Quantum Interactive Dualism: An Alternative to Materialism
Energy Technology Data Exchange (ETDEWEB)
Stapp, Henry P
2005-06-01
Materialism rest implicitly upon the general conception of nature promoted by Galileo and Newton during the seventeenth century. It features the causal closure of the physical: The course of physically described events for all time is fixed by laws that refer exclusively to the physically describeable features of nature, and initial conditions on these feature. No reference to subjective thoughts or feeling of human beings enter. That simple conception of nature was found during the first quarter of the twentieth century to be apparently incompatible with the empirical facts. The founders of quantum theory created a new fundamental physical theory, quantum theory, which introduced crucially into the causal structure certain conscious choices made by human agents about how they will act. These conscious human choices are ''free'' in the sense that they are not fixed by the known laws. But they can influence the course of physically described events. Thus the principle of the causal closure of the physical fails. Applications in psycho-neuro-dynamics are described.
Jones, R.
Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, analogy, etc. performed by classical computational machinery. (R. Jones, Trans. Kansas Acad. Sci., vol. 109, #3/4, 2006) But I believe quantum mechanics is a more plausible dualist theory of reality. (R. Jones, Bull. Am. Phys. Soc., vol. 5, 2011) In a quantum computer the processing (thinking) takes place either in computers in Everett's many worlds or else in the many dimensional Hilbert space. (Depending upon your interpretation of QM.) If our brains were quantum computers then there might be a world of mind which is distinct from the physical world that our bodies occupy. (4 space) This is much like the spirit-body dualism of Descartes and others. My own view is that thought and mind are classical phenomena (see www.robert-w-jones.com, philosopher, theory of thought and mind) but it would be interesting to run an artificial intelligence like my A.S.A. H. on a quantum computer. Might this produce, for the first time, a hypermind in its own universe?
From Dualism to Unity in Quantum Physics
Landé, Alfred
2016-02-01
Preface; Introduction; 1. Causality, chance, continuity; 2. States, observables, probabilities; 3. The metric law of probabilities; 4. Quantum dynamics; 5. Quantum fact and fiction; Retrospect. From dualism to unity, from positivism to realism; Appendix 1. Survey of elementary postulates; Appendix 2. Two problems of uniqueness; References; Index.
Quantum Interactive Dualism: The Libet and Einstein-Podolsky-RosenCausal Anomalies
Energy Technology Data Exchange (ETDEWEB)
Stapp, Henry P.
2006-02-20
The "free will" data of Benjamin Libet and the predictionsof quantum theory considered by Einstein, Podolsky,and Rosen, both posepuzzles within aconceptual framework that, simultaneously, is compatiblewith the theory of relativity and allows human subjects to freely choosehow they will act. The quantum theoretic resolutions of these puzzles aredescribed.
Dualism in Entanglement and Testing Quantum to Classical Transition of Identicity
Bose, S
2005-01-01
We show a hitherto unexplored consequence of the property of identicity in quantum mechanics. If two identical objects, distinguished by a dynamical variable A, are in certain entangled states of another dynamical variable B, then, for such states, they are also entangled in variable A when distinguished from each other by variable B. This dualism is independent of quantum statistics. Departures from identicity of the objects due to arbitrarily small differences in their innate attributes destroy this dualism. A system independent scheme to test the dualism is formulated which is readily realizable with photons. This scheme can be performed without requiring the entangled objects to be brought together. Thus whether two macro-systems behave as quantum identical objects can be probed without the complications of scattering. Such a study would complement the program of testing the validity of quantum superposition principle in the macro-domain which has stimulated considerable experimentation.
The implicit possibility of dualism in quantum probabilistic cognitive modeling.
Mender, Donald
2013-06-01
Pothos & Busemeyer (P&B) argue convincingly that quantum probability offers an improvement over classical Bayesian probability in modeling the empirical data of cognitive science. However, a weakness related to restrictions on the dimensionality of incompatible physical observables flows from the authors' "agnosticism" regarding quantum processes in neural substrates underlying cognition. Addressing this problem will require either future research findings validating quantum neurophysics or theoretical expansion of the uncertainty principle as a new, neurocognitively contextualized, "local" symmetry.
Bahrs, Inge
2007-01-01
The purpose of this thesis is to examine Descartes dualism. The paper is organized into two main sections. The first section examines the advantages and disadvantages of Descartes dualism. As an advantage, dualism opens up the possibility to separately describe the mental and physical parts of human beings. However, Descartes dualism prevents one from examining the mental and physical sides as a cohesive whole. By employing two arguments, doubt and the clear and distinct cognition, De...
Stapp`s quantum dualism: The James/Heisenberg model of consciousness
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1994-02-18
Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James` description of conscious events and for matter from Werner Heisenberg`s ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author`s opinion fails to establish a monistic, scientific theory. The author traces Stapp`s failure to his adamant rejection of arbitrariness, or `randomness`. This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin`s explanation of biology, let along the triumphs of modern `neo-Darwinism`. The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp`s views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy.
Maxwell and the classical wave particle dualism.
Mendonça, J T
2008-05-28
Maxwell's equations are one of the greatest theoretical achievements in physics of all times. They have survived three successive theoretical revolutions, associated with the advent of relativity, quantum mechanics and modern quantum field theory. In particular, they provide the theoretical framework for the understanding of the classical wave particle dualism.
Quantum interaction. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bruza, Peter [Queensland Univ. of Technology, Brisbane (Australia). Faculty of Science and Technology; Sofge, Donald [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States). Naval Research Lab.; Lawless, William [Paine Coll., Augusta, GA (United States); Rijsbergen, Keith van [Glasgow Univ. (United Kingdom). Dept. of Computing Science; Klusch, Matthias (eds.) [German Research Center for Artificial Intelligence, Saarbruecken (Germany)
2009-07-01
This book constitutes the refereed proceedings of the Third International Symposium on Quantum Interaction, QI 2009, held in Saarbruecken, Germany, in March 2009. The 21 revised full papers presented together with the 3 position papers were carefully reviewed and selected from numerous submissions. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, decision theory, information retrieval, information systems, social interaction, computational linguistics and finance. (orig.)
Directory of Open Access Journals (Sweden)
Nathaniel Goldberg
2012-12-01
Full Text Available Happy accidents happen even in philosophy. Sometimes our arguments yield insights despite missing their target, though when they do others can often spot it more easily. Consider the work of Donald Davidson. Few did more to explore connections among mind, language, and world. Now that we have critical distance from his views, however, we can see that Davidson’s accomplishments are not quite what they seem. First, while Davidson attacked the dualism of conceptual scheme and empirical content, he in fact illustrated a way to hold it. Second, while Davidson used the principle of charity to argue against the dualism, his argument in effect treats the principle as constitutive of a conceptual scheme. And third, while Davidson asserted that he cannot define what truth ultimately is—and while I do not disagree—his work nonetheless allows us to saymore about truth than Davidson himself does. I aim to establish these three claims. Doing so enriches our understanding of issues central to the history of philosophy concerning how, if at all, to divvy up the mental or linguistic contribution, and the worldly contribution, to knowledge. As we see below, Davidson was right in taking his work to be one stage of a dialectic begun by Immanuel Kant.1 He was just wrong about what that stage is. Reconsidering Davidson’s views also moves the current debate forward, as they reveal a previously unrecognized yet intuitive notion of truth—even if Davidson himself remained largely unaware of it. We begin however with scheme/content dualism and Davidson’s argument against it.
Paley, J
2000-06-01
The rejection of Cartesian dualism can be taken to imply that the mind is implicated in health and illness to a greater degree than conventional medicine would suggest. Surprisingly, however, there appears to be a train of thought in antidualist nursing theory which takes the opposite view. This paper looks closely at an interesting example of antidualist thinking - an article in which Benner and her colleagues comment on the ways in which people with asthma make sense of their condition - and concludes that it places unduly stringent and arbitrary limits on the mind's role. It then asks how antidualism can lead to such a dogmatic rejection of the idea that states of the body are clinically influenced by states of mind. The answer to this question is that Benner assimilates very different philosophical theories into the same 'tradition'. On this occasion, she has combined Descartes, Kant and the Platonist ascetics into a single package, misleadingly labelled 'Cartesianism', and this move accounts for her unexpected views on the relation between mind and body in asthma.
Modulational interactions in quantum plasmas
Sayed, Fatema; Tyshetskiy, Yuriy; Ishihara, Osamu
2013-01-01
A formalism for treating modulational interactions of electrostatic fields in collisionless quantum plasmas is developed, based on the kinetic Wigner-Poisson model of quantum plasma. This formalism can be used in a range of problems of nonlinear interaction between electrostatic fields in a quantum plasma, such as development of turbulence, self-organization, as well as transition from the weak turbulent state to strong turbulence. In particular, using this formalism, we obtain the kinetic quantum Zakharov equations, that describe nonlinear coupling of high frequency Langmuir waves to low frequency plasma density variations, for cases of non-degenerate and degenerate plasma electrons.
Strongly interacting ultracold quantum gases
Institute of Scientific and Technical Information of China (English)
Hui ZHAI
2009-01-01
This article reviews recent progresses in ul- tracold quantum gases, and it includes three subjects which are the Fermi gases across a Feshbach resonance, quantum gases in the optical lattices and the fast ro- tating quantum gases. In this article, we discuss many basic physics pictures and concepts in quantum gases, for examples, the resonant interaction, universality and condensation in the lowest Landau level; we introduce fundamental theoretical tools for studying these systems, such as mean-field theory for BEC-BCS crossover and for the boson Hubbard model; also, we emphasize the im- portant unsolved problems in the forefront of this field, for instance, the temperature effect in optical lattices.
Synchronization of interacting quantum dipoles
Zhu, B.; Schachenmayer, J.; Xu, M.; Herrera, F.; Restrepo, J. G.; Holland, M. J.; Rey, A. M.
2015-08-01
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases in the presence of nonlinear coupling. Here we investigate the corresponding phenomenon with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that by incoherently driving dense packed arrays of strongly interacting dipoles, the dipoles can overcome the decoherence induced by quantum fluctuations and inhomogeneous coupling and reach a synchronized steady-state characterized by a macroscopic phase coherence. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quantum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.
Een Scotistisch argument voor dualisme
Ridder, de G.J.; Woudenberg, van R.
2010-01-01
In his recent book Waar geest is, is vrijheid [Where there is mind, there is freedom], Guus Labooy sets forth an original and intriguing argument, inspired by the work of John Duns Scotus, for substance dualism in the philosophy of mind. In this paper we argue that his argument, although worthy of s
Synchronization of Interacting Quantum Dipoles
Zhu, Bihui; Xu, Minghui; Urbina, Felipe H; Restrepo, Juan G; Holland, Murray J; Rey, Ana Maria
2015-01-01
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases. Here we investigate the correspond- ing phenomenon in the quantum regime with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that the dipoles may overcome the decoherence induced by quantum fluctuations and inhomogeneous couplings and evolve to a synchronized steady-state. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quan- tum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.
Quantum interaction. Revised selected papers
Energy Technology Data Exchange (ETDEWEB)
Song, Dawei; Zhang, Peng; Wang, Lei [Aberdeen Univ. (United Kingdom). School of Computing; Melucci, Massimo [Padua Univ., Padova (Italy). Dept. of Information Engineering; Frommholz, Ingo [Bedfordshire Univ. (United Kingdom); Arafat, Sachi (eds.) [Glasgow Univ. (United Kingdom). School of Computing Science
2011-07-01
This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Symposium on Quantum Interaction, QI 2011, held in Aberdeen, UK, in June 2011. The 26 revised full papers and 6 revised poster papers, presented together with 1 tutorial and 1 invited talk were carefully reviewed and selected from numerous submissions during two rounds of reviewing and improvement. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, mechanics, social interaction, semantic space and information representation and retrieval. (orig.)
Indian Academy of Sciences (India)
Taksu Cheon
2002-08-01
The existence of several exotic phenomena, such as duality and spectral anholonomy is pointed out in one-dimensional quantum wire with a single defect. The topological structure in the spectral space which is behind these phenomena is identiﬁed.
Pure or Compound Dualism? Considering Afresh the Prospects of Pure Substance Dualism
Directory of Open Access Journals (Sweden)
Joshua Ryan Farris
2013-06-01
Full Text Available Substance dualism has received much attention from philosophers and theologians in contemporary literature. Whilst it may have been fashionable in the recent past to dismiss substance dualism as an unviable and academically absurd position to hold, this is no longer the case. My contention is not so much the merits of substance dualism in general, but a more specified variation of substance dualism. My specific contribution to the literature in this article is that I argue for the viability of pure substance dualism as a more satisfactory option in contrast to compound or composite varieties of substance dualism. I put forth one argument and tease out the implications that make compound dualism less than satisfactory. I conclude that, minimally, more work is required on compound variations of dualism to make it a more appealing and a philosophically satisfactory option.
Quantum simulation with interacting photons
Hartmann, Michael J.
2016-10-01
Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons, these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.
Quantum Simulation with Interacting Photons
Hartmann, Michael J
2016-01-01
We review the theoretical and experimental developments in recent research on quantum simulators with interacting photons. Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has now shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting c...
Quantum Uncertainty and Fundamental Interactions
Directory of Open Access Journals (Sweden)
Tosto S.
2013-04-01
Full Text Available The paper proposes a simplified theoretical approach to infer some essential concepts on the fundamental interactions between charged particles and their relative strengths at comparable energies by exploiting the quantum uncertainty only. The worth of the present approach relies on the way of obtaining the results, rather than on the results themselves: concepts today acknowledged as fingerprints of the electroweak and strong interactions appear indeed rooted in the same theoretical frame including also the basic principles of special and general relativity along with the gravity force.
Directory of Open Access Journals (Sweden)
MÓNICA MARÍA NOVOA GÓMEZ
2002-07-01
Full Text Available In the sciences dedicated to study the human beings, a dualism framework has been a constant and thedebate has been abundant both in philosophy of the science and in psychology itself (Moore, 2001;Ribes, 1990; Skinner, 1975, Skinner, 1969; Kantor, 1969, Ryle, 1949. The history of the psychologicaland philosophical thought about body-mind relation since Descartes is the history of the uncountableintents to escape from what Vesey (1965 nominated as the dead Cartesian point, to refer to thescientistsconclusion on the human impossibility to understand how the body and mind are united. Inthe best way, finally there has been a return to the unavoidable common sense conception of its mutualinteraction. This article discusses the legitimacy of the dualist postulates and present AEC contributionsrelated to.
Interactive learning tutorials on quantum mechanics
Singh, Chandralekha
2016-01-01
We discuss the development and evaluation of quantum interactive learning tutorials (QuILTs) which are suitable for undergraduate courses in quantum mechanics. QuILTs are based on the investigation of student difficulties in learning quantum physics. They exploit computer-based visualization tools and help students build links between the formal and conceptual aspects of quantum physics without compromising the technical content. They can be used both as supplements to lectures or as a self-study tool.
Dualisme Pemikiran Sufistik Ibn Taymiyyah
Directory of Open Access Journals (Sweden)
Yunasril Ali
2014-12-01
Full Text Available Abstrak : Ibn Taymiyyah, meski dikenal sebagai tokoh panutan radikalis salafi yang anti pembaharuan dan alergi tasawuf, ternyata merupakan inspirator kaum modernis dan juga seorang sufi. Bagaimana mungkin seorang yang anti tasawuf juga adalah seorang aktivis tasawuf ? Bagaimana posisi Ibn Taymiyyah seharusnya dipetakan? Bagaimana pula sikapnya yang terlihat kontradiktif ini dapat dijelasakan? Dengan mengkaji karya-karyanya dan mempertimbangkan pengalaman hidup Ibn Taymiyyah yang ditelisik melalui perspektif psikosufistik penulis akan menjawab persoalan tersebut. Tulisan ini menyatakan bahwa kritikan dan penolakannya atas jenis tasawuf tertentu (nazharī-falsafī didasarkan kerancuan dalam pemaknaan istilah dan paradigma yang berbeda dari objek yang dikritiknya. Ditunjukkan pula sikapnya menjelang kematian —dalam kondisi batin terkondisikan sedemikian rupa sehingga bukannya dipenuhi diskursus ilmiah, ia tenggelam dalam taqarub dan perhatian penuh kepada Allah dan mencapai puncak pengalaman sufistik, fana— kendatipun kontradiktif, tidak lain merupakan perkembangan dari kesadaran religiusnya.Kata kunci : radikalis salafi, dualisme, fiqh al-qulūb, neo-sufisme, anti tasawuf, ḥulūl, ittiḥād, waḥdat al-wujūd.Abstract : Ibn Taymiyya, despite being well-kown as a figure of salafi-radicalists which are anti-reformism and oppose tasawuf, in fact is an inspiring figure for some modernist Muslims and is a sufi. How could it be possible for someone who criticizes tasawuf to be a sufi? How should Ibn Taymiyya be placed correctly in this regard? How could his contradictive attitude be explained? These questions will be discussed in paper through a careful study of his works and by investigating his life-experience from a psycho-sufistic perspective. This paper argues that his criticism to certain kind of tasawwuf, i.e., the naẓarī-falsafī, is often based on confusion in understanding terms and departs from different paradigm used by
Dualismos em duelo Dueling dualism
Directory of Open Access Journals (Sweden)
Anne Fausto-Sterling
2002-01-01
Full Text Available Os modos europeus e norte-americanos de entender como funciona o mundo dependem em grande parte do uso de dualismos - pares de conceitos, objetos ou sistemas de crenças opostos. Este ensaio enquadra especialmente três deles: sexo/gênero, natureza/criação e real/construído. Embora este texto verse sobre gênero, discuto regularmente o modo como as idéias de raça e gênero surgem a partir de supostos subjacentes sobre a natureza física do corpo. Entender como operam raça e gênero - em conjunto e independentemente - nos ajuda a compreender melhor como o social se torna corporificado.Euro-American ways of understanding how the world works depend heavily on the use of dualisms - pairs of opposing concepts, objects, or belief sytems. This text focuses especially on three of these: sex/gender, nature/nurture, and real/constructed. And although this text focuses on gender, I regularly discuss the ways in which the ideas of both race and gender emerge from underlying assumptions about the body's physical nature. Understanding how race and gender work - together and independently - help us learn more about how the social becomes embodied.
[Weizsäcker and Indian philosophy - a new beginning in negotiating the dualism of mind and matter?].
von Brück, Michael
2014-01-01
Carl Friedrich von Weizsäcker's thought is centred around the idea of the unity of reality. He tries to express this idea in his interpretation of quantum physics as well as on the background of neoplatonic thinking. Even his interest in Indian philosophies is based on this concept that would overcome the dualism of mind and matter as well as the dualism of subject and object. On this basis he also tries to reflect on his own inexpressible "mystical" experience in Tiruvannamalai, India, interpreting it with the help of the experience he has been told about by the Indian thinker Gopi Krishna. This is the concept of prana (vital energy) that he uses to find a common terminological ground for physical and mental events. According to Indian Advaita Vedanta, the non-dualistic interpretation of the Vedantic scriptures, reality is based on a non-dual oneness that is self-reflective, transparent and neither immanent nor transcendent but beyond any category. It is pure bliss in its self-expression. Human "mental" experience is a reflective mode of this one reality, subject and object coincide. The result is a holistic psycho-somatology. In view of these ideas Weizsäcker reformulates the notion of "matter". It is less an interaction of particles with specific mass than a non-dual net of interrelations and information, and this would correlate with a concept of mind (consciousness) that could be conceptualized as the energy of self-reflectivity in that very process.
Quantum signatures of breather-breather interactions
Dorignac, J; Salerno, M; Scott, A C
2003-01-01
The spectrum of the Quantum Discrete Nonlinear Schr\\"odinger equation on a periodic 1D lattice shows some interesting detailed band structure which may be interpreted as the quantum signature of a two-breather interaction in the classical case. We show that this fine structure can be interpreted using degenerate perturbation theory.
Interactive simulations for quantum key distribution
Kohnle, Antje
2016-01-01
Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualization Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different quantum key distribution protocols. The simulations use either...
Energy Technology Data Exchange (ETDEWEB)
P., Henry
2008-11-20
A recent article in which John Searle claims to refute dualism is examined from a scientific perspective. John Searle begins his recent article 'Dualism Revisited' by stating his belief that the philosophical problem of consciousness has a scientific solution. He then claims to refute dualism. It is therefore appropriate to examine his arguments against dualism from a scientific perspective. Scientific physical theories contain two kinds of descriptions: (1) Descriptions of our empirical findings, expressed in an every-day language that allows us communicate to each other our sensory experiences pertaining to what we have done and what we have learned; and (2) Descriptions of a theoretical model, expressed in a mathematical language that allows us to communicate to each other certain ideas that exist in our mathematical imaginations, and that are believed to represent, within our streams of consciousness, certain aspects of reality that we deem to exist independently of their being perceived by any human observer. These two parts of our scientific description correspond to the two aspects of our general contemporary dualistic understanding of the total reality in which we are imbedded, namely the empirical-mental aspect and the theoretical-physical aspect. The duality question is whether this general dualistic understanding of ourselves should be regarded as false in some important philosophical or scientific sense.
Theory of interacting quantum fields
Rebenko, Alexei L
2012-01-01
This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.
Quantum theory of acoustoelectric interaction
DEFF Research Database (Denmark)
Mosekilde, Erik
1974-01-01
term, significant in the classical-collision-dominated regime only, the dielectric response function and the acoustic gain factor for a piezoelectrically active sound wave are obtained for the quantum and semiclassical-microscopic regimes. The manner in which the theory can be extended to the collision......Within the self-consistent-field approximation, a quantum-mechanical derivation is given for the dielectric response function of an arbitrarily degenerate free-electron gas which is subjected to a drift field. Neglecting in the equation of motion for the one-electron density operator a convection...
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P K; Marklund, M; Stenflo, L
2006-01-01
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
An Application of Quantum Finite Automata to Interactive Proof Systems
Nishimura, H; Nishimura, Harumichi; Yamakami, Tomoyuki
2004-01-01
Quantum finite automata have been studied intensively since their introduction in late 1990s as a natural model of a quantum computer with finite-dimensional quantum memory space. This paper seeks their direct application to interactive proof systems in which a mighty quantum prover communicates with a quantum-automaton verifier through a common communication cell. Our quantum interactive proof systems are juxtaposed to Dwork-Stockmeyer's classical interactive proof systems whose verifiers are two-way probabilistic automata. We demonstrate strengths and weaknesses of our systems and further study how various restrictions on the behaviors of quantum-automaton verifiers affect the power of quantum interactive proof systems.
Bergson e os dualismos Bergson and dualisms
Directory of Open Access Journals (Sweden)
Débora Cristina Morato Pinto
2004-01-01
Full Text Available Este artigo apresenta introdutoriamente a maneira como Bergson aborda o dualismo ontológico num diálogo crítico com a tradição moderna. A proposta de reconstrução da metafísica em novos termos exige a passagem pela colocação tradicional dos principais problemas filosóficos, em especial o dualismo moderno, cuja origem é cartesiana. Para diluir as antíteses do pensamento conceitual, a filosofia da bergsoniana estabelece um procedimento dualista, a dissociação analítica da experiência determinando seus domínios distintos em natureza. Somente a noção de duração permite a reconciliação entre tais elementos, pensados então como ritmos do tempo. Nossa intenção é mostrar como se esquematiza tal percurso nas duas primeiras obras de Bergson.This article is an introductory presentation to Bergson’s analysis of ontological dualism and his critical dialogue with the modern tradition. The proposal of metaphysical reconstruction demands a study of Cartesian dualism to dissolve the antithetical positions of conceptual thought. In this way, Bergson’s philosophy makes an analytical dissolution of human experience and determines two domains of reality. Only the idea of duration can solve the tensions of Bergson’s dualism.
Diffusion Equations, Quantum Fields and Fundamental Interactions
Directory of Open Access Journals (Sweden)
Tosto S.
2015-04-01
Full Text Available The paper concerns an “ab initio” theoretical model based on the space-time quantum uncertainty and aimed to identify the conceptual root common to all four fundamental interactions known in nature. The essential information that identifies unambiguously each kind of interaction is inferred in a straightforward way via simple considerations involving the diffusion laws. The conceptual frame of the model is still that introduced in previous papers, where the basic statements of the relativity and wave mechanics have been contextually obtained as corollaries of the quantum uncertainty.
Double Acceptor Interaction in Semimagnetic Quantum Dot
Directory of Open Access Journals (Sweden)
A. Merwyn Jasper D. Reuben
2011-01-01
Full Text Available The effect of geometry of the semimagnetic Quantum Dot on the Interaction energy of a double acceptor is computed in the effective mass approximation using the variational principle. A peak is observed at the lower dot sizes as a magnetic field is increased which is attributed to the reduction in confinement.
Constraint algebra for interacting quantum systems
Fubini, S.; Roncadelli, M.
1988-04-01
We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.
Revealed Quantum Information in Weak Interaction Processes
Hiesmayr, B C
2014-01-01
We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase difference for each hyperon. Nature chooses rather low visibilities expressing a preference to parity conserving or violating processes (except for the decay $\\Sigma^+\\longrightarrow p \\pi^0$). The decay process can be considered as an open quantum channel that carries the information of the hyperon spin to the angular distribution of the momentum of the daughter particles. We find a simple geometrical information theoretic interpretation of this process: two quantization axes are chosen spontaneously with probabilities $\\frac{1\\pm\\alpha}{2}$ where $\\alpha$ is proportional to the visibility times the real part of the phase shift. Differently stated the weak interaction process corresponds to spin measurements with an imperfect Stern-Gerlach apparatus. Equipped with this...
Interactive Quantum Mechanics Quantum Experiments on the Computer
Brandt, S; Dahmen, H.D
2011-01-01
Extra Materials available on extras.springer.com INTERACTIVE QUANTUM MECHANICS allows students to perform their own quantum-physics experiments on their computer, in vivid 3D color graphics. Topics covered include: • harmonic waves and wave packets, • free particles as well as bound states and scattering in various potentials in one and three dimensions (both stationary and time dependent), • two-particle systems, coupled harmonic oscillators, • distinguishable and indistinguishable particles, • coherent and squeezed states in time-dependent motion, • quantized angular momentum, • spin and magnetic resonance, • hybridization. For the present edition the physics scope has been widened appreciably. Moreover, INTERQUANTA can now produce user-defined movies of quantum-mechanical situations. Movies can be viewed directly and also be saved to be shown later in any browser. Sections on spec...
Measuring orbital interaction using quantum information theory
Energy Technology Data Exchange (ETDEWEB)
Rissler, Joerg [Fachbereich Physik, Philipps-Universitaet Marburg, AG Vielteilchentheorie, Renthof 6, D-35032 Marburg (Germany)], E-mail: rissler@staff.uni-marburg.de; Noack, Reinhard M. [Fachbereich Physik, Philipps-Universitaet Marburg, AG Vielteilchentheorie, Renthof 6, D-35032 Marburg (Germany); White, Steven R. [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States)
2006-04-21
Quantum information theory gives rise to a straightforward definition of the interaction of electrons I {sub p,q} in two orbitals p,q for a given many-body wave function. A convenient way to calculate the von Neumann entropies needed is presented in this work, and the orbital interaction I {sub p,q} is successfully tested for different types of chemical bonds. As an example of an application of I {sub p,q} beyond the interpretation of wave functions, I {sub p,q} is then used to investigate the ordering problem in the density-matrix renormalization group.
Quantum interactive proofs with short messages
Beigi, Salman; Watrous, John
2010-01-01
This paper considers three variants of quantum interactive proof systems in which short (meaning logarithmic-length) messages are exchanged between the prover and verifier. The first variant is one in which the verifier sends a short message to the prover, and the prover responds with an ordinary, or polynomial-length, message; the second variant is one in which any number of messages can be exchanged, but where the combined length of all the messages is logarithmic; and the third variant is one in which the verifier sends polynomially many random bits to the prover, who responds with a short quantum message. We prove that in all of these cases the short messages can be eliminated without changing the power of the model, so the first variant has the expressive power of QMA and the second and third variants have the expressive power of BQP. These facts are proved through the use of quantum state tomography, along with the finite quantum de Finetti theorem for the first variant.
Study of metallothionein-quantum dots interactions.
Tmejova, Katerina; Hynek, David; Kopel, Pavel; Krizkova, Sona; Blazkova, Iva; Trnkova, Libuse; Adam, Vojtech; Kizek, Rene
2014-05-01
Nanoparticles have gained increasing interest in medical and in vivo applications. Metallothionein (MT) is well known as a maintainer of metal ions balance in intracellular space. This is due to high affinity of this protein to any reactive species including metals and reactive oxygen species. The purpose of this study was to determine the metallothionein-quantum dots interactions that were investigated by spectral and electrochemical techniques. CuS, CdS, PbS, and CdTe quantum dots (QDs) were analysed. The highest intensity was shown for CdTe, than for CdS measured by fluorescence. These results were supported by statistical analysis and considered as significant. Further, these interactions were analysed using gel electrophoresis, where MT aggregates forming after interactions with QDs were detected. Using differential pulse voltammetry Brdicka reaction, QDs and MT were studied. This method allowed us to confirm spectral results and, moreover, to observe the changes in MT structure causing new voltammetric peaks called X and Y, which enhanced with the prolonged time of interaction up to 6 h.
Exotic quantum phase transitions of strongly interacting topological insulators
Slagle, Kevin; You, Yi-Zhuang; Xu, Cenke
2015-03-01
Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions. The first is a quantum phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase, which cannot be described by the standard Gross-Neveu model. The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting fully gapped phase. At the latter quantum critical point the single-particle excitations remain gapped, while spin and charge gaps both close. We argue that the first quantum phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions, while the second quantum phase transition is a topological phase transition described by a bosonic O (4 ) nonlinear sigma model field theory with a Θ term.
Developing an Interactive Tutorial on a Quantum Eraser
Marshman, Emily
2015-01-01
We are developing a quantum interactive learning tutorial (QuILT) on a quantum eraser for students in upperlevel quantum mechanics. The QuILT exposes students to contemporary topics in quantum mechanics and uses a guided approach to learning. It adapts existing visualization tools to help students build physical intuition about quantum phenomena and strives to help them develop the ability to apply quantum principles in physical situations. The quantum eraser apparatus in the gedanken (thought) experiments and simulations that students learn from in the QuILT uses a MachZehnder Interferometer with single photons. We also discuss findings from a preliminary in-class evaluation.
Quantum transformation limits in multiwave parametric interactions
Saygin, M. Yu
2016-10-01
The possibility to realize multiple nonlinear optical processes in a single crystal as means to produce multicolor quantum states favours stability and compactness of optical settings. Hence, this approach can be advantageous compared to the traditional one based on cascaded arrangement of optical elements. However, it comes with an obstacle—the class of accessible quantum states is narrower than that of the cascade counterpart. In this letter, we study this task using an example of three coupled nonlinear optical processes, namely, one parametric down-conversion and two of sum-frequency generation. To this end, the singular value decomposition has been applied to find the cascade representation of the compound field evolution. We have found the link between the parameters of the multiwave processes and the relevant cascade parameters—beam-splitting and squeezing parameters, by means of which the generated quantum states have been characterized. The relation between the squeezing parameters that has been found in the course of this work shows that the squeezing resource, produced in the parametric down-conversion, is shared among the modes involved in the compound interactions. Moreover, we have shown that the degree of two-mode entanglement carried by the up-converted frequencies cannot exceed that of the down-converted frequencies.
The Prevalence of Mind–Body Dualism in Early China
National Research Council Canada - National Science Library
Slingerland, Edward; Chudek, Maciej
2011-01-01
...–body dualism against the surviving textual corpus of pre‐Qin (pre‐221 BCE) China. Our textual analysis found clear patterns in the historically evolving reference of the word xin (heart/heart–mind...
The Dualism of the Practical Reason: Some Interpretations and Responses
Orsi, Francesco
2008-01-01
Sidgwick’s dualism of the practical reason is the idea that since egoism and utilitarianism aim both to have rational supremacy in our practical decisions, whenever they conflict there is no stronger reason to follow the dictates of either view. The dualism leaves us with a practical problem: in conflict cases, we cannot be guided by practical reason to decide what all things considered we ought to do. There is an epistemic problem as well: the conflict of egoism and utilitaria...
Coherent transport through interacting quantum dots
Energy Technology Data Exchange (ETDEWEB)
Hiltscher, Bastian
2012-10-05
The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in
Interacting Quantum Fields on de Sitter Space
Barata, João C A; Mund, Jen
2016-01-01
In 1975 Figari, H{\\o}egh-Krohn and Nappi constructed the ${\\mathscr P}(\\varphi)_2$ model on the two-dimensional de Sitter space. Here we complement their work with a number of new results. In particular, we show that $i.)$ the unitary irreducible representations of $SO_0(1,2)$ for both the principal and the complementary series can be formulated on the Hilbert space spanned by wave functions supported on the Cauchy surface; $ii.)$ physical infrared problems are absent on de Sitter space; $iii.)$ the interacting quantum fields satisfy the equations of motion in their covariant form; $iv.)$ the generators of the boosts and the rotations for the interacting quantum field theory arise by contracting the stress-energy tensor with the relevant Killing vector fields and integrating over the relevant line segments. They generate a reducible, unitary representation of the Lorentz group on the Fock space for the free field. We establish also relations to the modular objects of (relative) Tomita-Takesaki theory. In addi...
Competing magnetic interactions in quantum thin films
Energy Technology Data Exchange (ETDEWEB)
Bueno, M.J. [Departamento de Física, CCEN, Universidade Federal da Paraíba, Cidade Universitária, 58051-970 João Pessoa, PB (Brazil); Faria, Jorge L.B. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT (Brazil); Arruda, Alberto S. de, E-mail: aarruda@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT (Brazil); Craco, L. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT (Brazil); Sousa, J. Ricardo de, E-mail: jsousa@ufam.edu.br [Departamento de Física, Universidade Federal do Amazonas, 69077-000 Manaus, AM (Brazil)
2013-07-15
In this work we study the quantum spin-1/2 Heisenberg model in two dimensions, with a nearest-neighbor short-range antiferromagnetic exchange (J) and a long-range ferromagnetic dipole–dipole (E{sub d}) coupling. Using the double-time Green's function method within the random phase approximation (RPA) we obtain the magnon dispersion relation as function of frustration parameter δ (δ being the ratio between exchange and dipolar interactions δ=J/E{sub d}). We study the competition between long-range ferromagnetic dipole–dipole interaction and short-range antiferromagnetic exchange in stabilizing the magnetic long-range order in a two-dimensional system. We find that the ferromagnetic order is stable at small k up to critical value of frustration δ{sub c}=0.04375. For frustration higher than the critical value (δ>δ{sub c}) our magnetic system is disordered. - Highlights: ► Competition between interactions short-range (exchange J) and long-range dipole–dipole (E{sub d}) is studied. ► The quantum spin-1/2 Heisenberg model in two dimensions is used as example. ► The interactions are exchange (antiferromagnetic) and ferromagnetic dipole–dipole. ► The double-time Green's function method and RPA is used to obtain the dispersion relations of the acoustic branch. ► The system has ferromagnetic order stable for values less than critical of frustration (J/E{sub d})
Energy Technology Data Exchange (ETDEWEB)
Hui, Ning-Ju [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da, E-mail: huyuanda1112@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China)
2017-04-01
We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.
Hui, Ning-Ju; Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin; Hu, Zheng-Da
2017-04-01
We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.
Coherent transport through interacting quantum dots
Energy Technology Data Exchange (ETDEWEB)
Hiltscher, Bastian
2012-10-05
The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in
Quantum phase transition of light as a control of the entanglement between interacting quantum dots
Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian
We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly
Designing Learning Environments to Teach Interactive Quantum Physics
Puente, Sonia M. Gomez; Swagten, Henk J. M.
2012-01-01
This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…
Designing Learning Environments to Teach Interactive Quantum Physics
Puente, Sonia M. Gomez; Swagten, Henk J. M.
2012-01-01
This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…
Quantum correction to classical gravitational interaction between two polarizable objects
Wu, Puxun; Hu, Jiawei; Yu, Hongwei
2016-12-01
When gravity is quantized, there inevitably exist quantum gravitational vacuum fluctuations which induce quadrupole moments in gravitationally polarizable objects and produce a quantum correction to the classical Newtonian interaction between them. Here, based upon linearized quantum gravity and the leading-order perturbation theory, we study, from a quantum field-theoretic prospect, this quantum correction between a pair of gravitationally polarizable objects treated as two-level harmonic oscillators. We find that the interaction potential behaves like r-11 in the retarded regime and r-10 in the near regime. Our result agrees with what were recently obtained in different approaches. Our study seems to indicate that linearized quantum gravity is robust in dealing with quantum gravitational effects at low energies.
Phonon-plasmon interactions in piezoelectric semiconductor quantum plasmas
Ghosh, S.; Muley, Apurva
2016-12-01
The phonon-plasmon interactions and resulted acoustic wave amplification in a piezoelectric semiconductor quantum plasma has been studied in the quantum hydrodynamic regime. The important ingredients of this study are the inclusion of particle degeneracy pressure and Bohm potential (quantum diffraction) through a non-dimensional quantum parameter-H in the momentum transfer equation. Typical values of n-InSb are used to estimate the acoustic gain using the analytical expressions obtained. The study reveals that the quantum parameter-H reduces the gain coefficient in moderately doped semiconductor plasma. It is also found that quantum parameter-H has profound effects on the frequency at which maximum gain occurs. The attenuation to amplification crossover point (V0 /Vs = 1) is found to be same in both classical as well as quantum regime.
Interference and interactions in open quantum dots
Bird, J P; Ferry, D K; Moura, A P S; Lai, Y C; Indlekofer, K M
2003-01-01
In this report, we review the results of our joint experimental and theoretical studies of electron-interference, and interaction, phenomena in open electron cavities known as quantum dots. The transport through these structures is shown to be heavily influenced by the remnants of their discrete density of states, elements of which remain resolved in spite of the strong coupling that exists between the cavity and its reservoirs. The experimental signatures of this density of states are discussed at length in this report, and are shown to be related to characteristic wavefunction scarring, involving a small number of classical orbits. A semiclassical analysis of this behaviour shows it to be related to the effect of dynamical tunnelling, in which electrons are injected into the dot tunnel through classically forbidden regions of phase space, to access isolated regular orbits. The dynamical tunnelling gives rise to the formation of long-lived quasi-bound states in the open dots, and the many-body implications a...
Ntalaperas, D
2016-01-01
We propose an architecture based on Quantum cellular Automata which allows the use of only one type of quantum gates per computational step in order to perform nearest neighbor interactions. The model is built in partial steps, each one of them analyzed using nearest neighbor interactions, starting with single qubit operations and continuing with two qubit ones. The effectiveness of the model is tested and valuated by developing a quantum circuit implementing the Quantum Fourier Transform. The important outcome of this validation was that the operations are performed in a local and controlled manner thus reducing the error rate of each computational step.
Dualism and non-dualism: Elementary forms of physics at CERN
Arpita Roy
2011-01-01
The dissertation critically examines the process of discovery, thought and language at the frontier of modern science. It is based on two and a half years of ethnographic research at the particle accelerator complex, the Large Hadron Collider (LHC) at CERN, Switzerland. In March 2010, the LHC began the world's highest energy experiments as a probe into the structure of matter and forces of nature. In the light of the LHC experiments, the dissertation investigates the relation of general beliefs and technical procedures of science with the principles of classification of knowledge, to show how they conjointly constitute a specific cultural or symbolic mode of apprehending the world, and to inquire how this mode is expressed, affirmed and maintained in everyday behavior. Dwelling amongst the particle physics community at CERN, I observed that conceptions of matter and energy were derived from submerged assumptions about how the universe works. These assumptions took the form of proscriptions and dualisms: value...
Quantum transport in strongly interacting one-dimensional nanostructures
Agundez, R. R.
2015-01-01
In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.
Interaction of solitons with a string of coupled quantum dots
Kumar, Vijendra; Swami, O. P.; Taneja, S.; Nagar, A. K.
2016-05-01
In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.
Integrability and Quantum Phase Transitions in Interacting Boson Models
Dukelsky, J; García-Ramos, J E; Pittel, S
2003-01-01
The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.
Phonon-plasmon interaction in magnetized inhomogeneous semiconductor quantum plasmas
Ghosh, S.; Muley, Apurva
2016-12-01
The phonon-plasmon interaction in a magnetized inhomogeneous semiconductor quantum plasma is reported using a quantum hydrodynamic model. A quantum modified dispersion relation is employed, which leads to an evolution expression for the gain coefficient of the acoustic wave. In the present study, quantum effects and inhomogeneity are taken into account through non-dimensional quantum parameter-H and scale length of density variation parameter-L, respectively. The effects of these parameters, as well as propagation distance z, angular frequency ω, and orientation of magnetic field θ, on gain characteristics of the acoustic wave are investigated. These investigations are made for linearly and quadratically varying density structures in the presence and the absence of the magnetic field. The results infer that the magnetic field and linearly or quadratically varying density structures would play a decisive role in deciding the gain characteristics of the acoustic wave in the inhomogeneous semiconductor quantum plasma.
Quantum Interaction Approach in Cognition, Artificial Intelligence and Robotics
Aerts, Diederik; Sozzo, Sandro
2011-01-01
The mathematical formalism of quantum mechanics has been successfully employed in the last years to model situations in which the use of classical structures gives rise to problematical situations, and where typically quantum effects, such as 'contextuality' and 'entanglement', have been recognized. This 'Quantum Interaction Approach' is briefly reviewed in this paper focusing, in particular, on the quantum models that have been elaborated to describe how concepts combine in cognitive science, and on the ensuing identification of a quantum structure in human thought. We point out that these results provide interesting insights toward the development of a unified theory for meaning and knowledge formalization and representation. Then, we analyze the technological aspects and implications of our approach, and a particular attention is devoted to the connections with symbolic artificial intelligence, quantum computation and robotics.
Electric and Magnetic Interaction between Quantum Dots and Light
DEFF Research Database (Denmark)
Tighineanu, Petru
a future challenge for the droplet-epitaxy technique. A multipolar theory of spontaneous emission from quantum dots is developed to explain the recent observation that In(Ga)As quantum dots break the dipole theory. The analysis yields a large mesoscopic moment, which contains magnetic-dipole and electric......-matter interaction of both electric and magnetic character. Our study demonstrates that In(Ga)As quantum dots lack parity symmetry and, as consequence, can be employed for locally probing the parity symmetry of complex photonic nanostructures. This opens the prospect for interfacing quantum dots with optical......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...
Popper's Fact-Standard Dualism Contra "Value Free" Social Science.
Eidlin, Fred H.
1983-01-01
Noncognitivism, the belief that normative statements (unlike empirical statements) do not convey objective knowledge is contrasted to Karl Popper's "critical dualism," which maintains that science is imbued with values and value judgments. Noncognitivism impedes the development of a social scientific method which would integrate empirical research…
Popper's Fact-Standard Dualism Contra "Value Free" Social Science.
Eidlin, Fred H.
1983-01-01
Noncognitivism, the belief that normative statements (unlike empirical statements) do not convey objective knowledge is contrasted to Karl Popper's "critical dualism," which maintains that science is imbued with values and value judgments. Noncognitivism impedes the development of a social scientific method which would integrate…
Is string interaction the origin of quantum mechanics?
Directory of Open Access Journals (Sweden)
Itzhak Bars
2014-12-01
Full Text Available String theory was developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend that open string field theory is a fully consistent definition of the theory – it is at least a self-consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions. Thus, rather than assuming the quantum commutation rules among the usual canonical variables we derive them from the physical process of string interactions. Morally we could apply such an argument to M-theory to cover quantum mechanics for all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an explanation of the origins of quantum mechanics from the physical processes point of view.
Interaction of porphyrins with CdTe quantum dots
Energy Technology Data Exchange (ETDEWEB)
Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei, E-mail: weichen@uta.edu [Department of Physics, University of Texas at Arlington, Box 19059 Arlington, TX 76019 (United States)
2011-05-13
Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.
Pulsed quantum interaction between two distant mechanical oscillators
Vostrosablin, Nikita; Rakhubovsky, Andrey A.; Filip, Radim
2016-12-01
Feasible setup for pulsed quantum nondemolition interaction between two distant mechanical oscillators through an optical or microwave mediator is proposed. The proposal uses homodyne measurement of the mediator and feedforward control of the mechanical oscillators to reach the interaction. To verify the quantum nature of the interaction, we investigate the Gaussian entanglement generated in the mechanical modes. We evaluate it under influence of mechanical bath and propagation loss for the mediator and propose ways to optimize the interaction. Finally, both currently available optomechanical and electromechanical platforms are numerically analyzed. The analysis shows that implementation is already feasible with current technology.
Quantum simulation of a three-body interaction Hamiltonian on an NMR quantum computer
Tseng, C H; Sharf, Y; Knill, E H; Laflamme, R; Havel, T F; Cory, D G
2000-01-01
Extensions of average Hamiltonian theory to quantum computation permit the design of arbitrary Hamiltonians, allowing rotations throughout a large Hilbert space. In this way, the kinematics and dynamics of any quantum system may be simulated by a quantum computer. A basis mapping between the systems dictates the average Hamiltonian in the quantum computer needed to implement the desired Hamiltonian in the simulated system. The flexibility of the procedure is illustrated with NMR on 13-C labelled Alanine by creating the non-physical Hamiltonian ZZZ corresponding to a three body interaction.
Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer
Energy Technology Data Exchange (ETDEWEB)
Tseng, C. H. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Somaroo, S. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sharf, Y. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Knill, E. [Theoretical Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87455 (United States); Laflamme, R. [Theoretical Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87455 (United States); Havel, T. F. [BCMP Harvard Medical School, 240 Longwood Avenue, Boston Massachusetts 02115 (United States); Cory, D. G. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2000-01-01
Extensions of average Hamiltonian theory to quantum computation permit the design of arbitrary Hamiltonians, allowing rotations throughout a large Hilbert space. In this way, the kinematics and dynamics of any quantum system may be simulated by a quantum computer. A basis mapping between the systems dictates the average Hamiltonian in the quantum computer needed to implement the desired Hamiltonian in the simulated system. The flexibility of the procedure is illustrated with NMR on {sup 13}C labeled alanine by creating the nonphysical Hamiltonian {sigma}{sub z}{sigma}{sub z}{sigma}{sub z} corresponding to a three-body interaction. (c) 1999 The American Physical Society.
Quantum transport with two interacting conduction channels.
White, Alexander J; Migliore, Agostino; Galperin, Michael; Nitzan, Abraham
2013-05-07
The transport properties of a conduction junction model characterized by two mutually coupled channels that strongly differ in their couplings to the leads are investigated. Models of this type describe molecular redox junctions (where a level that is weakly coupled to the leads controls the molecular charge, while a strongly coupled one dominates the molecular conduction), and electron counting devices in which the current in a point contact is sensitive to the charging state of a nearby quantum dot. Here we consider the case where transport in the strongly coupled channel has to be described quantum mechanically (covering the full range between sequential tunneling and co-tunneling), while conduction through the weakly coupled channel is a sequential process that could by itself be described by a simple master equation. We compare the result of a full quantum calculation based on the pseudoparticle non-equilibrium Green function method to that obtained from an approximate mixed quantum-classical calculation, where correlations between the channels are taken into account through either the averaged rates or the averaged energy. We find, for the steady state current, that the approximation based on the averaged rates works well in most of the voltage regime, with marked deviations from the full quantum results only at the threshold for charging the weekly coupled level. These deviations are important for accurate description of the negative differential conduction behavior that often characterizes redox molecular junctions in the neighborhood of this threshold.
Quantum particle interacting with a metallic particle: Spectra from quantum Langevin theory
Loh, W. M. Edmund; Ooi, C. H. Raymond
2017-01-01
The effect of a nearby metallic particle on the quantum optical properties of a quantum particle in the four-level double Raman configuration is studied using the quantum Langevin approach. We obtain analytical expressions for the correlated quantum fields of Stokes and anti-Stokes photons emitted from the system and perform analysis on how the interparticle distance, the direction of observation or detection, the strengths of controllable laser fields, the presence of surface plasmon resonance, and the number density of the quantum particle affect the quantum spectra of the Stokes and anti-Stokes fields. We explore the physics behind the quantum-particle-metallic-nanoparticle interaction within the dipole approximation, that is, when the interparticle distance is much larger than the sizes of the particles. Our results show the dependence of the spectra on the interparticle distance in the form of oscillatory behavior with damping as the interparticle distance increases. At weaker laser fields the enhancement of quantum fields which manifests itself in the form of a Fano dip in the central peak of the spectra becomes significant. Also, the quantum-particle-metallic-nanoparticle coupling, which is affected by the size of the metallic nanoparticle and the number density of the quantum particle, changes the angular dependence of the spectra by breaking the angular rotational symmetry. In the presence of surface plasmon resonance the oscillatory dependence of the spectra on the interparticle distance and angles of observation becomes even stronger due to the plasmonic enhancement effect.
Quantum discord and quantum phase transition in the XXZ spin chain with three-site interaction
Yang, Jing; Cong, Mei-Yan; Huang, Yan-Xia
2016-12-01
Pairwise quantum discord (QD) and entanglement of the three-qubit XXZ Heisenberg spin chain with two types of three-site interactions and an external magnetic field are investigated. Our study found that both entanglement and quantum discord could detect the quantum critical phenomena of this model. We were able to obtain a nonzero value of quantum discord even at high temperature with the increase of XZX+YZY or XZY-YZX three-site interaction, however, the cooperative effect of XZX+YZY and XZY-YZX interactions is more ideal. Furthermore, in contrast to XZY-YZX and XZX+YZY interactions, the cooperative effect of XZX+YZY and XZY-YZX three-site interactions is more efficient to enhance the maximum value of quantum discord. Likewise, the cooperative effect of XZX+YZY and XZY-YZX interactions is the most optimal to increase the range of magnetic field or anisotropy parameter where quantum discord maintains the maximum value.
Quantum and classical behavior in interacting bosonic systems
Energy Technology Data Exchange (ETDEWEB)
Hertzberg, Mark P. [Institute of Cosmology & Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States)
2016-11-21
It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.
Interacting quantum observables: categorical algebra and diagrammatics
Coecke, Bob; Duncan, Ross
2011-04-01
This paper has two tightly intertwined aims: (i) to introduce an intuitive and universal graphical calculus for multi-qubit systems, the ZX-calculus, which greatly simplifies derivations in the area of quantum computation and information. (ii) To axiomatize complementarity of quantum observables within a general framework for physical theories in terms of dagger symmetric monoidal categories. We also axiomatize phase shifts within this framework. Using the well-studied canonical correspondence between graphical calculi and dagger symmetric monoidal categories, our results provide a purely graphical formalisation of complementarity for quantum observables. Each individual observable, represented by a commutative special dagger Frobenius algebra, gives rise to an Abelian group of phase shifts, which we call the phase group. We also identify a strong form of complementarity, satisfied by the Z- and X-spin observables, which yields a scaled variant of a bialgebra.
An Interactive Learning Tutorial on Quantum Key Distribution
DeVore, Seth
2016-01-01
We describe the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) on quantum key distribution, a context which involves an exciting application of quantum mechanics. The protocol used in the QuILT described here uses single photons with non-orthogonal polarization states to generate a random shared key over a public channel for encrypting and decrypting information. The QuILT helps upper-level undergraduate students learn quantum mechanics using a simple two state system. It actively engages students in the learning process and helps them build links between the formalism and the conceptual aspects of quantum physics without compromising the technical content. The evaluations suggest that the QuILT is helpful in improving students' understanding of relevant concepts.
Development of an interactive tutorial on quantum key distribution
DeVore, Seth
2016-01-01
We describe the development of a Quantum Interactive Learning Tutorial (QuILT) on quantum key distribution, a context which involves a practical application of quantum mechanics. The QuILT helps upper-level undergraduate students learn quantum mechanics using a simple two state system and was developed based upon the findings of cognitive research and physics education research. One protocol used in the QuILT involves generating a random shared key over a public channel for encrypting and decrypting information using single photons with non-orthogonal polarization states, and another protocol makes use of two entangled spin-1/2 particles. The QuILT uses a guided approach and focuses on helping students build links between the formalism and conceptual aspects of quantum physics without compromising the technical content. We also discuss findings from a preliminary in-class evaluation.
Quantum networks with chiral light--matter interaction in waveguides
Mahmoodian, Sahand; Sørensen, Anders S
2016-01-01
We design and analyze a simple on-chip photonic circuit that can form a universal building block of a quantum network. The circuit consists of a single-photon source, and two quantum emitters positioned in two arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral light--matter interfaces. The efficient chiral light--matter interaction allows the emitters to act as photon sources to herald internode entanglement, and to perform high-fidelity intranode two-qubit gates within a single chip without any need for reconfiguration. We show that by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities ${\\cal F} \\sim 0.998$ achievable in state-of-the-art quantum dot systems.
Quantum Networks with Chiral-Light-Matter Interaction in Waveguides
Mahmoodian, Sahand; Lodahl, Peter; Sørensen, Anders S.
2016-12-01
We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that, by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F ˜0.998 achievable in state-of-the-art quantum dot systems.
Is String Interactions the Origin of Quantum Mechanics?
Bars, Itzhak
2014-01-01
String theory developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend open string field theory is a fully consistent definition of the theory - it is at least a self consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions, thus deriving rather than assuming the quantum commutation rules among the usual canonical quantum variables for all physical systems derivable from open string field theory. Morally we would apply such an argument to M-theory to cover all physics. If string or M-theory theory really underlies all physics, it seems that the door has been opened to an understanding of the origins of quantum mechanics.
Thermal quantum discord in Heisenberg models with Dzyaloshinski-Moriya interaction
Institute of Scientific and Technical Information of China (English)
Wang Lin-Cheng; Yan Jun-Yan; Yi Xue-Xi
2011-01-01
We study the quantum discord of the bipartite Heisenberg model with the Dzyaloshinski-Moriya(DM)interaction in thermal equilibrium state and discuss the effect of the DM interaction on the quantum discord.The quantum entanglement of the system is also discussed and compared with quantum discord. Our results show that the quantum discord may reveal more properties of the system than quantum entanglement and the DM interaction may play an important role in the Heisenberg model.
Electric and Magnetic Interaction between Quantum Dots and Light
DEFF Research Database (Denmark)
Tighineanu, Petru
a future challenge for the droplet-epitaxy technique. A multipolar theory of spontaneous emission from quantum dots is developed to explain the recent observation that In(Ga)As quantum dots break the dipole theory. The analysis yields a large mesoscopic moment, which contains magnetic-dipole and electric......-matter interaction of both electric and magnetic character. Our study demonstrates that In(Ga)As quantum dots lack parity symmetry and, as consequence, can be employed for locally probing the parity symmetry of complex photonic nanostructures. This opens the prospect for interfacing quantum dots with optical...... metamaterials for tailoring light-matter interaction at the single-electron and single-photon level....
Quantum and Classical Behavior in Interacting Bosonic Systems
Hertzberg, Mark P
2016-01-01
It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that...
RKKY interaction in a chirally coupled double quantum dot system
Energy Technology Data Exchange (ETDEWEB)
Heine, A. W.; Tutuc, D.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Zwicknagl, G. [Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regensburg (Germany); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, Schafmattstr. 16, 8093 Zürich, Switzerland and Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regens (Germany)
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.
Emergent dark energy via decoherence in quantum interactions
Altamirano, Natacha; Khosla, Kiran; Mann, Robert B; Milburn, Gerard
2016-01-01
Much effort has been devoted into understanding the quantum mechanical properties of gravitational interactions. Here we explore the recent suggestion that gravitational interactions are a fundamental classical channel that is described by continuous quantum measurements and feedforward (CQMF). Specifically, we investigate the possibility that some properties of our universe, modeled using a Friedman-Robertson-Walker metric, can emerge from CQMF by introducing an underlying quantum system for the dynamical variables, avoiding well known difficulties in trying to quantize the spacetime itself. We show that the quantum decoherence necessary in such a measurement model manifests itself as a dark energy fluid that fills the spacetime and whose equation of state asymptotically oscillates around the value $w=-1/3$, regardless of the spatial curvature, which provides the bound between accelerating and decelerating expanding FRW cosmologies.
Thermal Rectification Effect of an Interacting Quantum Dot
Institute of Scientific and Technical Information of China (English)
CHEN Xue-Ou; DONG Bing; LEI Xiao-Lin
2008-01-01
@@ We investigate the nonlinear thermal transport properties of a single interacting quantum dot with two energy levels tunnel-coupled to two electrodes using nonequilibrium Green function method and Hartree-Fock decoupling approximation. In the case of asymmetric tunnel-couplings to two electrodes, for example, when the upper level of the quantum dot is open for transport, whereas the lower level is blocked, our calculations predict a strong asymmetry for the heat (energy) current, which shows that the quantum dot system may act as a thermal rectifier in this specific situation.
Elementary Quantum Gates Based on Intrinsic Interaction Hamiltonian
Institute of Scientific and Technical Information of China (English)
CHEN Jing; YU Chang-Shui; SONG He-Shan
2006-01-01
A kind of new operators, the generalized pseudo-spin operators are introduced and a universal intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U(θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.
Scalable photonic quantum computation through cavity-assisted interactions.
Duan, L-M; Kimble, H J
2004-03-26
We propose a scheme for scalable photonic quantum computation based on cavity-assisted interaction between single-photon pulses. The prototypical quantum controlled phase-flip gate between the single-photon pulses is achieved by successively reflecting them from an optical cavity with a single-trapped atom. Our proposed protocol is shown to be robust to practical noise and experimental imperfections in current cavity-QED setups.
Dualism of Social Conditions: Religion, Morality and Science
Directory of Open Access Journals (Sweden)
Rasa Levickaitė
2011-04-01
Full Text Available The paper analyses the topic of social dualism through religion, morality and science. The paper refers to one of the most original works uncovering the social roots of religion – The Elementary Forms of the Religious Life by Emile Durkheim (1858–1917 who is considered to be the founder of modern sociology. The Elementary Forms of the Religious Life develops the coherent theory of religion as well as ventilates different aspects of the religious life. The message of the paper is: is religion the generative essence of social aspect, does a state of constant dependence stimulate a sense of religious piety, is a moral social order able to stabilize dualism of human energy. The paper proposes an assertion that science as a social phenomenon reflects knowledge and the values of its perception which are impacted by imagination and classified codes of cultural forms. As a result a thesis is proposed – a cultural (influenced by environment and a personal (influenced by internal factors desire for differentiation and its provoked conflict is of a social character. The second part of the paper deals with relation between science and social phenomena with inherent dualism. A short discussion is presented on L’ Année Sociologique (a group of scientists initiated by Durkheim representing a new sociological paradigm, the beginning of scientific social culture giving sense to cooperation of sociological theory and practice.
Sudden interaction quench in the quantum sine-Gordon model
Energy Technology Data Exchange (ETDEWEB)
Sabio, Javier [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, E-28049 Madrid (Spain); Kehrein, Stefan, E-mail: javier.sabio@icmm.csic.e [Arnold-Sommerfeld-Center for Theoretical Physics, Center for NanoSciences and Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)
2010-05-15
We study a sudden interaction quench in the weak-coupling regime of the quantum sine-Gordon model. The real time dynamics of the bosonic mode occupation numbers is calculated using the flow equation method. While we cannot prove results for the asymptotic long-time limit, we can establish the existence of an extended regime in time where the mode occupation numbers relax to twice their equilibrium values. This factor two indicates a non-equilibrium distribution and is a universal feature of weak interaction quenches. The weak-coupling quantum sine-Gordon model therefore turns out to be on the borderline between thermalization and non-thermalization.
Impact of nonlinear effective interactions on GFT quantum gravity condensates
Pithis, Andreas G A; Tomov, Petar
2016-01-01
We present the numerical analysis of effectively interacting Group Field Theory (GFT) models in the context of the GFT quantum gravity condensate analogue of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behaviour suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthe...
Nonreciprocal quantum interactions and devices via autonomous feedforward
Metelmann, A.; Clerk, A. A.
2017-01-01
In a recent work [A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025 (2015), 10.1103/PhysRevX.5.021025], a general reservoir engineering approach for generating nonreciprocal quantum interactions and devices was described. We show here how in many cases this general recipe can be viewed as an example of autonomous feedforward: the full dissipative evolution is identical to the unconditional evolution in a setup where an observer performs an ideal quantum measurement of one system, and then uses the results to drive a second system. We also extend the application of this approach to nonreciprocal quantum amplifiers, showing the added functionality possible when using two engineered reservoirs. In particular, we demonstrate how to construct an ideal phase-preserving cavity-based amplifier which is fully nonreciprocal, quantum limited, and free of any fundamental gain-bandwidth constraint.
Quantum mechanical calculations on weakly interacting complexes
Heijmen, T.G.A.
1998-01-01
Symmetry-adapted perturbation theory (SAPT) has been applied to compute the intermolecular potential energy surfaces and the interaction-induced electrical properties of weakly interacting complexes. Asymptotic (large R) expressions have been derived for the contributions to the collision-induced pr
Bosson, Maël; Grudinin, Sergei; Redon, Stephane
2013-03-05
We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.
Directory of Open Access Journals (Sweden)
R Afzali
2013-03-01
Full Text Available Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya interaction, and accompanied quantum dissipation. Using Lindblad dynamics, the coupling effect and also temperature effect on concurrence, as a measure of entanglement of system, is obtained. The role of DM interaction parameters in the evolution of entanglement is investigated. Furthermore, using derivative of concurrence, the effects of dissipation and DM interaction parameter on quantum phase transition are obtained. It should be noted that spin-orbit interaction or DM parameter intensively influence the process of impressments of dissipation on entanglement measure and quantum phase transition. The current research is very important in the topics of nanometric systems.
Dynamical Transport Property through an Interacting Quantum Wire
Institute of Scientific and Technical Information of China (English)
CHENG Fang; ZHOU Guang-Hui
2005-01-01
@@ Using the equation of motion, we investigate theoretically the dynamical ac conductance of a clean Luttingerliquid quantum wire adiabatically coupled to Fermi liquid electron reservoirs in the presence of short-ranged electron-electron interactions. For a perfect single mode quantum wire, in the limit of zero-ranged interaction we conclude that the static dc conductance of ω→ 0 is e2/h, which is independent of the electron interactions. While in the dynamical case of ω≠ 0, the ac conductance oscillates with the amplitude e2/h and the period which depends on the interaction strength and the driving frequency as well as the position in the wire.
Stabilization of 2D quantum gravity by branching interactions
Diego, O
1995-01-01
In this paper the stabilization of 2D quantum Gravity by branching interactions is considered. The perturbative expansion and the first nonperturbative term of the stabilized model are the same than the unbounded matrix model which define pure Gravity, but it has new nonperturbative effects that survives in the continuum limit.
Carrier-phonon interaction in semiconductor quantum dots
Energy Technology Data Exchange (ETDEWEB)
Seebeck, Jan
2009-03-10
In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non
Observation of topological transitions in interacting quantum circuits.
Roushan, P; Neill, C; Chen, Yu; Kolodrubetz, M; Quintana, C; Leung, N; Fang, M; Barends, R; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Kelly, J; Megrant, A; Mutus, J; O'Malley, P J J; Sank, D; Vainsencher, A; Wenner, J; White, T; Polkovnikov, A; Cleland, A N; Martinis, J M
2014-11-13
Topology, with its abstract mathematical constructs, often manifests itself in physics and has a pivotal role in our understanding of natural phenomena. Notably, the discovery of topological phases in condensed-matter systems has changed the modern conception of phases of matter. The global nature of topological ordering, however, makes direct experimental probing an outstanding challenge. Present experimental tools are mainly indirect and, as a result, are inadequate for studying the topology of physical systems at a fundamental level. Here we employ the exquisite control afforded by state-of-the-art superconducting quantum circuits to investigate topological properties of various quantum systems. The essence of our approach is to infer geometric curvature by measuring the deflection of quantum trajectories in the curved space of the Hamiltonian. Topological properties are then revealed by integrating the curvature over closed surfaces, a quantum analogue of the Gauss-Bonnet theorem. We benchmark our technique by investigating basic topological concepts of the historically important Haldane model after mapping the momentum space of this condensed-matter model to the parameter space of a single-qubit Hamiltonian. In addition to constructing the topological phase diagram, we are able to visualize the microscopic spin texture of the associated states and their evolution across a topological phase transition. Going beyond non-interacting systems, we demonstrate the power of our method by studying topology in an interacting quantum system. This required a new qubit architecture that allows for simultaneous control over every term in a two-qubit Hamiltonian. By exploring the parameter space of this Hamiltonian, we discover the emergence of an interaction-induced topological phase. Our work establishes a powerful, generalizable experimental platform to study topological phenomena in quantum systems.
A Quantum Spin System with Random Interactions I
Indian Academy of Sciences (India)
Stephen Dias Barreto
2000-11-01
We study a quantum spin glass as a quantum spin system with random interactions and establish the existence of a family of evolution groups $\\{\\mathcal{T}_t()\\}_{\\in}$ of the spin system. The notion of ergodicity of a measure preserving group of automorphisms of the probability space , is used to prove the almost sure independence of the Arveson spectrum $\\mathrm{Sp}(\\mathcal{T}())$ of $\\mathcal{T}_t()$. As a consequence, for any family of $(\\mathcal{T}(), )$-KMS states {ρ()}, the spectrum of the generator of the group of unitaries which implement $\\mathcal{T}()$ in the GNS representation is also almost surely independent of .
Nonlinear interaction of electromagnetic field with quantum plasma
Latyshev, A V
2014-01-01
The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures.
Quantum electron self-interaction in a strong laser field
Meuren, S
2011-01-01
The quantum state of an electron in a strong laser field is altered if the interaction of the electron with its own electromagnetic field is taken into account. Starting from the Schwinger-Dirac equation, we determine the states of an electron in a plane-wave field with inclusion, at leading order, of its electromagnetic self-interaction. On the one hand, the electron states show a pure "quantum" contribution to the electron quasi-momentum, conceptually different from the conventional "classical" one arising from the quiver motion of the electron. On the other hand, the electron self-interaction induces a distinct dynamics of the electron spin, whose effects are shown to be measurable in principle with available technology.
Maximum quantum nonlocality between systems that never interacted
Energy Technology Data Exchange (ETDEWEB)
Cabello, Adán, E-mail: adan@us.es [Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain)
2012-12-03
We show that there is a stronger form of bipartite quantum nonlocality in which systems that never interacted are as nonlocal as allowed by no-signaling. For this purpose, we first show that nonlocal boxes, theoretical objects that violate a bipartite Bell inequality as much as the no-signaling principle allows and which are physically impossible for most scenarios, are feasible if the two parties have 3 measurements with 4 outputs. Then we show that, in this case, entanglement swapping allows us to prepare mixtures of nonlocal boxes using systems that never interacted. -- Highlights: ► We show quantum correlations as nonlocal as allowed by no-signaling between systems that never interacted. ► We show that nonlocal boxes are feasible if 2 parties have 3 measurements with 4 outputs. ► Experimental implementations of 1 and 2 are proposed.
Universality of spectra for interacting quantum chaotic systems
Bruzda, Wojciech; Cappellini, Valerio; Sommers, Hans-Juergen; Zyczkowski, Karol
2010-01-01
We analyze a model quantum dynamical system subjected to periodic interaction with an environment, which can describe quantum measurements. Under the condition of strong classical chaos and strong decoherence due to large coupling with the measurement device, the spectra of the evolution operator exhibit an universal behavior. A generic spectrum consists of a single eigenvalue equal to unity, which corresponds to the invariant state of the system, while all other eigenvalues are contained in a disk in the complex plane. Its radius depends on the number of the Kraus measurement operators, and determines the speed with which an arbitrary initial state converges to the unique invariant state. These spectral properties are characteristic of an ensemble of random quantum maps, which in turn can be described by an ensemble of real random Ginibre matrices. This will be proven in the limit of large dimension.
Long-range interactions in antiferromagnetic quantum spin chains
Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.
2017-08-01
We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.
TRIQS: A toolbox for research on interacting quantum systems
Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka
2015-11-01
We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.
Dualism of Spirit-Material in Arabic Islamic Architecture
Directory of Open Access Journals (Sweden)
Rashed H. Yaseen
2013-04-01
Full Text Available Most of the current studies of Arabic Islamic architecture indicates different theoretical bases, whether in its definition or analyses, between different thinkers and researchers, dependable on the cultural, thoughtful and ideological bases of related references; thus, we can find Arabic Islamic architecture, both in urban planning and architectural point of view, in the light of deferent visions of: western thinkers, as an artistic forms and compositions, Arab national pioneers, analyzing its components on Arab society values, declined from its establishment of Arab desert and its impact on its rural culture; and radical Muslims thinkers restricting it on certain historical period, trying to reform it according to blocked theoretical rules, giving up its capability to development, sustainability and renewal.19The reason of all these problems is the ambiguity of the comprehensive emphasizes of one the most effective bases of Arabic Islamic architecture, which is the balance between the poles of spirit-material dualism; so that, some thinkers stood on one pole of this dualism, trying to study it through this defect point of view; meanwhile others stand on the other pole; without conscious or preconscious of the other pole, consequently the result of this hard shortage in identifying the bases of Arabic Islamic architecture in most of these studies.This research concludes an example of Arabic Islamic cities, Samarra City, which passed on different ages, lasting from Abbasid age to modern age, reflecting different spiritual and materialistic changes according to change in political, economic, social and cultural regimes; all these indicated by the vital ruins, obviously translating these changes, where it appoints the importance of the balance between both poles of this dualism, to illustrate vision of Arabic Islamic City, through these ages.
The Dualism of Asymmetric Information in Agricultural Insurance
Directory of Open Access Journals (Sweden)
Xuemei Yang
2013-07-01
Full Text Available Asymmetric information objectively exists in the insurance market, especially in agricultural insurance, which has a great impact on the insurance contract and market operation. This paper designs two game models to analyse the dualism of asymmetric information in agricultural insurance and its reasons of forming. We find that, the particularity of agricultural production, the agricultural risk diversification and the benefits’ spillover of the agricultural insurance are the main causes of asymmetric information. Therefore, this paper puts forward that establishment of appropriate agricultural insurance mode, optimization of insurance policy design and increasing investment in science and technology, increasing farmers’ insurance consciousness and establishing supervision system
Dualism and Sensory Awareness in Architecture and Design
DEFF Research Database (Denmark)
Fisker, Anna Marie; Danielsen, Mads Harder
2012-01-01
By using the term less we focus on architectural heritage; can a heritage from a modernist architect show that less does not exclude more? In the search for a hierarchy of relevant sustainable investment in architecture our paper focuses on the architect Arne Jacobsen. We focus on the dualism...... the architectural works ability to communicate, seek answers to which languages are spoken – can languages reach beyond the age of the works and spread to a present value? We try to relate the languages of senses and affect to the works of Jacobsen, the sensory awareness to architectural design....
Francis, C
2006-01-01
A Relational Quantum Theory Incorporating Gravity developed the concept of quantum covariance and argued that this is the correct expression of the fundamental physical principle that the behaviour of matter is everywhere the same in the quantum domain, as well as being the required condition for the unification of general relativity with quantum mechanics for non-interacting particles. This paper considers the interactions of elementary particles. Quantum covariance describes families of finite dimensional Hilbert spaces with an inbuilt cut-off in energy-momentum and using flat space metric (quantum coordinates) between initial and final states. It is shown by direct construction that it is possible to construct a quantum field theory of operators on members of these families, obeying locality, suitable for a description of particle interactions, and leading to a general formulation of particle theoretic field theory incorporating qed. The construction is consistent and effectively identical in the continuum...
Quantum chaos and thermalization in isolated systems of interacting particles
Energy Technology Data Exchange (ETDEWEB)
Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2016-04-15
This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.
Controlling electron quantum dot qubits by spin-orbit interactions
Energy Technology Data Exchange (ETDEWEB)
Stano, P.
2007-01-15
Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)
Quantum control of two interacting electrons in a coupled quantum dot
Institute of Scientific and Technical Information of China (English)
Song Hong-Zhou; Zhang Ping; Duan Su-Qing; Zhao Xian-Geng
2006-01-01
Quantum-state engineering, i.e. active manipulation over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. Here we discuss the dynamics of two interacting electrons in a coupled quantum dot driven by an external electric field. The results show that the two quantum dots can be used to prepare a maximally entangled Bell state by changing the strength and duration of an oscillatory electric field. Different from the suggestion made by Loss et al (1998 Phys. Rev. A 57 120), the present entanglement involves the spatial degree of freedom for the two electrons. We also find that the coherent tunnelling suppression discussed by Grossmann et al (1991 Phys. Rev. Lett. 67 516) persists in the two-particle case: i.e. two electrons initially localized in one dot can remain dynamically localized, although the strong Coulomb repulsion prevents them from behaving so. Surprisingly,the interaction enhances the degree of localization to a large extent compared with that in the non-interacting case.This phenomenon is referred to as the Coulomb-enhanced dynamical localization.
Quantum Butterfly Effect in Weakly Interacting Diffusive Metals
Patel, Aavishkar A.; Chowdhury, Debanjan; Sachdev, Subir; Swingle, Brian
2017-07-01
We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov) exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z >1 .
Simulations of two-particle interactions with 2D quantum walks in time
Energy Technology Data Exchange (ETDEWEB)
Schreiber, A.; Laiho, K.; Silberhorn, C. [University of Paderborn, Applied Physics, Warburger Str. 100, 33098 Paderborn, Germany and Max Planck Institute for the Science of Light, Günther-Scharowsky-str. 1 / Bau 24, 91058 Erlangen (Germany); Gábris, A. [Department of Physics, FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha, Czech Republic and Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P. O. Box 49 (Hungary); Rohde, P. P. [University of Paderborn, Applied Physics, Warburger Str. 100, 33098 Paderborn, Germany and Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113 (Australia); Štefaňak, M.; Potoček, V.; Hamilton, C.; Jex, I. [Department of Physics, FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha (Czech Republic)
2014-12-04
We present the experimental implementation of a quantum walk on a two-dimensional lattice and show how to employ the optical system to simulate the quantum propagation of two interacting particles. Our quantum walk in time transfers the spatial spread of a quantum walk into the time domain, which guarantees a high stability and scalability of the setup. We present with our device quantum walks over 12 steps on a 2D lattice. By changing the properties of the driving quantum coin, we investigate different kinds of two-particle interactions and reveal their impact on the occurring quantum propagation.
Quantum superdense coding via cavity-assisted interactions
Institute of Scientific and Technical Information of China (English)
Pan Guo-Zhu; Yang Ming; Cao Zhuo-Liang
2009-01-01
Quantum superdense coding (QSC) is an example of how entanglement can be used to minimize the number of carriers of classical information. This paper proposes two schemes for implementing QSC by means of cavity assisted interactions with single-photon pulses. The schemes are insensitive to the cavity decay and the thermal field, thus it might be realizable based on the current cavity QED techniques.
The prevalence of mind-body dualism in early China.
Slingerland, Edward; Chudek, Maciej
2011-07-01
We present the first large-scale, quantitative examination of mind and body concepts in a set of historical sources by measuring the predictions of folk mind-body dualism against the surviving textual corpus of pre-Qin (pre-221 BCE) China. Our textual analysis found clear patterns in the historically evolving reference of the word xin (heart/heart-mind): It alone of the organs was regularly contrasted with the physical body, and during the Warring States period it became less associated with emotions and increasingly portrayed as the unique locus of "higher" cognitive abilities. We interpret this as a semantic shift toward a shared cognitive bias in response to a vast and rapid expansion of literacy. Our study helps test the proposed universality of folk dualism, adds a new quantitative approach to the methods used in the humanities, and opens up a new and valuable data source for cognitive scientists: the record of dead minds. Copyright © 2011 Cognitive Science Society, Inc.
Quantum dynamics and topological excitations in interacting dipolar particles
Rey, Ana
2016-05-01
Dipole-dipole interactions, long-range and anisotropic interactions that arise due to the virtual exchange of photons, are of fundamental importance in optical physics, and are enabling a range of new quantum technologies including quantum networks and optical lattice atomic clocks. In this talk I will first discuss how arrays of dipolar particles with a simple J = 0- J = 1 internal level structure can naturally host topological and chiral excitations including Weyl quasi-particles. Weyl fermions were first predicted to exist in the context of high energy physics but only recently have been observed in solid state systems. I will discuss a proposal of using Mott insulators of Sr atoms to observe and probe the Weyl excitation spectrum and its non-trivial chirality. Finally I will report on a recent experiment done at JILA which validates the underlying microscopic model that predicts the existence of these excitations. The experiment measured the collective emission from a coherently driven gas of ultracold 88 Sr atoms and observed a highly directional and anisotropic emission intensity and a substantial broadening of the atomic spectral lines. All of the measurements are well reproduced by the theoretical model. These investigations open the door for the exploration of novel quantum many-body systems involving strongly interacting atoms and photons, and are useful guides for further developments of optical atomic clocks and other applications involving dense atomic ensembles. AFOSR, MURI-AFOSR, ARO,NSF-PHY-1521080, JILA-NSF-PFC-1125844.
Quantum states with topological properties via dipolar interactions
Energy Technology Data Exchange (ETDEWEB)
Peter, David
2015-06-25
This thesis proposes conceptually new ways to realize materials with topological properties by using dipole-dipole interactions. First, we study a system of ultracold dipolar fermions, where the relaxation mechanism of dipolar spins can be used to reach the quantum Hall regime. Second, in a system of polar molecules in an optical lattice, dipole-dipole interactions induce spin-orbit coupling terms for the rotational excitations. In combination with time-reversal symmetry breaking this leads to topological bands with Chern numbers greater than one.
Topological phases and transport properties of screened interacting quantum wires
Xu, Hengyi; Xiong, Ye; Wang, Jun
2016-10-01
We study theoretically the effects of long-range and on-site Coulomb interactions on the topological phases and transport properties of spin-orbit-coupled quasi-one-dimensional quantum wires imposed on a s-wave superconductor. The distributions of the electrostatic potential and charge density are calculated self-consistently within the Hartree approximation. Due to the finite width of the wires and charge repulsion, the potential and density distribute inhomogeneously in the transverse direction and tend to accumulate along the lateral edges where the hard-wall confinement is assumed. This result has profound effects on the topological phases and the differential conductance of the interacting quantum wires and their hybrid junctions with superconductors. Coulomb interactions renormalize the gate voltage and alter the topological phases strongly by enhancing the topological regimes and producing jagged boundaries. Moreover, the multicritical points connecting different topological phases are modified remarkably in striking contrast to the predictions of the two-band model. We further suggest the possible non-magnetic topological phase transitions manipulated externally with the aid of long-range interactions. Finally, the transport properties of normal-superconductor junctions are further examined, in particular, the impacts of Coulomb interactions on the zero-bias peaks related to the Majorana fermions and near zero-energy peaks.
Quantum Monte Carlo calculations with chiral effective field theory interactions.
Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A
2013-07-19
We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.
Ridolfo, A.; Stassi, R.; Di Stefano, O.
2017-06-01
We show that it is possible to realize quantum superpositions of switched-on and -off strong light-matter interaction in a single quantum dot- semiconductor microcavity system. Such superpositions enable the observation of counterintuitive quantum conditional dynamics effects. Situations are possible where cavity photons as well as the emitter luminescence display exponential decay but their joint detection probability exhibits vacuum Rabi oscillations. Remarkably, these quantum correlations are also present in the nonequilibrium steady state spectra of such coherently driven dissipative quantum systems.
Quantum gas microscopy of the interacting Harper-Hofstadter system
Tai, M. Eric; Lukin, Alex; Preiss, Philipp; Rispoli, Matthew; Schittko, Robert; Kaufman, Adam; Greiner, Markus
2016-05-01
At the heart of many topological states is the underlying gauge field. One example of a gauge field is the magnetic field which causes the deflection of a moving charged particle. This behavior can be understood through the Aharonov-Bohm phase that a particle acquires upon traversing a closed path. Gauge fields give rise to novel states of matter that cannot be described with symmetry breaking. Instead, these states, e.g. fractional quantum Hall (FQH) states, are characterized by topological invariants, such as the Chern number. In this talk, we report on experimental results upon introducing a gauge field in a system of strongly-interacting ultracold Rb87 atoms confined to a 2D optical lattice. With single-site resolution afforded by a quantum gas microscope, we can prepare a fixed atom number and project hard walls. With an artificial gauge field, this quantum simulator realizes the Harper-Hofstadter Hamiltonian. We can independently control the two tunneling strengths as well as dynamically change the flux. This flexibility enables studies of topological phenomena from many perspectives, e.g. site-resolved images of edge currents. With the strong on-site interactions possible in our system, these experiments will pave the way to observing FQH-like states in a lattice.
Multi-scale analysis for random quantum systems with interaction
Chulaevsky, Victor
2014-01-01
The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd. This book includes the following cutting-edge features: * an introduction to the state-of-the-art single-...
Quantum Simulation of Pairing Hamiltonians with Nearest-Neighbor Interacting Qubits
Wang, Zhixin; Gu, Xiu; Wu, Lian-Ao; Liu, Yu-xi
2014-01-01
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement "quantum simulators". Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulat...
Strongly modified plasmon-matter interaction with mesoscopic quantum emitters
DEFF Research Database (Denmark)
Andersen, Mads Lykke; Stobbe, Søren; Søndberg Sørensen, Anders;
2011-01-01
Semiconductor quantum dots (QDs) provide useful means to couple light and matter in applications such as light-harvesting1, 2 and all-solid-state quantum information processing3, 4. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic crystals...... of the plasmonic nanostructure, consistent with a newly developed theory that takes mesoscopic effects into account. This behaviour has no equivalence in atomic systems and offers new opportunities to exploit the unique mesoscopic characteristics of QDs in the development of nanophotonic devices that use...... or metallic nanostructures that enable strong confinement of light and thereby enhance the light–matter interaction. It has thus far been assumed that QDs can be described in the same way as atomic photon emitters—as point sources with wavefunctions whose spatial extent can be disregarded. Here we demonstrate...
De Sitter Space, Interacting Quantum Field Theory And Alpha Vacua
Goldstein, K
2005-01-01
Inspired by recent evidence for a positive cosmological constant, this thesis considers some of the implications of trying to incorporate approximately seventy percent of the universe, namely dark energy, consistently into quantum field theory on a curved background. Such considerations may have implications for inflation, the understanding of dark energy at the present time and finally the challenging topic of trying to incorporate a positive cosmological constant into string theory. We will mainly examine various aspects of the one parameter family of de Sitter invariant states—the so called α-vacua. On the phenomenological side, not only could such states provide a window into trans-planckian physics through their imprint on the cosmological microwave background (CMB), but they may also be a source of ultra-high energy cosmic rays (UHECR) at the present time. From a purely theoretical perspective, formulating interacting quantum field theory in these states is a challenging problem whic...
Interaction effects in a chaotic graphene quantum billiard
Hagymási, Imre; Vancsó, Péter; Pálinkás, András; Osváth, Zoltán
2017-02-01
We investigate the local electronic structure of a Sinai-like, quadrilateral graphene quantum billiard with zigzag and armchair edges using scanning tunneling microscopy (STM) at room temperature. It is revealed that besides the (√{3 }×√{3 }) R 30∘ superstructure, which is caused by the intervalley scattering, its overtones also appear in the STM measurements, which are attributed to the Umklapp processes. We point out that these results can be well understood by taking into account the Coulomb interaction in the quantum billiard, accounting for both the measured density of state values and the experimentally observed topography patterns. The analysis of the level-spacing distribution substantiates the experimental findings as well. We also reveal the magnetic properties of our system which should be relevant in future graphene based electronic and spintronic applications.
Vortex dynamics and their interactions in quantum trajectories
Energy Technology Data Exchange (ETDEWEB)
Wisniacki, D A [Departamento de Fisica ' J. J. Giambiagi' , FCEN, UBA, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Pujals, E R [IMPA-OS, Dona Castorina 110, 22460-320, Rio de Janeiro (Brazil); Borondo, F [Departamento de Quimica C-IX, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
2007-12-30
Vortices are known to play a key role in many important processes in physics and chemistry. Here, we study vortices in connection with the quantum trajectories that can be defined in the framework provided by the de Broglie-Bohm formalism of quantum mechanics. In a previous work, it was shown that the presence of a single moving vortex is enough to induce chaos in these trajectories. Here, this situation is explored in more detail by discussing the relationship between Lyapunov exponents and the parameters characterizing the vortex dynamics. We also consider the issue when more than one vortex exists. In this case, the interaction among them can annihilate or create pairs of vortices with opposite vorticity. This phenomenon is analyzed from a dynamical point of view, showing how the size of the regular regions in phase space grows, as vortices disappear.
An Interacting N = 2 Supersymmetric Quantum Mechanical Model: Novel Symmetries
Krishna, S; Malik, R P
2015-01-01
We demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting N = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realization of the de Rham cohomological operators of differential geometry. We derive the nilpotent N = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our N = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables, obtained after the imposition of the SUSY invariant restrictions, and...
Dephasing and hyperfine interaction in carbon nanotubes double quantum dots
DEFF Research Database (Denmark)
Reynoso, Andres Alejandro; Flensberg, Karsten
2012-01-01
We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C......-13 nuclei. Due to the valley and spin degrees of freedom, four bounded states exist for any given longitudinal mode in the quantum dot. At zero magnetic field, the spin-orbit coupling and the valley mixing split those four states into two Kramers doublets. The valley-mixing term for a given dot...... is determined by the intradot disorder; this leads to (i) states in the Kramers doublets belonging to different dots being different, and (ii) nonzero interdot tunneling amplitudes between states belonging to different doublets. We show that these amplitudes give rise to new avoided crossings, as a function...
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Institute of Scientific and Technical Information of China (English)
YAN Jun-Yan; WANG Lin-Cheng; YI Xue-Xi
2011-01-01
We study the quantum discord dynamics of a bipartite composite system in the presence of a dissipative environment and investigate the effect of the interaction between the two subsystems. The results show that the interaction can influence the sudden transition between the quantum correlation and the classical correlation and for the maximally mixed marginals initial states, the sudden transition regime will always exist. The entanglements are also discussed in comparison to the quantum discord in describing the quantum correlations.%@@ We study the quantum discord dynamics of a bipartite composite system in the presence of a dissipative envi- ronment and investigate the effect of the interaction between the two subsystems.The results show that the interaction can influence the sudden transition between the quantum correlation and the classical correlation and for the maximally mixed marginals initial states, the sudden transition regime will always exist.The entangle- ments are also discussed in comparison to the quantum discord in describing the quantum correlations.
Quantum Capacitance Modifies Interionic Interactions in Semiconducting Nanopores
Lee, Alpha A; Goriely, Alain
2016-01-01
Nanopores made with low dimensional semiconducting materials, such as carbon nanotubes and graphene slit pores, are used in supercapacitors. In theories and simulations of their operation, it is often assumed that such pores screen ion-ion interactions like metallic pores, i.e. that screening leads to an exponential decay of the interaction potential with ion separation. By introducing a quantum capacitance that accounts for the density of states in the material, we show that ion-ion interactions in carbon nanotubes and graphene slit pores actually decay algebraically with ion separation. This result suggests a new avenue of capacitance optimization based on tuning the electronic structure of a pore: a marked enhancement in capacitance might be achieved by developing nanopores made with metallic materials or bulk semimetallic materials.
Interaction effects in a microscopic quantum wire model with strong spin-orbit interaction
Winkler, G. W.; Ganahl, M.; Schuricht, D.; Evertz, H. G.; Andergassen, S.
2017-06-01
We investigate the effect of strong interactions on the spectral properties of quantum wires with strong Rashba spin-orbit (SO) interaction in a magnetic field, using a combination of matrix product state and bosonization techniques. Quantum wires with strong Rashba SO interaction and magnetic field exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread experimental and theoretical attention due to their unusual physical properties, among which are spin-dependent transport, or a topological superconducting phase when under the proximity effect of an s-wave superconductor. As a microscopic model for the quantum wire we study an extended Hubbard model with SO interaction and Zeeman field. We obtain spin resolved spectral densities from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions increase the pseudo gap at k = 0 and thus also enhance the Majorana-supporting phase and stabilize the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low energy spiral Luttinger liquid result, obtained from field theoretical calculations. With interactions, the optical conductivity is dominated by an excotic excitation of a bound soliton-antisoliton pair known as a breather state. We visualize the oscillating motion of the breather state, which could provide the route to their experimental detection in e.g. cold atom experiments.
Kagan, M. Yu.; Val'kov, V. V.; Aksenov, S. V.
2017-01-01
We present an analytical and numerical investigation of the spectral and transport properties of a quadruple quantum-dot (QQD) structure which is one of the popular low-dimensional systems in the context of fundamental quantum physics study, future electronic applications, and quantum calculations. The density of states, occupation numbers, and conductance of the structure were analyzed using the nonequilibrium Green's functions in the tight-binding approach and the equation-of-motion method. In particular the anisotropy of hopping integrals and on-site electron energies as well as the effects of the finite intra- and interdot Coulomb interactions were investigated. It was found out that the anisotropy of the kinetic processes in the system leads to the Fano-Feshbach asymmetrical peak. We demonstrated that the conductance of the QQD device has a wide insulating band with steep edges separating triple-peak structures if the intradot Coulomb interactions are taken into account. The interdot Coulomb correlations between the central QDs result in the broadening of this band and the occurrence of an additional band with low conductance due to the Fano antiresonances. It was shown that in this case the conductance of the anisotropic QQD device can be dramatically changed by tuning the anisotropy of on-site electron energies.
Textbook treatments of quantum electromagnetic interaction: pedagogical and conceptual problems
Fraile-Peláez, F. Javier
2001-07-01
In this paper we review and discuss the approaches used, almost universally, in textbooks dealing with quantum mechanics, and particularly those focused on optoelectronics devices, to explain the atom-field interactions. For this purpose, a true understanding and careful use of the first-order perturbation theory are necessary. By providing two alternative full derivations of the absorption/emission processes when the radiation is in a coherent multimode state, we highlight a number of conceptual and didactical failures in the usual textbook presentations, and propose more suitable and convincing strategies to improve them.
Entanglement Observables and Witnesses for Interacting Quantum Spin Systems
Wu, L A; Sarandy, M S; Lidar, D A
2004-01-01
We discuss the detection of entanglement in interacting quantum spin systems. First, thermodynamic Hamiltonian-based witnesses are computed for a general class of one-dimensional spin-1/2 models. Second, we introduce optimal bipartite entanglement observables. We show that a bipartite entanglement measure can generally be associated to a set of independent two-body spin observables whose expectation values can be used to witness entanglement. The number of necessary observables is ruled by the symmetries of the model. Illustrative examples are presented.
Coulomb Interaction in Quantum Dot with a Precessing Magnetic Field
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study electronic transport through a quantum dot (QD) with a precessing magnetic field. By using the Keldysh nonequilibrium Green function method, formulas of local density of states (LDOS) and conductance of QD are derived self-consistently. It shows that the LDOS and conductance have obvious changes with the Coulomb blockade interaction. The intensity and angle of the magnetic field or temperatures, which reflect the mesoscopic structure of the QD are derived. The superiority of this device is that the QD can be controlled easily by the magnetic field, so it is valuable to apply in generating, manipulating and probing spin state.
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Calculation of exchange interaction for modified Gaussian coupled quantum dots
Khordad, R.
2017-08-01
A system of two laterally coupled quantum dots with modified Gaussian potential has been considered. Each quantum dot has an electron under electric and magnetic field. The quantum dots have been considered as hydrogen-like atoms. The physical picture has translated into the Heisenberg spin Hamiltonian. The Schrödinger equation using finite element method has been numerically solved. The exchange energy factor has been calculated as a functions of electric field, magnetic field, and the separation distance between the centers of the dots ( d). According to the results, it is found that there is the transition from anti-ferromagnetic to ferromagnetic for constant electric field. Also, the transition occurs from ferromagnetic to anti-ferromagnetic for constant magnetic field (B>1 T). With decreasing the distance between the centers of the dots and increasing magnetic field, the transition occurs from anti-ferromagnetic to ferromagnetic. It is found that a switching of exchange energy factor is presented without canceling the interactions of the electric and magnetic fields on the system.
Carolissen, Ronelle; Bozalek, Vivienne
2017-01-01
Normative discourses about higher education institutions may perpetuate stereotypes about institutions. Few studies explore student perceptions of universities and how transformative pedagogical interventions in university classrooms may address institutional stereotypes. Using Plumwood's notion of dualism, this qualitative study analyses…
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha
2017-01-01
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…
Interacting electrons in ballistic conformal billiard quantum dots
Murthy, Ganpathy; Mathur, Harsh; Shankar, Ramamurti
2004-03-01
Interacting electrons in a ballistic quantum dot present a novel regime of disorder + interactions. An instability of the ground state towards a spontaneous deformation of the Fermi surface (the Pomeranchuk transition) has been found by the present authors[1], by assuming that Random Matrix Theory describes the states in the Thouless shell near the Fermi energy. However, the question of whether the mesoscopic transition occurs before the bulk transition remains open[2]. Here we describe calculations on the conformal billiard[3] and attempt to see how well RMT assumptions hold, and to what extent the physics of the transition is described by our previous work. 1. G. Murthy, R. Shankar, D. Herman, and H. Mathur, cond-mat/0306529. 2. S. Adam, P. W. Brouwer, and P. Sharma, cond-mat/0309074. 3. M. V. Berry and M. Robnik, J. Phys. A19, 669 (1986).
Quantum phases of a chain of strongly interacting anyons
Finch, Peter E.; Frahm, Holger; Lewerenz, Marius; Milsted, Ashley; Osborne, Tobias J.
2014-08-01
Quantum gates for the manipulation of topological qubits rely on interactions between non-Abelian anyonic quasiparticles. We study the collective behavior of systems of anyons arising from such interactions. In particular, we study the effect of favoring different fusion channels of the screened Majorana spins appearing in the recently proposed topological Kondo effect. Based on the numerical solution of a chain of SO(5)2 anyons we identify two critical phases whose low-energy behavior is characterized by conformal field theories with central charges c =1 and c =8/7, respectively. Our results are complemented by exact results for special values of the coupling constants which provide additional information about the corresponding phase transitions.
Attractive interaction between ions inside a quantum plasma structure
Dvornikov, Maxim
2013-01-01
We construct the model of a quantum spherically symmetric plasma structure based on radial oscillations of ions. We suppose that ions are involved in ion-acoustic waves. We find the exact solution of the Schrodinger equation for an ion moving in the self-consistent oscillatory potential of an ion-acoustic wave. The system of ions is secondly quantized and its ground state is constructed. Then we consider the interaction between ions by the exchange of an acoustic wave. It is shown that this interaction can be attractive. We describe the formation of pairs of ions inside a plasma structure and demonstrate that such a plasmoid can exist in dense astrophysical medium. The application of our results for terrestrial plasmas is also discussed.
Noisy quantum walks of two indistinguishable interacting particles
Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Piilo, Jyrki; Maniscalco, Sabrina; Paris, Matteo G. A.; Bordone, Paolo
2017-02-01
We investigate the dynamics of continuous-time two-particle quantum walks on a one-dimensional noisy lattice. Depending on the initial condition, we show how the interplay between particle indistinguishability and interaction determines distinct propagation regimes. A realistic model for the environment is considered by introducing non-Gaussian noise as time-dependent fluctuations of the tunneling amplitudes between adjacent sites. We observe that the combined effect of particle interaction and fast noise (weak coupling with the environment) provides a faster propagation compared to the noiseless case. This effect can be understood in terms of the band structure of the Hubbard model, and a detailed analysis as a function of both noise and system parameters is presented.
Extremely high-intensity laser interactions with fundamental quantum systems
Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H
2011-01-01
The field of laser-matter interaction traditionally deals with the response of atoms, molecules and plasmas to an external light wave. However, the recent sustained technological progress is opening the possibility of employing intense laser radiation to prompt or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding $10^{22}\\;\\text{W/cm$^2$}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum and can prime the creation of particles like electrons, muons and pions and the corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and can even allow for potential discovery of new particles beyond the Standard Model. These are the main topics of the present article, which is devoted to a review o...
Quantum Butterfly Effect in Weakly Interacting Diffusive Metals
Directory of Open Access Journals (Sweden)
Aavishkar A. Patel
2017-09-01
Full Text Available We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z>1.
PREFACE: Singular interactions in quantum mechanics: solvable models
Dell'Antonio, Gianfausto; Exner, Pavel; Geyler, Vladimir
2005-06-01
This issue comprises two dozen research papers which are all in one sense or another devoted to models in which the interaction is singular and sharply localized; a typical example is a quantum particle interacting with a family of δ-type potentials. Such an idealization usually makes analysis of their properties considerably easier, sometimes allowing us to reduce it to a simple algebraic problem—this is why one speaks about solvable models. The subject can be traced back to the early days of quantum mechanics; however, the progress in this field was slow and uneven until the 1960s, mostly because singular interactions are often difficult to deal with mathematically and intuitive arguments do not work. After overcoming the initial difficulties the `classical' theory of point interactions was developed, and finally summarized in 1988 in a monograph by Albeverio, Gesztesy, Høegh-Krohn, and Holden, which you will find quoted in numerous places within this issue. A reliable way to judge theories is to observe the progress they make within one or two decades. In this case there is no doubt that the field has witnessed a continuous development and covered areas which nobody had thought of when the subject first emerged. The reader may see it in the second edition of the aforementioned book which was published by AMS Chelsea only recently and contained a brief survey of these new achievements. It is no coincidence that this topical issue appears at the same time; it has been conceived as its counterpart and a forum at which fresh results in the field can demonstrated. Let us briefly survey the contents of the issue. While the papers included have in common the basic subject, they represent a broad spectrum philosophically as well as technically, and any attempt to classify them is somewhat futile. Nevertheless, we will divide them into a few groups. The first comprises contributions directly related to the usual point-interaction ideology. M Correggi and one of the
A transmon quantum annealer: decomposing many-body Ising constraints into pair interactions
Leib, Martin; Zoller, Peter; Lechner, Wolfgang
2016-12-01
Adiabatic quantum computing is an analogue quantum computing scheme with various applications in solving optimisation problems. In the parity picture of quantum optimization, the problem is encoded in local fields that act on qubits that are connected via local four-body terms We present an implementation of a parity annealer with Transmon qubits with a specifically tailored Ising interaction from Josephson ring modulators.
Non-Local Propagation of Correlations in Quantum Systems with Long-Range Interactions
2014-07-10
LETTER doi:10.1038/nature13450 Non-local propagation of correlations in quantum systems with long-range interactions Philip Richerme1, Zhe -Xuan Gong1...2013). 29. James, D. F. V. Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B 66, 181–190 (1998). 30. Wang
Tollerud, Jonathan O
2016-01-01
We identify carrier scattering at densities below which it has previously been observed in semiconductor quantum wells. These effects are evident in the peakshapes of 2D double-quantum spectra, which change as a function of excitation density. At high excitation densities ($\\geq 10^{9}$ carriers/,cm$^{-2}$) we observe untilted peaks similar to those reported in previous experiments. At low excitation densities (<$10^{8}$ carriers cm$^{-2}$) we observe narrower, tilted peaks. Using a simple simulation, we show that tilted peak-shapes are expected in double-quantum spectra when inhomogeneous broadening is much larger than homogeneous broadening, and that fast pure-decoherence of the double-quantum coherence can obscure this peak tilt. These results show that carrier interactions are important at lower densities than previously expected, and that the `natural' double-quantum peakshapes are hidden by carrier interactions at the excitation densities typically used. Furthermore, these results demonstrate that an...
Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing
2017-10-01
Using the three criterions of the concurrence, the negative eigenvalue and the geometric quantum discord, we investigate the quantum entanglement and quantum correlation dynamics of two two-level atoms interacting with the coherent state optical field. We discuss the influence of different photon number of the mean square fluctuations on the temporal evolution of the concurrence, the negative eigenvalue and the geometric quantum discord between two atoms when the two atoms are initially in specific three states. The results show that different photon number of the mean square fluctuations can lead to different effects of quantum entanglement and quantum correlation dynamics.
Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing
2017-08-01
Using the three criterions of the concurrence, the negative eigenvalue and the geometric quantum discord, we investigate the quantum entanglement and quantum correlation dynamics of two two-level atoms interacting with the coherent state optical field. We discuss the influence of different photon number of the mean square fluctuations on the temporal evolution of the concurrence, the negative eigenvalue and the geometric quantum discord between two atoms when the two atoms are initially in specific three states. The results show that different photon number of the mean square fluctuations can lead to different effects of quantum entanglement and quantum correlation dynamics.
Quantum control and coherence of interacting spins in diamond
De Lange, G.
2012-01-01
The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum comp
Quantum control and coherence of interacting spins in diamond
De Lange, G.
2012-01-01
The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum comp
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Vanshpal, R., E-mail: ravivanshpal@gmail.com; Sharma, Uttam [Shri Vaishnav Institute of Technology and Science, Indore (India); Dubey, Swati [School of Studies in Physics, Vikram University, Ujjain (M.P.) (India)
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal.
Interaction-based nonlinear quantum metrology with a cold atomic ensemble
2014-01-01
In this manuscript we present an experimental and theoretical investigation of quantum-noise-limited measurement by nonlinear interferometry, or from another perspective, quantum-noise-limited interaction-based measurement. The experimental work is performed using a polarization-based quantum interface between propagating light pulses and cold rubidium-87 atoms trapped in an optical dipole trap. We first review the theory of quantum metrology and estimation theory, and we describe theor...
Quantum Monte Carlo simulations of bosons with complex interactions
Rousseau, Valery
2015-03-01
Many of the most exciting materials and phenomena being studied today, from oxide heterostructures to topological insulators or iron-based superconductors, are the ones in which an understanding of how quantum particles interact with each other is essential. In the last decade, the development and the improvement of quantum Monte Carlo algorithms combined with the increased power of computers has opened the way to the exact simulation of Hamiltonians that include various types of interactions, such as inter-species conversion terms or ring-exchange terms. Simultaneously, developments made in the field of optical lattices, laser cooling and magneto/optical trapping techniques have led to ideal realizations of such Hamiltonians. A wide variety of phases can be present, including Mott insulators and superfluids, as well as more exotic phases such as Haldane insulators, supersolids, counter-superfluids, or the recently proposed Feshbach insulator. These experimental realizations of the various forms of the Hubbard model can have interesting applications, in particular they provide a possible way of performing quantum computing, and have also given rise to a new field known as Atomtronics, the equivalent of Electronics where the carriers are replaced by atoms. I will illustrate these ideas with examples of Hamiltonians that have been studied and some results. In order to study these systems, it is crucial to identify the various phases that are present, which can be characterized by a set of order parameters. Of particular importance in this task is the superfluid density. It is well known that the superfluid density can be related to the response of the free energy to a boundary phase twist, or to the fluctuations of the winding number. However, these relationships break down when complex interactions are involved. To address this problem, I will propose a general expression of the superfluid density, derived from real and thought experiments. I will discuss two
Quantum stopping times stochastic integral in the interacting Fock space
Energy Technology Data Exchange (ETDEWEB)
Kang, Yuanbao, E-mail: kangyuanb@163.com [College of Mathematics Science, Chong Qing Normal University, Chongqing 400047 (China)
2015-08-15
Following the ideas of Hudson [J. Funct. Anal. 34(2), 266-281 (1979)] and Parthasarathy and Sinha [Probab. Theory Relat. Fields 73, 317-349 (1987)], we define a quantum stopping time (QST, for short) τ in the interacting Fock space (IFS, for short), Γ, over L{sup 2}(ℝ{sup +}), which is actually a spectral measure in [0, ∞] such that τ([0, t]) is an adapted process. Motivated by Parthasarathy and Sinha [Probab. Theory Relat. Fields 73, 317-349 (1987)] and Applebaum [J. Funct. Anal. 65, 273-291 (1986)], we also develop a corresponding quantum stopping time stochastic integral (QSTSI, for abbreviations) on the IFS over a subspace of L{sup 2}(ℝ{sup +}) equipped with a filtration. As an application, such integral provides a useful tool for proving that Γ admits a strong factorisation, i.e., Γ = Γ{sub τ]} ⊗ Γ{sub [τ}, where Γ{sub τ]} and Γ{sub [τ} stand for the part “before τ” and the part “after τ,” respectively. Additionally, this integral also gives rise to a natural composition operation among QST to make the space of all QSTs a semigroup.
Minimising biases in full configuration interaction quantum Monte Carlo
Vigor, W. A.; Spencer, J. S.; Bearpark, M. J.; Thom, A. J. W.
2015-03-01
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step.
Interaction of graphene quantum dots with bulk semiconductor surfaces
Energy Technology Data Exchange (ETDEWEB)
Mohapatra, P. K.; Singh, B. P., E-mail: bhanups@iitb.ac.in [Department of physics, IIT Bombay, Mumbai-400076 (India); Kushavah, Dushyant; Mohapatra, J. [Centre for Research in Nanotechnology and Science, IIT Bombay-400076, Mumbai (India)
2015-05-15
Highly luminescent graphene quantum dots (GQDs) are synthesized through thermolysis of glucose. The average lateral size of the synthesized GQDs is found to be ∼5 nm. The occurrence of D and G band at 1345 and 1580 cm{sup −1} in Raman spectrum confirms the presence of graphene layers. GQDs are mostly consisting of 3 to 4 graphene layers as confirmed from the AFM measurements. Photoluminescence (PL) measurement shows a distinct broadening of the spectrum when GQDs are on the semiconducting bulk surface compared to GQDs in water. The time resolved PL measurement shows a significant shortening in PL lifetime due to the substrate interaction on GQDs compared to the GQDs in solution phase.
Minimising biases in full configuration interaction quantum Monte Carlo.
Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W
2015-03-14
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step.
Driven superconducting proximity effect in interacting quantum dots
Energy Technology Data Exchange (ETDEWEB)
Moghaddam, Ali G.; Koenig, Juergen [Theoretische Physik, Univ. Duisburg-Essen, Duisburg (Germany); CeNIDE, Duisburg (Germany); Governale, Michele [School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand)
2012-07-01
We show that strong superconducting correlations can be induced in an interacting quantum dot (QD) using fast oscillations in the effective coupling between the dot and superconducting leads which drive the dot out of equilibrium. This is in contrast with the well-known equilibrium state suppression of proximity effect in interacting QDs. In fact although interaction prohibits the superposition of empty (0) and doubly-occupied (d) states, fast coherent dynamics accompanied by the fast variations in the tunnel coupling can produce a nonequilibrium finite probability for such a superposition. Subsequently the superconducting correlations are established inside the QD when the energy difference between 0 and d states coincide with the frequency of driving oscillations. Simultaneously the nonequilibrium occupation probabilities of 0 and d states cause a pumping current flowing to the normal lead connected to the dot. Finally we demonstrate coherent oscillations in both dot charge and current by applying a pulsed oscillatory field to the coupling of dot and superconductor which show the possibility of coherent manipulation in the subspace of 0 and d states by changing the pulse duration.
DEFF Research Database (Denmark)
Nielsen, Per; Nielsen, Henri; Mørk, Jesper;
2006-01-01
The interaction of optical pulses in a quantum dot waveguide in the slow-light regime is investigated. Dipole oscillations lead to strong interactions between the two pulses, implying a minimum pulse separation for optical buffer applications....
A Model for Macroscopic Quantum Tunneling of Bose-Einstein Condensate with Attractive Interaction
Institute of Scientific and Technical Information of China (English)
YAN Ke-Zhu; TAN Wei-Han
2000-01-01
Based on the numerical wave function solutions of neutral atoms with attractive interaction in a harmonic trap, we propose an exactly solvable model for macroscopic quantum tunneling of a Bose condensate with attractive interaction. We calculate the rate of macroscopic quantum tunneling from a metastable condensate state to the collapse state and analyze the stability of the attractive Bose-Einstein condensation.
Fidelity of quantum state for interacting system of light field and atomic Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
Chunjia Huang; Ming Zhou; Fanzhi Kong; Jiayuan Fang; Kewei Mo
2005-01-01
@@ The evolution characteristics of quantum state fidelity in an interacting system of single-mode light field and atomic Bose-Einstein condensate have been studied and the influence of the initial light field intensity and the interaction among atoms of Bose-Einstein condensate on the quantum state fidelity respectively have been discussed.
On critical stability of three quantum charges interacting through delta potentials
DEFF Research Database (Denmark)
Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin
We consider three one dimensional quantum, charged and spinless particles interacting through delta potentials. We derive sufficient conditions which guarantee the existence of at least one bound state.......We consider three one dimensional quantum, charged and spinless particles interacting through delta potentials. We derive sufficient conditions which guarantee the existence of at least one bound state....
Evaluation of electron-electron interactions in coupled quantum dots by using far-infrared spectra
Institute of Scientific and Technical Information of China (English)
Dong Qing-Rui
2008-01-01
We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the interactions for spin S = 1 and for spin S = 0. The results support the possibility to evaluate the interactions by far-infrared spectroscopy in vertically coupled quantum dots.
Killoran, N; Huelga, S F; Plenio, M B
2015-10-21
Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.
Energy Technology Data Exchange (ETDEWEB)
Killoran, N.; Huelga, S. F.; Plenio, M. B. [Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany)
2015-10-21
Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.
Killoran, Nathan; Plenio, Martin B
2014-01-01
Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle, and quantify its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's applicability for realistic biological structures.
A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization.
Waliszewski, Przemyslaw
2005-10-01
The emergence of Gompertzian dynamics at the macroscopic, tissue level during growth and self-organization is determined by the existence of fractal-stochastic dualism at the microscopic level of supramolecular, cellular system. On one hand, Gompertzian dynamics results from the complex coupling of at least two antagonistic, stochastic processes at the molecular cellular level. It is shown that the Gompertz function is a probability function, its derivative is a probability density function, and the Gompertzian distribution of probability is of non-Gaussian type. On the other hand, the Gompertz function is a contraction mapping and defines fractal dynamics in time-space; a prerequisite condition for the coupling of processes. Furthermore, the Gompertz function is a solution of the operator differential equation with the Morse-like anharmonic potential. This relationship indicates that distribution of intrasystemic forces is both non-linear and asymmetric. The anharmonic potential is a measure of the intrasystemic interactions. It attains a point of the minimum (U(0), t(0)) along with a change of both complexity and connectivity during growth and self-organization. It can also be modified by certain factors, such as retinoids.
Dong, B; Ding, G H; Lei, X L
2015-05-27
A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime.
Indirect Controllability of Quantum Systems; A Study of Two Interacting Quantum Bits
D'Alessandro, Domenico
2012-01-01
A quantum mechanical system S is indirectly controlled when the control affects an ancillary system A and the evolution of S is modified through the interaction with A only. A study of indirect controllability gives a description of the set of states that can be obtained for S with this scheme. In this paper, we study the indirect controllability of quantum systems in the finite dimensional case. After discussing the relevant definitions, we give a general necessary condition for controllability in Lie algebraic terms. We present a detailed treatment of the case where both systems, S and A, are two-dimensional (qubits). In particular, we characterize the dynamical Lie algebra associated with S+A, extending previous results, and prove that complete controllability of S+A and an appropriate notion of indirect controllability are equivalent properties for this system. We also prove several further indirect controllability properties for the system of two qubits, and illustrate the role of the Lie algebraic analy...
Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction
Vahedi, J.; Ashouri, A.; Mahdavifar, S.
2016-10-01
Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.
Mekhov, Igor B.; Ritsch, Helmut
2012-05-01
Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles.
Enhancing student learning of two-level quantum systems with interactive simulations
Kohnle, Antje; Campbell, Anna; Korolkova, Natalia; Paetkau, Mark J
2015-01-01
The QuVis Quantum Mechanics Visualization project aims to address challenges of quantum mechanics instruction through the development of interactive simulations for the learning and teaching of quantum mechanics. In this article, we describe evaluation of simulations focusing on two-level systems developed as part of the Institute of Physics Quantum Physics resources. Simulations are research-based and have been iteratively refined using student feedback in individual observation sessions and in-class trials. We give evidence that these simulations are helping students learn quantum mechanics concepts at both the introductory and advanced undergraduate level, and that students perceive simulations to be beneficial to their learning.
Photoinduced interaction of CdSe quantum dot with coumarins
Energy Technology Data Exchange (ETDEWEB)
El-Kemary, Maged, E-mail: elkemary@sci.kfs.edu.eg [Nanotechnology Center, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh (Egypt); Gaber, Mohamed; El-Sayed, Y.S. [Chemistry Department, Faculty of Science, University of Tanta, Tanta (Egypt); Gheat, Youssef [Nanotechnology Center, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh (Egypt); Chemistry Department, Faculty of Science, University of Tanta, Tanta (Egypt)
2015-03-15
Cadmium selenide (CdSe) quantum dots (QDs) were synthesized with a cubic shape having a diameter of ∼5.24 nm. The prepared CdSe QDs were characterized by using UV–visible, Fourier transform infrared (FTIR), powder X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The UV–visible absorption spectra indicate that the optical band gap of CdSe QDs is ∼622 nm and the peak shift can mainly be due to the quantum size effects. The fluorescence decay kinetics for the synthesized QDs was followed by time-resolved fluorescence spectroscopy, and the spectra were analyzed in regard to a bi-exponential model to identify two lifetime values, that is, shorter-lifetime 1.37 ns (55%) and longer-lifetime 6.58 ns (45%). The interaction of coumarin 152 (C152) and coumarin 153 (C153) with QDs surface brings about further considerable changes in the absorption and fluorescence patterns. The calculated binding constant from fluorescence quenching method matches well with that determined from the absorption spectral changes. The static quenching mechanism was confirmed by large magnitude of K{sub SV} and unaltered fluorescence lifetime. - Highlights: • CdSe QDs were synthesized with a cubic shape having a diameter of ∼5.24 nm. • The UV–visible absorption spectra indicate that the optical band gap of CdSe QDs is ∼622 nm. • Picosecond fluorescence measurements of the QDs suggest bi-exponential function. • The calculated binding constant from fluorescence quenching method matches well with that determined from the absorption spectral changes. • The static quenching mechanism was confirmed by large magnitude of K{sub SV} and unaltered fluorescence lifetime.
Quantum computing with atomic qubits and Rydberg interactions: progress and challenges
Saffman, M.
2016-10-01
We present a review of quantum computation with neutral atom qubits. After an overview of architectural options and approaches to preparing large qubit arrays we examine Rydberg mediated gate protocols and fidelity for two- and multi-qubit interactions. Quantum simulation and Rydberg dressing are alternatives to circuit based quantum computing for exploring many body quantum dynamics. We review the properties of the dressing interaction and provide a quantitative figure of merit for the complexity of the coherent dynamics that can be accessed with dressing. We conclude with a summary of the current status and an outlook for future progress.
Medicine and Mind-Body Dualism: A Reply to Mehta's Critique.
Joubert, Callie
2014-01-01
Neeta Mehta recently advanced the thesis that medical practice is facing a crisis today. In her paper "Mind-body dualism: a critique from a health perspective" she attributes the crisis to the philosophy of Descartes and set out to understand why this dualism is still alive despite its disavowal from philosophers, health practitioners and lay people. The aim of my reply to her critique is three-fold. First, I draw attention to a more fundamental problem and show that dualism is inescapable-scientifically and commonsensically. I then focus on the self-conscious emotions of shame, guilt and remorse, and argue that the self is not identical with a brain. The third section draws attention to the crisis in psychiatry and stipulates some of the main reasons why this is so. Contrary to Mehta's thesis, the health profession faces a crisis because of physicalism and biological reductionism.
Institute of Scientific and Technical Information of China (English)
QIAN Yi; XU Jing-Bo
2011-01-01
We investigate the quantum discord dynamics of two effective two-level atoms independently interacting with two quantized field modes through a Raman interaction in the presence of phase decoherence.The influence of the phase decoherence and detuning on the evolution of the quantum discord and entanglement between two atoms is discussed.It is found that the quantum discord is more robust than the entanglement under the phase decoherence,and the amount of discord and entanglement between two atoms can be increased by adjusting the detuning.
Influences of strong exciton-phonon interaction on two coupled quantum dots within cavity QED
Energy Technology Data Exchange (ETDEWEB)
Yuan Xiaozhong [Department of Physics, Institute of Quantum Optics and Quantum Information, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: yxz@sjtu.edu.cn; Zhu Kadi [Department of Physics, Institute of Quantum Optics and Quantum Information, Shanghai Jiao Tong University, Shanghai 200240 (China); Li Waisang [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong (China)
2004-08-30
For two coupled quantum dots within cavity QED, we show that the exciton-phonon interaction reduces the Rabi frequency and Foerster interaction even at absolute zero temperature. The exciton-phonon interaction also makes an additional contribution to the static exciton-exciton dipole interaction energy.
Influences of strong exciton-phonon interaction on two coupled quantum dots within cavity QED
Yuan, Xiao-Zhong; Zhu, Ka-Di; Li, Wai-Sang
2004-08-01
For two coupled quantum dots within cavity QED, we show that the exciton-phonon interaction reduces the Rabi frequency and Förster interaction even at absolute zero temperature. The exciton-phonon interaction also makes an additional contribution to the static exciton-exciton dipole interaction energy.
The functional renormalization group for interacting quantum systems with spin-orbit interaction
Energy Technology Data Exchange (ETDEWEB)
Grap, Stephan Michael [RWTH Aachen (Germany). Inst. fuer Theorie der Statistischen Physik
2013-07-15
We studied the influence of spin-orbit interaction (SOI) in interacting low dimensional quantum systems at zero temperature within the framework of the functional renormalization group (fRG). Among the several types of spin-orbit interaction the so-called Rashba spin-orbit interaction is especially intriguing for future spintronic applications as it may be tuned via external electric fields. We investigated its effect on the low energy physics of an interacting quantum wire in an applied Zeeman field which is modeled as a generalization of the extended Hubbard model. To this end we performed a renormalization group study of the two particle interaction, including the SOI and the Zeeman field exactly on the single particle level. Considering the resulting two band model, we formulated the RG equations for the two particle vertex keeping the full band structure as well as the non trivial momentum dependence of the low energy two particle scattering processes. In order to solve these equations numerically we defined criteria that allowed us to classify whether a given set of initial conditions flows towards the strongly coupled regime. We found regions in the models parameter space where a weak coupling method as the fRG is applicable and it is possible to calculate additional quantities of interest. Furthermore we analyzed the effect of the Rashba SOI on the properties of an interacting multi level quantum dot coupled to two semi in nite leads. Of special interest was the interplay with a Zeeman field and its orientation with respect to the SOI term. We found a renormalization of the spin-orbit energy which is an experimental quantity used to asses SOI effects in transport measurements, as well as renormalized effective g factors used to describe the Zeeman field dependence. In particular in asymmetrically coupled systems the large parameter space allows for rich physics which we studied by means of the linear conductance obtained via the generalized Landauer
Local Classical and Quantum Criticality due to Electron-Vibration Interaction
2009-01-01
We study the local classical and quantum critical properties of electron-vibration interaction, represented by the Yu-Anderson model. It exhibits an instability, similar to the Wentzel-Bardeen singularity, whose nature resembles to weakly first order quantum phase transitions at low temperatures, and crosses over to Gaussian behaviour with increasing temperature. We determine the dominant energy scale separating the quantum from classical criticality, study the effect of dissipation and analy...
de Vega, Sandra; Cox, Joel D.; de Abajo, F. Javier García
2016-08-01
We study the potential of highly doped finite carbon nanotubes to serve as plasmonic elements that mediate the interaction between quantum emitters. Similar to graphene, nanotubes support intense plasmons that can be modulated by varying their level of electrical doping. These excitations exhibit large interaction with light and electron beams, as revealed upon examination of the corresponding light extinction cross-section and electron energy-loss spectra. We show that quantum emitters experience record-high Purcell factors, while they undergo strong mutual interaction mediated by their coupling to the tube plasmons. Our results show the potential of doped finite nanotubes as tunable plasmonic materials for quantum optics applications.
Energy Technology Data Exchange (ETDEWEB)
Zozoulenko, I V; Ihnatsenka, S [Solid State Electronics, Department of Science and Technology (ITN), Linkoeping University, 60174 Norrkoeping (Sweden)
2008-04-23
We have developed a mean-field first-principles approach for studying electronic and transport properties of low dimensional lateral structures in the integer quantum Hall regime. The electron interactions and spin effects are included within the spin density functional theory in the local density approximation where the conductance, the density, the effective potentials and the band structure are calculated on the basis of the Green's function technique. In this paper we present a systematic review of the major results obtained on the energetics, spin polarization, effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and open quantum dots. In particular, we discuss how the spin-resolved subband structure, the current densities, the confining potentials, as well as the spin polarization of the electron and current densities in quantum wires and antidots evolve when an applied magnetic field varies. We also discuss the role of the electron interaction and spin effects in the conductance of open systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis is given to the effect of the electron interaction on the conductance oscillations and their statistics in open quantum dots as well as to interpretation of the related experiments on the ultralow temperature saturation of the coherence time in open dots.
Controlling light-matter interaction with mesoscopic quantum dots
DEFF Research Database (Denmark)
Stobbe, Søren; Kristensen, Philip Trøst; Lodahl, Peter
2012-01-01
Semiconductor quantum dots (QDs) enable efficient coupling between light and matter, which is useful in applications such as light-harvesting and all-solid-state quantum information processing. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic...
The quantum interaction of macroscopic objects and gravitons
Piran, Tsvi
2016-09-01
Copious production of gravitational radiation requires a compact source that moves relativistically. Such sources are rare and are found only in extreme cases such as the formation of a black hole in either via a gravitational collapse or via a merger. Noncompact, nonrelativistic objects emit gravitational radiation, however, this emission is extremely weak due to very large value of the Planck energy. The quantum nature of gravitons, namely the fact that a single graviton carries energy of order ℏω implies that macroscopic objects whose kinetic energy is less than the Planck energy emit gravitons quantum mechanically, emitting a single graviton at a time. This is a unique situation in which a macroscopic object behaves quantum mechanically. While it is impossible to check experimentally this quantum gravitational effect, it might be possible to carry out analogous electromagnetic experiments that will shed light on this macroscopic quantum mechanical behavior.
Rydberg-interaction-based quantum gates free from blockade error
Shi, Xiao-Feng
2016-01-01
Accurate quantum gates are basic elements for building quantum computers. There has been great interest in designing quantum gates by using blockade effect of Rydberg atoms recently. The fidelity and operation speed of these gates, however, are fundamentally limited by the blockade error. Here we propose another type of quantum gates, which are based on Rydberg blockade effect, yet free from any blockade error. In contrast to the `blocking' method in previous schemes, we use Rydberg energy shift to realise a rational generalised Rabi frequency so that a novel $\\pi$ phase for one input state of the gate emerges. This leads to an accurate Rydberg-blockade based two-qubit quantum gate that can operate in a $0.1\\mu s$ timescale or faster thanks to that it operates by a Rabi frequency which is comparable to the blockade shift.
Institute of Scientific and Technical Information of China (English)
YANG Zhen; ZHANG Wen-Hai; HE Juan; YE Liu
2008-01-01
We propose a scheme to implement the optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction. In our scheme, an arbitrary single atomic state can be telecloned to two single atomic states. And three atoms are trapped in three spatially separated cavities respectively. With a particular multiparticle entangled state acting as a quantum information channel and the trapped single atom acting as a quantum network node for its long-lived internal state, quantum information can be telecloned among nodes and can stored in the nodes.
Quantum fields and Poisson processes: interaction of a cut-off boson field with a quantum particle
Energy Technology Data Exchange (ETDEWEB)
Bertrand, J.; Rideau, G.; Gaveau, B.
1985-01-01
The solution of the Schroedinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful.
Quantum fields and poisson processes: Interaction of a cut-off boson field with a quantum particle
Bertrand, Jacqueline; Gaveau, Bernard; Rideau, Guy
1985-01-01
The solution of the Schrödinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful.
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.
2015-01-01
-range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated...
Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system
Englund, Dirk; Bajcsy, Michal; Faraon, Andrei; Petroff, Pierre; vuckovic, Jelena
2011-01-01
We study dynamics of the interaction between two weak light beams mediated by a strongly coupled quantum dot-photonic crystal cavity system. First, we perform all optical switching of a weak continuous-wave signal with a pulsed control beam, and then perform switching between two pulsed beams (40ps pulses) at the single photon level. Our results show that the quantum dot-nanocavity system creates strong, controllable interactions at the single photon level.
Non-integer Quantum Transition, a True Non-perturbation Effect in Laser-Atom Interaction
Institute of Scientific and Technical Information of China (English)
ZHANG Qi-Ren
2007-01-01
We show that in the quantum transition of an atom interacting with an intense laser of circular frequencyω, the energy difference between the initial and the final states of the atom is not necessarily an integer multiple of the quantum energy (h)ω. This kind of non-integer transition is a true non-perturbation effect in laser-atom interaction.
Quantum breathers in Heisenberg ferromagnetic chains with Dzyaloshinsky-Moriya interaction.
Tang, Bing; Li, De-Jun; Tang, Yi
2014-06-01
We present an analytical study on quantum breathers in one-dimensional ferromagnetic XXZ chains with Dzyaloshinsky-Moriya interaction by means of the time-dependent Hartree approximation and the semidiscrete multiple-scale method. The stationary localized single-boson wave functions are obtained and these analytical solutions are checked by numerical simulations. With such stationary localized single-boson wave functions, we construct quantum breather states. Furthermore, the role of the Dzyaloshinsky-Moriya interaction is discussed.
Quantum breathers in Heisenberg ferromagnetic chains with Dzyaloshinsky-Moriya interaction
Energy Technology Data Exchange (ETDEWEB)
Tang, Bing; Tang, Yi, E-mail: tangyii@hotmail.com [Department of Physics, Xiangtan University, Xiangtan 411105 (China); Li, De-Jun [College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000 (China)
2014-06-15
We present an analytical study on quantum breathers in one-dimensional ferromagnetic XXZ chains with Dzyaloshinsky-Moriya interaction by means of the time-dependent Hartree approximation and the semidiscrete multiple-scale method. The stationary localized single-boson wave functions are obtained and these analytical solutions are checked by numerical simulations. With such stationary localized single-boson wave functions, we construct quantum breather states. Furthermore, the role of the Dzyaloshinsky-Moriya interaction is discussed.
Quantum theory analysis on microscopic mechanism of the interaction of laser with cell membrane
Institute of Scientific and Technical Information of China (English)
XU Lin; ZHANG Can-bang; WANG Sheng-yu; LI Ling; WANG Rui-li; ZHOU Ling-yun
2007-01-01
On the basis of liquid crystal model with the electric dipole moment of cell membrane,the microscopic mechanism of the electricity and thermology effects of interaction of laser with cell membrane is researched by electromagnetic, quantum mechanics and quantum statistics. We derive the formulas on the polarization effects and "temperature-rising effect" of laser-cell membrane interaction. The results of the theoretical research can explain some experiments.
Interactions, disorder and spin waves in quantum Hall ferromagnets near integer filling
Rapsch, S
2001-01-01
dynamics is discussed in chapter 5 and employed to study spin waves in a domain wall structure. A hydrodynamic theory of spin waves is used to treat long-wavelength excitations of randomly disordered quantum Hall ferromagnets. Finally, the contribution of spin waves to the optical conductivity is studied in chapter 6. Predictions are made for the experimental signatures of spin waves in disordered quantum Hall systems. The observability of these signatures is discussed both for transport measurements and NMR experiments. The interplay between exchange interactions and disorder is studied in quantum Hall ferromagnets near integer filling. Both analytical and numerical methods are used to investigate a non-linear sigma model of these systems in the limit of vanishing Zeeman coupling and at zero temperature. Chapter 1 gives an introduction to the quantum Hall effect and to quantum Hall ferromagnets in particular. A brief review of existing work on disordered quantum Hall systems is included. In chapters 2-4, the...
Energy Technology Data Exchange (ETDEWEB)
Goderis, D.; Maes, C. (Liege Univ. (BE))
1991-01-01
The relation between certain quantum systems and classical stochastic processes - e.g. in the method of functional integration - is formulated on the level of the dynamics for both quantum and classical dissipative time evolutions. An essentially unique quantum dissipation is constructed from a classical interacting spin system, preserving the notion of detailed balance. Translation invariant and reversible infinite volume quantum dynamics are found in this way and the Hamiltonian is recovered from the action of the generator in the GNS-representation of the corresponding groundstate for which a Feynmann-Kac formula holds. Local reversibility of quantum dissipations is shown to give rise to an almost classical characterization of the corresponding quantum states.
Quantum simulation of pairing Hamiltonians with nearest-neighbor-interacting qubits
Wang, Zhixin; Gu, Xiu; Wu, Lian-Ao; Liu, Yu-xi
2016-06-01
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement "quantum simulators." Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. The fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
Mind-body dualism and the biopsychosocial model of pain: what did Descartes really say?
Duncan, G
2000-08-01
In the last two decades there have been many critics of western biomedicine's poor integration of social and psychological factors in questions of human health. Such critiques frequently begin with a rejection of Descartes' mind-body dualism, viewing this as the decisive philosophical moment, radically separating the two realms in both theory and practice. It is argued here, however, that many such readings of Descartes have been selective and misleading. Contrary to the assumptions of many recent authors, Descartes' dualism does attempt to explain the union of psyche and soma - with more depth than is often appreciated. Pain plays a key role in Cartesian as well as contemporary thinking about the problem of dualism. Theories of the psychological origins of pain symptoms persisted throughout the history of modern medicine and were not necessarily discouraged by Cartesian mental philosophy. Moreover, the recently developed biopsychosocial model of pain may have more in common with Cartesian dualism than it purports to have. This article presents a rereading of Descartes' mental philosophy and his views on pain. The intention is not to defend his theories, but to re-evaluate them and to ask in what respect contemporary theories represent any significant advance in philosophical terms.
Vietnam’s Economy: Success Story or Weird Dualism? A SWOT Analysis
David O. Dapice
2003-01-01
A standard approach in business is to conduct something called “SWOT” analysis. This looks at the Strengths, Weaknesses, Opportunities and Threats facing a business. This paper will conduct a rudimentary SWOT analysis for the economy of Vietnam. Before beginning the analysis, there will be a brief digression to explain the word “dualism. ”
Humanism as Ideological Rebellion: Deconstructing the Dualisms of Contemporary Mental Health Culture
Hansen, James T.
2006-01-01
Humanistic thought has been oppressed by the dominant forces of contemporary mental health culture. The author argues that the rebellious essence of humanism must be incited to counter these reductive ideologies that have monopolized our times. A critical appraisal of the philosophical dualisms that support the prevailing mechanistic vision of…
The New Wave of Childhood Studies: Breaking the Grip of Bio-Social Dualism?
Ryan, Kevin William
2012-01-01
The article takes as its starting point a new wave of researchers who use concepts such as "hybridity" and "multiplicity" in a bid to move the study of childhood beyond the strictures of what Lee and Motzkau call "bio-social dualism", whereby the division between the "natural child" of developmental psychology and the "social child" of…
The New Wave of Childhood Studies: Breaking the Grip of Bio-Social Dualism?
Ryan, Kevin William
2012-01-01
The article takes as its starting point a new wave of researchers who use concepts such as "hybridity" and "multiplicity" in a bid to move the study of childhood beyond the strictures of what Lee and Motzkau call "bio-social dualism", whereby the division between the "natural child" of developmental psychology and the "social child" of…
On the Bandgap quantum coupler and the harmonic oscillator interacting with a reservoir
Quijas, P C G
2007-01-01
In order to be able to study dissipation, the interaction between a single system and their environment was introduced in quantum mechanics. Master and quantum Langeving equations was derived and, also, decoherence was studied using this approach. One of the most used model in this field of research is a single harmonic oscillator interacting with an infinite number of harmonic oscillators. In this work we analytically solve, with the evolution operator method, the Schrodinger equation for this model in the case of resonance. Also we address a different aspect of the quantum computing with linear optics. That is, we propose the linear bandgap quantum coupler, in the cases N=2 and N=3, to generate a new phase operator $U_{dp}^{\\pi} $ working on the two and three qubits basis like an alternative realization of a quantum phase gate.
Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions
Institute of Scientific and Technical Information of China (English)
LIU Yu; CHENG Fang
2011-01-01
@@ We theoretically investigate the influence of both Rashba spin-orbit interaction (RSOI) and Dresselhaus spin- orbit interaction (DSOI) on electron spin states, electron distribution and the optical absorption of a quantum dot.Our theoretical results show that the interplay between RSOI and DSOI results in an effective periodic potential, which consequently breaks the rotational symmetry and makes the quantum dot behave like two laterally coupled quantum dots.In the presence of RSOI and/or DSOI the spin is no longer a conserved quantity and its magnitude can be tuned by changing the strength of RSOI and/or DSOI.By reversing the direction of the perpendicular electric field, we can rotate the spatial distribution.This property provides us with a new way to control quantum states in a quantum dot by electrical means.
Bashinsky, Sergei
2015-01-01
We study a finite basic structure that possibly underlies the observed elementary quantum fields with gauge and gravitational interactions. Realistic wave functions of locally interacting quantum fields emerge naturally as fitting functions for the generic distribution of many quantifiable properties of arbitrary static objects. We prove that in any quantum theory with the superposition principle, evolution of a current state of fields unavoidably continues along alternate routes with every conceivable Hamiltonian for the fields. This applies to the emergent quantum fields too. Yet the Hamiltonian is unambiguous for isolated emergent systems with sufficient local symmetry. The other emergent systems, without specific physical laws, cannot be inhabitable. The acceptable systems are eternally inflating universes with reheated regions. We see how eternal inflation perpetually creates new short-scale physical degrees of freedom and why they are initially in the ground state. In the emergent quantum worlds probabi...
Energy Technology Data Exchange (ETDEWEB)
Ye, Jinwu, E-mail: jy306@ccs.msstate.edu [Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Department of Physics and Astronomy, Mississippi State University, P.O. Box 5167, MS 39762 (United States); Chen, Yan, E-mail: yanchen99@gmail.com [Department of Physics, Surface Physics Laboratory (National Key Laboratory) and Lab of Advanced Materials, Fudan University, Shanghai (China)
2013-04-11
By using the dual vortex method (DVM), we develop systematically a simple and effective scheme to use the vortex degree of freedoms on dual lattices to characterize the symmetry breaking patterns of the boson insulating states in the direct lattices. Then we apply our scheme to study quantum phases and phase transitions in an extended boson Hubbard model slightly away from 1/3 (2/3) filling on frustrated lattices such as triangular and Kagome lattice. In a triangular lattice at 1/3, we find a X-CDW, a stripe CDW phase which was found previously by a density operator formalism (DOF). Most importantly, we also find a new CDW-VB phase which has both local CDW and local VB orders, in sharp contrast to a bubble CDW phase found previously by the DOF. In the Kagome lattice at 1/3, we find a VBS phase and a 6-fold CDW phase. Most importantly, we also identify a CDW-VB phase which has both local CDW and local VB orders which was found in previous QMC simulations. We also study several other phases which are not found by the DVM. By analyzing carefully the saddle point structures of the dual gauge fields in the translational symmetry breaking sides and pushing the effective actions slightly away from the commensurate filling f=1/3(2/3), we classified all the possible types of supersolids and analyze their stability conditions. In a triangular lattice, there are X-CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. In a Kagome lattice, there are 6-fold CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. We show that independent of the types of the SS, the quantum phase transitions from solids to supersolids driven by a chemical potential are in the same universality class as that from a Mott insulator to a superfluid, therefore have exact exponents z=2, ν=1/2, η=0 (with
Virtual learning environment for interactive engagement with advanced quantum mechanics
Directory of Open Access Journals (Sweden)
Mads Kock Pedersen
2016-04-01
Full Text Available A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.
Storing quantum information in XXZ spin rings with periodically time-controlled interactions
Energy Technology Data Exchange (ETDEWEB)
Giampaolo, S M; Illuminati, F; Mazzarella, G [Dipartimento di Fisica ' E. R. Caianiello' , Universita di Salerno, INFM UdR di Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, 84081 Baronissi, SA (Italy)
2005-10-01
We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits.
Zhao, Jianwei; Lu, Jian; Wang, Liang; Tian, Linfan; Deng, Xingxia; Tian, Lijun; Pan, Dengyu; Wang, Zhongyang
2016-07-01
We investigated the strong interaction between graphene quantum dots and silver nanoparticles in solution using time-resolved photoluminescence techniques. In solution, the silver nanoparticles are surrounded by graphene quantum dots and interacted with graphene quantum dots through exciton-plasmon coupling. An ultrafast spontaneous emission process (lifetime 27 ps) was observed in such a mixed solution. This ultrafast lifetime corresponds to the emission rate exceeding 35 GHz, with the purcell enhancement by a factor of ˜12. These experiment results pave the way for the realization of future high speed light sources applications.
Quantum Dot Cavity-QED in the Presence of Strong Electron-Phonon Interactions
Wilson-Rae, I
2001-01-01
A quantum dot strongly coupled to a single high finesse optical microcavity mode constitutes a new fundamental system for quantum optics. Here, the effect of exciton-phonon interactions on reversible quantum-dot cavity coupling is analysed without making Born-Markov approximation. The analysis is based on techniques that have been used to study the ``spin boson'' Hamiltonian. Observability of vacuum-Rabi splitting depends on the strength and the frequency dependence of the spectral density function characterizing the interactions with phonons, both of which can be influenced by phonon confinement.
Spin dynamics and hyperfine interaction in InAs semiconductor quantum dots
Energy Technology Data Exchange (ETDEWEB)
Eble, B.; Krebs, O.; Voisin, P.; Lemaitre, A.; Kudelski, A. [CNRS - Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France); Braun, P.F.; Lombez, L.; Marie, X.; Urbaszek, B.; Amand, T.; Lagarde, D.; Renucci, P. [Laboratoire de Nanophysique Magnetisme et Optoelectronique, INSA, 31077 Toulouse Cedex 4 (France); Kowalik, K. [CNRS - Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France); Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warsaw (Poland); Kalevich, V.K.; Kavokin, K.V. [Ioffe Institute, Politekhnicheskaya 26, St-Petersburg 194021 (Russian Federation)
2006-08-15
We present a detailed study of the hyperfine interaction between carrier and nuclear spins in InAs semiconductor quantum dots. Time resolved measurements on excitons in positively charged quantum dots show the electron spin relaxation due to random fluctuations of the spin orientation of the nuclei in the quantum dot. A complimentary aspect of the hyperfine interaction can be uncovered in single dot continuous wave photoluminescence experiments in a weak magnetic field, namely the Overhauser shift due to the dynamic polarisation of the nuclei following excitation with circularly polarised light. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wamba, Etienne, E-mail: wambaetienne@yahoo.fr [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon); Department of Physics, Pondicherry University, Puducherry 605014 (India); Porsezian, K., E-mail: ponz.phy@pondiuni.edu.in [Department of Physics, Pondicherry University, Puducherry 605014 (India); Mohamadou, Alidou, E-mail: mohdoufr@yahoo.fr [The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera 11, I-34014, Trieste (Italy); Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon); Kofané, Timoléon C. [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon)
2013-01-03
Through a Gross–Pitaevskii equation comprising cubic, quartic, residual, and quintic nonlinearities, we examine the modulational instability (MI) of Bose–Einstein condensates at higher densities in the presence of quantum fluctuations. We obtain an explicit time-dependent criteria for the MI and the instability domains of the condensates. Solitons are generated by suitably exciting the MI, and their stability is analyzed. We find that quantum fluctuations can completely change the instability of condensates by reversing the nature of the effective two-body interactions. The interplay between three-body interactions and quantum fluctuations is shown. Numerical simulations performed agree with analytical predictions.
Efficient Modeling of Coulomb Interaction Effect on Exciton in Crystal-Phase Nanowire Quantum Dot
DEFF Research Database (Denmark)
Taherkhani, Masoomeh; Gregersen, Niels; Mørk, Jesper
2016-01-01
The binding energy and oscillation strength of the ground-state exciton in type-II quantum dot (QD) is calculated by using a post Hartree-Fock method known as the configuration interaction (CI) method which is significantly more efficient than conventional methods like ab initio method. We show t...... that the Coulomb interaction between electron and holes in these structures considerably affects the transition dipole moment which is the key parameter of optical quantum gating in STIRAP (stimulated Raman adiabatic passage) process for implementing quantum gates [1], [2]....
A quantum annealing architecture with all-to-all connectivity from local interactions.
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-10-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.
Guo, J. L.; Zhang, X. Z.
2016-01-01
Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented. PMID:27596050
Persistent Currents and Addition Spectrum in Strongly Interacting Chaotic Quantum Dots
Herman, Damir; Mathur, H.; Murthy, Ganpathy
2003-03-01
Murthy and Shankar(Ganpathy Murthy, R. Shankar, Quantum Dots with Disorder and Interactions: A Solvable Large-g Limit), family cond-mat/0209136 have introduced a non-perturbative approach to analyzing the effects of interaction and randomness in chaotic quantum dots in the limit of large Thouless number. Using this framework we study two experimentally observable quantities in the strongly interacting regime. First we compare the Coulomb blockade peak spacing distribution in the strong coupling regime to the distribution in the weak coupling regime (described by the ``universal Hamiltonian''). Second we study persistent currents in mesoscopic rings in the regime of strong interaction.
Energy Technology Data Exchange (ETDEWEB)
Birkholz, Jens Eiko
2008-10-06
We study the influence of the spin-orbit interaction on the electronic transport through quantum dots and quantum wires of correlated electrons. Starting with a one-dimensional infinite continuum model without Coulomb interaction, we analyze the interplay of the spin-orbit interaction, an external magnetic field, and an external potential leading to currents with significant spin-polarization in appropriate parameter regimes. Since lattice models are known to often be superior to continuum models in describing the experimental situation of low-dimensional mesoscopic systems, we construct a lattice model which exhibits the same low-energy physics in terms of energy dispersion and spin expectation values. Confining the lattice to finite length and connecting it to two semi-infinite noninteracting Fermi liquid leads, we calculate the zero temperature linear conductance using the Landauer-Bttiker formalism and show that spin-polarization effects also evolve for the lattice model by adding an adequate potential structure and can be controlled by tuning the overall chemical potential of the system (quantum wire and leads). Next, we allow for a finite Coulomb interaction and use the functional renormalization group (fRG) method to capture correlation effects induced by the Coulomb interaction. The interacting system is thereby transformed into a noninteracting system with renormalized system parameters. For short wires ({proportional_to}100 lattice sites), we show that the energy regime in which spin polarization is found is strongly affected by the Coulomb interaction. For long wires (>1000 lattice sites), we find the power-law suppression of the total linear conductance on low energy scales typical for inhomogeneous Luttinger liquids while the degree of spin polarization stays constant. Considering quantum dots which consist of two lattice sites, we observe the well-known Kondo effect and analyze, how the Kondo temperature is affected by the spin-orbit interaction
Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario
Eichhorn, Astrid
2012-01-01
We investigate the high-energy properties of matter theories coupled to quantum gravity. Specifically, we show that quantum gravity fluctuations generically induce matter self-interactions in a scalar theory. Our calculations apply within asymptotically safe quantum gravity, where our results indicate that the UV is dominated by an interacting fixed point, with non-vanishing gravitational as well as matter couplings. We show that the number of relevant directions of the fixed point depends on the inclusion of these quantum-gravity induced matter self-interactions. Furthermore we point out that terms of this type can have observable consequences in the context of scalar-field driven inflation, where they can induce potentially observable non-Gaussianities in the CMB.
Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene
Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Agarwal, Hitesh; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar M.
2017-02-01
Quantum Hall effect provides a simple way to study the competition between single particle physics and electronic interaction. However, electronic interaction becomes important only in very clean graphene samples and so far the trilayer graphene experiments are understood within non-interacting electron picture. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism seen in Bernal-stacked trilayer graphene. Due to high mobility ~500,000 cm2 V-1 s-1 in our device compared to previous studies, we find all symmetry broken states and that Landau-level gaps are enhanced by interactions; an aspect explained by our self-consistent Hartree-Fock calculations. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of quantum Hall ferromagnetic states at low magnetic field.
DEFF Research Database (Denmark)
Van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.
2012-01-01
We investigate the quantum optical properties of a quantum-dot dipole emitter coupled to a finite-size metal nanoparticle using a photon Green-function technique that rigorously quantizes the electromagnetic fields. We first obtain pronounced Purcell factors and photonic Lamb shifts for both a 7......- and 20-nm-radius metal nanoparticle, without adopting a dipole approximation. We then consider a quantum-dot photon emitter positioned sufficiently near the metal nanoparticle so that the strong-coupling regime is possible. Accounting for nondipole interactions, quenching, and photon transport from...... the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four...
Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons.
Haller, Elmar; Hart, Russell; Mark, Manfred J; Danzl, Johann G; Reichsöllner, Lukas; Gustavsson, Mattias; Dalmonte, Marcello; Pupillo, Guido; Nägerl, Hanns-Christoph
2010-07-29
Quantum many-body systems can have phase transitions even at zero temperature; fluctuations arising from Heisenberg's uncertainty principle, as opposed to thermal effects, drive the system from one phase to another. Typically, during the transition the relative strength of two competing terms in the system's Hamiltonian changes across a finite critical value. A well-known example is the Mott-Hubbard quantum phase transition from a superfluid to an insulating phase, which has been observed for weakly interacting bosonic atomic gases. However, for strongly interacting quantum systems confined to lower-dimensional geometry, a novel type of quantum phase transition may be induced and driven by an arbitrarily weak perturbation to the Hamiltonian. Here we observe such an effect--the sine-Gordon quantum phase transition from a superfluid Luttinger liquid to a Mott insulator--in a one-dimensional quantum gas of bosonic caesium atoms with tunable interactions. For sufficiently strong interactions, the transition is induced by adding an arbitrarily weak optical lattice commensurate with the atomic granularity, which leads to immediate pinning of the atoms. We map out the phase diagram and find that our measurements in the strongly interacting regime agree well with a quantum field description based on the exactly solvable sine-Gordon model. We trace the phase boundary all the way to the weakly interacting regime, where we find good agreement with the predictions of the one-dimensional Bose-Hubbard model. Our results open up the experimental study of quantum phase transitions, criticality and transport phenomena beyond Hubbard-type models in the context of ultracold gases.
Liu, X M; Cheng, W W; Liu, J-M
2016-01-19
We investigate the quantum Fisher information and quantum phase transitions of an XY spin chain with staggered Dzyaloshinskii-Moriya interaction using the quantum renormalization-group method. The quantum Fisher information, its first-derivatives, and the finite-size scaling behaviors are rigorously calculated respectively. The singularity of the derivatives at the phase transition point as a function of lattice size is carefully discussed and it is revealed that the scaling exponent for quantum Fisher information at the critical point can be used to describe the correlation length of this model, addressing the substantial role of staggered Dzyaloshinskii-Moriya interaction in modulating quantum phase transitions.
Quantum Metrology: Surpassing the shot-noise limit with Dzyaloshinskii-Moriya interaction.
Ozaydin, Fatih; Altintas, Azmi Ali
2015-11-09
Entanglement is at the heart of quantum technologies such as quantum information and quantum metrology. Providing larger quantum Fisher information (QFI), entangled systems can be better resources than separable systems in quantum metrology. However the effects on the entanglement dynamics such as decoherence usually decrease the QFI considerably. On the other hand, Dzyaloshinskii-Moriya (DM) interaction has been shown to excite entanglement. Since an increase in entanglement does not imply an increase in QFI, and also there are cases where QFI decreases as entanglement increases, it is interesting to study the influence of DM interaction on quantum metrology. In this work, we study the QFI of thermal entanglement of two-qubit and three-qubit Heisenberg models with respect to SU(2) rotations. We show that even at high temperatures, DM interaction excites QFI of both ferromagnetic and antiferromagnetic models. We also show that QFI of the ferromagnetic model of two qubits can surpass the shot-noise limit of the separable states, while QFI of the antiferromagnetic model in consideration can only approach to the shot-noise limit. Our results open new insights in quantum metrology with Heisenberg models.
Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies
Mühlbach, Adrian H; Reiher, Markus
2015-01-01
The inherently high computational cost of iterative self-consistent-field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to thirty percent as a consequence of a reduced number of SCF iterations.
Hole spin dephasing time associated to hyperfine interaction in quantum dots
Testelin, C.; Bernardot, F.; Eble, B.; Chamarro, M.
2009-01-01
The spin interaction of a hole confined in a quantum dot with the surrounding nuclei is described in terms of an effective magnetic field. We show that, in contrast to the Fermi contact hyperfine interaction for conduction electrons, the dipole-dipole hyperfine interaction is anisotropic for a hole, for both pure or mixed hole states. We evaluate the coupling constants of the hole-nuclear interaction and demonstrate that they are only one order of magnitude smaller than the coupling constants...
Komnik, A.; Saleur, H.
2011-09-01
We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage.
Directory of Open Access Journals (Sweden)
Ryan Sayer
2017-05-01
Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.
Estimation of atomic interaction parameters by quantum measurements
DEFF Research Database (Denmark)
Kiilerich, Alexander Holm; Mølmer, Klaus
Quantum systems, ranging from atomic systems to field modes and mechanical devices are useful precision probes for a variety of physical properties and phenomena. Measurements by which we extract information about the evolution of single quantum systems yield random results and cause a back action...... strategies, we address the Fisher information and the Cramér-Rao sensitivity bound. We investigate monitoring by photon counting, homodyne detection and frequent projective measurements respectively, and exemplify by Rabi frequency estimation in a driven two-level system....
Transport through interacting quantum dots with Majorana fermions or phonons
Energy Technology Data Exchange (ETDEWEB)
Huetzen, Roland
2013-07-04
technique and is numerically exact. Within a finite memory time the scheme fully takes into account all time-nonlocal correlations within the self energies of the leads and we extended it to also handle time-nonlocal interactions originating from the electron-phonon coupling. The latter was possible by exactly mapping the Anderson-Holstein model to an effective three-state-system and the introduction of a spin 1 auxiliary field within each short-time propagator of the real-time path-integral. An extrapolation scheme which is based on a least dependence approach then allows to eliminate the errors introduced by the finite memory time and the time discretization in a systematic way. We benchmarked our scheme against three other analytical methods, valid in three different corners of the parameter space where approximative expansions are possible. Finally we could demonstrate with our method the persistence of the Franck-Condon blockade in a deep quantum regime, inaccessible by the other methods.
Quantum phases from competing short- and long-range interactions in an optical lattice.
Landig, Renate; Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Mottl, Rafael; Donner, Tobias; Esslinger, Tilman
2016-04-28
Insights into complex phenomena in quantum matter can be gained from simulation experiments with ultracold atoms, especially in cases where theoretical characterization is challenging. However, these experiments are mostly limited to short-range collisional interactions; recently observed perturbative effects of long-range interactions were too weak to reach new quantum phases. Here we experimentally realize a bosonic lattice model with competing short- and long-range interactions, and observe the appearance of four distinct quantum phases--a superfluid, a supersolid, a Mott insulator and a charge density wave. Our system is based on an atomic quantum gas trapped in an optical lattice inside a high-finesse optical cavity. The strength of the short-range on-site interactions is controlled by means of the optical lattice depth. The long (infinite)-range interaction potential is mediated by a vacuum mode of the cavity and is independently controlled by tuning the cavity resonance. When probing the phase transition between the Mott insulator and the charge density wave in real time, we observed a behaviour characteristic of a first-order phase transition. Our measurements have accessed a regime for quantum simulation of many-body systems where the physics is determined by the intricate competition between two different types of interactions and the zero point motion of the particles.
Energy Technology Data Exchange (ETDEWEB)
Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Taheri Boroujeni, S. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2015-11-15
In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.
Interactions of a Charged Particle with Parallel Two-Dimensional Quantum Electron Gases
Institute of Scientific and Technical Information of China (English)
LI Chun-Zhi; SONG Yuan-Hong; WANG You-Nian
2008-01-01
@@ By using the linearized quantum hydrodynamic (QHD) theory, electronic excitations induced by a charged particle moving between or over two parallel two-dimensional quantum electron gases (2DQEG) are investigated. The calculation shows that the influence of the quantum effects on the interaction process should be taken into account. Including the quantum statistical and quantum diffraction effects, the general expressions of the induced potential and the stopping power are obtained. Our simulation results indicate that a V-shaped oscillatory wake potential exists in the electron gases during the test charge intrusion. Meanwhile, double peaks will occur in the stopping power when the distance of two surfaces is smaller and the test charge gets closer to any one of the two sheets.
Uysal, Ismail E.
2015-10-26
Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device\\'s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.
Interacting Photons in Waveguide-QED and Applications in Quantum Information Processing
Zheng, Huaixiu
Strong coupling between light and matter has been demonstrated both in classical cavity quantum electrodynamics (QED) systems and in more recent circuit-QED experiments. This enables the generation of strong nonlinear photon-photon interactions at the single-photon level, which is of great interest for the observation of quantum nonlinear optical phenomena, the control of light quanta in quantum information protocols such as quantum networking, as well as the study of strongly correlated quantum many-body systems using light. Recently, strong coupling has also been realized in a variety of one-dimensional (1D) waveguide- QED experimental systems, which in turn makes them promising candidates for quantum information processing. Compared to cavity-QED systems, there are two new features in waveguide-QED: the existence of a continuum of states and the restricted 1D phase space, which together bring in new physical effects, such as the bound-state effects. This thesis consists of two parts: 1) understanding the fundamental interaction between local quantum objects, such as two-level systems and four-level systems, and photons confined in the waveguide; 2) exploring its implications in quantum information processing, in particular photonic quantum computation and quantum key distribution. First, we demonstrate that by coupling a two-level system (TLS) or three/four-level system to a 1D continuum, strongly-correlated photons can be generated inside the waveguide. Photon-photon bound states, which decay exponentially as a function of the relative coordinates of photons, appear in multiphoton scattering processes. As a result, photon bunching and antibunching can be observed in the photon-photon correlation function, and nonclassical light source can be generated on demand. In the case of an N-type four-level system, we show that the effective photon-photon interaction mediated by the four-level system, gives rise to a variety of nonlinear optical phenomena, including
Thermopower in parallel double quantum dots with Rashba spin-orbit interaction
Institute of Scientific and Technical Information of China (English)
Xue Hui-Jie; Lü Tian-Quan; Zhang Hong-Chen; Yin Hai-Tao; Cui Lian; He Ze-Long
2011-01-01
Based on the Green's function technique and the equation of motion approach, this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs), in which Rashba spin-orbit interaction is taken into account. Rashba spin-orbit interaction contributions, even in a magnetic field, are exhibited obviously in the double quantum dots system for the thermoelectric effect. The periodic oscillation of thermopower can be controlled by tunning the Rashba spin-orbit interaction induced phase. The interesting spin-dependent thermoelectric effects will arise which has important influence on thermoelectric properties of the studied system.
Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Paulo C; RodrIguez, Boris A [Instituto de Fisica, Universidad de Antioquia, AA 1226 MedellIn (Colombia); Quesada, Nicolas [McLennan Physical Laboratories, University of Toronto, 60 St George Street, Toronto, ON, M5S 1A7 (Canada); Vinck-Posada, Herbert, E-mail: pcardenas@fisica.udea.edu.co [Departamento de Fisica, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia)
2011-07-06
We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.
Non-perturbative Solution to the Quantum Interaction Problem via Schwinger's Action Principle
de Melo, C A M; Ramirez, J A
2016-01-01
The most realistic situations in quantum mechanics involve the interaction between two or more systems. In the most of reliable models, the form and structure of the interactions generate differential equations which are, in the most of cases, almost impossible to solve exactly. In this paper, using the Schwinger Quantum Action Principle, we found the time transformation function that solves exactly the harmonic oscillator interacting with a set of other harmonic coupled oscillators. In order to do it, we have introduced a new special set of creation and annihilation operators which leads directly to the \\emph{dressed states} associated to the system, which are the real quantum states of the interacting \\emph{\\textquotedblleft field-particle\\textquotedblright} system. To obtain the closed solution, it is introduced in the same foot a set of \\emph{normal mode} creation and annihilation operators of the system related to the first ones by an orthogonal transformation. We find the eigenstates, amplitude transiti...
Irregular Aharonov-Bohm effect for interacting electrons in a ZnO quantum ring.
Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk
2017-02-22
The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov-Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number.
The interactions between CdTe quantum dots and proteins: understanding nano-bio interface
Directory of Open Access Journals (Sweden)
Shreeram S. Joglekar
2017-01-01
Full Text Available Despite remarkable developments in the nanoscience, relatively little is known about the physical (electrostatic interactions of nanoparticles with bio macromolecules. These interactions can influence the properties of both nanoparticles and the bio-macromolecules. Understanding this bio-interface is a prerequisite to utilize both nanoparticles and biomolecules for bioengineering. In this study, luminescent, water soluble CdTe quantum dots (QDs capped with mercaptopropionic acid (MPA were synthesized by organometallic method and then interaction between nanoparticles (QDs and three different types of proteins (BSA, Lysozyme and Hemoglobin were investigated by fluorescence spectroscopy at pH= 7.4. Based on fluorescence quenching results, Stern-Volmer quenching constant (Ksv, binding constant (Kq and binding sites (n for proteins were calculated. The results show that protein structure (e.g.,globular, metalloprotein, etc. has a significant role in Protein-Quantum dots interactions and each type of protein influence physicochemical properties of Quantum dots differently.
Irregular Aharonov-Bohm effect for interacting electrons in a ZnO quantum ring
Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk
2017-02-01
The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov-Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number.
Modelling exciton–phonon interactions in optically driven quantum dots
DEFF Research Database (Denmark)
Nazir, Ahsan; McCutcheon, Dara
2016-01-01
We provide a self-contained review of master equation approaches to modelling phonon effects in optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions...
Energy Technology Data Exchange (ETDEWEB)
Camblong, Horacio E. [Department of Physics, University of San Francisco, San Francisco, CA 94117-1080 (United States)]. E-mail: camblong@usfca.edu; Epele, Luis N. [Laboratorio de Fisica Teorica, Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67-1900 La Plata (Argentina); Fanchiotti, Huner [Laboratorio de Fisica Teorica, Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67-1900 La Plata (Argentina); Garcia Canal, Carlos A. [Laboratorio de Fisica Teorica, Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67-1900 La Plata (Argentina); Ordonez, Carlos R. [Department of Physics, University of Houston, Houston, TX 77204-5506 (United States); World Laboratory Center for Pan-American Collaboration in Science and Technology, University of Houston Center, Houston, TX 77204-5506 (United States)
2007-05-14
A unified S-matrix framework of quantum singular interactions is presented for the comparison of self-adjoint extensions and physical renormalization. For the long-range conformal interaction the two methods are not equivalent, with renormalization acting as selector of a preferred extension and regulator of the unbounded Hamiltonian.
Influence of many-particle interactions on slow light phenomena in quantum dots
DEFF Research Database (Denmark)
Houmark-Nielsen, Jakob; Jauho, Antti-Pekka; Nielsen, Torben Roland;
2008-01-01
We investigate the impact of many-particle interactions on group-velocity slowdown achieved via Electromagnetically Induced Transparency (EIT) in quantum dots. Using a ladder scheme we find in the steady-state an increase in maximum slow-down as compared to the non-interacting case, which can...
A proof of Bell's inequality in quantum mechanics using causal interactions.
Robins, James M; VanderWeele, Tyler J; Gill, Richard D
2015-06-01
We give a simple proof of Bell's inequality in quantum mechanics using theory from causal interaction, which, in conjunction with experiments, demonstrates that the local hidden variables assumption is false. The proof sheds light on relationships between the notion of causal interaction and interference between treatments.
Spin-orbit interactions and quantum spin dynamics in cold ion-atom collisions
Tscherbul, Timur V; Buchachenko, Alexei A
2015-01-01
We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb$^+$-Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-oder spin-orbit (SO) interaction as the dominant source of hyperfine relaxation and decoherence in cold Yb$^+$-Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb$^+$ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than predicted by the Langevin capture theory and display a weak $T^{-0.3}$ temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb$^+$-Li should be used to minimize hyperfine relaxation and dec...
Quantum Correlation of Two Entangled Atoms Interacting with the Binomial Optical Field
Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing
2016-10-01
Quantum correlations of two atoms in a system of two entangled atoms interacting with the binomial optical field are investigated. In eight different initial states of the two atoms, the influence of the strength of the dipole-dipole interaction, probabilities of a the Bernoulli trial and particle number of the binomial optical field on the temporal evolution of the geometrical quantum discord between two atoms are discussed. The result shows that two atoms always exist the correlation for different parameters. In addition, when and only when the two atoms are initially in the maximally entangled state, the temporal evolution of geometrical quantum discord is not affected by the parameters, and always keep in the degree of geometrical quantum discord that is a fixed value.
Modeling charge relaxation in graphene quantum dots induced by electron-phonon interaction
Reichardt, Sven; Stampfer, Christoph
2016-06-01
We study and compare two analytic models of graphene quantum dots for calculating charge relaxation times due to electron-phonon interaction. Recently, charge relaxation processes in graphene quantum dots have been probed experimentally and here we provide a theoretical estimate of relaxation times. By comparing a model with pure edge confinement to a model with electrostatic confinement, we find that the latter features much larger relaxation times. Interestingly, relaxation times in electrostatically defined quantum dots are predicted to exceed the experimentally observed lower bound of ˜100 ns.
Evolution of a quantum system of many particles interacting via the generalized Yukawa potential
Bogoliubov, N. N.; Rasulova, M. Yu.; Avazov, U. A.
2016-12-01
We study the evolution of a system of N particles that have identical masses and charges and interact via the generalized Yukawa potential. The system is placed in a bounded region. The evolution of such a system is described by the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain of quantum kinetic equations. Using semigroup theory, we prove the existence of a unique solution of the BBGKY chain of quantum kinetic equations with the generalized Yukawa potential.
Electron-phonon interaction in quantum transport through quantum dots and molecular systems
Ojeda, J. H.; Duque, C. A.; Laroze, D.
2016-12-01
The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.
Calculation of hyperfine interaction in spherical quantum dot
Yakar, Yusuf; Çakır, Bekir; Özmen, Ayhan
2015-10-01
In this study, we have calculated the unperturbed wavefunctions and energy eigenvalues of the ground and excited states of a spherical quantum dot, GaAs/AlxGa1-xAs, by using quantum genetic algorithm and Hartree-Fock Roothaan method. Hyperfine coupling constant and hyperfine energy of 1s, 2p, 3d and 4f levels are carried out as a function of dot radius. The results show that the hyperfine constant and hyperfine energy varies rapidly in the strong and medium confining regions as dot radius decreases. It is worth pointing out that dot radius, impurity charge and angular momentum have a strong influence on the hyperfine energy. It is also found that hyperfine energy and hyperfine splitting vary with aluminium concentration ratio x.
Quantum Corrections to Solitons Composed of Interacting Fermions and Bosons.
Li, Ming
To understand quark-confinment and hadron physics, many models have been proposed in attempts to describe hadrons as bound states of quarks through using solitons in an effective theory. Here we utilize a method of Green's function to study the quantum corrections to solitons at the one-loop level. We apply it first to investigate several two dimensional non-linear theories. We then generalize it to study in detail the one loop quantum corrections to nontopological solitons in the four dimensional Friedberg -Lee soliton model, which reduces to either the MIT or the SLAC bag model for appropriate limits of parameters in the theory. The derivative and inverse mass expansions to the non-local one loop energy are studied in detail. The behaviors of the model at finite temperature and baryon density are also studied.
Quantum control without access to the controlling interaction
Janzing, D; Zeier, R; Beth, T; Janzing, Dominik; Armknecht, Frederik; Zeier, Robert; Beth, Thomas
2001-01-01
In our model a fixed Hamiltonian acts on the joint Hilbert space of a quantum system and its controller. We show under which conditions measurements, state preparations, and unitary implementations on the system can be performed by quantum operations on the controller only. It turns out that a measurement of the observable A and an implementation of the one-parameter group exp(iAr) can be performed by almost the same sequence of control operations. Furthermore measurement procedures for A+B, for (AB+BA), and for i[A,B] can be constructed from measurements of A and B. This shows that the algebraic structure of the set of observables can be explained by the Lie group structure of the unitary evolutions on the joint Hilbert space of the measuring device and the measured system. A spin chain model with nearest neighborhood coupling shows that the border line between controller and system can be shifted consistently.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Three-body interaction plays an important role in many-body physics,and quantum computer is efficient in simulating many-body interactions. We have experimentally demonstrated the general three-body interactions in a three-qubit nuclear magnetic resonance ensemble quantum computer. Using a nuclear magnetic resonance computer we implemented general forms of three-body interactions including σ 1x σ z2 σ x3 and σ 1x σ z2 σ y3 . The results show good agreement between theory and experiment. We have also given a concise and practical formula for a general n-body interaction in terms of one-and two-body interactions.
Bohr's Relational Holism and the classical-quantum Interaction
Dorato, Mauro
2016-01-01
In this paper I present and critically discuss the main strategies that Bohr used and could have used to fend off the charge that his interpretation does not provide a clear-cut distinction between the classical and the quantum domain. In particular, in the first part of the paper I reassess the main arguments used by Bohr to advocate the indispensability of a classical framework to refer to quantum phenomena. In this respect, by using a distinction coming from an apparently unrelated philosophical corner, we could say that Bohr is not a revisionist philosopher of physics but rather a descriptivist one in the sense of Strawson. I will then go on discussing the nature of the holistic link between classical measurement apparatuses and observed system that he also advocated. The oft-repeated conclusion that Bohr's interpretation of the quantum formalism is untenable can only be established by giving his arguments as much force as possible, which is what I will try to do in the following by remaining as faithful ...
Prykarpatski, A. K.; Bogolubov, N. N.
2017-01-01
A quantum fermionic massless charged particle self-intercating with its own self-generated bosonic electromagnetic field is reanalyzed in the framework of the Fock many-temporal and Feynman proper time approaches. The self-interaction phenomenon structure is discussed within the renormalized quantum Fock space. The quantum electromagnetic charged particle mass origin is suggested.
Life and death in Freudian metapsychology: a reappraisal of the second instinctual dualism.
Caropreso, Fátima; Simanke, Richard Theisen
2008-10-01
In this paper we re-examine the second instinctual dualism hypothesis introduced by Freud in Beyond the Pleasure Principle. We suggest that the life instinct hypothesis as something opposed to the death instinct does not seem to fit into this theory easily. On the other hand, death instinct turns out to be an internal necessity of Freudian metapsychological theory from the beginning of Freud's metapsychological writing. We shall argue, based on the ideas formulated in Beyond the Pleasure Principle and in later metapsychological texts, that Freud could not wholly justify the existence of an opposition and a symmetry between the two classes of instincts. Even though up to his last works Freud held on to this instinctual dualism, again and again his arguments lead to the idea that the life instincts should be regarded, ultimately, as death instincts.
Colloidal Interactions of Quantum Dots in Apolar Liquids
van Rijssel, J.
2013-01-01
In this thesis, the main topic is the interactions of nanoparticles in apolar liquids. These includes both the colloidal interactions between nanoparticles and the interaction of the nanoparticles with an external potential from a liquid/air interface or a magnetic field. The understanding of these
Geometric Quantum Discord in the Heisenberg XX Model with Three-Spin Interactions
Xie, Yu-Xia; Liu, Jing; Sun, Yu-Hang
2017-02-01
Quantum discord is a resource for quantum information processing tasks, and seeking flexible ways to control it is of practical significance. We investigate the trace distance, Bures distance, and Hellinger distance geometric quantum discords (GQDs) for thermal states of the Heisenberg XX chain with three-spin interactions. The results show that both the XZX + YZY and XZY - YZX types of three-spin interactions can be used to enhance evidently the GQDs for the boundary spins of the chain. The optimal strengths of three-spin interactions for which the maximum enhancement of the GQDs are achieved are strongly dependent on the GQD measures we adopted and the number of spins in the chain.
Geometric Quantum Discord in the Heisenberg XX Model with Three-Spin Interactions
Xie, Yu-Xia; Liu, Jing; Sun, Yu-Hang
2016-11-01
Quantum discord is a resource for quantum information processing tasks, and seeking flexible ways to control it is of practical significance. We investigate the trace distance, Bures distance, and Hellinger distance geometric quantum discords (GQDs) for thermal states of the Heisenberg XX chain with three-spin interactions. The results show that both the XZX + YZY and XZY -YZX types of three-spin interactions can be used to enhance evidently the GQDs for the boundary spins of the chain. The optimal strengths of three-spin interactions for which the maximum enhancement of the GQDs are achieved are strongly dependent on the GQD measures we adopted and the number of spins in the chain.
Cheng, Jun-Qing; Wu, Wei; Xu, Jing-Bo
2017-09-01
We investigate the multipartite entanglement and trace distance of the one-dimensional anisotropic spin-1/2 XXZ spin chain with the Dzyaloshinskii-Moriya interaction and find that the Dzyaloshinskii-Moriya interaction can influence the entanglement distribution and increase the proportion of multipartite entanglement in the entanglement structure. Furthermore, we explore the quantum phase transition of the XXZ spin chain with Dzyaloshinskii-Moriya interaction by making use of the multipartite entanglement and trace distance along with the quantum renormalization group method. It is found that the first derivatives of renormalized multipartite entanglement and trace distance for the ground state have dramatic changes near the critical point, and the renormalized multipartite entanglement and trace distance obey the universal finite-size scaling laws in the vicinity of the quantum critical point.
Kerman, Andrew J
2012-01-01
Electrical resonators are widely used in quantum information processing with any qubits that are manipulated via electromagnetic interactions. In nearly all examples to date they are engineered to interact with qubits via real or virtual exchange of (typically microwave) photons, and the resonator must therefore have both a high quality factor and strong quantum fluctuations, corresponding to the strong-coupling limit of cavity QED. Although great strides in the control of quantum information have been made using this so-called "circuit QED" architecture, it also comes with some important disadvantages. In this paper, we discuss a new paradigm for coupling qubits electromagnetically via resonators, in which the qubits do not exchange photons with the resonator, but instead where the qubits exert quasi-classical, effective "forces" on it. We show how this type of interaction is similar to that induced between the internal state of a trapped atomic ion and its center-of-mass motion by the photon recoil momentum...
Institute of Scientific and Technical Information of China (English)
Chen Li-Bing; Jin Rui-Bo; Lu Hong
2008-01-01
Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM).We explicitly construct the required remote POVM. The remote POVM can be realized by performing a noniocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs.However, for some subset it can be very close to an optimal value in an ordinary local POVM.
Beyond Dualisms in Methodology: An Integrative Design Research Medium "MAPS" and some Reflections
Chow, Rosan; Jonas, Wolfgang
2009-01-01
Design research is an academic issue and increasingly an essential success factor for industrial, organizational and social innovation. The fierce rejection of 1st generation design methods in the early 1970s resulted in the postmodernist attitude of "no methods", and subsequently, after more than a decade, in the strong adoption of scientific methods, or "the" scientific method, for design research. The current situation regarding methodology is characterized by unproductive dualisms such as...
A study in dualism: The strange case of Dr. Jekyll and Mr. Hyde.
Singh, Shubh M; Chakrabarti, Subho
2008-07-01
R. L. Stevenson's novel, The Strange Case of Dr. Jekyll and Mr. Hyde is a prominent example of Victorian fiction. The names Jekyll and Hyde have become synonymous with multiple personality disorder. This article seeks to examine the novel from the view point of dualism as a system of philosophy and as a religious framework and also from the view point of Freud's structural theory of the mind.
Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots
Palyi, Andras; Csiszar, Gabor
2015-03-01
Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.
Diel dualism in the energy consumption of the European catfish Silurus glanis.
Slavík, O; Horký, P
2012-12-01
Twenty individuals of the largest European freshwater predator, the European catfish Silurus glanis, were tagged with electromyogram (EMG) physiological telemetry sensors. The fish were observed during diel cycles during the spring and summer in the Elbe and Berounka Rivers, Czech Republic. The purpose of this study was to determine whether diel dualism in the activity of S. glanis occurs naturally or is induced by the laboratory environment and by the conditions occurring in aquaculture. The results obtained from the riverine environment tended to show dualism in the use of the light and dark phases of the day because 35% of the individuals varied from a site-specific common diel activity pattern. The EMG values increased in accordance with the mass (M) of the fish. To eliminate the influence of M on individual energy consumption, the EMG records were analysed in terms of the EMG:M ratios. High individual variability was found in these ratios. The diel activity pattern of the individuals with relatively high energy consumption differed from the common diel activity pattern. In contrast, the fish that adopted the common diel activity pattern displayed relatively low energy consumption. The results of this study indicated that dualism and energy consumption are related. The EMG values also varied with the values of the environmental variables. Increasing temperature was associated with high EMG values, whereas the EMG values decreased with increasing flow.
Interaction-based quantum metrology showing scaling beyond the Heisenberg limit.
Napolitano, M; Koschorreck, M; Dubost, B; Behbood, N; Sewell, R J; Mitchell, M W
2011-03-24
Quantum metrology aims to use entanglement and other quantum resources to improve precision measurement. An interferometer using N independent particles to measure a parameter χ can achieve at best the standard quantum limit of sensitivity, δχ ∝ N(-1/2). However, using N entangled particles and exotic states, such an interferometer can in principle achieve the Heisenberg limit, δχ ∝ N(-1). Recent theoretical work has argued that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity δχ ∝ N(-k) with appropriate entangled states and δχ ∝ N(-(k-1/2)) even without entanglement. Here we demonstrate 'super-Heisenberg' scaling of δχ ∝ N(-3/2) in a nonlinear, non-destructive measurement of the magnetization of an atomic ensemble. We use fast optical nonlinearities to generate a pairwise photon-photon interaction (corresponding to k = 2) while preserving quantum-noise-limited performance. We observe super-Heisenberg scaling over two orders of magnitude in N, limited at large numbers by higher-order nonlinear effects, in good agreement with theory. For a measurement of limited duration, super-Heisenberg scaling allows the nonlinear measurement to overtake in sensitivity a comparable linear measurement with the same number of photons. In other situations, however, higher-order nonlinearities prevent this crossover from occurring, reflecting the subtle relationship between scaling and sensitivity in nonlinear systems. Our work shows that interparticle interactions can improve sensitivity in a quantum-limited measurement, and experimentally demonstrates a new resource for quantum metrology.
Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng
2005-01-01
Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....
Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;
2005-01-01
Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....
Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field
DEFF Research Database (Denmark)
Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.
2015-01-01
We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...
Quantum dots with disorder and interactions: a solvable large-g limit.
Murthy, Ganpathy; Shankar, R
2003-02-14
We analyze the problem of interacting electrons on a ballistic quantum dot with chaotic boundary conditions, where the effective interactions at low energies are characterized by Landau parameters. When the dimensionless conductance g of the dot is large, the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as g --> infinity (as in a large-N theory), leading to a phase transition in each Landau interaction channel. In the weak-coupling phase constant charging and exchange interactions dominate the low-energy physics, while the strong-coupling phase displays a spontaneous distortion of the Fermi surface, smeared out by disorder.
Institute of Scientific and Technical Information of China (English)
WANG Da-zhi; CHEN Yu-guang
2008-01-01
The conductance and polarization are studied in one-dimensional ballistic quantum wire with both Rashba and Dresselhaus spin-orbit interactions.Two kinds of structures are considered in the present work,one with mixture of two interactions and the other with sequence structure of them.We find that the conductance and polarization are strongly affected by these two interactions.With both interactions we obtain a multi-peak contour of spin polarization and a dramatic oscillation pattern of spin conductance,which are due to the different combination of the two spin-orbit interactions.
Speed and entropy of an interacting continuous time quantum walk
De Falco, D; Falco, Diego de; Tamascelli, Dario
2006-01-01
We present some dynamic and entropic considerations about the evolution of a continuous time quantum walk implementing the clock of an autonomous machine. On a simple model, we study in quite explicit terms the Lindblad evolution of the clocked subsystem, relating the evolution of its entropy to the spreading of the wave packet of the clock. We explore possible ways of reducing the generation of entropy in the clocked subsystem, as it amounts to a deficit in the probability of finding the target state of the computation. We are thus lead to examine the benefits of abandoning some classical prejudice about how a clocking mechanism should operate.
Two Interacting Electrons in a Vertically Coupled Quantum Dot
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang; WANG An-Mei
2004-01-01
We study a two-electron system in a double-layer quantum dot under a magnetic field by means of the exact diagonalization of the Hamiltonian matrix.We find that discontinuous ground-state energy transitions are induced by an external magnetic field in the case of strong coupling.However,in the case of weak coupling,the angular momentum L of the true ground state does not change in accordance with the change of the magnetic field B and remains L=0.
Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.
Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel
2013-01-30
We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.
Fast quantum control and light-matter interactions at the 10,000 quanta level
Alonso, J; Soler, Z U; Fadel, M; Marinelli, M; Keitch, B C; Negnevitsky, V; Home, J P
2015-01-01
Fast control of quantum systems is essential in order to make use of quantum properties before they are degraded by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems into macroscopic regimes at the boundary between quantum and classical physics. Bang-bang control attains the ultimate speed limit by making large changes to control fields on timescales much faster than the system can respond, however these methods are often challenging to implement experimentally. Here we demonstrate bang-bang control of a trapped-ion oscillator using nano-second switching of the trapping potentials. We perform controlled displacements which allow us to realize quantum states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations which are far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the poten...
Interacting relativistic quantum dynamics for multi-time wave functions
Directory of Open Access Journals (Sweden)
Lienert Matthias
2016-01-01
Full Text Available In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.
Interacting relativistic quantum dynamics for multi-time wave functions
Lienert, Matthias
2016-11-01
In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.
Enhanced Quantum Reflection of Ultracold Atoms with Strong Interatomic Interaction
Institute of Scientific and Technical Information of China (English)
LIU Min; ZHAN Ming-Sheng
2008-01-01
We calculate the reflection probability for ultracold alkali atoms incident on a solid surface. By considering the interatomic interaction and using the WKB method, it is shown that the repulsive interaction between atoms has the effect of increasing the reflection probability. The increasing amplitude is related with the interatomic interaction and the depth of atom-surface potential. In addition, we also perform a numerical calculation to testify the effect of the interatomic interaction, and the analytic result is proven by the numerical result.
Quantum Monte Carlo study of strange correlator in interacting topological insulators
Wu, Han-Qing; He, Yuan-Yao; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi
Distinguishing the nontrivial symmetry-protected topological (SPT) phase from the trivial insulator phase in the presence of electron-electron interaction is an urgent question to the study of topological insulators. In this work, we demonstrate that the strange correlator is a sensitive diagnosis to detect SPT states in interacting systems. Employing large-scale quantum Monte Carlo (QMC) simulations, we investigate the interaction-driven quantum phase transition in the Kane-Mele-Hubbard model. The transition from the quantum spin Hall insulator at weak interaction to an antiferromagnetic Mott insulator at strong interaction can be readily detected by the momentum space behavior of the strange correlator in single-particle, spin, and pairing sectors. The interaction e?ects on the symmetry-protected edge states in various sectors are well captured in the QMC measurements of strange correlators. Moreover, we demonstrate that the strange correlator is technically easier to implement in QMC and more robust in performance than other proposed numerical diagnoses for interacting topological states, as only static correlations are needed. The attempt in this work paves the way for using the strange correlator to study interaction-driven topological phase transitions.
Yadav, N.; Ghosh, S.; Agrawal, A.
2017-05-01
Using quantum hydrodynamic model (QHD) of semiconductor plasma for a one-component we present an analytical investigation on parametric interaction of a laser radiation in an unmagnetised material with a strain-dependent dielectric constant. The nonlinear current density and third order susceptibility are analyzed in different wave number regions in presence and absence of quantum effect. We present the qualitative behavior of threshold pump intensity with respect to wave number in presence and absence of quantum effect. The numeric estimates are made for n-BaTiO3 crystals at 77k duly irradiated by pulsed 10.6μm CO2 laser. It is found that the quantum correction through Fermi temperature and Bohm potential terms modifies the threshold characteristics.
The effect of quantum correction on plasma electron heating in ultraviolet laser interaction
Zare, S.; Yazdani, E.; Sadighi-Bonabi, R.; Anvari, A.; Hora, H.
2015-04-01
The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 107 K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.
The effect of quantum correction on plasma electron heating in ultraviolet laser interaction
Energy Technology Data Exchange (ETDEWEB)
Zare, S.; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir; Anvari, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Yazdani, E. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)
2015-04-14
The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.
Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction
Directory of Open Access Journals (Sweden)
Yokoyama Tomohiro
2011-01-01
Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d
Spin-orbit interaction induced current dip in a single quantum dot coupled to a spin
Giavaras, G.
2017-03-01
Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet-triplet anticrossing point which appears due to the spin-orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin-orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.
Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties
Energy Technology Data Exchange (ETDEWEB)
Sinclair, Michael B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Fan, Hongyou [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Brener, Igal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Liu, Sheng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Luk, Ting S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Li, Binsong [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-09-01
QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.
Long-distance quantum state transfer through cavity-assisted interaction
Institute of Scientific and Technical Information of China (English)
Li Yu-Ning; Mei Feng; Yu Ya-Fei; and Zhang Zhi-Ming
2011-01-01
We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions.In our scheme,a coherent optical pulse sequentially interacts with two distant atoms trapped in separated cavities. Through the measurement of the state of the first atom and the homodyne detection of the final output coherent light,the quantum state can be transferred into the second atom with a success probability of unity and a fidelity of unity.In addition,our scheme neither requires the high-Q cavity working in the strong coupling regime nor employs the single-photon quantum channel,which greatly relaxes the experimental requirements.
Chip-scale Photonic Devices for Light-matter Interactions and Quantum Information Processing
Gao, Jie
Chip-scale photonic devices such as microdisks, photonic crystal cavities and slow-light photonic crystal waveguides possess strong light localization and long photon lifetime, which will significantly enhance the light-matter interactions and can be used to implement new functionalities for both classical and quantum information processing, optical computation and optical communication in integrated nanophotonic circuits. This thesis will focus on three topics about light matter interactions and quantum information processing with chip-scale photonic devices, including 1) Design and characterization of asymmetric resonate cavity with radiation directionality and air-slot photonic crystal cavity with ultrasmall effective mode volume, 2) Exciton-photon interactions between quantum dots and photonic crystal devices and non-classical photon source from a single quantum dot, and 3) Quantum controlled phase gate and phase switching based on quantum dots and photonic crystal waveguide. The first topic is engineered control of radiation directionality and effective mode volume for optical mode in chip-scale silicon micro-/nano-cavities. High quality factor (Q), subwavelength mode volume ( V) and controllable radiation directionality are the major properties for optical cavities designs. In Chapter 2, asymmetric resonant cavities with rational caustics are proposed and interior whispering gallery modes in monolithic silicon mesoscopic microcavities are experimentally demonstrated. These microcavities possess unique robustness of cavity quality factor against roughness Rayleigh scattering. In Chapter 3, air-slot mode-gap photonic crystal cavities with quality factor of 104 and effective mode volume ˜ 0.02 cubic wavelengths are experimentally demonstrated. The origin of the high Q air-slot cavity mode is the mode-gap effect from the slotted photonic crystal waveguide mode with negative dispersion. The second topic is exciton-photon coupling between quantum dots and
Mass Charge Interactions for Visualizing the Quantum Field
Baer, Wolfgang
Our goal is to integrate the objective and subjective aspects of our personal experience into a single complete theory of reality. To further this endeavor we replace elementary particles with elementary events as the building blocks of an event oriented description of that reality. The simplest event in such a conception is an adaptation of A. Wheeler's primitive explanatory--measurement cycle between internal observations experienced by an observer and their assumed physical causes. We will show how internal forces between charge and mass are required to complete the cyclic sequence of activity. This new formulation of internal material is easier to visualize and map to cognitive experiences than current formulations of sub-atomic physics. In our formulation, called Cognitive Action Theory, such internal forces balance the external forces of gravity-inertia and electricity-magnetism. They thereby accommodate outside influences by adjusting the internal structure of material from which all things are composed. Such accommodation is interpreted as the physical implementation of a model of the external physical world in the brain of a cognitive being or alternatively the response mechanism to external influences in the material of inanimate objects. We adopt the deBroglie-Bohm causal interpretation of QT to show that the nature of space in our model is mathematically equivalent to a field of clocks. Within this field small oscillations form deBroglie waves. This interpretation allows us to visualize the underlying structure of empty space with a charge-mass separation field in equilibrium, and objects appearing in space with quantum wave disturbances to that equilibrium occurring inside material. Space is thereby associated with the internal structure of material and quantum mechanics is shown to be, paraphrasing Heisenberg, the physics of the material that knows the world.
Directory of Open Access Journals (Sweden)
Neng-Zhong Xie
Full Text Available Three strong interactions between amino acid side chains (salt bridge, cation-π, and amide bridge are studied that are stronger than (or comparable to the common hydrogen bond interactions, and play important roles in protein-protein interactions.Quantum chemical methods MP2 and CCSD(T are used in calculations of interaction energies and structural optimizations.The energies of three types of amino acid side chain interactions in gaseous phase and in aqueous solutions are calculated using high level quantum chemical methods and basis sets. Typical examples of amino acid salt bridge, cation-π, and amide bridge interactions are analyzed, including the inhibitor design targeting neuraminidase (NA enzyme of influenza A virus, and the ligand binding interactions in the HCV p7 ion channel. The inhibition mechanism of the M2 proton channel in the influenza A virus is analyzed based on strong amino acid interactions.(1 The salt bridge interactions between acidic amino acids (Glu- and Asp- and alkaline amino acids (Arg+, Lys+ and His+ are the strongest residue-residue interactions. However, this type of interaction may be weakened by solvation effects and broken by lower pH conditions. (2 The cation- interactions between protonated amino acids (Arg+, Lys+ and His+ and aromatic amino acids (Phe, Tyr, Trp and His are 2.5 to 5-fold stronger than common hydrogen bond interactions and are less affected by the solvation environment. (3 The amide bridge interactions between the two amide-containing amino acids (Asn and Gln are three times stronger than hydrogen bond interactions, which are less influenced by the pH of the solution. (4 Ten of the twenty natural amino acids are involved in salt bridge, or cation-, or amide bridge interactions that often play important roles in protein-protein, protein-peptide, protein-ligand, and protein-DNA interactions.
Quantum emitter dipole-dipole interactions in nanoplasmonic systems
Nečada, Marek; Törmä, Päivi
2016-01-01
We introduce a generalized Dicke-like model to describe two-level systems coupled with a single bosonic mode. In addition, the two-level systems mutually interact via direct dipole-dipole interaction. We apply the model to an ensemble of dye molecules coupled to a plasmonic excitation in a metallic nanoparticle and study how the dipole-dipole interaction and configurational randomness introduced to the system affect the energy spectra. Comparing the system eigenenergies obtained by our model with the light spectra from a multiple-scattering simulation, we suggest a way to identify dark modes in our model. Finally, we perform a parameter sweep in order to determine the scaling properties of the system and to classify the regions of the parameter space where the dipole-dipole interactions can have significant effects.
Entangling Dipole-Dipole Interactions for Quantum Logic in Optical Lattices
Deutsch, Ivan
2000-06-01
The ability to engineer the quantum state of a many-body system represents the ``holy grail" of coherent control and opens the door to a host of new applications and fundamental studies ranging from improvements in precision measurement to quantum computation. At the heart of these quantum-information processing tasks are entangled states. These can be created through a ``quantum-circuit" consisting of a series of simple quantum logic gates acting only on single or pairs of qubits. Any physical implementation of a quantum circuit must contend with an inherent conflict. Qubits must strongly couple to one another and to an external classical field which drives the algorithm, while simultaneously coupling very weakly to the noisy environment which decoheres the quantum superpositions. We have identified a new system for quantum-information processing: ultra-cold trapped neutral atoms (G. K. Brennen et al. ), Phys. Rev. Lett. 82 , 1060 (1999); see also eprint quant- ph/9910031. Neutrals interact very weakly with the environment and coupling between them can be induced on demand through resonant excitation or elastic collisions via direct overlap between wavepackets(D. Jaksch et al.), Phys. Rev. Lett. 82 1975 (1999).. The ability to turn interactions on and off reduces decoherence and the spread of errors amongst qubits. In the implementation presented here I will discuss entangling atoms with electric dipole-dipole interactions in optical lattices (P.S. Jessen and I. H. Deutsch, Adv. At. Mol. Phys. 36), 91 (1996).. These traps provide an extremely flexible environment for coherent control of both internal and external degrees of freedom of atom wave packets as in ion traps(D. Wineland et al.), Fortschr. Phys. 46, 363 (1998).. Dipole-dipole interactions can be coherent when atoms are tightly localized at a distance small compared to the optical wavelength. By inducing dipoles conditional on the logical state of the atoms we can engineer quantum gates. Detailed analysis
Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges
Saffman, Mark
2016-01-01
We present a review of quantum computation with neutral atom qubits. After an overview of architectural options we examine Rydberg mediated gate protocols and fidelity for two- and multi-qubit interactions. We conclude with a summary of the current status and give an outlook for future progress.
Electron-phonon interaction in a semiconductor quantum wire embedded into the semiconductor medium
Zharkoj, V P
2002-01-01
The renormalization of electron ground state energy due to the different types of interaction with confined (L) and interface (I) phonons in a semiconductor cylindrical quantum wire (QW) embedded into the semiconductor medium by the example of a HgS/CdS nanosystem.
Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;
2004-01-01
A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...
Interaction-induced effects in the nonlinear coherent response of quantum-well excitons
DEFF Research Database (Denmark)
Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner;
1999-01-01
Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...
A proof of Bell's inequality in quantum mechanics using causal interactions
Robins, James M; Gill, Richard D
2012-01-01
We give a simple proof of Bell's inequality in quantum mechanics which, in conjunction with experiments, demonstrates that the local hidden variables assumption is false. The proof sheds light on relationships between the notion of causal interaction and interference between particles.
Four-terminal resistance in a clean interacting quantum wire with invasive contacts
Energy Technology Data Exchange (ETDEWEB)
Aita, H., E-mail: lili@df.uba.ar [Departamento de Fisica, Facultad de Ciencias Exactas-UNLP, CC 67, La Plata 1900 (Argentina); IFLP-CONICET (Argentina); Arrachea, L. [Departamento de Fisica and IFIBA, Universidad de Buenos Aires, Pebellon I, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Naon, C. [Departamento de Fisica, Facultad de Ciencias Exactas-UNLP, CC 67, La Plata 1900 (Argentina); IFLP-CONICET (Argentina)
2012-08-15
We investigate the behavior of the four-terminal resistance R{sub 4pt} in an interacting quantum wire described by a Luttinger liquid with an applied bias voltage V and coupled to two voltage probes. We extend previous results, obtained for very weakly coupled contacts, to the case in which the effects of the probes become non-trivially correlated.
Non-Hermitian interaction representation and its use in relativistic quantum mechanics
Znojil, Miloslav
2017-10-01
The textbook interaction-picture formulation of quantum mechanics is extended to cover the unitarily evolving systems in which the Hermiticity of the observables is guaranteed via an ad hoc amendment of the inner product in Hilbert space. These systems are sampled by the Klein-Gordon equation with a space- and time-dependent mass term.
Quantum Statistical Properties of Binomial Field Interacting with Two Entangled Atoms
Institute of Scientific and Technical Information of China (English)
JIAO Zhi-Yong; MA Jun-Mao; SHANG Yong-Tao; LI Ning; FU Xia
2008-01-01
Quantum statistical properties of the binomial field interacting with the two entangled atoms are investi-gated for the different initial conditions. It is found that the sub-Poissonian distribution and the antibunching effect can be presented for the certain ranges of the involved parameters.
Macroscopic Quantum Superposition States in a Model of Photon-Supersonic Phonon Interaction
Institute of Scientific and Technical Information of China (English)
CHAI Jin-Hua; WANG Yan-Bang; LU Yi-Qun
2000-01-01
A model of photon-hypersonic phonon interaction is proposed. The evolution of macroscopic quantum superpo sition states is analyzed, including the wave function and number distribution. It is shown that a superposition state of hypersonic phonon modes can be generated in the case of nondetuning and no losses.
Sloth, Marianne; Bilde, Merete; Mikkelsen, Kurt V.
2003-06-01
A quantum mechanical/molecular mechanical aerosol model is developed to describe the interaction between gas phase molecules and atmospheric particles. The model enables the calculation of interaction energies and time-dependent properties. We use the model to investigate how a succinic acid molecule interacts with an aqueous particle. We show how the interaction energies and linear response properties (excitation energies, transition moments, and polarizabilities) depend on the distance between aerosol particle and molecule and on their relative orientation. The results are compared with those obtained previously using a dielectric continuum model [Sloth et al., J. Phys. Chem. (submitted)].
Institute of Scientific and Technical Information of China (English)
LIU WenZhang; ZHANG JingFu; LONG GuiLu
2009-01-01
The four-body interaction plays an important role in many-body systems,and it can exhibit interesting phase transition behaviors.In this letter,we report the experimental demonstration of a four-body interaction in a four-qubit nuclear magnetic resonance quantum information processor.The strongly modulating pulse is used to implement spin selective excitation.The results show a good agreement between theory and experiment.
Interaction phenomena in graphene seen through quantum capacitance.
Yu, G L; Jalil, R; Belle, Branson; Mayorov, Alexander S; Blake, Peter; Schedin, Frederick; Morozov, Sergey V; Ponomarenko, Leonid A; Chiappini, F; Wiedmann, S; Zeitler, Uli; Katsnelson, Mikhail I; Geim, A K; Novoselov, Kostya S; Elias, Daniel C
2013-02-26
Capacitance measurements provide a powerful means of probing the density of states. The technique has proved particularly successful in studying 2D electron systems, revealing a number of interesting many-body effects. Here, we use large-area high-quality graphene capacitors to study behavior of the density of states in this material in zero and high magnetic fields. Clear renormalization of the linear spectrum due to electron-electron interactions is observed in zero field. Quantizing fields lead to splitting of the spin- and valley-degenerate Landau levels into quartets separated by interaction-enhanced energy gaps. These many-body states exhibit negative compressibility but the compressibility returns to positive in ultrahigh B. The reentrant behavior is attributed to a competition between field-enhanced interactions and nascent fractional states.
Laser-Matter Interaction: Classical Regime versus Quantum Regime
Pálffy, Adriana; Weidenmüller, Hans A
2016-01-01
Doppler backscattering of optical laser photons on a "flying mirror" of relativistic electrons promises to yield coherent photons with MeV-range energies. We compare the nuclear interaction of such a laser pulse with the standard atom-laser interaction. The mean-field description of atoms must be replaced by a rate equation and the classical field strength, far too faint in nuclei, by the dipole transition rate. Significant nuclear excitation occurs for photon numbers much smaller than typical for atoms. That drastically reduces the requirements on the experimental realization of a "flying mirror".
Quantum Gravity: Unification of Principles and Interactions, and Promises of Spectral Geometry
Directory of Open Access Journals (Sweden)
Bernhelm Booß-Bavnbek
2007-10-01
Full Text Available Quantum gravity was born as that branch of modern theoretical physics that tries to unify its guiding principles, i.e., quantum mechanics and general relativity. Nowadays it is providing new insight into the unification of all fundamental interactions, while giving rise to new developments in modern mathematics. It is however unclear whether it will ever become a falsifiable physical theory, since it deals with Planck-scale physics. Reviewing a wide range of spectral geometry from index theory to spectral triples, we hope to dismiss the general opinion that the mere mathematical complexity of the unification programme will obstruct that programme.
Quantum Gravity: Unification of Principles and Interactions, and Promises of Spectral Geometry
Booß-Bavnbek, Bernhelm; Esposito, Giampiero; Lesch, Matthias
2007-10-01
Quantum gravity was born as that branch of modern theoretical physics that tries to unify its guiding principles, i.e., quantum mechanics and general relativity. Nowadays it is providing new insight into the unification of all fundamental interactions, while giving rise to new developments in modern mathematics. It is however unclear whether it will ever become a falsifiable physical theory, since it deals with Planck-scale physics. Reviewing a wide range of spectral geometry from index theory to spectral triples, we hope to dismiss the general opinion that the mere mathematical complexity of the unification programme will obstruct that programme.
Development and Evaluation of a Quantum Interactive Learning Tutorial on Larmor Precession Of Spin
Brown, enjamin R
2016-01-01
We conducted research on student difficulties and developed and evaluated a quantum interactive learning tutorial (QuILT) on Larmor precession of spin to help students learn about time-dependence of expectation values in quantum mechanics. The QuILT builds on students' prior knowledge and strives to help them develop a good knowledge structure of relevant concepts. It adapts visualization tools to help students develop intuition about these topics and focuses on helping them integrate qualitative and quantitative understanding. Here, we summarize the development and preliminary evaluation.
Gonoskov, Ivan; Marklund, Mattias
2016-05-01
We propose and develop a general method of numerical calculation of the wave function time evolution in a quantum system which is described by Hamiltonian of an arbitrary dimensionality and with arbitrary interactions. For this, we obtain a general n-order single-step propagator in closed-form, which could be used for the numerical solving of the problem with any prescribed accuracy. We demonstrate the applicability of the proposed approach by considering a quantum problem with non-separable time-dependent Hamiltonian: the propagation of an electron in focused electromagnetic field with vortex electric field component.
Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions
2016-08-05
interactions (2–6). Alternative approaches for quantum simulation use dipolar quantum gases (7, 8), polar molecules (9–11), and Rydberg atoms (12–15...α−pσ m gsσ n sg. [6] In an ideal situation, the gradient per site satisfies δ jXαX*β~Jj such that the contributions from HXY , p ∀ p≠ 0 can be...acquires spatial-dependent, complex spin-exchange coefficients via the phase of XαX*β in Eq. 8; see later discussions. Beyond an ideal setting, we now
Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System
Jurcevic, P.; Shen, H.; Hauke, P.; Maier, C.; Brydges, T.; Hempel, C.; Lanyon, B. P.; Heyl, M.; Blatt, R.; Roos, C. F.
2017-08-01
The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.
Negative Differential Resistance Probe for Interdot Interactions in a Double Quantum Dot Array.
Pozner, Roni; Lifshitz, Efrat; Peskin, Uri
2015-05-07
Colloidal quantum dots are free-standing nanostructures with chemically tunable electronic properties. In this work, we consider a new STM tip-double quantum dot (DQD)-surface setup with a unique connectivity, in which the tip is coupled to a single dot and the coupling to the surface is shared by both dots. Our theoretical analysis reveals a unique negative differential resistance (NDR) effect attributed to destructive interference during charge transfer from the DQD to the surface. This NDR can be used as a sensitive probe for interdot interactions in DQD arrays.
Chen, Xue-Wen; Agio, Mario
2012-01-01
We provide a general theoretical platform based on quantized radiation in absorptive and inhomogeneous media for investigating the coherent interaction of light with metallic structures in the immediate vicinity of quantum emitters. In the case of a very small metallic cluster, we demonstrate extreme regimes where a single emitter can either counteract or enhance particle absorption by three orders of magnitude. For larger structures, we show that an emitter can eliminate both scattering and absorption and cloak a plasmonic antenna. We provide physical interpretations of our results and discuss their applications in active metamaterials and quantum plasmonics.
Controllable cross-Kerr interaction between microwave photons in circuit quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Wu Qin-Qin; Liao Jie-Qiao; Kuang Le-Man
2011-01-01
We propose a scheme to enable a controllable cross-Kerr interaction between microwave photons in a circuit quantum electrodynamics (QED) system. In this scheme we use two transmission-line resonators (TLRs) and one superconducting quantum interference device (SQUID) type charge qubit, which acts as an artificial atom. It is shown that in the dispersive regime of the circuit-QED system, a controllable cross-Kerr interaction can be obtained by properly preparing the initial state of the qubit, and a large cross-phase shift between two microwave fields in the two TLRs can then be reached. Based on this cross-Kerr interaction, we show how to create a macroscopic entangled state between the two TLRs.
Quantum Chemistry Calculations on the Interaction Between Kaolinite and Gold
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The density function and discrete variation method (DFT-DVM) is used to study the interaction between kaolinite and gold. The correlation among the structure, chemical bond and stability is discussed. Several models are selected without gold and with gold in different directions and sites. The results show that the models with gold on the edge of kaolinite basal layer are more stable than those with gold above or under the layer, the models with gold near to ［AlO2(OH)4］ octahedra are more stable than those with gold near to the vacancy without aluminium. The interaction between gold and the surface ions of kaolinite is strong enough to form the surface complexes.
Quantum breathing mode of interacting particles in harmonic traps
Bauch, Sebastian; Hochstuhl, David; Balzer, Karsten; Bonitz, Michael
2010-04-01
The breathing mode - the uniform radial expansion and contraction of a system of interacting particles - is analyzed. Extending our previous work [Bauch et al 2009 Phys. Rev. B. 80 054515] we present a systematic analysis of the breathing mode for fermions with an inverse power law interaction potential w(r) ~ r-dwith d = 1,2,3 in the whole range of coupling parameters. The results thus cover the range from the ideal "gas" to the Wigner crystal-like state. In addition to exact results for two particles obtained from a solution of the time-dependent Schrödinger equation we present results for N = 4,6 from multiconfiguration time-dependent Hartree-Fock simulations.
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiupei, E-mail: xiupeiyang@163.com [Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637000 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China); Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan [College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China)
2015-06-15
Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.
Quantum-Classical Correspondence in Energy Space Two Interacting Spin-Particles
Borgonovi, F; Izrailev, F M; Borgonovi, Fausto; Guarneri, Italo; Izrailev, Felix
1998-01-01
The Hamiltonian conservative system of two interacting particles has been considered both in classical and quantum description. The quantum model has been realized using a symmetrized two-particle basis reordered in the unperturbed energy. Main attention is paid to the structure of chaotic eigenfunctions (EF) and to the local spectral density of states (LDOS). A remarkable correspondence has been found for the shapes of EF and LDOS in the energy representation, to their classical counterparts. Comparison with the Band Random Matrix theory predictions has revealed quite significant differences which are due to dynamical nature of the model. On the other hand, a partial agreement is found by inserting randomness `` ad hoc '' in the dynamical model for two-body matrix elements. This shows that, at least for small number of particles, care must be taken when classical correlations are neglected. The question of quantum localization in the energy space is discussed both for dynamical and random model.
Schroer, Bert
2010-01-01
Massive quantum matter of prescribed spin permits infinitely many possibilities of covariantization in terms of spinorial (undotted/dotted) pointlike fields, whereas massless finite helicity representations lead to large gap in this spinorial spectrum which quantum field theorists usually try to fill by inventing an indefinite metric vectorpotential (Gupta-Bleuler, BRST) outside the quantum theoretic realm. Only after completing the computation the expecration of the gauge invariant observables are obtained. The full range of covariant possiblities (without indefinite metric) is restored if one allows localization along semiinfinite strings in addition to pointlike localization. These stringlike potentials fluctuate in the direction of the string (points in a lower de Sitter space) and absorb part of the short distance singularity: there always exists a potential with the smallest short distance dimension allowed by unitarity: sdd=1. In case the interaction with the potential remains linear (QED), there is a ...
Classical And Quantum Chaos: Strongly Interacting Particles In A Confined Geometry
Ivanushkin, P S
2003-01-01
This dissertation details the classical and quantum dynamics of two mechanical systems. The first one represents a charged particle confined inside a square elastic boundary acted on by a uniform magnetic field—the Square Magnetic Billiard. The second system, called the Circular Coulomb Billiard, consists of two particles, interacting by virtue of the Coulomb potential, and enclosed inside a circular boundary. One of the particles is considered to be massive and remains stationary. The first two chapters give a brief history of classical and quantum chaos, and review the major theoretical concepts. The third chapter analyzes the classical dynamics of the Square Magnetic Billiard. A number of approaches were used for numerical experiments: which shows that the system's classical behavior ranges from completely integrable to fully chaotic, but then the system restores it's integrability as the magnetic field continues to grow. The fourth chapter examines the Square Magnetic Billiard quantum mechanical...
Booth, George H; Chan, Garnet Kin-Lic
2012-11-21
In this communication, we propose a method for obtaining isolated excited states within the full configuration interaction quantum Monte Carlo framework. This method allows for stable sampling with respect to collapse to lower energy states and requires no uncontrolled approximations. In contrast with most previous methods to extract excited state information from quantum Monte Carlo methods, this results from a modification to the underlying propagator, and does not require explicit orthogonalization, analytic continuation, transient estimators, or restriction of the Hilbert space via a trial wavefunction. Furthermore, we show that the propagator can directly yield frequency-domain correlation functions and spectral functions such as the density of states which are difficult to obtain within a traditional quantum Monte Carlo framework. We demonstrate this approach with pilot applications to the neon atom and beryllium dimer.
Energy Technology Data Exchange (ETDEWEB)
Gong, Jia-Min, E-mail: jmgong@yeah.net [School of Electronic Engineering, Xi' an University of Posts and Telecommunications, Xi' an 710121 (China); Tang, Qi [School of Electronic Engineering, Xi' an University of Posts and Telecommunications, Xi' an 710121 (China); Sun, Yu-Hang [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710121 (China); Qiao, Lin [School of Electronic Engineering, Xi' an University of Posts and Telecommunications, Xi' an 710121 (China)
2015-03-15
We studied the trace distance, the Hellinger distance, and the Bures distance geometric quantum discords (GQDs) for a two-spin Heisenberg XX chain with the Dzyaloshinsky–Moriya (DM) interaction and the external magnetic fields. We found that considerable enhancement of the GQDs can be achieved by introducing the DM interaction, and their maxima were obtained when the strength of the DM interaction approaches infinity. The external magnetic fields and the increase of the temperature can also enhance the GQDs to some extent during certain specific parameter regions.
Effect of Coulomb Interaction on Dynamical Localization in a Two-Electron Quantum-Dot Molecule
Institute of Scientific and Technical Information of China (English)
WANG Li-Min; DUAN Su-Qing; ZHAO Xian-Geng; LIU Cheng-Shi
2004-01-01
The combined interaction of Coulomb interaction and ac fields with two electrons in a quantum dot molecule is studied respectively with numerical simulation, perturbation theory and the approximation of driven two-level model. The dynamical localization occurs with the ac field whose ratio of the amplitude to the angular frequency is a root of n-order Bessel functions, where n is determined by the Coulomb interaction energy. Such results are explained with either the driven two-level approximation or the degenerated three-level model and verified by the numerical simulations.
Konno, Kohkichi; Nagasawa, Tomoaki; Takahashi, Rohta
2017-10-01
We discuss the scattering of a quantum particle by two independent successive point interactions in one dimension. The parameter space for two point interactions is given by U(2) × U(2) , which is described by eight real parameters. We perform an analysis of perfect resonant transmission on the whole parameter space. By investigating the effects of the two point interactions on the scattering matrix of plane wave, we find the condition under which perfect resonant transmission occurs. We also provide the physical interpretation of the resonance condition.
Guo, G P; Hao, X J; Tu, T; Zhu, Z C; Guo, Guang-Can; Guo, Guo-Ping; Hao, Xiao-Jie; Tu, Tao; Zhu, Zhi-Cheng
2007-01-01
We propose a scheme to eliminate the effect of non-nearest-neighbor qubits in preparing cluster state with double-dot molecules. As the interaction Hamiltonians between qubits are Ising-model and mutually commute, we can get positive and negative effective interactions between qubits to cancel the effect of non-nearest-neighbor qubits by properly changing the electron charge states of each quantum dot molecule. The total time for the present multi-step cluster state preparation scheme is only doubled for one-dimensional qubit chain and tripled for two-dimensional qubit array comparing with the time of previous protocol leaving out the non-nearest-neighbor interactions.
Quantum beam generations via the laser-cluster interactions
Fukuda, Yuji; Faenov, Anatoly; Pikuz, Tania; Tampo, Motonobu; Yogo, Akifumi; Kando, Masaki; Hayashi, Yukio; Kameshima, Takeshi; Homma, Takayuki; Pirozhkov, Alexander; Kato, Yoshiaki; Tajima, Toshiki; Daido, Hiroyuki; Bulanov, Sergei
2008-11-01
The novel soft X-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft X-rays from the CO2 clusters. Using this soft X-ray emissions, nanostructure images of 100-nm thick Mo foils in a wide field of view (mm^2 scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. We also demonstrate the acceleration of charged particles via the laser-cluster interactions.
Distributional approach to point interactions in one-dimensional quantum mechanics
Directory of Open Access Journals (Sweden)
Marcos eCalçada
2014-04-01
Full Text Available We consider the one-dimensional quantum mechanical problem of defining interactions concentrated at a single point in the framework of the theory of distributions. The often ill-defined product which describes the interaction term in the Schrodinger and Dirac equations is replaced by a well-defined distribution satisfying some simple mathematical conditions and, in addition, the physical requirement of probability current conservation is imposed. A four-parameter family of interactions thus emerges as the most general point interaction both in the non-relativistic and in the relativistic theories (in agreement with results obtained by self-adjoint extensions. Since the interaction is given explicitly, the distributional method allows one to carry out symmetry investigations in a simple way, and it proves to be useful to clarify some ambiguities related to the so-called $delta^prime$ interaction.
QuVis interactive simulations: tools to support quantum mechanics instruction
Kohnle, Antje
2015-04-01
Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.
The shadow, the tyrant and the insane: the east and west dualism in the visual journalism
Directory of Open Access Journals (Sweden)
Alberto Klein
2014-07-01
Full Text Available This paper explores the East and West dualism considering three images: the shadow, the tyrant and the insane, respectively linked to Osama Bin Laden, Saddam Hussein and Mahmoud Ahmadinejad. These representations, given their occurrence in the media, appear as stereotypes in the visual journalism, being in total opposition to western values, such as illuminism, democracy and reason. From the perspective of the concept of Orientalism, the text also analyzes semiotic procedures which constitute the process of demonization, according to the contribuitions of Ivan Bystrina, Gilbert Durand and Stuart Clark.
Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins
Britton, Joseph W; Keith, Adam C; Wang, C -C Joseph; Freericks, James K; Uys, Hermann; Biercuk, Michael J; Bollinger, John J; 10.1038/nature10981
2012-01-01
The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed matter systems, potentially including high-temperature superconductivity. However, many properties of exotic strongly correlated spin systems (e.g., spin liquids) have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N~30 particles. Feynman divined that a quantum simulator - a special-purpose "analog" processor built using quantum particles (qubits) - would be inherently adept at such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach. However, simulations of quantum magnetism allowing controlled, tunable interactions between spins localized on 2D and 3D lattices of more than a few 10's of qubits have yet to be demonstrated, owing in part to the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin inte...
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
The dualism of practical reason and the autonomy: Sidgwick’s pessimism and Kant’s optimism
Directory of Open Access Journals (Sweden)
Dobrijević Aleksandar
2016-01-01
Full Text Available The question this paper is concerned with is: what if Immanuel Kant found a solution to the problem of the dualism of practical reason before Henry Sidgwick even came to formulate it? A comparison of Sidgwick’s and Kant’s approach to the problem of the dualism of practical reason is presented only in general terms, but the author concludes that this is sufficient for grasping the advantage of Kant’s solution to the problem. [Projekat Ministarstva nauke Republike Srbije, br. 179049
Few-body quantum physics with strongly interacting Rydberg polaritons
Bienias, Przemyslaw
2016-12-01
We present an extension of our recent paper [Bienias et al., Phys. Rev. A 90, 053804 (2014)] in which we demonstrated the scattering properties and bound-state structure of two Rydberg polaritons, as well as the derivation of the effective low-energy many-body Hamiltonian. Here, we derive a microscopic Hamiltonian describing the propagation of Rydberg slow light polaritons in one dimension. We describe possible decoherence processes within a Master equation approach, and derive equations of motion in a Schroedinger picture by using an effective non-Hermitian Hamiltonian. We illustrate diagrammatic methods on two examples: First, we show the solution for a single polariton in an external potential by exact summation of Feynman diagrams. Secondly, we solve the two body problem in a weakly interacting regime exactly.
Quasiparticle Approach to Molecules Interacting with Quantum Solvents.
Lemeshko, Mikhail
2017-03-03
Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here, we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001]. Most important, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.
Kapellasite: a kagome quantum spin liquid with competing interactions.
Fåk, B; Kermarrec, E; Messio, L; Bernu, B; Lhuillier, C; Bert, F; Mendels, P; Koteswararao, B; Bouquet, F; Ollivier, J; Hillier, A D; Amato, A; Colman, R H; Wills, A S
2012-07-20
Magnetic susceptibility, NMR, muon spin relaxation, and inelastic neutron scattering measurements show that kapellasite, Cu3Zn(OH)6Cl2, a geometrically frustrated spin-1/2 kagome antiferromagnet polymorphic with herbertsmithite, is a gapless spin liquid showing unusual dynamic short-range correlations of noncoplanar cuboc2 type which persist down to 20 mK. The Hamiltonian is determined from a fit of a high-temperature series expansion to bulk susceptibility data and possesses competing exchange interactions. The magnetic specific heat calculated from these exchange couplings is in good agreement with experiment. The temperature dependence of the magnetic structure factor and the muon relaxation rate are calculated in a Schwinger-boson approach and compared to experimental results.
Quasiparticle approach to molecules interacting with quantum solvents
Lemeshko, Mikhail
2016-01-01
Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently-predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)]. Most importantly, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.
Few-body quantum physics with strongly interacting Rydberg polaritons
Bienias, Przemyslaw
2016-01-01
We present an extension of our recent paper [Bienias et al., Phys. Rev. A 90, 053804 (2014)] in which we demonstrated the scattering properties and bound-state structure of two Rydberg polaritons, as well as the derivation of the effective low-energy many-body Hamiltonian. Here, we derive a microscopic Hamiltonian describing the propagation of Rydberg slow light polaritons in one dimension. We describe possible decoherence processes within a Master equation approach, and derive equations of motion in a Schroedinger picture by using an effective non-Hermitian Hamiltonian. We illustrate diagrammatic methods on two examples: First, we show the solution for a single polariton in an external potential by exact summation of Feynman diagrams. Secondly, we solve the two body problem in a weakly interacting regime exactly.
Datta, Sambhu N
2005-12-22
A quantum mechanical form of the Langevin equation is derived from an explicit consideration of the molecule-medium interaction, as advocated by Simons in 1978, and by using two identities in the interaction picture. This can be easily reduced to the classical regime, and further simplified to the macroscopic Langevin equation by considering the stochastic Langevin force autocorrelation function. One of the so-called Einstein relations appears as a byproduct. By following the methodology proposed by Simons, an exact expression for the momentum autocorrelation function is obtained. The latter can be used to calculate the zero-frequency macroscopic diffusion coefficient that is observed to satisfy the second Einstein relation. The formalism described above gives rise to the possibility of explicitly computing the transport characteristics such as friction constant and diffusion coefficient from the corresponding quantum statistical mechanical expressions. A discussion on the Langevin equation becomes complete only when the corresponding Fokker-Planck equation is obtained. Therefore, the probability of the evolution of states with a particular absolute magnitude of linear momentum from those of another momentum eigenvalue is quantum mechanically defined. This probability appears as a special average value of a projection operator and as a special projection operator correlation function. A classical identity is introduced that is shown to be valid also for the quantum mechanically defined probability function. By using this identity, the so-called Fokker-Planck equation for the evolution probability is easily established.
Institute of Scientific and Technical Information of China (English)
Zeng Ke; Fang Mao-Fa
2005-01-01
The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.
Interaction-Driven Spontaneous Quantum Hall Effect on a Kagome Lattice
Zhu, W.; Gong, Shou-Shu; Zeng, Tian-Sheng; Fu, Liang; Sheng, D. N.
2016-08-01
Topological states of matter have been widely studied as being driven by an external magnetic field, intrinsic spin-orbital coupling, or magnetic doping. Here, we unveil an interaction-driven spontaneous quantum Hall effect (a Chern insulator) emerging in an extended fermion-Hubbard model on a kagome lattice, based on a state-of-the-art density-matrix renormalization group on cylinder geometry and an exact diagonalization in torus geometry. We first demonstrate that the proposed model exhibits an incompressible liquid phase with doublet degenerate ground states as time-reversal partners. The explicit spontaneous time-reversal symmetry breaking is determined by emergent uniform circulating loop currents between nearest neighbors. Importantly, the fingerprint topological nature of the ground state is characterized by quantized Hall conductance. Thus, we identify the liquid phase as a quantum Hall phase, which provides a "proof-of-principle" demonstration of the interaction-driven topological phase in a topologically trivial noninteracting band.
Naruse, Makoto; Aono, Masashi; Ohtsu, Motoichi; Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge; Kim, Song-Ju
2014-01-01
Optical near-field interactions between nanostructured matter, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.
Interaction of Globular Plasma Proteins with Water-Soluble CdSe Quantum Dots.
Pathak, Jyotsana; Rawat, Kamla; Sanwlani, Shilpa; Bohidar, H B
2015-06-08
The interactions between water-soluble semiconductor quantum dots [hydrophilic 3-mercaptopropionic acid (MPA)-coated CdSe] and three globular plasma proteins, namely, bovine serum albumin (BSA), β-lactoglobulin (β-Lg) and human serum albumin (HSA), are investigated. Acidic residues of protein molecules form electrostatic interactions with these quantum dots (QDs). To determine the stoichiometry of proteins bound to QDs, we used dynamic light scattering (DLS) and zeta potential techniques. Fluorescence resonance energy transfer (FRET) experiments revealed energy transfer from tryptophan residues in the proteins to the QD particles. Quenching of the intrinsic fluorescence of protein molecules was noticed during this binding process (hierarchy HSA<β-Lg
Anomalous conductance of a strongly interacting Fermi gas through a quantum point contact
Liu, Boyang; Zhai, Hui; Zhang, Shizhong
2017-01-01
In this work we study the particle conductance of a strongly interacting Fermi gas through a quantum point contact. With an atom-molecule two-channel model, we compute the contribution to particle conductance by both the fermionic atoms and the bosonic molecules using the Keldysh formalism. Focusing on the regime above the Fermi superfluid transition temperature, we find that the fermionic contribution to the conductance is reduced by interaction compared with the quantized value for the noninteracting case; while the bosonic contribution to the conductance exhibits a plateau with nonuniversal values that is larger than the quantized conductance. This feature is particularly profound at temperature close to the superfluid transition. We emphasize that the enhanced conductance arises because of the bosonic nature of closed channel molecules and the low dimensionality of the quantum point contact.
Interacting bosons in a disordered lattice: Dynamical characterization of the quantum phase diagram
Buonsante, Pierfrancesco; Pezzè, Luca; Smerzi, Augusto
2015-03-01
We study the quantum dynamics of interacting bosons in a three-dimensional disordered lattice. We show that the superfluid current induced by an adiabatic acceleration of the disordered lattice undergoes a dynamical instability signaling the onset of the Bose-glass phase. The dynamical superfluid-Bose-glass phase diagram is found in very good agreement with static superfluid fraction calculation. A different boundary is obtained when the disorder is suddenly quenched in a moving periodic lattice. In this case we do not observe a dynamical instability but rather a depletion of the superfluid density. Our analysis is based on a dynamical Gutzwiller approach which we show to reproduce the quantum Monte Carlo static phase diagram in the strong interaction limit.
On-chip interaction-free measurements via the quantum Zeno effect
Ma, Xiao-song; Schuck, Carsten; Fong, King Y; Jiang, Liang; Tang, Hong X
2014-01-01
Although interference is a classical-wave phenomenon, the superposition principle, which underlies interference of individual particles, is at the heart of quantum physics. An interaction-free measurements (IFM) harnesses the wave-particle duality of single photons to sense the presence of an object via the modification of the interference pattern, which can be accomplished even if the photon and the object haven't interacted with each other. By using the quantum Zeno effect, the efficiency of an IFM can be made arbitrarily close to unity. Here we report an on-chip realization of the IFM based on silicon photonics. We exploit the inherent advantages of the lithographically written waveguides: excellent interferometric phase stability and mode matching, and obtain multipath interference with visibility above 98%. We achieved a normalized IFM efficiency up to 68.2%, which exceeds the 50% limit of the original IFM proposal.
Role of Interactions in Electronic Structure of a Two-Electron Quantum Dot Molecule
Institute of Scientific and Technical Information of China (English)
DONG Qing-Rui; XU Ying-Qiang; ZHANG Shi-Yong; NIU Zhi-Chuan
2004-01-01
@@ We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference △E between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.
Interaction-Driven Spontaneous Quantum Hall Effect on a Kagome Lattice.
Zhu, W; Gong, Shou-Shu; Zeng, Tian-Sheng; Fu, Liang; Sheng, D N
2016-08-26
Topological states of matter have been widely studied as being driven by an external magnetic field, intrinsic spin-orbital coupling, or magnetic doping. Here, we unveil an interaction-driven spontaneous quantum Hall effect (a Chern insulator) emerging in an extended fermion-Hubbard model on a kagome lattice, based on a state-of-the-art density-matrix renormalization group on cylinder geometry and an exact diagonalization in torus geometry. We first demonstrate that the proposed model exhibits an incompressible liquid phase with doublet degenerate ground states as time-reversal partners. The explicit spontaneous time-reversal symmetry breaking is determined by emergent uniform circulating loop currents between nearest neighbors. Importantly, the fingerprint topological nature of the ground state is characterized by quantized Hall conductance. Thus, we identify the liquid phase as a quantum Hall phase, which provides a "proof-of-principle" demonstration of the interaction-driven topological phase in a topologically trivial noninteracting band.
Magnetic properties of parabolic quantum dots in the presence of the spin-orbit interaction
Voskoboynikov, O.; Bauga, O.; Lee, C. P.; Tretyak, O.
2003-11-01
We present a theoretical study of the effect of the spin-orbit interaction on the electron magnetization and magnetic susceptibility of small semiconductor quantum dots. Those characteristics demonstrate quite interesting behavior at low temperature. The abrupt changes of the magnetization and susceptibility at low magnetic fields are attributed to the alternative crossing between the spin-split electron levels in the energy spectrum, essentially due to the spin-orbit interaction (an analog of the general Paschen-Back effect). Detailed calculation using parameters of InAs semiconductor quantum dot demonstrates an enhancement of paramagnetism of the dots. There is an additional possibility to control the effect by external electric fields or the dot design.
Les Houches Summer School : Strongly Interacting Quantum Systems out of Equilibrium
Millis, Andrew J; Parcollet, Olivier; Saleur, Hubert; Cugliandolo, Leticia F
2016-01-01
Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define dir...
Efficient quantum transport in disordered interacting many-body networks
Ortega, Adrian; Stegmann, Thomas; Benet, Luis
2016-10-01
The coherent transport of n fermions in disordered networks of l single-particle states connected by k -body interactions is studied. These networks are modeled by embedded Gaussian random matrix ensemble (EGE). The conductance bandwidth and the ensemble-averaged total current attain their maximal values if the system is highly filled n ˜l -1 and k ˜n /2 . For the cases k =1 and k =n the bandwidth is minimal. We show that for all parameters the transport is enhanced significantly whenever centrosymmetric embedded Gaussian ensemble (csEGE) are considered. In this case the transmission shows numerous resonances of perfect transport. Analyzing the transmission by spectral decomposition, we find that centrosymmetry induces strong correlations and enhances the extrema of the distributions. This suppresses destructive interference effects in the system and thus causes backscattering-free transmission resonances that enhance the overall transport. The distribution of the total current for the csEGE has a very large dominating peak for n =l -1 , close to the highest observed currents.
Alternating-Current Conductivity for a Two-Channel Interacting Quantum Wire
Institute of Scientific and Technical Information of China (English)
PENG De-Jun; CHENG Fang; ZHOU Guang-Hui
2007-01-01
We investigate theoretically the ac conductivity of a clean two-channel spinless quantum wire in the presence of both short-ranged intra- and inter-channel electron-electron interactions. In the Luttinger-liquid regime, we formulize the action functional of the system with an external time-varying electric field. The obtained expression of ac conductivity for the system within linear response theory is generally an oscillation function of the interaction strength, the driving frequency as well as the measured position in the wire. The numerical examples demonstrate that the amplitude of ac conductivity is renormalized by the both interactions, and the dc conductivity of the system with inter-channel interaction is smaller than that without inter-channel interaction.
Zhang, Dawei
2017-03-01
Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems.
Zhang, Dawei
2017-01-01
Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems. PMID:28300179
Three-photon interactions and spin exchange in a quantum nonlinear medium
Cantu, Sergio; Liang, Qi-Yu; Thompson, Jeff; Nicholson, Travis; Venkatramani, Aditya; Gullans, Michael; Gorshkov, Alexey; Choi, Soonwon; Lukin, Mikhail; Vuletic, Vladan
2016-05-01
Robust quantum gates for photonic qubits are a longstanding goal of quantum information science. One promising approach to achieve this goal requires strong nonlinear interactions between single photons, which is impossible with conventional optical media. We realize these interactions with electromagnetically induced transparency (EIT), and strongly interacting Rydberg states to mediate strong interactions between photons. Operating in the dispersive regime of EIT, we have recently shown that two photons propagating in our system can bind into a photonic molecule. Extending these two-photon experiments to many-body physics would lead to exotic phenomena like photon crystallization. To that end, we have scaled up our two-photon measurements to three-photon experiments. We are now able to discern signatures of three-photon molecules from a variety of two- and three-photon interactions. Three-photon bound states manifest as an increase in photon bunching in g (3) correlation measurements. We also present a recent observation of coherent spin exchange interactions in Rydberg EIT.
Entanglement Entropy Signature of Quantum Phase Transitions in a Multiple Spin Interactions Model
Institute of Scientific and Technical Information of China (English)
HUANG Hai-Lin
2011-01-01
Through the Jordan-Wigner transformation, the entanglement entropy and ground state phase diagrams of exactly solvable spin model with alternating and multiple spin exchange interactions are investigated by means of Green's function theory.In the absence of four-spin interactions, the ground state presents plentiful quantum phases due to the multiple spin interactions and magnetic fields.It is shown that the two-site entanglement entropy is a good indicator of quantum phase transition (QPT).In addition, the alternating interactions can destroy the magnetization plateau and wash out the spin-gap of low-lying excitations.However, in the presence of four-spin interactions, apart from the second order QPTs, the system manifests the first order QPT at the tricritical point and an additional new phase called "spin waves", which is due to the collapse of the continuous tower-like low-lying excitations modulated by the four-spin interactions for large three-spin couplings.
Quantum spin Hall states in graphene interacting with WS2 or WSe2
Kaloni, T. P.
2014-12-08
In the framework of first-principles calculations, we investigate the structural and electronic properties of graphene in contact with as well as sandwiched between WS2 and WSe2 monolayers. We report the modification of the band characteristics due to the interaction at the interface and demonstrate that the presence of the dichalcogenide results in quantum spin Hall states in the absence of a magnetic field.
Study on Interaction Between Chitosan and CdS Quantum Dots via Photoluminescence Spectra
Institute of Scientific and Technical Information of China (English)
Zhan LI; Yu Min DU; Yan WEN
2004-01-01
The interaction between CdS quantum dots and amino polysaccharide chitosan in aqueous solution was studied via photoluminescence(PL)spectra. The surface binding of chitosan with different molecular weight(MW)quenched the luminescence of QDs due to the elimination of radioactive anion vacancy centers.This process fits well with the Perrin model;lower MW chitosan exhibits higher quenching efficiency due to better availability to the surface.
Computational strong-field quantum dynamics intense light-matter interactions
2017-01-01
This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.
Perturbation Theory for Interacting Electrons in a Quantum Dot under Strong Magnetic Field
Institute of Scientific and Technical Information of China (English)
GU Yun-Ting; RUAN Wen-Ying; LI Quan; CAI Min; CHAN Kok-Sam
2001-01-01
The quantum spectrum of interacting electrons confined in a parabolic dot in two dimensions is obtained by employing the perturbation theory. Comparison with the existing analytical results has been made. We show that while the widely used second-order perturbation significantly underestimates the ground state energies, the results including higher orders of perturbation are highly accurate within the B-field range of experimental interest.
Four-terminal resistance of an interacting quantum wire with weakly invasive contacts
Aita, Hugo; Arrachea, Liliana; Naón, Carlos
2011-01-01
We analyze the behavior of the four-terminal resistance, relative to the two-terminal resistance of an interacting quantum wire with an impurity, taking into account the invasiveness of the voltage probes. We consider a one-dimensional Luttinger model of spinless fermions for the wire. We treat the coupling to the voltage probes perturbatively, within the framework of non-equilibrium Green function techniques. Our investigation unveils the combined effect of impurities, electron-electron inte...
Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies
D'Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-01-01
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dar...
Isotope sensitive measurement of the hole-nuclear spin interaction in quantum dots
Chekhovich, E. A.; Krysa, A. B.; Hopkinson, M.; Senellart, P.; Lemaitre, A.; Skolnick, M. S.; Tartakovskii, A. I.
2011-01-01
Decoherence caused by nuclear field fluctuations is a fundamental obstacle to the realization of quantum information processing using single electron spins. Alternative proposals have been made to use spin qubits based on valence band holes having weaker hyperfine coupling. However, it was demonstrated recently both theoretically and experimentally that the hole hyperfine interaction is not negligible, although a consistent picture of the mechanism controlling the magnitude of the hole-nuclea...
Between the Monad and the One: at the sources of the ontological dualism
Directory of Open Access Journals (Sweden)
Nikola Lechich
2014-10-01
Full Text Available The author of the article describes the philosophical complexity and the ideological coherence of the two earliest philosophical concepts of the One belonging to early Pythagoreans and to the Eleatics, as well as the connection between the concept of the One and the ontological and epistemological dualism. The analysis of the concept of the One in the early Pythagorean school is based on the fragments of Philolaus and on the extant material concerning the science of music and geometry in this school. Part 1 considers the interrelation of two fragments by Philolaus: according to one of them, at the center of the Cosmic Space (Sphere there is the One which is identiﬁed with ﬁre; according to the other fragment, the multitude of things were brought into being by the harmonious corresponding of the limiting and the limitless. Part 2 describes the understanding of harmony, musical consonances, tetraktys, geometrical constructions, the expressible and the inexpressible in the early Pythagorean school. Part 3 considers the concept of the Central Fire. In Part 4 the author demonstrates the connection existing between the ideas of the early Pythagorean school mentioned above and the key topoi of the philosophy of the Eleatics. The author concludes that the amalgamation of monism and ontological and epistemological dualism - one of the richest philosophical, scientiﬁ c and religious phenomena in the history of thought - has its roots in the doctrines of Pythagoreans and Eleatics.
Otsuka, Yuichi; Yunoki, Seiji; Sorella, Sandro
2016-01-01
The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.
Directory of Open Access Journals (Sweden)
Yuichi Otsuka
2016-03-01
Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.
Induced gravity with Higgs potential. Elementary interactions and quantum processes
Energy Technology Data Exchange (ETDEWEB)
Bezares Roder, Nils Manuel
2010-07-01
This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous
Institute of Scientific and Technical Information of China (English)
Shan Chuan-Jia; Cheng Wei-Wen; Liu Tang-Kun; Huang Yan-Xia; Li nong
2008-01-01
By using the method of density-matrix renormalization-group to solve the different spin-spin correlation functions,the nearest-neighbouring entanglement (NNE) and the next-nearest-neighbouring entanglement (NNNE) of one-dimensional alternating Heisenberg XY spin chain are investigated in the presence of alternating the-nearestneighbouring interaction of exchange couplings,external magnetic fields and the next-nearest neighbouring interaction.For a dimerised ferromagnetic spin chain,the NNNE appears only above a critical dimerized interaction,meanwhile,the dimerized interaction a effects a quantum phase transition point and improves the NNNE to a large extent.We also study the effect of ferromagnetic or antiferromagnetic next-nearest neighbouring (NNN) interaction on the dynamics of NNE and NNNE.The ferromagnetic NNN interaction increases and shrinks the NNE below and above a critical frustrated interaction respectively,while the antiferromagnetic NNN interaction always reduces the NNE.The antiferromagnetic NNN interaction results in a large value of NNNE compared with the case where the NNN interaction is ferromagnetic.
Four-terminal resistance of an interacting quantum wire with weakly invasive contacts.
Aita, Hugo; Arrachea, Liliana; Naón, Carlos
2011-11-30
We analyze the behavior of the four-terminal resistance, relative to the two-terminal resistance of an interacting quantum wire with an impurity, taking into account the invasiveness of the voltage probes. We consider a one-dimensional Luttinger model of spinless fermions for the wire. We treat the coupling to the voltage probes perturbatively, within the framework of non-equilibrium Green function techniques. Our investigation unveils the combined effect of impurities, electron-electron interactions and invasiveness of the probes on the possible occurrence of negative resistance.
Direct measurement of the hole-nuclear spin interaction in single quantum dots
Chekhovich, E. A.; Krysa, A. B.; Skolnick, M. S.; Tartakovskii, A. I.
2010-01-01
We use photoluminescence spectroscopy of ''bright'' and ''dark'' exciton states in single InP/GaInP quantum dots to measure hyperfine interaction of the valence band hole with nuclear spins polarized along the sample growth axis. The ratio of the hyperfine constants for the hole (C) and electron (A) is found to be C/A~-0.11. In InP dots the contribution of spin 1/2 phosphorus nuclei to the hole-nuclear interaction is weak, which enables us to determine experimentally the value of C for spin 9...
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems.
Dehkharghani, Amin; Volosniev, Artem; Lindgren, Jonathan; Rotureau, Jimmy; Forssén, Christian; Fedorov, Dmitri; Jensen, Aksel; Zinner, Nikolaj
2015-06-15
Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order to execute a pattern of motion, irrespective of whether the particles are fermions or bosons. A present frontier in both theory and experiment are mixed systems of different species and/or particles with multiple internal degrees of freedom. Here we consider trapped two-component bosons with short-range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems.
Directory of Open Access Journals (Sweden)
Charles E. Smith
2016-05-01
Full Text Available There is increasing interest concerning the details about how quantum systems interact with their surroundings. A number of methodologies have been used to describe these interactions, including Master Equations (ME based on a system-plus-reservoir (S + R approach, and more recently, Steepest Entropy Ascent Quantum Thermodynamics (SEAQT which asserts that entropy is a fundamental physical property and that isolated quantum systems that are not at stable equilibrium may spontaneously relax without environmental influences. In this paper, the ME, SEAQT approaches, and a simple linear difference equation (DE model are compared with each other and experimental data in order to study the behavior of a single trapped ion as it interacts with one or more external heat reservoirs. The comparisons of the models present opportunities for additional study to verify the validity and limitations of these approaches.
Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM.
Ruan, Z; Zeng, R G; Ming, Y; Zhang, M; Da, B; Mao, S F; Ding, Z J
2015-07-21
In this paper, a novel quantum-trajectory Monte Carlo simulation method is developed to study electron beam interaction with a crystalline solid for application to electron microscopy and spectroscopy. The method combines the Bohmian quantum trajectory method, which treats electron elastic scattering and diffraction in a crystal, with a Monte Carlo sampling of electron inelastic scattering events along quantum trajectory paths. We study in this work the electron scattering and secondary electron generation process in crystals for a focused incident electron beam, leading to understanding of the imaging mechanism behind the atomic resolution secondary electron image that has been recently achieved in experiment with a scanning transmission electron microscope. According to this method, the Bohmian quantum trajectories have been calculated at first through a wave function obtained via a numerical solution of the time-dependent Schrödinger equation with a multislice method. The impact parameter-dependent inner-shell excitation cross section then enables the Monte Carlo sampling of ionization events produced by incident electron trajectories travelling along atom columns for excitation of high energy knock-on secondary electrons. Following cascade production, transportation and emission processes of true secondary electrons of very low energies are traced by a conventional Monte Carlo simulation method to present image signals. Comparison of the simulated image for a Si(110) crystal with the experimental image indicates that the dominant mechanism of atomic resolution of secondary electron image is the inner-shell ionization events generated by a high-energy electron beam.
Thiele, K.
2014-01-01
Critically revisiting the ‘equality versus difference’ dualism that is inscribed in the feminist canon of the last decades is an important task for feminist ethico-political discussions today. The theoretico-political tension between claims of equality and difference still troubles feminist
Thiele, K.
2014-01-01
Critically revisiting the ‘equality versus difference’ dualism that is inscribed in the feminist canon of the last decades is an important task for feminist ethico-political discussions today. The theoretico-political tension between claims of equality and difference still troubles feminist discussi
Quantum statistics and squeezing for a microwave-driven interacting magnon system
Haghshenasfard, Zahra; Cottam, Michael G.
2017-02-01
Theoretical studies are reported for the statistical properties of a microwave-driven interacting magnon system. Both the magnetic dipole-dipole and the exchange interactions are included and the theory is developed for the case of parallel pumping allowing for the inclusion of the nonlinear processes due to the four-magnon interactions. The method of second quantization is used to transform the total Hamiltonian from spin operators to boson creation and annihilation operators. By using the coherent magnon state representation we have studied the magnon occupation number and the statistical behavior of the system. In particular, it is shown that the nonlinearities introduced by the parallel pumping field and the four-magnon interactions lead to non-classical quantum statistical properties of the system, such as magnon squeezing. Also control of the collapse-and-revival phenomena for the time evolution of the average magnon number is demonstrated by varying the parallel pumping amplitude and the four-magnon coupling.
Institute of Scientific and Technical Information of China (English)
YU You-Bin
2008-01-01
The electron-phonon interaction influences on linear and nonlinear optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential are investigated. The optical absorption coefficients are obtained by using the compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs CQW. The results show that the electron-phonon interaction makes a distinct influence on optical absorption in CQW. The electron-phonon interaction on the wave functions of electron dominates the values of absorption coefficients and the correction of the electron-phonon effect on the energies of the electron makes the absorption peaks blue shift and become wider. Moreover, the electron-phonon interaction influence on optical absorption with an infinite confining potential is different from that with a finite confining potential.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Gröbner, M; Nägerl, H-C
2014-05-16
We study atomic Bloch oscillations in an ensemble of one-dimensional tilted superfluids in the Bose-Hubbard regime. For large values of the tilt, we observe interaction-induced coherent decay and matter-wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the disappearance of the quasiperiodic phase revival signature towards an irreversible decay of Bloch oscillations, indicating the transition from regular to quantum chaotic dynamics.
Energy Technology Data Exchange (ETDEWEB)
Urbina, Juan Diego; Engl, Thomas; Richter, Klaus [Institute for Theoretical Physics, University of Regensburg (Germany); Arguelles, Arturo [Department of Physics, University of Liege (Belgium); Institute for Theoretical Physics, University of Regensburg (Germany); Dujardin, Julien; Schlagheck, Peter [Department of Physics, University of Liege (Belgium)
2013-07-01
We present a semiclassical theory of quantum interference effects in interacting bosonic fields. We make special emphasis on the difference between genuine quantum interference (due to the superposition principle in the many-body Hilbert space), and classical interference effects due to the wave character of the classical limit. First, we discuss how the usual approaches to this problem are unable to provide the characteristic sum of oscillatory terms, each asociated with a solution of the classical equations of motion, required to semiclassically address interference effects. We show then how to solve this problems by a formal construction of the van Vleck-Gutzwiller propagator for bosonic fields as a sum over paths in the associated Fock space and we identify the classical limit as a Gross-Pitaevskii equation with boundary conditions and multiple solutions. The theory predicts effects akin to weak localization to take place in Fock space, and in particular the enhancement of quantum probability of return due to interference between time-reversed paths there. We support our claims with extensive numerical calculations for a discrete version of an interacting bosonic field.
Relational evolution of effectively interacting group field theory quantum gravity condensates
Pithis, Andreas G. A.; Sakellariadou, Mairi
2017-03-01
We study the impact of effective interactions onto relationally evolving group field theory (GFT) condensates based on real-valued fields. In a first step we show that a free condensate configuration in an isotropic restriction settles dynamically into a low-spin configuration of the quantum geometry. This goes hand in hand with the accelerated and exponential expansion of its volume, as well as the vanishing of its relative uncertainty which suggests the classicalization of the quantum geometry. The dynamics of the emergent space can then be given in terms of the classical Friedmann equations. In contrast to models based on complex-valued fields, solutions avoiding the singularity problem can only be found if the initial conditions are appropriately chosen. We then turn to the analysis of the influence of effective interactions on the dynamics by studying in particular the Thomas-Fermi regime. In this context, at the cost of fine-tuning, an epoch of inflationary expansion of quantum geometric origin can be implemented. Finally, and for the first time, we study anisotropic GFT condensate configurations and show that such systems tend to isotropize quickly as the value of the relational clock grows. This paves the way to a more systematic investigation of anisotropies in the context of GFT condensate cosmology.
Entropy on a null surface for interacting quantum field theories and the Bousso bound
Bousso, Raphael; Fisher, Zachary; Maldacena, Juan
2014-01-01
We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly $\\Delta S = 2\\pi \\int d^{d-2}y \\int_0^1 dx^+\\, g(x^+)\\, \\langle T_{++}\\rangle$, where $g(x^+)$ is a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, $\\Delta S = \\langle \\Delta K \\rangle $, where $K$ is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for $\\Delta S$. Finally, we also compute explicitly the function $g(x^+)$ for theori...
Institute of Scientific and Technical Information of China (English)
Chen Li-Bing; Lu Hong; Jin Rui-Bo
2007-01-01
We present a systematic simple method to implement a generalized quantum control-NOT (CNOT) gate on two d-dimensional distributed systems. First, we show how the nonlocal generalized quantum CNOT gate can be implemented with unity fidelity and unity probability by using a maximally entangled pair of qudits as a quantum channel. We also put forward a scheme for probabilistically implementing the nonlocal operation with unity fidelity by employing a partially entangled qudit pair as a quantum channel. Analysis of the scheme indicates that the use of partially entangled quantum channel for implementing the nonlocal generalized quantum CNOT gate leads to the CNOT gate can be used in the entanglement swapping between particles belonging to distant users in a communication network and distributed quantum computer.
Bryce, Richard A
2011-04-01
The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.
Interactive quantum chemistry: a divide-and-conquer ASED-MO method.
Bosson, Mäel; Richard, Caroline; Plet, Antoine; Grudinin, Sergei; Redon, Stephane
2012-03-15
We present interactive quantum chemistry simulation at the atom superposition and electron delocalization molecular orbital (ASED-MO) level of theory. Our method is based on the divide-and-conquer (D&C) approach, which we show is accurate and efficient for this non-self-consistent semiempirical theory. The method has a linear complexity in the number of atoms, scales well with the number of cores, and has a small prefactor. The time cost is completely controllable, as all steps are performed with direct algorithms, i.e., no iterative schemes are used. We discuss the errors induced by the D&C approach, first empirically on a few examples, and then via a theoretical study of two toy models that can be analytically solved for any number of atoms. Thanks to the precision and speed of the D&C approach, we are able to demonstrate interactive quantum chemistry simulations for systems up to a few hundred atoms on a current multicore desktop computer. When drawing and editing molecular systems, interactive simulations provide immediate, intuitive feedback on chemical structures. As the number of cores on personal computers increases, and larger and larger systems can be dealt with, we believe such interactive simulations-even at lower levels of theory-should thus prove most useful to effectively understand, design and prototype molecules, devices and materials.
Quantum corrected Langevin dynamics for adsorbates on metal surfaces interacting with hot electrons
DEFF Research Database (Denmark)
Olsen, Thomas; Schiøtz, Jakob
2010-01-01
quantum mechanical probabilities from the classical phase space distributions resulting from the dynamics. At short time scales, classical and quasiclassical initial conditions lead to wrong results and only correctly quantized initial conditions give a close agreement with an inherently quantum......We investigate the importance of including quantized initial conditions in Langevin dynamics for adsorbates interacting with a thermal reservoir of electrons. For quadratic potentials the time evolution is exactly described by a classical Langevin equation and it is shown how to rigorously obtain...... mechanical master equation approach. With CO on Cu(100) as an example, we demonstrate the effect for a system with ab initio frictional tensor and potential energy surfaces and show that quantizing the initial conditions can have a large impact on both the desorption probability and the distribution...
Combining Yb and Li: Rapid Quantum Degenerate Gas Production and Interacting Mixtures
Green, Alaina; Roy, Richard; Bowler, Ryan; Gupta, Subhadeep
2016-05-01
We detail a readily adaptable method for optimizing evaporative cooling efficiency in optical dipole traps (ODTs), reducing the production time of quantum degenerate gases. Utilizing the time-averaged 'painting' potential of a rapidly moving laser beam, we dynamically shape the trap over the course of evaporation to produce 174 Yb Bose-Einstein condensates of (0.5-1.0) × 105 atoms in (1.6-1.8) seconds. We also report on interaction studies in the quantum degenerate Bose-Fermi 174 Yb-6 Li mixture in the BEC-BCS crossover. Additionally, we present work on photoassociation spectroscopy on 6 Li-Yb mixtures and the production of YbLi* molecules in a dual magneto-optical trap, a first step toward coherent production of ultracold 2 Σ molecules.
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
D'Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-11-01
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.
Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies
D'Amico, Guido; Kaloper, Nemanja
2016-01-01
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.
Dissipatively Stabilized Quantum Sensor Based on Indirect Nuclear-Nuclear Interactions
Chen, Q.; Schwarz, I.; Plenio, M. B.
2017-07-01
We propose to use a dissipatively stabilized nitrogen vacancy (NV) center as a mediator of interaction between two nuclear spins that are protected from decoherence and relaxation of the NV due to the periodical resets of the NV center. Under ambient conditions this scheme achieves highly selective high-fidelity quantum gates between nuclear spins in a quantum register even at large NV-nuclear distances. Importantly, this method allows for the use of nuclear spins as a sensor rather than a memory, while the NV spin acts as an ancillary system for the initialization and readout of the sensor. The immunity to the decoherence and relaxation of the NV center leads to a tunable sharp frequency filter while allowing at the same time the continuous collection of the signal to achieve simultaneously high spectral selectivity and high signal-to-noise ratio.
Latyshev, A V
2014-01-01
The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. The concept of longitudinal-transversal conductivity is entered. The graphic analysis of the real and imaginary parts of dimensionless coefficient of longitudinal-transversal conductivity is made. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures. In this formula we have allocated known Kohn's singularities (W. Kohn, 1959).
Interaction between two SU(1 , 1) quantum systems and a two-level atom
Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.
2016-07-01
We consider a two-level atom interacting with two coupled quantum systems that can be represented in terms of su(1 , 1) Lie algebra. The wave function that is obtained using the evolution operator for the atom is initially in a superposition state and the coupled su(1 , 1) systems in a pair coherent Barut-Girardello coherent state. We then discuss atomic inversion, where more periods of revivals are observed and compared with a single su(1 , 1) quantum system. For entanglement and squeezing phenomena, the atomic angles coherence and phase as well as the detuning are effective parameters. The second-order correlation function displays Bunching and anti-Bunching behavior.
Paul, J.; Stevens, C. E.; Zhang, H.; Dey, P.; McGinty, D.; McGill, S. A.; Smith, R. P.; Reno, J. L.; Turkowski, V.; Perakis, I. E.; Hilton, D. J.; Karaiskaj, D.
2017-06-01
We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaks is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.
Zhao, Xinyu; Corn, Brittany; Yu, Ting; 10.1103/PhysRevA.84.032101
2011-01-01
Non-Markovian dynamics is studied for two interacting quibts strongly coupled to a dissipative bosonic environment. For the first time, we have derived the non-Markovian quantum state diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we studied the residual entanglement in the steady state by analyzing the steady state solution of the QSD equation. Finally, we have discussed an approximate QSD equation.
Simulating open quantum systems: from many-body interactions to stabilizer pumping
Mueller, M; Zhou, Y L; Roos, C F; Zoller, P
2011-01-01
In a recent experiment, Barreiro et al. demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions [Nature 470, 486 (2011)]. Using up to five ions, single- and multi-qubit entangling gate operations were combined with optical pumping in stroboscopic sequences. This enabled the implementation of both coherent many-body dynamics as well as dissipative processes by controlling the coupling of the system to an artificial, suitably tailored environment. This engineering was illustrated by the dissipative preparation of entangled two- and four-qubit states, the simulation of coherent four-body spin interactions and the quantum non-demolition measurement of a multi-qubit stabilizer operator. In the present paper, we present the theoretical framework of this gate-based ("digital") simulation approach for open-system dynamics with trapped ions. In addition, we discuss how within this simulation approach minimal instances of spin models of interest in the context of topological q...
Basharov, A M
2011-01-01
The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for the second-order terms over the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of the first-order coupling constant are represented as the quantum Wiener process, whereas the second-order terms are expressed by the quantum Poisson process. In the course of investigation it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. New fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppre...
Eichler, C.; Mlynek, J.; Butscher, J.; Kurpiers, P.; Hammerer, K.; Osborne, T. J.; Wallraff, A.
2015-10-01
Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.
Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
Olmon, R L; Raschke, M B
2012-11-09
The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna
Quantum spin dynamics with pairwise-tunable, long-range interactions
Hung, C.-L.; González-Tudela, Alejandro; Cirac, J. Ignacio; Kimble, H. J.
2016-08-01
We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin-spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom-atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom-atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models.
Cavity-photon contribution to the effective interaction of electrons in parallel quantum dots
Energy Technology Data Exchange (ETDEWEB)
Gudmundsson, Vidar [Science Institute, University of Iceland, Reykjavik (Iceland); Sitek, Anna [Science Institute, University of Iceland, Reykjavik (Iceland); Department of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology (Poland); Abdullah, Nzar Rauf [Science Institute, University of Iceland, Reykjavik (Iceland); Physics Department, Faculty of Science and Science Education, School of Science, University of Sulaimani, Kurdistan Region (Iraq); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, Miaoli (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University (Iceland)
2016-05-15
A single cavity photon mode is expected to modify the Coulomb interaction of an electron system in the cavity. Here we investigate this phenomena in a parallel double quantum dot system. We explore properties of the closed system and the system after it has been opened up for electron transport. We show how results for both cases support the idea that the effective electron-electron interaction becomes more repulsive in the presence of a cavity photon field. This can be understood in terms of the cavity photons dressing the polarization terms in the effective mutual electron interaction leading to nontrivial delocalization or polarization of the charge in the double parallel dot potential. In addition, we find that the effective repulsion of the electrons can be reduced by quadrupolar collective oscillations excited by an external classical dipole electric field. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Vol, E D
2012-01-01
In present paper we propose the consistent statistical approach which appropriate for a number of models describing both behavior of biological populations and various social groups interacting with each other.The approach proposed based on the ideas of quantum theory of open systems (QTOS) and allows one to account explicitly both discreteness of a system variables and their fluctuations near mean values.Therefore this approach can be applied also for the description of small populations where standard dynamical methods are failed. We study in detail three typical models of interaction between populations and groups: 1) antagonistic struggle between two populations 2) cooperation (or, more precisely, obligatory mutualism) between two species 3) the formation of coalition between two feeble groups in their conflict with third one that is more powerful . The models considered in a sense are mutually complementary and include the most types of interaction between populations and groups. Besides this method can ...
Cai, Huabing; Ren, Zhongzhou
2017-09-01
We investigate the rate of change of energy for a static two-level atom interacting with a massless quantum scalar field in global monopole spacetime and separately calculate the contributions of thermal fluctuations and radiation reaction. We discuss two different kinds of atom-field interactions separately. The behaviors of the atomic transition rates are analyzed in different circumstances such as near distance and big solid angle deficit. Moreover, we compare the results with those in Minkowski spacetime so as to reveal the effects of the global monopole. In general, as the atom-monopole distance increases, the transition rates oscillate around the results in Minkowski spacetime and the amplitude of oscillation gradually decreases. The oscillation is more severe for larger solid angle deficit. Our works suggest that the transition rates can profoundly change with different atom-field interactions and different types of scalar field.
Correlation effects on the energy spectra of quantum dot electrons with harmonic model interactions
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The low-lying excitation energy spectra of two, three and five quantum dot electrons with harmonic model interactions in a large magnetic field are calculated by the Hartree-Fock(HF) methods. Correlation effects on the energy level structures are investigated by comparing the HF results with the exact ones. It is found that the pure collective excitations(center-of-mass mode quanta) existing in the exact energy spectra do not appear in the HF energy spectra. The degeneracies of energy levels are also related to the correlation interactions, especially in the energy spectrum of two electrons. In the cases of more than two electrons, as the electron-electron interaction strength is increased the HF energy levels exhibit more complex crossings than the exact ones.
Dissolving Dualisms: How Two Positivists Engaged with Non-Positivist Qualitative Methodology
Directory of Open Access Journals (Sweden)
Carolyn Oliver PhD-C
2013-02-01
Full Text Available This is the story of how a chemical engineer and a medical microbiologist overcame their positivist training and deeply held disciplinary attitudes to engage with non-positivist qualitative methodology. Through a series of facilitated reflections they explored what helped and hindered their transition from positivist to non-positivist inquiry. To move forward they needed to acknowledge the extent and nature of the transition they were making, find metaphors to dissolve troubling dualisms, and balance a desire to reach out to others with the need to manage the very real sense of vulnerability that came with embracing subjectivity. Their experiences suggest that pragmatism may be a useful bridging framework for the growing number of academics from the science, technology, engineering, and math (STEM disciplines turning to qualitative methodologists for help to move beyond positivist research.
CALL FOR PAPERS: Special Issue on `Singular Interactions in Quantum Mechanics: Solvable Models'
Dell'Antonio, G.; Exner, P.; Geyler, V.
2004-07-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Singular Interactions in Quantum Mechanics: Solvable Models'. This issue should be a repository for high quality original work. We are interested in having the topic interpreted broadly, that is, to include contributions dealing with point-interaction models, one- and many-body, quantum graphs, including graph-like structures coupling different dimensions, interactions supported by curves, manifolds, and more complicated sets, random and nonlinear couplings, etc., as well as approximations helping us to understand the meaning of singular couplings and applications of such models on different parts of quantum mechanics. We believe that when the second printing of the `bible' of the field, the book Solvable Models in Quantum Mechanics by S Albeverio, F Gesztesy, the late R Høegh-Krohn and H Holden, appears it is the right moment to review new developments in this area, with the hope of stimulating further development of these extremely useful techniques. The Editorial Board has invited G Dell'Antonio, P Exner and V Geyler to serve as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: bullet The subject of the paper should relate to singular interactions in quantum mechanics in the sense described above. bullet Contributions will be refereed and processed according to the usual procedure of the journal. bullet Papers should be original; reviews of a work published elsewhere will not be accepted. The guidelines for the preparation of contributions are as follows: bullet The DEADLINE for submission of contributions is 31 October 2004. This deadline will allow the special issue to appear in about April 2005. bullet There is a nominal page limit of 15 printed pages (approximately 9000 words) per contribution. Papers exceeding these limits may be accepted at the discretion of the Guest Editors. Further advice on
Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions
Pastorczak, Ewa; Corminboeuf, Clémence
2017-03-01
Today's quantum chemistry methods are extremely powerful but rely upon complex quantities such as the massively multidimensional wavefunction or even the simpler electron density. Consequently, chemical insight and a chemist's intuition are often lost in this complexity leaving the results obtained difficult to rationalize. To handle this overabundance of information, computational chemists have developed tools and methodologies that assist in composing a more intuitive picture that permits better understanding of the intricacies of chemical behavior. In particular, the fundamental comprehension of phenomena governed by non-covalent interactions is not easily achieved in terms of either the total wavefunction or the total electron density, but can be accomplished using more informative quantities. This perspective provides an overview of these tools and methods that have been specifically developed or used to analyze, identify, quantify, and visualize non-covalent interactions. These include the quantitative energy decomposition analysis schemes and the more qualitative class of approaches such as the Non-covalent Interaction index, the Density Overlap Region Indicator, or quantum theory of atoms in molecules. Aside from the enhanced knowledge gained from these schemes, their strengths, limitations, as well as a roadmap for expanding their capabilities are emphasized.
Measurement of gamma quantum interaction point in plastic scintillator with WLS strips
Smyrski, J.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Jasińska, B.; Kajetanowicz, M.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Wojnarska, J.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
2017-04-01
The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting (WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen BC-482A WLS strips we achieved a spatial resolution of 5 mm (σ) for annihilation photons from a 22Na isotope. The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner which is being developed by the J-PET collaboration.
Mixing and decoherence in continuous-time quantum walks on long-range interacting cycles
Energy Technology Data Exchange (ETDEWEB)
Salimi, S; Radgohar, R [Faculty of Science, Department of Physics, University of Kurdistan, Pasdaran Ave., Sanandaj (Iran, Islamic Republic of)], E-mail: shsalimi@uok.ac.ir, E-mail: r.radgohar@uok.ac.ir
2009-11-27
We study the effect of small decoherence in continuous-time quantum walks on long-range interacting cycles, which are constructed by connecting all the two nodes of distance m on the cycle graph. In our investigation, each node is continuously monitored by an individual point contact, which induces the decoherence process. We obtain the analytical probability distribution and the mixing time upper bound. Our results show that, for small rates of decoherence, the mixing time upper bound is independent of distance parameter m and is proportional to inverse of decoherence rate.
Ulmer, W; Halberg, F; Schwarzkopff, O
2011-01-01
The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: 1. Diffusion of charged molecules in magnetic fields. 2. Quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. The methods of point 2 permit the treatment of molecular processes by circuits with characteristic resonances and 'beat-frequencies', which result from the primarily fast physical processes. As examples the tunneling processes between DNA base pairs (H bonds) and the ATP decomposition are considered.
Quantum Entropy of a Single Cooper-Pair Box Interacting with Two Electromagnetic Fields
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A Hamiltonian which represents the interaction between a single Cooper-pair box and two quantized electromagnetic fields is considered in order to find new ways for quantum information. The wave function in Schrdinger picture is obtained. The evolution of the entropy of the box as a function of the scaled time is ploted to measure the entanglement between the box and the fields. It is found that the entanglement is sensitive to the detuning between the Josephson energy and the fields frequency, increasing the detuning can decrease the entanglement.
Flambaum, V V
2009-01-01
Exchange interaction strongly influences the long-range behavior of localized electron orbitals and quantum tunneling amplitudes.In the Hartree-Fock approximation the exchange produces a power-law decay instead of the usual exponential decrease at large distances. To show that this effect is real (i.e. not a result of the approximation) we consider a simple model where different effects may be accurately analyzed. Applications include huge enhancement of inner electron ionization by a static electric field or laser field considered in Ref. M. Ya. Amusia, arxiv:0904.4395
Gravitational interaction for light-like motion in classical and quantum theory
Mitskievich, Nikolai V
2010-01-01
On the basis of an exact vacuum solution of Einstein's equations, {\\it vis}. the pencil-of-light field, we study the light-like motion of test and non-test objects. We also consider the quantum theoretical interaction of massless scalar particles through virtual gravitons. The dragging phenomenon is manifested and its agreement with astronomical observations established. This paper submitted to {\\bf arXiv} is a somewhat reedited copy of my article dedicated to Dr. Ivar Piir in a volume published on the occasion of his 60th birthday in 1989 in Tartu by the Estonian Academy of Sciences.
Emergence of Critical Phenomena in Full Configuration Interaction Quantum Monte Carlo
Shepherd, James J; Thomas, Robert E; Booth, George H; Frenkel, Daan; Alavi, Ali
2012-01-01
There has been recent literature discussion on the origin and severity of the `sign problem' in full configuration interaction quantum Monte Carlo (FCIQMC) and its `initiator' adaptation (i-FCIQMC), methods of interest and potential because they allow for exact (FCI) ground-state solutions to be obtained often at a much reduced computational cost. In this study we aim to use a simple order parameter, describing the `sign structure' of the stochastic wavefunction representation, to empirically characterise the fundamentally different collective behaviour of the walker population in both methods.
Interacting quantum walkers: two-body bosonic and fermionic bound states
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2015-11-01
We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.
Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta
2004-01-01
Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.
Regularization of ultraviolet divergence for a particle interacting with a scalar quantum field
Energy Technology Data Exchange (ETDEWEB)
Skoromnik, Oleg; Keitel, Christoph [Max Planck Institute for Nuclear Physics (Germany); Feranchuk, Ilya; Lu, Dung [Belarusian State University (Belarus)
2016-07-01
When a non-relativistic particle interacts with a scalar quantum field, the standard perturbation theory leads to a dependence of the energy of its ground state on an undefined parameter ''momentum cut-off'' due to the ultraviolet divergence. We show that the use of non-asymptotic states of the system results in a calculation scheme in which all observable quantities remain finite and continuously depend on the coupling constant without any additional parameters. It is furthermore demonstrated that the divergence of traditional perturbation series is caused by the energy being a function with a logarithmic singularity for small values of the coupling constant.
Najarbashi, G.; Seifi, B.
2017-02-01
In this paper, we generalize the results of Oh (Phys Lett A 373:644-647, 2009) to Dzyaloshinskii-Moriya model under non-uniform external magnetic field to investigate the relation between entanglement, geometric phase (or Berry phase) and quantum phase transition. We use quaternionic representation to relate the geometric phase to the quantum phase transition. For small values of DM parameter, the Berry phase is more appropriate than the concurrence measure, while for large values, the concurrence is a good indicator to show the phase transition. On the other hand, by increasing the DM interaction the phase transition occurs for large values of anisotropy parameter. In addition, for small values of magnetic field the concurrence measure is appropriate indicator for quantum phase transition, but for large values of magnetic field the Berry phase shows a sharp changes in the phase transition points. The results show that the Berry phase and concurrence form a complementary system from phase transition point of view.
Nonlinear gauge interactions: a possible solution to the "measurement problem" in quantum mechanics
Hansson, Johan
2010-01-01
Two fundamental, and unsolved problems in physics are: i) the resolution of the "measurement problem" in quantum mechanics ii) the quantization of strongly nonlinear (nonabelian) gauge theories. The aim of this paper is to suggest that these two problems might be linked, and that a mutual, simultaneous solution to both might exist. We propose that the mechanism responsible for the "collapse of the wave function" in quantum mechanics is the nonlinearities already present in the theory via nonabelian gauge interactions. Unlike all other models of spontaneous collapse, our proposal is, to the best of our knowledge, the only one which does not introduce any new elements into the theory. A possible experimental test of the model would be to compare the coherence lengths - here defined as the distance over which quantum mechanical superposition is still valid - for, \\textit{e.g}, electrons and photons in a double-slit experiment. The electrons should have a finite coherence length, while photons should have a much ...
Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods.
Yilmazer, Nusret Duygu; Korth, Martin
2016-05-16
We review the first successes and failures of a "new wave" of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of "enhanced", dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects.
Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods
Directory of Open Access Journals (Sweden)
Nusret Duygu Yilmazer
2016-05-01
Full Text Available We review the first successes and failures of a “new wave” of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of “enhanced”, dispersion (D, and/or hydrogen-bond (H corrected density functional theory (DFT or semi-empirical quantum mechanical (SQM methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects.
Transport across two interacting quantum dots: bulk Kondo, Kondo box and molecular regimes
Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique
2014-03-01
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of small number of sites, so that Kondo box effects are present. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism. We finally study how the transport properties are affected as N is increased. We used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory. The results obtained with both methods describe qualitatively and also quantitatively the same physics.
Chiao, R Y; Chiao, Raymond Y.; Fitelson, Walter J.
2006-01-01
Measurements of the tunneling time are briefly reviewed. Next, time and matter in general relativity and quantum mechanics is examined. In particular, the question arises: How does gravitational radiation interact with a coherent quantum many-body system (a ``quantum fluid'')? A minimal coupling rule for the coupling of the electron spin to curved spacetime in general relativity implies the possibility of a coupling between electromagnetic (EM) and gravitational (GR) radiation mediated by a quantum Hall fluid. This suggests that quantum transducers between these two kinds of radiation fields might exist. We report here on a first attempt at a Hertz-type experiment, in which a high-$\\rm{T_c}$ superconductor (YBCO) was the material used as a quantum transducer to convert EM into GR microwaves, and a second piece of YBCO in a separate apparatus was used to back-convert GR into EM microwaves. An upper limit on the conversion efficiency of YBCO was measured to be $1.6\\times10^{-5}$.
Energy Technology Data Exchange (ETDEWEB)
Kumar, D. Sanjeev, E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [Department of Physics, DVR College of Engineering and Technology, Kashipur, Sangareddy Mandal, Hyderabad 502 285 (India)
2015-05-15
The magnetization of a parabolic quantum dot has been studied as a function of temperature and external magnetic field in the presence of Rashba, Dresselhaus Spin Orbit Interactions (SOI) and the electron-electron interactions. By the introduction of a simple and physically reasonable model potential, the problem has been solved exactly up to second order in both the SOI terms. Both the SOI found to be showing considerable effects on the magnetization of the quantum dot. The effect of electron-electron interaction on the magnetization also has been studied.
Boda, Aalu; Kumar, D. Sanjeev; Sankar, I. V.; Chatterjee, Ashok
2016-11-01
The problem of a parabolically confined two-dimensional semiconductor GaAs quantum dot with two interacting electrons in the presence of an external magnetic field and the spin-Zeeman interaction is studied using a method of numerical diagonalization. The energy spectrum is calculated as a function of the magnetic field. The magnetic moment (M) and the magnetic susceptibility (χ) show zero temperature diamagnetic peaks due to the exchange induced singlet-triplet transitions. The position and the number of these peaks depend both on the confinement strength of the quantum dot and the strength of the electron-electron interaction (β) .
DEFF Research Database (Denmark)
Houmark-Nielsen, Jakob; Nielsen, Torben Roland; Mørk, Jesper;
2009-01-01
We investigate the impact of many-body interactions on group-velocity slowdown achieved via electromagnetically induced transparency in quantum dots using three different coupling-probe schemes (ladder, V, and Lambda, respectively). We find that for all schemes many-body interactions have...
Directory of Open Access Journals (Sweden)
Biju V.
2013-03-01
Full Text Available We studied dynamic interactions between CdSe/ZnS quantum dots (QDs and cyclic solvents probed by femtosecond four-wave mixing. We found that the dynamic interactions of QDs strongly depend on the existence of π-bonds in solvent molecules.
Morton, Seth Michael; Jensen, Lasse
2011-10-07
A frequency-dependent quantum mechanics/molecular mechanics method for the calculation of response properties of molecules adsorbed on metal nanoparticles is presented. This discrete interaction model/quantum mechanics (DIM/QM) method represents the nanoparticle atomistically, thus accounting for the local environment of the nanoparticle surface on the optical properties of the adsorbed molecule. Using the DIM/QM method, we investigate the coupling between the absorption of a silver nanoparticle and of a substituted naphthoquinone. This system is chosen since it shows strong coupling due to a molecular absorption peak that overlaps with the plasmon excitation in the metal nanoparticle. We show that there is a strong dependence not only on the distance of the molecule from the metal nanoparticle but also on its orientation relative to the nanoparticle. We find that when the transition dipole moment of an excitation is oriented towards the nanoparticle there is a significant increase in the molecular absorption as a result of coupling to the metal nanoparticle. In contrast, we find that the molecular absorption is decreased when the transition dipole moment is oriented parallel to the metal nanoparticle. The coupling between the molecule and the metal nanoparticle is found to be surprisingly long range and important on a length scale comparable to the size of the metal nanoparticle. A simple analytical model that describes the molecule and the metal nanoparticle as two interacting point objects is found to be in excellent agreement with the full DIM/QM calculations over the entire range studied. The results presented here are important for understanding plasmon-exciton hybridization, plasmon enhanced photochemistry, and single-molecule surface-enhanced Raman scattering.
Einstein and "Jabberwocky": Through the Quantum Looking Glass.
Maffett, I. Lamar, Jr.
Twentieth century science is producing a wonderland of paradoxes, a new scientific literature of subjective, imaginative writing, a validation of all creative expression in the arts, and interaction with the so-called subjective and pseudo sciences from psychiatry to the paranormal. Cartesian dualism and reductionistic thinking have formed the…
Cheon, T
2004-01-01
We show that the U(2) family of point interactions on a line can be utilized to provide the U(2) family of qubit operations for quantum information processing. Qubits are realized as localized states in either side of the point interaction which represents a controllable gate. The manipulation of qubits proceeds in a manner analogous to the operation of an abacus. Keywords: quantum computation, quantum contact interaction, quantum wire
An, Taeyang; Cha, Min-Chul
2013-03-01
We study the superfluid-insulator quantum phase transition in a disordered two-dimensional quantum rotor model with random on-site interactions in the presence of particle-hole symmetry. Via worm-algorithm Monte Carlo calculations of superfluid density and compressibility, we find the dynamical critical exponent z ~ 1 . 13 (2) and the correlation length critical exponent 1 / ν ~ 1 . 1 (1) . These exponents suggest that the insulating phase is a incompressible Mott glass rather than a Bose glass.
Electron-phonon interaction in the quantum well state of the 1 ML Na/Cu(111) system
Eremeev, S. V.; Rusina, G. G.; Borisova, S. D.; Chulkov, E. V.
2008-02-01
The electron-phonon interaction in the quantum well state formed by a Na monolayer coating on Cu(111) is investigated theoretically. The calculations show that the electron-phonon coupling constant γ in this state decreases insignificantly (≈1%) compared to the value of γ for a clean copper surface. The corresponding electron-phonon contribution to the lifetime τ of the quantum well state increases by a factor of 1.5 compared to τ for the clean Cu(111) surface.
CRITIC2: A program for real-space analysis of quantum chemical interactions in solids
Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor
2014-03-01
We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum
Thomas, Robert E; Overy, Catherine; Knowles, Peter J; Alavi, Ali; Booth, George H
2015-01-01
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, "replica" ensemble of walkers, whose population evolves in imaginary time independently from the first, and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality, and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where suf...
Tahir, M.
2013-12-10
Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements.
Ladd, T D; Nemoto, K; Munro, W J; Yamamoto, Y; Ladd, Thaddeus D.; Loock, Peter van; Nemoto, Kae; Munro, William J.; Yamamoto, Yoshihisa
2006-01-01
We describe a system for long-distance distribution of quantum entanglement, in which coherent light with large average photon number interacts dispersively with single, far-detuned atoms or semiconductor impurities in optical cavities. Entanglement is heralded by homodyne detection using a second bright light pulse for phase reference. The use of bright pulses leads to a high success probability for the generation of entanglement, at the cost of a lower initial fidelity. This fidelity may be boosted by entanglement purification techniques, implemented with the same physical resources. The need for more purification steps is well compensated for by the increased probability of success when compared to heralded entanglement schemes using single photons or weak coherent pulses with realistic detectors. The principle cause of the lower initial fidelity is fiber loss; however, spontaneous decay and cavity losses during the dispersive atom/cavity interactions can also impair performance. We show that these effects...
Dubecký, Matúš; Jurečka, Petr; Mitas, Lubos; Hobza, Pavel; Otyepka, Michal
2014-01-01
Reliable theoretical predictions of noncovalent interaction energies, which are important e.g. in drug-design and hydrogen-storage applications, belong to longstanding challenges of contemporary quantum chemistry. In this respect, the fixed-node diffusion Monte Carlo (FN-DMC) is a promising alternative to the commonly used ``gold standard'' coupled-cluster CCSD(T)/CBS method for its benchmark accuracy and favourable scaling, in contrast to other correlated wave function approaches. This work is focused on the analysis of protocols and possible tradeoffs for FN-DMC estimations of noncovalent interaction energies and proposes a significantly more efficient yet accurate computational protocol using simplified explicit correlation terms. Its performance is illustrated on a number of weakly bound complexes, including water dimer, benzene/hydrogen, T-shape benzene dimer and stacked adenine-thymine DNA base pair complex. The proposed protocol achieves excellent agreement ($\\sim$0.2 kcal/mol) with respect to the reli...
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.
2015-01-01
Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....... to execute a pattern of motion, irrespective of whether the particles are fermions or bosons. A present frontier in both theory and experiment are mixed systems of different species and/or particles with multiple internal degrees of freedom. Here we consider trapped two-component bosons with short...
García-Calderón, Gastón; Villavicencio, Jorge; Hernández-Maldonado, Alberto; Romo, Roberto
2016-08-01
We investigate the decay of initial states that possess a tail that extends beyond the interaction potential region, for potentials of arbitrary shape that vanish exactly after a distance. This is the case for a relevant class of artificial quantum structures. We obtain that along the internal interaction region, the time evolution of the decaying wave function is formed by two terms. The first one refers to the proper decay of the internal portion of the initial state, whereas the second one, that arises from the external tail, yields a transient contribution that tunnels into the internal region, builds up to a value, and then decays. We obtain that depending on the parameters of the initial state, the nonexponential tail decaying contribution may be larger than the contribution of the proper nonexponential term. These results are illustrated by an exactly solvable model and the Heidelberg potential for decay of ultracold atoms and open the possibility to control initial states in artificial decaying systems.
Quantum radiation reaction in head-on laser-electron beam interaction
Vranic, Marija; Fonseca, Ricardo A; Silva, Luis O
2015-01-01
In this paper, we investigate the evolution of the energy spread and the divergence of electron beams while they interact with different laser pulses at intensities where quantum effects and radiation reaction are of relevance. The interaction is modeled with a QED-PIC code and the results are compared with those obtained with a standard PIC code with the addition of a classical radiation reaction module and with theoretical predictions. While classical radiation reaction is a continuous process, in QED, radiation emission is stochastic. The two pictures reconcile in the limit when the emitted photons energy is small compared to the energy of the emitting electrons. The energy spread of the electron distribution function always tends to decrease with classical radiation reaction, whereas the stochastic QED emission can also enlarge it. These two tendencies compete in the QED-dominated regime. Our analysis, supported by the QED module, reveals an upper limit to the maximal attainable energy spread due to stoch...
Zhang, Tianyuan
2016-01-01
In this work we propose a novel approach to solve the Schr\\"{o}dinger equation which combines projection onto the ground state with a path-filtering truncation scheme. The resulting projector configuration interaction (PCI) approach realizes a deterministic version of the full configuration interaction quantum Monte Carlo (FCIQMC) method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131, 054106]. To improve upon the linearized imaginary-time propagator, we develop an optimal projector scheme based on an exponential Chebyshev expansion in the limit of an infinite imaginary time step. After writing the exact projector as a path integral in determinant space, we introduce a path filtering procedure that truncates the size of the determinantal basis and approximates the Hamiltonian. The path filtering procedure is controlled by one real threshold that determines the accuracy of the PCI energy and is not biased towards any determinant. Therefore, the PCI approach can equally well describe static an...
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3
Wang, Yilin; Wang, Zhijun; Fang, Zhong; Dai, Xi
2015-03-01
In the present paper, the Gutzwiller density functional theory (LDA+G) has been applied to study the bilayer system of LaCoO3 grown along the (111 ) direction on SrTiO3. The LDA calculations show that there are two nearly flat bands located at the top and bottom of eg bands of Co atoms with the Fermi level crossing the lower one. After including both the spin-orbit coupling and the Coulomb interaction in the LDA+G method, we find that the interplay between spin-orbit coupling and Coulomb interaction stabilizes a very robust ferromagnetic insulator phase with the nonzero Chern number indicating the possibility of realizing the quantum anomalous Hall effect in this system.
Energy Technology Data Exchange (ETDEWEB)
Tahir, M. [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Sabeeh, K. [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shaukat, A. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Schwingenschlögl, U., E-mail: Udo.Schwingenschlogl@kaust.edu.sa [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia)
2013-12-14
Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements.
Anderson localisation for an interacting two-particle quantum system on ${\\mathbb Z}$
Chulaevsky, Victor
2007-01-01
We study spectral properties of a system of two quantum particles on an integer lattice with a bounded short-range two-body interaction, in an external random potential field $V(x,\\omega)$ with independent, identically distributed values. The main result is that if the common probability density $f$ of random variables $V(x,\\omega)$ is analytic in a strip around the real line and the amplitude constant $g$ is large enough (i.e. the system is at high disorder), then, with probability one, the spectrum of the two-particle lattice Schroedinger operator $H(\\omega)$ (bosonic or fermionic) is pure point, and all eigen-functions decay exponentially. The proof given in this paper is based on a refinement of a multiscale analysis (MSA) scheme proposed by von Dreifus and Klein, adapted to incorporate lattice systems with interaction.
Directory of Open Access Journals (Sweden)
Brad W. Watson
2016-11-01
Full Text Available Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.
Asymptotic Floquet states of open quantum systems: the role of interaction
Hartmann, M.; Poletti, D.; Ivanchenko, M.; Denisov, S.; Hänggi, P.
2017-08-01
When a periodically modulated many-body quantum system is weakly coupled to an environment, the combined action of these temporal modulations and dissipation steers the system towards a state characterized by a time-periodic density operator. To resolve this asymptotic non-equilibrium state at stroboscopic instants of time, we use the dissipative propagator over one period of modulations, ‘Floquet map’, and evaluate the stroboscopic density operator as its invariant. Particle interactions control properties of the map and thus the features of its invariant. In addition, the spectrum of the map provides insight into the system relaxation towards the asymptotic state and may help to understand whether it is possible (or not) to construct a stroboscopic time-independent Lindblad generator which mimics the action of the original time-dependent one. We illustrate the idea with a scalable many-body model, a periodically modulated Bose-Hubbard dimer. We contrast the relations between the interaction-induced bifurcations in a mean-field description with the numerically exact stroboscopic evolution and discuss the characteristics of the genuine quantum many-body state vs the characteristics of its mean-field counterpart.
Seto, Keita; Nagatomo, Hideo; Koga, James; Mima, Kunioki
In the near future, the intensity of the ultra-short pulse laser will reach to 1022 W/cm2. When an electron is irradiated by this laser, the electron's behavior is relativistic with significant bremsstrahlung. This radiation from the electron is regarded as the energy loss of electron. Therefore, the electron's motion changes because of the kinetic energy changing. This radiation effect on the charged particle is the self-interaction, called the “radiation reaction” or the “radiation damping”. For this reason, the radiation reaction appears in laser electron interactions with an ultra-short pulse laser whose intensity becomes larger than 1022 W/cm2. In the classical theory, it is described by the Lorentz-Abraham-Dirac (LAD) equation. But, this equation has a mathematical difficulty, which we call the “run-away”. Therefore, there are many methods for avoiding this problem. However, Dirac's viewpoint is brilliant, based on the idea of quantum electrodynamics. We propose a new equation of motion in the quantum theory with radiation reaction in this paper.
Quantum phase diagram of the half filled Hubbard model with bond-charge interaction
Energy Technology Data Exchange (ETDEWEB)
Dobry, A.O., E-mail: dobry@ifir-conicet.gov.a [Facultad de Ciencias Exactas Ingenieria y Agrimensura, Universidad Nacional de Rosario and Instituto de Fisica Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Aligia, A.A. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina)
2011-02-21
Using quantum field theory and bosonization, we determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U at half-filling, for small values of the interactions. We show that it is essential to take into account formally irrelevant terms of order X. They generate relevant terms proportional to X{sup 2} in the flow of the renormalization group (RG). These terms are calculated using operator product expansions. The model shows three phases separated by a charge transition at U=U{sub c} and a spin transition at U=U{sub s}>U{sub c}. For UU{sub s}, the system is in the spin-density wave phase as in the usual Hubbard model. For intermediate values U{sub c}
Ionic conductivity in a quantum lattice gas model with three-particle interactions
Barry, J. H.; Muttalib, K. A.; Tanaka, T.
2012-12-01
A system of mesoscopic ions with dominant three-particle interactions is modeled by a quantum lattice liquid on the planar kagomé lattice. The two-parameter Hamiltonian contains localized attractive triplet interactions as potential energy and nearest neighbor hopping-type terms as kinetic energy. The dynamic ionic conductivity σ(ω) is theoretically investigated for ‘weak hopping’ via a quantum many-body perturbation expansion of the thermal (Matsubara) Green function (current-current correlation). A simple analytic continuation and mapping of the thermal Green function provide the temporal Fourier transform of the physical retarded Green function in the Kubo formula. Substituting pertinent exact solutions for static multi-particle correlations known from previous work, Arrhenius relations are revealed in zeroth-order approximation for the dc ionic conductivity σdc along special trajectories in density-temperature space. The Arrhenius plots directly yield static activation energies along the latter loci. Experimental possibilities relating to σdc are discussed in the presence of equilibrium aggregation. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.
Interaction-induced quantum anomalous Hall phase in bilayers of 3d transition-metal oxide
Wang, Yilin; Fang, Zhong; Dai, Xi
2014-03-01
In the present paper, we have studied the electronic structure of 3d transition-metal oxide LaCoO3 thin film grown on the [111] surface of SrTiO3. By using first-principles calculation under local density approximation implemented with Gutzwiller variational method (LDA+G), we have studied the bilayer systems of LaCoO3 thin films grown along the [111] direction on SrTiO3. The LDA results show that two nearly flat bands locate at the top and bottom of eg bands of Co atoms, and the Fermi level crosses the lower one, which is almost half-filled. After including both the spin-orbit coupling and the rotational invariant Coulomb interaction in the LDA+G method, we found that the Coulomb interaction will enhance the effective spin-orbit coupling, and a ferromagnetic insulator phase with a gap as large as 0.15 eV will be stabilized. Further calculations indicate that such a ferromagnetic insulator phase will have non zero Chern number one leading to quantum anomalous Hall effect. Increasing Hund's rule coupling in this system will generate a low spin to high spin transition and destroy the quantum anomalous Hall phase.
Petersen, Jakob; Pollak, Eli
2015-12-01
One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler and cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the "standard" SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk's frozen Gaussian and Heller's thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.
Energy Technology Data Exchange (ETDEWEB)
Petersen, Jakob; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)
2015-12-14
One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler and cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the “standard” SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk’s frozen Gaussian and Heller’s thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.
Cevolani, Lorenzo; Carleo, Giuseppe; Sanchez-Palencia, Laurent
2016-09-01
We study the out-of-equilibrium dynamics induced by quantum quenches in quadratic Hamiltonians featuring both short- and long-range interactions. The spreading of correlations in the presence of algebraic decaying interactions, 1/R α , is studied for lattice Bose models in arbitrary dimension D. These models are exactly solvable and provide useful insight in the universal description of more complex systems as well as comparisons to the known universal upper bounds for the spreading of correlations. Using analytical calculations of the dominant terms and full numerical integration of all quasi-particle contributions, we identify three distinct dynamical regimes. For strong decay of interactions, α \\gt D+1, we find a causal regime, qualitatively similar to what previously found for short-range interactions. This regime is characterized by ballistic (linear cone) spreading of the correlations with a cone velocity equal to twice the maximum group velocity of the quasi-particles. For weak decay of interactions, α molecular, and optical systems, and pave the way to the observation of causality and its breaking in diverse experimental realization.
Petersen, Jakob; Pollak, Eli
2015-12-14
One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler and cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the "standard" SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk's frozen Gaussian and Heller's thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.
Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Neuenschwander, D.E. Jr.
1983-01-01
Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.
Christensen, Anders S.; Kromann, Jimmy C.; Jensen, Jan H.; Cui, Qiang
2017-10-01
To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy in solution is computed via a thermodynamic cycle that integrates dimer binding energy in the gas phase at the coupled cluster level and solute-solvent interaction with density functional theory; the estimated uncertainty of such calculated interaction energy is ±1.5 kcal/mol. The dataset is used to benchmark the performance of a set of semi-empirical quantum mechanical (SQM) methods that include DFTB3-D3, DFTB3/CPE-D3, OM2-D3, PM6-D3, PM6-D3H+, and PM7 as well as the HF-3c method. We find that while all tested SQM methods tend to underestimate binding energies in the gas phase with a root-mean-squared error (RMSE) of 2-5 kcal/mol, they overestimate binding energies in the solution phase with an RMSE of 3-4 kcal/mol, with the exception of DFTB3/CPE-D3 and OM2-D3, for which the systematic deviation is less pronounced. In addition, we find that HF-3c systematically overestimates binding energies in both gas and solution phases. As most approximate QM methods are parametrized and evaluated using data measured or calculated in the gas phase, the dataset represents an important first step toward calibrating QM based methods for application in the condensed phase where polarization and exchange repulsion need to be treated in a balanced fashion.
Directory of Open Access Journals (Sweden)
Nathalie Pattyn
2009-06-01
Full Text Available In the present paper, the historical overview of descriptions of the autonomic nervous system (ANS is applied as a case study to serve the demonstration of the persistence of dualisms in our current framework of neurosciences. First, the four main views on the ANS are briefly summarised, with an emphasis on the latest one, being the neurovisceral integration perspectives, striving for an integrative view on cognition, emotion regulation and physiological adaptation. Second, an explanation is offered on why we are so reluctant to give up the explanatory framework of dualisms, based on both developmental psychology accounts and postmodernism philosophy. To conclude, an attitude based on positivism and epistemological anarchism is suggested for scientists.
Interactions and Disorder in Quantum Dots: A New Large-g Approach
Murthy, Ganpathy
2003-03-01
Understanding the combined effects of disorder and interactions in electronic systems has emerged as one of the most challenging theoretical problems in condensed matter physics. It turns out[1,2] that one can solve this problem non-perturbatively in both disorder and interactions in the regime when the system is finite (as in a quantum dot) but its dimensionless conductance g under open-lead conditions is large. This regime is experimentally interesting for the statistics of Coulomb Blockade in quantum dots and persistent currents in rings threaded by a flux. First some RG work will be described[1] which shows that a disordered quantum dot with Fermi liquid interactions can be in one of two phases; one controlled by the Universal Hamiltonian[3] and another regime where interactions become large. These two are separated in the infinite-g limit by a second-order disordered Pomeranchuk phase transition. Next we solve the strong-coupling phase[2], which is characterized by a Fermi surface distortion, by a large-N approximation (where N=g is in fact large for realistic systems). Predictions will be presented for finite but large g for the statistics of the Coulomb Blockade peak spacings and other correlators. A connection will be made to ideas concerning "Fock space localization"[4]. Finally, the relationship of these results to puzzles[5] in persistent currents in mesoscopic rings will be presented. 1. G. Murthy and H. Mathur, Phys. Rev. Lett. 89, 126804 (2002). 2. G. Murthy and R. Shankar, cond-mat/0209136. 3. A. V. Andreev and A. Kamenev, Phys. Rev. Lett. 81, 3199 (1998); P. W. Brouwer, Y. Oreg, and B. I. Halperin, Phys. Rev. B 60, R13977 (1999); H. U. Baranger, D. Ullmo, and L. I. Glazman, Phys. Rev. B 61, R2425 (2000); I. L. Kurland, I. L. Aleiner, and B. L. Al'tshuler, Phys. Rev. B 62, 14886 (2000). 4. B. L. Al'tshuler, Y. Gefen, A. Kamanev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997). 5. U. Eckern and P. Schwab, J. Low Temp. Phys. 126, 1291 (2002).
Altıntaş, A.; ćakmak, K. E.; Güçlü, A. D.
2017-01-01
We theoretically investigate the effects of long-range disorder and electron-electron interactions on the optical properties of hexagonal armchair graphene quantum dots consisting of up to 10 806 atoms. The numerical calculations are performed using a combination of tight-binding, mean-field Hubbard, and configuration interaction methods. Imperfections in the graphene quantum dots are modeled as a long-range random potential landscape, giving rise to electron-hole puddles. We show that, when the electron-hole puddles are present, the tight-binding method gives a poor description of the low-energy absorption spectra compared to mean-field and configuration interaction calculation results. As the size of the graphene quantum dot is increased, the universal optical conductivity limit can be observed in the absorption spectrum. When disorder is present, the calculated absorption spectrum approaches the experimental results for isolated monolayers of graphene sheets.
O'Farrell, E C T; Avsar, A; Tan, J Y; Eda, G; Özyilmaz, B
2015-09-09
Magnetotransport measurements demonstrate that graphene in a van der Waals heterostructure is a sensitive probe of quantum transport in an adjacent WS2 layer via strong Coulomb interactions. We observe a large low-field magnetoresistance (≫ e(2)/h) and a -ln T temperature dependence of the resistance. In-plane magnetic field resistance indicates the origin is orbital and nonclassical. We demonstrate a strong electron-hole asymmetry in the mobility and coherence length of graphene demonstrating the presence of localized Coulomb interactions with ionized donors in the WS2 substrate, which ultimately leads to screening as the Fermi level of graphene is tuned toward the conduction band of WS2. This leads us to conclude that graphene couples to quantum localization processes in WS2 via the Coulomb interaction and results in the observed signatures of quantum transport. Our results show that theoretical descriptions of the van der Waals interface should not ignore localized strong correlations.
Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots
Ngo, Thi Tuyen; Suarez, Isaac; Sanchez, Rafael S.; Martinez-Pastor, Juan P.; Mora-Sero, Ivan
2016-07-01
Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and electroluminescence experiments. The radiative exciplex relaxation is centered in the near infrared region (NIR), ~1200 nm, which corresponds to lower energies than the corresponding band gap of both perovskite (PS) and QDs. Our approach allows the fabrication of multi-wavelength light emitting diodes (LEDs) based on a PS matrix with embedded QDs, which show considerably low turn-on potentials. The presence of the exciplex state of PS and QDs opens up a broad range of possibilities with important implications in both LEDs and solar cells.Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and
Pârvan, Alexandra
2016-08-01
Ontology is involved in medical care, because what both doctors and patients think the disease, the patient and the doctor are affects the giving and receiving of care, and hence the definition of medical care as profession. Going back to ancient philosophical views of disease as 'bounded entity' or as 'relation' (still echoed in contemporary theories and mindsets), I propose a way to think ontologically about disease that places it in necessary connection with the patient as person. Drawing on Augustine's views on disease, bodily integrity, and the human person as mind-body unit, I speak of 'monistic dualism' as the view where the unit and health of the person is continuously and personally generated by the mind's attention to and action on the body, whether the body is impaired or not. Monistic dualism is identified as the ontological position of both patients who are (or can become) healthy within illness and clinicians who are 'healthy' in their profession. It is what guides both to create what their body is in a personal state of integrity or health. This 'metaphysical body' is termed 'the body electric' in patients, and I argue that clinicians can attend properly to the diseased body by attending to patients' metaphysical body. As clinicians offer metaphysical care to themselves, employing monistic dualism to create their metaphysical body, they should not deny it to patients. Ontology cannot be part of medical care without making metaphysical care a requirement.
Dey, Dayasindhu; Saha, Sudip Kumar; Singha Deo, P.; Kumar, Manoranjan; Sarkar, Sujit
2017-07-01
We study the topological quantum phase transition and also the nature of this transition using the density matrix renormalization group method. We observe the existence of topological quantum phase transition for repulsive interaction, however this phase is more stable for the attractive interaction. The length scale dependent study shows many new and important results and we show explicitly that the major contribution to the excitation comes from the edge of the system when the system is in the topological state. We also show the dependence of Majorana localization length for various values of chemical potential.
Bioentropy, Aesthetics and Meta-dualism: The Transdisciplinary Ecology of Gregory Bateson
Directory of Open Access Journals (Sweden)
Peter Harries-Jones
2010-11-01
Full Text Available In this paper I am going to be dealing with Gregory Bateson, a theorist who is one of the founders of cybernetics, an acknowledged precursor of Biosemiotics, and in all respects highly transdisciplinary. Until his entry into cybernetics Bateson was an anthropologist and like anthropologists of his day, accepted a semantic approach to meaning through the classic work of Ogden and Richards and their thought-word-meaning triangle. Ogden and Richards developed their semantic triangle from Peirce, but effectively turned the Peircian semiotic triad into a pentad of addressors and addressees, to which Bateson added context and reflexivity through feedback loops. The emergence of cybernetics and information theory in the 1940s increased the salience of the notion of feedback yet, he argued, information theory had truncated the notion of meaning. Bateson’s discussion of the logical categories of learning and communication distinguished the difference between and ‘sign’ and ‘signal’. Cybernetic signaling was a form of zero‑learning; living systems were interpretative and engaged in several logical types of learning. Twenty years later he took up similar sorts of issues with regard to the new science of ecology which had framed systemic ‘entropy’ solely in thermodynamic terms and ignored communication and learning in living systems. His concept of Bioentropy is presented in section two of this paper as is its association with redundancy. Bioentropy, in turn, led to his offering an entirely new definition of information: “the difference that makes a difference.” The definition could apply to both human and non-human communication patterns, since some forms of animal communication could not undertake logical typing. Finally, he believed that his own systemic approach was insufficient for meta-dualism. He promoted the idea of an ecological aesthetics which needed to be sufficiently objective to deal with the many disruptions in its own
Kundu, Anjan
2016-01-01
Integrable quantum field models are known to exist mostly in one space-dimension. Exploiting the concept of multi-time in integrable systems and a Lax matrix of higher scaling order, we construct a novel quantum field model in quasi-two dimensions involving interacting fields. The Yang-Baxter integrability is proved for the model by finding a new kind of commutation rule for its basic fields, representing nonstandard scalar fields along the transverse direction. In spite of a close link with the quantum Landau-Lifshitz equation, the present model differs widely from it, in its content and the result obtained. Using further the algebraic Bethe ansatz we solve exactly the eigenvalue problem of this quantum field model for all its higher conserved operators. The idea presented here should instigate the construction of a novel class of integrable field and lattice models and exploration of a new type of underlying algebras.
The electron-phonon interaction in GaAs/(AlGa)As quantum wells
Cross, A J
2001-01-01
detected phonon emission energy spectra. This thesis presents a study of the electron-phonon interaction in two dimensional electron gases (2DEGs), by measuring of the acoustic phonon emission from a sequence of n-type doped GaAs/(AIGa)As quantum wells. Previous studies of emission from 2DEGs confined in GaAs heterojunctions (Chin et al., 1984) have shown a surprising absence of longitudinal acoustic (LA) mode phonon emission, in contrast with theoretical studies (Vass, 1987) which predict that deformation potential coupled LA mode emission should dominate the energy relaxation processes. This may be attributed to the finite width of the quasi-2D sheet, which imposes a restriction on the maximum emitted phonon wavevector component perpendicular to the 2DEG, leading to a suppression of the emission (the '1/a sub 0 cutoff') at smaller phonon wavevectors than predicted by the earlier theory. By using the quantum well width w as a means of modulating the thickness of the 2DEG, the dependence of the 1/a sub 0 cuto...
Kim, Sejoong; Lee, Hyun-Woo
2006-05-01
A pioneering experiment [E. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and Hadas Shtrikman, Nature 385, 417 (1997)] reported the measurement of the transmission phase of an electron traversing a quantum dot and found the intriguing feature of a sudden phase drop in the conductance valleys. Based on the Friedel sum rule for a spinless effective one-dimensional system, it has been previously argued [H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999)] that the sudden phase drop should be accompanied by the vanishing of the transmission amplitude, or transmission zero. Here we address roles of strong electron-electron interactions on the electron transport through a two-level quantum dot where one level couples with the leads much more strongly than the other level does [P. G. Silvestrov and Y. Imry, Phys. Rev. Lett. 85, 2565 (2000)]. We perform a perturbative conductance calculation with an explicit account of large charging energy and verify that the resulting conductance exhibits transmission zero, in agreement with the analysis based on the Friedel sum rule.
Fermi and Coulomb correlation effects upon the interacting quantum atoms energy partition
Ruiz, Isela; Holguín-Gallego, Fernando José; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás
2016-01-01
The Interacting Quantum Atoms (IQA) electronic energy partition is an important method in the field of quantum chemical topology which has given important insights of different systems and processes in physical chemistry. There have been several attempts to include Electron Correlation (EC) in the IQA approach, for example, through DFT and Hartree-Fock/Coupled-Cluster (HF/CC) transition densities. This work addresses the separation of EC in Fermi and Coulomb correlation and its effect upon the IQA analysis by taking into account spin-dependent one- and two-electron matrices $D^{\\mathrm{HF/CC}}_{p\\sigma q \\sigma}$ and $d^{\\mathrm{HF/CC}}_{p\\sigma q\\sigma r\\tau s\\tau}$ wherein $\\sigma$ and $\\tau$ represent either of the $\\alpha$ and $\\beta$ spin projections. We illustrate this approach by considering BeH$_2$,BH, CN$^-$, HF, LiF, NO$^+$, LiH, H$_2$O$\\cdots$H$_2$O and C$_2$H$_2$, which comprise non-polar covalent, polar covalent, ionic and hydrogen bonded systems. The same and different spin contributions to ($i$...
Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model
Krishna, S.; Shukla, D.; Malik, R. P.
2016-07-01
In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.
An excited-state approach within full configuration interaction quantum Monte Carlo
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-10-01
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available.
Quantum Statistical Behaviors of Interaction of an Atomic Bose-Einstein Condensate with Laser
Institute of Scientific and Technical Information of China (English)
YU Zhao-Xian; JIAO Zhi-Yong
2001-01-01
We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.``
Ramadurai, D; Norton, E; Hale, J; Garland, J W; Stephenson, L D; Stroscio, M A; Sivananthan, S; Kumar, A
2008-06-01
A nanoscale sensor employing fluorescent resonance energy transfer interactions between fluorescent quantum dots (QDs) and organic quencher molecules can be used for the multiplexed detection of biological antigens in solution. Detection occurs when the antigens to be detected displace quencher-labelled inactivated (or dead) antigens of the same type attached to QD-antibody complexes through equilibrium reactions. This unquenches the QDs, allowing detection to take place through the observation of photoluminescence in solution or through the fluorescence imaging of unquenched QD complexes trapped on filter surfaces. Multiplexing can be accomplished by using several different sizes of QDs, with each size QD labelled with an antibody for a different antigen, providing the ability to detect several types of antigens or biological contaminants simultaneously in near real-time with high specificity and sensitivity.
Quantum-chemical examination of interaction of cytostatic-fluorouracil with deoxyribonucleic acids
Yuldasheva, Gulnara; Zhidomirov, Georgii M.
Within the framework of semiempirical method of quantum chemical PM3, the possibility of formation of paired stack structures under interaction of fluorouracil with pyrimidine and purine nitrogenous bases of nucleotides has been examined. Possible mechanism of transformation of 2-deoxyuridine-5-monophosphate into metabolite-5-fluorin-2-deoxyuridine-5-monophosphate has been given. The calculations that were made allow to suppose that biotransformation of 5-FU in 5-fluorin-2-deoxyuridine-5-monophosphate, most likely, is carried out not in free nucleotides, but in the structure of DNA in two nucleotide triplets UUC and UGU, including the case when directly two nucleotides of deoxyuridine monophosphate, are transformed into 5-fluorin-2-deoxyuridine-5-monophosphate. Cytostatic ability of 5-FU is increased by its capacity to be selectively embedded into nucleotide triplets creating new chemical compounds that violate matrix RNA formation and accordingly violate protein synthesis.0
Zhang, Hong; Smith, Sean C; Nanbu, Shinkoh; Nakamura, Hiroki
2009-04-08
In this work we study the transmission of atomic hydrogen across a fluorinated boron-substituted coronene radical (C(19)H(12)BF(6)) as a model for partially fluorinated and boron-doped nanotubes or fullerenes. Complete active space self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) methods are employed to calculate the potential energy surfaces for both ground and excited electronic states, and one-dimensional R-matrix propagation is utilized to investigate the transmission/reflection dynamics of atomic hydrogen, through the central six-member ring of the fluorinated boron-substituted coronene radical. The quantum scattering includes resonance effects as well as non-adiabatic transitions between the ground and excited electronic states. Within the sudden approximation, both centre and off-centre approach trajectories have been investigated. Implications for atomic hydrogen encapsulation by carbon nanotube and fullerene are discussed.
Kersten, Jennifer; Alavi, Ali
2016-01-01
The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schr\\"odinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses and compares two contrasting `universal' explicitly correlated approaches that fit into the FCIQMC framework; the $[2]_{R12}$ method of Valeev {\\em et al.}, and the explicitly correlated canonical transcorrelation approach of Yanai {\\em et al}. The former is an {\\em a posteriori} internally-contracted perturbative approach, while the latter transforms the Hamiltonian prior to...
Giner, Emmanuel; Toulouse, Julien
2016-01-01
We explore the use in quantum Monte Carlo (QMC) of trial wave functions consisting of a Jastrow factor multiplied by a truncated configuration-interaction (CI) expansion in Slater determinants obtained from a CI perturbatively selected iteratively (CIPSI) calculation. In the CIPSI algorithm, the CI expansion is iteratively enlarged by selecting the best determinants using perturbation theory, which provides an optimal and automatic way of constructing truncated CI expansions approaching the full CI limit. We perform a systematic study of variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo (DMC) total energies of first-row atoms from B to Ne with different levels of optimization of the parameters (Jastrow parameters, coefficients of the determinants, and orbital parameters) in these trial wave functions. The results show that the reoptimization of the coefficients of the determinants in VMC (together with the Jastrow factor) leads to an important lowering of both VMC and DMC total energies, and ...
Yao, Jun; Yang, Mei; Liu, Yu; Duan, Yixiang
2015-05-01
CdS quantum dot (QD) is a typical kind of II-IV nanoparticles, which plays an important role in the common type of core-shell QDs. It is of great practical significance to synthesize the water-soluble CdS QDs used in multicolor biomarkers and prepare core-shell QDs. In our case, we came up with a novel green method to manufacture CdS QDs with high quality, different size, and adopted UV-vis absorption, fluorescence, FTIR, XPS, HRTEM, SAED and STEM-EDX to discuss their growth mechanism. We successfully constructed fluorescence resonance energy transfer (FRET) system between CdS QDs and gold nanoparticles (AuNPs), then comprehensively and systematically studied the interaction between them.
Booth, George H; Alavi, Ali; Tew, David P
2012-01-01
By performing a stochastic dynamic in a space of Slater determinants, the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has been able to obtain energies which are essentially free from systematic error to the basis set correlation energy, within small and systematically improvable errorbars. However, the weakly exponential scaling with basis size makes converging the energy with respect to basis set costly and in larger systems, impossible. To ameliorate these basis set issues, here we use perturbation theory to couple the FCIQMC wave function to an explicitly correlated strongly orthogonal basis of geminals, following the [2]_{\\textrm{R12}} approach of Valeev {\\em et al.}. The required one- and two-particle density matrices are computed on-the-fly during the FCIQMC dynamic, using a sampling procedure which incurs relatively little additional computation expense. The F12 energy corrections are shown to converge rapidly as a function of sampling, both in imaginary time, and number of walke...
Nearly-linear light cones in long-range interacting quantum systems
Foss-Feig, Michael; Clark, Charles W; Gorshkov, Alexey V
2014-01-01
In non-relativistic quantum theories with short-range Hamiltonians, a velocity $v$ can be chosen such that the influence of any local perturbation is approximately confined to within a distance $r$ until a time $t \\sim r/v$, thereby defining a linear light cone and giving rise to an emergent notion of locality. In systems with power-law ($1/r^{\\alpha}$) interactions, when $\\alpha$ exceeds the dimension $D$, an analogous bound confines influences to within a distance $r$ only until a time $t\\sim(\\alpha/v)\\log r$, suggesting that the velocity, as calculated from the slope of the light cone, may grow exponentially in time. We rule out this possibility; light cones of power-law interacting systems are algebraic for $\\alpha>2D$, becoming linear as $\\alpha\\rightarrow\\infty$. Our results impose strong new constraints on the growth of correlations and the production of entangled states in a variety of rapidly emerging, long-range interacting atomic, molecular, and optical systems.
Energy Technology Data Exchange (ETDEWEB)
Tkach, N. V., E-mail: ktf@chnu.edu.ua; Seti, Ju. A.; Grynyshyn, Yu. B. [Chernivtsy National University (Ukraine)
2015-04-15
The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperature shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.
Systematic investigation of interactions between papain and MPA-capped CdTe quantum dots.
Xiao, Qi; Qiu, Hangna; Huang, Shan; Huang, Chusheng; Su, Wei; Hu, Baoqing; Liu, Yi
2013-10-01
Fluorescent quantum dots (QDs) have been widely applied in biological and biomedical areas, but relatively little is known about the interaction of QDs with some natural enzymes. Herein, the interactions between 3-mercaptopropionic acid-capped CdTe QDs (MPA-QDs) and papain were systematically investigated by UV-Vis absorption spectra, fluorescence spectra and circular dichroism (CD) spectra under the physiological conditions. The fluorescence spectra results indicated that MPA-QDs quenched the fluorescence intensity of papain. The modified Stern-Volmer quenching constant K a at different temperatures and the corresponding thermodynamic parameters ΔH, ΔG and ΔS were also calculated. The binding of MPA-QDs and papain is a result of the formation of QDs-papain complex and the electrostatic interactions play a major role in stabilizing the complex. The CD technique was further used to analyze the conformational changes of papain induced by MPA-QDs and the results indicated that the biological activity of papain was affected by MPA-QDs dramatically.
Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions
Hung, C -L; Cirac, J I; Kimble, H J
2016-01-01
We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in one- and two-dimensional lattices. In our scheme, two internal atomic states represent a pseudo-spin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin-spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom-atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom-atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce non-trivial Berry phases in the spin lattice, thus opening new avenues for realizing novel topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well known spin models...
Kharitonov, Maxim; Juergens, Stefan; Trauzettel, Björn
2016-07-01
We consider a class of quantum Hall topological insulators: topologically nontrivial states with zero Chern number at finite magnetic field, in which the counterpropagating edge states are protected by a symmetry (spatial or spin) other than time-reversal. HgTe-type heterostructures and graphene are among the relevant systems. We study the effect of electron interactions on the topological properties of the system. We particularly focus on the vicinity of the topological phase transition, marked by the crossing of two Landau levels, where the system is a strongly interacting quantum Hall ferromagnet. We analyze the edge properties using the formalism of the nonlinear σ -model. We establish the symmetry requirement for the topological protection in this interacting system: effective continuous U(1) symmetry with respect to uniaxial isospin rotations must be preserved. If U(1) symmetry is preserved, the topologically nontrivial phase persists; its edge is a helical Luttinger liquid with highly tunable effective interactions. We obtain explicit analytical expressions for the parameters of the Luttinger liquid in the quantum-Hall-ferromagnet regime. However, U(1) symmetry may be broken, either spontaneously or by U(1)-asymmetric interactions. In either case, interaction-induced transitions occur to the respective topologically trivial phases with gapped edge charge excitations.
Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield
Chaturvedi, Sumit K.; Zhao, Huaying; Schuck, Peter
2017-04-01
Sedimentation velocity analytical ultracentrifugation with fluorescence detection has emerged as a powerful method for the study of interacting systems of macromolecules. It combines picomolar sensitivity with high hydrodynamic resolution, and can be carried out with photoswitchable fluorophores for multi-component discrimination, to determine the stoichiometry, affinity, and shape of macromolecular complexes with dissociation equilibrium constants from picomolar to micromolar. A popular approach for data interpretation is the determination of the binding affinity by isotherms of weight-average sedimentation coefficients, sw. A prevailing dogma in sedimentation analysis is that the weight-average sedimentation coefficient from the transport method corresponds to the signal- and population-weighted average of all species. We show that this does not always hold true for systems that exhibit significant signal changes with complex formation - properties that may be readily encountered in practice, e.g., from a change in fluorescence quantum yield. Coupled transport in the reaction boundary of rapidly reversible systems can make significant contributions to the observed migration in a way that cannot be accounted for in the standard population-based average. Effective particle theory provides a simple physical picture for the reaction-coupled migration process. On this basis we develop a more general binding model that converges to the well-known form of sw with constant signals, but can account simultaneously for hydrodynamic co-transport in the presence of changes in fluorescence quantum yield. We believe this will be useful when studying interacting systems exhibiting fluorescence quenching, enhancement or Forster resonance energy transfer with transport methods.
Sub quantum space and interactions properties from photon structure to fermions and bosons
Directory of Open Access Journals (Sweden)
Hossein Javadi
2013-05-01
Full Text Available This article is based on a concept; "During the conversion of energy into mass, the interaction properties between the Sub Quantum Energies (SQEs are transferred from photon to fermions and bosons". We have accepted that nature of gravity is quantized, but according to the behavior of photons in the gravitational field, we provide a new definition of gravitons. Then we explain the relationship between gravity and electromagnetic energy. According to the experimental observations, we generalize the Maxwell equations of electromagnetism to the gravitational field. We use the pair production and decay to show that a charged particle acts like a generator, the generator input and output are gravitons and virtual photon. The negative charged particle produces positive virtual photon and positive charged particle produces negative virtual photon. A negative and a positive virtual photon combine with each other in the vicinity of a charged particle and cause the charged particle to accelerate. Although this approach to Quantum Field Theory (QFT is presented, it has some differences. The mechanism of negative and positive virtual photons interaction is easier and more realistic than exchange particles of QFT, and it also has no ambiguities of QFT. After all, we explain the real photon and its structure by using the virtual photons. Regarding the equivalence of mass-energy and the photon structure, structure of matter was explained. Then we will explain the relationship between speed and spontaneous symmetry breaking, when the particles linear speed is reduced, physical symmetry, one after the other is broken spontaneously.
Galland, Nicolas; Kone, Soleymane; Le Questel, Jean-Yves
2012-10-01
A quantitative analysis of the interaction sites of the anti-Alzheimer drug galanthamine with molecular probes (water and benzene molecules) representative of its surroundings in the binding site of acetylcholinesterase (AChE) has been realized through pairwise potentials calculations and quantum chemistry. This strategy allows a full and accurate exploration of the galanthamine potential energy surface of interaction. Significantly different results are obtained according to the distances of approaches between the various molecular fragments and the conformation of the galanthamine N-methyl substituent. The geometry of the most relevant complexes has then been fully optimized through MPWB1K/6-31 + G(d,p) calculations, final energies being recomputed at the LMP2/aug-cc-pVTZ(-f) level of theory. Unexpectedly, galanthamine is found to interact mainly from its hydrogen-bond donor groups. Among those, CH groups in the vicinity of the ammonium group are prominent. The trends obtained provide rationales to the predilection of the equatorial orientation of the galanthamine N-methyl substituent for binding to AChE. The analysis of the interaction energies pointed out the independence between the various interaction sites and the rigid character of galanthamine. The comparison between the cluster calculations and the crystallographic observations in galanthamine-AChE co-crystals allows the validation of the theoretical methodology. In particular, the positions of several water molecules appearing as strongly conserved in galanthamine-AChE co-crystals are predicted by the calculations. Moreover, the experimental position and orientation of lateral chains of functionally important aminoacid residues are in close agreement with the ones predicted theoretically. Our study provides relevant information for a rational drug design of galanthamine based AChE inhibitors.
Galland, Nicolas; Kone, Soleymane; Le Questel, Jean-Yves
2012-10-01
A quantitative analysis of the interaction sites of the anti-Alzheimer drug galanthamine with molecular probes (water and benzene molecules) representative of its surroundings in the binding site of acetylcholinesterase (AChE) has been realized through pairwise potentials calculations and quantum chemistry. This strategy allows a full and accurate exploration of the galanthamine potential energy surface of interaction. Significantly different results are obtained according to the distances of approaches between the various molecular fragments and the conformation of the galanthamine N-methyl substituent. The geometry of the most relevant complexes has then been fully optimized through MPWB1K/6-31 + G(d,p) calculations, final energies being recomputed at the LMP2/aug-cc-pVTZ(-f) level of theory. Unexpectedly, galanthamine is found to interact mainly from its hydrogen-bond donor groups. Among those, CH groups in the vicinity of the ammonium group are prominent. The trends obtained provide rationales to the predilection of the equatorial orientation of the galanthamine N-methyl substituent for binding to AChE. The analysis of the interaction energies pointed out the independence between the various interaction sites and the rigid character of galanthamine. The comparison between the cluster calculations and the crystallographic observations in galanthamine-AChE co-crystals allows the validation of the theoretical methodology. In particular, the positions of several water molecules appearing as strongly conserved in galanthamine-AChE co-crystals are predicted by the calculations. Moreover, the experimental position and orientation of lateral chains of functionally important aminoacid residues are in close agreement with the ones predicted theoretically. Our study provides relevant information for a rational drug design of galanthamine based AChE inhibitors.
Does a String-Particle Dualism Indicate the Uncertainty Principle's Philosophical Dichotomy?
Mc Leod, David; Mc Leod, Roger
2007-04-01
String theory may allow resonances of neutrino-wave-strings to account for all experimentally detected phenomena. Particle theory logically, and physically, provides an alternate, contradictory dualism. Is it contradictory to symbolically and simultaneously state that λp = h, but, the product of position and momentum must be greater than, or equal to, the same (scaled) Plank's constant? Our previous electron and positron models require `membrane' vibrations of string-linked neutrinos, in closed loops, to behave like traveling waves, Tws, intermittently metamorphosing into alternately ascending and descending standing waves, Sws, between the nodes, which advance sequentially through 360 degrees. Accumulated time passages as Tws detail required ``loop currents'' supplying magnetic moments. Remaining time partitions into the Sws' alternately ascending and descending phases: the physical basis of the experimentally established 3D modes of these ``particles.'' Waves seem to indicate that point mass cannot be required to exist instantaneously at one point; Mott's and Sneddon's Wave Mechanics says that a constant, [mass], is present. String-like resonances may also account for homeopathy's efficacy, dark matter, and constellations' ``stick-figure projections,'' as indicated by some traditional cultures, all possibly involving neutrino strings. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.5