses in nuclei
Energy Technology Data Exchange (ETDEWEB)
Soyeur, M.
1996-12-31
We discuss the prospects for observing the mass of {rho}- and {omega}-mesons around nuclear matter density by studying their coherent photoproduction in nuclear targets and subsequent in-medium decay into e{sup +}e{sup -}pairs. The quantum interference of {rho} and {omega}-mesons in the e{sup +}e{sup -}channel and the interference between Bethe-Heitler pairs and dielectrons from vector meson decays are of particular interest. (author). 21 refs.
Nonlinear optical effects and Hong-Ou-Mandel interference in cavity quantum electrodynamics
Mirza, Imran M.; van Enk, Steven J.
Pure quantum interference among single photons is one of the key ingredients to perform linear optics quantum computation (LOQC). The Hong-Ou-Mandel interference (HOMI) [C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, (18), 2044-2046 (1987)] i.e. complete destructive interference between two identical and indistinguishable photons simultaneously entering input ports of a 50/50 beam splitter, is a well-known example in this context. In this talk, I'll present our theoretical study of HOMI in a coupled Jaynes-Cummings array. In particular and by applying quantum jump/trajectory formalism, I'll focus on how partial quantum interference between two photons survive both non-linearities produced by two-level emitter and spectral filtering due to optical cavities in our coupled cavity array setup [Imran M. Mirza and Steven J. van Enk, Opt. Comm. 343, 172-177 (2015)]. Along with LOQC, this work is crucial from the perspective of exploiting coupled cavity arrays to store single photons reliably (without altering their temporal and spectral traits) [Imran M. Mirza, Steven J. van Enk and Jeff Kimble, JOSA B, 10, 2640-2649, (2013)].
Oscillatory quantum interference effects in narrow-gap semiconductor heterostructures
Lillianfeld, R. B.; Kallaher, R. L.; Heremans, J. J.; Chen, Hong; Goel, N.; Chung, S. J.; Santos, M. B.; Van Roy, W.; Borghs, G.
2010-01-01
We investigate quantum interference phenomena in narrow bandgap semiconductors under strong spin-orbit interaction, by measuring the magnetoresistance across mesoscopic closed-path structures fabricated in two-dimensional electron systems. We discuss our results in terms of four quantum interference effects brought about by geometric phases acquired by the electron wave functions: the Aharonov-Bohm phase, the Altshuler-Aronov-Spivak effect, the Berry's phase due to the evolution of the spin degree of freedom, and the Aharonov-Casher phase.
Nonmonotonic quantum-to-classical transition in multiparticle interference
DEFF Research Database (Denmark)
Ra, Young-Sik; Tichy, Malte; Lim, Hyang-Tag
2013-01-01
Quantum-mechanical wave–particle duality implies that probability distributions for granular detection events exhibit wave-like interference. On the single-particle level, this leads to self-interference—e.g., on transit across a double slit—for photons as well as for large, massive particles...... that interference fades away monotonically with increasing distinguishability—in accord with available experimental evidence on the single- and on the many-particle level. Here, we demonstrate experimentally and theoretically that such monotonicity of the quantum-to-classical transition is the exception rather than...
Observation of quantum interference between separated mechanical oscillator wavepackets
Kienzler, D; Negnevitsky, V; Lo, H -Y; Marinelli, M; Nadlinger, D; Home, J P
2015-01-01
The ability of matter to be superposed at two different locations while being intrinsically connected by a quantum phase is among the most counterintuitive predictions of quantum physics. While such superpositions have been created for a variety of systems, the in-situ observation of the phase coherence has remained out of reach. Using a heralding measurement on a spin-oscillator entangled state, we project a mechanical trapped-ion oscillator into a superposition of two spatially separated states, a situation analogous to Schr\\"odinger's cat. Quantum interference is clearly observed by extracting the occupations of the energy levels. For larger states, we encounter problems in measuring the energy distribution, which we overcome by performing the analogous measurement in a squeezed Fock basis with each basis element stretched along the separation axis. Using 8 dB of squeezing we observe quantum interference for cat states with phase space separations of $\\Delta \\alpha = 15.6$, corresponding to wavepackets wit...
Quantum Physics A First Encounter Interference, Entanglement, and Reality
Scarani, Valerio
2006-01-01
The essential features of quantum physics, largely debated since its discovery, are presented in this book, through the description (without mathematics) of recent experiments. Putting the accent on physical phenomena, this book clarifies the historical issues (delocalisation, interferences) and reaches out to modern topics (quantum cryptography, non-locality and teleportation); the debate on interpretations is serenely reviewed. - ;Quantum physics is often perceived as a weird and abstract theory, which physicists must use in order to make correct predictions. But many recent experiments have shown that the weirdness of the theory simply mirrors the weirdness of phenomena: it is Nature itself, and not only our description of it, that behaves in an astonishing way. This book selects those, among these typical quantum phenomena, whose rigorous description requires neither the formalism, nor an important. background in physics. The first part of the book deals with the phenomenon of single-particle interference...
Quantum Interference in Cognition: Structural Aspects of the Brain
Aerts, Diederik
2012-01-01
We identify the presence of typically quantum effects, namely 'superposition' and 'interference', in what happens when human concepts are combined, and provide a quantum model in complex Hilbert space that represents faithfully experimental data measuring the situation of combining concepts. Our model shows how 'interference of concepts' explains the effects of underextension and overextension when two concepts combine to the disjunction of these two concepts. This result supports our earlier hypothesis that human thought has a superposed two-layered structure, one layer consisting of 'classical logical thought' and a superposed layer consisting of 'quantum conceptual thought'. Possible connections with recent findings of a 'grid-structure' for the brain are analyzed, and influences on the mind/brain relation, and consequences on applied disciplines, such as artificial intelligence and quantum computation, are considered.
Institute of Scientific and Technical Information of China (English)
Li Yong-Qing; Li Jian; Ma Feng-Cai
2006-01-01
Collisional quantum interference (CQI) on the intramolecular rotational energy transfer is observed in an experiment with a static cell, and the integral interference angles are measured. To obtain more accurate information, an experiment with a molecular beam is carried out, and thereby the relationship between the differential interference angle and the scattering angle is obtained. Based on the first-Born approximation of time-dependent perturbation theory,the theoretical model of CQI is developed in an atom-diatom system in the condition of the molecular beam, with the long-range interaction potential taken into account. The method of measuring correctly the differential interference angle is presented. The tendencies of the differential interference angle changing with the impact parameter and relative velocity are discussed. The theoretical model presented here is important for understanding or performing the experiment in the molecular beam.
Quantum superposition counterintuitive consequences of coherence, entanglement, and interference
Silverman, M P
2007-01-01
Coherence, entanglement, and interference arise from quantum superposition, the most distinctive and puzzling feature of quantum physics. Silverman, whose extensive experimental and theoretical work has helped elucidate these processes, presents a clear and engaging discussion of the role of quantum superposition in diverse quantum phenomena such as the wavelike nature of particle propagation, indistinguishability of identical particles, nonlocal interactions of correlated particles, topological effects of magnetic fields, and chiral asymmetry in nature. He also examines how macroscopic quantum coherence may be able to extricate physics from its most challenging quandary, the collapse of a massive degenerate star to a singularity in space in which the laws of physics break down. Explained by a physicist with a concern for clarity and experimental achievability, the extraordinary nature of quantum superposition will fascinate the reader not only for its apparent strangeness, but also for its comprehensibility.
Unruh effect and macroscopic quantum interference
Steane, Andrew
2015-01-01
We investigate the influence of Unruh radiation on matter-wave interferometry experiments using neutral objects modeled as dielectric spheres. The Unruh effect leads to a loss of coherence through momentum diffusion. This is a fundamental source of decoherence that affects all objects having electromagnetic interactions. However, the effect is not large enough to prevent the observation of interference for objects of any size, even when the path separation is larger than the size of the object. When the acceleration in the interferometer arms is large, inertial tidal forces will disrupt the material integrity of the interfering objects before the Unruh decoherence of the centre of mass motion is sufficient to prevent observable interference.
Quantum interferences reconstruction with low homodyne detection efficiency
Energy Technology Data Exchange (ETDEWEB)
Esposito, Martina; Randi, Francesco [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Titimbo, Kelvin; Zimmermann, Klaus; Benatti, Fabio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Kourousias, Georgios; Curri, Alessio [Sincrotrone Trieste S.C.p.A., Trieste (Italy); Floreanini, Roberto [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Parmigiani, Fulvio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy); University of Cologne, Institute of Physics II, Cologne (Germany); Fausti, Daniele [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy)
2016-12-15
Optical homodyne tomography consists in reconstructing the quantum state of an optical field from repeated measurements of its amplitude at different field phases (homodyne data). The experimental noise, which unavoidably affects the homodyne data, leads to a detection efficiency η<1. The problem of reconstructing quantum states from noisy homodyne data sets prompted an intense scientific debate about the presence or absence of a lower homodyne efficiency bound (η>0.5) below which quantum features, like quantum interferences, cannot be retrieved. Here, by numerical experiments, we demonstrate that quantum interferences can be effectively reconstructed also for low homodyne detection efficiency. In particular, we address the challenging case of a Schroedinger cat state and test the minimax and adaptive Wigner function reconstruction technique by processing homodyne data distributed according to the chosen state but with an efficiency η>0.5. By numerically reproducing the Schroedinger's cat interference pattern, we give evidence that quantum state reconstruction is actually possible in these conditions, and provide a guideline for handling optical tomography based on homodyne data collected by low efficiency detectors. (orig.)
Wang, Yasen; Bao, Qinglong; Chen, Zengping
2016-07-01
In order to suppress multiple mainlobe interferences and sidelobe interferences simultaneously, a mainlobe interference suppression algorithm is proposed. In this algorithm, the number of mainlobe interferences is estimated through a matrix filter at first. Then, the eigenvectors associated with mainlobe interference are determined and the eigen-projection matrix can be calculated. Next, the sidelobe-interference-plus-noise covariance matrix is reconstructed through eigenvalue replacement procedure. Finally, we can get the adaptive weight vector. Simulation results demonstrate the effectiveness of the proposed method when multiple mainlobe interferences exist.
Observation of quantum interference in molecular charge transport
DEFF Research Database (Denmark)
Guedon, Constant M.; Valkenier, Hennie; Markussen, Troels
2012-01-01
, phenomena such as giant magnetoresistance(5), Kondo effects(6) and conductance switching(7-11) have been observed in single molecules, and theorists have predicted that it should also be possible to observe quantum interference in molecular conductors(12-18), but until now all the evidence...
High sensitivity double relaxation oscillation superconducting quantum interference devices
Adelerhof, Derk Jan; Adelerhof, Derk Jan; Kawai, Jun; Uehara, Gen; Kado, Hisashi
1994-01-01
Double relaxation oscillationsuperconducting quantum interference devices(SQUIDs) (DROSs) have been fabricated with estimated relaxation frequencies up to 14 GHz. Both the intrinsic flux noise and the performance in a flux locked loop with direct voltage readout have been studied. In flux locked
Exploration of Quantum Interference in Document Relevance Judgement Discrepancy
Directory of Open Access Journals (Sweden)
Benyou Wang
2016-04-01
Full Text Available Quantum theory has been applied in a number of fields outside physics, e.g., cognitive science and information retrieval (IR. Recently, it has been shown that quantum theory can subsume various key IR models into a single mathematical formalism of Hilbert vector spaces. While a series of quantum-inspired IR models has been proposed, limited effort has been devoted to verify the existence of the quantum-like phenomenon in real users’ information retrieval processes, from a real user study perspective. In this paper, we aim to explore and model the quantum interference in users’ relevance judgement about documents, caused by the presentation order of documents. A user study in the context of IR tasks have been carried out. The existence of the quantum interference is tested by the violation of the law of total probability and the validity of the order effect. Our main findings are: (1 there is an apparent judging discrepancy across different users and document presentation orders, and empirical data have violated the law of total probability; (2 most search trials recorded in the user study show the existence of the order effect, and the incompatible decision perspectives in the quantum question (QQ model are valid in some trials. We further explain the judgement discrepancy in more depth, in terms of four effects (comparison, unfamiliarity, attraction and repulsion and also analyse the dynamics of document relevance judgement in terms of the evolution of the information need subspace.
Dimerous Electron and Quantum Interference beyond the Probability Amplitude Paradigm
Kassandrov, Vladimir V
2011-01-01
We generalize the formerly proposed relationship between a special complex geometry (originating from the structure of biquaternion algebra) and induced real geometry of (extended) space-time. The primordial dynamics in complex space allows for a new realization of the "one electron Universe" of Wheeler-Feynman (the so called "ensemble of duplicons") and leads to a radical concept of "dimerous" (consisting of two identical matter pre-elements, "duplicons") electron. Using this concept, together with an additional phase-like invariant (arising from the complex pre-geometry), we manage to give a visual classical explanation for quantum interference phenomena and, in particular, for the canonical two-slit experiment. Fundamental relativistic condition of quantum interference generalizing the de Broglie relationship is obtained, and an experimentally verifiable distinction in predictions of quantum theory and presented algebrodynamical scheme is established.
Two-photon interference from two blinking quantum emitters
Jöns, Klaus D.; Stensson, Katarina; Reindl, Marcus; Swillo, Marcin; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo; Björk, Gunnar
2017-08-01
We investigate the effect of blinking on the two-photon interference measurement from two independent quantum emitters. We find that blinking significantly alters the statistics in the Hong-Ou-Mandel second-order intensity correlation function g(2 )(τ ) and the outcome of two-photon interference measurements performed with independent quantum emitters. We theoretically demonstrate that the presence of blinking can be experimentally recognized by a deviation from the gD(2 )(0 ) =0.5 value when distinguishable photons from two emitters impinge on a beam splitter. Our findings explain the significant differences between linear losses and blinking for correlation measurements between independent sources and are experimentally verified using a parametric down-conversion photon-pair source. We show that blinking imposes a mandatory cross-check measurement to correctly estimate the degree of indistinguishability of photons emitted by independent quantum emitters.
Quantum interference in a thermal bath
Energy Technology Data Exchange (ETDEWEB)
Anisimov, Alexey [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Buchmueller, Wilfried; Mendizabal, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Drewes, Marco [Inst. de Theorie des Phenomenes Physiques EPFL, Lausanne (Switzerland)
2010-01-15
Thermal leptogenesis explains the observed matter-antimatter asymmetry of the universe in terms of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum mechanical calculation of the generated lepton asymmetry based on Kadanoff-Baym equations. Origin of the asymmetry is the departure of the statistical propagator of the heavy Majorana neutrino from the equilibrium propagator, together with CP violating couplings. The lepton asymmetry is calculated directly in terms of Green's functions without referring to 'number densities'. A detailed comparison with Boltzmann equations shows that conventional leptogenesis calculations have an uncertainty of at least one order of magnitude. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yu, E-mail: zhy@yangtze.hku.hk; Chen, GuanHua, E-mail: ghc@everest.hku.hk [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yam, ChiYung [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Zhang, Yu; Yam, ChiYung; Chen, GuanHua
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Institute of Scientific and Technical Information of China (English)
Wang Wei-Li; Miao Gang; Chen Yue-Hui; Tang Dan; Ma Feng-Cai
2008-01-01
Collisional quantum interference (CQI) in the intramolecular rotational energy transfer was observed in experiment by Sha and co-workers.[1] The interference angle, which measuring the degree of the coherence, were measured in the experiment of the static cell. Based on the first Born approximation of time dependent perturbation theory, taking into accounts the anisotropic Lennard-Jones interaction potentials, this paper describes the theoretical model of CQI in intramolecular rotational energy transfer in an atom-diatom collision system. In the model, the differential interference angle for the experiment of the molecular beam is calculated, the changing tendencies of the differential interference angle with the impact parameter and collision partners are obtained. This theoretical model is important for understanding or performing this kind of experiments.
Two-photon quantum interference in plasmonics: theory and applications.
Gupta, S Dutta; Agarwal, G S
2014-01-15
We report perfect two-photon quantum interference with near-unity visibility in a resonant tunneling plasmonic structure in folded Kretschmann geometry. This is despite absorption-induced loss of unitarity in plasmonic systems. The effect is traced to perfect destructive interference between the squares of amplitude reflection and transmission coefficients. We further highlight yet another remarkable potential of coincidence measurements as a probe with better resolution as compared to standard spectroscopic techniques. The finer features show up in both angle resolved and frequency resolved studies.
Cooling atomic motion with quantum interference
Morigi, G
2002-01-01
We theoretically investigate the quantum dynamics of the center of mass of trapped atoms, whose internal degrees of freedom are driven in a $\\Lambda$-shaped configuration with the lasers tuned at two-photon resonance. In the Lamb-Dicke regime, when the motional wave packet is well localized over the laser wavelenght, transient coherent population trapping occurs, cancelling transitions at the laser frequency. In this limit the motion can be efficiently cooled to the ground state of the trapping potential. We derive an equation for the center-of-mass motion by adiabatically eliminating the internal degrees of freedom. This treatment provides the theoretical background of the scheme presented in [G. Morigi {\\it et al}, Phys. Rev. Lett. {\\bf 85}, 4458 (2000)] and implemented in [C.F. Roos {\\it et al}, Phys. Rev. Lett. {\\bf 85}, 5547 (2000)]. We discuss the physical mechanisms determining the dynamics and identify new parameters regimes, where cooling is efficient. We discuss implementations of the scheme to case...
Nikitin, Alexei V.; Epard, Marc; Lancaster, John B.; Lutes, Robert L.; Shumaker, Eric A.
2012-12-01
A strong digital communication transmitter in close physical proximity to a receiver of a weak signal can noticeably interfere with the latter even when the respective channels are tens or hundreds of megahertz apart. When time domain observations are made in the signal chain of the receiver between the first mixer and the baseband, this interference is likely to appear impulsive. The impulsive nature of this interference provides an opportunity to reduce its power by nonlinear filtering, improving the quality of the receiver channel. This article describes the mitigation, by a particular nonlinear filter, of the impulsive out-of-band (OOB) interference induced in High Speed Downlink Packet Access (HSDPA) by WiFi transmissions, protocols which coexist in many 3G smartphones and mobile hotspots. Our measurements show a decrease in the maximum error-free bit rate of a 1.95 GHz HSDPA receiver caused by the impulsive interference from an OOB 2.4 GHz WiFi transmission, sometimes down to a small fraction of the rate observed in the absence of the interference. We apply a nonlinear SPART filter to recover a noticeable portion of the lost rate and maintain an error-free connection under much higher levels of the WiFi interference than a receiver that does not contain such a filter. These measurements support our wider investigation of OOB interference resulting from digital modulation, which appears impulsive in a receiver, and its mitigation by nonlinear filters.
Filter-Bank-Based Narrowband Interference Detection and Suppression in Spread Spectrum Systems
Directory of Open Access Journals (Sweden)
Tobias Hidalgo Stitz
2004-07-01
Full Text Available A filter-bank-based narrowband interference detection and suppression method is developed and its performance is studied in a spread spectrum system. The use of an efficient, complex, critically decimated perfect reconstruction filter bank with a highly selective subband filter prototype, in combination with a newly developed excision algorithm, offers a solution with efficient implementation and performance close to the theoretical limit derived as a function of the filter bank stopband attenuation. Also methods to cope with the transient effects in case of frequency hopping interference are developed and the resulting performance shows only minor degradation in comparison to the stationary case.
Using quantum filters to process images of diffuse axonal injury
Pineda Osorio, Mateo
2014-06-01
Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.
Images and Spectral Performance of WFC3 Interference Filters
Quijada, Manuel A.; Boucarut, R.; Telfer, R.; Baggett, S.; Quijano, J. Kim; Allen, George; Arsenovic, Peter
2006-01-01
The Wide Field Camera 3 (WFC3) is a panchromatic imager that will be deployed in the Hubble Space Telescope (HST). The mission of the WFC3 is to enhance HST1s imaging capability in the ultraviolet, visible and near-infrared spectral regions. Together with a wavelength coverage spanning 2000A to 1.7 micron, the WFC3 high sensitivity, high spatial resolution, and large field-of-view provide the astronomer with an unprecedented set of tools for exploring all types of exciting astrophysical terrain and for addressing many key questions in astronomy today. The filter compliment, which includes broad, medium, and narrow band filters, naturally reflects the diversity of astronomical programs to be targeted with WFC3. The WFC3 holds 61 UVIS filters elements, 14 IR filters, and 3 dispersive elements. During ground testing, the majority of the UVIS filters were found to exhibit excellent performance consistent with or exceeding expectations; however, a subset of filters showed considerable ghost images; some with relative intensity as high as 10-15%. Replacement filters with band-defining coatings that substantially reduce these ghost images were designed and procured. A state-of-the-art characterization setup was developed to measured the intensity of ghost images, focal shift, wedge direction , transmitted uniformity and surface feature of filters that could effect uniform flat field images. We will report on this new filter characterization methods, as well as the spectral performance measurements of the in-band transmittance and blocking.
Directly Measuring the Degree of Quantum Coherence using Interference Fringes
Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can
2017-01-01
Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.
Spatially resolving valley quantum interference of a donor in silicon.
Salfi, J; Mol, J A; Rahman, R; Klimeck, G; Simmons, M Y; Hollenberg, L C L; Rogge, S
2014-06-01
Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys in momentum space. Addressable single-qubit and two-qubit operations in silicon require that qubits are placed near interfaces, modifying the valley degrees of freedom associated with these quantum superpositions and strongly influencing qubit relaxation and exchange processes. Yet to date, spectroscopic measurements have only probed wavefunctions indirectly, preventing direct experimental access to valley population, donor position and environment. Here we directly probe the probability density of single quantum states of individual subsurface donors, in real space and reciprocal space, using scanning tunnelling spectroscopy. We directly observe quantum mechanical valley interference patterns associated with linear superpositions of valleys in the donor ground state. The valley population is found to be within 5% of a bulk donor when 2.85 ± 0.45 nm from the interface, indicating that valley-perturbation-induced enhancement of spin relaxation will be negligible for depths greater than 3 nm. The observed valley interference will render two-qubit exchange gates sensitive to atomic-scale variations in positions of subsurface donors. Moreover, these results will also be of interest for emerging schemes proposing to encode information directly in valley polarization.
Tunable quantum interference in a 3D integrated circuit.
Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J
2015-04-27
Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.
Jiang, Zhaojie; Zhou, Qi; Tao, Zhiming; Zhang, Xiaogang; Zhang, Shengnan; Zhu, Chuanwen; Lin, Pingwei; Chen, Jingbiao
2016-08-01
We demonstrate an 852-nm external cavity diode laser (ECDL) system whose wavelength is mainly determined by an interference filter instead of other wavelength selective elements. The Lorentzian linewidth measured by the heterodyne beating between two identical lasers is 28.3 kHz. Moreover, we test the application of the ECDL in the Faraday atomic filter. Besides saturated absorption spectrum, the transmission spectrum of the Faraday atomic filter at 852 nm is measured by using the ECDL. This interference filter ECDL method can also be extended to other wavelengths and widen the application range of diode laser. Project supported by the National Natural Science Foundation of China (Grant No. 91436210) and the International Science and Technology Cooperation Program of China (Grant No. 2010DFR10900).
Reduction of power line interference in electrocardiographic signals by dual Kalman filtering
Directory of Open Access Journals (Sweden)
Luis David Avendaño Valencia
2010-04-01
Full Text Available This paper presents a filter for reducing powerline interference in electrocardiographic signals (ECG, based on dual parameter and state estimation using with a Kalman filter. Two models were used to represent power-line interference and ECG signal. Both models were combined to simulate the ECG signal whose state was estimated for separating the ECG signal from the interference. The proposed algorithm was fine-tuned and compared using a set of tests relying on the QT arrhythmia database. Tuning tests were done for tracking clean ECG; these results were used for setting the algorithm’s parameters for later filtering tests. Exhaustive filtering tests were carried out on artificially corrupted database registers for given signal to noise ratios; performance curves were thus obtained, leading to comparing the proposed algorithm with other filtering methods. The proposed algorithm was compared to an recursive infinite impulse response filter (IIR and a Kalman filter based on a simpler model. A filtering algorithm was thus obtained which is robust for changes in interference amplitude and keeps these properties for different types of ECG morphologies.
Gayo, E.; de Frutos, J.
1997-06-01
In the present work, the utility of infrared thermography applied to the study of moisture in builiding materials or in buildings (including those cases in which the water content is very high) is shown. Moreover, an increase in the information content of the thermal image by the use of suitable interference filters is demonstrated. The use of such filters allows us to determine the kind of hydric process. In the present work, different examples are given illustrating the use of infrared thermography (with and without interference filters) when moisture movement is studied.
Directory of Open Access Journals (Sweden)
Anass Benjebbour
2008-02-01
Full Text Available In the future, there will be a growing need for more flexible but efficient utilization of radio resources. Increased flexibility in radio transmission, however, yields a higher likelihood of interference owing to limited coordination among users. In this paper, we address the problem of flexible spectrum sharing where a wideband single carrier modulated signal is spectrally overlapped by unknown narrowband interference (NBI and where a cyclic Wiener filter is utilized for nonparametric NBI suppression at the receiver. The pulse shape design for the wideband signal is investigated to improve the NBI suppression capability of cyclic Wiener filtering. Specifically, two pulse shaping schemes, which outperform existing raised cosine pulse shaping schemes even for the same amount of excess bandwidth, are proposed. Based on computer simulation, the interference suppression capability of cyclic Wiener filtering is evaluated for both the proposed and existing pulse shaping schemes under several interference conditions and over both AWGN and Rayleigh fading channels.
Directory of Open Access Journals (Sweden)
Benjebbour Anass
2008-01-01
Full Text Available Abstract In the future, there will be a growing need for more flexible but efficient utilization of radio resources. Increased flexibility in radio transmission, however, yields a higher likelihood of interference owing to limited coordination among users. In this paper, we address the problem of flexible spectrum sharing where a wideband single carrier modulated signal is spectrally overlapped by unknown narrowband interference (NBI and where a cyclic Wiener filter is utilized for nonparametric NBI suppression at the receiver. The pulse shape design for the wideband signal is investigated to improve the NBI suppression capability of cyclic Wiener filtering. Specifically, two pulse shaping schemes, which outperform existing raised cosine pulse shaping schemes even for the same amount of excess bandwidth, are proposed. Based on computer simulation, the interference suppression capability of cyclic Wiener filtering is evaluated for both the proposed and existing pulse shaping schemes under several interference conditions and over both AWGN and Rayleigh fading channels.
Optical transmission modules for multi-channel superconducting quantum interference device readouts
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)
2013-12-15
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
Optical transmission modules for multi-channel superconducting quantum interference device readouts
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2013-12-01
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
Probing quantum interference effects in the work distribution
Solinas, P.; Gasparinetti, S.
2016-11-01
What is the role of coherence in determining the distribution of work done on a quantum system? We approach this question from an operational perspective and consider a setup in which the internal energy of a closed system is recorded by a quantum detector before and after the system is acted upon by an external drive. We find that the resulting work distribution depends on the initial state of the detector as well as on the choice of the final measurement. We consider two complementary measurement schemes, both of which show clear signatures of quantum interference. We specifically discuss how to implement these schemes in the circuit QED architecture, using an artificial atom as the system and a quantized mode of the electromagnetic field as the detector. Different measurement schemes can be realized by preparing the field either in a superposition of Fock states or in a coherent state and exploiting state-of-the art techniques for the characterization of microwave radiation at the quantum level. More generally, the single bosonic mode we utilize is arguably the minimal quantum detector capable of capturing the complementary aspects of the work distribution discussed here.
Kalman filtering and Standard Quantum Limits for broadband measurement
Mabuchi, H
1998-01-01
I utilize the Caves-Milburn model for continuous position measurements to formulate a broadband version of the Standard Quantum Limit (SQL) for monitoring the position of a free mass, and illustrate the use of Kalman filtering to recover the SQL for estimating a weak classical force that acts on a quantum-mechanical test particle under continuous observation.
Quantum interference in an asymmetric Mach-Zehnder interferometer
Trenti, A.; Borghi, M.; Mancinelli, M.; Price, H. M.; Fontana, G.; Pavesi, L.
2016-08-01
A re-visitation of the well known free space Mach-Zehnder interferometer is reported here. The coexistence between one-photon and two-photons interference from collinear color entangled photon pairs is investigated. Thisarises from an arbitrarily small unbalance in the arm transmittance. The tuning of such asymmetry is reflected in dramatic changes in the coincidence detection, revealing beatings between one particle and two particle interference patterns. In particular, the role of the losses and of the intrinsic phase imperfectness of the lossy beamsplitter are explored in a single-port excited Mach-Zehnder interferometer. This configuration is especially useful for quantum optics on a chip, where the guiding geometry forces photons to travel in the same spatial mode.
Improved superconducting quantum interference devices by resistance asymmetry
Testa, G.; Pagano, S.; Sarnelli, E.; Calidonna, C. R.; Furnari, M. Mango
2001-10-01
Direct current superconducting quantum interference devices made by Josephson junctions with asymmetric shunt resistances have been numerically investigated in the low temperature regime. When combined with a damping resistance, the asymmetry leads to a flux to voltage transfer coefficient several times larger than the one typical of symmetric devices, together with a lower magnetic flux noise. These results show that this type of asymmetric device may replace the standard ones in a large number of magnetometric applications, improving the sensitivity performance. The large transfer coefficient may also simplify the readout electronics allowing a direct coupling of asymmetric devices to an external preamplifier, without the need of an impedance matching flux transformer.
Quantum localization through interference on homoclinic and heteroclinic circuits
Energy Technology Data Exchange (ETDEWEB)
III, E L Sibert; Borondo, F [Departamento de Quimica C-IX and Instituto Mixto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Vergini, E; Benito, R M [Grupo de Sistemas Complejos and Departamento de FIsica, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, 28040 Madrid (Spain)], E-mail: sibert@chem.wisc.edu, E-mail: eduardogerman.vergini@upm.es, E-mail: rosamaria.benito@upm.es, E-mail: f.borondo@uam.es
2008-05-15
Localization effects due to scarring constitute one of the clearest indications of the relevance of interference in the transport of quantum probability density along quantized closed circuits in phase space. The corresponding path can be obvious, such as the scarring periodic orbit (PO) itself which produces time recurrences at multiples of the period. However, there are others more elaborate which only close asymptotically, for example, those associated with homoclinic and heteroclinic orbits. In this paper, we demonstrate that these circuits are also able to produce recurrences but at (semiclassically) longer times, of the order of the Ehrenfest time. The most striking manifestation of this phenomenon is the accumulation of quantum probability density along the corresponding circuits. The discussion is illustrated with an example corresponding to a typical PO of the quartic two-dimensional oscillator.
Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z. Y.; Chen, J. F.; Zhang, Weiping
2016-07-01
The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.
Mao, Ting; Yu, Yang
2010-01-01
We numerically investigated the quantum-classical transition in rf-superconducting quantum interference device (SQUID) systems coupled to a dissipative environment. It is found that chaos emerges and the degree of chaos, the maximal Lyapunov exponent lambda(m), exhibits nonmonotonic behavior as a function of the coupling strength D. By measuring the proximity of quantum and classical evolution with the uncertainty of dynamics, we show that the uncertainty is a monotonic function of lambda(m)/D. In addition, the scaling holds in SQUID systems to a relatively smaller variant Planck's over [symbol: see text], suggesting the universality for this scaling.
Real-time single-molecule imaging of quantum interference
Juffmann, Thomas; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus
2014-01-01
The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and it differs from classical wave-physics in that it can even be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here we show how a combination of nanofabrication and nanoimaging methods allows us to record the full two-dimensional build-up of quantum diffraction patterns in real-time for phthalocyanine molecules PcH2 and their tailored derivatives F24PcH2 with a mass of 1298 amu. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence and the gratings were machined in 10 nm thick silicon nitride membranes to reduce the effect ...
Photocurrent Control in a Magnetic Field through Quantum Interference
Rao, Kiran Murti
Quantum-mechanical interference between excitation pathways can be used to inject photocurrents optically in semiconductors, the properties of which can be coherently controlled through the phases and polarizations of the optical pulses. In this thesis, coherent photocurrent control is investigated theoretically for two-dimensional semiconductor systems in a perpendicular magnetic field. The semiconductor systems are subjected to optical pulses with centre frequencies o 0 and 2o0, which excite interband transitions through one- and two-photon processes, selection rules for which are determined from envelope wave functions. It is shown using time-dependent perturbation theory that the interference between one- and two-photon pathways connecting a particular valence Landau level to two different but adjacent conduction Landau levels manifests itself as electron currents that rotate counterclockwise, while interference between pathways connecting two adjacent valence Landau levels to a particular conduction Landau level manifests itself as hole currents that rotate clockwise. The initial directions of the currents can be controlled by adjusting the polarizations and a relative phase parameter of the pulses. The analysis is performed for a GaAs quantum well, monolayer graphene and bilayer graphene. For GaAs, the equally spaced Landau levels in each band lead to electron currents rotating at a single frequency and hole currents rotating at a different frequency. Monolayer and bilayer graphene allow currents with multiple frequency components as well as other peculiarities resulting from additional interference processes not present for GaAs. The photocurrents in all of these systems radiate in the terahertz regime. This radiation is calculated for realistic experimental conditions, with scattering and relaxation processes accounted for phenomenologically. Finally, the effect of Coulomb interactions on the coherent control process is considered for an undoped Ga
Courtney, Joseph M; Rienstra, Chad M
2016-08-01
We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.
A 657-nm narrow bandwidth interference filter-stabilized diode laser
Institute of Scientific and Technical Information of China (English)
Zhengbo Wang; Xiaokai Lü; Jingbiao Chen
2011-01-01
We present a 657-nm external cavity diode laser (ECDL) system, where the output frequency is stabilized by a narrow-band high transmission interference filter. This novel diode laser system emits laser with an instantaneous linewidth of 7 kHz and a broadened linewidth of 432 kHz.%@@ We present a 657-nm external cavity diode laser (ECDL) system, where the output frequency is stabilized by a narrow-band high transmission interference filter.This novel diode laser system emits laser with an instantaneous linewidth of 7 kHz and a broadened linewidth of 432 kHz.
Threshold resonance and controlled filtering in quantum star graphs
Turek, Ondřej
2011-01-01
We design two simple quantum devices applicable as an adjustable quantum spectral filter and as a flux controller. Their function is based upon the threshold resonance in a F\\"ul\\"op-Tsutsui type star graph with an external potential added on one of the lines. Adjustment of the potential strength directly controls the quantum flow from the input to the output line. This is the first example to date in which the quantum flow control is achieved by addition of an external field not on the channel itself, but on other lines connected to the channel at a vertex.
Weighted-Sum-Rate-Maximizing Linear Transceiver Filters for the K-User MIMO Interference Channel
Shin, Joonwoo
2012-01-01
This letter is concerned with transmit and receive filter optimization for the K-user MIMO interference channel. Specifically, linear transmit and receive filter sets are designed which maximize the weighted sum rate while allowing each transmitter to utilize only the local channel state information. Our approach is based on extending the existing method of minimizing the weighted mean squared error (MSE) for the MIMO broadcast channel to the K-user interference channel at hand. For the case of the individual transmitter power constraint, however, a straightforward generalization of the existing method does not reveal a viable solution. It is in fact shown that there exists no closed-form solution for the transmit filter but simple one-dimensional parameter search yields the desired solution. Compared to the direct filter optimization using gradient-based search, our solution requires considerably less computational complexity and a smaller amount of feedback resources while achieving essentially the same lev...
Low Threshold Bistability In TiO2-SiO2 Interference Filters
Mitschke, Fedor M.; Ankerhold, George; Lange, Wulfhard K.
1989-03-01
We have studied optical bistability in Ti02/Si02 interference filters ("hard coatings"). These systems compare favourably with the more conventional ZnSe filters in important characteristics, particularly in durability, switching contrast and long term stability. Unfortunately, switching is very slow. Our analysis reveals a unique mechanism: water molecu)es in pores of the coating are reversibly desorbed from well below the outside surface as the spot temperature is driven up and down by the irradiated light.
Small target detection using quantum genetic morphological filter
Deng, Lizhen; Zhu, Hu; Wei, Yantao; Lu, Guanmin; Wei, Yu
2015-12-01
Small target detection plays a crucial role in infrared warning and tracking systems. A background suppression method using morphological filter based on quantum genetic algorithm (QGMF) is presented to detect small targets in infrared image. Structure element of morphological filter is encoded and the best structure element is selected using quantum genetic algorithm. The optimized structure element is used for background suppression to detect small target. Experimental results demonstrate that QGMF has good performance in clutter suppression, and obtains higher signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF) than the one using the fixed structure element with the same size.
1D Josephson quantum interference grids: diffraction patterns and dynamics
Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.
2016-02-01
We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.
Phase sensitive quantum interference on forbidden transition in ladder scheme
Koganov, Gennady A
2014-01-01
A three level ladder system is analyzed and the coherence of initially electric-dipole forbidden transition is calculated. Due to the presence of two laser fields the initially dipole forbidden transition becomes dynamically permitted due to ac Stark effect. It is shown that such transitions exhibit quantum-interference-related phenomena, such as electromagnetically induced transparency, gain without inversion and enhanced refractive index. Gain and dispersion characteristics of such transitions strongly depend upon the relative phase between the driving and the probe fields. Unlike allowed transitions, gain/absorption behavior of ac-Stark allowed transitions exhibit antisymmetric feature on the Rabi sidebands. It is found that absorption/gain spectra possess extremely narrow sub-natural resonances on these ac Stark allowed forbidden transitions. An interesting finding is simultaneous existence of gain and negative dispersion at Autler-Townes transition which may lead to both reduction of the group velocity a...
An electro-optic waveform interconnect based on quantum interference
Qin, Li-Guo; Gong, Shang-Qing
2016-01-01
The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information processing systems. One of the main required devices for such interconnects is the electro-optic modulator (EOM). Current EOM based on the electro-optic effect and the electro-absorption effect often is bulky and power inefficient due to the weak electro-optic properties of its constituent materials. Here we propose a new mechanism to produce an arbitrary-waveform EOM based on the quantum interference, in which both the real and imaginary parts of the susceptibility are engineered coherently with the superhigh efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realised. We expect that such a new type of electro-optic interconnect will have a broad range of applications including the optical communications and network.
Micron size superconducting quantum interference devices of lead (Pb)
Paul, Sagar; Biswas, Sourav; Gupta, Anjan K.
2017-02-01
Micron size superconducting quantum interference devices (μ-SQUID) of lead (Pb), for probing nano-magnetism, were fabricated and characterized. In order to get continuous Pb films with small grain size, Pb was thermally evaporated on a liquid nitrogen cooled Si substrate. Pb was sandwiched between two thin Cr layers for improved adhesion and protection. The SQUID pattern was made by e-beam lithography with Pb lift-off after deposition. The current-voltage characteristics of these devices show a critical current, which exhibits the expected SQUID oscillations with magnetic field, and two re-trapping currents. As a result these devices have hysteresis at low temperatures, which disappears just below the critical temperature.
Nano-superconducting quantum interference devices with suspended junctions
Energy Technology Data Exchange (ETDEWEB)
Hazra, D.; Hasselbach, K. [Institut Néel, CNRS and Université Joseph Fourier, 25 Avenue des Martyrs, Grenoble (France); Kirtley, J. R. [Center for Probing the Nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)
2014-04-14
Nano-Superconducting Quantum Interference Devices (nano-SQUIDs) are usually fabricated from a single layer of either Nb or Al. We describe here a simple method for fabricating suspended nano-bridges in Nb/Al thin-film bilayers. We use these suspended bridges, which act as Josephson weak links, to fabricate nano-SQUIDs which show critical current oscillations at temperatures up to 1.5 K and magnetic flux densities up to over 20 mT. These nano-SQUIDs exhibit flux modulation depths intermediate between all-Al and all-Nb devices, with some of the desirable characteristics of both. The suspended geometry is attractive for magnetic single nanoparticle measurements.
Oblique Projection Polarization Filtering-Based Interference Suppressions for Radar Sensor Networks
Directory of Open Access Journals (Sweden)
Cao Bin
2010-01-01
Full Text Available The interferences coming from the radar members degrade the detection and recognition performance of the radar sensor networks (RSNs if the waveforms of the radar members are nonorthogonal. In this paper, we analyze the interferences by exploring the polarization information of the electromagnetic (EM waves. Then, we propose the oblique projection polarization filtering- (OPPF- based scheme to suppress the interferences while keeping the amplitude and phase of its own return in RSNs, even if the polarized states of the radar members are not orthogonal. We consider the cooperative RSNs environment where the polarization information of each radar member is known to all. The proposed method uses all radar members' polarization information to establish the corresponding filtering operator. The Doppler-shift and its uncertainty are independent of the polarization information, which contributes that the interferences can be suppressed without the utilization of the spatial, the temporal, the frequency, the time-delay and the Doppler-shift information. Theoretical analysis and the mathematical deduction show that the proposed scheme is a valid and simple implementation. Simulation results also demonstrate that this method can obtain a good filtering performance when dealing with the problem of interference suppressions for RSNs.
Xu, Fang; Poon, Andrew W
2008-06-09
We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.
Multiwavelength erbium-doped fiber laser based on an all-fiber polarization interference filter
Wang, Hushan; Yan, Zhijun; Zhou, Kaiming; Song, Jiazheng; Feng, Ye; Wang, Yishan
2017-04-01
We demonstrated a compact stable room-temperature multiwavelength erbium doped fiber laser by employing a 45° tilted fiber gratings (TFGs) based all-fiber polarization interference filter. Benefiting from the filter, the channel number, the linewidth, the uniformity and stabilization of the multiwavelength laser were greatly improved. The filter also worked as a polarizing functional device in nonlinear polarization rotation leading to multiwavelength operation. More than 60 wavelengths (within 3dB bandwidth) lasing with a linewidth of 0.03nm and a signal-to-noise ratio of 31dB were obtained. The wavelength spacing was 0.164nm agreeing with the value of the filter and it can be flexibly controlled by adjusting the length of the filter.
Molecular spintronics: destructive quantum interference controlled by a gate.
Saraiva-Souza, Aldilene; Smeu, Manuel; Zhang, Lei; Souza Filho, Antonio Gomes; Guo, Hong; Ratner, Mark A
2014-10-22
The ability to control the spin-transport properties of a molecule bridging conducting electrodes is of paramount importance to molecular spintronics. Quantum interference can play an important role in allowing or forbidding electrons from passing through a system. In this work, the spin-transport properties of a polyacetylene chain bridging zigzag graphene nanoribbons (ZGNRs) are studied with nonequilibrium Green's function calculations performed within the density functional theory framework (NEGF-DFT). ZGNR electrodes have inherent spin polarization along their edges, which causes a splitting between the properties of spin-up and spin-down electrons in these systems. Upon adding an imidazole donor group and a pyridine acceptor group to the polyacetylene chain, this causes destructive interference features in the electron transmission spectrum. Particularly, the donor group causes a large antiresonance dip in transmission at the Fermi energy EF of the electrodes. The application of a gate is investigated and found to provide control over the energy position of this feature making it possible to turn this phenomenon on and off. The current-voltage (I-V) characteristics of this system are also calculated, showing near ohmic scaling for spin-up but negative differential resistance (NDR) for spin-down.
Potential-controlled filtering in quantum star graphs
Energy Technology Data Exchange (ETDEWEB)
Turek, Ondrej, E-mail: ondrej.turek@kochi-tech.ac.jp; Cheon, Taksu, E-mail: taksu.cheon@kochi-tech.ac.jp
2013-03-15
We study the scattering in a quantum star graph with a Fueloep-Tsutsui coupling in its vertex and with external potentials on the lines. We find certain special couplings for which the probability of the transmission between two given lines of the graph is strongly influenced by the potential applied on another line. On the basis of this phenomenon we design a tunable quantum band-pass spectral filter. The transmission from the input to the output line is governed by a potential added on the controlling line. The strength of the potential directly determines the passband position, which allows to control the filter in a macroscopic manner. Generalization of this concept to quantum devices with multiple controlling lines proves possible. It enables the construction of spectral filters with more controllable parameters or with more operation modes. In particular, we design a band-pass filter with independently adjustable multiple passbands. We also address the problem of the physical realization of Fueloep-Tsutsui couplings and demonstrate that the couplings needed for the construction of the proposed quantum devices can be approximated by simple graphs carrying only {delta} potentials. - Highlights: Black-Right-Pointing-Pointer Spectral filtering devices based on quantum graphs are designed theoretically. Black-Right-Pointing-Pointer The passband is controlled by the application of macroscopic potentials on lines. Black-Right-Pointing-Pointer The filters are built upon special Fulop-Tsutsui type couplings at graph vertices. Black-Right-Pointing-Pointer A method of construction of Fulop-Tsutsui vertices from delta potentials is devised.
Phase Interference in a Multi-level Quantum-Dot System
Institute of Scientific and Technical Information of China (English)
ZHANG Xu-Ming; CHEN Xiao-Shuang; LU Wei
2009-01-01
@@ Considering phase interference, we investigate coherent transport in a quantum dot by using a thermopower. In the single process of the electronic transport through the quantum dot, it is shown that the phase interference between the levels of a quantum dot is like the Aharonov-Bohm effect. The result indicates that the thermopower is very sensitive to phase interference. It is also found that the phase-difference change of the different levels of the quantum dot can determine the shape of the thermopower.
Stability of continuous-time quantum filters with measurement imperfections
Amini, H.; Pellegrini, C.; Rouchon, P.
2014-07-01
The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.
Low-noise dc superconducting quantum interference devices for gravity wave detection
Jin, Insik
I have designed, built and tested a low noise dc Superconducting QUantum Interference Device (SQUID) system which is intended primarily for use in a 50 mK omnidirectional gravity wave antenna. The SQUID system has three SQUIDs on a single chip: one SQUID is the sensor, another SQUID is the main readout, and the last is a spare readout. For good impedance matching between the sensor SQUID and the input circuit, I use a thin-film transformer. This thin-film transformer gives an input inductance of about 1 muH, which is good for many applications. A SQUID system in a gravity wave antenna must operate continuously for at least 6 months with high reliability. To meet these requirements, I fabricated dc SQUID chips from Nb-Al/AlOsbx-Nb trilayers. I tested the SQUID chips in a liquid helium bath and a dilution refrigerator in the temperature range of 4.2 K to 90 mK. I have designed and tested an eddy-current damping filter as a distributed microwave filter to damp out microwave resonances in strip-line input coils coupled to SQUIDs. The filter chip consists of a Au/Cu-dot array. The filter chip was coupled to the SQUID using a flip-chip arrangement on the SQUID chip. I found that the filter reduced noise bumps and removed distortion from the current-voltage curves. To flux-lock the SQUID system, I developed 2-stage SQUID feedback loops. I investigated two cascade SQUID systems in which I feed the feedback signal into the sensor SQUID and couple the ac modulation signal to the readout SQUID. I found that the noise spectrum with 2-SQUID feedback operation recovers the noise spectrum of the sensor SQUID with about 9% higher noise.
GPS Interference Mitigation Using Derivative-free Kalman Filter-based RNN
Directory of Open Access Journals (Sweden)
W. L. Mao
2016-09-01
Full Text Available The global positioning system (GPS with accurate positioning and timing properties has become integral part of all applications around the world. Radio frequency interference can significantly decrease the performance of GPS receivers or even completely prohibit the acquisition or tracking of satellites. The approaches of system performances that can be further enhanced by preprocessing to reject the jamming signal will be investigated. A recurrent neural network (RNN predictor for the GPS anti-jamming applications will be proposed. The adaptive RNN predictor is utilized to accurately predict the narrowband waveform based on an unscented Kalman filter (UKF-based algorithm. The UKF algorithm as a derivative-free alternative to the extended Kalman filter (EKF in the framework of state-estimation is adopted to achieve better performance in terms of convergence rate and quality of solution. The adaptive RNN filter can be successfully applied for the suppression of interference with a number of different narrowband formats, i.e. continuous wave interference (CWI, multi-tone CWI, swept CWI and pulsed CWI, to emulate realistic circumstances. Simulation results show that the proposed UKF-based scheme can offer the superior performances to suppress the interference over the conventional methods by computing mean squared prediction error (MSPE and signal-to-noise ratio (SNR improvements.
The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots
Directory of Open Access Journals (Sweden)
Hatef Ali
2010-01-01
Full Text Available Abstract In this work, the absorption coefficient of a metallic photonic crystal doped with nanoparticles has been obtained using numerical simulation techniques. The effects of quantum interference and the concentration of doped particles on the absorption coefficient of the system have been investigated. The nanoparticles have been considered as semiconductor quantum dots which behave as a four-level quantum system and are driven by a single coherent laser field. The results show that changing the position of the photonic band gap about the resonant energy of the two lower levels directly affects the decay rate, and the system can be switched between transparent and opaque states if the probe laser field is tuned to the resonance frequency. These results provide an application for metallic nanostructures in the fabrication of new optical switches and photonic devices.
Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System
Tang, Jing; Xu, Xiulai
2015-01-01
We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay $g^{(2)}(0)$ in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum in...
Out-of-band and adjacent-channel interference reduction by analog nonlinear filters
Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.
2015-12-01
In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components
High accuracy wavelength locking of a DFB laser using tunable polarization interference filter
Institute of Scientific and Technical Information of China (English)
Xiyao Chen(陈曦曜); Jianping Xie(谢建平); Tianpeng Zhao(赵天鹏); Hai Ming(明海); Anting Wang(王安廷); Wencai Huang(黄文财); Liang Lü(吕亮); Lixin Xu(许立新)
2003-01-01
A temperature-tunable polarization interference filter (PIF) made of YVO4 crystal has been presented and applied for wavelength locking of a distributed feedback (DFB) semiconductor laser in dense wavelength-division-multiplexing (DWDM) optical communication systems. This new design offers a flexible way to monitor and then lock an operating wavelength of DFB laser to any preselected point without dead spots.The results show that the laser wavelength can be locked with accuracy better than ±0.01 nm with much relaxed requirement on temperature stability of the filter.
Park, Kihong
2013-02-01
In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying, alternate transmission is performed among three relays, and the inter-relay interference due to the alternate relaying is aligned to make additional degrees of freedom. In addition, suboptimal linear filter designs at the nodes are proposed to maximize the achievable sum rate for different fading scenarios when the destination utilizes a minimum mean-square error filter. © 1967-2012 IEEE.
Laser-induced damage of 1064-nm narrow-band interference filters under different laser modes
Institute of Scientific and Technical Information of China (English)
Weidong Gao(高卫东); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)
2004-01-01
The laser-induced damage behavior of narrow-band interference filters was investigated with a Nd:YAG laser at 1064 nm under single-pulse mode and free-running laser mode.The absorption measurement of such coatings has been performed by surface thermal lensing(STL)technique.The relationship between damage morphology and absorption under the two different laser modes was studied in detail.The explanation was given by the standing-wave distribution theory.
On-chip interference of single photons from an embedded quantum dot and an external laser
Energy Technology Data Exchange (ETDEWEB)
Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O' Hara, J.; Royall, B.; Wilson, L. R.; Skolnick, M. S.; Fox, A. M. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Clarke, E. [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)
2016-06-20
In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler. This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.
A Monolithic Filter Cavity for Experiments in Quantum Optics
Palittapongarnpim, Pantita; Lvovsky, A I
2012-01-01
By applying a high-reflectivity dielectric coating on both sides of a commercial plano-convex lens, we produce a stable monolithic Fabry-Perot cavity suitable for use as a narrow band filter in quantum optics experiments. The resonant frequency is selected by means of thermal expansion. Owing to the long term mechanical stability, no optical locking techniques are required. We characterize the cavity performance as an optical filter, obtaining a 45 dB suppression of unwanted modes while maintaining a transmission of 60%.
[Research of adaptive notch filter based on QRD-LS algorithm for power line interference in ECG].
Wang, Shuyan; Dong, Jian; Guan, Xin
2008-10-01
In this paper, an adaptive notch filter based on QRD-LS algorithm for power line interference in ECG is researched. It can automatically eliminate the power line interference in order to improve the signal-to-interference ratio. Furthermore, QLD-LS algorithm, which is recursive least-squares minimization using systolic arrays, is employed to adjust the weight vector. Compared with the adaptive notch filter based on LMS (least mean square) algorithm, it has good robustness. Simulation examples confirm the results. QRD-LS adaptive notch filter has better performance in comparison with LMS method.
Quantum-ring spin interference device tuned by quantum point contacts
Energy Technology Data Exchange (ETDEWEB)
Diago-Cisneros, Leo [Facultad de Física, Universidad de La Habana, C.P.10400, La Habana (Cuba); Mireles, Francisco [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, C.P. 22800 Ensenada, Baja California, México (Mexico)
2013-11-21
We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a function of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.
Interference with a quantum dot single-photon source and a laser at telecom wavelength
Energy Technology Data Exchange (ETDEWEB)
Felle, M. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Penty, R. V. [Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom)
2015-09-28
The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.
Bosonic Operator Realization of Hamiltonian for a Superconducting Quantum Interference Device
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi
2004-01-01
Based on the appropriate bosonic phase operator diagonalized in the entangled state representation we construct the Hamiltonian operator model for a superconducting quantum interference device. The current operator and voltage operator equations are derived.
Programmable two-photon quantum interference in $10^3$ channels in opaque scattering media
Wolterink, Tom A W; Ctistis, Georgios; Vos, Willem L; Boller, Klaus -J; Pinkse, Pepijn W H
2015-01-01
We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports $10^6$ transmission channels. By adaptive spatial phase-modulation of the incident wavefronts, the photons are directed at targeted speckle spots or output channels. From $10^3$ experimentally available coupled channels, we select two channels and enhance their transmission, to realize the equivalent of a fully programmable $2\\times2$ beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programmed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be non-unitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and ph...
Programmable two-photon quantum interference in 103 channels in opaque scattering media
Wolterink, Tom A. W.; Uppu, Ravitej; Ctistis, Georgios; Vos, Willem L.; Boller, Klaus-J.; Pinkse, Pepijn W. H.
2016-05-01
We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports a large number of transmission channels. By adaptive spatial phase modulation of the incident wave fronts, the photons are directed at targeted speckle spots or output channels. From 103 experimentally available coupled channels, we select two channels and enhance their transmission to realize the equivalent of a fully programmable 2 ×2 beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be nonunitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and physical-key-based authentication.
SQUID detected NMR and NQR. Superconducting Quantum Interference Device.
Augustine, M P; TonThat, D M; Clarke, J
1998-03-01
The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K.
He, Zichang; Jiang, Wen
2017-01-01
Categorization is necessary for many decision making tasks. However, the categorization process may interfere the decision making result and the law of total probability can be violated in some situations. To predict the interference effect of categorization, some model based on quantum probability has been proposed. In this paper, a new quantum dynamic belief (QDB) model is proposed. Considering the precise decision may not be made during the process, the concept of uncertainty is introduced...
Quantum random walks with multiphoton interference and high order correlation functions
Gard, Bryan T; Anisimov, Petr M; Lee, Hwang; Dowling, Jonathan P
2011-01-01
We show a simulation of quantum random walks with multiple photons using a staggered array of 50/50 beam splitters with a bank of detectors at any desired level. We discuss the multiphoton interference effects that are inherent to this setup, and introduce one, two, and threefold coincidence detection schemes. The use of Feynman diagrams are used to intuitively explain the unique multiphoton interference effects of these quantum random walks.
Quantum interference between two single photons emitted by independently trapped atoms
Beugnon, J; Dingjan, J; Darquié, B; Messin, G; Browaeys, A; Grangier, P; Beugnon, Jerome; Jones, Matthew; Dingjan, Jos; Darqui\\'{e}, Benoit; Messin, Gaetan; Browaeys, Antoine; Grangier, Philippe
2006-01-01
When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because the two possible paths where the photons leave in different output ports interfere destructively. This effect was first observed in parametric downconversion by Hong, Ou and Mandel, and then with single photons produced one after the other by the same quantum emitter. With the recent development of quantum information, a lot of attention has been devoted to this coalescence effect as a resource for quantum data processing using linear optics techniques. To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. In this paper, we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards th...
Quantum interference effects at room temperature in OPV-based single-molecule junctions
DEFF Research Database (Denmark)
Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper;
2013-01-01
Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3...
Molecular internal dynamics studied by quantum path interferences in high order harmonic generation
Energy Technology Data Exchange (ETDEWEB)
Zaïr, Amelle, E-mail: azair@imperial.ac.uk [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Siegel, Thomas; Sukiasyan, Suren; Risoud, Francois; Brugnera, Leonardo; Hutchison, Christopher [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Diveki, Zsolt; Auguste, Thierry [Service des Photons, Atomes et Molécules, CEA-Saclay, 91191 Gif-sur-Yvette (France); Tisch, John W.G. [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Salières, Pascal [Service des Photons, Atomes et Molécules, CEA-Saclay, 91191 Gif-sur-Yvette (France); Ivanov, Misha Y.; Marangos, Jonathan P. [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom)
2013-03-12
Highlights: ► Electronic trajectories in high order harmonic generation encodes attosecond and femtosecond molecular dynamical information. ► The observation of these quantum paths allows us to follow nuclear motion after ionization. ► Quantum paths interference encodes a signature of superposition of ionization channels. ► Quantum paths interference encodes a signature of transfer of population between channels due to laser coupling. ► Quantum paths interference is a promising technique to resolve ultra-fast dynamical processes after ionization. - Abstract: We investigate how short and long electron trajectory contributions to high harmonic emission and their interferences give access to information about intra-molecular dynamics. In the case of unaligned molecules, we show experimental evidence that the long trajectory contribution is more dependent upon the molecular species than the short one, providing a high sensitivity to cation nuclear dynamics from 100’s of as to a few fs after ionisation. Using theoretical approaches based on the strong field approximation and numerical integration of the time dependent Schrödinger equation, we examine how quantum path interferences encode electronic motion when the molecules are aligned. We show that the interferences are dependent upon which ionisation channels are involved and any superposition between them. In particular, quantum path interferences can encode signatures of electron dynamics if the laser field drives a coupling between the channels. Hence, molecular quantum path interferences are a promising method for attosecond spectroscopy, allowing the resolution of ultra-fast charge migration in molecules after ionisation in a self-referenced manner.
Marshman, Emily; Singh, Chandralekha
2017-01-01
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…
2017-04-01
INTERFERENCE-CANCELLATION AND N -PATH-MIXER FILTERING Harish Krishnaswamy, Negar Reiskarimian, and Linxiao Zhang Columbia University APRIL 2017 Final...INTERFERENCE-CANCELLATION AND N - PATH-MIXER FILTERING 5a. CONTRACT NUMBER FA8650-14-1-7414 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E/62716E 6...AUTHOR(S) Harish Krishnaswamy, Negar Reiskarimian, and Linxiao Zhang 5d. PROJECT NUMBER 1000 5e. TASK NUMBER N /A 5f. WORK UNIT NUMBER Y13A 7
Quantum interference and diffraction of parametric down-converted biphotons
Indian Academy of Sciences (India)
Ryosuke Shimizu; Keiichi Edamatsu; Tadashi Itoh
2002-08-01
We present two-photon diffraction and interference experiments utilizing parametric down-converted photon pairs (biphotons) and a transmission grating. The biphoton exhibits a diffraction-interference pattern equivalent to an effective single particle with half wavelength of the constituent photons.
Singh, Omkar; Sunkaria, Ramesh Kumar
2015-01-01
Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods.
Gorczak, Natalie; Renaud, Nicolas; Galan, Elena; Eelkema, Rienk; Siebbeles, Laurens D A; Grozema, Ferdinand C
2016-03-01
Quantum interference is a well-known phenomenon that dictates charge transport properties of single molecule junctions. However, reports on quantum interference in donor-bridge-acceptor molecules are scarce. This might be due to the difficulties in meeting the conditions for the presence of quantum interference in a donor-bridge-acceptor system. The electronic coupling between the donor, bridge, and acceptor moieties must be weak in order to ensure localised initial and final states for charge transfer. Yet, it must be strong enough to allow all bridge orbitals to mediate charge transfer. We present the computational route to the design of a donor-bridge-acceptor molecule that features the right balance between these contradicting requirements and exhibits pronounced interference effects.
Soliton mode locking fiber laser with an all-fiber polarization interference filter.
Yan, Zhijun; Wang, Hushan; Zhou, Kaiming; Wang, Yishan; Li, Cheng; Zhao, Wei; Zhang, Lin
2012-11-01
An erbium doped fiber ring laser achieving soliton mode locking by the use of an intra-cavity all-fiber polarization interference filter (AFPIF) has been demonstrated. To incorporate an AFPIF with relative narrow transmission bandwidth, the laser has produced clean soliton pulses of 1.2 ps duration at a repetition rate of 14.98 MHz with a polarization extinction ratio up to 25.7 dB. Moreover, we have demonstrated that the operating wavelength of the mode locking laser can be tuned over 20 nm range from 1545 to 1565 nm by thermally tuning the AFPIF cavity.
Brown, Justin; Woolf, David; Hensley, Joel
2016-05-01
Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.
Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip
Schuck, Carsten; Fan, Linran; Ma, Xiao-Song; Poot, Menno; Tang, Hong X
2015-01-01
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single photon detectors. The photonic circuit and detector fabrication processes are compatible with standa...
Quantum interferences and their classical limit in laser driven coherent control scenarios
Energy Technology Data Exchange (ETDEWEB)
Franco, Ignacio, E-mail: ifranco@chem.northwestern.edu [Chemical Physics Theory Group, Department of Chemistry, Center for Quantum Information and Quantum Control, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Spanner, Michael; Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry, Center for Quantum Information and Quantum Control, University of Toronto, Toronto, ON, M5S 3H6 (Canada)
2010-05-12
Graphical abstract: The analogy between Young's double-slit experiment with matter and laser driven coherent control schemes is investigated, and shown to be limited. To do so, a general decomposition of observables in the Heisenberg picture into direct terms and interference contributions is introduced, and formal quantum-classical correspondence arguments in the Heisenberg picture are employed to define classical analogs of quantum interference terms. While the classical interference contributions in the double-slit experiment are shown to be zero, they can be nonzero in laser driven coherent control schemes and lead to laser control in the classical limit. This classical limit is interpreted in terms of nonlinear response theory arguments. - Abstract: The analogy between Young's double-slit experiment with matter and laser driven coherent control schemes is investigated, and shown to be limited. To do so, a general decomposition of observables in the Heisenberg picture into direct terms and interference contributions is introduced, and formal quantum-classical correspondence arguments in the Heisenberg picture are employed to define classical analogs of quantum interference terms. While the classical interference contributions in the double-slit experiment are shown to be zero, they can be nonzero in laser driven coherent control schemes and lead to laser control in the classical limit. This classical limit is interpreted in terms of nonlinear response theory arguments.
Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices
Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine
2016-03-01
We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.
Velasco, Jairo, Jr.
Heterostructures of graphene and hexagonal boron nitride (BN) are highly tunable platforms that enable the study of novel physical phenomena and technologically promising nanoelectronic devices. Common control schemes employed in these studies are electrostatic gating and chemical doping. However, these methods have significant drawbacks, such as complicated fabrication processes that introduce contamination and irreversible changes to material properties, as well as a lack of flexible control. To address these problems we have developed a new method that employs light and/or electric field excitation to control defect charge (from the single impurity level to ensembles) in the underlying BN. We have used optoelectronic and scanning tunneling spectroscopy measurements to characterize these BN defects. We find that by manipulating defect charge in BN it is possible to create rewritable tip-induced doping patterns such as gate-tunable graphene pn junctions and quantum dots. This creates new opportunities for mapping the electronic states of confined electrons in graphene and to visualize their quantum interference behavior.
∧-related Quantum Interference of 2Π [Case(a)] Diatom on Rotational Energy Transfer
Institute of Scientific and Technical Information of China (English)
Jian Li; Yan-qing Ni; Yong-qing Li; Wei-li Wang; Feng-cai Ma
2009-01-01
To study theoretically the relationship between the integral interference angle and the scat-tering angle in collisional quantum interference, the integral interference angle of atom-2Π[case(a)] diatomic molecules system is described. To simulate the experiment theoret-ically, the theoretical model on collision-induced rotational energy transfer in an atom-2Π[case(a)]diatom system is presented based on .the first order Born approximation tak-ing into account of the long-range interaction potential. For the 2Π electronic state in the Hund's case(a) diatom, the degree of the interference is discussed. The interference angles of collision-induced rotational energy transfer of CN(A2Π) in Hund's case(a) with He, Ne, and Ar are calculated quantitatively. The key parameters in the determination of integral interference angles are obtained.
Electrochemical control of quantum interference in anthraquinone-based molecular switches
DEFF Research Database (Denmark)
Markussen, Troels; Schiøtz, Jakob; Thygesen, Kristian Sommer
2010-01-01
Using first-principles calculations we analyze the electronic transport properties of a recently proposed anthraquinone-based electrochemical switch. Robust conductance on/off ratios of several orders of magnitude are observed due to destructive quantum interference present in the anthraquinone b...... of hopping via the localized orbitals. The topology of the tight-binding model, which is dictated by the symmetries of the molecular orbitals, determines the amount of quantum interference.......Using first-principles calculations we analyze the electronic transport properties of a recently proposed anthraquinone-based electrochemical switch. Robust conductance on/off ratios of several orders of magnitude are observed due to destructive quantum interference present in the anthraquinone...
Direct observation of large quantum interference effect in anthraquinone solid-state junctions.
Rabache, Vincent; Chaste, Julien; Petit, Philippe; Della Rocca, Maria Luisa; Martin, Pascal; Lacroix, Jean-Christophe; McCreery, Richard L; Lafarge, Philippe
2013-07-17
Quantum interference in cross-conjugated molecules embedded in solid-state devices was investigated by direct current-voltage and differential conductance transport measurements of anthraquinone (AQ)-based large area planar junctions. A thin film of AQ was grafted covalently on the junction base electrode by diazonium electroreduction, while the counter electrode was directly evaporated on top of the molecular layer. Our technique provides direct evidence of a large quantum interference effect in multiple CMOS compatible planar junctions. The quantum interference is manifested by a pronounced dip in the differential conductance close to zero voltage bias. The experimental signature is well developed at low temperature (4 K), showing a large amplitude dip with a minimum >2 orders of magnitude lower than the conductance at higher bias and is still clearly evident at room temperature. A temperature analysis of the conductance curves revealed that electron-phonon coupling is the principal decoherence mechanism causing large conductance oscillations at low temperature.
Radio-Frequency Field-Induced Quantum Interference Effects in Cold Atoms
Institute of Scientific and Technical Information of China (English)
龙全; 周蜀渝; 周善钰; 王育竹
2001-01-01
We propose constructing a quantum interference configuration for cold atoms in a magneto-optical trap by applying a radio frequency field, which coherently couples adjacent Zeeman sublevels, in combination with a repumping laser field. One effect of this interference is that a dip exists in the absorption of the repumping light when the radio frequency is scanned. Our prediction has been indirectly detected through the fluorescence of cold atoms in a preliminary experiment.
Molecular Beam Epitaxial Growth of Heterostructures to Study Quantum Interference Phenomena
1990-01-01
MBE growth and regrowth of heterostructures for quantum interference transistors and a detailed study of the physical mechanisms and the limitations imposed by them in such devices. We have investigated in detail the suitability of the MBE regrowth process for such applications. Very encouraging progress has been made. The performance characteristics of dual-channel quantum interference devices grown in our laboratory and defined by e-beam lithography have been measured and reported. From this work it is clear that to achieve enhanced performance and to demonstrate a large
Interference control of nonlinear excitation in a multi-atom cavity quantum electrodynamics system.
Yang, Guoqing; Tan, Zheng; Zou, Bichen; Zhu, Yifu
2014-12-01
We show that by manipulating quantum interference in a multi-atom cavity quantum electrodynamics (CQED) system, the nonlinear excitation of the cavity-atom polariton can be resonantly enhanced while the linear excitation is suppressed. Under the appropriate conditions, it is possible to selectively enhance or suppress the polariton excitation with two free-pace laser fields. We report on an experiment with cold Rb atoms in an optical cavity and present experimental results that demonstrate such interference control of the CQED excitation and its direct application to studies of all-optical switching and cross-phase modulation of the cavity-transmitted light.
Quantum interference between two single photons emitted by independently trapped atoms.
Beugnon, J; Jones, M P A; Dingjan, J; Darquié, B; Messin, G; Browaeys, A; Grangier, P
2006-04-06
When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths-in which the photons leave by different output ports-interfere destructively. This effect was first observed in parametric downconversion (in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals, as well as with single photons produced one after the other by the same quantum emitter. With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques. To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.
A parabolic model to control quantum interference in T-shaped molecular junctions.
Nozaki, Daijiro; Sevinçli, Hâldun; Avdoshenko, Stanislav M; Gutierrez, Rafael; Cuniberti, Gianaurelio
2013-09-07
Quantum interference (QI) effects in molecular devices have drawn increasing attention over the past years due to their unique features observed in the conductance spectrum. For the further development of single molecular devices exploiting QI effects, it is of great theoretical and practical interest to develop simple methods controlling the emergence and the positions of QI effects like anti-resonances or Fano line shapes in conductance spectra. In this work, starting from a well-known generic molecular junction with a side group (T-shaped molecule), we propose a simple graphical method to visualize the conditions for the appearance of quantum interference, Fano resonances or anti-resonances, in the conductance spectrum. By introducing a simple graphical representation (parabolic diagram), we can easily visualize the relation between the electronic parameters and the positions of normal resonant peaks and anti-resonant peaks induced by quantum interference in the conductance spectrum. This parabolic model not only can predict the emergence and energetic position of quantum interference from a few electronic parameters but also can enable one to know the coupling between the side group and the main conduction channel from measurements in the case of orthogonal basis. The results obtained within the parabolic model are validated using density-functional based quantum transport calculations in realistic T-shaped molecular junctions.
Institute of Scientific and Technical Information of China (English)
ZHAN Zhi-Ming
2009-01-01
In this paper, a theoretical scheme is proposed to implement the Deutsch-Jozsa algorithm with SQUIDs (superconducting quantum-interference devices) in cavity via Raman transition. The scheme only requires a quantized cavity field and classical microwave pulses. In this scheme, no transfer of quantum information between the SQUIDs and the cavity is required, the cavity field is only virtually excited and thus the cavity decay is suppressed.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We propose a scheme for generating a maximally entangled state of two three-level superconducting quantum interference devices (SQUIDs) by using a quantized cavity field and classical microwave pluses in cavity. In this scheme, no quantum information will be transferred from the SQUIDs to the cavity since the cavity field is only virtually excited. Thus, the cavity decay is suppressed during the entanglement generation.
A parabolic model to control quantum interference in T-shaped molecular junctions
DEFF Research Database (Denmark)
Nozaki, Daijiro; Sevincli, Haldun; Avdoshenko, Stanislav M.;
2013-01-01
Quantum interference (QI) effects in molecular devices have drawn increasing attention over the past years due to their unique features observed in the conductance spectrum. For the further development of single molecular devices exploiting QI effects, it is of great theoretical and practical int...... and the main conduction channel from measurements in the case of orthogonal basis. The results obtained within the parabolic model are validated using density-functional based quantum transport calculations in realistic T-shaped molecular junctions....
电磁干扰滤波器的设计%Design of Electromagnetic Interference Filter
Institute of Scientific and Technical Information of China (English)
高生存
2015-01-01
电力技术飞速发展的如今,带来了电源技术的进步.防电磁干扰带来的问题,开关电源尤为值得注意.本文对开关电源电磁干扰滤波器的原因及种类进行了分析,并进行科学合理的设计方案.%Electric power technology rapid development today, the power supply technology. Preventing electromagnetic interfer?ence problems, switching power supply is particularly noticeable. In this paper, the cause of the switch power supply emi filter and types are analyzed, and scientific and rational design scheme.
Quantum Interference: How to Measure the Wavelength of a Particle
Brom, Joseph M.
2017-01-01
The concept of wave-particle duality in quantum theory is difficult to grasp because it attributes particle-like properties to classical waves and wave-like properties to classical particles. There seems to be an inconsistency involved with the notion that particle-like or wave-like attributes depend on how you look at an entity. The concept comes…
Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.
Reindl, Marcus; Jöns, Klaus D; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo
2017-07-12
Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar "artificial atoms" have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.
Energy Technology Data Exchange (ETDEWEB)
Urbina, Juan Diego; Engl, Thomas; Richter, Klaus [Institute for Theoretical Physics, University of Regensburg (Germany); Arguelles, Arturo [Department of Physics, University of Liege (Belgium); Institute for Theoretical Physics, University of Regensburg (Germany); Dujardin, Julien; Schlagheck, Peter [Department of Physics, University of Liege (Belgium)
2013-07-01
We present a semiclassical theory of quantum interference effects in interacting bosonic fields. We make special emphasis on the difference between genuine quantum interference (due to the superposition principle in the many-body Hilbert space), and classical interference effects due to the wave character of the classical limit. First, we discuss how the usual approaches to this problem are unable to provide the characteristic sum of oscillatory terms, each asociated with a solution of the classical equations of motion, required to semiclassically address interference effects. We show then how to solve this problems by a formal construction of the van Vleck-Gutzwiller propagator for bosonic fields as a sum over paths in the associated Fock space and we identify the classical limit as a Gross-Pitaevskii equation with boundary conditions and multiple solutions. The theory predicts effects akin to weak localization to take place in Fock space, and in particular the enhancement of quantum probability of return due to interference between time-reversed paths there. We support our claims with extensive numerical calculations for a discrete version of an interacting bosonic field.
Note: A hand-held high-Tc superconducting quantum interference device operating without shielding.
He, D F
2011-02-01
By improving the compensation circuit, a hand-held high-Tc rf superconducting quantum interference devices (SQUID) system was developed. It could operate well when moving in unshielded environment. To check the operation, it was used to do eddy-current testing by hand moving the SQUID, and the artificial defect under 6 mm aluminum plate could be successfully detected in shielded environment.
Generation of Entangled States of Multiple Superconducting Quantum Interference Devices in Cavity
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We propose a scheme for generating the maximally entangled states of many superconducting quantum interference devices (SQUIDs) by using a quantized cavity field and classicalmicrowave pulses in cavity. In the scheme,the maximally entangled states can be generated without requiring the measurement and individual addressing of the SQUIDs.
DEFF Research Database (Denmark)
Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian
2017-01-01
We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected...
Engineering two-photon high-dimensional states through quantum interference
CSIR Research Space (South Africa)
Zhang, YI
2016-02-01
Full Text Available the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range...
Directory of Open Access Journals (Sweden)
Queiroz APS
2000-01-01
Full Text Available Zeta plus filter membranes (ZP60S have been shown to be efficient for rotavirus concentration from wastewater and for the reduction of cytotoxicity for cell cultures. Recently a variability in both properties was observed. In view of the low costs and the high virus recovery rates obtained in the past, we re-evaluated the application of ZP60S filter membranes for virus concentration from environmental samples. Some factors that could interfere with the concentration strategy using ZP60S were also considered and assessed including the type of water to be filtered and the possible release of toxic substances from the membrane matrix during filtration.
Aerts, Diederik
2007-01-01
We elaborate a theory for the modeling of concepts using the mathematical structure of quantum mechanics. Items and concepts are represented by vectors in the complex Hilbert space of quantum mechanics and membership weights of items are modeled by quantum weights calculated following the quantum rules. We apply this theory to model the disjunction of concepts and show that the predictions of our theory for the membership weights of items with respect to the disjunction of concepts match with great accuracy the results of an experiment conducted by Hampton (1988b). It is the quantum effects of interference and superposition that are at the origin of the effects of overextension and underextension observed by Hampton as deviations from a classical use of the disjunction. We show that the complex numbers of the Hilbert space are essential to obtaining the experimental predictions, i.e. vector space models over real numbers do not provide predictions matching the experimental data. We put forward an explanation ...
Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer
Directory of Open Access Journals (Sweden)
Yang XF
2010-01-01
Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.
Quantum interference between H + D2 quasiclassical reaction mechanisms.
Jambrina, Pablo G; Herráez-Aguilar, Diego; Aoiz, F Javier; Sneha, Mahima; Jankunas, Justinas; Zare, Richard N
2015-08-01
Interferences are genuine quantum phenomena that appear whenever two seemingly distinct classical trajectories lead to the same outcome. They are common in elastic scattering but are seldom observable in chemical reactions. Here we report experimental measurements of the state-to-state angular distribution for the H + D2 reaction using the 'photoloc' technique. For products in low rotational and vibrational states, a characteristic oscillation pattern governs backward scattering. The comparison between the experiments, rigorous quantum calculations and classical trajectories on an accurate potential energy surface allows us to trace the origin of that structure to the quantum interference between different quasiclassical mechanisms, a phenomenon analogous to that observed in the double-slit experiment.
Exploiting quantum interference in dye sensitized solar cells
DEFF Research Database (Denmark)
Maggio, Emanuele; Solomon, Gemma C.; Troisi, Alessandro
2014-01-01
A strategy to hinder the charge recombination process in dye sensitized solar cells is developed in analogy with similar approaches to modulate charge transport across nanostructures. The system studied is a TiO2 (anatase)-chromophore interface, with an unsaturated carbon bridge connecting the two...... subunits. A theory for nonadiabatic electron transfer is employed in order to take explicitly into account the contribution from the bridge states mediating the process. If a cross-conjugated fragment is present in the bridge, it is possible to suppress the charge recombination by negative interference...... of the possible tunnelling path. Calculations carried out on realistic molecules at the DFT level of theory show how the recombination lifetime can be modulated by changes in the electron-withdrawing (donating) character of the groups connected to the cross-conjugated bridge. Tight binding calculations...
Design and Stability of Discrete-Time Quantum Filters with Measurement Imperfections
Somaraju, Abhinav; Sayrin, Clement; Rouchon, Pierre
2011-01-01
This work considers the theory underlying a discrete-time quantum filter recently used in a quantum feedback experiment. It proves that this filter taking into account decoherence and measurement errors is optimal and stable. We present the general framework underlying this filter and show that it corresponds to a recursive expression of the least-square optimal estimation of the density operator in the presence of measurement imperfections. By measurement imperfections, we mean in a very general sense unread measurement performed by the environment (decoherence) and active measurement performed by non-ideal detectors. However, we assume to know precisely all the Kraus operators and also the detection error rates. Such recursive expressions combine well known methods from quantum filtering theory and classical probability theory (Bayes' law). We then demonstrate that such a recursive filter is always stable with respect to its initial condition: the fidelity between the optimal filter state (when the initial ...
Energy Technology Data Exchange (ETDEWEB)
Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang [State Key laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Wan, Ren-Gang [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China)
2015-06-15
The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process.
A FBG pulse wave demodulation method based on PCF modal interference filter
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
Interference of Light in Michelson-Morley Interferometer: A Quantum Optical Approach
Langangen, O; Vaskinn, A
2011-01-01
We investigate how the temporal coherence interference properties of light in a Michelson-Morley interferometer (MMI), using only a single-photon detector, can be understood in a quantum-optics framework in a straightforward and pedagogical manner. For this purpose we make use of elementary quantum field theory and Glaubers theory for photon detection in order to calculate the expected interference pattern in the MMI. If a thermal reference source is used in the MMI local oscillator port in combination with a thermal source in the signal port, the interference pattern revealed by such an intensity measurement shows a distinctive dependence on the differences in the temperature of the two sources. The MMI can therefore be used in order to perform temperature measurements. A related method was actually used to carry out high precision measurements of the cosmic micro-wave background radiation on board of the COBE satellite. The theoretical framework allows us to consider any initial quantum state. The interfere...
Interference of Light in a Michelson-Morley Interferometer: A Quantum Optical Approach
Directory of Open Access Journals (Sweden)
Ø. Langangen
2012-01-01
Full Text Available The temporal coherence interference properties of light as revealed by single detector intensity measurements in a Michelson-Morley interferometer (MMI is often described in terms of classical optics. We show, in a pedagogical manner, how such features of light also can be understood in terms of a more general quantum-optics framework. If a thermal reference source is used in the MMI local oscillator port in combination with a thermal source in the signal port, the interference pattern revealed by single detector intensity measurements shows a distinctive dependence on the differences in the temperature of the two sources. A related method has actually been used to perform high-precision measurements of the cosmic microwave background radiation. The general quantum-optics framework allows us to consider any initial quantum state. As an example, we consider the interference of single photons as a tool to determine the peak angular-frequency of a single-photon pulse interfering with a single-photon reference pulse. A similar consideration for laser pulses, in terms of coherent states, leads to a different response in the detector. The MMI experimental setup is therefore an example of an optical device where one, in terms of intensity measurements, can exhibit the difference between classical and quantum-mechanical light.
Coherence Factors and Quantum Interferences in Excitonic Condensation of Ta2NiSe5
Sugimoto, Koudai; Kaneko, Tatsuya; Ohta, Yukinori
2017-04-01
In order to elucidate whether Ta2NiSe5 is in an excitonic condensation state or not, we study macroscopic quantum interferences in ultrasonic attenuation rate and nuclear magnetic resonance relaxation rate. Using the three-chain model describing the excitonic condensation of Ta2NiSe5, we demonstrate analytically that the ultrasonic attenuation rate shows a characteristic peak just below the transition temperature of the excitonic condensation, while the nuclear magnetic resonance relaxation rate shows a rapid drop. In particular, we find that the constructive interference originates from the hybridization between the conduction and valence bands induced by an external field.
Control of quantum interference of an excitonic wave in a chlorophyll chain with a chlorophyll ring
Energy Technology Data Exchange (ETDEWEB)
Hong, Suc-Kyoung; Nam, Seog-Woo [Korea University, Jochiwon, Chungnam (Korea, Republic of); Yeon, Kyu-Hwang [Chungbuk National University, Cheonju (Korea, Republic of)
2010-06-15
The quantum interference of an excitonic wave and its coherent control in a nanochain with a nanoring are studied. The nanochain is comprised of six chlorophylls, where four chlorophylls compose the nanoring and two chlorophylls are attached at two opposite sites on the nanoring. The exciton dynamics and the correlation of the excitation between chlorophylls are analyzed for a given configurational arrangement and dipolar orientation of the chlorophylls. The results of this study show that the excitation at specified chlorophylls is suppressed or enhanced by destructive or constructive interference of the excitonic wave in the chlorophyll nanochain.
Interference control of perfect photon absorption in cavity quantum electrodynamics
Wang, Liyong; Zhu, Yifu; Agarwal, G S
2016-01-01
We propose and analyze a scheme for controlling coherent photon transmission and reflection in a cavity-quantum-electrodynamics (CQED) system consisting of an optical resonator coupled with three-level atoms coherently prepared by a control laser from free space. When the control laser is off and the cavity is excited by two identical light fields from two ends of the cavity, the two input light fields can be completely absorbed by the CQED system and the light energy is converted into the excitation of the polariton states, but no light can escape from the cavity. Two distinct cases of controlling the perfect photon absorption are analyzed: (a) when the control laser is tuned to the atomic resonance and creates electromagnetically induced transparency, the prefect photon absorption is suppressed and the input light fields are nearly completely transmitted through the cavity; (b) when the control laser is tuned to the polariton state resonance and inhibits the polariton state excitation, the perfect photon ab...
Mitchell, D A; Sault, R J
2010-01-01
In radio astronomy, reference signals from auxiliary antennas that receive only the radio frequency interference (RFI) can be modified to model the RFI environment at the astronomy receivers. The RFI can then be canceled from the astronomy signal paths. However, astronomers typically only require signal statistics. If the RFI statistics are changing slowly, the cancellation can be applied to the signal correlations at a much lower rate than is required for standard adaptive filters. In this paper we describe five canceler setups; precorrelation and postcorrelation cancelers that use one or two reference signals in different ways. The theoretical residual RFI and added noise levels are examined and are demonstrated using microwave television RFI at the Australia Telescope Compact Array. The RFI is attenuated to below the system noise, a reduction of at least 20 dB. While dual-reference cancelers add more reference noise than single-reference cancelers, this noise is zero-mean and only adds to the system noise,...
Interference filter spectral imaging of twilight O+(2P-2D emission
Directory of Open Access Journals (Sweden)
R. H. Wiens
Full Text Available A spectral imager specifically designed to measure the O+(2P-2D emission in the thermosphere during twilight has been constructed and tested in Toronto (43.8°N, 79.3°W, and found to show promise for long-term and campaign-mode operations. A modification of the mesopause oxygen rotational temperature imager (MORTI, it consists basically of a narrow-band interference filter (0.14 nm bandwidth to separate wavelengths as a function of off-axis angle, a lens to focus the spectrum into a series of concentric rings, and a focal plane array (CCD to record the spectral images in digital form. The instrument was built with two fields of view, one for the zenith and one for 20° above the horizon, movable to track the azimuth of the Sun, in order to provide appropriate data for inversion. Data gathered during June 1991 provided measurements of the column-integrated emission rate with a precision of about 3%. An atomic oxygen profile was deduced that showed good agreement with that predicted by the MSIS-90 model atmosphere. Geomagnetically induced variations of the O+ lines, calcium spectra resulting from meteor showers, and OH nightglow were also observed.
Directory of Open Access Journals (Sweden)
Naveen R Chanukotimath
2013-07-01
Full Text Available All image processing techniques need to extract meaningful information from images. However, the noise generated during image acquisition and transmission degrades the human interpretation, or computer-aided analysis of these images. Therefore, denoising should be performed to improve the image quality for more accurate analysis and diagnosis, So we thought of designing a generic image filter that can be applicable to remove Impulse noise, Gaussian noise, Quantum noise. In this paper we propose a novel image denoising technique Dvadasham (Dodeca Edge Filter (DEF. We applied this filter on various images, obtained the results by measuring parameters like Standard Deviation, Homogeneity and compared it with the results of existing Fuzzy Filter. The results obtained with DEF are quite promising than Fuzzy Filter.
Quantum interference of highly-dispersive surface plasmons (Conference Presentation)
Tokpanov, Yury S.; Fakonas, James S.; Atwater, Harry A.
2016-09-01
Previous experiments have shown that surface plasmon polaritons (SPPs) preserve their entangled state and do not cause measurable decoherence. However, essentially all of them were done using SPPs whose dispersion was in the linear "photon-like" regime. We report in this presentation on experiments showing how transition to "true-plasmon" non-linear dispersion regime, which occurs near SPP resonance frequency, will affect quantum coherent properties of light. To generate a polarization-entangled state we utilize type-I parametric down-conversion, occurring in a pair of non-linear crystals (BiBO), glued together and rotated by 90 degrees with respect to each other. For state projection measurements, we use a pair of polarizers and single-photon avalanche diode coincidence count detectors. We interpose a plasmonic hole array in the path of down-converted light before the polarizer. Without the hole array, we measure visibility V=99-100% and Bell's number S=2.81±0.03. To study geometrical effects we fabricated plasmonic hole arrays (gold on optically polished glass) with elliptical holes (axes are 190nm and 240nm) using focused ion beam. When we put this sample in our system we measured the reduction of visibility V=86±5% using entangled light. However, measurement using classical light gave exactly the same visibility; hence, this reduction is caused only by the difference in transmission coefficients of different polarizations. As samples with non-linear dispersion we fabricated two-layer (a-Si - Au) and three-layer (a-Si - Au - a-Si) structures on optically polished glass with different pitches and circular holes. The results of measurements with these samples will be discussed along with the theoretical investigations.
Optical scatter of quantum noise filter cavity optics
Vander-Hyde, Daniel; Smith, Joshua R
2014-01-01
We report on measurements of light scattering from two two-inch super-polished fused silica substrates before and after applying (ATFilms) ion-beam sputtered highly-reflective dielectric coatings. We used an imaging scatterometer, that illuminates the sample with a linearly polarized 1064 nm wavelength laser at a fixed angle of incidence and records images of back scatter for azimuthal angles in the plane of the laser beam, to measure the Bidirectional Reflectance Distribution Function (BRDF) and estimate the total integrated scatter for both samples, before and after coating. We find application of these highly reflective coatings leads to an increase of the integrated scatter of the primary surface by more than 50 %. In addition, the BRDF function of the coated optics takes on a pattern of maxima and zeroes versus azimuthal angle that is qualitatively consistent with bulk scattering from the coating layers. These results are part of a broader study to understand optical loss in quantum noise filter cavities...
Electron transport through a linear tri-quantum-dot molecule Aharonov-Bohm interference
Bai, Jiyuan; He, Zelong; Li, Li; Ye, Shujiang; Sun, Weimin
2017-09-01
Using the non-equilibrium Keldysh Green's function technique, electron transport properties through a two-terminal linear tri-quantum-dot molecule Aharonov-Bohm (A-B) interference are investigated. The conductance as a function of electron energy is numerically calculated. The influence of magnetic flux and interdot coupling strength on the conductance is researched. Fano resonances emerge in the conductance spectrum, and two bound states in the continuum form simultaneously when the interdot couplings take appropriate values. A conductance dip is observed and evolves into an antiresonance band with increasing magnetic flux. The system can be designed as a quantum switch by adjusting the intramolecular couplings.
Beyond Quantum interference and Optical pumping: invoking a Closed-loop phase
Kani, A
2016-01-01
Atomic coherence effects arising from coherent light-atom interaction are conventionally known to be governed by quantum interference and optical pumping mechanisms. However, anisotropic nonlinear response driven by optical field involves another fundamental effect arising from closed-loop multiphoton transitions. This closed-loop phase dictates the tensorial structure of the nonlinear susceptibility as it governs the principal coordinate system in determining, whether the light field will either compete or cooperate with the external magnetic field stimulus. Such a treatment provides deeper understanding of all magneto-optical anisotropic response. The magneto-optical response in all atomic systems is classified using closed-loop phase. The role of quantum interference in obtaining electromagnetically induced transparency or electromagnetically induced absorption in multi-level systems is identified.
Constructive quantum interference in a bis-copper six-porphyrin nanoring
Richert, Sabine; Cremers, Jonathan; Kuprov, Ilya; Peeks, Martin D.; Anderson, Harry L.; Timmel, Christiane R.
2017-03-01
The exchange interaction, J, between two spin centres is a convenient measure of through bond electronic communication. Here, we investigate quantum interference phenomena in a bis-copper six-porphyrin nanoring by electron paramagnetic resonance spectroscopy via measurement of the exchange coupling between the copper centres. Using an analytical expression accounting for both dipolar and exchange coupling to simulate the time traces obtained in a double electron electron resonance experiment, we demonstrate that J can be quantified to high precision even in the presence of significant through-space coupling. We show that the exchange coupling between two spin centres is increased by a factor of 4.5 in the ring structure with two parallel coupling paths as compared to an otherwise identical system with just one coupling path, which is a clear signature of constructive quantum interference.
Vacuum-Induced Quantum Interference in a Trapped ∧-Configuration Three-Level System
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Ling; YIN Jian-Ping
2005-01-01
@@ In consideration of quantization of centre-of-mass motion, we derive the second-order solution of the dynamic equation of a ∧-configuration three-level atom confined in an approximately harmonic trap by using the timedependent perturbation theory. It is found that there are a series of dark lines in the second-order probability spectrum with multi-peak structures, which is the result of the quantum interference from the same vacuum mode in the spontaneous decay process of the trapped atom from the upper level to the two nearby lower levels. Our study shows that the second-order spectrum may be modified by the oscillation frequency Ω of the trap and the frequency difference △ between two lower levels of the three-level atom, and the depth of the dark lines from the vacuum-induced quantum interference effect is strongly dependent on the above two parameters (Ω and △).
Probing electron-phonon excitations in molecular junctions by quantum interference.
Bessis, C; Della Rocca, M L; Barraud, C; Martin, P; Lacroix, J C; Markussen, T; Lafarge, P
2016-02-11
Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction's conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green's functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices.
Triple-Quantum Filtered NMR Imaging of Sodium -23 in the Human Brain
Keltner, John Robinson
In the past multiple-quantum filtered imaging of biexponential relaxation sodium-23 nuclei in the human brain has been limited by low signal to noise ratios; this thesis demonstrates that such imaging is feasible when using a modified gradient-selected triple-quantum filter at a repetition time which maximizes the signal to noise ratio. Nuclear magnetic resonance imaging of biexponential relaxation sodium-23 (^{23}Na) nuclei in the human brain may be useful for detecting ischemia, cancer, and pathophysiology related to manic-depression. Multiple -quantum filters may be used to selectively image biexponential relaxation ^{23}Na signals since these filters suppress single-exponential relaxation ^{23}Na signals. In this thesis, the typical repetition times (200 -300 ms) used for in vivo multiple-quantum filtered ^{23}Na experiments are shown to be approximately 5 times greater than the optimal repetition time which maximizes multiple-quantum filtered SNR. Calculations and experimental verification show that the gradient-selected triple-quantum (GS3Q) filtered SNR for ^ {23}Na in a 4% agarose gel increases by a factor of two as the repetition time decreases from 300 ms to 55 ms. It is observed that a simple reduction of repetition time also increases spurious single-quantum signals from GS3Q filtered experiments. Irreducible superoperator calculations have been used to design a modified GS3Q filter which more effectively suppresses the spurious single-quantum signals. The modified GS3Q filter includes a preparatory crusher gradient and two-step-phase cycling. Using the modified GS3Q filter and a repetition time of 70 ms, a three dimensional triple-quantum filtered image of a phantom modelling ^{23} Na in the brain was obtained. The phantom consisted of two 4 cm diameter spheres inside of a 8.5 cm x 7 cm ellipsoid. The two spheres contained 0.012 and 0.024 M ^{23}Na in 4% agarose gel. Surrounding the spheres and inside the ellipsoid was 0.03 M aqueous ^{23}Na. The image
Institute of Scientific and Technical Information of China (English)
刘当婷; 田野; 赵士平; 任育峰; 陈赓华
2015-01-01
We discuss a simple relation between the input and output signals of a superconducting quantum interference device magnetometer operating in flux locked mode in a cosine curve approximation. According to this relation, an original fast input signal can be easily retrieved from its distorted output response. This technique can be used in some areas such as sensitive and fast detection of magnetic or metallic grains in medicine and food security checking.
Effects of Quantum Interference on the Profile of Excitation Spectra in the Atomic Sodium D1
Institute of Scientific and Technical Information of China (English)
LI Yongfang; ZHANG Xiangyang; SUN Jianfeng; ZHAO Yongmei; WANG Yongchang; ZHANG Yanliang; DING Liang’en; WANG Zugeng
2002-01-01
In this paper, an experiment in a sodium vapor cell with cw laser pumping is reported. Two dips in the excitation spectrum profile of the sodium \\$D1\\$ line are observed. Theoretically excitation spectra in the three-level system are calculated in detail and results are identical with experiments. It is demonstrated that the appearance of the two dips in the excitation spectrum is close connected with quantum interference effect.
Effects of quantum interference in spectra of cascade spontaneous emission from multilevel systems
Makarov, A. A.; Yudson, V. I.
2016-12-01
A general expression for the spectrum of cascade spontaneous emission from an arbitrary multilevel system is presented. Effects of the quantum interference of photons emitted in different transitions are analyzed. These effects are especially essential when the transition frequencies are close. Several examples are considered: (i) Three-level system; (ii) Harmonic oscillator; (iii) System with equidistant levels and equal rates of the spontaneous decay for all the transitions; (iv) Dicke superradiance model.
Fast scheme for generating quantum-interference states and G HZ state of N trapped ions
Institute of Scientific and Technical Information of China (English)
Zheng Xiao-Juan; Fang Mao-Fa; Liao Xiang-Ping; Cai Jian-Wu; Cao Shuai
2007-01-01
We propose a fast scheme to generate the quantum-interference states of N trapped ions. In the scheme the ions are driven by a standing-wave laser beam whose carrier frequency is tuned such that the ion transition can take place.We also propose a simple and fast scheme to produce the GHZ state of N hot trapped ions and this scheme is insensitive to the heating of vibrational motion, which is important from the viewpoint of decoherence.
Takagaki, Y.
2016-09-01
Quantum interference in scattering from a potential offset is investigated in narrow strips of two-dimensional systems described by the Bernevig-Hughes-Zhang Hamiltonian. Attention is focused on the situations where the transmission in the scattering region takes place around the Dirac point of topological insulators when the hybridization energy gap is eliminated by utilizing transverse interference. Apart from conventional periodic transmission modulation that takes place when the length of the potential offset region is varied, resonant disappearances of reflection occur for short potential offsets. The anomalous resonance appears not only for the four-band Hamiltonian but also for the two-band Hamiltonian, manifesting the generality of the phenomenon. Evanescent-like waves excited around the potential steps are indicated to be responsible for the anomalous behavior. The interference states can couple with each other and generic reduction in the amplitude of transmission modulation occurs upon coupling with the periodic modulation.
Multiphoton Interference in Quantum Fourier Transform Circuits and Applications to Quantum Metrology
Su, Zu-En; Li, Yuan; Rohde, Peter P.; Huang, He-Liang; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Dowling, Jonathan P.; Lu, Chao-Yang; Pan, Jian-Wei
2017-08-01
Quantum Fourier transforms (QFTs) have gained increased attention with the rise of quantum walks, boson sampling, and quantum metrology. Here, we present and demonstrate a general technique that simplifies the construction of QFT interferometers using both path and polarization modes. On that basis, we first observe the generalized Hong-Ou-Mandel effect with up to four photons. Furthermore, we directly exploit number-path entanglement generated in these QFT interferometers and demonstrate optical phase supersensitivities deterministically.
Energy Technology Data Exchange (ETDEWEB)
Nakanishi, Masakazu, E-mail: m.nakanishi@aist.go.jp [Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, AIST Central-3, 1-1, Umezono, Tsukuba, Ibaraki 305-8563 (Japan)
2014-10-15
Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10{sup 7} was created as a demonstration.
WO3∕SiO2 composite optical films for the fabrication of electrochromic interference filters.
Baloukas, Bill; Martinu, Ludvik
2012-06-01
New security devices based on innovative technologies and ideas are essential in order to limit counterfeiting's profound impact on our economy and society. Interference security image structures have been in circulation for more than 20 years, but commercially available iridescent products now represent a potential threat. Therefore, the introduction of active materials, such as electrochromic WO3, to present-day optical security devices offers interesting possibilities. We have previously proposed electrochromic interference filters based on porous and dense WO3, which possessed an angle-dependent and voltage-driven color shift. However, the low index contrast required filters with a high number of layers. In this article, we increase the index contrast (0.61) by mixing WO3 with SiO2 and study the physical and electrochromic properties of mixtures. We next combine high and low index films in tandem configurations to observe the bleaching/coloration dynamics. To account for the film performance, we propose a simple explanation based on the differences in electron diffusion coefficients. An 11 layer electrochromic interference filter (EIF) based on the alternation of pure WO3 and (WO3)0.17(SiO2)0.83 films with a blue to purple angular color shift is then presented. Finally, we discuss possible applications of these EIFs for security.
Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-08-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Quantum interference and control of the optical response in quantum dot molecules
Energy Technology Data Exchange (ETDEWEB)
Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)
2013-11-25
We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.
Quantum interferences of a single quantum dot in the case of detuning
Energy Technology Data Exchange (ETDEWEB)
Michaelis de Vasconcellos, Steffen; Stufler, Stefan; Wegner, Sven-Ake; Ester, Patrick; Zrenner, Artur [Universitaet Paderborn, Warburger Strasse 100, 33098 Paderborn (Germany); Bichler, Max [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)
2006-07-01
We report on highly phase sensitive measurements with a slightly detuned excitation of a quantum mechanical two-level system. It is formed by the single exciton ground state of a single quantum dot, which is incorporated in a n-i-Schottky diode. We excited the two-level system by two partly overlapping laser pulses with variable phase shift. To investigate the properties of the quantum system we determine its occupancy by measuring the photocurrent. The experimental data is compared to a numerical simulation of the system. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Observing quantum interference in 3D integrated-photonic symmetric multiports
Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio
2017-02-01
The investigation of multi-photon quantum interference in symmetric multi-port splitters has both fundamental and applicative interest. Destructive quantum interference in devices with specific symmetry leads to the suppression of a large number of possible output states, generalizing the Hong-Ou-Mandel effect; simple suppression laws have been developed for interferometers implementing the Fourier or the Hadamard transform over the modes. In fact, these enhanced interference features in the output distribution can be used to assess the indistinguishability of single-photon sources, and symmetric interferometers have been envisaged as benchmark or validation devices for Boson-Sampling machines. In this work we devise an innovative approach to implement symmetric multi-mode interferometers that realize the Fourier and Hadamard transform over the optical modes, exploiting integrated waveguide circuits. Our design is based on the optical implementations of the Fast-Fourier and Fast-Hadamard transform algorithms, and exploits a novel three-dimensional layout which is made possible by the unique capabilities of femtosecond laser waveguide writing. We fabricate devices with m = 4 and m = 8 modes and we let two identical photons evolve in the circuit. By characterizing the coincidence output distribution we are able to observe experimentally the known suppression laws for the output states. In particular, we characterize the robustness of this approach to assess the photons' indistinguishability and to rule out alternative non-quantum states of light. The reported results pave the way to the adoption of symmetric multiport interferometers as pivotal tools in the diagnostics and certification of quantum photonic platforms.
Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction
Directory of Open Access Journals (Sweden)
Yokoyama Tomohiro
2011-01-01
Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d
Quantum Noise, Bits and Jumps: Uncertainties, Decoherence, Trajectories and Filtering
Belavkin, V P
2001-01-01
It is shown that many dissipative phenomena of "old" quantum mechanics which appeared 100 years ago in the form of the statistics of quantum thermal noise and quantum spontaneous jumps, have never been explained by the "new" conservative quantum mechanics discovered 75 years ago by Heisenberg and Schroedinger. This led to numerous quantum paradoxes which are reconsidered in this paper. The development of quantum measurement theory, initiated by von Neumann, indicated a possibility for resolution of this interpretational crisis by divorcing the algebra of the dynamical generators from the algebra of the actual observables. It is shown that within this approach quantum causality can be rehabilitated in the form of a superselection rule for compatibility of past observables with the potential future. This rule, together with the self-compatibility of measurements insuring the consistency of histories, is called the nondemolition principle. The application of this causality condition in the form of the dynamical ...
Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2013-01-01
A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale [corrected], orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau-Zener-Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications.
Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2013-01-01
A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale, orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau–Zener–Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications. PMID:23360992
Quantum Interference Phenomena and Novel Switching in Split Gate High Electron Mobility Transistors.
Wu, Jong-Ching
Nanometer scales electronic channels with and without a discontinuity were made in modulation-doped AlGaAs/GaAs heterojunctions using a split-gate technique. Quantum interference phenomena in an electron cavity, and fast switching behavior due to hot electron effects in a lateral double potential barrier structure were explored. First, one-dimensional channels with a double bend discontinuity were examined in the mK temperature range. Low-field ac-conductance measurements have evidenced quantum wave guide effects: resonant features were observed in the one-dimensional conductance plateaus in which the number of peaks was directly related to the geometry of the double bend. Temperature and magnetic field studies, along with a standing wave model have provided a better understanding of quantum interference phenomena in electron wave guide and cavity structures. Secondly, a structure containing two cascaded double bend discontinuities was studied. The structure behaves as a constricted cavity coupling two point-contacts, in which the depletion by the split gate was used to form and control the lateral double potential barriers. The low temperature source-drain characteristics exhibited a pronounced S-shaped negative differential conductance that can be attributed to a nonlinear electron temperature effect along the conducting path. The data presented show two types of conducting state: electron tunneling in the off state and hot electron conduction (thermionic emission) in the on state. The estimated switching speed of the device could be as fast as 5 ps due to short transit time.
Aradhya, Sriharsha V; Meisner, Jeffrey S; Krikorian, Markrete; Ahn, Seokhoon; Parameswaran, Radha; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha
2012-03-14
Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.
On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.
Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D
2017-08-30
Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.
Okano, Masayuki; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki
2016-01-01
Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 $\\mu$m resolution two-photon interference, which surpasses the current record resolution 0.75 $\\mu$m of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirpe...
Energy Technology Data Exchange (ETDEWEB)
Park, Choon Su; Kim, Jun Woo; Cho, Seung Hyun; Seo, Dae Cheol [Center for Safety Measurements, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)
2014-06-15
Closed cracks are difficult to detect using conventional ultrasonic testing because most incident ultrasound passes completely through these cracks. Nonlinear ultrasound inspection using sub-harmonic frequencies a promising method for detecting closed cracks. To implement this method, a sub-harmonic phased array (PA) is proposed to visualize the length of closed cracks in solids. A sub-harmonic PA generally consists of a single transmitter and an array receiver, which detects sub-harmonic waves generated from closed cracks. The PA images are obtained using the total focusing method (TFM), which (with a transmitter and receiving array) employs a full matrix in the observation region to achieve fine image resolution. In particular, the receiving signals are measured using a laser Doppler vibrometer (LDV) to collect PA images for both fundamental and sub-harmonic frequencies. Oblique incidence, which is used to boost sub-harmonic generation, inevitably produces various surface waves that contaminate the signals measured in the receiving transducer. Surface wave interference often degrades PA images severely, and it becomes difficult to read the closed crack's position from the images. Various methods to prevent or eliminate this interference are possible. In particular, enhancing images with signal processing could be a highly cost-effective method. Because periodic patterns distributed in a PA image are the most frequent interference induced by surface waves, spatial frequency filtering is applicable for removing these waves. Experiments clearly demonstrate that the spatial frequency filter improves PA images.
Quantum interference of virtual and real amplitudes in a semiconductor exciton system.
Ahn, Y H; Choe, S B; Woo, J C; Kim, D S; Cundiff, S T; Shacklette, J M; Lim, Y S
2002-12-02
By two-color pulse shaping, we simultaneously create virtual and real amplitudes for excitons in GaAs quantum wells, and monitor population and amplitude by pump-probe and four-wave mixing spectroscopies. Excited-state probability amplitude can be induced by the off-resonant, virtual excitations as well as by the resonant, real excitations. Population modulation in time-domain results from the interference between the virtual and real amplitudes, and the modulation depth reveals the relative contributions of these two amplitudes. The fact that virtual and real amplitudes have a phase difference of 90 degrees is demonstrated directly in time-domain.
Enpuku, Keiji; Doi, Hideki; Tokita, Go; Maruo, Taku
1994-05-01
The effect of damping resistance on the voltage versus flux (V -Φ) relation of the high T c dc superconducting quantum interference device (SQUID) is studied experimentally. Dc SQUID using YBaCuO step-edge junction and damping resistance in parallel with SQUID inductance is fabricated. Measured values of modulation voltage in the V -Φ relation are compared with those of the conventional SQUID without damping resistance. It is shown that modulation voltage is much improved by using damping resistance. The obtained experimental results agree reasonably with theoretical predictions reported previously.
The Relation between Structure and Quantum Interference in Single Molecule Junctions
DEFF Research Database (Denmark)
Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer
2010-01-01
Quantum interference (QI) of electron pathways has recently attracted increased interest as an enabling tool for single-molecule electronic devices. Although various molecular systems have been shown to exhibit QI effects and a number of methods have been proposed for its analysis, simple...... the existence of QI-induced transmission antiresonances. The generality of the scheme, which is exact for a certain class of tight-binding models, is proved by a comparison to first-principles transport calculations for 10 different configurations of anthraquinone as well as a set of cross-conjugated molecular...
Energy Technology Data Exchange (ETDEWEB)
Ranzani, Leonardo [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Colorado at Boulder, Boulder, Colorado 80309 (United States); Spietz, Lafe; Aumentado, Jose [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)
2013-07-08
In this work, we characterize the 2-port scattering parameters of a superconducting quantum interference device amplifier at {approx}20 mK over several gigahertz of bandwidth. The measurement reference plane is positioned on a 6.25 {Omega} microstrip line situated directly at the input and output of the device by means of a thru-reflect-line cryogenic calibration procedure. From the scattering parameters, we derive the device available power gain, isolation, and input impedance over the 2-8 GHz range. This measurement methodology provides a path towards designing wide-band matching circuits for low impedance superconducting amplifiers operating at dilution refrigerator temperatures.
Yi, H. R.; Zhang, Y; Schubert, J.; Zander, W.; Zeng, X. H.; Klein, N
2000-01-01
This article describes three planar layouts of superconducting multiturn flux transformers integrated with a coplanar resonator for radio frequency (rf) superconducting quantum interference device (SQUID) magnetometers. The best magnetic field noise values of 22 and 11.5 fT/Hz(1/2) in the white noise regime were obtained for the layout with two input coils and the layout with the labyrinth resonator, respectively. Excess low-frequency noise (about 200 fT/Hz(1/2) at 10 Hz) was present. Compute...
DEFF Research Database (Denmark)
Bolotin, Kirill; Kuemmeth, Ferdinand; Ralph, D
2006-01-01
We measure the low-temperature resistance of permalloy break junctions as a function of contact size and the magnetic field angle in applied fields large enough to saturate the magnetization. For both nanometer-scale metallic contacts and tunneling devices we observe large changes in resistance...... with the angle, as large as 25% in the tunneling regime. The pattern of magnetoresistance is sensitive to changes in bias on a scale of a few mV. We interpret the effect as a consequence of conductance fluctuations due to quantum interference....
Cavity quantum electrodynamics with quantum interference in a three-level atomic system
Joshi, Amitabh; Serna, Juan D.
2017-06-01
Spontaneously generated coherence and enhanced dispersion in a V-type, three-level atomic system interacting with a single mode field can considerably reduce the radiative and cavity decay rates. This may eliminate the use of high finesse, miniaturized cavities in optical cavity quantum electrodynamics experiments under strong atom-field coupling conditions.
Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2016-11-01
In this paper, we propose a protocol to prepare W states with superconducting quantum interference devices by using dressed states. Through choosing a set of dressed states suitably, the protocol can be used to accelerate the adiabatic passages while additional couplings are unnecessary. Moreover, we can optimize the evolution of the system with the restraint to the populations of the intermediate states by choosing suitable control parameters. Numerical simulations show that the protocol is robust against the parameter variations and decoherence mechanisms. Furthermore, the protocol is faster and more robust against the dephasing compared with that by the adiabatic passages. As for the Rabi frequencies of pulses designed by the method, they can be expressed by the linear superpositions of Gaussian functions, which does not increase difficulty in the experiments. In addition, the protocol could be controlled and manipulated easily in experiments with a circuit quantum electrodynamics system.
Nakanishi, Masakazu
2010-09-01
It is theoretically explained that a response of a superconducting quantum interference device (SQUID) is periodically dependent on total magnetic flux coupling to the SQUID ring (Φ) and its period is a flux quantum (Φ(o)=h/2e, where h and e, respectively, express Planck's constant and elementary charge). For example, the voltage of an electromagnetically oscillated rf-SQUID or a current biased dc-SQUID is thought to be periodically dependent on Φ with a period of Φ(o). In this paper, we propose an accurate method to check the periodicity of a SQUID response by using a set of sensing coils covered with a superconducting sheath. As a demonstration, we measured periodicity of a commercially available thin-film type rf-SQUID response in magnetic flux ranging up to approximately 4300Φ(o). Its flux dependence was periodic below about 3400Φ(o).
Holographic quantum imaging: reconstructing spatial properties via two-particle interference
Trautmann, Nils; Ferenczi, Gergely; Croke, Sarah; Barnett, Stephen M.
2017-05-01
Two particle interference phenomena, such as the Hong-Ou-Mandel (HOM) effect, are a direct manifestation of the nature of the symmetry properties of indistinguishable particles as described by quantum mechanics. The HOM effect has recently been applied as a tool for pure state tomography of a single photon. In this article, we generalize the method to extract additional information for a pure state and extend this to the full tomography of mixed states as well. The formalism is kept general enough to apply to both boson and fermion based interferometry. Our theoretical discussion is accompanied by two proposals of interferometric setups that allow the measurement of a tomographically complete set of observables for single photon quantum states.
Belluzzi, Luca
2011-01-01
The spectral line polarization produced by optically pumped atoms contains a wealth of information on the thermal and magnetic structure of a variety of astrophysical plasmas, including that of the solar atmosphere. A correct decoding of such information from the observed Stokes profiles requires a clear understanding of the effects that radiatively induced quantum interferences (or coherences) between pairs of magnetic sublevels produce on these observables, in the absence and in the presence of magnetic fields of arbitrary strength. Here we present a detailed theoretical investigation on the role of coherences between pairs of sublevels pertaining to different fine-structure J-levels, clarifying when they can be neglected for facilitating the modeling of the linear polarization produced by scattering processes in spectral lines. To this end, we apply the quantum theory of spectral line polarization and calculate the linear polarization patterns of the radiation scattered at 90 degrees by a slab of stellar a...
Li, N.; Liu, M. Y.; Gao, X. J.; Zhang, L.; Jia, Z. X.; Feng, Y.; Ohishi, Y.; Qin, G. S.; Qin, W. P.
2016-07-01
We demonstrated a widely tunable mode-locked thulium doped fiber laser (TDFL) by using a homemade multimode interference filter (MMIF). The MMIF had a structure of single mode fiber (SMF)—multimode fiber (MMF)—SMF and three main transmission peaks at 1901.2, 1957.2 and 2043.2 nm. By mechanically bending the MMIF, the three main transmission peaks were tuned in the range of 1860-2024 nm due to multimode interference effect. By inserting the MMIF into a passively mode-locked TDFL cavity pumped by a 1570 nm fiber laser, a tunable mode-locked TDFL with a tuning range of 1919.6-2014.9 nm was achieved by adjusting the MMIF. To the best of our knowledge, such a tunable range is the largest among all-fiber tunable mode-locked TDFLs.
Aboutabikh, Kamal; Aboukerdah, Nader
2015-07-01
In this paper, we propose a practical way to synthesize and filter an ECG signal in the presence of four types of interference signals: (1) those arising from power networks with a fundamental frequency of 50Hz, (2) those arising from respiration, having a frequency range from 0.05 to 0.5Hz, (3) muscle signals with a frequency of 25Hz, and (4) white noise present within the ECG signal band. This was done by implementing a multiband digital filter (seven bands) of type FIR Multiband Least Squares using a digital programmable device (Cyclone II EP2C70F896C6 FPGA, Altera), which was placed on an education and development board (DE2-70, Terasic). This filter was designed using the VHDL language in the Quartus II 9.1 design environment. The proposed method depends on Direct Digital Frequency Synthesizers (DDFS) designed to synthesize the ECG signal and various interference signals. So that the synthetic ECG specifications would be closer to actual ECG signals after filtering, we designed in a single multiband digital filter instead of using three separate digital filters LPF, HPF, BSF. Thus all interference signals were removed with a single digital filter. The multiband digital filter results were studied using a digital oscilloscope to characterize input and output signals in the presence of differing sinusoidal interference signals and white noise.
Applying filtering for determining the angular orientation of spinning objects during interference
Kartsan, I. N.; Fateev, Y. L.; Tyapkin, V. N.; Dmitriev, D. D.; Goncharov, A. E.; Zelenkov, P. V.; Kovalev, I. V.
2016-11-01
This article discusses the application of user navigation equipment of satellite radionavigation systems (GLONASS/GPS) for measuring the inclination of the aerial axis of rotation. The authors have demonstrated that the required accuracy of the angular inclination is achieved only in a relative phase mode, which is not always feasible. The application of filtering for measured parameters of navigation equipment has namely been used for planimetric coordinates. Filtering is performed using the second order Kalman filter. It has significant effect; thus, even at a speed of 1 rpm, there is no disruption in the autonomous coded mode; for the relative phase mode, the required accuracy is achieved at 3 rpm.
High-order noise filtering in nontrivial quantum logic gates
CSIR Research Space (South Africa)
Green, T
2012-07-01
Full Text Available Treating the effects of a time-dependent classical dephasing environment during quantum logic operations poses a theoretical challenge, as the application of noncommuting control operations gives rise to both dephasing and depolarization errors...
Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Bronn, Nicholas T., E-mail: ntbronn@us.ibm.com; Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Liu, Yanbing; Houck, Andrew A. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)
2015-10-26
The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.
Tripathy, Srijeet; Bhattacharyya, Tarun Kanti
2016-09-01
Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.
Joint Filter and Waveform Design for Radar STAP in Signal Dependent Interference
Setlur, Pawan; Rangaswamy, Muralidhar
2015-01-01
Waveform design is a pivotal component of the fully adaptive radar construct. In this paper we consider waveform design for radar space time adaptive processing (STAP), accounting for the waveform dependence of the clutter correlation matrix. Due to this dependence, in general, the joint problem of receiver filter optimization and radar waveform design becomes an intractable, non-convex optimization problem, Nevertheless, it is however shown to be individually convex either in the filter or i...
Interference features in scanning gate conductance maps of quantum point contacts with disorder
Kolasiński, K.; Szafran, B.; Brun, B.; Sellier, H.
2016-08-01
We consider quantum point contact (QPC) defined within a disordered two-dimensional electron gas as studied by scanning gate microscopy. We evaluate the conductance maps in the Landauer approach with a wave-function picture of electron transport for samples with both low and high electron mobility at finite temperatures. We discuss the spatial distribution of the impurities in the context of the branched electron flow. We reproduce the surprising temperature stability of the experimental interference fringes far from the QPC. Next, we discuss funnel-shaped features that accompany splitting of the branches visible in previous experiments. Finally, we study elliptical interference fringes formed by an interplay of scattering by the pointlike impurities and by the scanning probe. We discuss the details of the elliptical features as functions of the tip voltage and the temperature, showing that the first interference fringe is very robust against the thermal widening of the Fermi level. We present a simple analytical model that allows for extraction of the impurity positions and the electron-gas depletion radius induced by the negatively charged tip of the atomic force microscope, and apply this model on experimental scanning gate images showing such elliptical fringes.
Directory of Open Access Journals (Sweden)
Longzhu Cai
2017-01-01
Full Text Available A wave interference filtering section that consists of three stubs of different lengths, each with an individual stopband of its own central frequency, is reported here for the design of band-stop filters (BSFs with ultra-wide and sharp stopbands as well as large attenuation characteristics. The superposition of the individual stopbands provides the coverage over an ultra-wide frequency range. Equations and guidelines are presented for the application of a new wave interference technique to adjust the rejection level and width of its stopband. Based on that, an electrically tunable ultra-wide stopband BSF using a liquid crystal (LC material for ultra-wideband (UWB applications is designed. Careful treatment of the bent stubs, including impedance matching of the main microstrip line and bent stubs together with that of the SMA connectors and impedance adaptors, was carried out for the compactness and minimum insertion and reflection losses. The experimental results of the fabricated device agree very well with that of the simulation. The centre rejection frequency as measured can be tuned between 4.434 and 4.814 GHz when a biased voltage of 0–20 Vrms is used. The 3 dB and 25 dB stopband bandwidths were 4.86 GHz and 2.51 GHz, respectively, which are larger than that of other recently reported LC based tunable BSFs.
Macroscopic Quantum Phenomena and Topological Phase Interference Effects in Single-Domain Magnets
Institute of Scientific and Technical Information of China (English)
L(U) Rong; ZHU Jialin
2001-01-01
The tunneling of macroscopic object is one of the most fascinating phenomena in condensed matter physics.During the last decade,the problem of quantum tunneling of magnetization in nanometer-scale magnets has attracted a great deal of theoretical and experimental interest.A review of recent theoretical research of the macroscopic quantum phenomena in nanometer-scale single-domain magnets is presented in this paper.It includes macroscopic quantum tunneling (MQT) and coherence (MQC) in single-domain magnetic particles,the topological phase interference or spin-parity effects,and tunneling of magnetization in an arbitrarily directed magnetic field.The general formulas are shown to evaluate the tunneling rate and the tunneling level splitting for single-domain AFM particles.A nontrivial generalization of Kramers degeneracy for double-well system is provided to coherently spin tunneling for spin systems with m-fold rotational symmetry.The effects induced by the external magnetic field have been studied,where the field is along the easy,medium,hard axis,or arbitrary direction.
Wang, Yiwen; Wen, Xueda; Pan, Cheng; Sun, Guozhu; Chen, Jian; Kang, Lin; Xu, Weiwei; Yu, Yang; Wu, Peiheng
2009-01-01
We irradiated an rf-SQUID qubit with large-amplitude and high frequency electromagnetic field. Population transitions between macroscopic distinctive quantum states due to Landau-Zener transitions at energy-level avoided crossings were observed. The qubit population on the excited states as a function of flux detuning and microwave power exhibits interference patterns. Some novel features are found in the interference and a model based on rate equations can well address the features.
Note: An ultranarrow bandpass filter system for single-photon experiments in quantum optics.
Höckel, David; Martin, Eugen; Benson, Oliver
2010-02-01
We describe a combined ultranarrow bandpass filtering setup for single-photon experiments in quantum optics. The filter is particularly suitable for single-photon electromagnetically induced transparency (EIT) experiments, but can also be used in several similar applications. A multipass planar Fabry-Perot etalon together with polarization filters and spatial filtering allows 114 dB pump beam suppression, while the signal beam is attenuated by just 4 dB, although both wavelengths are only separated by 0.025 nm (9.2 GHz). The multipass etalon alone accounts for 46 dB suppression while it has a peak transmission of 65%. We demonstrate EIT experiments in Cs vapor at room temperature with probe power in the femtowatt regime using this filter.
Institute of Scientific and Technical Information of China (English)
H.R.Hamedi; Ali Sari; M.Sahrai; S.H.Asadpour
2013-01-01
Optical bistability (OB) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated.The effect of quantum interference arising from spontaneous emission and incoherent pumping on OB and OM is discussed.It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms.In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.
DEFF Research Database (Denmark)
Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevincli, Haldun;
2013-01-01
to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions...... of normal resonant peaks and anti-resonant peaks induced by quantum interference in the conductance spectrum. We also demonstrate Fano and anti-resonance in T-shaped molecular junctions using a simple tight-binding model. This parabolic model enables one to infer on-site energies of T-shaped molecules...
Makitsubo, Hironobu; Kataza, Hirokazu; Mita, Makoto; Suzuki, Toyoaki; Yamamoto, Keita
2016-01-01
We propose an all-silicon multi-layer interference filter composed solely of silicon with sub-wavelength structure (SWS) in order to realize high performance optical filters operating in the THz frequency region with robustness against cryogenic thermal cycling and mechanical damage. We demonstrate fabrication of a three-layer prototype using well-established common micro-electro-mechanical systems (MEMS) technologies as a first step toward developing practical filters. The measured transmittance of the three-layer filter agrees well with the theoretical transmittances calculated by a simple thin-film calculation with effective refractive indices as well as a rigorous coupled-wave analysis simulation. We experimentally show that SWS layers can work as homogeneous thin-film interference layers with effective refractive indices even if there are multiple SWS layers in a filter.
Chen, Disheng; Lander, Gary R.; Solomon, Glenn S.; Flagg, Edward B.
2017-01-01
Resonant photoluminescence excitation (RPLE) spectra of a neutral InGaAs quantum dot show unconventional line shapes that depend on the detection polarization. We characterize this phenomenon by performing polarization-dependent RPLE measurements and simulating the measured spectra with a three-level quantum model. The spectra are explained by interference between fields coherently scattered from the two fine structure split exciton states, and the measurements enable extraction of the steady-state coherence between the two exciton states.
Halász, Gábor J; Moiseyev, Nimrod; Cederbaum, Lorenz S
2013-01-01
Recently it has been recognized that electronic conical intersections in molecular systems can be induced by laser light even in diatomics. As is known a direct consequence of these accidental degeneracies is the appearence of nonadiabatic effects which has a strong impact on the nuclear quantum dynamics. Studying the photodissociation process of the $\\mathrm{D}_{2}^{+}$ molecule, we report here some novel and observable quantum interference phenomena that arise from the topological singularity induced by a strong laser field.
Quantum Master Equation and Filter for Systems Driven by Fields in a Single Photon State
Gough, J E; Nurdin, H I
2011-01-01
The aim of this paper is to determine quantum master and filter equations for systems coupled to continuous-mode single photon fields. The system and field are described using a quantum stochastic unitary model, where the continuous-mode single photon state for the field is determined by a wavepacket pulse shape. The master equation is derived from this model and is given in terms of a system of coupled equations. The output field carries information about the system from the scattered photon, and is continuously monitored. The quantum filter is determined with the aid of an embedding of the system into a larger system, and is given by a system of coupled stochastic differential equations. An example is provided to illustrate the main results.
Microscopic quantum interference in excitonic condensation of Ta2NiSe5
Sugimoto, Koudai; Kaneko, Tatsuya; Ohta, Yukinori
2016-01-01
The microscopic quantum interference associated with excitonic condensation in Ta2NiSe5 is studied in a BCS-type mean-field approximation. We show that in ultrasonic attenuation the coherence peak appears just below the transition temperature Tc, whereas in NMR spin-lattice relaxation the rate rapidly decreases below Tc; these observations can offer a crucial experimental test for the validity of the excitonic condensation scenario in Ta2NiSe5 . We also show that excitonic condensation manifests itself in a jump of the heat capacity at Tc as well as in a softening of the elastic shear constant, in accordance with the second-order phase transition observed in Ta2NiSe5 .
Murrell, J K J
2001-01-01
previously unexplored regions of parameter space. We show that these calculations predict a range of previously unreported dynamical I-V characterises for SQUID rings in the strongly hysteretic regime. Finally, we present the successful realisation of a novel experimental technique that permits the weak link of a SQUID to be probed independently of the associated ring structure by mechanically opening and closing the ring. We demonstrate that this process can be completed during the same experimental run without the need for warming and re-cooling of the sample. This thesis is concerned with the investigation of the non-linear behaviour of a Superconducting Quantum Interference Device (SQUID) coupled to a RF tank circuit. We consider two regimes, one where the underlying SQUID behaviour is non-hysteretic with respect to an externally applied magnetic flux, and the other where hysteretic (dissipative) behaviour is observed. We show that, by following non-linearities induced in the tank circuit response, the un...
External driving synchronization in a superconducting quantum interference device based oscillator
Zhao, Jie; Zhao, Peng; Yu, Haifeng; Yu, Yang
2016-11-01
We propose an external driving, self-sustained oscillator based on superconducting resonators. The dynamics of the self-sustained oscillator can be described by a Duffing-van der Pol like equation. Under external driving, the self-sustained oscillator presents synchronization phenomena. We analytically and numerically investigate the synchronization regions, and the results show that the synchronization bandwidth can be quickly adjusted in situ by the external weak magnetic field in sub-nano seconds. Moreover, the system can re-stabilize in about 10 ns with a certain sudden change of driving frequency or the critical current of the superconducting quantum interference device (SQUID). These advantages allow the potential applications of self-sustained oscillators in timing reference, microwave communication and electromagnetic sensing.
Energy Technology Data Exchange (ETDEWEB)
Vinante, A., E-mail: anvinante@fbk.eu; Falferi, P. [Istituto di Fotonica e Nanotecnologie, CNR - Fondazione Bruno Kessler, I-38123 Povo, Trento (Italy); Mezzena, R. [Dipartimento di Fisica, Università di Trento, I-38123 Povo, Trento (Italy)
2014-10-15
Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.
Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei
2017-03-01
A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm‑2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.
Exploring quantum interference in heteroatom-substituted graphene-like molecules
Sangtarash, Sara; Sadeghi, Hatef; Lambert, Colin J.
2016-07-01
If design principles for controlling quantum interference in single molecules could be elucidated and verified, then this will lay the foundations for exploiting such effects in nanoscale devices and thin-film materials. When the core of a graphene-like polyaromatic hydrocarbon (PAH) is weakly coupled to external electrodes by atoms i and j, the single-molecule electrical conductance σij depends on the choice of connecting atoms i,j. Furthermore, provided the Fermi energy is located between the HOMO and LUMO, conductance ratios σij/σlm corresponding to different connectivities i,j and l,m are determined by quantum interference within the PAH core. In this paper, we examine how such conductance ratios change when one of the carbon atoms within the `parent' PAH core is replaced by a heteroatom to yield a `daughter' molecule. For bipartite parental cores, in which odd-numbered sites are connected to even-numbered sites only, the effect of heteroatom substitution onto an odd-numbered site is summarized by the following qualitative rules: (a) when i and j are odd, both parent and daughter have low conductances, (b) when i is odd and j is even, or vice versa both parent and daughter have high conductances and (c) when i,j are both even, the parent has a low conductance and the daughter a high conductance. These rules are verified by comparison with density-functional calculations on naphthalene, anthracene, pyrene and anthanthrene cores connected via two different anchor groups to gold electrodes.If design principles for controlling quantum interference in single molecules could be elucidated and verified, then this will lay the foundations for exploiting such effects in nanoscale devices and thin-film materials. When the core of a graphene-like polyaromatic hydrocarbon (PAH) is weakly coupled to external electrodes by atoms i and j, the single-molecule electrical conductance σij depends on the choice of connecting atoms i,j. Furthermore, provided the Fermi energy is
Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R.; Sen(De, Aditi; Sen, Ujjwal
2016-08-01
Disordered systems form one of the centrestages of research in many body sciences and lead to a plethora of interesting phenomena and applications. A paradigmatic disordered system consists of a one-dimensional array of quantum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with natural or engineered quenched disordered couplings in an external magnetic field. These systems allow disorder-induced enhancement for bipartite and multipartite observables. Here we show that simultaneous application of independent quenched disorders results in disorder-induced enhancement, while the same is absent with individual application of the same disorders. We term the phenomenon as constructive interference and the corresponding parameter stretches as the Venus regions. Interestingly, it has only been observed for multiparty entanglement and is absent for the single- and two-party physical quantities.
Realization and Modeling of Metamaterials Made of rf Superconducting Quantum-Interference Devices
Directory of Open Access Journals (Sweden)
M. Trepanier
2013-12-01
Full Text Available We have prepared meta-atoms based on radio-frequency superconducting quantum-interference devices (rf SQUIDs and examined their tunability with dc magnetic field, rf current, and temperature. rf SQUIDs are superconducting split-ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. We find excellent agreement between the data and a model that regards the Josephson junction as the resistively and capacitively shunted junction. A magnetic field tunability of 80 THz/G at 12 GHz is observed, a total tunability of 56% is achieved, and a unique electromagnetically induced transparency feature at intermediate excitation powers is demonstrated for the first time. An rf SQUID metamaterial is shown to have qualitatively the same behavior as a single rf SQUID with regard to dc flux and temperature tuning.
Energy Technology Data Exchange (ETDEWEB)
Krauss, R.H. Jr.; Flynn, E.; Ruminer, P. [and others
1997-10-01
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project has supported the collaborative development with Sandia National Laboratories (SNL) and the University of New Mexico (UNM) of two critical components for a hand-held low-field magnetic sensor based on superconducting quantum interference device (SQUID) sensor technology. The two components are a digital signal processing (DSP) algorithm for background noise rejection and a small hand-held dewar cooled by a cryocooler. A hand-held sensor has been designed and fabricated for detection of extremely weak magnetic fields in unshielded environments. The sensor is capable of measuring weak magnetic fields in unshielded environments and has multiple applications. We have chosen to pursue battlefield medicine as the highest probability near-term application because of stated needs of several agencies.
Energy Technology Data Exchange (ETDEWEB)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)
2014-09-15
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2014-09-01
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.
Institute of Scientific and Technical Information of China (English)
DING Chun-Ling; LI Jia-Hua; YU Rong; ZHANG Duo; YANG Xiao-Xue
2013-01-01
Manipulation of spontaneous emission from an atom confined in three kinds of modified reservoirs has been investigated by means of an elliptically polarized laser field.Some interesting phenomena such as the multi-peak structure,extreme spectral narrowing,and cancellation of spontaneous emission can be observed by adjusting controllable system parameters.Moreover,these phenomena depend on the constructive or destructive quantum interference between multiple decay channels and which can be changed appreciably by varying the phase difference between the two circularly polarized components of the probe field.These results demonstrate the importance of an elliptically polarized laser field in controlling the spontaneous emission and its potential applications in high-precision spectroscopy.
Generation of continuous-wave THz radiation by use of quantum interference
Korsunsky, E A
1999-01-01
We propose a scheme for generation of continuous-wave THz radiation. The scheme requires a medium where three discrete states in a $\\Lambda $ configuration can be selected, with the THz-frequency transition between the two lower metastable states. We consider the propagation of three-frequency continuous-wave electromagnetic (e.m.) radiation through a $\\Lambda $ medium. Under resonant excitation, the medium absorption can be strongly reduced due to quantum interference of transitions, while the nonlinear susceptibility is enhanced. This leads to very efficient energy transfer between the e.m. waves providing a possibility for THz generation. We demonstrate that the photon conversion efficiency is approaching unity in this technique.
Phase-dependent quantum interference between different pathways in bichromatic harmonic generation
Institute of Scientific and Technical Information of China (English)
Cai Jun; Wang Li-Ming; Qiao Hao-Xue
2009-01-01
This paper studies the harmonic generation of the hydrogen atom subjected to a collinear bichromatic laser field by numerically solving the time-dependent Schr(o)dinger equation using the split-operator pseudo-spectral method.By adding a frequency variation to the additional field,the contributions of different pathways to particular order harmonic generation can be isolated.The quantum interference pattern between harmonic pathways,which influences the harmonic intensity,is found to be either constructive or destructive with respect to different relative phase of the two field components.Detailed description of up to the 35th-order harmonics and the harmonic pathways for a wide range of field parameters is presented.
Vettoliere, A; Granata, C
2014-08-01
A fully integrated low noise superconducting quantum interference device (SQUID) in a magnetometer configuration is presented. An intrinsic high voltage responsivity as high as 500 μV/Φ0 has been obtained by introducing a resonance in the voltage - magnetic flux characteristic. This resonance is induced by an integrated superconducting coil surrounding the pick-up coil and connected to one end of the SQUID output. The SQUID magnetometer exhibits a spectral density of magnetic field noise as low as 3 fT/Hz(1/2). In order to verify the suitability of the magnetometer, measurements of bandwidth and slew rate have been performed and compared with those of the same device without the resonance and with additional positive feedback. Due to their good characteristics such devices can be employed in a large number of applications including biomagnetism.
DEFF Research Database (Denmark)
Jørgensen, Jacob Lykkebo
, which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......, the electrons can tunnel in- elastically from the left to the right electrode. This is the process behind inelastic electron tunnelling spectroscopy (IETS), which is a single-molecule spectroscopic method, where the vibrational ngerprint of a molecule is di- rectly observed by the tunnelling current......-conjugated molecules. We nd that the vibrational modes that would be expected to dominate, following the propensity, rules are very weak. Instead, other modes are found to be the dominant ones. We study this phenomenon for a number of cross-conjugated molecules, and link these ndings to the anti...
Cosmic Structure as the Quantum Interference of a Coherent Dark Wave
Schive, Hsi-Yu; Broadhurst, Tom
2014-01-01
The conventional cold, particle interpretation of dark matter (CDM) still lacks laboratory support and struggles with the basic properties of common dwarf galaxies, which have surprisingly uniform central masses and shallow density profiles. In contrast, galaxies predicted by CDM extend to much lower masses, with steeper, singular profiles. This tension motivates cold, wavelike dark matter ($\\psi$DM) composed of a non-relativistic Bose-Einstein condensate, so the uncertainty principle counters gravity below a Jeans scale. Here we achieve the first cosmological simulations of this quantum state at unprecedentedly high resolution capable of resolving dwarf galaxies, with only one free parameter, $\\bf{m_B}$, the boson mass. We demonstrate the large scale structure of this $\\psi$DM simulation is indistinguishable from CDM, as desired, but differs radically inside galaxies. Connected filaments and collapsed haloes form a large interference network, with gravitationally self-bound solitonic cores inside every galax...
Mathew, R.; Kumar, A.; Eckel, S.; Jendrzejewski, F.; Campbell, G. K.; Edwards, Mark; Tiesinga, E.
2015-09-01
We present theoretical and experimental analysis of an interferometric measurement of the in situ phase drop across and current flow through a rotating barrier in a toroidal Bose-Einstein condensate (BEC). This experiment is the atomic analog of the rf-superconducting quantum interference device (SQUID). The phase drop is extracted from a spiral-shaped density profile created by the spatial interference of the expanding toroidal BEC and a reference BEC after release from all trapping potentials. We characterize the interferometer when it contains a single particle, which is initially in a coherent superposition of a torus and reference state, as well as when it contains a many-body state in the mean-field approximation. The single-particle picture is sufficient to explain the origin of the spirals, to relate the phase-drop across the barrier to the geometry of a spiral, and to bound the expansion times for which the in situ phase can be accurately determined. Mean-field estimates and numerical simulations show that the interatomic interactions shorten the expansion time scales compared to the single-particle case. Finally, we compare the mean-field simulations with our experimental data and confirm that the interferometer indeed accurately measures the in situ phase drop.
Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference.
Arinze, Ebuka S; Qiu, Botong; Palmquist, Nathan; Cheng, Yan; Lin, Yida; Nyirjesy, Gabrielle; Qian, Gary; Thon, Susanna M
2017-02-20
Colloidal quantum dots (CQDs), are a promising candidate material for realizing colored and semitransparent solar cells, due to their band gap tunability, near infrared responsivity and solution-based processing flexibility. CQD solar cells are typically comprised of several optically thin active and electrode layers that are optimized for their electrical properties; however, their spectral tunability beyond the absorption onset of the CQD layer itself has been relatively unexplored. In this study, we design, optimize and fabricate multicolored and transparent CQD devices by means of thin film interference engineering. We develop an optimization algorithm to produce devices with controlled color characteristics. We quantify the tradeoffs between attainable color or transparency and available photocurrent, calculate the effects of non-ideal interference patterns on apparent device color, and apply our optimization method to tandem solar cell design. Experimentally, we fabricate blue, green, yellow, red and semitransparent devices and achieve photocurrents ranging from 10 to 15.2 mA/cm2 for the colored devices. We demonstrate semitransparent devices with average visible transparencies ranging from 27% to 32%, which match our design simulation results. We discuss how our optimization method provides a general platform for custom-design of optoelectronic devices with arbitrary spectral profiles.
The quantum interference effects in the Sc II 4247 $\\AA$ line of the Second Solar Spectrum
Smitha, H N; Stenflo, J O; Bianda, M; Ramelli, R
2014-01-01
The Sc II 4247 $\\AA$ line formed in the chromosphere is one of the lines well known, like the Na I D$_2$ and Ba II D$_2$, for its prominent triple peak structure in $Q/I$ and the underlying quantum interference effects governing it. In this paper, we try to study the nature of this triple peak structure using the theory of $F$-state interference including the effects of partial frequency redistribution (PRD) and radiative transfer (RT). We compare our results with the observations taken in a quiet region near the solar limb. In spite of accounting for PRD and RT effects it has not been possible to reproduce the observed triple peak structure in $Q/I$. While the two wing PRD peaks (on either side of central peak) and the near wing continuum can be reproduced, the central peak is completely suppressed by the enhanced depolarization resulting from the hyperfine structure splitting. This suppression remains for all the tested widely different 1D model atmospheres or for any multi-component combinations of them. W...
Aharonov-Bohm-type quantum interference effects in narrow gap semiconductor heterostructures
Lillianfeld, R. B.; Kallaher, R. L.; Heremans, J. J.; Chen, Hong; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.
2009-03-01
We present experiments on quantum interference phenomena in semiconductors with strong spin-orbit interaction, using mesoscopic parallel ring arrays fabricated on InSb/InAlSb and InAs/AlGaSb heterostructures. Both external electric field effects and temperature dependence of the ring magnetoresistance are examined. Top-gate voltage-dependent oscillations in ring resistance in the absence of an external magnetic field are suggestive of Aharonov-Casher interference. At low magnetic fields the ring magnetoresistance is dominated by oscillations with h/2e periodicity characteristic of Altshuler-Aronov-Spivak (AAS) oscillations, whereas the h/e periodicity characteristic of Aharonov-Bohm (AB) oscillations persists to high magnetic fields. Fourier spectra (FS) reveal AB amplitudes on the same order as AAS amplitudes at low fields, and in some samples reveal a splitting of the AB peaks, which has been interpreted as a signature of Berry's phase. The FS are also used to quantify the temperature dependence of the oscillation amplitudes (NSF DMR-0618235, DOE DE-FG02-08ER46532, NSF DMR-0520550).
Directory of Open Access Journals (Sweden)
P. A. Ermolaev
2014-03-01
Full Text Available Data processing in the interferometer systems requires high-resolution and high-speed algorithms. Recurrence algorithms based on parametric representation of signals execute consequent processing of signal samples. In some cases recurrence algorithms make it possible to increase speed and quality of data processing as compared with classic processing methods. Dependence of the measured interferometer signal on parameters of its model and stochastic nature of noise formation in the system is, in general, nonlinear. The usage of nonlinear stochastic filtering algorithms is expedient for such signals processing. Extended Kalman filter with linearization of state and output equations by the first vector parameters derivatives is an example of these algorithms. To decrease approximation error of this method the second order extended Kalman filtering is suggested with additionally usage of the second vector parameters derivatives of model equations. Examples of algorithm implementation with the different sets of estimated parameters are described. The proposed algorithm gives the possibility to increase the quality of data processing in interferometer systems in which signals are forming according to considered models. Obtained standard deviation of estimated amplitude envelope does not exceed 4% of the maximum. It is shown that signal-to-noise ratio of reconstructed signal is increased by 60%.
Institute of Scientific and Technical Information of China (English)
ZHENG An-Shou; LIU Ji-Bing; XIANG Dong; LIU Cui-Lan; YUAN Hong
2007-01-01
An alternative approach is proposed to realize an n-qubit Toffoli gate with superconducting quantum-interference devices (SQUIDs) in cavity quantum electrodynamics (QED). In the proposal, we represent two logical gates of a qubit with the two lowest levels of a SQUID while a higher-energy intermediate level of each SQUID is utilized for the gate manipulation. During the operating process, because the cavity field is always in vacuum state, the requirement on the cavity is greatly loosened and there is no transfer of quantum information between the cavity and SQUIDs.
DEFF Research Database (Denmark)
García-Vela, Alberto; Henriksen, Niels Engholm
2016-01-01
The role played by quantum interference in the laser phase modulation coherent control of photofragment distributions in the weak-field regime is investigated in detail in this work. The specific application involves realistic wave packet calculations of the transient vibrational populations of t...
Dąbrowski, Michał; Wasilewski, Wojciech
2015-01-01
Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here we report a combination of magnetically tuned absorption and Faraday filters, both light-direction-insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal to noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman-scattered photons.
Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.
2016-11-01
Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.
Dąbrowski, M; Chrapkiewicz, R; Wasilewski, W
2016-11-12
Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.
Sato, Taku J.; Okuyama, Daisuke; Kimura, Hideo
2016-12-01
A tiny adiabatic-demagnetization refrigerator (T-ADR) has been developed for a commercial superconducting quantum interference device magnetometer [Magnetic Property Measurement System (MPMS) from Quantum Design]. The whole T-ADR system is fit in a cylindrical space of diameter 8.5 mm and length 250 mm, and can be inserted into the narrow sample tube of MPMS. A sorption pump is self-contained in T-ADR, and hence no complex gas handling system is necessary. With the single crystalline Gd3Ga5O12 garnet (˜2 g) used as a magnetic refrigerant, the routinely achievable lowest temperature is ˜0.56 K. The lower detection limit for a magnetization anomaly is ˜1 × 10-7 emu, estimated from fluctuation of the measured magnetization. The background level is ˜5 × 10-5 emu below 2 K at H = 100 Oe, which is largely attributable to a contaminating paramagnetic signal from the magnetic refrigerant.
Sato, Taku J; Okuyama, Daisuke; Kimura, Hideo
2016-12-01
A tiny adiabatic-demagnetization refrigerator (T-ADR) has been developed for a commercial superconducting quantum interference device magnetometer [Magnetic Property Measurement System (MPMS) from Quantum Design]. The whole T-ADR system is fit in a cylindrical space of diameter 8.5 mm and length 250 mm, and can be inserted into the narrow sample tube of MPMS. A sorption pump is self-contained in T-ADR, and hence no complex gas handling system is necessary. With the single crystalline Gd3Ga5O12 garnet (∼2 g) used as a magnetic refrigerant, the routinely achievable lowest temperature is ∼0.56 K. The lower detection limit for a magnetization anomaly is ∼1 × 10(-7) emu, estimated from fluctuation of the measured magnetization. The background level is ∼5 × 10(-5) emu below 2 K at H = 100 Oe, which is largely attributable to a contaminating paramagnetic signal from the magnetic refrigerant.
Ambrosino, F; Antonelli, M; Bacci, C; Beltrame, P; Bencivenni, G; Bertolucci, S; Bini, C; Bloise, C; Bocchetta, S; Bocci, V; Bossi, F; Bowring, D; Branchini, P; Caloi, R; Campana, P; Capon, G; Capussela, T; Ceradini, F; Chi, S; Chiefari, G; Ciambrone, P; Conetti, S; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Di Micco, B; Doria, A; Dreucci, M; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Fiore, S; Forti, C; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Gorini, E; Graziani, E; Incagli, M; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Leone, D; Martini, M; Massarotti, P; Mei, W; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Pasqualucci, E; Passeri, A; Patera, V; Perfetto, F; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Sibidanov, A L; Spadaro, T; Testa, M; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Ventura, A; Versaci, R; Xu, G
2006-01-01
We present the first observation of quantum interference in the process phi -> KS KL ->pi+pi-pi+pi-. This analysis is based on data collected with the KLOE detector at the e^+e^- collider DAFNE in 2001--2002 for an integrated luminosity of about 380pb^-1. Fits to the distribution of Delta t, the difference between the two kaon decay times, allow tests of the validity of quantum mechanics and CPT symmetry. No deviations from the expectations of quantum mechanics and CPT symmetry have been observed. New or improved limits on various decoherence and CPT violation parameters have been obtained
Measurement-based local quantum filters and their ability to transform quantum entanglement
Indian Academy of Sciences (India)
DEBMALYA DAS; RITABRATA SENGUPTA; ARVIND
2017-06-01
We introduce local filters as a means to detect the entanglement of bound entangled states which do not yield to detection by witnesses based on positive maps which are not completely positive.We demonstrate how suchnon-detectable bound entangled states can be locally filtered into detectable bound entangled states. Specifically, we show that a bound entangled state in the orthogonal complement of the unextendible product bases (UPB), canbe locally filtered into another bound entangled state that is detectable by the Choi map. We reinterpret these filters as local measurements on locally extended Hilbert spaces. We give explicit constructions of a measurement-basedimplementation of these filters for 2$\\otimes$2 and 3$\\otimes$3 systems. This provides us with a physical mechanism to implement such local filters.
Directory of Open Access Journals (Sweden)
Peek Andrew S
2007-06-01
Full Text Available Abstract Background RNA interference (RNAi is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM approach was used to quantitatively model RNA interference activities. Results Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (N-grams and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative. Conclusion The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall t-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid
Quantum neural network-based EEG filtering for a brain-computer interface.
Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin
2014-02-01
A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.
Use of plasma enhanced ALD to construct efficient interference filters for astronomy in the FUV
Scowen, Paul A.; Nemanich, Robert; Eller, Brianna; Yu, Hongbin; Mooney, Tom; Beasley, Matt
2016-07-01
Over the past few years the advent of atomic layer deposition (ALD) technology has opened new capabilities to the field of coatings deposition for use in optical elements. At the same time, there have been major advances in both optical designs and detector technologies that can provide orders of magnitude improvement in throughput in the far ultraviolet (FUV) and near ultraviolet (NUV) passbands. Recent review work has shown that a veritable revolution is about to happen in astronomical diagnostic work for targets ranging from protostellar and protoplanetary systems, to the intergalactic medium that feeds gas supplies for galactic star formation, and supernovae and hot gas from star forming regions that determine galaxy formation feedback. These diagnostics are rooted in access to a forest of emission and absorption lines in the ultraviolet (UV)[1], and all that prevents this advance is the lack of throughput in such systems, even in space-based conditions. We outline an approach to use a range of materials to implement stable optical layers suitable for protective overcoats with high UV reflectivity and unprecedented uniformity, and use that capability to leverage innovative ultraviolet/optical filter construction to enable astronomical science. These materials will be deposited in a multilayer format over a metal base to produce a stable construct. Specifically, we will employ the use of PEALD (plasma-enhanced atomic layer deposition) methods for the deposition and construction of reflective layers that can be used to construct unprecedented filter designs for use in the ultraviolet.
Smitha, H N; Stenflo, J O; Sampoorna, M
2013-01-01
Quantum interference effects play a vital role in shaping the linear polarization profiles of solar spectral lines. The Ba II D2 line at 4554 A is a prominent example, where the F-state interference effects due to the odd isotopes produce polarization profiles, which are very different from those of the even isotopes that have no F-state interference. It is therefore necessary to account for the contributions from the different isotopes to understand the observed linear polarization profiles of this line. Here we do radiative transfer modeling with partial frequency redistribution (PRD) of such observations while accounting for the interference effects and isotope composition. The Ba II D2 polarization profile is found to be strongly governed by the PRD mechanism. We show how a full PRD treatment succeeds in reproducing the observations, while complete frequency redistribution (CRD) alone fails to produce polarization profiles that have any resemblance with the observed ones. However, we also find that the li...
Optimization of interference filters with genetic algorithms applied to silver-based heat mirrors.
Eisenhammer, T; Lazarov, M; Leutbecher, M; Schöffel, U; Sizmann, R
1993-11-01
In the optimization of multilayer stacks for various optical filtering purposes not only the thicknesses of the thin films are to be optimized, but also the sequence of materials. Materials with very different optical properties, such as metals and dielectrics, may be combined. A genetic algorithm is introduced to search for the optimal sequence of materials along with their optical thicknesses. This procedure is applied to a heat mirror in combination with a blackbody absorber for thermal solar energy applications at elevated temperatures (250 °C). The heat mirror is based on silver films with antireflective dielectric layers. Seven dielectrics have been considered. For a five-layer stack the sequence (TiO(2)/Ag/TiO(2)/Ag/Y(2)O(3)) is found to be optimal.
AM-FM Interference Excision in Spread Spectrum Communications via Projection Filtering
Directory of Open Access Journals (Sweden)
Patrick J. Loughlin
2001-01-01
Full Text Available Recently, Amin et al. introduced a projection filtering method for excising constant amplitude FM jammers from DSSS communications, with minimal distortion to the PN sequence. In this paper, we show that this approach can be applied to AM-FM jammers as well, with a simple modification. Theoretical performance measures (correlator SNR of the AM-FM projection method are derived, and demonstrate that near ideal performance is achieved for unbiased estimates of the jammer parameters. Results showing the effects of estimation errors in the AM and FM of the jammer on SNR are also provided. In general, FM errors cause greater performance degradation than the same level of error in estimating the AM.
Harris, Nicholas C; Simbula, Angelica; Pant, Mihir; Galli, Matteo; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk; Bajoni, Daniele; Galland, Christophe
2014-01-01
We demonstrate the generation of quantum-correlated photon-pairs combined with the spectral filtering of the pump field by more than 95dB using Bragg reflectors and electrically tunable ring resonators. Moreover, we perform demultiplexing and routing of signal and idler photons after transferring them via a fiber to a second identical chip. Non-classical two-photon temporal correlations with a coincidence-to-accidental ratio of 50 are measured without further off-chip filtering. Our system, fabricated with high yield and reproducibility in a CMOS process, paves the way toward truly large-scale quantum photonic circuits by allowing sources and detectors of single photons to be integrated on the same chip.
Zia, O.; Bhattacharya, P. K.; Singh, J.; Brock, T.
1994-08-01
A novel optoelectronic filter voltage-tunable characteristics has been developed and implemented in a multiquantum well waveguide device. By virtue of the quantum-confined Stark effect, the refractive index in quantum wells at the periphery of a guiding region can be given a periodicity in the guiding direction by application of a bias on an electron-beam patterned Schottky grating atop the guide. If the period of the Schottky grating and associated index profile satisfies the Bragg condition, as in a resonant distributed feedback structure, band-reject filtering results. Aftering the bias on the Schottky grating changes the refractive index in the wells, thereby providing tunability of the wavelength at which Bragg diffraction occurs.
Shi, Y L; Wu, J X; Zhu, C J; Xu, J P; Yang, Y P
2015-01-01
We examine a Kerr phase gate in a semiconductor quantum well structure based on the tunnelling interference effect. We show that there exist a specific signal field detuning, at which the absorption/amplification of the probe field will be eliminated with the increase of the tunnelling interference. Simultaneously, the probe field will acquire a -\\pi phase shift at the exit of the medium. We demonstrate with numerical simulations that a complete 180^\\circ phase rotation for the probe field at the exit of the medium is achieved, which may result in many applications in information science and telecommunication.
Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas
2016-10-01
Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.
Energy Technology Data Exchange (ETDEWEB)
Ella, Lior, E-mail: lior.ella@weizmann.ac.il; Yuvaraj, D.; Suchoi, Oren; Shtempluk, Oleg; Buks, Eyal [Faculty of Electrical Engineering, Technion, Haifa 32000 (Israel)
2015-01-07
We present a study of the controllable nonlinear dynamics of a micromechanical beam coupled to a dc-SQUID (superconducting quantum interference device). The coupling between these systems places the modes of the beam in a highly nonlinear potential, whose shape can be altered by varying the bias current and applied flux of the SQUID. We detect the position of the beam by placing it in an optical cavity, which sets free the SQUID to be used solely for actuation. This enables us to probe the previously unexplored full parameter space of this device. We measure the frequency response of the beam and find that it displays a Duffing oscillator behavior which is periodic in the applied magnetic flux. To account for this, we develop a model based on the standard theory for SQUID dynamics. In addition, with the aim of understanding if the device can reach nonlinearity at the single phonon level, we use this model to show that the responsivity of the current circulating in the SQUID to the position of the beam can become divergent, with its magnitude limited only by noise. This suggests a direction for the generation of macroscopically distinguishable superposition states of the beam.
Parasitic effects in superconducting quantum interference device-based radiation comb generators
Energy Technology Data Exchange (ETDEWEB)
Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Solinas, P., E-mail: paolo.solinas@spin.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy)
2015-12-07
We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.
Energy Technology Data Exchange (ETDEWEB)
Pretzell, Alf
2012-07-01
This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.
Smirnov, A. M.; Mantsevich, V. N.; Ezhova, K. V.; Tikhonov, I. V.; Dneprovskii, V. S.
2016-04-01
We investigate a simple way to create dynamic photonic crystals with different lattice symmetry by interference of four non-coplanar laser beams in colloidal solution of CdSe/ZnS quantum dots (QDs). The formation of dynamic photonic crystal was confirmed by the observed diffraction of the beams that have excited photonic crystal at the angles equal to that calculated for the corresponding three-dimensional lattice (self-diffraction regime). Self-diffraction from an induced 3D transient photonic crystal has been discovered in the case of resonant excitation of the excitons (electron - hole transitions) in CdSe/ZnS QDs (highly absorbing colloidal solution) by powerful beams of mode-locked laser with picosecond pulse duration. Self-diffraction arises for four laser beams intersecting in the cell with colloidal CdSe/ZnS QDs due to the induced 3D dynamic photonic crystal. The physical processes that arise in CdSe/ZnS QDs and are responsible for the observed self-action effects are discussed.
Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia
2017-06-01
We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.
Spin-dependent quantum interference in photoemission process from spin-orbit coupled states
Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik
2017-01-01
Spin–orbit interaction entangles the orbitals with the different spins. The spin–orbital-entangled states were discovered in surface states of topological insulators. However, the spin–orbital-entanglement is not specialized in the topological surface states. Here, we show the spin–orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin–orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin–orbit interaction. PMID:28232721
An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device
Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer
2017-02-01
The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.
Detection of bacteria in suspension using a superconducting Quantum interference device
Energy Technology Data Exchange (ETDEWEB)
Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.
2003-06-09
We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.
Detection of bacteria in suspension using a superconducting Quantum interference device
Energy Technology Data Exchange (ETDEWEB)
Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.
2003-06-09
We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.
Millar, A J
2002-01-01
This thesis is concerned with the development of Superconducting Quantum Interference Device (SQUID) gradiometers based on the high temperature superconductor YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO). A step-edge Josephson junction fabrication process was developed to produce sufficiently steep (>60 deg) step-edges such that junctions exhibited RSJ-like current-voltage characteristics. The mean I sub C R sub N product of a sample of twenty step-edge junctions was 130 mu V. Step-edge dc SQUIDs with inductances between 67pH and 114pH were fabricated. Generally the SQUIDs had an intrinsic white flux noise in the 10-30 mu PHI sub 0 /sq root Hz range, with the best device, a 70pH SQUID, exhibiting a white flux noise of 5 mu PHI sub 0 /sq root Hz. Different first-order SQUID gradiometer designs were fabricated from single layers of YBCO. Two single-layer gradiometer (SLG) designs were fabricated on 10x10mm sup 2 substrates. The best balance and lowest gradient sensitivity measured for these devices were 1/3...
Graf zu Eulenburg, A
1999-01-01
the best balance and gradient sensitivity at 1kHz were 3x10 sup - sup 3 and 222fT/(cm sq root Hz))) respectively. The measured spatial response to a current carrying wire was in good agreement with a theoretical model. A significant performance improvement was obtained with the development of a single layer gradiometer with 13mm baseline, fabricated on 30x10mm sup 2 bicrystals. For such a device, the gradient sensitivity at 1kHz was 50fT/(cm sq root Hz)) and the gradiometer was used successfully for unshielded magnetocardiography. A parasitic effective area compensation scheme was employed with two neighbouring SQUIDs coupled in an opposite sense to the same gradiometer loop. This improved the balance from the intrinsic value of 10 sup - sup 3 to 3x10 sup - sup 5. This thesis describes several aspects of the development of gradiometers using high temperature Superconducting Quantum Interference Devices (SQUID). The pulsed laser deposition of thin films of YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) on Sr...
Connor, C.; Chang, J.; Pines, A.
1990-12-01
We report the application of our dc SQUID (superconducting quantum interference device) spectrometer [C. Connor, J. Chang, and A. Pines, Rev. Sci. Instrum. 61, 1059(1990)] to nuclear quadrupole resonance (NQR) studies of aluminum-27, and boron-11 in crystalline and glassy solids. Our results give e2qQ/h=2.38 MHz and η=0.0 for α-Al2O3 at 4.2 K. For the natural mineral petalite (LiAlSi4O10), we obtain e2qQ/h=4.56 MHz and η=0.47. The quadrupole resonance frequency is 1467 kHz in boron nitride, and in the vicinity of 1300 kHz for various borates in the B2O3ṡxH2O system. The distribution of boron environments in a B2O3 glass gives rise to a linewidth of about 80 kHz in the SQUID detected resonance.
Yi, H. R.; Zhang, Y.; Schubert, J.; Zander, W.; Zeng, X. H.; Klein, N.
2000-11-01
This article describes three planar layouts of superconducting multiturn flux transformers integrated with a coplanar resonator for radio frequency (rf) superconducting quantum interference device (SQUID) magnetometers. The best magnetic field noise values of 22 and 11.5 fT/Hz1/2 in the white noise regime were obtained for the layout with two input coils and the layout with the labyrinth resonator, respectively. Excess low-frequency noise (about 200 fT/Hz1/2 at 10 Hz) was present. Computer simulation showed that the loss in this trilayer system was dominated by the high loss tangent of the dielectric film used for the separation of the upper and lower superconducting films. The rf coupling coefficient krf between the resonator and the flip-chip-coupled SQUID was also estimated. The values krf2≈14×10-3 obtained for the layout with two input coils, and krf2≈45×10-3 for the layout with the labyrinth resonator were considerably higher than the typical value of krf2≈7×10-3 for the single-layer coplanar resonator. These high coupling coefficients have compensated the somewhat degraded unloaded quality factor of the resonator, thus securing the optimum operation of the rf SQUID.
Close relation between quantum interference in molecular conductance and diradical existence.
Tsuji, Yuta; Hoffmann, Roald; Strange, Mikkel; Solomon, Gemma C
2016-01-26
An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green's function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.
Institute of Scientific and Technical Information of China (English)
许光辉; 胡光锐
2005-01-01
A new Kalman filtering algorithm based on estimation of spread spectrum signal before suppression of narrowband interference (NBI) in spread spectrum systems, using the dependence of autoregressive (AR) interference, is presented compared with performance of the ACM nonlinear filtering algorithm, simulation results show that the proposed algorithm has preferable performance, there is about 5 dB SNR improvement in average.
Zhao, Xu; Zhao, Xing-Dong; Zhou, Lu; Jing, Hui; Zhang, Wei-Ping
2013-07-01
We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their induced excitations are compared. Also we consider the interplay of magneto-optical excitations, which leads to a constructive or destructive effect for the creation of magnons based on background excitations. The population distributions of excited magnons can be well controlled by steering the long-range dipole-dipole interactions. Such a scheme can be used to demonstrate conventional quantum-optical phenomena like dynamical Casimir effect at finite temperatures.
Institute of Scientific and Technical Information of China (English)
ZHAO Xu; ZHAO Xing-Dong; ZHOU Lu; JING Hui; ZHANG Wei-Ping
2013-01-01
We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice.Single-channel and dual-channel interactions are employed in our system,and their induced excitations are compared.Also we consider the interplay of magneto-optical excitations,which leads to a constructive or destructive effect for the creation of magnons based on background excitations.The population distributions of excited magnons can be well controlled by steering the long-range dipole-dipole interactions.Such a scheme can be used to demonstrate conventional quantum-optical phenomena like dynamical Casimir effect at finite temperatures.
Lin, D H
2003-01-01
Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard shere'' like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in quite general potential system and will be useful in understanding some other phenomena in mesoscopic phyiscs.
Wang, H L; Yu, X Z; Wang, S L; Chen, L; Zhao, J H
2013-08-01
We have developed a sample rod which makes the conventional superconducting quantum interference device magnetometer capable of performing magnetization and electrical transport measurements simultaneously. The sample holder attached to the end of a 140 cm long sample rod is a nonmagnetic drinking straw or a 1.5 mm wide silicon strip with small magnetic background signal. Ferromagnetic semiconductor (Ga,Mn)As films are used to test the new sample rod, and the results are in good agreement with previous report.
Institute of Scientific and Technical Information of China (English)
SUN Jiang; MI Xin; YU Zu-He; JIANG Qian; ZUO Zhan-Chun; WANG Yan-Bang; WU Ling-An; FU Pan-Ming
2004-01-01
@@ Quantum interference may lead to suppression and enhancement of the two-photon resonant nondegenerate fourwave mixing signal in a cascade four-level system. Such phenomena are demonstrated in Ba through inducing atomic coherence between the ground state 6s2 and the doubly excited autoionizing Rydberg state 6pnd. This method can be used as a new spectroscopic tool for measuring the transition dipole moment between two highly excited atomic states.
Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevinçli, Hâldun; Gutierrez, Rafael; Cuniberti, Gianaurelio
2013-03-01
Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions of normal resonant peaks and anti-resonant peaks induced by quantum interference in the conductance spectrum. We also demonstrate Fano and anti-resonance in T-shaped molecular junctions using a simple tight-binding model. This parabolic model enables one to infer on-site energies of T-shaped molecules and the coupling between side group and main conduction channel from transmission spectra.
A New Mutated Quantum-Behaved Particle Swarm Optimizer for Digital IIR Filter Design
Directory of Open Access Journals (Sweden)
Wenbo Xu
2009-01-01
Full Text Available Adaptive infinite impulse response (IIR filters have shown their worth in a wide range of practical applications. Because the error surface of IIR filters is multimodal in most cases, global optimization techniques are required for avoiding local minima. In this paper, we employ a global optimization algorithm, Quantum-behaved particle swarm optimization (QPSO that was proposed by us previously, and its mutated version in the design of digital IIR filter. The mechanism in QPSO is based on the quantum behaviour of particles in a potential well and particle swarm optimization (PSO algorithm. QPSO is characterized by fast convergence, good search ability, and easy implementation. The mutated QPSO (MuQPSO is proposed in this paper by using a random vector in QPSO to increase the randomness and to enhance the global search ability. Experimental results on three examples show that QPSO and MuQPSO are superior to genetic algorithm (GA, differential evolution (DE algorithm, and PSO algorithm in quality, convergence speed, and robustness.
Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations
Energy Technology Data Exchange (ETDEWEB)
Granata, Carmine, E-mail: carmine.granata@cnr.it; Vettoliere, Antonio
2016-02-19
The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In
Operation of a superconducting nanowire quantum interference device with mesoscopic leads
Pekker, David; Bezryadin, Alexey; Hopkins, David S.; Goldbart, Paul M.
2005-09-01
A theory describing the operation of a superconducting nanowire quantum interference device (NQUID) is presented. The device consists of a pair of thin-film superconducting leads connected by a pair of topologically parallel ultranarrow superconducting wires. It exhibits intrinsic electrical resistance, due to thermally activated dissipative fluctuations of the superconducting order parameter. Attention is given to the dependence of this resistance on the strength of an externally applied magnetic field aligned perpendicular to the leads, for lead dimensions such that there is essentially complete and uniform penetration of the leads by the magnetic field. This regime, in which at least one of the lead dimensions—length or width—lies between the superconducting coherence and penetration lengths, is referred to as the mesoscopic regime. The magnetic field causes a pronounced oscillation of the device resistance, with a period not dominated by the Aharonov-Bohm effect through the area enclosed by the wires and the film edges but, rather, in terms of the geometry of the leads, in contrast to the well-known Little-Parks resistance of thin-walled superconducting cylinders. A detailed theory, encompassing this phenomenology quantitatively, is developed through extensions, to the setting of parallel superconducting wires, of the Ivanchenko-Zil’berman-Ambegaokar-Halperin theory of intrinsic resistive fluctuations in a current-biased Josephson junction and the Langer-Ambegaokar-McCumber-Halperin theory of intrinsic resistive fluctuations in a superconducting wire. In particular, it is demonstrated that via the resistance of the NQUID, the wires act as a probe of spatial variations in the superconducting order parameter along the perimeter of each lead: in essence, a superconducting phase gradiometer.
Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations
Granata, Carmine; Vettoliere, Antonio
2016-02-01
The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In
Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.
Schwarz, Tobias; Nagel, Joachim; Wölbing, Roman; Kemmler, Matthias; Kleiner, Reinhold; Koelle, Dieter
2013-01-22
Superconductivity in the cuprate YBa(2)Cu(3)O(7) (YBCO) persists up to huge magnetic fields (B) up to several tens of Teslas, and sensitive direct current (dc) superconducting quantum interference devices (SQUIDs) can be realized in epitaxially grown YBCO films by using grain boundary Josephson junctions (GBJs). Here we present the realization of high-quality YBCO nanoSQUIDs, patterned by focused ion beam milling. We demonstrate low-noise performance of such a SQUID up to B = 1 T applied parallel to the plane of the SQUID loop at the temperature T = 4.2 K. The GBJs are shunted by a thin Au layer to provide nonhysteretic current voltage characteristics, and the SQUID incorporates a 90 nm wide constriction which is used for on-chip modulation of the magnetic flux through the SQUID loop. The white flux noise of the device increases only slightly from 1.3 μΦ(0)/(Hz)(1/2) at B = 0 to 2.3 μΦ(0)/(Hz))(1/2) at 1 T. Assuming that a point-like magnetic particle with magnetization in the plane of the SQUID loop is placed directly on top of the constriction and taking into account the geometry of the SQUID, we calculate a spin sensitivity S(μ)(1/2) = 62 μ(B)/(Hz))(1/2) at B = 0 and 110 μ(B)/(Hz))(1/2) at 1 T. The demonstration of low noise of such a SQUID in Tesla fields is a decisive step toward utilizing the full potential of ultrasensitive nanoSQUIDs for direct measurements of magnetic hysteresis curves of magnetic nanoparticles and molecular magnets.
Ajoy, Ashok; Cappellaro, Paola
2013-05-31
We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions.
Zhiyang Hu; Shuhong Xu; Xiaojing Xu; Zhaochong Wang; Zhuyuan Wang; Chunlei Wang; Yiping Cui
2015-01-01
In optics, when polychromatic light is filtered by an optical filter, the monochromaticity of the light can be improved. In this work, we reported that Ag dopant atoms could be used as an optical filter for nanosized Mn:ZnSe quantum dots (QDs). If no Ag doping, aqueous Mn:ZnSe QDs have low monochromaticity due to coexisting of strong ZnSe band gap emission, ZnSe trap emission, and Mn dopant emission. After doping of Ag into QDs, ZnSe band gap and ZnSe trap emissions can be filtered, leaving o...
DEFF Research Database (Denmark)
Il'ichev, E. V.; Andreev, A. V.; Jacobsen, Claus Schelde
1993-01-01
Experimental results on some radio-frequency superconducting quantum interference device (rf-SQUID) signal properties are presented. The quantum interferometer was made of ceramic YBa2Cu3O7−x and was due to a low critical current operated in the inductance or nonhysteretic mode. With bias current...
Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa
2015-11-01
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.
Energy Technology Data Exchange (ETDEWEB)
Myers, Whittier Ryan [Univ. of California, Berkeley, CA (United States)
2006-01-01
This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 μT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz^{-1/2} referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm^{3} resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm^{3} images of bell peppers and 3 x 3 x 26 mm^{3} in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T_{1}) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The
McGuinness, H J; McKinstrie, C J
2011-01-01
We study quantum frequency translation and two-color photon interference enabled by the Bragg scattering four-wave mixing process in optical fiber. Using realistic model parameters, we computationally and analytically determine the Green function and Schmidt modes for cases with various pump-pulse lengths. These cases can be categorized as either "non-discriminatory" or "discriminatory" in regards to their propensity to exhibit high-efficiency translation or high-visibility two-photon interference for many different shapes of input wave packets or for only a few input wave packets, respectively. Also, for a particular case, the Schmidt mode set was found to be nearly equal to a Hermite-Gaussian function set. The methods and results also apply with little modification to frequency conversion by sum-frequency conversion in optical crystals.
Institute of Scientific and Technical Information of China (English)
ZHAN Zhi-Ming
2008-01-01
We put forward a simple scheme for one-step realization of a two-qubit SWAP gate with SQUIDs (super-conducting quantum-interference devices) in cavity QED via Raman transition. In this scheme, the cavity field is only virtually excited and thus the cavity decay is suppressed. The SWAP gate is realized by using only two lower flux states of the SQUID system and the excited state would not be excited. Therefore, the effect of decoherence caused from the levels of the SQUID system is possibly minimized. The scheme can also be used to implement the SWAP gate with atoms.
Institute of Scientific and Technical Information of China (English)
MAO Hai-yan; WANG Fu-ren; MENG Shu-chao; MAO Bo; LI Zhuang-zhi; NIE Rui-juan; LIU Xin-yuan; DAI Yuan-dong
2006-01-01
A new type of HTc superconducting film combshape resonator for radio frequency superconducting quantum interference devices (RF SQUID) has been designed.This new type of superconducting film comb-shape resonator is formed by a foursquare microstrip line without a flux concentrator.The range of the center frequency of this type of resonator varies from 800 MHz to 1300 MHz by changing the length of the teeth.In this paper,we report on simulating the relationship of the value of the center frequency and the length of the teeth,and testing the noise of HTc RF SQUID coupling this comb-shape resonator.
Yang, S. Y.; Chieh, J. J.; Wang, W. C.; Yu, C. Y.; Hing, N. S.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.; Chang, C. F.; Lin, H. Y.
2011-03-01
In this work, we investigate the feasibility of detecting quantitatively DNA molecules utilizing the technology named after the immunomagnetic reduction (IMR) assay. Magnetic nanoparticles dispersed in a phosphate buffer saline solution were bio-functionalized with probing single-strand DNA. A superconducting quantum interference device (SQUID) ac magnetosusceptometer was employed to detect IMR signals related to the concentration of the target DNA. The results reveal that use of IMR assay had merits such as a high convenience level, e.g. wash-free processes and high sensitivity, down to pM, for DNA detection.
Öisjöen, F.; Schneiderman, J. F.; Figueras, G. A.; Chukharkin, M. L.; Kalabukhov, A.; Hedström, A.; Elam, M.; Winkler, D.
2012-03-01
We have performed single- and two-channel high transition temperature (high-Tc) superconducting quantum interference device (SQUID) magnetoencephalography (MEG) recordings of spontaneous brain activity in two healthy human subjects. We demonstrate modulation of two well-known brain rhythms: the occipital alpha rhythm and the mu rhythm found in the motor cortex. We further show that despite higher noise-levels compared to their low-Tc counterparts, high-Tc SQUIDs can be used to detect and record physiologically relevant brain rhythms with comparable signal-to-noise ratios. These results indicate the utility of high-Tc technology in MEG recordings of a broader range of brain activity.
Quantum interference in laser-assisted photo-ionization excited by a femtosecond x-ray pulse
Institute of Scientific and Technical Information of China (English)
Ge Yu-Cheng
2008-01-01
The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.
Energy Technology Data Exchange (ETDEWEB)
Walker, M.E.; Nakane, H.; Cochran, A.; Weston, R.G.; Klein, U.; Pegrum, C.M.; Donaldson, G.B. [Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
1997-07-01
Novel nondestructive evaluation measurements made using niobium dc superconducting quantum interference devices with integrated asymmetric first-order gradiometers are described. Comparative theoretical and experimental studies of their spatial response have been described, and it is shown that the gradiometric response makes operation possible in an unshielded and electromagnetically noisy environment. As a demonstration of their capabilities, subsurface defects in a multilayer aluminum structure have been located and mapped using induced eddy currents at 70 Hz, with no magnetic shielding around the specimen or cryostat. {copyright} {ital 1997 American Institute of Physics.}
Energy Technology Data Exchange (ETDEWEB)
Röben, B., E-mail: roeben@pdi-berlin.de; Wienold, M.; Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5–7, 10117 Berlin (Germany)
2016-06-15
The far-field distribution of the emission intensity of terahertz (THz) quantum-cascade lasers (QCLs) frequently exhibits multiple lobes instead of a single-lobed Gaussian distribution. We show that such multiple lobes can result from self-interference related to the typically large beam divergence of THz QCLs and the presence of an inevitable cryogenic operation environment including optical windows. We develop a quantitative model to reproduce the multiple lobes. We also demonstrate how a single-lobed far-field distribution can be achieved.
Fan, N. Q.; Clarke, John
1991-06-01
A sensitive spectrometer, based on a dc superconducting quantum interference device, for the direct detection of low-frequency pulsed nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR), is described. The frequency response extends from about 10 to 200 kHz, and the recovery time after the magnetic pulse is removed is typically 50 μs. As examples, NMR spectra are shown from Pt and Cu metal powders in a magnetic field of 6 mT, and NQR spectra are shown from 2D in a tunneling methyl group and 14N in NH4ClO4.
Institute of Scientific and Technical Information of China (English)
SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can
2006-01-01
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.
Li, Zheng; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N; Shih, Yanhua
2016-01-01
Using higher order coherence of thermal light sources, we can achieve enhancement of resolution of standard x-ray imaging techniques, such as x-ray diffraction and phase contrast imaging. The cost of implementing such schemes is minimal comparing to the schemes using entangled two-photon pairs. The proposed diffractive quan- tum crystallography using multipath interference of thermal light can be eventually free of radiation damage, because the diffraction pattern could be formed by using low energy photons of optical wavelength. Thus it is promising to apply the proposed quantum crystallography scheme to nanocrystalline or non-crystalline samples that are too difficult to be crystallized.
Spatially and spectrally resolved quantum path interference with chirped driving pulses
Preclíková, Jana; Lorek, Eleonora; Larsen, Esben Witting; Heyl, Christoph M; Paleček, David; Zigmantas, Donatas; Schafer, Kenneth J; Gaarde, Mette B; Mauritsson, Johan
2016-01-01
We measure spectrally and spatially resolved high-order harmonics generated in argon using chirped multi-cycle laser pulses. Using a very stable, high-repetition rate laser we are able to clearly observe the interference between light emitted from the two shortest trajectories and study this interference structure systematically. The interference structure is clearly observed over a large range of harmonic orders, ranging from harmonic 11, which is below the ionization threshold of argon, to harmonic 25. The interference pattern contains more information than just the relative phase of the light from the two trajectories, since it is both spatially and spectrally resolved. We can access this additional information by changing the chirp of the driving laser pulses which affects both the spatial and the spectral phases of the two trajectories differently, allowing us to reconstruct the dipole phase parameters for the short ($\\alpha_s$) and long ($\\alpha_l$) trajectories from the data. The reconstruction is done...
Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel
2017-02-01
We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.
Anti Interference Mining of Web Data Stream Based on Kalman Filtering%基于Kalman滤波的Web数据流抗干扰挖掘算法
Institute of Scientific and Technical Information of China (English)
密海英
2015-01-01
提出一种基于变维Kalman滤波的Web海量数据流抗干扰挖掘算法.构建Web环境下的海量数据挖掘数据流信息模型和噪声干扰模型,结合现代信号处理方法,设计变维Kalman滤波算法进行海量数据流信号滤波预处理,把Web海量数据流映射为一组非线性宽带调频信号模型,采用信号检测算法实现Web海量数据的抗干扰挖掘.仿真结果表明,采用该算法进行Web海量数据信息的抗干扰挖掘,具有较高的数据检测精度和准确挖掘性能,具有较高的抗干扰性和鲁棒性.%An anti jamming mining algorithm for Web massive data stream based on the variable dimension Kalman filter-ing is proposed.. Construct the massive amount of data in the web data mining information flow model and noise model, com-bined with modern signal processing methods to design the variable dimension Kalman filtering algorithm of massive data flow signal filtering pre processing, the web massive data flow is mapped to a set of nonlinear wideband FM signal model and uses the signal detection algorithm is to achieve a large amount of Web data anti-interference mining. Simulation re-sults show that by using the algorithm of Web data information of magnanimity anti-interference mining, it has higher preci-sion of measured data and accurate mining performance and has high anti-interference and robustness.
Renaud, N.; Grozema, F.C.
2014-01-01
We report numerical simulations of biexciton generation in coupled quantum dots (CQDs) placed in a static electric field and excited by a chirped laser pulse. Our simulations explicitly account for exciton-phonon interactions at finite temperature using a non-Markovian quantum jump approach to solve
Carlotti, Marco; Kovalchuk, Andrii; Wächter, Tobias; Qiu, Xinkai; Zharnikov, Michael; Chiechi, Ryan C.
2016-12-01
Tunnelling currents through tunnelling junctions comprising molecules with cross-conjugation are markedly lower than for their linearly conjugated analogues. This effect has been shown experimentally and theoretically to arise from destructive quantum interference, which is understood to be an intrinsic, electronic property of molecules. Here we show experimental evidence of conformation-driven interference effects by examining through-space conjugation in which π-conjugated fragments are arranged face-on or edge-on in sufficiently close proximity to interact through space. Observing these effects in the latter requires trapping molecules in a non-equilibrium conformation closely resembling the X-ray crystal structure, which we accomplish using self-assembled monolayers to construct bottom-up, large-area tunnelling junctions. In contrast, interference effects are completely absent in zero-bias simulations on the equilibrium, gas-phase conformation, establishing through-space conjugation as both of fundamental interest and as a potential tool for tuning tunnelling charge-transport in large-area, solid-state molecular-electronic devices.
Institute of Scientific and Technical Information of China (English)
CHEN Xiong-Wen; SHI Zhen-Gang; CHEN Bao-Ju; SONG Ke-Hui
2007-01-01
We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov-Bhom (A-B) ring by means of the slave-boson mean-Geld theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this inSuence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for future device applications.
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
Directory of Open Access Journals (Sweden)
Nathalie Kunkel
2015-09-01
Full Text Available Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0% were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.
Phase-locked array of quantum cascade lasers with an intracavity spatial filter
Jia, Zhiwei; Wang, Lei; Zhang, Jinchuan; Zhao, Yue; Liu, Chuanwei; Zhai, Shenqiang; Zhuo, Ning; Liu, JunQi; Wang, LiJun; Liu, ShuMan; Liu, Fengqi; Wang, Zhanguo
2017-08-01
We show a phase-locked array of quantum cascade lasers with an intracavity spatial filter based on the Talbot effect. All the laser arrays show in-phase operation from the threshold current to full power current with a near-diffraction-limited divergence angle. The maximum power is just about 5 times that of a single-ridge laser for an eleven-laser array device and 3 times for a seven-laser array device. The structure was analyzed by using the multi-slit Fraunhofer diffraction theory, showing very good agreement with the experimental results. Considering the great modal selection ability, simple fabricating process, and potential for achieving continuous wave operation, this phase-locked array may be a hopeful solution to obtain higher coherent power.
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe
2015-09-01
Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.
De Raedt, H.; De Raedt, K.; Michielsen, K.
2005-01-01
We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-b
Hughes, Stephen; Agarwal, Girish S
2017-02-10
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Kubo, T.; Tokura, Y.; Tarucha, S.
2010-01-01
We theoretically investigate spin-dependent electron transport through an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot. In particular, we numerically calculate the Aharonov-Bohm and Aharonov-Casher oscillations of the linear conductance in the Kondo regime. We show that the AC oscillation in the Kondo regime deviates from the sinusoidal form.
Yoshida, Takeshi; Yoshino, Aihide; Takahashi, Yoshitomo; Nomura, Soichiro
2007-08-01
To elucidate hemispheric asymmetry in the neurophysiologic mechanisms of global and local information processing, we investigate high-density event-related potentials (ERPs) during divided and selective attention tasks based on detection of hierarchical letters whose spatial frequency is controlled. Twelve healthy male subjects performed divided and selective attention tasks based on the detection of hierarchical letters. Spatial frequencies of hierarchical letters were controlled by high- and low-pass spatial filters. ERP modulations corresponding to the target level (global versus local) effect and the interference effect caused by similarity (similar versus dissimilar letters) were explored. In both tasks, the global and local target effects were associated with late negative modulation (300 ms) over the right and left hemispheres, respectively. The interference effect was associated with negative modulation over the contralateral hemisphere. The latency of the interference effect was greater than that of the target level effect. Early modulations (150 ms) of the target level effect showed hemispheric asymmetry during selective but not divided attention tasks. Global and local information is processed within different hemispheres while interference between global and local information arises in the contralateral hemisphere asymmetrically.
Phase-locked array of quantum cascade lasers with an intracavity spatial filter
Wang, Lei; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Liu, Fengqi
2016-01-01
Phase-locking an array of quantum cascade lasers is an effective way to achieve higher output power and beam shaping. In this article, based on Talbot effect, we show a new-type phase-locked array of mid-infrared quantum cascade lasers with an integrated spatial- filtering Talbot cavity. All the arrays show stable in-phase operation from the threshold current to full power current. The beam divergence of the array device is smaller than that of a single-ridge laser. We use the multi-slit Fraunhofer diffraction mode to interpret the far-field radiation profile and give a solution to get better beam quality. The maximum power is just about 5 times that of a single-ridge laser for eleven-laser array device and 3 times for seven-laser array device. Considering the great modal selection ability, simple fabricating process and the potential for achieving better beam quality and smaller cavity loss, this new-type phase-locked array may be a hopeful and elegant solution to get high power or beam shaping.
Institute of Scientific and Technical Information of China (English)
杨欣欣; 张彬; 荀其宁; 拓锐; 胡国星; 潘忠泉
2015-01-01
以硫化锌为高折射材料和冰晶石为低反射材料，利用真空镀膜技术、光学极值法检测膜厚技术镀制了窄带全介质干涉滤光片，K9玻璃为薄膜保护层，采用切割、粗磨、精磨、抛光、镀膜等光学工艺制得酶标分析仪波长标准物质，经均匀性、稳定性考核合格后，由紫外可见近红外分光光度计标准装置对标准物质定值。研制的酶标分析仪波长标准物质定制结果扩展不确定度为0.7 nm（k=2），使用方便，量值准确、稳定，技术指标满足酶标分析仪波长示值误差及重复性检定／校准工作的需要。%The interference filter reference materials were made by vacuum coating technology and optical film thickness extremum method which plating zinc sulfide as high refraction materials and cryolite as low reflective materials of narrow–band interference filter, and K9 glass was used as film protective layer. After some optical technology such as cutting, coarse grinding,fine grinding,polishing and plating, the uniformity, stability of interference filter reference materials were examinated by the ultraviolet–visible–near infrared spectrophotometer standard device. According to the results, the deterministic uncertainty of the development reference material was 0.7 nm(k=2). Therefore, the developed interference filter reference materials can meet the verification/calibration requirement for wavelength error and repeatability of ELISA analytical instruments with convenience and stable value.
Behrendt, A; Reichardt, J
2000-03-20
A lidar polychromator design for the measurement of atmospheric temperature profiles in the presence of clouds with the rotational Raman method is presented. The design utilizes multicavity interference filters mounted sequentially at small angles of incidence. Characteristics of this design are high signal efficiency and adjustable center wavelengths of the filters combined with a stable and relatively simple experimental setup. High suppression of the elastic backscatter signal in the rotational Raman detection channels allows temperature measurements independent of the presence of thin clouds or aerosol layers; no influence of particle scattering on the lidar temperature profile was observed in clouds with a backscatter ratio of at least 45. The minimum integration time needed for temperature profiling with a statistical temperature error of +/-1 K at, e.g., 20-km height and 960-m height resolution is 1.5 h.
Energy Technology Data Exchange (ETDEWEB)
Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi, E-mail: takikawa@ee.tut.ac.jp [Toyohashi University of Technology, 1-1 Habarigaoka, Tempaku, Toyohashi 441-8580 (Japan); Tanoue, Hideto [Kitakyushu National College of Technology, 5-20-1, Kokuraminami, Kitakyushu, Fukuoka 802-0985 (Japan)
2016-02-01
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.
Novel interference effects and a new quantum phase in mesoscopic systems
Indian Academy of Sciences (India)
P Singha Deo; A M Jayannavar
2001-02-01
Mesoscopic systems have provided an opportunity to study quantum effects beyond the atomic realm. In these systems quantum coherence prevails over the entire sample. We discuss several novel effects related to persistent currents in open systems which do not have analogues in closed systems. Some phenomena arising simultaneously due to two non-classical effects namely, Aharonov–Bohm effect and quantum tunneling are presented. Simple analysis of sharp phase jumps observed in double-slit Aharonov–Bohm experiments is given. Some consequences of parity violation are elaborated. Finally, we brieﬂy describe the dephasing of Aharonov–Bohm oscillations in Aharonov–Bohm ring geometry due to spin-ﬂip scattering in one of the arms. Several experimental manifestations of these phenomena and their applications are given.
2016-01-26
performed. 2.0 INTRODUCTION Three dimensional (3D) photonic crystals and their optical properties have attracted a lot of attention in the past decade... physical phenomena. The band gap frequency of this system can be varied to tailor to the electronic transition levels of a gain medium such as InAs...quantum dot or an InGaAs quantum well. The band gap can be varied in addition to include either one or two electronic levels of a multi-level system
de Bianchi, Massimiliano Sassoli
2013-01-01
The validity of the assertion that some recent double-slit interference experiments, conducted by Radin et al., would have tested the possible role of the experimenter's mind in the collapse of the quantum wave function, is questioned. It is emphasized that quantum mechanics doesn't need any psychophysical ingredient to explain the measurement processes, and therefore parapsychologists shouldn't resort to the latter to support the possibility of psychokinesis, but search for more convincing explanations.
An integrated quantum photonic sensor based on Hong-Ou-Mandel interference
Basiri-Esfahani, Sahar; Armin, Ardalan; Combes, Joshua; Milburn, Gerard J
2015-01-01
Photonic-crystal-based integrated optical systems have been used for a broad range of sensing applications with great success. This has been motivated by several advantages such as high sensitivity, miniaturization, remote sensing, selectivity and stability. Many photonic crystal sensors have been proposed with various fabrication designs that result in improved optical properties. Here we propose a novel multi-purpose sensor architecture that can be used for force, refractive index and possibly local temperature detection. In this scheme, two coupled cavities behave as an "effective beam splitter". The sensor works based on fourth order interference (the Hong-Ou-Mandel effect) and requires a sequence of single photon pulses and consequently has low pulse power. Changes in the parameter to be measured induce variations in the effective beam splitter reflectivity and result in changes to the visibility of interference. We demonstrate this generic scheme in coupled L3 photonic crystal cavities as an example and...
Wen, Xueda; Yu, Yang
2009-01-01
Recent experiments on Landau-Zener interference in multilevel superconducting flux qubits revealed various interesting characteristics, which have been studied theoretically in our recent work by simply using rate equation method [PRB 79, 094529, (2009)]. In this note we extend this method to the same system but with larger driving amplitude and higher driving frequency. The results show various anomalous characteristics, some of which have been observed in a recent work.
Quantum interferences in swift highly-charged dressed-ion-atom collisions
Energy Technology Data Exchange (ETDEWEB)
Monti, J M; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P D [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (RN) (Argentina)], E-mail: jmonti@ifir.edu.ar
2008-10-28
Ionization of He targets by impact of partially stripped nuclei is investigated. A unified theoretical model, based on the continuum distorted wave-eikonal initial state approximation, is employed to describe the appearance of structures in the experimental doubly differential spectra. These structures are interpreted in terms of coherent interference of short- and long-range contributions of the perturbative projectile potential. (fast track communication)
Energy Technology Data Exchange (ETDEWEB)
Du, Renjun
2015-10-30
Bilayer graphene (BLG) p-n junctions made of hBN-BLG-hBN (hexagonal boron nitride) heterostructures enable ballistic transport over long distances. We investigate Fabry-Perot interferences, and detect that the bilayer-like anti-Klein tunneling transits into single-layer-like Klein tunneling when tuning the Fermi level towards the band edges. Furthermore, the proximity-induced superconductivity has been studied in these devices with Al leads.
Measurement of gravitation-induced quantum interference for neutrons in a spin-echo spectrometer
De Haan, V.O.; Plomp, J.; Van Well, A.A.; Rekveldt, M.T.; Hasegawa, Y.H.; Dalgliesh, R.M.; Steinke, N.J.
2014-01-01
With a neutron spin-echo reflectometer (OffSpec at ISIS, UK) it is possible to measure the gravitation-induced quantum phase difference between the two spin states of the neutron wave function in a magnetic field. In the small-angle approximation, this phase depends linearly on the inclination angle
滤膜吸附对克拉霉素片溶出度的干扰试验%Interference from Filter Film Adsorption for Dissolution of Clarithromycin
Institute of Scientific and Technical Information of China (English)
迟雪梅; 王阿琴; 王新月; 鄢丰; 姚忠立; 张洪记
2014-01-01
Objective:To find the reasons for the low dissolution of clarithromycin tablets and study the interference from filter film adsorption at various time points to explore the appropriate processing approach for dissolution solution of clarithromycin tablets. Meth-ods:Clarithromycin tablets from two different manufacturers were used. The dissolution solution was prepared according to Japanese Orange Book. The dissolution was determined after different processing and the adsorption rate of the filter film was calculated. Re-sults:Totally 14 kinds of filter films were tested with different adsorption for clarithromycin, and the adsorption rate of some kinds of filter films exceeded the prescribed limit. Conclusion:The absorption rate of filter films for clarithromycin can be decreased by boiling the films and using American membranes. The interference from filter film adsorption can be reduced and inhibited by rejecting the first filtrate above 5ml or centrifuging dissolution solution.%目的：查找克拉霉素片溶出度偏低的原因，研究滤膜吸附对克拉霉素片不同时间点的溶出度结果的干扰程度，探索克拉霉素片溶出液合适的处理方法。方法：选择两种不同厂家的克拉霉素片剂，按照日本橘皮书溶出度方法制备溶出液，经不同方式处理后，检测其溶出度计算滤膜吸附率。结果：14种微孔滤膜对两个厂家的克拉霉素均有不同的吸附作用，且有的滤膜其吸附率超过了规定限度。结论：通过蒸煮滤膜和更换美国进口膜均能降低克拉霉素的吸附率；弃去初滤液的体积>5 ml或者离心处理溶出液均能有效减少和防止滤膜对药物吸附产生的干扰。
Hsu, Liang-Yan; Rabitz, Herschel
2012-11-02
This work proposes a new type of optoelectronic switch, the phenyl-acetylene-macrocycle-based single-molecule transistor, which utilizes photon-assisted tunneling and destructive quantum interference. The analysis uses single-particle Green's functions along with Floquet theory. Without the optical field, phenyl-acetylene-macrocycle exhibits a wide range of strong antiresonance between its frontier orbitals. The simulations show large on-off ratios (over 10(4)) and measurable currents (~10(-11) A) enabled by photon-assisted tunneling in a weak optical field (~2 × 10(5) V/cm) and at a small source-drain voltage (~0.05 V). Field amplitude power scaling laws and a range of field intensities are given for operating one- and two-photon assisted tunneling in phenyl-acetylene-macrocycle-based single-molecule transistors. This development opens up a new direction for creating molecular switches.
Energy Technology Data Exchange (ETDEWEB)
Mizukami, A.; Nishiura, H.; Sakuta, K.; Kobayashi, T
2003-10-15
Magnetocardiographic (MCG) measurement in unshielded environment for practical use requires to suppress the environmental magnetic noise. We have designed the high critical temperature superconducting quantum interference device (High-T{sub c} SQUID) magnetometer with feedforward active noise control (ANC) system to suppress the environmental magnetic noise. The compensatory system consisted of two SQUID magnetometers, a digital signal processor (DSP) and the coil wound around the input magnetometer. The DSP calculated the output data to minimize the environmental noise from the input and reference date and then the coil generated the magnetic field to cancel the environmental noise. This method achieved the effective noise attenuation below 100 Hz about 40 dB. MCG measurement in unshielded environment was also performed.
Energy Technology Data Exchange (ETDEWEB)
Lee, SeungKyun; Myers, W.R.; Grossman, H.L.; Cho, H-M.; Chemla,Y.R.; Clarke, John
2002-07-08
We describe a gradiometer based on a high-transition temperature Superconducting Quantum Interference Device (SQUID) for improving the sensitivity of a SQUID-based biosensor. The first-derivative gradiometer, fabricated from a single layer of YBa{sub 2}Cu{sub 3}O{sub 7-x}, has a baseline of 480 {micro}m and a balance against uniform fields of 1 part in 150. Used in our SQUID ''microscope,'' it reduces parasitic magnetic fields generated by the measurement process to the level of the SQUID noise. The gradiometer-based microscope is two orders of magnitude more sensitive to super paramagnetic nanoparticles bound to biological targets than our earlier magnetometer-based microscope.
Institute of Scientific and Technical Information of China (English)
Zhang Bing; Xu Wei-Hua; Zhang Hui-Fang; Gao Jin-Yue
2004-01-01
A four-level system driven by two coherent fields is considered. It is shown that in the presence of an incoherent pump, the probe gain at a short wavelength can be achieved due to the quantum interference. Our density matrix calculation provides the conditions for probe amplification from different origins, including gain without population inversion on any state basis, gain with population inversion on the dressed-state basis, and gain with population inversion on the bare-state basis. Also, by controlling the Rabi frequency of the coupling field a total change from non-inversion to inversion can be achieved which does not depend on the intensity of the incoherent pump.
Quantum Interference between a Single-Photon Fock State and a Coherent State
Windhager, Armin; Pacher, Christoph; Peev, Momtchil; Poppe, Andreas
2010-01-01
We derive analytical expressions for the single mode quantum field state at the individual output ports of a beam splitter when a single-photon Fock state and a coherent state are incident on the input ports. The output states turn out to be a statistical mixture between a displaced Fock state and a coherent state. Consequently we are able to find an analytical expression for the corresponding Wigner function. Because of the generality of our calculations the obtained results are valid for all passive and lossless optical four port devices. We show further how the results can be adapted to the case of the Mach-Zehnder interferometer. In addition we consider the case for which the single-photon Fock state is replaced with a general input state: a coherent input state displaces each general quantum state at the output port of a beam splitter with the displacement parameter being the amplitude of the coherent state.
Quantum interference between a single-photon Fock state and a coherent state
Windhager, A.; Suda, M.; Pacher, C.; Peev, M.; Poppe, A.
2011-04-01
We derive analytical expressions for the single mode quantum field state at the individual output ports of a beam splitter when a single-photon Fock state and a coherent state are incident on the input ports. The output states turn out to be a statistical mixture between a displaced Fock state and a coherent state. Consequently we are able to find an analytical expression for the corresponding Wigner function. Because of the generality of our calculations the obtained results are valid for all passive and lossless optical four port devices. We show further how the results can be adapted to the case of the Mach-Zehnder interferometer. In addition we consider the case for which the single-photon Fock state is replaced with a general input state: a coherent input state displaces each general quantum state at the output port of a beam splitter with the displacement parameter being the amplitude of the coherent state.
Quantum Interference of Surface States in Bismuth Nanowires in Transverse Magnetic Fields
Konopko, L. A.; Huber, T. E.; Nikolaeva, A. A.; Burceacov, L. A.
2013-06-01
We report the results of studies of the magnetoresistance (MR) and electric field effect (EFE) of single-crystal Bi nanowires with diameter dMurakami, bismuth bilayers can exhibit the quantum spin Hall effect. A Bi crystal can be viewed as a stacking of bilayers with a honeycomblike lattice structure along the [111] direction. An interpretation of transverse MR oscillations with using this theory is presented.
Institute of Scientific and Technical Information of China (English)
YANG Ya-Ping; Chen Hong; ZHU Shi-Yao
2000-01-01
The spontaneous emission from a V-type three-level atom embedded in a two-band photonic crystal is studied.Due to the quantum interference between the two transitions and existence of two bands, the populations in the upper levels display some novel behavior: anti-trapping, population oscillation, and population inversion.
Quantum interference and radiative coupling in two-atom single-photon emission
Kurizki, G.; Ben-Reuven, A.
1985-10-01
The recent experiment by Grangier, Aspect, and Vigue on interference in the emission from fragments of electronically photodissociated molecules is treated as a special case of cooperative fluorescence (CF) from products of various molecular processes. This treatment relates time-resolved features of the CF to characteristics (such as orbital symmetry) of the dissociating parent molecule (PM), suggests various PM state preparations (including formation of subradiant states), and discusses the persistence of CF in systems of nonidentical fragments. The diagnostic potentialities of such studies are emphasized.
Quantum interferences in single ionization of He by highly charged dressed-ions impact
Energy Technology Data Exchange (ETDEWEB)
Monti, J M; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P D, E-mail: rivarola@fceia.unr.edu.ar [Comision Nacional de EnergIa Atomica, Centro Atomico Bariloche, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)
2011-06-15
Ionization of He targets by impact of partially stripped ions is investigated by means of an extension to the continuum distorted wave-eikonal initial state model with a particular representation of the projectile potential. Structures appearing superimposed on the binary encounter peak are interpreted in terms of coherent interference of short- and long-range contributions of the perturbative projectile potential. The case of 600 keV u{sup -1}Au{sup 11+} ions impinging on He is presented and discussed.
Directory of Open Access Journals (Sweden)
Hideki Gotoh
2014-10-01
Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.
Zhao, Xin; Geskin, Victor; Stadler, Robert
2017-03-01
Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.
Directory of Open Access Journals (Sweden)
Chung-Liang Chang
2014-01-01
Full Text Available A compressive sensing based array processing method is proposed to lower the complexity, and computation load of array system and to maintain the robust antijam performance in global navigation satellite system (GNSS receiver. Firstly, the spatial and temporal compressed matrices are multiplied with array signal, which results in a small size array system. Secondly, the 2-dimensional (2D minimum variance distortionless response (MVDR beamformer is employed in proposed system to mitigate the narrowband and wideband interference simultaneously. The iterative process is performed to find optimal spatial and temporal gain vector by MVDR approach, which enhances the steering gain of direction of arrival (DOA of interest. Meanwhile, the null gain is set at DOA of interference. Finally, the simulated navigation signal is generated offline by the graphic user interface tool and employed in the proposed algorithm. The theoretical analysis results using the proposed algorithm are verified based on simulated results.
SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem
Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.
2017-06-01
The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by - , becomes finite. Although the external magnetic field breaks the SU(4) symmetry of the Hamiltonian, the ground state preserves it in a region of Vg, where - =0 . Once the spin polarization becomes finite, it initially increases slowly until a sudden change occurs, in which (polarization direction opposite to the magnetic field) reaches a maximum and then decreases to negligible values abruptly, at which point an orbital SU(2) ground state is fully established. This crossover from one Kondo state, with emergent SU(4) symmetry, where spin and orbital degrees of freedom all play a role, to another, with SU(2) symmetry, where only orbital degrees of freedom participate, is triggered by a competition between g μBh , the energy gain by the Zeeman-split polarized state and the Kondo temperature TKS U (4 ), the gain provided by the SU(4) unpolarized Kondo-singlet state. At fixed magnetic field, the knob that controls the crossover is the gate potential, which changes the quantum dots occupancies. If one characterizes the occurrence of the crossover by Vgmax, the value of Vg where reaches a maximum, one finds that the function f relating the Zeeman splitting, Bmax, which corresponds to Vgmax, i.e., Bmax=f (Vgmax) , has a similar universal behavior to that of the function relating the Kondo temperature to Vg. In addition, our numerical results show that near the SU(4) Kondo temperature and for relatively small magnetic fields the device has a ground state that restricts the electronic population at the dots to be spin polarized along the magnetic field. These two facts introduce very efficient spin-filter
Migliorelli, Carolina; Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Nowak, Rafał; Russi, Antonio
2015-08-01
Objective. One of the principal drawbacks of magnetoencephalography (MEG) is its high sensitivity to metallic artifacts, which come from implanted intracranial electrodes and dental ferromagnetic prosthesis and produce a high distortion that masks cerebral activity. The aim of this study was to develop an automatic algorithm based on blind source separation (BSS) techniques to remove metallic artifacts from MEG signals. Approach. Three methods were evaluated: AMUSE, a second-order technique; and INFOMAX and FastICA, both based on high-order statistics. Simulated signals consisting of real artifact-free data mixed with real metallic artifacts were generated to objectively evaluate the effectiveness of BSS and the subsequent interference reduction. A completely automatic detection of metallic-related components was proposed, exploiting the known characteristics of the metallic interference: regularity and low frequency content. Main results. The automatic procedure was applied to the simulated datasets and the three methods exhibited different performances. Results indicated that AMUSE preserved and consequently recovered more brain activity than INFOMAX and FastICA. Normalized mean squared error for AMUSE decomposition remained below 2%, allowing an effective removal of artifactual components. Significance. To date, the performance of automatic artifact reduction has not been evaluated in MEG recordings. The proposed methodology is based on an automatic algorithm that provides an effective interference removal. This approach can be applied to any MEG dataset affected by metallic artifacts as a processing step, allowing further analysis of unusable or poor quality data.
Quantum Interference between a Single-Photon Fock State and a Coherent State
Windhager, Armin; Suda, Martin; Pacher, Christoph; Peev, Momtchil; Poppe, Andreas
2010-01-01
We derive analytical expressions for the single mode quantum field state at the individual output ports of a beam splitter when a single-photon Fock state and a coherent state are incident on the input ports. The output states turn out to be a statistical mixture between a displaced Fock state and a coherent state. Consequently we are able to find an analytical expression for the corresponding Wigner function. Because of the generality of our calculations the obtained results are valid for al...
Quantum filtering of a thermal master equation with a purified reservoir
Genoni, Marco G.; Mancini, Stefano; Wiseman, Howard M.; Serafini, Alessio
2014-12-01
We consider a system subject to a quantum optical master equation at finite temperature and study a class of conditional dynamics obtained by monitoring its totally or partially purified environment. More specifically, drawing from the notion that the thermal state of the environment may be regarded as the local state of a lossy and noisy two-mode squeezed state, we consider conditional dynamics ("unravellings") resulting from the homodyne detection of the two modes of such a state. Thus, we identify a class of unravellings parametrized by the loss rate suffered by the environmental two-mode state, which interpolate between direct detection of the environmental mode alone (occurring for total loss, whereby no correlation between the two environmental modes is left) and full access to the purification of the bath (occurring when no loss is acting and the two-mode state of the environment is pure). We hence show that, while direct detection of the bath is not able to reach the maximal steady-state squeezing allowed by general-dyne unravellings, such optimal values can be obtained when a fully purified bath is accessible. More generally we show that, within our framework, any degree of access to the bath purification improves the performance of filtering protocols in terms of achievable squeezing and entanglement.
Huang, Ai-Jun; Shi, Jia-Dong; Wang, Dong; Ye, Liu
2017-02-01
In this work, we investigate the dynamic features of the entropic uncertainty for two incompatible measurements under local unital and nonunital channels. Herein, we choose Pauli operators σ _x and σ _z as a pair of observables of interest measuring on particle A, and the uncertainty can be predicted when particle A is entangled with quantum memory B. We explore the dynamics of the uncertainty for the measurement under local unitary (phase-damping) and nonunitary (amplitude-damping) channels, respectively. Remarkably, we derive the entropic uncertainty relation under three different kinds of measurements of Pauli-observable pair under various realistic noisy environments; it has been found that the entropic uncertainty has the same tendency of its evolution during the AD and PD channel when we choose σ _x and σ _y measurement. Besides, we find out that the entropic uncertainty will have an optimal value if one chooses σ _x and σ _z as the measurement incompatibility, comparing with others. Furthermore, in order to reduce the entropic uncertainty in noisy environment, we propose an effective strategy to steer the amount by means of implementing a filtering operation on the particle under the two types of channels, respectively. It turns out that this operation can greatly reduce the entropic uncertainty by modulation of the operation strength. Thus, our investigations might offer an insight into the dynamics and steering of the entropic uncertainty in an open system.
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
Energy Technology Data Exchange (ETDEWEB)
Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Ferrier, Alban [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonnes Universités, UPMC Univ Paris 06, 75005 Paris (France); Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Ramírez, Mariola O.; Bausá, Luisa E. [Departamento Física de Materiales and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Ikesue, Akio [World Laboratory, Mutsuno, Atsuta-ku, Nagoya 456-0023 (Japan)
2015-09-01
Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.
Mesoscopic quantum interference experiments in InGaAs and GaAs two-dimensional systems
Ren, Shaola
The study of quantum interference in solid-state systems yields insight in fundamental properties of mesoscopic systems. Electron quantum interference constitutes an important method to explore mesoscopic physics and quantum decoherence. This dissertation focuses on two-dimensional (2D) electron systems in delta-Si doped n-type In0:64Ga0:36As/In 0:45Al0:55As, 2D hole systems in Si-doped p-type GaAs/Al 0:35Ga0:65As and C-doped p-type GaAs/Al0:24Ga 0:76As heterostructures. The low temperature experiments study the magnetotransport of nano- and micro-scale lithographically defined devices fabricated on the heterostructures. These devices include a single ring interferometer and a ring interferometer array in 2D electron system, Hall bar geometries and narrow wires in 2D hole systems. The single ring interferometer yields pronounced Aharonov-Bohm (AB) oscillations with magnetic flux periodicity of h/e over a wide range of magnetic field. The periodicity was confirmed by Fourier transformation of the oscillations. The AB oscillation amplitude shows a quasi-periodic modulation over applied magnetic field due to local magnetic flux threading through the interferometer arms. Further study of current and temperature dependence of the amplitude of the oscillations indicates that the Thouless energy forms the measure of excitation energies giving quantum decoherence. An in-plane magnetic field was applied to the single ring interferometer to study the Berry's phase and the Aharonov-Casher effect. The ring interferometer array yields both AB oscillations and Altshuler-Aronov-Spivak (AAS) oscillations, the latter with magnetic flux periodicity of h/2e. The AAS oscillations require time-reversal symmetry and hence can be used to qualify time-reversal symmetry breaking. More importantly, the fundamental mesoscopic dephasing length associated with time-reversal symmetry breaking under applied magnetic field, an effective magnetic length, can be obtained by the analysis of the AAS
Capocasa, Eleonora; Barsuglia, Matteo; Degallaix, Jérôme; Pinard, Laurent; Straniero, Nicolas; Schnabel, Roman; Somiya, Kentaro; Aso, Yoichi; Tatsumi, Daisuke; Flaminio, Raffaele
2016-04-01
The sensitivity of the gravitational-wave detector KAGRA, presently under construction, will be limited by quantum noise in a large fraction of its spectrum. The most promising technique to increase the detector sensitivity is the injection of squeezed states of light, where the squeezing angle is dynamically rotated by a Fabry-Pérot filter cavity. One of the main issues in the filter cavity design and realization is the optical losses due to the mirror surface imperfections. In this work we present a study of the specifications for the mirrors to be used in a 300 m filter cavity for the KAGRA detector. A prototype of the cavity will be constructed at the National Astronomical Observatory of Japan, inside the infrastructure of the former TAMA interferometer. We also discuss the potential improvement of the KAGRA sensitivity, based on a model of various realistic sources of losses and their influence on the squeezing amplitude.
Niestegge, Gerd
2014-04-01
Quantum probabilities differ from classical ones in many ways, e.g. by violating the well-known Bell and Clauser-Horne-Shimony-Holt inequalities or another simple inequality due to R Wright. The latter has recently regained attention because of its equivalence to a novel noncontextual inequality by Klyachko et al. On the other hand, quantum probabilities still obey many limitations which need not hold in more general probabilistic theories (super quantum probabilities). Wright, Popescu and Rohrlich identified states which are included in such theories, but impossible in quantum mechanics, and they showed this using the Hilbert space formalism. Recently, Fritz et al and Cabello detected that the impossibility of these states can be derived from very general principles (local orthogonality and global exclusive disjunction, respectively) without using Hilbert space techniques. In the paper, an alternative derivation from rather different physical principles will be presented. These are a reasonable calculus of conditional probability (i.e. a model for the quantum measurement process) and the absence of third-order interference. The concept of third-order interference was introduced by Sorkin, who also recognized its impossibility in quantum mechanics.
Kondo, Kenji
2016-01-01
Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.
Possible latitude effects of Chern-Simons gravity on quantum interference
Okawara, Hiroki; Asada, Hideki
2013-01-01
It has been recently suggested that possible effects of Chern-Simons gravity on a quantum interferometer are dependent on the latitude and direction of the interferometer on Earth in orbital motion around Sun. Continuing work initiated in the earlier publication [Okawara, Yamada and Asada, Phys. Rev. Lett. 109, 231101 (2012)], we perform numerical calculations of time variation in the induced phase shifts for nonequatorial cases. We show that the maximum phase shift at any latitude might occur at 6, 0 (and 12), and 18 hours (in local time) of each day, when the normal vector to the interferometer is vertical, eastbound and northbound, respectively. If two identical interferometers were located at different latitudes, the difference between two phase shifts that are measured at the same local time would be $O(\\sin \\delta\\varphi)$ for a small latitude difference $\\delta\\varphi$. It might thus become maximally $\\sim 20$ percents for $\\delta\\varphi \\sim 10$ degrees, for instance.
Quantum interference effects in a multidriven transition Fg = 3 (←→) Fe= 2
Institute of Scientific and Technical Information of China (English)
Dong Ya-Bin; Zhang Jun-Xiang; Wang Hai-Hong; Gao Jiang-Rui
2006-01-01
We have theoretically and experimentally studied the quantum coherence effects of a degenerate transition Fg =3 (←→)Fe = 2 system interacting with a weak linearly polarized (with σ± components) probe light and a strong linearly polarized (with σ± components) coupling field. Due to the competition between the drive Rabi frequency and the Zeeman splitting, electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA)are present at the different values of applied magnetic field in the case where the Zeeman splitting of excited state △e is larger than the Zeeman splitting of ground state △g (i.e. △e ＞△g).
Al-Rawachy, E; Giddings, R P; Tang, J M
2017-02-20
A DSP-based cross-channel interference cancellation (CCIC) technique with initial condition-free, fast convergence and signal modulation format independence, is experimentally demonstrated in a two-channel point-to-point digital filter multiple access (DFMA) PON system based on intensity-modulation and direct-detection (IMDD). The CCIC-induced transmission performance improvements under various system conditions are fully investigated for the first time. It is shown that with one iteration only the CCIC technique can achieve a reduction in individual OFDM subcarrier BERs of more than 1000 times, an increase in transmission capacity by as much as 19 times and an increase in optical power budget by as much as 3.5dB. The CCIC technique thus has the potential to drastically improve the transmission performance of DFMA PONs.
Agueny, H.; Makhoute, A.; Tökési, K.; Dubois, A.; Hansen, J. P.
2017-09-01
We theoretically investigate electron emission process from a dimer generated by swift highly charged ions. The process under consideration is dealt with a non-perturbative approach by solving the time-dependent Schrödinger equation on a two-dimensional spatial grid. Numerical calculations show rich structures related to the multiple scattering paths of the electron prior to emission. This manifests by the emergence of additional oscillations with high-frequency superimposed on the Young-type oscillatory structure in the observed electron-ejected spectrum. This is not the case when calculations are performed based on the superposition principle, in which the final wave function is just a coherent sum of component wave functions described the electron emission from two-independent atoms. Within this assumption, only a direct electron emission process is taken into account. We find that contributions arising from these multiple scattering paths modify the dynamic electron emission process, and therefore, show the incorrect applicability of the above-mentioned principle, in concordance with the recent findings based on a simple three-slit interference experiment, reported in Sawant et al. (2014).
Achieving the Han-Kobayashi inner bound for the quantum interference channel by sequential decoding
Sen, Pranab
2011-01-01
In this paper, we study the power of sequential decoding strategies for several channels with classical input and quantum output. In our sequential decoding strategies, the receiver loops through all candidate messages trying to project the received state onto a `typical' subspace for the candidate message under consideration, stopping if the projection succeeds for a message, which is then declared as the guess of the receiver for the sent message. We show that even such a conceptually simple strategy can be used to achieve rates up to the mutual information for a single sender single receiver channel called cq-channel henceforth, as well as the standard inner bound for a two sender single receiver multiple access channel, called ccq-MAC in this paper. Our decoding scheme for the ccq-MAC uses a new kind of conditionally typical projector which is constructed using a geometric result about how two subspaces interact structurally. As the main application of our methods, we construct an encoding and decoding sc...
Quantum interference effects in topological nanowires in a longitudinal magnetic field
Sacksteder, Vincent E.; Wu, Quansheng
2016-11-01
We study the magnetoconductance of topological insulator nanowires in a longitudinal magnetic field, including Aharonov-Bohm, Altshuler-Aronov-Spivak, perfectly conducting channel, and universal conductance fluctuation effects. Our focus is on predicting experimental behavior in single wires in the quantum limit where temperature is reduced to zero. We show that changing the Fermi energy EF can tune a wire from from ballistic to diffusive conduction and to localization. In both ballistic and diffusive single wires we find both Aharonov-Bohm and Altshuler-Aronov-Spivak oscillations with similar strengths, accompanied by quite strong universal conductance fluctuations, all with amplitudes between 0.3 G0 and 1 G0 . This contrasts strongly with the average behavior of many wires, which shows Aharonov-Bohm oscillations in the ballistic regime and Altshuler-Aronov-Spivak oscillations in the diffusive regime, with both oscillations substantially larger than the conductance fluctuations. In single wires the ballistic and diffusive regimes can be distinguished by varying EF and studying the sign of the Aharonov-Bohm signal, which depends periodically on EF in ballistic wires and randomly on EF in diffusive wires. We also show that in long wires the perfectly conducting channel is visible at a wide range of energies within the bulk gap. We present typical conductance profiles at several wire lengths, showing that conductance fluctuations can dominate the average signal. Similar behavior will be found in carbon nanotubes.
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng
2017-02-01
In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.
Hu, Zhiyang; Xu, Shuhong; Xu, Xiaojing; Wang, Zhaochong; Wang, Zhuyuan; Wang, Chunlei; Cui, Yiping
2015-10-08
In optics, when polychromatic light is filtered by an optical filter, the monochromaticity of the light can be improved. In this work, we reported that Ag dopant atoms could be used as an optical filter for nanosized Mn:ZnSe quantum dots (QDs). If no Ag doping, aqueous Mn:ZnSe QDs have low monochromaticity due to coexisting of strong ZnSe band gap emission, ZnSe trap emission, and Mn dopant emission. After doping of Ag into QDs, ZnSe band gap and ZnSe trap emissions can be filtered, leaving only Mn dopant emission with improved monochromaticity. The mechanism for the optical filtering effect of Ag was investigated. The results indicate that the doping of Ag will introduce a new faster deactivation process from ZnSe conduction band to Ag energy level, leading to less electrons deactived via ZnSe band gap emission and ZnSe trap emission. As a result, only Mn dopant emission is left.
Wójcik, Paweł; Adamowski, Janusz
2017-01-01
The spin filtering effect in the bilayer nanowire with quantum point contact is investigated theoretically. We demonstrate the new mechanism of the spin filtering based on the lateral inter-subband spin-orbit coupling, which for the bilayer nanowires has been reported to be strong. The proposed spin filtering effect is explained as the joint effect of the Landau-Zener intersubband transitions caused by the hybridization of states with opposite spin (due to the lateral Rashba SO interaction) and the confinement of carriers in the quantum point contact region. PMID:28358141
Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro
2016-08-01
Intensities of the first- and the second-order Raman spectra are calculated as a function of the Fermi energy. We show that the Kohn anomaly effect, i.e., phonon frequency renormalization, in the first-order Raman spectra originates from the phonon renormalization by the interband electron-hole excitation, whereas in the second-order Raman spectra, a competition between the interband and intraband electron-hole excitations takes place. By this calculation, we confirm the presence of different dispersive behaviors of the Raman peak frequency as a function of the Fermi energy for the first- and the second-order Raman spectra, as observed in some previous experiments. Moreover, the calculated results of the Raman intensity sensitively depend on the Fermi energy for both the first- and the second-order Raman spectra, indicating the presence of the quantum interference effect. The electron-phonon matrix element plays an important role in the intensity increase (decrease) of the combination (overtone) phonon modes as a function of the Fermi energy.
Tateiwa, Naoyuki; Haga, Yoshinori; Matsuda, Tatsuma D; Fisk, Zachary
2012-05-01
A miniature ceramic anvil high pressure cell (mCAC) was earlier designed by us for magnetic measurements at pressures up to 7.6 GPa in a commercial superconducting quantum interference magnetometer [N. Tateiwa et al., Rev. Sci. Instrum. 82, 053906 (2011)]. Here, we describe methods to generate pressures above 10 GPa in the mCAC. The efficiency of the pressure generation is sharply improved when the Cu-Be gasket is sufficiently preindented. The maximum pressure for the 0.6 mm culet anvils is 12.6 GPa when the Cu-Be gasket is preindented from the initial thickness of 300-60 μm. The 0.5 mm culet anvils were also tested with a rhenium gasket. The maximum pressure attainable in the mCAC is about 13 GPa. The present cell was used to study YbCu(2)Si(2) which shows a pressure induced transition from the non-magnetic to magnetic phases at 8 GPa. We confirm a ferromagnetic transition from the dc magnetization measurement at high pressure. The mCAC can detect the ferromagnetic ordered state whose spontaneous magnetic moment is smaller than 1 μ(B) per unit cell. The high sensitivity for magnetic measurements in the mCAC may result from the simplicity of cell structure. The present study shows the availability of the mCAC for precise magnetic measurements at pressures above 10 GPa.
Chen, Lei; Wang, Hao; Liu, Xiaoyu; Wu, Long; Wang, Zhen
2016-12-14
A superconducting quantum interference device (SQUID) miniaturized into the nanoscale is promising in the inductive detection of a single electron spin. A nano-SQUID with a strong spin coupling coefficient, a low flux noise, and a wide working magnetic field range is highly desired in a single spin resonance measurement. Nano-SQUIDs with Dayem bridge junctions excel in a high working field range and in the direct coupling from spins to the bridge. However, the common planar structure of nano-SQUIDs is known for problems such as a shallow flux modulation depth and a troublesome hysteresis in current-voltage curves. Here, we developed a fabrication process for creating three-dimensional (3-D) niobium (Nb) nano-SQUIDs with nanobridge junctions that can be tuned independently. Characterization of the device shows up to 45.9% modulation depth with a reversible current-voltage curve. Owning to the large modulation depth, the measured flux noise is as low as 0.34 μΦ0/Hz(1/2). The working field range of the SQUID is greater than 0.5 T parallel to the SQUID plane. We believe that 3-D Nb nano-SQUIDs provide a promising step toward effective single-spin inductive detection.
Scowen, Paul A.; Nemanich, Robert; Eller, Brianna; Yu, Hongbin; Mooney, Tom; Beasley, Matt
2017-01-01
Over the past few years the advent of atomic layer deposition (ALD) technology has opened new capabilities to the field of coatings deposition for use in optical elements. At the same time, there have been major advances in both optical designs and detector technologies that can provide orders of magnitude improvement in throughput in the far ultraviolet (FUV) and near ultraviolet (NUV) passbands. Recent review work has shown that a veritable revolution is about to happen in astronomical diagnostic work for targets ranging from protostellar and protoplanetary systems, to the intergalactic medium that feeds gas supplies for galactic star formation, and supernovae and hot gas from star forming regions that determine galaxy formation feedback. These diagnostics are rooted in access to a forest of emission and absorption lines in the ultraviolet (UV), and all that prevents this advance is the lack of throughput in such systems, even in space-based conditions. We are pursuing an approach to use a range of materials to implement stable optical layers suitable for protective overcoats with high UV reflectivity and unprecedented uniformity, and to use that capability to leverage innovative ultraviolet/optical filter construction to enable astronomical science. These materials will be deposited in a multilayer format over a metal base to produce a stable construct. Specifically, we are employing PEALD (plasma-enhanced atomic layer deposition) methods for the deposition and construction of reflective layers that can be used to construct unprecedented filter designs for use in the ultraviolet. Our paper reports on our work as we enter year 2 of our 3-year program.
Fillaux, François; Cousson, Alain
2016-03-01
Neutron diffraction by single-crystals KH2(1- ρ)D2 ρ PO4 at 293 K reveal quantum interferences consistent with a static lattice of entangled proton-deuteron scatterers. These crystals are represented by a macroscopic-scale condensate of phonons with continuous space-time-translation symmetry and zero-entropy. This state is energetically favored and decoherence-free over a wide temperature-range. Projection of the crystal state onto a basis of four electrically- and isotopically-distinct state-vectors accounts for isotope and pressure effects on the temperature of the ferroelectric-dielectric transition, as well as for the latent heat. At the microscopic level, an incoming wave realizes a transitory state either in the space of static positional parameters (elastic scattering) or in that of the symmetry species (energy transfer). Neutron diffraction, vibrational spectroscopy, relaxometry and neutron Compton scattering support the conclusion that proton and deuteron scatterers are separable exclusively through resonant energy-transfer.
Directory of Open Access Journals (Sweden)
Chen Yu-Fan
2006-01-01
Full Text Available An adaptive minimum mean-square error (MMSE array receiver based on the fuzzy-logic recursive least-squares (RLS algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ( , , into a forgetting factor . For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS algorithm using the fuzzy-inference-controlled step-size . This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS and variable forgetting factor RLS (VFF-RLS algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER for multipath fading channels.
Energy Technology Data Exchange (ETDEWEB)
Wagner, Konrad
2007-09-15
In the framework of the thesis presented here for the first time quantum interference effects in ferromagnetic semiconductors could be uniquely detected. For this wire and ring structures with line widths of few nanometers were fabricated and universal conductivity fluctuations and Aharonov-Bohm oscillations at very low temperatures (<20 mK) were studied. From the analysis of the temperature and length dependence of the fluctuations knowledge about the coherence length and the scattering processes connected with this could be obtained.
Institute of Scientific and Technical Information of China (English)
QIAN Yong; QIAN Jun; WANG Yu-Zhu
2009-01-01
We theoretically investigate controlled tunable all-optical filtering and buffering of optical pulses in a hybrid nano-photonic structure,where a single quantum dot (QD) embedded in a photonic crystal nanocavity is sidecoupled between a bare nanocavity and a photonic crystal waveguide.We demonstrate that there is a sharp low-loss transmission peak in the transmission spectrum under even low QD-nanocavity coupling strength and the input optical pulses can be delayed up to several hundred piceseconds within the dephasing time of the QD.The filtering regime can be shifted readily by manipulating the detuning between the QD excitonic transition frequency and resonant frequency of the nanocavity mode,which can be explored in future for on-clup all-optical logic and signal processing.
Horváthová, L; Mitas, L; Štich, I
2014-01-01
We present calculations of electronic and magnetic structures of vanadium-benzene multidecker clusters V$_{n}$Bz$_{n+1}$ ($n$ = 1 - 3) using advanced quantum Monte Carlo methods. These and related systems have been identified as prospective spin filters in spintronic applications, assuming that their ground states are half-metallic ferromagnets. Although we find that magnetic properties of these multideckers are consistent with ferromagnetic coupling, their electronic structures do not appear to be half-metallic as previously assumed. In fact, they are ferromagnetic insulators with large and broadly similar $\\uparrow$-/$\\downarrow$-spin gaps. This makes the potential of these and related materials as spin filtering devices very limited, unless they are further modified or functionalized.
Yang, Zhi; Liu, Shaoding; Liu, Xuguang; Yang, Yongzhen; Li, Xiuyan; Xiong, Shijie; Xu, Bingshe
2012-11-07
Using density functional theory and the non-equilibrium Green's function technique, we performed theoretical investigations on the magnetic and quantum transport properties of benzene-vanadium-borazine mixed organic/inorganic ligand sandwich clusters. The calculated results show that these finite sandwich clusters coupled to Ni electrodes exhibit novel quantum transport properties such as half-metallicity, negative differential resistance and spin-reversal effect, and can be viewed as a new kind of spin filter. However, for the infinite molecular wire, the ground state was identified as a ferromagnetic semiconductor with high stability. These findings suggest that the mixed organic/inorganic ligand sandwich clusters and molecular wires are promising materials for application in molecular electronics and spintronics.
Tateiwa, Naoyuki; Haga, Yoshinori; Fisk, Zachary; Ōnuki, Yoshichika
2011-05-01
A miniature opposed-anvil high-pressure cell has been developed for magnetic measurement in a commercial superconducting quantum interference device magnetometer. Non-magnetic anvils made of composite ceramic material were used to generate high-pressure with a Cu-Be gasket. We have examined anvils with different culet sizes (1.8, 1.6, 1.4, 1.2, 1.0, 0.8, and 0.6 mm). The pressure generated at low temperature was determined by the pressure dependence of the superconducting transition of lead (Pb). The maximum pressure P(max) depends on the culet size of the anvil: the values of P(max) are 2.4 and 7.6 GPa for 1.8 and 0.6 mm culet anvils, respectively. We revealed that the composite ceramic anvil has potential to generate high-pressure above 5 GPa. The background magnetization of the Cu-Be gasket is generally two orders of magnitude smaller than the Ni-Cr-Al gasket for the indenter cell. The present cell can be used not only with ferromagnetic and superconducting materials with large magnetization but also with antiferromagnetic compounds with smaller magnetization. The production cost of the present pressure cell is about one tenth of that of a diamond anvil cell. The anvil alignment mechanism is not necessary in the present pressure cell because of the strong fracture toughness (6.5 MPa m(1∕2)) of the composite ceramic anvil. The simplified pressure cell is easy-to-use for researchers who are not familiar with high-pressure technology. Representative results on the magnetization of superconducting MgB(2) and antiferromagnet CePd(5)Al(2) are reported.
DEFF Research Database (Denmark)
Unsleber, S.; McCutcheon, Dara; Dambach, M.;
We demonstrate the emission of highly indistinguishable photons from a quasiresonantly pumped coupled quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the sample temperature allows us to vary the quantum dot–cavity detuning, and on spectral...
Matsuura, Motoharu; Raz, Oded; Gomez-Agis, Fausto; Calabretta, Nicola; Dorren, Harm J S
2013-01-15
We present an ultrahigh-speed optical demultiplexing concept based on optical blue-shift filtering in a quantum-dot semiconductor optical amplifier (QD-SOA). Using a simple scheme, a QD-SOA and an optical bandpass filter, we have successfully achieved error-free operations at 40 Gbit/s on all the extracted tributaries from an aggregated traffic at 320 Gbit/s.
Pecina, Adam; Meier, René; Fanfrlík, Jindřich; Lepšík, Martin; Řezáč, Jan; Hobza, Pavel; Baldauf, Carsten
2016-02-25
Current virtual screening tools are fast, but reliable scoring is elusive. Here, we present the 'SQM/COSMO filter', a novel scoring function featuring a quantitative semiempirical quantum mechanical (SQM) description of all types of noncovalent interactions coupled with implicit COSMO solvation. We show unequivocally that it outperforms eight widely used scoring functions. The accuracy and chemical generality of the SQM/COSMO filter make it a perfect tool for late stages of virtual screening.
Wu, C. C.; Hong, B. F.; Wu, B. H.; Yang, S. Y.; Horng, H. E.; Yang, H. C.; Tseng, W. Y. Isaac; Tseng, W. K.; Liu, Y. B.; Lin, L. C.; Lu, L. S.; Lee, Y. H.
2007-01-01
In this work, the authors used a superconducting quantum interference device (SQUID) magnetocardiography (MCG) system consisted of 64-channel low-transition-temperature SQUID gradiometers to detect the MCG signals of hepercholesterolemic rabbits. In addition, the MCG signals were recorded before and after the injection of magnetic nanoparticles into the rabbits' ear veins to investigate the effects of magnetic nanoparticles on the MCG signals. These MCG data were compared to those of normal rabbits to reveal the feasibility for early detection of the electromagnetic changes induced by hypercholesterolemia using MCG with the assistance of magnetic nanoparticle injection.
Yang, Chui-Ping; Han, Siyuan
2004-12-01
A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation.
Zheng, An-Shou; Cheng, Yong-Jin; Liu, Ji-Bing; Li, Tie-Ping
We propose an alternative scheme to prepare the Greenberg-Horne-Zeilinger (GHZ) state and realize a SWAP gate by using Superconducting Quantum-interference devices (SQUIDs) coupled to a cavity. The present scheme, based on the adiabatic evolution of dark state, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided. Besides, the standard GHZ state can be directly obtained without measurement or any auxiliary SQUIDs and the construction of the SWAP gate does not require a composition of elementary gates from a universal set. Thus the procedure is simplified and decoherence is greatly suppressed.
Generation of entangled state using superconducting quantum interference devices%利用超导量子相干装置制备纠缠态的方案
Institute of Scientific and Technical Information of China (English)
马驰; 叶柳; 王戴木
2007-01-01
本文提出用两个超导量子相干装置在一个单模大失谐腔中制备一个最大纠缠态的新方案,在这个方案里,腔场态处于虚激发,在超导量子相干装置和腔场之间没有信息传递,因此对腔的品质要求大大减低.%We propose a new scheme to generate a maximally entangled state of twosuperconducting quantum interference devices with a nonresonant cavity. In this scheme, the cavity field is virtually excited, no quantum-information transfer exists between the SQUIDs system and the cavity field, thus the requirement on the quality factor of the cavity is greatly relaxed.
基于自适应陷波器的噪声调频干扰抑制方法%FM Interference Noise Suppression Based on Adaptive Notch Filter
Institute of Scientific and Technical Information of China (English)
路翠华; 李国林; 谢鑫
2014-01-01
Aiming at the problem that linear frequency-modulated fuze’s ability of anti-noise interference was poor,the method of noise FM interference suppression based on adaptive notch filter was presented.According to the characteristic that the difference frequency signal of linear frequency-modulated fuze was monochromatic, an adaptive notch filter was adopted to suppress FM interference noise in linear frequency-modulated fuze. Through adj usting notch filter’s weights,the notch filter has the notch characteristics in difference frequency signal's frequency,then noise FM interference was suppressed.The simulation results showed that when SJR=-10dB,FM interference noise could be still suppressed effectively.%针对线性调频引信抗噪声干扰能力比较差的问题，提出了基于自适应陷波器的噪声调频干扰抑制方法。该方法根据线性调频引信差频信号的单频特性，将自适应陷波器应用到线性调频引信中，对噪声调频干扰进行抑制。通过自适应调整陷波器的权值，使陷波器在差频信号的频率点具有陷波特性，从而达到噪声调频干扰抑制的目的。仿真结果表明：SJB=-10 dB时，仍然能达到很好的噪声调频干扰抑制效果。
Sanders, Steve; Park, Namkyoo; Dawson, Jay W.; Vahala, Kerry J.
1992-01-01
The high frequency intensity noise of a tandem fiber Fabry–Perot erbium-doped fiber ring laser is reduced to the standard quantum limit, with a 0.5 dB experimental uncertainty. Noise reduction of >~14 dB is achieved by intracavity spectral filtering of weak side modes using a narrow-band fiber Fabry–Perot etalon.
Quantum interference in graphene with quantum anomalous hall effect system%石墨烯量子反常霍尔效应体系中的量子干涉效应
Institute of Scientific and Technical Information of China (English)
唐娟; 吴泽文; 王雪娇; 邢燕霞
2016-01-01
To study characteristics of quantum interference in graphene possessed quantum anomalous Hall effect,graphene has been made into specific structure.With the aid of the tight-binding model and none-equilibrium Green’s function,the interfer-ences between the quantum anomalous Hall edge states in a graphene based quantum scattering cavity are investigated in the pres-ence of weak magnetic field.The interference period is inversely proportional with flux penetrating the scattering cavity.Further-more,the interfering effects are sensitive to the disorder scattering and the bulk states.Finally,researches show that quantum interference can be used to measure the edge states in graphene.%为了研究量子边缘态间的干涉效应,以锯齿型石墨烯纳米带为基础,通过引入外部自旋轨道耦合及磁交换场,在石墨烯纳米带中实现量子反常霍尔效应。在此基础上,构造弱耦合量子散射腔,并采用紧束缚近似下的哈密顿模型和非平衡格林函数方法,研究经由2个耦合边界反射的量子边缘态间的量子干涉效应。结果表明：弱磁场下,2个理想的反射边缘态间产生 A-B 干涉效应,随着磁场的变化,透射系数发生周期性的相长或相消干涉,干涉周期和穿过散射腔的磁通成反比。此外,干涉效应对杂质散射和体态非常敏感。因此,通过观测量子干涉效应可以定性地判断体系是否存在真正的边缘态。
Orlando, Patrick J; Modi, Kavan
2016-01-01
We study how single- and double-slit interference patterns fall in the presence of gravity. First, we demonstrate that universality of free fall still holds in this case, i.e., interference patterns fall just like classical objects. Next, we explore lowest order relativistic effects in the Newtonian regime by employing a recent quantum formalism which treats mass as an operator. This leads to interactions between non-degenerate internal degrees of freedom (like spin in an external magnetic field) and external degrees of freedom (like position). Based on these effects, we present an unusual phenomenon, in which a falling double slit interference pattern periodically decoheres and recoheres. The oscillations in the visibility of this interference occur due to correlations built up between spin and position. Finally, we connect the interference visibility revivals with non-Markovian quantum dynamics.
Institute of Scientific and Technical Information of China (English)
吴韬; 何娟; 倪致祥
2009-01-01
本文提出了一个基于SQUIDs和腔场的大失谐相互作用传送量子信息的方案,此方案可以直接地、百分之百地实现量子信息的传送.该方案中腔场和SQUIDs系统之间没有量子信息的传递,腔场只是虚激发,这样对腔的品质因子的要求大大的降低了.同时也可以在SQUIDs之间建立传送量子信息的量子网络.%We propose a scheme for transferring Quantum information via superconducting quantum interference device (SQUID) qubits and cavity field interaction with a large detuning.In the scheme,no quantum information is transferred between the SQUIDs and the cavities,the cavity-fields are only virtually excited,thus the requirement on the quality factor of the cavities is greatly relaxed.In addition,in the scheme the quantum information can be directly transferred with a successful probability of 100% in a simple manner.And meanwhile we can establish a network for transferring quantum information between SQUID qubits.
Institute of Scientific and Technical Information of China (English)
陈文武; 蔡征宇; 陈如山
2011-01-01
The influence of frequency modulation (FM) interference on correlation detection performance of the pseudo random code continuous wave( PRC-CW )radar is analyzed. It is found that the correlation output deteriorates greatly when the FM interference power exceeds the antijamming limitation of the radar. According to the fact that the PRC-CW radar return signal is a wideband pseudo random signal occupying the whole time-frequency(TF) plane,whereas the FM interference signal is well concentrated in the TF plane, a new method is proposed based on adaptive short-time Fourier transform (ASTIr) and median filtering for FM interference suppression. This method implements the filtering of the received signal by substituting the median filter output for only a portion of the IF plane corrupted by the interference. The echo signals corrupted by two types of interferences including linear FM ( LFM ) and sinusoidal FM ( SFM ) forms under different signal-tojamming ratio(SJR) situations are simulated. It is shown that the method can effectively suppress the FM interference and improve the performance of target detection significantly.%通过分析调频(FM)干扰对伪码调相连续波雷达相关检测性能的影响,发现当FM干扰超出伪码调相雷达自身抗干扰容限时,相关输出严重恶化.针对该问题,考虑到伪码在时频平面上是近似均匀和平坦的,而FM干扰则具有较好的时频聚集性,该文提出了基于自适应短时傅里叶变换(ASTFT)和中值滤波的FM干扰抑制方法.该方法通过对时频平面上被干扰污染的部分进行中值滤波,实现了对FM干扰的抑制.对不同信干比情况下线性调频和正弦调频干扰抑制前后的相关输出进行了仿真分析.结果表明,该方法能够有效抑制干扰,使相关输出得到显著改善.
Suelzer, Joseph S.; Prasad, Awadhesh; Ghosh, Rupamanjari; Vemuri, Gautam
2016-07-01
We report on a theoretical and computational investigation of the complex dynamics that arise in a semiconductor laser that is subject to two external, time-delayed, filtered optical feedbacks with special attention to the effect of quantum noise. In particular, we focus on the dynamics of the instantaneous optical frequency (wavelength) and its behavior for a wide range of feedback strengths and filter parameters. In the case of two intermediate filter bandwidths, the most significant results are that in the presence of noise, the feedback strengths required for the onset of chaos in a period doubling route are higher than in the absence of noise. We find that the inclusion of noise changes the dominant frequency of the wavelength oscillations, and that certain attractors do not survive in the presence of noise for a range of filter parameters. The results are interpreted by use of a combination of phase portraits, rf spectra, and first return maps.
Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.
Zhang, Xu-Long; Xu, Lei; Zhang, Jun
2017-05-10
Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.
DEFF Research Database (Denmark)
Unsleber, Sebastian; McCutcheon, Dara; Dambach, Michael;
2015-01-01
, we observea threefold improvement in the Hong-Ou-Mandel interference visibility, reaching values in excess of 80%. Ourmeasurements off-resonance allow us to investigate varying Purcell enhancements, and to probe the dephasingenvironment at different temperatures and energy scales. By comparison...
Aharanov-Bohm quantum interference in LaAlO3/SrTiO3 Hall bar structures
Irvin, Patrick; Lu, Shicheng; Annadi, Anil; Cheng, Guanglei; Tomczyk, Michelle; Huang, Mengchen; Levy, Jeremy; Lee, Hyungwoo; Eom, Chang-Beom
Aharanov-Bohm (AB) interference can arise in transport experiments when magnetic flux threads through two or more transport channels. The existence of this behavior requires long-range ballistic transport and is typically observed only in exceptionally clean materials. We observe AB interference in wide (w ~ 100 nm) channels created at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Interference occurs above a critical field B ~ 4 T and increases in magnitude with increasing magnetic field. The period of oscillation implies a ballistic length that greatly exceeds the micron-scale length of the channel, consistent with Fabry-Perot interference in 1D channels. The conditions under which AB oscillations are observed will be discussed in the context of the electron pairing mechanism in LaAlO3/SrTiO3. We gratefully acknowledge financial support from AFOSR (FA9550-10-1-0524 (JL), FA9550-12-1-0268 (JL), and FA9550-12-1-0342 (CBE)) and NSF (DMR-1124131 (JL), DMR-1104191 (JL), and DMR-1234096 (CBE)).
The role of quantum interference and partial redistribution in the solar Ba II D2 4554 A line
Smitha, H N; Stenflo, J O; Sampoorna, M
2014-01-01
The Ba II D2 line at 4554 A is a good example, where the F-state interference effects due to the odd isotopes produce polarization profiles, which are very different from those of the even isotopes that do not exhibit F-state interference. It is therefore necessary to account for the contributions from the different isotopes to understand the observed linear polarization profiles of this line. In this paper we present radiative transfer modeling with partial frequency redistribution (PRD), which is shown to be essential to model this line. This is because complete frequency redistribution (CRD) cannot reproduce the observed wing polarization. We present the observed and computed Q/I profiles at different limb distances. The theoretical profiles strongly depend on limb distance (\\mu) and the model atmosphere which fits the limb observations fails at other \\mu\\ positions.
Sambale, S.; Williams, G. V. M.; Stephen, J.; Chong, S. V.
2014-12-01
Electronic transport and magnetic measurements have been made on FeSr2Y1.3Ce0.7Cu2O10-x. We observe a spin-glass at ˜23 K and a magnetoresistance that reaches -22% at 8 T. The magnetoresistance is due to variable range hopping quantum interference where at low temperatures each hop is over a large number of scatterers. This magnetoresistance is negative at and above 5 K and can be described by the Nguen, Spivak, and Shklovskii (NSS) model. However, there is an increasingly positive contribution to the magnetoresistance for temperatures below 5 K that may be due to scattering from localized free spins during each hop that is not accounted for in the NSS model.
TonThat, Dinh M.; Clarke, John
1996-08-01
A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect 27Al NQR signals in ruby (Al2O3[Cr3+]) at 359 and 714 kHz.
Tsukada, Keiji; Matsunaga, Yasuaki; Isshiki, Ryota; Nakamura, Yuta; Sakai, Kenji; Kiwa, Toshihiko
2017-05-01
The magnetic characteristics of ethanol-water mixtures were investigated using our newly developed hybrid-type magnetometer based on a high-temperature superconducting quantum-interference device. The magnetization (M-H) curves of ethanol-water mixtures show good diamagnetic characteristics. The magnetic moments of the mixture show ethanol concentration dependence. However, the variation in magnetic moment differs from the characteristics expected by considering the magnetic moment ratio between water and ethanol, and volume-reduction rate. It showed two decrement regions separated at approximately 50-60% concentration values. It is also observed that the concentration dependence of the magnetic moment measured using the sample vibration method under a uniform magnetic field and that by the sample rotation method showed slightly different characteristics. These anomalies are attributed to the formation of clustered structures in the mixture.
Quantum rings as a perfect spin-splitter and spin-filter by using the Rashba effect
Saeedi, Sevan; Faizabadi, Edris
2016-05-01
Spin related conductance and polarization via an open ballistic quantum nanoring connected to one input lead and two output ones are studied by considering the Rashba effect based on the transfer matrix method. Our probes show that controlling on Rashba strength leads to 100 percent spin polarization while we have high efficiency for the system. In addition, it is possible to design the position of input and output leads in such a way as to optimize the system to work as a spin filtering or spin switching nano device. Also, this apparatus can work as a Stern-Gerlach tool which can be used in some important practical nano-industrial applications. By controlling on Rashba strength in a special design of two output lead positions, it is possible to divide the input charge current into any output ones while the partial output charge current has substantial value in one of two output leads and it is reduced in the other one simultaneously. By controlling on Rashba strength in a special design of output lead positions, the spin conductance can attain a considerable value in one output lead despite an insignificant value in the other one simultaneously.
Liu, Haijian; Li, Ming; Jiang, Linye; Shen, Feng; Hu, Yufeng; Ren, Xueqin
2017-02-01
Arginine plays an important role in many biological functions, whose detection is very significant. Herein, a sensitive, simple and cost-effective fluorescent method for the detection of arginine has been developed based on the inner filter effect (IFE) of citrate-stabilized gold nanoparticles (AuNPs) on the fluorescence of thioglycolic acid-capped CdTe quantum dots (QDs). When citrate-stabilized AuNPs were mixed with thioglycolic acid-capped CdTe QDs, the fluorescence of CdTe QDs was significantly quenched by AuNPs via the IFE. With the presence of arginine, arginine could induce the aggregation and corresponding absorption spectra change of AuNPs, which then IFE-decreased fluorescence could gradually recover with increasing amounts of arginine, achieving fluorescence "turn on" sensing for arginine. The detection mechanism is clearly illustrated and various experimental conditions were also optimized. Under the optimum conditions, a decent linear relationship was obtained in the range from 16 to 121 μg L- 1 and the limit of detection was 5.6 μg L- 1. And satisfactory results were achieved in arginine analysis using arginine injection, compound amino acid injection, even blood plasma as samples. Therefore, the present assay showed various merits, such as simplicity, low cost, high sensitivity and selectivity, making it promising for sensing arginine in biological samples.
Energy Technology Data Exchange (ETDEWEB)
Liu, X., E-mail: iu.xiangming@nims.go.jp [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Kumano, H.; Nakajima, H.; Odashima, S.; Asano, T.; Suemune, I. [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); Kuroda, T. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)
2014-07-28
We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.
Cleve, R; Henderson, L; Macchiavello, C; Mosca, M
1998-01-01
Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. In effect, they follow the same logical paradigm as (multi-particle) interferometers. We show how most known quantum algorithms, including quantum algorithms for factorising and counting, may be cast in this manner. Quantum searching is described as inducing a desired relative phase between two eigenvectors to yield constructive interference on the sought elements and destructive interference on the remaining terms.
2014-12-01
digital terrestrial television broadcast standards, from [5]. ..................6 Figure 3. SCM and MCM, from [6...correction FFT fast Fourier transform GI guard interval HDTV high definition television ICA independent component analysis IDFT inverse discrete Fourier...phase-shift keying xiv SCM single carrier modulation SDTV standard definition television SIR signal-to-interference ratio SNR signal-to-noise
Destructive Interference of Dualities
Wotzasek, C
1998-01-01
We show that the fusion of two (diffeomorphism) invariant self-dual scalars described by right and left chiral-WZW actions, produces a Hull non-mover field. After fusion, right and left moving modes disappear from the spectrum, displaying in this way the phenomenon of (destructive) quantum interference of dualities.
Phonon-Mediated Nonclassical Interference in Diamond
England, Duncan G.; Fisher, Kent A. G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Heshami, Khabat; Resch, Kevin J.; Sussman, Benjamin J.
2016-08-01
Quantum interference of single photons is a fundamental aspect of many photonic quantum processing and communication protocols. Interference requires that the multiple pathways through an interferometer be temporally indistinguishable to within the coherence time of the photon. In this Letter, we use a diamond quantum memory to demonstrate interference between quantum pathways, initially temporally separated by many multiples of the optical coherence time. The quantum memory can be viewed as a light-matter beam splitter, mapping a THz-bandwidth single photon to a variable superposition of the output optical mode and stored phononic mode. Because the memory acts both as a beam splitter and as a buffer, the relevant coherence time for interference is not that of the photon, but rather that of the memory. We use this mechanism to demonstrate nonclassical single-photon and two-photon interference between quantum pathways initially separated by several picoseconds, even though the duration of the photons themselves is just ˜250 fs .
Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)
Racah, Daniel
1991-03-01
Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.
Interference in Time: A Comment
Horwitz, L P
2005-01-01
I comment on the interpretation of a recent experiment showing quantum interference in time. It is pointed out that the standard nonrelativistic quantum theory, used by the authors in their analysis, cannot account for the results found, and therefore that this experiment has fundamental importance beyond the technical advances it represents.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Quantum dots (QDs) have received more and more attention as a novel example of nanocrystals due to their unique fluorescent characteristics. Recently, the toxicity and the potential environmental effects of QDs have become a research hotspot. In this work, in vivo endocrine disrupting effect, toxicokinetics and oxidative stress of QDs were characterized following the intraperitoneal dosing in Chinese loaches. Vitellogenin (Vtg) levels induced by E2 decreased significantly when administrated with the mixture of QDs and E2, which was consistent with the observations of histopathology in testes. The release of free Cd2+ from QDs and the non-specific adsorption of E2 by QDs might be the joint factors contributing to the inhibition of Vtg expression induced by E2 in the male Chinese loaches. In the muscle, bone, intestines, blood and testis, CdSe QDs reached the maximal concentration (Cmax) in approximately 1-h postinjection and subsequently presented downtrend with the prolonged time. Whereas, there were even increasing tendencies of CdSe QDs’ concentrations in the liver and kidney. It is educible that CdSe QDs can be persistent at least for 7 days, indicating the overall half-life of CdSe QDs in the fish body is very long. The measurement of hepatic superoxide dismutase (SOD) activity and reduced glutathione (GSH) content indicate that QDs have smaller effects on the antioxidative system of the organisms compared with free Cd2+ due to the effective prevention of the release of Cd by PEG coating of QDs. The comprehensive evaluation of QDs’ toxicity in the present study provides an essential and general framework towards more focused research on the elucidation of the biological effects of QDs in vivo.
Institute of Scientific and Technical Information of China (English)
LI HongCheng; LUO WenRu; TAO Yong; WU Yuan; LV XueFei; ZHOU QunFang; JIANG GuiBin
2009-01-01
Quantum dots (QDs) have received more and more attention as a novel example of nanocrystals due to their unique fluorescent characteristics. Recently, the toxicity and the potential environmental effects of QDs have become a research hotspot. In this work, in vivo endocrine disrupting effect, toxicokinetics and oxidative stress of QDs were characterized following the intraperitoneal dosing in Chinese Ioaches. Vitellogenin (Vtg) levels induced by E2 decreased significantly when administrated with the mixture of QDs and E2, which was consistent with the observations of histopathology in testes. The release of free Cd~(2+) from QDs and the non-specific adsorption of E2 by QDs might be the joint factors contributing to the inhibition of Vtg expression induced by E2 in the male Chinese Ioaches. In the muscle, bone, intestines, blood and testis, CdSe QDs reached the maximal concentration (Cmax) in approximately 1-h postinjection and subsequently presented downtrend with the prolonged time. Whereas, there were even increasing tendencies of CdSe ODs' concentrations in the liver and kidney. It is educible that CdSe QDs can be persistent at least for 7 days, indicating the overall half-life of CdSe QDs in the fish body is very long. The measurement of hepatic superoxide dismutase (SOD) activity and reduced glutathione (GSH) content indicate that QDs have smaller effects on the antioxidative system of the organisms compared with free Cd~(2+) due to the effective prevention of the release of Cd by PEG coating of QDs. The comprehensive evaluation of QDs' toxicity in the present study provides an essential and general framework towards more focused research on the elucidation of the biological effects of QDs in vivo.
Nozaki, Daijiro; Lücke, Andreas; Schmidt, Wolf Gero
2017-02-16
Destructive quantum interference (QI) in molecular junctions has attracted much attention in recent years. It can tune the conductance of molecular devices dramatically, which implies numerous potential applications in thermoelectric and switching applications. There are several schemes that address and rationalize QI in single molecular devices. Dimers play a particular role in this respect because the QI signal may disappear, depending on the dislocation of monomers. We derive a simple rule that governs the occurrence of QI in weakly coupled dimer stacks of both alternant and nonalternant polyaromatic hydrocarbons (PAHs) and extends the Tada-Yoshizawa scheme. Starting from the Green's function formalism combined with the molecular orbital expansion approach, it is shown that QI-induced antiresonances and their energies can be predicted from the amplitudes of the respective monomer terminal molecular orbitals. The condition is illustrated for a toy model consisting of two hydrogen molecules and applied within density functional calculations to alternant dimers of oligo(phenylene-ethynylene) and nonalternant PAHs. Minimal dimer structure modifications that require only a few millielectronvolts and lead to an energy crossing of the essentially preserved monomer orbitals are shown to result in giant conductance switching ratios.
Understanding ghost interference
Qureshi, Tabish; Chingangbam, Pravabati; Shafaq, Sheeba
2016-08-01
The ghost interference observed for entangled photons is theoretically analyzed using wave-packet dynamics. It is shown that ghost interference is a combined effect of virtual double-slit creation due to entanglement, and quantum erasure of which-path information for the interfering photon. For the case where the two photons are of different color, it is shown that fringe width of the interfering photon depends not only on its own wavelength, but also on the wavelength of the other photon which it is entangled with.
Wave and particle in molecular interference lithography.
Juffmann, Thomas; Truppe, Stefan; Geyer, Philipp; Major, András G; Deachapunya, Sarayut; Ulbricht, Hendrik; Arndt, Markus
2009-12-31
The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy. Thereby both the particle and the quantum wave character of the molecules can be visualized in one and the same image. This new approach to nanolithography therefore also represents a sensitive new detection scheme for quantum interference experiments.
Wave and Particle in Molecular Interference Lithography
Juffmann, Thomas; Geyer, Philipp; Major, Andras G; Deachapunya, Sarayut; Ulbricht, Hendrik; Arndt, Markus; 10.1103/PhysRevLett.103.263601
2010-01-01
The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy. Thereby both the particle and the quantum wave character of the molecules can be visualized in one and the same image. This new approach to nanolithography therefore also represents a sensitive new detection scheme for quantum interference experiments.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Yahya, Noorhana; Zakariah, Muhammad Hanis
2012-10-01
Electromagnetic (EM) waves transmitted by Horizontal Electric Dipole (HED) source to detect contrasts in subsurface resistivity termed Seabed Logging (SBL) is now an established method for hydrocarbon exploration. However, currently used EM wave detectors for SBL have several challenges including the sensitivity and its bulk size. This work exploits the benefit of superconductor technology in developing a magnetometer termed Superconducting Quantum Interference Device (SQUID) which can potentially be used for SBL. A SQUID magnetometer was fabricated using hexagon shape-niobium wire with YBa2Cu37O, (YBCO) as a barrier. The YBa2Cu37O, samples were synthesized by sol-gel method and were sintered using a furnace and conventional microwave oven. The YBCO gel was dried at 120 degrees C in air for 72 hours. It was then ground and divided into 12 parts. Four samples were sintered at 750 degrees C, 850 degrees C, 900 degrees C, and 950 degrees C for 12 hours in a furnace to find the optimum temperature. The other eight samples were sintered in a microwave with 1100 Watt (W) with a different sintering time, 5, 15, 45 minutes, 1 hour, 1 hour 15 minutes, 1 hour 30 minutes, 1 hour 45 minutes and 2 hours. A DEWAR container was designed and fabricated using fiberglass material. It was filled with liquid nitrogen (LN2) to ensure the superconducting state of the magnetometer. XRD results showed that the optimum sintering temperature for the formation of orthorhombic Y-123 phase was at 950 degrees C with the crystallite size of 67 nm. The morphology results from Field Emission Scanning Electron Microscopy (FESEM) showed that the grains had formed a rod shape with an average diameter of 60 nm. The fabricated SQUID magnetometer was able to show an increment of approximately 249% in the intensity of the EM waves when the source receiver offset was one meter apart.
Wen, Hai-hu; Ziemann, Paul; Radovan, Henri A.; Herzog, Thomas
1998-09-01
By using a superconducting quantum interference device (SQUID), the temporal relaxation of the magnetization was determined for ring-shaped Tl 2Ba 2CaCu 2O 8 thin films at various temperatures between 10 K and 80 K in magnetic fields ranging from 2 mT to 0.3 T. Based on these data, a detailed analysis has been performed related to the following methods or models: (1) Fitting the data to the thermally activated flux motion and collective pinning model; (2) Applying the Generalized Inversion Scheme to extract the temperature dependence of the unrelaxed critical current density jc( T) and pinning potential Uc( T); (3) Testing a modified Maley's method to obtain the current dependent activation energy for flux motion; (4) 2D vortex glass scaling. It is found that, for low fields (2 mT, 10 mT, 40 mT) the experimental data can be described by an elastic flux motion, most probably due to 3D single vortex creep. At higher fields (0.1 T, 0.2 T, 0.3 T), the observed behavior can be interpreted in terms of plastic flux motion which is probably governed by dislocation mediated flux creep. These high field data can also be consistently described by the 2D vortex glass scaling with scaling parameters ν2D, T0 and p being consistent with those derived from corresponding transport measurement. Also, results are presented demonstrating the importance of optimizing the scan length of the sample in a moving sample SQUID magnetometer to avoid artifacts.
Mok, N Yi; Maxe, Sara; Brenk, Ruth
2013-03-25
The efficiency of automated compound screening is heavily influenced by the design and the quality of the screening libraries used. We recently reported on the assembly of one diverse and one target-focused lead-like screening library. Using data from 15 enzyme-based screenings conducted using these libraries, their performance was investigated. Both libraries delivered screening hits across a range of targets, with the hits distributed across the entire chemical space represented by both libraries. On closer inspection, however, hit distribution was uneven across the chemical space, with enrichments observed in octants characterized by compounds at the higher end of the molecular weight and lipophilicity spectrum for lead-like compounds, while polar and sp(3)-carbon atom rich compounds were underrepresented among the screening hits. Based on these observations, we propose that screening libraries should not be evenly distributed in lead-like chemical space but be enriched in polar, aliphatic compounds. In conjunction with variable concentration screening, this could lead to more balanced hit rates across the chemical space and screening hits of higher ligand efficiency will be captured. Apart from chemical diversity, both screening libraries were shown to be clean from any pan-assay interference (PAINS) behavior. Even though some compounds were flagged to contain PAINS structural motifs, some of these motifs were demonstrated to be less problematic than previously suggested. To maximize the diversity of the chemical space sampled in a screening campaign, we therefore consider it justifiable to retain compounds containing PAINS structural motifs that were apparently clean in this analysis when assembling screening libraries.
采用非线性量子比特的形态滤波及其应用%Morphological Filtering Using Nonlinear Quantum Bit and Its Application
Institute of Scientific and Technical Information of China (English)
陈彦龙; 张培林; 李兵; 李胜
2015-01-01
针对数学形态学结构元素无法动态调整尺寸的问题，结合量子理论提出一种基于非线性量子比特的形态滤波方法，提升形态学的机械振动信号处理效果。分析机械信号与量子理论结合的可行性，并在此基础上构建机械振动信号的峰值波谷的量子表达形式；结合振动信号的最大值和最小值，通过数学分析提出非线性量子比特的表达式，用于表达振动信号的瞬时状态；根据振动信号邻域的关联性，分析振动信号的局部特点，建立振动信号的三量子位系统；根据机械振动信号的峰值波谷的量子表达形式，在三量子位系统的框架内，提出机械振动信号在量子概率特征下的结构元素尺寸收缩算子，并基于尺寸收缩算子实现结构元素长度的自适应调整。运用轴承故障信号进行分析，结果表明，该方法能够比传统方法更加有效地提取出故障脉冲信息。%Aiming at the problem that mathematical morphology structuring element is unable to adjust its length dynamically, a morphological filtering method using nonlinear quantum bit integrating quantum theory is presented, to enhance mechanical vibration signal processing effect of morphology. Firstly the feasibility of combination between mechanical signal and quantum theory is analyzed. Based on the analysis, the quantum expressions of crest and trough in mechanical vibration signal are presented. Then combining both maximum and minimum of vibration signal, an expression of nonlinear quantum bit is proposed after mathematical analysis, which is used to depict the instantaneous state of vibration signal. The next according to the relevance in the neighbourhood of mechanical vibration signal, a quantum system with multiple quantum bits for mechanical vibration signals is proposed after local characteristics of vibration signals are analyzed. Based on the quantum expressions of crest and trough in
Quantum point contacts in quantum wire systems
Energy Technology Data Exchange (ETDEWEB)
Sternemann, E.; Buchholz, S.S.; Fischer, S.F.; Kunze, U. [Werkstoffe und Nanoelektronik, Ruhr-Universitaet Bochum (Germany); Reuter, D.; Wieck, A.D. [Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)
2010-07-01
Quantum point contacts (QPCs) attract high interest for applications as magnetic focussing, beam splitting (quantum Hall edge states), spin filtering and electron thermometry. Here, we investigate QPCs in complex quantum wire (QWR) systems such as quantum rings. The QPCs were realized by lithographical definition of a short (150 nm) constriction (170 nm width) in (a) a 540 nm wide QWR and (b) 520 nm wide QWR leads of a QWR ring as in. Nanogates on top of the constrictions allow for the control of occupied modes in the QPCs. The devices are based on a GaAs/AlGaAs heterostructure with a 2DEG 55 nm below the surface, patterned by electron beam lithography and wet-chemical etching. Two- and four-terminal conductance measurements at temperatures between 23 mK and 4.2 K were performed using lock-in technique. Our measurements reveal that QPCs in 1D nanostructures can be prepared to show subband separations of 6 meV, clear conductance quantization as well as the 0.7 anomaly. We further show that electron injection across a QPC into a QWR ring allows for electron interference (Aharonov-Bohm effect).
Edén, Mattias
2010-05-01
Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.
Jacobi, Nicole; Herich, Lena
2016-10-01
There are conflicting data regarding the role of serum ferritin (SF) as surrogate parameter for iron overload as an independent prognostic factor for outcome after allogeneic stem cell transplantation (SCT). Superconducting quantum interference device (SQUID) biomagnetic liver susceptometry, a noninvasive measurement of iron overload, allows measurement of the interference of an exteriorly applied small but highly constant magnetic field by the paramagnetic liver storage iron. By measuring the true iron load of patients through SQUID, we wanted to assess the effect of iron overload on patients undergoing SCT. We conducted a single-center retrospective analysis (1994-2010), comparing the effect of SF and liver iron content measured by SQUID shortly before transplantation on overall survival (OS), event-free survival (EFS), and transplant-related mortality (TRM) in 142 patients (median age 54.5 yr, range 5.6-75 yr) undergoing SCT (80% reduced intensity regimen). Patients were subdivided into five groups: myelodysplastic syndrome, de novo acute myeloid leukemia (AML), secondary AML, primary myelofibrosis, and others. Correlation between SF and SQUID was significant (r = 0.6; P 1000 ng/mL (P = 0.003). A significant association between SQUID and fungal infection was also seen (P = 0.004). For patients with SQUID ≥1000, the risk of proven fungal infection was increased 3.08-fold (95% CI 1.43-6.63). A similar association between SF >1000 and fungal infection was shown (P = 0.01). In univariate analysis, age was a prognostic factor for TRM (P = 0.034, HR 1.04, CI 1.00-1.08). SF ≥1000 was associated with OS (P = 0.033, HR 2.09, CI 1.06-4.11) and EFS (P = 0.016, HR 2.15, 95% CI 1.15-4.10). In multivariate analysis on EFS, only age and SF >1000 remained as independent factors (HR 1.027, P = 0.040, 95% CI 1.001-1.054 and HR 2.058, P = 0.034, 95% CI 1.056-4.008, respectively). The multivariate analysis on TRM left age and SQUID values ≥1000 in the final model (HR 1.045, P
Improved Linear Parallel Interference Cancellers
Srikanth, T; Chockalingam, A; Milstein, L B
2007-01-01
In this paper, taking the view that a linear parallel interference canceller (LPIC) can be seen as a linear matrix filter, we propose new linear matrix filters that can result in improved bit error performance compared to other LPICs in the literature. The motivation for the proposed filters arises from the possibility of avoiding the generation of certain interference and noise terms in a given stage that would have been present in a conventional LPIC (CLPIC). In the proposed filters, we achieve such avoidance of the generation of interference and noise terms in a given stage by simply making the diagonal elements of a certain matrix in that stage equal to zero. Hence, the proposed filters do not require additional complexity compared to the CLPIC, and they can allow achieving a certain error performance using fewer LPIC stages. We also extend the proposed matrix filter solutions to a multicarrier DS-CDMA system, where we consider two types of receivers. In one receiver (referred to as Type-I receiver), LPIC...
Interference, Reduced Action, and Trajectories
Floyd, Edward R.
2007-09-01
Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the trajectories of the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function’s trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.
Interference, reduced action, and trajectories
Floyd, E R
2006-01-01
Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function's trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.
Multimode Hong-Ou-Mandel interference
Walborn, S P; Pádua, S; Monken, C H
2003-01-01
We consider multimode two-photon interference at a beam splitter by photons created by spontaneous parametric down-conversion. The resulting interference pattern is shown to depend upon the transverse spatial symmetry of the pump beam. In an experiment, we employ the first-order Hermite-Gaussian modes in order to show that, by manipulating the pump beam, one can control the resulting two-photon interference behavior. We expect these results to play an important role in the engineering of quantum states of light for use in quantum information processing and quantum imaging.
Knubovets, Tatyana; Shinar, Hadassah; Eliav, Uzi; Navon, Gil
1996-01-01
Recently, it has been shown that23Na double-quantum-filtered NMR spectroscopy can be used to detect anisotropic motion of bound sodium ions in biological systems. The technique is based on the formation of the second-rank tensor when the quadrupolar interaction is not averaged to zero. Using this method, anisotropic motion of bound sodium in human and dog red blood cells was detected, and the effect was shown to depend on the integrity of the membrane cytoskeleton. In the present study, multiple-quantum-filtered techniques were applied in combination with a quadrupolar echo to measure the transverse-relaxation times,T2fandT2s. Line fitting was performed to obtain the values of the residual quadrupolar interaction, which was measured for sodium in a variety of mammalian erythrocytes of different size, shape, rheological properties, and sodium concentrations. Human unsealed white ghosts were used to study sodium bound at the anisotropic sites on the inner side of the RBC membrane. Modulations of the conformation of the cytoskeleton by the variation of either the ionic strength or pH of the suspending medium caused drastic changes in both the residual quadrupolar interaction andT2fdue to changes in the fraction of bound sodium ions as well as changes in the structure of the binding sites. By combining the two spectroscopic parameters, structural change can be followed. The changes in the structure of the sodium anisotropic binding sites deduced by this method were found to correlate with known conformational changes of the membrane cytoskeleton. Variations of the medium pH affected both the fraction of bound sodium ions and the structure of the anisotropic binding sites. Sodium and potassium were shown to bind to the anisotropic binding sites with the same affinity.
Institute of Scientific and Technical Information of China (English)
白占孝; 罗自浩
2011-01-01
对湟源地震台周边各种因素所致的地震记录干扰情况进行了分析,认为干扰源主要有采石场爆破、灌溉水渠、小河、车辆干扰及各种天气及固有干扰等。根据这些干扰源的频谱特性,采用MATLAB语言,设计、编制了不同类型的滤波器,在震相识别上发挥了很大作用。%The interferes caused by various factors around Huangyuan seismic station are analyzed,and the sources are explosion in the quarry, water channels,rivers,vibration due to traffic,fluctuation of climate and others.According to their spectral features,the authors use MATLAB language to design different filters which play an important role to phase identification.
Masui, T; Limonov, M; Uchiyama, H; Tajima, S; Yamanaka, A
2005-11-11
We found a strong X-Y anisotropy of the pair-breaking peak in the Raman scattering of heavily overdoped (Y, Ca)Ba2Cu3O(7-delta) (T(c) = 65 K). The pair-breaking peak is radically suppressed in the YY-polarized spectrum. We ascribe this anomaly to the effect of quantum interference between the Raman processes of the CuO-chain and the CuO2-plane electronic excitations that might take place as a result of the increase in the transfer matrix due to overdoping.
Szigeti, Stuart S; Hush, Michael R; Carvalho, Andre R R; Hope, Joseph J
2012-01-01
We consider the effects of experimental imperfections on the problem of estimation-based feedback control of a trapped particle under continuous position measurement. These limitations violate the assumption that the estimator (i.e. filter) accurately models the underlying system, thus requiring a separate analysis of the system and filter dynamics. We quantify the parameter regimes for stable cooling, and show that the control scheme is robust to detector inefficiency, time delay, technical noise, and miscalibrated parameters. We apply these results to the specific context of a weakly interacting Bose-Einstein condensate (BEC). Given that this system has previously been shown to be less stable than a feedback-cooled BEC with strong interatomic interactions, this result shows that reasonable experimental imperfections do not limit the feasibility of cooling a BEC by continuous measurement and feedback.
Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline
2010-04-01
The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.
Hughes, R J; Dyer, P L; Luther, G G; Morgan, G L; Schauer, M M; Hughes, Richard J; Dyer, P; Luther, G G; Morgan, G L; Schauer, M
1995-01-01
Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.
Applications of quantum stochastic processes in quantum optics
Bouten, Luc
2008-01-01
These lecture notes provide an introduction to quantum filtering and its applications in quantum optics. We start with a brief introduction to quantum probability, focusing on the spectral theorem. Then we introduce the conditional expectation and quantum stochastic calculus. In the last part of the notes we discuss the filtering problem.
Noise-free quantum optical frequency shifting driven by mechanics
Fan, Linran; Poot, Menno; Cheng, Risheng; Guo, Xiang; Han, Xu; Tang, Hong X
2016-01-01
The ability to manipulate single photons is of critical importance for fundamental quantum optics studies and practical implementations of quantum communications. While extraordinary progresses have been made in controlling spatial, temporal, spin and orbit angular momentum degrees of freedom, frequency-domain control of single photons so far relies on nonlinear optical effects, which have faced obstacles such as noise photons, narrow bandwidth and demanding optical filtering. Here we demonstrate the first integrated near-unity efficiency frequency manipulation of single photons, by stretching and compressing a waveguide at 8.3 billion cycles per second. Frequency shift up to 150 GHz at telecom wavelength is realized without measurable added noise and the preservation of quantum coherence is verified through quantum interference between twin photons of different colors. This single photon frequency control approach will be invaluable for increasing the channel capacity of quantum communications and compensati...
Ramsey Interference with Single Photons
Clemmen, Stéphane; Farsi, Alessandro; Ramelow, Sven; Gaeta, Alexander L.
2016-11-01
Interferometry using discrete energy levels of nuclear, atomic, or molecular systems is the foundation for a wide range of physical phenomena and enables powerful techniques such as nuclear magnetic resonance, electron spin resonance, Ramsey-based spectroscopy, and laser or maser technology. It also plays a unique role in quantum information processing as qubits may be implemented as energy superposition states of simple quantum systems. Here, we demonstrate quantum interference involving energy states of single quanta of light. In full analogy to the energy levels of atoms or nuclear spins, we implement a Ramsey interferometer with single photons. We experimentally generate energy superposition states of a single photon and manipulate them with unitary transformations to realize arbitrary projective measurements. Our approach opens the path for frequency-encoded photonic qubits in quantum information processing and quantum communication.
Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon.
Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C
2016-06-28
Through first-principles calculations using the nonequilibrium Green's function formalism together with density functional theory, we study the conductance of double-vacancy zigzag graphene nanoribbons doped with four transition metal atoms Ti, V, Cr and Fe. We show that Ti doping induces large spin-filtering with an efficiency in excess of 90% for bias voltages below 0.5 V, while the other metal adatoms do not induce large spin filtering. This is despite the fact that the Ti dopant possesses small spin moment, while large moments reside on V, Cr and Fe dopants. Our analysis shows that the suppression of transmission in the spin-down channel in the Ti-doped graphene nanoribbon, thus the large spin filtering efficiency, is due to transmission anti-resonance arising from destructive quantum interference. These findings suggest that the decoration of graphene with titanium, and possibly other transition metals, can act as effective spin filters for nanospintronic applications.
Directory of Open Access Journals (Sweden)
Marius Ilie Oros
1985-12-01
Full Text Available The study of linguistic interferences has been greatly extended lately. It comprises all language sections. In onomastics great attention was paid to to the study of macrotoponyms of foreign origin. I would like to mention in this respect the research concerning the toponyms of Slavic origin in Romania and Greece, the toponyms of Romance origin in Yugoslavia etc. The studies referring to the interferences in microtoponymy are more rare. These call for the collecting of all microtoponyms through inquiries made in plaees inhabited by mixed populetion from the ethnic point of view. The microtoponymy of these places off ers a very interesting material as far as the interactiong the reciprocal in.fluences of two or more toponymic systems is concerned.
Directory of Open Access Journals (Sweden)
Fernanda Ostermann
2008-01-01
Full Text Available Analisa-se a evolução conceitual de 14 professores de Ensino Médio que foram estudantes, no 2º semestre de 2005, de uma disciplina sobre Física Quântica (FQ no Mestrado Profissional em Ensino de Física da UFRGS. Foi realizada uma análise de suas respostas acerca da interferência quântica em questionários especialmente desenvolvidos. Este estudo insere-se no âmbito de um projeto sobre Tópicos de Física Moderna e Contemporânea na formação de professores e já tem, como resultados a elaboração de um questionário sobre conceitos de FQ, construção e avaliação de uma unidade didática baseada em experimentos virtuais e o desenvolvimento de um software livre, do tipo "bancada virtual", que simula o fenômeno da interferência quântica em um aparato denominado Interferômetro de Mach Zehnder. A partir das sínteses das questões e da análise das respostas dos alunos, os resultados aqui relatados evidenciam aspectos de uma evolução conceitual em tópicos introdutórios de FQ.An analysis of the conceptual evolution of 14 Physics Teachers attending a 4 credit discipline "Introductory Quantum Physics" from August to December 2005 is presented in this work. They were all regular students in the Professional Masters Degree Program in Instituto de Física (UFRGS. Our analysis focuses on answers to learning questionnaires on the particular phenomenon of quantum interference. This study is part of a current project concerned with the preparation of Physics Teachers in Topics of Modern and Contemporary Physics. The project has so far resulted in the elaboration of learning questionnaires on Quantum Physics, the elaboration and evaluation of a teaching unit based on virtual experiments and the elaboration of a freeware interactive software that simulates the quantum interference in the Mach-Zehnder Interferometer. From questions synthesis and student´s answers, outcomes here related show aspects of a conceptual evolution in Quantum
Cryogenic coaxial microwave filters
Tancredi, G; Meeson, P J
2014-01-01
At millikelvin temperatures the careful filtering of electromagnetic radiation, especially in the microwave regime, is critical for controlling the electromagnetic environment for experiments in fields such as solid-state quantum information processing and quantum metrology. We present a design for a filter consisting of small diameter dissipative coaxial cables that is straightforward to construct and provides a quantitatively predictable attenuation spectrum. We describe the fabrication process and demonstrate that the performance of the filters is in good agreement with theoretical modelling. We further perform an indicative test of the performance of the filters by making current-voltage measurements of small, underdamped Josephson Junctions at 15 mK and we present the results.
Analysis of Noise and Interference to Single Photon Satellite Quantum Communication%单光子卫星量子通信噪声和干扰分析
Institute of Scientific and Technical Information of China (English)
李铁飞; 杨峰; 李伟; 崔树民
2015-01-01
Satellite quantum communication is one of the best choices for building a global quantum net-work. In view of the polarization maintaining problem in satellite quantum communication which uses po-larization encoding, the impact of atmospheric scattering and relative movement between satellite and ground station on the photon polarization states’ phase and alignment and the influence of alignment error and phase delay on quantum bit error rate of the system is researched. The influence of background noise and hardware on the quantum communication and the photon-number-splitting attacks to the single photon in quantum communication are analyzed. Research in this paper has important significance to quantum sig-nal’ s cognitive design.%卫星量子通信是建立全球量子通信网络的最佳选择之一。针对采用偏振编码的卫星量子通信中的偏振保持问题，研究了大气散射和卫星与地面站间相对运动等因素对量子偏振态相位和对准的影响以及相位延迟和对准误差对系统量子误码率的影响，分析了背景噪声和系统硬件噪声对通信产生的影响以及单光子通信过程中可能受到的光子分离攻击干扰，为量子信号认知设计提供借鉴意义。
Scheme of adaptive polarization filtering based on Kalman model
Institute of Scientific and Technical Information of China (English)
Song Lizhong; Qi Haiming; Qiao Xiaolin; Meng Xiande
2006-01-01
A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamically tracked by using Kalman estimator under variable environments with time. The polarization filter parameters are designed according to the polarization characteristic of the interference, and the polarization filtering is finished in the target cell. The system scheme of adaptive polarization filter is studied and the tracking performance of polarization filter and improvement of angle measurement precision are simulated. The research results demonstrate this technology can effectively suppress the angle cheating interference in guidance radar and is feasible in engineering.
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Interference Rejection Techniques in DSSS Communication System
Institute of Scientific and Technical Information of China (English)
GONGXiangyang; HUGuangrui
2003-01-01
It is known that the narrowband interfer-ence rejection capability of a direct sequence (DS) spread spectrum (SS) system can be enhanced considerably by an interference rejection algorithm prior to correlating it with the pseudo noise (PN) sequence. For narrowband gaussian noise (NGN), the techniques in common use are transver-sal filter. It models SS signal and NGN as stationary, then utilizes temporal correlation difference between SS signal and NBL however, SS signal and NGN are cyclostation-ary (CS). CS signal has correlation in frequency domain called spectrum correlation, which can not be employed by transversal filter. In this article, SS signal and NBIare modeled as CS and FRESH filter is adopted to exploit the correlation both in time domain and frequency domain.Computer simulation shows that FRESH filter can improve the system performance considerably compared with con-ventional transversal filter.
Lukishova, Svetlana G.; Liapis, Andreas C.; Bissell, Luke J.; Gehring, George M.; Winkler, Justin M.; Boyd, Robert W.
2015-03-01
We present here our results on using liquid crystals in experiments with nonclassical light sources: (1) single-photon sources exhibiting antibunching (separation of all photons in time), which are key components for secure quantum communication systems, and (2) entangled photon source with photons exhibiting quantum interference in a Hong-Ou- Mandel interferometer. In the first part, cholesteric liquid crystal hosts were used to create definite circular polarization of antibunched photons emitted by nanocrystal quantum dots. If the photon has unknown polarization, filtering it through a polarizer to produce the desired polarization for quantum key distribution with bits based on polarization states of photons will reduce by half the efficiency of a quantum cryptography system. In the first part, we also provide our results on observation of a circular polarized microcavity resonance in nanocrystal quantum dot fluorescence in a 1-D chiral photonic bandgap cholesteric liquid crystal microcavity. In the second part of this paper with indistinguishable, time-entangled photons, we demonstrate our experimental results on simulating quantum-mechanical barrier tunnelling phenomena. A Hong-Ou-Mandel dip (quantum interference effect) is shifted when a phase change was introduced on the way of one of entangled photons in pair (one arm of the interferometer) by inserting in this arm an electrically controlled planar-aligned nematic liquid crystal layer between two prisms in the conditions close to a frustrated total internal reflection. By applying different AC-voltages to the planar-aligned nematic layer and changing its refractive index, we can obtain various conditions for incident photon propagation - from total reflection to total transmission. Measuring changes of tunnelling times of photon through this structure with femtosecond resolution permitted us to answer some unresolved questions in quantum-mechanical barrier tunnelling phenomena.
Burkhard, George F.
2010-05-31
Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum physics without quantum philosophy
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Mathematisches Inst.; Goldstein, Sheldon [Rutgers State Univ., Piscataway, NJ (United States). Dept. of Mathematics; Zanghi, Nino [Genova Univ. (Italy); Istituto Nazionale Fisica Nucleare, Genova (Italy)
2013-02-01
Integrates and comments on the authors' seminal papers in the field. Emphasizes the natural way in which quantum phenomena emerge from the Bohmian picture. Helps to answer many of the objections raised to Bohmian quantum mechanics. Useful overview and summary for newcomers and students. It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schroedinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag
2014-09-01
This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.
Lu, Shuaimin; Li, Guoliang; Lv, Zhengxian; Qiu, Nannan; Kong, Weiheng; Gong, Peiwei; Chen, Guang; Xia, Lian; Guo, Xiaoxi; You, Jinmao; Wu, Yongning
2016-11-15
Early detection and diagnosis have great practical significances for the effective prevention and treatment of cancer. In this study, we developed a novel, facile and ultra-sensitive fluorescence assay for the determination of tumor invasive biomarker β-glucuronidase (GLU) based on the inner-filter effect (IFE). The nitrogen-doped carbon quantum dots (N-CQDs) with green photoluminescence were employed as the fluorophore in IFE, and 4-nitrophenyl-β-D-glucuronide (PNPG) was used to act as GLU substrate, and GLU catalytic product (p-nitrophenol (PNP)) was capable of acting as the robust absorber in IFE to turn off the fluorescence of N-CQDs due to the complementary overlap between the absorption of PNP and the excitation of N-CQDs. Thus, signal of GLU activity could be recorded by the fluorescence intensity of N-CQDs. Unlike other fluorescence sensing mechanism such as fluorescence resonance energy transfer (FRET) or photoinduced electron transfer (PET), IFE has no requirement for electron or energy transfer process or any chemical modification of fluorophore, which makes our assay more flexible and simple. The proposed method exhibited a good linear relationship from 1UL(-1) to 60UL(-1) (R(2)=0.9967) with a low detection limit of 0.3UL(-1). This method was also successfully applied to the analysis of serum samples and the inhibitor screening from natural product. The developed sensor platform was proven to be reliable, facile, sensitive, and selective, making it promising as a candidate for GLU activity detection in clinic tumor diagnose and anti-tumor drug screening.
1982-02-01
improvement vs. Eb/No. B.3. SNR improvement for linear phase filter based on the Welch method. Vii I. Introduction Adaptive interference estimation and...consider the linear phase filter case. For con- venience, we allow the linear phase filter to have an acausal impulse response. The linear phase...the receiver with a linear phase filter (whitening filter followed by its matched filter), and linear phase filter based on the Welch method. Given (A
Whirling waves in Interference experiments
Sinha, Urbasi; Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna
2014-03-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well- known text books in quantum mechanics implicitly and/or explicitly use this assumption, the wave function hypothesis, which is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from non-classical paths in interference experiments which provide a measurable deviation from the wave function hypothesis. A direct experimental demonstration for the existence of these non-classical paths is hard. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence. I will also describe some ongoing experimental efforts towards testing our theoretical findings.
Spin Interference in Rashba 2DEG Systems
Nitta, Junsaku
The gate controllable SOI provides useful information about spin interference.1 Spin interference effects are studied in two different interference loop structures. It is known that sample specific conductance fluctuations affect the conductance in the interference loop. By using array of many interference loops, we carefully pick up TRS Altshuler-Aronov-Spivak (AAS)-type oscillation which is not sample specific and depends on the spin phase. The experimentally obtained gate voltage dependence of AAS oscillations indicates that the spin precession angle can be controlled by the gate voltage.2 We demonstrate the time reversal Aharonov-Casher (AC) effect in small arrays of mesoscopic rings.3 By using an electrostatic gate we can control the spin precession angle rate and follow the AC phase over several interference periods. We also see the second harmonic of the AC interference, oscillating with half the period. The spin interference is still visible after more than 20π precession angle. We have proposed a Stern-Gerlach type spin filter based on the Rashba SOI.4 A spatial gradient of effective magnetic field due to the nonuniform SOI separates spin up and down electrons. This spin filter works even without any external magnetic fields and ferromagnetic contacts. We show the semiconductor/ferromagnet hybrid structure is an effective way to detect magnetization process of submicron magnets. The problem of the spin injection from ferromagnetic contact into 2DEG is also disicussed. Note from Publisher: This article contains the abstract only.