WorldWideScience

Sample records for quantum integrating transistor

  1. Nanophotonic quantum computer based on atomic quantum transistor

    International Nuclear Information System (INIS)

    Andrianov, S N; Moiseev, S A

    2015-01-01

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  2. Nanophotonic quantum computer based on atomic quantum transistor

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, S N [Institute of Advanced Research, Academy of Sciences of the Republic of Tatarstan, Kazan (Russian Federation); Moiseev, S A [Kazan E. K. Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences, Kazan (Russian Federation)

    2015-10-31

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  3. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity

    International Nuclear Information System (INIS)

    Li Jinjin; Zhu Kadi

    2011-01-01

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.

  4. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity.

    Science.gov (United States)

    Li, Jin-Jin; Zhu, Ka-Di

    2011-02-04

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.

  5. High mobility and quantum well transistors design and TCAD simulation

    CERN Document Server

    Hellings, Geert

    2013-01-01

    For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Qu...

  6. Report on the results of research and development under a consignment from NEDO on deca-nano quantum integrating transistor substrate technologies; 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Deca-nano ryoshi shusekika soshi kiban gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Researches have been conducted on deca-nano quantum integrating transistor substrate technologies, and developments were made on a three-dimensional device simulator which can be used in deca-nano domains, and a circuit simulator to have quantifying function transistors coexist with silicon semiconductor integrated circuits. The researches were intended to develop a simulator capable of analyzing properties of very small silicon and compound semiconductor devices in deca-nano domains. The researches discussed the applicability of conventional simulators, calculated quantum levels in a three-dimensional hetero structure, and resulted in development of an electron wave propagation simulator in optional two-dimensional shapes, a quantum Monte Carlo simulator, and a three-dimensional semiconductor device simulator with quantum correction. On the other hand, in order to estimate characteristics of a hybrid circuit in which single electron transistors coexist with conventional transistors such as CMOS transistors, a single electron hybrid circuit simulator was developed. The development indicated that a CMOS-SET fused memory is promising as a future LSI memory. 22 refs., 116 figs., 3 tabs.

  7. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-07

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 10(5) and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

  8. Quantum engineering of transistors based on 2D materials heterostructures

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  9. Quantum engineering of transistors based on 2D materials heterostructures.

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  10. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    Science.gov (United States)

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-01-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024

  11. Transistor and integrated circuit manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Colman, D

    1978-09-27

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry.

  12. Gate-induced carrier delocalization in quantum dot field effect transistors.

    Science.gov (United States)

    Turk, Michael E; Choi, Ji-Hyuk; Oh, Soong Ju; Fafarman, Aaron T; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R; Kikkawa, James M

    2014-10-08

    We study gate-controlled, low-temperature resistance and magnetotransport in indium-doped CdSe quantum dot field effect transistors. We show that using the gate to accumulate electrons in the quantum dot channel increases the "localization product" (localization length times dielectric constant) describing transport at the Fermi level, as expected for Fermi level changes near a mobility edge. Our measurements suggest that the localization length increases to significantly greater than the quantum dot diameter.

  13. Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires

    Science.gov (United States)

    Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey

    2005-06-01

    In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.

  14. Transistor and integrated circuit manufacture

    International Nuclear Information System (INIS)

    Colman, D.

    1978-01-01

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry. (author)

  15. Ultra-Low Power Optical Transistor Using a Single Quantum Dot Embedded in a Photonic Wire

    DEFF Research Database (Denmark)

    Nguyen, H.A.; Grange, T.; Malik, N.S.

    2017-01-01

    Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons.......Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons....

  16. Measurement of quantum noise in a single-electron transistor near the quantum limit

    Science.gov (United States)

    Xue, W. W.; Ji, Z.; Pan, Feng; Stettenheim, Joel; Blencowe, M. P.; Rimberg, A. J.

    2009-09-01

    Quantum measurement has challenged physicists for almost a century. Classically, there is no lower bound on the noise a measurement may add. Quantum mechanically, however, measuring a system necessarily perturbs it. When applied to electrical amplifiers, this means that improved sensitivity requires increased backaction that itself contributes noise. The result is a strict quantum limit on added amplifier noise. To approach this limit, a quantum-limited amplifier must possess an ideal balance between sensitivity and backaction; furthermore, its noise must dominate that of subsequent classical amplifiers. Here, we report the first complete and quantitative measurement of the quantum noise of a superconducting single-electron transistor (S-SET) near a double Cooper-pair resonance predicted to have the right combination of sensitivity and backaction. A simultaneous measurement of our S-SET's charge sensitivity indicates that it operates within a factor of 3.6 of the quantum limit, a fourfold improvement over the nearest comparable results.

  17. Phase transition and field effect topological quantum transistor made of monolayer MoS2

    Science.gov (United States)

    Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.

    2018-06-01

    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.

  18. CMOS-based carbon nanotube pass-transistor logic integrated circuits

    Science.gov (United States)

    Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao

    2012-01-01

    Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080

  19. A tunable colloidal quantum dot photo field-effect transistor

    KAUST Repository

    Ghosh, Subir; Hoogland, Sjoerd; Sukhovatkin, Vlad; Levina, Larissa; Sargent, Edward H.

    2011-01-01

    We fabricate and investigate field-effect transistors in which a light-absorbing photogate modulates the flow of current along the channel. The photogate consists of colloidal quantum dots that efficiently transfer photoelectrons to the channel across a charge-separating (type-II) heterointerface, producing a primary and sustained secondary flow that is terminated via electron back-recombination across the interface. We explore colloidal quantum dot sizes corresponding to bandgaps ranging from 730 to 1475 nm and also investigate various stoichiometries of aluminum-doped ZnO (AZO) channel materials. We investigate the role of trap state energies in both the colloidal quantum dot energy film and the AZO channel. © 2011 American Institute of Physics.

  20. From transistor to trapped-ion computers for quantum chemistry.

    Science.gov (United States)

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  1. Effect of quantum well position on the distortion characteristics of transistor laser

    Science.gov (United States)

    Piramasubramanian, S.; Ganesh Madhan, M.; Radha, V.; Shajithaparveen, S. M. S.; Nivetha, G.

    2018-05-01

    The effect of quantum well position on the modulation and distortion characteristics of a 1300 nm transistor laser is analyzed in this paper. Standard three level rate equations are numerically solved to study this characteristics. Modulation depth, second order harmonic and third order intermodulation distortion of the transistor laser are evaluated for different quantum well positions for a 900 MHz RF signal modulation. From the DC analysis, it is observed that optical power is maximum, when the quantum well is positioned near base-emitter interface. The threshold current of the device is found to increase with increasing the distance between the quantum well and the base-emitter junction. A maximum modulation depth of 0.81 is predicted, when the quantum well is placed at 10 nm from the base-emitter junction, under RF modulation. The magnitude of harmonic and intermodulation distortion are found to decrease with increasing current and with an increase in quantum well distance from the emitter base junction. A minimum second harmonic distortion magnitude of -25.96 dBc is predicted for quantum well position (230 nm) near to the base-collector interface for 900 MHz modulation frequency at a bias current of 20 Ibth. Similarly, a minimum third order intermodulation distortion of -38.2 dBc is obtained for the same position and similar biasing conditions.

  2. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  3. Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots

    Science.gov (United States)

    Yang, Zhen

    Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.

  4. Lateral power transistors in integrated circuits

    CERN Document Server

    Erlbacher, Tobias

    2014-01-01

    This book details and compares recent advancements in the development of novel lateral power transistors (LDMOS devices) for integrated circuits in power electronic applications. It includes the state-of-the-art concept of double-acting RESURF topologies.

  5. Poly-silicon quantum-dot single-electron transistors

    International Nuclear Information System (INIS)

    Kang, Kwon-Chil; Lee, Joung-Eob; Lee, Jung-Han; Lee, Jong-Ho; Shin, Hyung-Cheol; Park, Byung-Gook

    2012-01-01

    For operation of a single-electron transistors (SETs) at room temperature, we proposed a fabrication method for a SET with a self-aligned quantum dot by using polycrystalline silicon (poly-Si). The self-aligned quantum dot is formed by the selective etching of a silicon nanowire on a planarized surface and the subsequent deposition and etch-back of poly-silicon or chemical mechanical polishing (CMP). The two tunneling barriers of the SET are fabricated by thermal oxidation. Also, to decrease the leakage current and control the gate capacitance, we deposit a hard oxide mask layer. The control gate is formed by using an electron beam and photolithography on chemical vapor deposition (CVD). Owing to the small capacitance of the narrow control gate due to the tetraethyl orthosilicate (TEOS) hard mask, we observe clear Coulomb oscillation peaks and differential trans-conductance curves at room temperature. The clear oscillation period of the fabricated SET is 2.0 V.

  6. Atom transistor from the point of view of nonequilibrium dynamics

    International Nuclear Information System (INIS)

    Zhang, Z; Dunjko, V; Olshanii, M

    2015-01-01

    We analyze the atom field-effect transistor scheme (Stickney et al 2007 Phys. Rev. A 75 013608) using the standard tools of quantum and classical nonequlilibrium dynamics. We first study the correspondence between the quantum and the mean-field descriptions of this system by computing, both ab initio and by using their mean-field analogs, the deviations from the Eigenstate Thermalization Hypothesis, quantum fluctuations, and the density of states. We find that, as far as the quantities that interest us, the mean-field model can serve as a semi-classical emulator of the quantum system. Then, using the mean-field model, we interpret the point of maximal output signal in our transistor as the onset of ergodicity—the point where the system becomes, in principle, able to attain the thermal values of the former integrals of motion, albeit not being fully thermalized yet. (paper)

  7. Quantum mechanical solver for confined heterostructure tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Van de Put, Maarten; Sorée, Bart; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Departement of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Verhulst, Anne S.; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandenberghe, William G. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-02-07

    Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement.

  8. Gate-controlled quantum collimation in nanocolumn resonant tunnelling transistors

    International Nuclear Information System (INIS)

    Wensorra, J; Lepsa, M I; Trellenkamp, S; Moers, J; Lueth, H; Indlekofer, K M

    2009-01-01

    Nanoscaled resonant tunneling transistors (RTT) based on MBE-grown GaAs/AlAs double-barrier quantum well (DBQW) structures have been fabricated by a top-down approach using electron-beam lithographic definition of the vertical nanocolumns. In the preparation process, a reproducible mask alignment accuracy of below 10 nm has been achieved and the all-around metal gate at the level of the DBQW structure has been positioned at a distance of about 20 nm relative to the semiconductor nanocolumn. Due to the specific doping profile n ++ /i/n ++ along the transistor nanocolumn, a particular confining potential is established for devices with diameters smaller than 70 nm, which causes a collimation effect of the propagating electrons. Under these conditions, room temperature optimum performance of the nano-RTTs is achieved with peak-to-valley current ratios above 2 and a peak current swing factor of about 6 for gate voltages between -6 and +6 V. These values indicate that our nano-RTTs can be successfully used in low power fast nanoelectronic circuits.

  9. Quantum simulation of an ultrathin body field-effect transistor with channel imperfections

    Science.gov (United States)

    Vyurkov, V.; Semenikhin, I.; Filippov, S.; Orlikovsky, A.

    2012-04-01

    An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated. The model is based on the Landauer-Buttiker approach. Our calculation of transmission coefficients employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact of realistic channel imperfections (random charged centers and wall roughness) on transistor characteristics. The Landauer-Buttiker approach is developed to incorporate calculation of the noise at an arbitrary temperature. We also validate the ballistic Landauer-Buttiker approach for the usual situation when heavily doped contacts are indispensably included into the simulation region.

  10. Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors.

    Science.gov (United States)

    Talbo, Vincent; Saint-Martin, Jérôme; Retailleau, Sylvie; Dollfus, Philippe

    2017-11-01

    By means of advanced numerical simulation, the thermoelectric properties of a Si-quantum dot-based single-electron transistor operating in sequential tunneling regime are investigated in terms of figure of merit, efficiency and power. By taking into account the phonon-induced collisional broadening of energy levels in the quantum dot, both heat and electrical currents are computed in a voltage range beyond the linear response. Using our homemade code consisting in a 3D Poisson-Schrödinger solver and the resolution of the Master equation, the Seebeck coefficient at low bias voltage appears to be material independent and nearly independent on the level broadening, which makes this device promising for metrology applications as a nanoscale standard of Seebeck coefficient. Besides, at higher voltage bias, the non-linear characteristics of the heat current are shown to be related to the multi-level effects. Finally, when considering only the electronic contribution to the thermal conductance, the single-electron transistor operating in generator regime is shown to exhibit very good efficiency at maximum power.

  11. Quantum measure and integration theory

    International Nuclear Information System (INIS)

    Gudder, Stan

    2009-01-01

    This article begins with a review of quantum measure spaces. Quantum forms and indefinite inner-product spaces are then discussed. The main part of the paper introduces a quantum integral and derives some of its properties. The quantum integral's form for simple functions is characterized and it is shown that the quantum integral generalizes the Lebesgue integral. A bounded, monotone convergence theorem for quantum integrals is obtained and it is shown that a Radon-Nikodym-type theorem does not hold for quantum measures. As an example, a quantum-Lebesgue integral on the real line is considered.

  12. The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers

    Science.gov (United States)

    Hsu, Yu-Jen

    Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by

  13. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors.

    Science.gov (United States)

    Chen, Haitian; Cao, Yu; Zhang, Jialu; Zhou, Chongwu

    2014-06-13

    Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates).

  14. Quantum Transport in Tunnel Field-Effect Transistors for Future Nano-CMOS Applications

    OpenAIRE

    Vandenberghe, William

    2012-01-01

    After decades of scientific and technological development to fabricate ever smaller, faster and more energy efficient MOSFETs, reducing MOSFET power consumption is becoming increasingly difficult. As a possible successor to the MOSFET, the tunnel field-effect transistor (TFET) has been proposed. The topic of this thesis is to study the working principle of the TFET and to go beyond the semiclassical models towards a fully quantum mechanical modeling of the TFET which has band-to-band tunnelin...

  15. Positive and negative gain exceeding unity magnitude in silicon quantum well metal-oxide-semiconductor transistors

    Science.gov (United States)

    Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark

    2017-10-01

    Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.

  16. Adiabatic Quantum Transistors

    Directory of Open Access Journals (Sweden)

    Dave Bacon

    2013-06-01

    Full Text Available We describe a many-body quantum system that can be made to quantum compute by the adiabatic application of a large applied field to the system. Prior to the application of the field, quantum information is localized on one boundary of the device, and after the application of the field, this information propagates to the other side of the device, with a quantum circuit applied to the information. The applied circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a degenerate ground space with symmetry-protected topological order. Such “adiabatic quantum transistors” are universal adiabatic quantum computing devices that have the added benefit of being modular. Here, we describe this model, provide arguments for why it is an efficient model of quantum computing, and examine these many-body systems in the presence of a noisy environment.

  17. Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage.

    Science.gov (United States)

    Liu, Tingting; Zhao, Jianwen; Xu, Weiwei; Dou, Junyan; Zhao, Xinluo; Deng, Wei; Wei, Changting; Xu, Wenya; Guo, Wenrui; Su, Wenming; Jie, Jiansheng; Cui, Zheng

    2018-01-03

    Fabrication and application of hybrid functional circuits have become a hot research topic in the field of printed electronics. In this study, a novel flexible diode-transistor logic (DTL) driving circuit is proposed, which was fabricated based on a light emitting diode (LED) integrated with printed high-performance single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs). The LED, which is made of AlGaInP on GaAs, is commercial off-the-shelf, which could generate free electrical charges upon white light illumination. Printed top-gate TFTs were made on a PET substrate by inkjet printing high purity semiconducting SWCNTs (sc-SWCNTs) ink as the semiconductor channel materials, together with printed silver ink as the top-gate electrode and printed poly(pyromellitic dianhydride-co-4,4'-oxydianiline) (PMDA/ODA) as gate dielectric layer. The LED, which is connected to the gate electrode of the TFT, generated electrical charge when illuminated, resulting in biased gate voltage to control the TFT from "ON" status to "OFF" status. The TFTs with a PMDA/ODA gate dielectric exhibited low operating voltages of ±1 V, a small subthreshold swing of 62-105 mV dec -1 and ON/OFF ratio of 10 6 , which enabled DTL driving circuits to have high ON currents, high dark-to-bright current ratios (up to 10 5 ) and good stability under repeated white light illumination. As an application, the flexible DTL driving circuit was connected to external quantum dot LEDs (QLEDs), demonstrating its ability to drive and to control the QLED.

  18. Integrated Quantum Optics: Experiments towards integrated quantum-light sources and quantum-enhanced sensing

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk

    The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum-enhanced se...... is presented and an optimized device design is proposed. The devices have been fabricated and tested optically and preliminary interrogations of the output quantum noise have been performed....

  19. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  20. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2016-01-01

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  1. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  2. Fabricating an organic complementary inverter by integrating two transistors on a single substrate

    International Nuclear Information System (INIS)

    Wang Jun; Wei Bin; Zhang Jianhua

    2008-01-01

    Organic complementary inverters were fabricated by integrating two transistors of different electric type on a single substrate. One is a p-type organic heterojunction transistor with a depletion–accumulation mode that acts as a load element. The other is an n-type transistor with an accumulation mode that acts as a drive element. Typical inverter characteristics with a voltage gain of 12 were obtained. Compared with conventional devices, our organic complementary inverter used only one-step patterning of an organic semiconductor, and simultaneously suppressed the leakage current between supply voltage and ground. Therefore, current studies provide a simpler path to fabrication of organic complementary circuits

  3. Quantum ballistic transistor and low noise HEMT for cryo-electronics lower than 4.2 K

    International Nuclear Information System (INIS)

    Gremion, E.

    2008-01-01

    Next generations of cryo-detectors, widely used in physics of particles and physics of universe, will need in the future high-performance cryo-electronics less noisy and closer to the detector. Within this context, this work investigates properties of two dimensional electron gas GaAlAs/GaAs by studying two components, quantum point contact (QPC) and high electron mobility transistor (HEMT). Thanks to quantized conductance steps in QPC, we have realized a quantum ballistic transistor (voltage gain higher than 1), a new component useful for cryo-electronics thanks to its operating temperature and weak power consumption (about 1 nW). Moreover, the very low capacity of this component leads to promising performances for multiplexing low temperature bolometer dedicated to millimetric astronomy. The second study focused on HEMT with very high quality 2DEG. At 4.2 K, a voltage gain higher than 20 can be obtained with a very low power dissipation of less than 100 μW. Under the above experimental conditions, an equivalent input voltage noise of 1.2 nV/√(Hz) at 1 kHz and 0.12 nV/√(Hz) at 100 kHz has been reached. According to the Hooge formula, these noise performances are get by increasing gate capacity estimated to 60 pF. (author)

  4. An innovative large scale integration of silicon nanowire-based field effect transistors

    Science.gov (United States)

    Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.

    2018-05-01

    Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

  5. The quantum double in integrable quantum field theory

    International Nuclear Information System (INIS)

    Bernard, D.; LeClair, A.

    1993-01-01

    Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)

  6. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    International Nuclear Information System (INIS)

    Che, Yongli; Zhang, Yating; Song, Xiaoxian; Cao, Mingxuan; Zhang, Guizhong; Yao, Jianquan; Cao, Xiaolong; Dai, Haitao; Yang, Junbo

    2016-01-01

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV th  ∼ 15 V) and a long retention time (>10 5  s). The magnitude of ΔV th depended on both P/E voltages and the bias voltage (V DS ): ΔV th was a cubic function to V P/E and linearly depended on V DS . Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  7. EDITORIAL: Reigniting innovation in the transistor Reigniting innovation in the transistor

    Science.gov (United States)

    Demming, Anna

    2012-09-01

    Today the transistor is integral to the electronic circuitry that wires our lives. When Bardeen and Brattain first observed an amplified signal by connecting electrodes to a germanium crystal they saw that their 'semiconductor triode' could prove a useful alternative to the more cumbersome vacuum tubes used at the time [1]. But it was perhaps William Schottky who recognized the extent of the transistor's potential. A basic transistor has three or more terminals and current across one pair of terminals can switch or amplify current through another pair. Bardeen, Brattain and Schottky were jointly awarded a Nobel Prize in 1956 'for their researches on semiconductors and their discovery of the transistor effect' [2]. Since then many new forms of the transistor have been developed and understanding of the underlying properties is constantly advancing. In this issue Chen and Shih and colleagues at Taiwan National University and Drexel University report a pyroelectrics transistor. They show how a novel optothermal gating mechanism can modulate the current, allowing a range of developments in nanoscale optoelectronics and wireless devices [3]. The explosion of interest in nanoscale devices in the 1990s inspired electronics researchers to look for new systems that can act as transistors, such as carbon nanotube [4] and silicon nanowire [5] transistors. Generally these transistors function by raising and lowering an energy barrier of kBT -1, but researchers in the US and Canada have demonstrated that the quantum interference between two electronic pathways through aromatic molecules can also modulate the current flow [6]. The device has advantages for further miniaturization where energy dissipation in conventional systems may eventually cause complications. Interest in transistor technology has also led to advances in fabrication techniques for achieving high production quantities, such as printing [7]. Researchers in Florida in the US demonstrated field effect transistor

  8. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  9. Nanowire transistors physics of devices and materials in one dimension

    CERN Document Server

    Colinge, Jean-Pierre

    2016-01-01

    From quantum mechanical concepts to practical circuit applications, this book presents a self-contained and up-to-date account of the physics and technology of nanowire semiconductor devices. It includes a unified account of the critical ideas central to low-dimensional physics and transistor physics which equips readers with a common framework and language to accelerate scientific and technological developments across the two fields. Detailed descriptions of novel quantum mechanical effects such as quantum current oscillations, the metal-to-semiconductor transition and the transition from classical transistor to single-electron transistor operation are described in detail, in addition to real-world applications in the fields of nanoelectronics, biomedical sensing techniques, and advanced semiconductor research. Including numerous illustrations to help readers understand these phenomena, this is an essential resource for researchers and professional engineers working on semiconductor devices and materials in ...

  10. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    Energy Technology Data Exchange (ETDEWEB)

    Che, Yongli; Zhang, Yating, E-mail: yating@tju.edu.cn; Song, Xiaoxian; Cao, Mingxuan; Zhang, Guizhong; Yao, Jianquan [Institute of Laser and Opto-Electronics, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Cao, Xiaolong [Institute of Laser and Opto-Electronics, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Dai, Haitao [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Yang, Junbo [Center of Material Science, National University of Defense Technology, Changsha 410073 (China)

    2016-07-04

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV{sub th} ∼ 15 V) and a long retention time (>10{sup 5 }s). The magnitude of ΔV{sub th} depended on both P/E voltages and the bias voltage (V{sub DS}): ΔV{sub th} was a cubic function to V{sub P/E} and linearly depended on V{sub DS}. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  11. The classical limit of non-integrable quantum systems, a route to quantum chaos

    International Nuclear Information System (INIS)

    Castagnino, Mario; Lombardi, Olimpia

    2006-01-01

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state

  12. The classical limit of non-integrable quantum systems, a route to quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)

    2006-05-15

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.

  13. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  14. Integrated amplifying circuit with MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Baylac, B; Merckel, G; Meunier, P

    1974-01-25

    The invention relates to a feedback-pass-band amplifier with MOS-transistors. The differential stage of conventional amplifiers is changed into an adding state, whereas the differential amplification stages are changed into amplifier inverter stages. All MOS transistors used in that amplifier are of similar configuration and are interdigitized, whereby the operating speed dispersion is reduced. This can be applied to obtaining a measurement channel for proportional chambers.

  15. Prolonged 500 C Operation of 100+ Transistor Silicon Carbide Integrated Circuits

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Lukco, Dorothy; Chen, Liangyu; Krasowski, Michael J.; Prokop, Norman F.; Chang, Carl W.; Beheim, Glenn M.

    2017-01-01

    This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10 change in output characteristics for the remainder of 500C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.

  16. Transport spectroscopy of coupled donors in silicon nano-transistors

    Science.gov (United States)

    Moraru, Daniel; Samanta, Arup; Anh, Le The; Mizuno, Takeshi; Mizuta, Hiroshi; Tabe, Michiharu

    2014-01-01

    The impact of dopant atoms in transistor functionality has significantly changed over the past few decades. In downscaled transistors, discrete dopants with uncontrolled positions and number induce fluctuations in device operation. On the other hand, by gaining access to tunneling through individual dopants, a new type of devices is developed: dopant-atom-based transistors. So far, most studies report transport through dopants randomly located in the channel. However, for practical applications, it is critical to control the location of the donors with simple techniques. Here, we fabricate silicon transistors with selectively nanoscale-doped channels using nano-lithography and thermal-diffusion doping processes. Coupled phosphorus donors form a quantum dot with the ground state split into a number of levels practically equal to the number of coupled donors, when the number of donors is small. Tunneling-transport spectroscopy reveals fine features which can be correlated with the different numbers of donors inside the quantum dot, as also suggested by first-principles simulation results. PMID:25164032

  17. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Smets, Quentin, E-mail: quentin.smets@imec.be; Verreck, Devin; Heyns, Marc M. [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); KULeuven, 3000 Leuven (Belgium); Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); Raskin, Jean-Pierre [ICTEAM, Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2014-11-17

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band.

  18. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    International Nuclear Information System (INIS)

    Smets, Quentin; Verreck, Devin; Heyns, Marc M.; Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron; Raskin, Jean-Pierre

    2014-01-01

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band

  19. Integrated devices for quantum information and quantum simulation with polarization encoded qubits

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-06-01

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.

  20. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    International Nuclear Information System (INIS)

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.; Hussain, A. M.; Hussain, M. M.

    2013-01-01

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions

  1. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2013-01-01

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  2. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir

    2013-11-26

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  3. Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel

    Science.gov (United States)

    Chemla, D. S.; Bar-Joseph, I.; Klingshirn, C.; Miller, D. A. B.; Kuo, J. M.

    1987-03-01

    Absorption switching in a semiconductor quantum well by electrically varying the charge density in the quantum well conducting channel of a selectively doped heterostructure transistor is reported for the first time. The phase-space absorption quenching (PAQ) is observed at room temperature in an InGaAs/InAlAs grown on InP FET, and it shows large absorption coefficient changes with relatively broad spectral bandwidth. This PAQ is large enough to be used for direct optical determination of the logic state of the FET.

  4. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Omran, Hesham; Alshareef, Sarah; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (Zn

  5. Approximate motion integrals and the quantum chaos problem

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    2001-01-01

    One discusses the problem of occurrence and seek for the motion integrals in the stationary quantum mechanics and its relation to the quantum chaos. One studies decomposition of quantum numbers and derives the criterion of chaos. To seek the motion integrals one applies the convergence method. One derived the approximate integrals in the Hennone-Hales problem. One discusses the problem of compatibility of chaos and integrability [ru

  6. Path Integrals in Quantum Mechanics

    International Nuclear Information System (INIS)

    Louko, J

    2005-01-01

    Jean Zinn-Justin's textbook Path Integrals in Quantum Mechanics aims to familiarize the reader with the path integral as a calculational tool in quantum mechanics and field theory. The emphasis is on quantum statistical mechanics, starting with the partition function Tr exp(-β H) and proceeding through the diffusion equation to barrier penetration problems and their semiclassical limit. The 'real time' path integral is defined via analytic continuation and used for the path-integral representation of the nonrelativistic S-matrix and its perturbative expansion. Holomorphic and Grassmannian path integrals are introduced and applied to nonrelativistic quantum field theory. There is also a brief discussion of path integrals in phase space. The introduction includes a brief historical review of path integrals, supported by a bibliography with some 40 entries. As emphasized in the introduction, mathematical rigour is not a central issue in the book. This allows the text to present the calculational techniques in a very readable manner: much of the text consists of worked-out examples, such as the quartic anharmonic oscillator in the barrier penetration chapter. At the end of each chapter there are exercises, some of which are of elementary coursework type, but the majority are more in the style of extended examples. Most of the exercises indeed include the solution or a sketch thereof. The book assumes minimal previous knowledge of quantum mechanics, and some basic quantum mechanical notation is collected in an appendix. The material has a large overlap with selected chapters in the author's thousand-page textbook Quantum Field Theory and Critical Phenomena (2002 Oxford: Clarendon). The stand-alone scope of the present work has, however, allowed a more focussed organization of this material, especially in the chapters on, respectively, holomorphic and Grassmannian path integrals. In my view the book accomplishes its aim admirably and is eminently usable as a textbook

  7. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei106, Taiwan (China)

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  8. Quantum ballistic transistor and low noise HEMT for cryo-electronics lower than 4.2 K; Transistor balistique quantique et HEMT bas-bruit pour la cryoelectronique inferieure a 4.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Gremion, E

    2008-01-15

    Next generations of cryo-detectors, widely used in physics of particles and physics of universe, will need in the future high-performance cryo-electronics less noisy and closer to the detector. Within this context, this work investigates properties of two dimensional electron gas GaAlAs/GaAs by studying two components, quantum point contact (QPC) and high electron mobility transistor (HEMT). Thanks to quantized conductance steps in QPC, we have realized a quantum ballistic transistor (voltage gain higher than 1), a new component useful for cryo-electronics thanks to its operating temperature and weak power consumption (about 1 nW). Moreover, the very low capacity of this component leads to promising performances for multiplexing low temperature bolometer dedicated to millimetric astronomy. The second study focused on HEMT with very high quality 2DEG. At 4.2 K, a voltage gain higher than 20 can be obtained with a very low power dissipation of less than 100 {mu}W. Under the above experimental conditions, an equivalent input voltage noise of 1.2 nV/{radical}(Hz) at 1 kHz and 0.12 nV/{radical}(Hz) at 100 kHz has been reached. According to the Hooge formula, these noise performances are get by increasing gate capacity estimated to 60 pF. (author)

  9. Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes

    International Nuclear Information System (INIS)

    Chen, G-L; Kuo, David M T; Lai, W-T; Li, P-W

    2007-01-01

    We have fabricated a Ge quantum dot (QD) (∼10 nm) single-hole transistor with self-aligned electrodes using thermal oxidation of a SiGe-on-insulator nanowire based on FinFET technology. This fabricated device exhibits clear Coulomb blockade oscillations with large peak-to-valley ratio (PVCR) of 250-750 and negative differential conductance with PVCR of ∼12 at room temperature. This reveals that the gate-induced tunneling barrier lowering is effectively suppressed due to the self-aligned electrode structure. The magnitude of tunneling current spectra also reveals the coupling strengths between the energy levels of the Ge QD and electrodes

  10. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  11. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects

    Science.gov (United States)

    Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu

    2018-06-01

    A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.

  12. Modelling, development and optimization of integrated power LDMOS transistor. Performance limits in terms of energy; Modelisation, conception et optimisation de composant de puissance lateral DMOS integre. Etude des limites de performance en energie

    Energy Technology Data Exchange (ETDEWEB)

    Farenc, D.

    1997-12-16

    Technologies for Smart Power Integrated Circuits combine into a single chip Bipolar and CMOS transistors, plus power with lateral or vertical DMOS transistors. Complexity which has been increasing dramatically since the mid-80`s has allowed to integrate, into a single monolithic solution, entire systems. This thesis deals with the modelling, conception and test of the power integrated LDMOS transistor. The power LDMOS transistor is used as a switching device. It is characterized by two parameters which are the Specific On-resistance R{sub sp} and the breakdown voltage BV{sub DSS}. The LDMOS transistor developed for the new Smart Power technology exhibits a Specific On-resistance of 200 m{Omega}{sup *}mm{sup 2} and a breakdown voltage of 60 V. This device is dedicated to automotive applications. A reduction of the power device which is achieved with a low Specific On-resistance puts forward new issues such as the maximum Energy capability. When the power device is switched-off on an inductive load, a certain amount of energy is dissipated; if it is beyond a certain limit, the device is destroyed. Our goal is to determine the energy limits which are associated with our new Power integrated LDMOS transistor. (author) 28 refs.

  13. A manufacturable process integration approach for graphene devices

    Science.gov (United States)

    Vaziri, Sam; Lupina, Grzegorz; Paussa, Alan; Smith, Anderson D.; Henkel, Christoph; Lippert, Gunther; Dabrowski, Jarek; Mehr, Wolfgang; Östling, Mikael; Lemme, Max C.

    2013-06-01

    In this work, we propose an integration approach for double gate graphene field effect transistors. The approach includes a number of process steps that are key for future integration of graphene in microelectronics: bottom gates with ultra-thin (2 nm) high-quality thermally grown SiO2 dielectrics, shallow trench isolation between devices and atomic layer deposited Al2O3 top gate dielectrics. The complete process flow is demonstrated with fully functional GFET transistors and can be extended to wafer scale processing. We assess, through simulation, the effects of the quantum capacitance and band bending in the silicon substrate on the effective electric fields in the top and bottom gate oxide. The proposed process technology is suitable for other graphene-based devices such as graphene-based hot electron transistors and photodetectors.

  14. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  15. Fabrication of a novel silicon single electron transistor for Si:P quantum computer devices

    International Nuclear Information System (INIS)

    Angus, S.J.; Smith, C.E.A.; Gauja, E.; Dzurak, A.S.; Clark, R.G.; Snider, G.L.

    2004-01-01

    Full text: Quantum computation relies on the successful measurement of quantum states. Single electron transistors (SETs) are known to be able to perform fast and sensitive charge measurements of solid state qubits. However, due to their sensitivity, SETs are also very susceptible to random charge fluctuations in a solid-state materials environment. In previous dc transport measurements, silicon-based SETs have demonstrated greater charge stability than A1/A1 2 O 3 SETs. We have designed and fabricated a novel silicon SET architecture for a comparison of the noise characteristics of silicon and aluminium based devices. The silicon SET described here is designed for controllable and reproducible low temperature operation. It is fabricated using a novel dual gate structure on a silicon-on-insulator substrate. A silicon quantum wire is formed in a 100nm thick high-resistivity superficial silicon layer using reactive ion etching. Carriers are induced in the silicon wire by a back gate in the silicon substrate. The tunnel barriers are created electrostatically, using lithographically defined metallic electrodes (∼40nm width). These tunnel barriers surround the surface of the quantum wire, thus producing excellent electrostatic confinement. This architecture provides independent control of tunnel barrier height and island occupancy, thus promising better control of Coulomb blockade oscillations than in previously investigated silicon SETs. The use of a near intrinsic silicon substrate offers compatibility with Si:P qubits in the longer term

  16. Gigahertz flexible graphene transistors for microwave integrated circuits.

    Science.gov (United States)

    Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen

    2014-08-26

    Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.

  17. Photon echo quantum random access memory integration in a quantum computer

    International Nuclear Information System (INIS)

    Moiseev, Sergey A; Andrianov, Sergey N

    2012-01-01

    We have analysed an efficient integration of multi-qubit echo quantum memory (QM) into the quantum computer scheme based on squids, quantum dots or atomic resonant ensembles in a quantum electrodynamics cavity. Here, one atomic ensemble with controllable inhomogeneous broadening is used for the QM node and other nodes characterized by the homogeneously broadened resonant line are used for processing. We have found the optimal conditions for the efficient integration of the multi-qubit QM modified for the analysed scheme, and we have determined the self-temporal modes providing a perfect reversible transfer of the photon qubits between the QM node and arbitrary processing nodes. The obtained results open the way for realization of a full-scale solid state quantum computing based on the efficient multi-qubit QM. (paper)

  18. Transport and performance of a gate all around InAs nanowire transistor

    International Nuclear Information System (INIS)

    Alam, Khairul

    2009-01-01

    The transport physics and performance metrics of a gate all around an InAs nanowire transistor are studied using a three-dimensional quantum simulation. The transistor action of an InAs nanowire transistor occurs by modulating the transmission coefficient of the device. This action is different from a conventional metal-oxide-semiconductor field effect transistor, where the transistor action occurs by modulating the charge in the channel. The device has 82% tunneling current in the off-state and 81% thermal current in the on-state. The two current components become equal at a gate bias at which an approximate source-channel flat-band condition is achieved. Prior to this gate bias, the tunneling current dominates and the thermal current dominates beyond it. The device has an on/off current ratio of 7.84 × 10 5 and an inverse subthreshold slope of 63 mV dec −1 . The transistor operates in the quantum capacitance limit with a normalized transconductance value of 14.43 mS µm −1 , an intrinsic switching delay of 90.1675 fs, and an intrinsic unity current gain frequency of 6.8697 THz

  19. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    International Nuclear Information System (INIS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-01-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves

  20. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thilo; Jäger, Christof M. [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Jordan, Meredith J. T. [School of Chemistry, University of Sydney, Sydney, NSW 2006 (Australia); Clark, Timothy, E-mail: tim.clark@fau.de [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Centre for Molecular Design, University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  1. Quantum photonics hybrid integration platform

    Energy Technology Data Exchange (ETDEWEB)

    Murray, E.; Floether, F. F. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ellis, D. J. P.; Meany, T.; Bennett, A. J., E-mail: anthony.bennet@crl.toshiba.co.uk; Shields, A. J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Lee, J. P. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  2. Predictive of the quantum capacitance effect on the excitation of plasma waves in graphene transistors with scaling limit.

    Science.gov (United States)

    Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei

    2015-04-28

    Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8 TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5 TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.

  3. Simulation of quantum dynamics with integrated photonics

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  4. Integrated materials design of organic semiconductors for field-effect transistors.

    Science.gov (United States)

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L; Fang, Lei; Bao, Zhenan

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm(2)/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.

  5. Improvements in or relating to transistor circuits

    International Nuclear Information System (INIS)

    Richards, R.F.; Williamson, P.W.

    1978-01-01

    This invention relates to transistor circuits and in particular to integrated transistor circuits formed on a substrate of semi-conductor material such as silicon. The invention is concerned with providing integrated circuits in which malfunctions caused by the effects of ionising, e.g. nuclear, radiations are reduced. (author)

  6. Integrable models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs

  7. Path Integrals in Quantum Mechanics

    International Nuclear Information System (INIS)

    Chetouani, L

    2005-01-01

    By treating path integrals the author, in this book, places at the disposal of the reader a modern tool for the comprehension of standard quantum mechanics. Thus the most important applications, such as the tunnel effect, the diffusion matrix, etc, are presented from an original point of view on the action S of classical mechanics while having it play a central role in quantum mechanics. What also emerges is that the path integral describes these applications more richly than are described traditionally by differential equations, and consequently explains them more fully. The book is certainly of high quality in all aspects: original in presentation, rigorous in the demonstrations, judicious in the choice of exercises and, finally, modern, for example in the treatment of the tunnel effect by the method of instantons. Moreover, the correspondence that exists between classical and quantum mechanics is well underlined. I thus highly recommend this book (the French version being already available) to those who wish to familiarize themselves with formulation by path integrals. They will find, in addition, interesting topics suitable for exploring further. (book review)

  8. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  9. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    Science.gov (United States)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  10. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Gámiz, F.

    2014-01-01

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  11. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2014-08-25

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  12. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications. © 2013 American Chemical Society.

  13. Design and characterization of integrated front-end transistors in a micro-strip detector technology

    International Nuclear Information System (INIS)

    Simi, G.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Manghisoni, M.; Morganti, M.; U. Pignatel, G.; Ratti, L.; Re, V.; Rizzo, G.; Speziali, V.; Zorzi, N.

    2002-01-01

    We present the developments in a research program aimed at the realization of silicon micro-strip detectors with front-end electronics integrated in a high resistivity substrate to be used in high-energy physics, space and medical/industrial imaging applications. We report on the fabrication process developed at IRST (Trento, Italy), the characterization of the basic wafer parameters and measurements of the relevant working characteristics of the integrated transistors and related test structures

  14. Flexible Graphene Transistor Architecture for Optical Sensor Technology

    Science.gov (United States)

    Ordonez, Richard Christopher

    The unique electrical and optoelectronic properties of graphene allow tunable conductivity and broadband electromagnetic absorption that spans the ultraviolet and infrared regimes. However, in the current state-of-art graphene sensor architectures, junction resistance and doping concentration are predominant factors that affect signal strength and sensitivity. Unfortunately, graphene produces high contact resistances with standard electrode materials ( few kilo-ohms), therefore, signal is weak and large carrier concentrations are required to probe sensitivity. Moreover, the atomic thickness of graphene enables the potential for flexible electronics, but there has not been a successful graphene sensor architecture that demonstrates stable operation on flexible substrates and with minimal fabrication cost. In this study, the author explores a novel 3-terminal transistor architecture that integrates twodimensional graphene, liquid metal, and electrolytic gate dielectrics (LM-GFETs: Liquid Metal and Graphene Field-Effect Transistors ). The goal is to deliver a sensitive, flexible, and lightweight transistor architecture that will improve sensor technology and maneuverability. The reported high thermal conductivity of graphene provides potential for room-temperature thermal management without the need of thermal-electric and gas cooling systems that are standard in sensor platforms. Liquid metals provide a unique opportunity for conformal electrodes that maximize surface area contact, therefore, enable flexibility, lower contact resistance, and reduce damage to the graphene materials involved. Lastly, electrolytic gate dielectrics provide conformability and high capacitances needed for high on/off rations and electrostatic gating. Results demonstrated that with minimal fabrication steps the proposed flexible graphene transistor architecture demonstrated ambipolar current-voltage transfer characteristics that are comparable to the current state-of-the-art. An additional

  15. Multidimensional quantum entanglement with large-scale integrated optics

    DEFF Research Database (Denmark)

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong

    2018-01-01

    -dimensional entanglement. A programmable bipartite entangled system is realized with dimension up to 15 × 15 on a large-scale silicon-photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality......The ability to control multidimensional quantum systems is key for the investigation of fundamental science and for the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control and analyze high...

  16. Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer

    KAUST Repository

    Adinolfi, Valerio

    2015-01-27

    © 2015 American Chemical Society. The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors\\' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.

  17. Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal.

    Science.gov (United States)

    Balazs, Daniel M; Rizkia, Nisrina; Fang, Hong-Hua; Dirin, Dmitry N; Momand, Jamo; Kooi, Bart J; Kovalenko, Maksym V; Loi, Maria Antonietta

    2018-02-14

    Colloidal quantum dots are a class of solution-processed semiconductors with good prospects for photovoltaic and optoelectronic applications. Removal of the surfactant, so-called ligand exchange, is a crucial step in making the solid films conductive, but performing it in solid state introduces surface defects and cracks in the films. Hence, the formation of thick, device-grade films have only been possible through layer-by-layer processing, limiting the technological interest for quantum dot solids. Solution-phase ligand exchange before the deposition allows for the direct deposition of thick, homogeneous films suitable for device applications. In this work, fabrication of field-effect transistors in a single step is reported using blade-coating, an upscalable, industrially relevant technique. Most importantly, a postdeposition washing step results in device properties comparable to the best layer-by-layer processed devices, opening the way for large-scale fabrication and further interest from the research community.

  18. A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime

    International Nuclear Information System (INIS)

    Rimberg, A J; Blencowe, M P; Armour, A D; Nation, P D

    2014-01-01

    We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field. (paper)

  19. Integrated photonics using colloidal quantum dots

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  20. Understanding noise suppression in heterojunction field-effect transistors

    International Nuclear Information System (INIS)

    Green, F.

    1996-01-01

    Full text: The enhanced transport properties displayed by quantum-well-confined, two-dimensional, electron systems underpin the success of heterojunction, field-effect transistors. At cryogenic temperatures, these devices exhibit impressive mobilities and, as a result, high signal gain and low noise. Conventional wisdom has it that the same favourable conditions also hold for normal room-temperature operation. In that case, however, high mobilities are precluded by abundant electron-phonon scattering. Our recent study of nonequilibrium current noise shows that quantum confinement, not high mobility, is the principal source of noise in these devices; this opens up new and exciting opportunities in low-noise transistor design. As trends in millimetre-wave technology push frequencies beyond 100 GHz, it is essential to develop a genuine understanding of noise processes in heterojunction devices

  1. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  2. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shibo; Zhang, Zhiyong, E-mail: zyzhang@pku.edu.cn; Si, Jia; Zhong, Donglai; Peng, Lian-Mao, E-mail: lmpeng@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  3. How to solve path integrals in quantum mechanics

    International Nuclear Information System (INIS)

    Grosche, C.

    1994-10-01

    A systematic classification of Feynman path integrals in quantum mechanics is presented and a table of solvable path integrals is given which reflects the progress made during the last 15 years, including, of course, the main contributions since the invention of the path integral by Feynman in 1942. An outline of the general theory is given which will serve as a quick reference for solving path integrals. Explicit formulae for the so-called basic path integrals are presented on which our general scheme to classify and calculate path integrals in quantum mechanics is based. (orig.)

  4. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  5. Quantum algebra structure of certain Jackson integrals

    International Nuclear Information System (INIS)

    Matsuo, Atsushi

    1993-01-01

    The q-difference system satisfied by Jackson integrals with a configuration of A-type root system is studied. We explicitly construct some linear combination of Jackson integrals, which satisfies the quantum Knizhnik-Zamolodchikov equation for the 2-point correlation function of q-vertex operators, introduced by Frenkel and Reshetik hin, for the quantum affine algebra U q (sl 2 ). The expression of integrands for the n-point case is conjectured, and a set of linear relations for the corresponding Jackson integrals is proved. (orig.)

  6. Multidimensional quantum entanglement with large-scale integrated optics.

    Science.gov (United States)

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong; Santagati, Raffaele; Skrzypczyk, Paul; Salavrakos, Alexia; Tura, Jordi; Augusiak, Remigiusz; Mančinska, Laura; Bacco, Davide; Bonneau, Damien; Silverstone, Joshua W; Gong, Qihuang; Acín, Antonio; Rottwitt, Karsten; Oxenløwe, Leif K; O'Brien, Jeremy L; Laing, Anthony; Thompson, Mark G

    2018-04-20

    The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Design and Performance Analysis of Depletion-Mode InSb Quantum-Well Field-Effect Transistor for Logic Applications

    Science.gov (United States)

    Islam, R.; Uddin, M. M.; Hossain, M. Mofazzal; Matin, M. A.

    The design of a 1μm gate length depletion-mode InSb quantum-well field-effect transistor (QWFET) with a 10nm-thick Al2O3 gate dielectric has been optimized using a quantum corrected self-consistent Schrödinger-Poisson (QCSP) and two-dimensional drift-diffusion model. The model predicts a very high electron mobility of 4.42m2V-1s-1 at Vg=0V, a small pinch off gate voltage (Vp) of -0.25V, a maximum extrinsic transconductance (gm) of ˜4.85mS/μm and a drain current density of more than 3.34mA/μm. A short-circuit current-gain cut-off frequency (fT) of 374GHz and a maximum oscillation frequency (fmax) of 645GHz are predicted for the device. These characteristics make the device a potential candidate for low power, high-speed logic electronic device applications.

  8. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  9. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.

  10. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.

    Science.gov (United States)

    Zhu, Li Qiang; Wan, Chang Jin; Gao, Ping Qi; Liu, Yang Hui; Xiao, Hui; Ye, Ji Chun; Wan, Qing

    2016-08-24

    Ion-conducting materials have received considerable attention for their applications in fuel cells, electrochemical devices, and sensors. Here, flexible indium zinc oxide (InZnO) synaptic transistors with multiple presynaptic inputs gated by proton-conducting phosphorosilicate glass-based electrolyte films are fabricated on ultrathin Si membranes. Transient characteristics of the proton gated InZnO synaptic transistors are investigated, indicating stable proton-gating behaviors. Short-term synaptic plasticities are mimicked on the proposed proton-gated synaptic transistors. Furthermore, synaptic integration regulations are mimicked on the proposed synaptic transistor networks. Spiking logic modulations are realized based on the transition between superlinear and sublinear synaptic integration. The multigates coupled flexible proton-gated oxide synaptic transistors may be interesting for neuroinspired platforms with sophisticated spatiotemporal information processing.

  11. CMOS integration of high-k/metal gate transistors in diffusion and gate replacement (D&GR) scheme for dynamic random access memory peripheral circuits

    Science.gov (United States)

    Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto

    2018-04-01

    Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.

  12. Self-Consistent Study of Conjugated Aromatic Molecular Transistors

    International Nuclear Information System (INIS)

    Jing, Wang; Yun-Ye, Liang; Hao, Chen; Peng, Wang; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2010-01-01

    We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The self-consistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I – V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I – V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Magnetic quantum ratchet effect in Si-MOSFETs

    International Nuclear Information System (INIS)

    Ganichev, S D; Karch, J; Kamann, J; Tarasenko, S A; Kvon, Z D

    2014-01-01

    We report on the observation of magnetic quantum ratchet effect in metal-oxide-semiconductor field-effect-transistors on silicon surface (Si-MOSFETs). We show that the excitation of an unbiased transistor by ac electric field of terahertz radiation at normal incidence leads to a direct electric current between the source and drain contacts if the transistor is subjected to an in-plane magnetic field. The current rises linearly with the magnetic field strength and quadratically with the ac electric field amplitude. It depends on the polarization state of the ac field and can be induced by both linearly and circularly polarized radiation. We present the quasi-classical and quantum theories of the observed effect and show that the current originates from the Lorentz force acting upon carriers in asymmetric inversion channels of the transistors. (paper)

  14. Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling.

    Science.gov (United States)

    Koswatta, Siyuranga O; Lundstrom, Mark S; Nikonov, Dmitri E

    2007-05-01

    Band-to-band tunneling (BTBT) devices have recently gained a lot of interest due to their potential for reducing power dissipation in integrated circuits. We have performed extensive simulations for the BTBT operation of carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) using the nonequilibrium Green's function formalism for both ballistic and dissipative quantum transport. In comparison with recently reported experimental data (J. Am. Chem. Soc. 2006, 128, 3518-3519), we have obtained strong evidence that BTBT in CNT-MOSFETs is dominated by optical phonon assisted inelastic transport, which can have important implications on the transistor characteristics. It is shown that, under large biasing conditions, two-phonon scattering may also become important.

  15. Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence

    OpenAIRE

    Chervov, A.; Talalaev, D.

    2006-01-01

    The spectral curve is the key ingredient in the modern theory of classical integrable systems. We develop a construction of the ``quantum spectral curve'' and argue that it takes the analogous structural and unifying role on the quantum level also. In the simplest, but essential case the ``quantum spectral curve'' is given by the formula "det"(L(z)-dz) [Talalaev04] (hep-th/0404153). As an easy application of our constructions we obtain the following: quite a universal receipt to define quantu...

  16. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  17. Printed organic thin-film transistor-based integrated circuits

    International Nuclear Information System (INIS)

    Mandal, Saumen; Noh, Yong-Young

    2015-01-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted. (paper)

  18. Light-effect transistor (LET with multiple independent gating controls for optical logic gates and optical amplification

    Directory of Open Access Journals (Sweden)

    Jason eMarmon

    2016-03-01

    Full Text Available Modern electronics are developing electronic-optical integrated circuits, while their electronic backbone, e.g. field-effect transistors (FETs, remains the same. However, further FET down scaling is facing physical and technical challenges. A light-effect transistor (LET offers electronic-optical hybridization at the component level, which can continue Moore’s law to quantum region without requiring a FET’s fabrication complexity, e.g. physical gate and doping, by employing optical gating and photoconductivity. Multiple independent gates are therefore readily realized to achieve unique functionalities without increasing chip space. Here we report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs show output and transfer characteristics resembling advanced FETs, e.g. on/off ratios up to ~1.0x106 with a source-drain voltage of ~1.43 V, gate-power of ~260 nW, and subthreshold swing of ~0.3 nW/decade (excluding losses. Our work offers new electronic-optical integration strategies and electronic and optical computing approaches.

  19. Half-integral spin from quantum gravity

    International Nuclear Information System (INIS)

    Friedman, J.L.

    1982-01-01

    For a certain class of three-manifolds, the angular momentum of an asymptotically flat quantum gravitational field can have half-integral values. In the absence of a full theory of quantum gravity, this result relies on a set of apparently natural assumptions governing the kinematics of such a theory. A key feature is that state vectors are in general invariant only under asymptotically trivial diffeomorphisms that can be continuously deformed to the identity. Angular momentum is associated with diffeomorphisms that look asymptotically like rotations; and the question of whether half-integral values occur depends on whether the diffeomorphism associated with a 2π rotation is itself deformable to the identity. (author)

  20. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    Science.gov (United States)

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  1. Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon assisted tunneling

    OpenAIRE

    Koswatta, Siyuranga O.; Lundstrom, Mark S.; Nikonov, Dmitri E.

    2007-01-01

    Band-to-band tunneling (BTBT) devices have recently gained a lot of interest due to their potential for reducing power dissipation in integrated circuits. We have performed extensive simulations for the BTBT operation of carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) using the non-equilibrium Green's functions formalism for both ballistic and dissipative quantum transport. In comparison with recently reported experimental data (Y. Lu et al, J. Am. Chem. Soc.,...

  2. The Smallest Transistor-Based Nonautonomous Chaotic Circuit

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, Arunas

    2005-01-01

    A nonautonomous chaotic circuit based on one transistor, two capacitors, and two resistors is described. The mechanism behind the chaotic performance is based on “disturbance of integration.” The forward part and the reverse part of the bipolar transistor are “fighting” about the charging...

  3. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    Science.gov (United States)

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  4. Controlling charge current through a DNA based molecular transistor

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir; Fathizadeh, S.; Ziaei, J.

    2017-01-05

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I–V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive. - Highlights: • Modeling a DNA based molecular transistor and studying its transport properties. • Choosing the appropriate DNA sequence using the quantum chaos tools. • Choosing the functional interval for voltages via the inverse participation ratio tool. • Detecting the rectifier and negative differential resistance behavior of DNA.

  5. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    Directory of Open Access Journals (Sweden)

    Caspani Lucia

    2016-06-01

    Full Text Available Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks and quantum memories (necessary to extend the communication distance, as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  6. The Design of Fault Tolerant Quantum Dot Cellular Automata Based Logic

    Science.gov (United States)

    Armstrong, C. Duane; Humphreys, William M.; Fijany, Amir

    2002-01-01

    As transistor geometries are reduced, quantum effects begin to dominate device performance. At some point, transistors cease to have the properties that make them useful computational components. New computing elements must be developed in order to keep pace with Moore s Law. Quantum dot cellular automata (QCA) represent an alternative paradigm to transistor-based logic. QCA architectures that are robust to manufacturing tolerances and defects must be developed. We are developing software that allows the exploration of fault tolerant QCA gate architectures by automating the specification, simulation, analysis and documentation processes.

  7. On the 50th Anniversary of the Transistor

    DEFF Research Database (Denmark)

    Stassen, Flemming

    1997-01-01

    This paper celebrates the 50th anniversary of the invention of the bipolar transistor in 1947. Combined with the inventions of integration and planar technology, the invention of the transistor marks the beginning of a period of unprecedented growth, the industrialization of electronics....

  8. Focus on integrated quantum optics

    International Nuclear Information System (INIS)

    O'Brien, Jeremy; Patton, Brian; Sasaki, Masahide; Vučković, Jelena

    2013-01-01

    A key goal of research into quantum information processing is the development of technologies that are scaleable in complexity while allowing the mass manufacture of devices that promise transformative effects on information science. The demonstration that integrated photonics circuits could be made to perform operations that exploit the quantum nature of the photon has turned them into leading candidates for practical quantum information processing technologies. To fully achieve their promise, however, requires research from diverse fields. This focus issue provides a snapshot of some of the areas in which key advances have been made. We are grateful for the contributions from leading teams based around the globe and hope that the degree of progress being made in a challenging and exciting field is apparent from the papers published here. (editorial)

  9. An efficient atomistic quantum mechanical simulation on InAs band-to-band tunneling field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, Xiang-Wei; Li, Shu-Shen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-24

    We have presented a fully atomistic quantum mechanical simulation method on band-to-band tunneling (BTBT) field-effect transistors (FETs). Our simulation approach is based on the linear combination of bulk band method with empirical pseudopotentials, which is an atomist method beyond the effective-mass approximation or k.p perturbation method, and can be used to simulate real-size devices (∼10{sup 5} atoms) efficiently (∼5 h on a few computational cores). Using this approach, we studied the InAs dual-gate BTBT FETs. The I-V characteristics from our approach agree very well with the tight-binding non-equilibrium Green's function results, yet our method costs much less computationally. In addition, we have studied ways to increase the tunneling current and analyzed the effects of different mechanisms for that purpose.

  10. An efficient atomistic quantum mechanical simulation on InAs band-to-band tunneling field-effect transistors

    International Nuclear Information System (INIS)

    Wang, Zhi; Jiang, Xiang-Wei; Li, Shu-Shen; Wang, Lin-Wang

    2014-01-01

    We have presented a fully atomistic quantum mechanical simulation method on band-to-band tunneling (BTBT) field-effect transistors (FETs). Our simulation approach is based on the linear combination of bulk band method with empirical pseudopotentials, which is an atomist method beyond the effective-mass approximation or k.p perturbation method, and can be used to simulate real-size devices (∼10 5 atoms) efficiently (∼5 h on a few computational cores). Using this approach, we studied the InAs dual-gate BTBT FETs. The I-V characteristics from our approach agree very well with the tight-binding non-equilibrium Green's function results, yet our method costs much less computationally. In addition, we have studied ways to increase the tunneling current and analyzed the effects of different mechanisms for that purpose

  11. Integrable lattice models and quantum groups

    International Nuclear Information System (INIS)

    Saleur, H.; Zuber, J.B.

    1990-01-01

    These lectures aim at introducing some basic algebraic concepts on lattice integrable models, in particular quantum groups, and to discuss some connections with knot theory and conformal field theories. The list of contents is: Vertex models and Yang-Baxter equation; Quantum sl(2) algebra and the Yang-Baxter equation; U q sl(2) as a symmetry of statistical mechanical models; Face models; Face models attached to graphs; Yang-Baxter equation, braid group and link polynomials

  12. Ultra-high gain diffusion-driven organic transistor

    Science.gov (United States)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  13. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  14. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  15. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; LI, LIANG; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, Husam N.; Zhang, Yafei; Zhang, Xixiang

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  16. Perspective: The future of quantum dot photonic integrated circuits

    Directory of Open Access Journals (Sweden)

    Justin C. Norman

    2018-03-01

    Full Text Available Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS foundries.

  17. Perspective: The future of quantum dot photonic integrated circuits

    Science.gov (United States)

    Norman, Justin C.; Jung, Daehwan; Wan, Yating; Bowers, John E.

    2018-03-01

    Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS) foundries.

  18. Super-Quantum Mechanics in the Integral Form Formalism

    Science.gov (United States)

    Castellani, L.; Catenacci, R.; Grassi, P. A.

    2018-05-01

    We reformulate Super Quantum Mechanics in the context of integral forms. This framework allows to interpolate between different actions for the same theory, connected by different choices of Picture Changing Operators (PCO). In this way we retrieve component and superspace actions, and prove their equivalence. The PCO are closed integral forms, and can be interpreted as super Poincar\\'e duals of bosonic submanifolds embedded into a supermanifold.. We use them to construct Lagrangians that are top integral forms, and therefore can be integrated on the whole supermanifold. The $D=1, ~N=1$ and the $D=1,~ N=2$ cases are studied, in a flat and in a curved supermanifold. In this formalism we also consider coupling with gauge fields, Hilbert space of quantum states and observables.

  19. Quantum communication and other quantum information technologies

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available -Podolsky-Rosen Albert Einstein Boris Podolsky Nathan Rosen Quantum mechanics: measurements on one particle dictate the state of the other particle. Spontaneous decay Unstable particle x p ∆x ∆p – p. 4/41 Parametric down conversion One incoming photon→ Two outgoing... ⊲ Decay of entanglement in turbulence — Theory — Numerical simulations — Experimental results – p. 2/41 Quantum mechanics Neils Bohr Paul Dirac Erwin Schroedinger Werner Heisenberg Lasers Computers Microelectronics Transistors – p. 3/41 Einstein...

  20. Quantum versus classical integrability in Calogero-Moser systems

    International Nuclear Information System (INIS)

    Corrigan, E.; Sasaki, R.

    2002-01-01

    Calogero-Moser systems are classical and quantum integrable multiparticle dynamics defined for any root system Δ. The quantum Calogero systems having 1/q 2 potential and a confining q 2 potential and the Sutherland systems with 1/sin 2 q potentials have 'integer' energy spectra characterized by the root system Δ. Various quantities of the corresponding classical systems, e.g. minimum energy, frequencies of small oscillations, the eigenvalues of the classical Lax pair matrices etc, at the equilibrium point of the potential are investigated analytically as well as numerically for all root systems. To our surprise, most of these classical data are also 'integers', or they appear to be 'quantized'. To be more precise, these quantities are polynomials of the coupling constant(s) with integer coefficients. The close relationship between quantum and classical integrability in Calogero-Moser systems deserves fuller analytical treatment, which would lead to better understanding of these systems and of integrable systems in general. (author)

  1. A spiking neuron circuit based on a carbon nanotube transistor

    International Nuclear Information System (INIS)

    Chen, C-L; Kim, K; Truong, Q; Shen, A; Li, Z; Chen, Y

    2012-01-01

    A spiking neuron circuit based on a carbon nanotube (CNT) transistor is presented in this paper. The spiking neuron circuit has a crossbar architecture in which the transistor gates are connected to its row electrodes and the transistor sources are connected to its column electrodes. An electrochemical cell is incorporated in the gate of the transistor by sandwiching a hydrogen-doped poly(ethylene glycol)methyl ether (PEG) electrolyte between the CNT channel and the top gate electrode. An input spike applied to the gate triggers a dynamic drift of the hydrogen ions in the PEG electrolyte, resulting in a post-synaptic current (PSC) through the CNT channel. Spikes input into the rows trigger PSCs through multiple CNT transistors, and PSCs cumulate in the columns and integrate into a ‘soma’ circuit to trigger output spikes based on an integrate-and-fire mechanism. The spiking neuron circuit can potentially emulate biological neuron networks and their intelligent functions. (paper)

  2. Transistor Effect in Improperly Connected Transistors.

    Science.gov (United States)

    Luzader, Stephen; Sanchez-Velasco, Eduardo

    1996-01-01

    Discusses the differences between the standard representation and a realistic representation of a transistor. Presents an experiment that helps clarify the explanation of the transistor effect and shows why transistors should be connected properly. (JRH)

  3. Topological quantum theories and integrable models

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Niemi, A.J.; Semenoff, G.; Tirkkonen, O.

    1991-01-01

    The path-integral generalization of the Duistermaat-Heckman integration formula is investigated for integrable models. It is shown that for models with periodic classical trajectories the path integral reduces to a form similar to the finite-dimensional Duistermaat-Heckman integration formula. This provides a relation between exactness of the stationary-phase approximation and Morse theory. It is also argued that certain integrable models can be related to topological quantum theories. Finally, it is found that in general the stationary-phase approximation presumes that the initial and final configurations are in different polarizations. This is exemplified by the quantization of the SU(2) coadjoint orbit

  4. FY 1999 report on the research and development project of industrial scientific technology - quantum functional devices. Systematical arrangement of the development technology (FY 1991 - 1999); 1999 nendo ryoshika kino soshi no kenkyu kaihatsu. Kaihatsu sareta gijutsu no keitoteki seiri (1991 nendo kara 1999 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The FY 1991 to 1999 R and D results of quantum functional devices are systematically summarized. The basic action of the MIM-based single electron tunneling devices is succeeded for the first time in the world. The quantum fine-wire device transistor is realized. The surface tunnel transistor is proposed, application to action demonstration and memories is suggested, and possibility of applicability to multi-value logic circuits is suggested. The multi-emitter RHET is developed to have one device provided with memory and multi-input logic functions, and increase integration 10 times. The TSR quantum dot HEMT memory is developed on a trial basis, to demonstrate 150 K action. The principle of a tera-bit class high-capacity memory is demonstrated using the InAs dot memory. Integration of the quantum band-bonded multi-functional device is described. Possibility is demonstrated for the Si insulation film tunnel device multi-value memory, working on the principle of tunneling between bands via the Si insulation film. The integrated quantum dot functional memory and polariton switch are also described. The single electron logic circuit works for the first time in the world. The integrated CMOS/SET device, which uses high driving force of CMOS, is proposed. (NEDO)

  5. Integration of InGaAs MOSFETs and GaAs/ AlGaAs lasers on Si Substrate for advanced opto-electronic integrated circuits (OEICs).

    Science.gov (United States)

    Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao

    2017-12-11

    Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.

  6. Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2015-07-01

    Full Text Available Flexible and transparent electronics have been studied intensively during the last few decades. The technique establishes the possibility of fabricating innovative products, from flexible displays to radio-frequency identification tags. Typically, large-area polymeric substrates such as polypropylene (PP or polyethylene terephthalate (PET are used, which produces new requirements for the integration processes. A key element for flexible and transparent electronics is the thin-film transistor (TFT, as it is responsible for the driving current in memory cells, digital circuits or organic light-emitting devices (OLEDs. In this paper, we discuss some fundamental concepts of TFT technology. Additionally, we present a comparison between the use of the semiconducting organic small-molecule pentacene and inorganic nanoparticle semiconductors in order to integrate TFTs suitable for flexible electronics. Moreover, a technique for integration with a submicron resolution suitable for glass and foil substrates is presented.

  7. Integration of quantum key distribution and private classical communication through continuous variable

    Science.gov (United States)

    Wang, Tianyi; Gong, Feng; Lu, Anjiang; Zhang, Damin; Zhang, Zhengping

    2017-12-01

    In this paper, we propose a scheme that integrates quantum key distribution and private classical communication via continuous variables. The integrated scheme employs both quadratures of a weak coherent state, with encrypted bits encoded on the signs and Gaussian random numbers encoded on the values of the quadratures. The integration enables quantum and classical data to share the same physical and logical channel. Simulation results based on practical system parameters demonstrate that both classical communication and quantum communication can be implemented over distance of tens of kilometers, thus providing a potential solution for simultaneous transmission of quantum communication and classical communication.

  8. Integrable Time-Dependent Quantum Hamiltonians

    Science.gov (United States)

    Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen

    2018-05-01

    We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

  9. SOI Transistor measurement techniques using body contacted transistors

    International Nuclear Information System (INIS)

    Worley, E.R.; Williams, R.

    1989-01-01

    Measurements of body contacted SOI transistors are used to isolate parameters of the back channel and island edge transistor. Properties of the edge and back channel transistor have been measured before and after X-ray irradiation (ARACOR). The unique properties of the edge transistor are shown to be a result of edge geometry as confirmed by a two dimensional transistor simulator

  10. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  11. Development of quantum device simulator NEMO-VN1

    Science.gov (United States)

    Hien, Dinh Sy; Thi Luong, Nguyen; Hoang Minh, Le; Tien Phuc, Tran; Thanh Trung, Pham; Dong, Bui An; Thu Thao, Huynh Lam; Van Le Thanh, Nguyen; Tuan, Thi Tran Anh; Hoang Trung, Huynh; Thi Thanh Nhan, Nguyen; Viet Nga, Dinh

    2009-09-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  12. Development of quantum device simulator NEMO-VN1

    International Nuclear Information System (INIS)

    Dinh Sy Hien; Nguyen Thi Luong; Le Hoang Minh; Tran Tien Phuc; Pham Thanh Trung; Bui An Dong; Huynh Lam Thu Thao; Nguyen Van Le Thanh; Thi Tran Anh Tuan; Huynh Hoang Trung; Nguyen Thi Thanh Nhan; Dinh Viet Nga

    2009-01-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  13. Uniformity of fully gravure printed organic field-effect transistors

    International Nuclear Information System (INIS)

    Hambsch, M.; Reuter, K.; Stanel, M.; Schmidt, G.; Kempa, H.; Fuegmann, U.; Hahn, U.; Huebler, A.C.

    2010-01-01

    Fully mass-printed organic field-effect transistors were made completely by means of gravure printing. Therefore a special printing layout was developed in order to avoid register problems in print direction. Upon using this layout, contact pads for source-drain electrodes of the transistors are printed together with the gate electrodes in one and the same printing run. More than 50,000 transistors have been produced and by random tests a yield of approximately 75% has been determined. The principle suitability of the gravure printed transistors for integrated circuits has been shown by the realization of ring oscillators.

  14. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    Science.gov (United States)

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  15. Transistor data book

    International Nuclear Information System (INIS)

    1988-03-01

    It introduces how to use this book. It lists transistor data and index, which are Type No, Cross index, Germanium PNP low power transistors, silicon NPN low power transistors, Germanium PNP high power transistors, Switching transistors, transistor arrays, Miscellaneous transistors, types with U.S military specifications, direct replacement transistors, suggested replacement transistors, schematic drawings, outline drawings, device number keys and manufacturer's logos.

  16. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dib, E., E-mail: elias.dib@for.unipi.it [Dipartimento di Ingegneria dell' Informazione, Università di Pisa, 56122 Pisa (Italy); Carrillo-Nuñez, H. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland); Cavassilas, N.; Bescond, M. [IM2NP, UMR CNRS 6242, Bât. IRPHE, Technopôle de Château-Gombert, 13384 Marseille Cedex 13 (France)

    2016-01-28

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.

  17. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    International Nuclear Information System (INIS)

    Dib, E.; Carrillo-Nuñez, H.; Cavassilas, N.; Bescond, M.

    2016-01-01

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations

  18. Quantum quenches with integrable pre-quench dynamics

    OpenAIRE

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t=0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench.

  19. Quantum quenches with integrable pre-quench dynamics

    International Nuclear Information System (INIS)

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t = 0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench. (fast track communication)

  20. Failure of the integrated circuits involving complementary MOS transistors under thermal and ionizing radiation stresses

    International Nuclear Information System (INIS)

    Sarrabayrouse, G.; Rossel, P.; Buxo, J.; Vialaret, G.

    Some criteria for reliability and sorting of complementary MOS transistor integrated circuits are proposed, that take account for special environmental stresses near plane reactors or nuclear reactor cores. An analysis of the damaging causes for these circuits at high and low temperatures is proposed, results obtained on the evolution of these devices under irradiation and irradiation behaviors are discussed. The whole set of experiments has been carried out on CD 4007 AD(K) circuits [fr

  1. Quadratic integrals of motion for identical particle systems in quantum case

    International Nuclear Information System (INIS)

    Brije, I.; Gonera, S.; Kosinski, P.; Maslanka, P.; Giller, S.

    2005-01-01

    One studied quantum dynamic systems of identical particles allowing for additional integral of motion being quadratic in pulses. It was found that there was an appropriate way to ensure order that enabled to convert the classical integrals of motion into their quantum analogues. One analyzed relation of the mentioned integrals with splitting of the variables in the Schroedinger equation [ru

  2. Development of a construction and manufacturing techniques of complementary transistors for the radiation tolerant integrated circuits

    Directory of Open Access Journals (Sweden)

    Gorban A. N.

    2011-06-01

    Full Text Available The construction of vertical complementary transistors with the full dielectric isolation is developed, new technolo-gical processes of creation on their basis the radiation tolerant integrated circuits with parameters which provide low values of a leakage current along with the considerable values of a forward current and breakdown voltage at the information signals exchange frequency of about 500 kHz are developed.

  3. Solving the integration problem of one transistor one memristor architecture with a Bi-layer IGZO film through synchronous process

    Science.gov (United States)

    Chang, Che-Chia; Liu, Po-Tsun; Chien, Chen-Yu; Fan, Yang-Shun

    2018-04-01

    This study demonstrates the integration of a thin film transistor (TFT) and resistive random-access memory (RRAM) to form a one-transistor-one-resistor (1T1R) configuration. With the concept of the current conducting direction in RRAM and TFT, a triple-layer stack design of Pt/InGaZnO/Al2O3 is proposed for both the switching layer of RRAM and the channel layer of TFT. This proposal decreases the complexity of fabrication and the numbers of photomasks required. Also, the robust endurance and stable retention characteristics are exhibited by the 1T1R architecture for promising applications in memory-embedded flat panel displays.

  4. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  5. Micromachined integrated quantum circuit containing a superconducting qubit

    Science.gov (United States)

    Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert

    We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.

  6. Water-gel for gating graphene transistors.

    Science.gov (United States)

    Kim, Beom Joon; Um, Soong Ho; Song, Woo Chul; Kim, Yong Ho; Kang, Moon Sung; Cho, Jeong Ho

    2014-05-14

    Water, the primary electrolyte in biology, attracts significant interest as an electrolyte-type dielectric material for transistors compatible with biological systems. Unfortunately, the fluidic nature and low ionic conductivity of water prevents its practical usage in such applications. Here, we describe the development of a solid state, megahertz-operating, water-based gate dielectric system for operating graphene transistors. The new electrolyte systems were prepared by dissolving metal-substituted DNA polyelectrolytes into water. The addition of these biocompatible polyelectrolytes induced hydrogelation to provide solid-state integrity to the system. They also enhanced the ionic conductivities of the electrolytes, which in turn led to the quick formation of an electric double layer at the graphene/electrolyte interface that is beneficial for modulating currents in graphene transistors at high frequencies. At the optimized conditions, the Na-DNA water-gel-gated flexible transistors and inverters were operated at frequencies above 1 MHz and 100 kHz, respectively.

  7. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.; Smith, Casey; Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2011-01-01

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  8. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.

    2011-10-12

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  9. Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium

    Directory of Open Access Journals (Sweden)

    Olalla A. Castro-Alvaredo

    2016-12-01

    Full Text Available Understanding the general principles underlying strongly interacting quantum states out of equilibrium is one of the most important tasks of current theoretical physics. With experiments accessing the intricate dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable evolutions made an overarching theory difficult to build, especially for transport phenomena where space-time profiles are drastically different. We present a novel framework for studying transport in integrable systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between integrable and nonintegrable quantum dynamics, and gives powerful tools for accurate studies of space-time profiles. We apply it to the description of energy transport between heat baths, and provide a full description of the current-carrying nonequilibrium steady state and the transition regions in a family of models including the Lieb-Liniger model of interacting Bose gases, realized in experiments.

  10. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.

    Science.gov (United States)

    Dhungana, Kamal B; Jaishi, Meghnath; Pati, Ranjit

    2016-07-13

    The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device.

  11. Implementation of Self-Bias Transistor on Voting Logic

    International Nuclear Information System (INIS)

    Harzawardi Hasim; Syirrazie Che Soh

    2014-01-01

    Study in the eld of digital integrated circuit (IC) already become common to the modern industrial. Day by day we have been introduced with new gadget that was developed based on transistor. This paper will study the implementation of self-bias transistor on voting logic. The self-bias transistor will connected both on pull-up network and pull-down network. On previous research, study on comparison of total number of transistors, time propagation delay, and frequency between NAND and NOR gate of voting logic. It's show, with the same number of transistor, NAND gate achieve high frequency and low time propagation delay compare to NOR gate. We extend this analysis by comparing the total number of transistor, time propagation delay, frequency and power dissipation between common NAND gate with self-bias NAND gate. Extensive LTSpice simulations were performed using IBM 90 nm CMOS(Complementary Metal Oxide Semiconductor) process technology. The result show self-bias voting NAND gate consumes 54 % less power dissipation, 43% slow frequency and 43 % high time propagation delay compare to common voting NAND gate. (author)

  12. Quantum integrals from coalgebra structure

    International Nuclear Information System (INIS)

    Post, S; Riglioni, D

    2015-01-01

    Quantum versions of the hydrogen atom and the harmonic oscillator are studied on non Euclidean spaces of dimension N. 2N−1 integrals, of arbitrary order, are constructed via a multi-dimensional version of the factorization method, thus confirming the conjecture of Riglioni (2013 J. Phys. A: Math. Theor. 46 265207). The systems are extended via coalgebra extension of sl(2) representations, although not all integrals are expressible in these generators. As an example, dimensional reduction is applied to four-dimensional systems to obtain extension and new proofs of the superintegrability of known families of Hamiltonians. (paper)

  13. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.

    Science.gov (United States)

    Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao

    2016-08-10

    Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.

  14. Quantum gravitation. The Feynman path integral approach

    International Nuclear Information System (INIS)

    Hamber, Herbert W.

    2009-01-01

    The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman's formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. Later the lattice formulation of gravity is presented as an essential tool towards an understanding of key features of the non-perturbative vacuum. The book ends with a discussion of contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe. (orig.)

  15. Functional integral in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Ktitarev, D.V.

    1990-01-01

    The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs

  16. Integrability and chaos in quantum systems (as viewed from geometry and dynamical symmetry)

    International Nuclear Information System (INIS)

    Zhang, Wei-Min.

    1989-01-01

    It is known that the development and deep understanding of modern interaction theory and classical mechanics are made through geometry and symmetry. Yet, quantum mechanics which was regarded to be the microscopic theory of classical mechanics and achieved the crowning success in interpreting the entire microscopic world was developed purely from algebraic methods. In this thesis, the author will study the geometry and dynamical symmetry in quantum systems, from which the question of integrability and chaos are explicitly addressed. First of all, the quantum dynamical degrees of freedom and quantum integrability are precisely defined and the inherent geometrical structure of quantum systems is explored from the fundamental structure of quantum theory. Such a geometrical structure can provide a framework to simultaneously build quantum and classical mechanics. The quantum-classical correspondence is then explicitly deduced. The dynamics of quantum system before it reaches the classical limit is formulated. Thus, the classical chaos is proven to be a special limiting phenomena of quantum systems and the dynamics before the system reaches its classical chaos is explored. The latter is the first step to seek the quantum manifestation of chaos. The relationship between integrability and dynamical symmetry are studied and some universal properties are discovered: a dynamical system (both quantum and classical) in integrable if it possesses a dynamical symmetry. Chaos will occur if the system undergoes a dynamical symmetry breaking and is accompanied by a structural phase transition. Thus, the concept of dynamical symmetry can be used to predict the general behaviors of a system. The theoretical underpinnings developed in this thesis are verified by many basic quantum mechanical examples

  17. Quantum thermal rectification to design thermal diodes and transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joulain, Karl; Ezzahri, Younes; Ordonez-Miranda, Jose [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We study in this article how heat can be exchanged between two-level systems, each of them being coupled to a thermal reservoir. Calculations are performed solving a master equation for the density matrix using the Born-Markov approximation. We analyse the conditions for which a thermal diode and a thermal transistor can be obtained as well as their optimisation.

  18. Joint Mapping of Mobility and Trap Density in Colloidal Quantum Dot Solids

    KAUST Repository

    Stadler, Philipp

    2013-07-23

    Field-effect transistors have been widely used to study electronic transport and doping in colloidal quantum dot solids to great effect. However, the full power of these devices to elucidate the electronic structure of materials has yet to be harnessed. Here, we deploy nanodielectric field-effect transistors to map the energy landscape within the band gap of a colloidal quantum dot solid. We exploit the self-limiting nature of the potentiostatic anodization growth mode to produce the thinnest usable gate dielectric, subject to our voltage breakdown requirements defined by the Fermi sweep range of interest. Lead sulfide colloidal quantum dots are applied as the active region and are treated with varying solvents and ligands. In an analysis complementary to the mobility trends commonly extracted from field-effect transistor studies, we focus instead on the subthreshold regime and map out the density of trap states in these nanocrystal films. The findings point to the importance of comprehensively mapping the electronic band- and gap-structure within real quantum solids, and they suggest a new focus in investigating quantum dot solids with an aim toward improving optoelectronic device performance. © 2013 American Chemical Society.

  19. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May, E-mail: eekmlau@ust.hk [Photonics Technology Center, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  20. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-01-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme

  1. Method for double-sided processing of thin film transistors

    Science.gov (United States)

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  2. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa

    2017-03-17

    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V−1 s−1 and 0.013 cm2 V−1 s−1, respectively, current on/off ratio in the range 102–104, and maximum operating voltages between −3.5 and −10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.

  3. Model of a programmable quantum processing unit based on a quantum transistor effect

    Science.gov (United States)

    Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander

    2018-02-01

    In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.

  4. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Directory of Open Access Journals (Sweden)

    D.X. Horváth

    2016-01-01

    Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  5. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)

    2016-01-15

    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  6. A new (in)finite-dimensional algebra for quantum integrable models

    International Nuclear Information System (INIS)

    Baseilhac, Pascal; Koizumi, Kozo

    2005-01-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models

  7. Electronic properties of assemblies of zno quantum dots

    NARCIS (Netherlands)

    Roest, Aarnoud Laurens

    2003-01-01

    Electron transport in an assembly of ZnO quantum dots has been studied using an electrochemically gated transistor. The electron mobility shows a step-wise increase as a function of the electron occupation per quantum dot. When the occupation number is below two, transport occurs by tunnelling

  8. Study on ionizing radiation effects of bipolar transistor with BPSG films

    International Nuclear Information System (INIS)

    Lu Man; Zhang Xiaoling; Xie Xuesong; Sun Jiangchao; Wang Pengpeng; Lu Changzhi; Zhang Yanxiu

    2013-01-01

    Background: Because of the damage induced by ionizing radiation, bipolar transistors in integrated voltage regulator could induce the current gain degradation and increase leakage current. This will bring serious problems to electronic system. Purpose: In order to ensure the reliability of the device work in the radiation environments, the device irradiation reinforcement technology is used. Methods: The characteristics of 60 Co γ irradiation and annealing at different temperatures in bipolar transistors and voltage regulators (JW117) with different passive films for SiO 2 +BPSG+SiO 2 and SiO 2 +SiN have been investigated. Results: The devices with BPSG film enhanced radiation tolerance significantly. Because BPSG films have better absorption for Na + in SiO 2 layer, the surface recombination rate of base region in a bipolar transistor and the excess base current have been reduced. It may be the main reason for BJT with BPSG film having a good radiation hardness. And annealing experiments at different temperatures after irradiation ensure the reliability of the devices with BPSG films. Conclusions: A method of improving the ionizing irradiation hardness of bipolar transistors is proposed. As well as the linear integrated circuits which containing bipolar transistors, an experimental basis for the anti-ionizing radiation effects of bipolar transistors is provided. (authors)

  9. The formal path integral and quantum mechanics

    International Nuclear Information System (INIS)

    Johnson-Freyd, Theo

    2010-01-01

    Given an arbitrary Lagrangian function on R d and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  10. Classification of the quantum two dimensional superintegrable systems with quadratic integrals and the Stackel transforms

    International Nuclear Information System (INIS)

    Dakaloyannis, C.

    2006-01-01

    Full text: (author)The two dimensional quantum superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems with quadratic integrals are classified as special cases of these six general classes. The coefficients of the quadratic associative algebra of integrals are calculated and they are compared to the coefficients of the corresponding coefficients of the Poisson quadratic algebra of the classical systems. The quantum coefficients are similar as the classical ones multiplied by a quantum coefficient -n 2 plus a quantum deformation of order n 4 and n 6 . The systems inside the classes are transformed using Stackel transforms in the quantum case as in the classical case and general form is discussed. The idea of the Jacobi Hamiltonian corresponding to the Jacobi metric in the classical case is discussed

  11. Wafer-scale laser pantography: Fabrication of n-metal-oxide-semiconductor transistors and small-scale integrated circuits by direct-write laser-induced pyrolytic reactions

    International Nuclear Information System (INIS)

    McWilliams, B.M.; Herman, I.P.; Mitlitsky, F.; Hyde, R.A.; Wood, L.L.

    1983-01-01

    A complete set of processes sufficient for manufacture of n-metal-oxide-semiconductor (n-MOS) transistors by a laser-induced direct-write process has been demonstrated separately, and integrated to yield functional transistors. Gates and interconnects were fabricated of various combinations of n-doped and intrinsic polysilicon, tungsten, and tungsten silicide compounds. Both 0.1-μm and 1-μm-thick gate oxides were micromachined with and without etchant gas, and the exposed p-Si [100] substrate was cleaned and, at times, etched. Diffusion regions were doped by laser-induced pyrolytic decomposition of phosphine followed by laser annealing. Along with the successful manufacture of working n-MOS transistors and a set of elementary digital logic gates, this letter reports the successful use of several laser-induced surface reactions that have not been reported previously

  12. Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High-k Dielectrics.

    Science.gov (United States)

    Nugraha, Mohamad I; Häusermann, Roger; Watanabe, Shun; Matsui, Hiroyuki; Sytnyk, Mykhailo; Heiss, Wolfgang; Takeya, Jun; Loi, Maria A

    2017-02-08

    We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport.

  13. Monolithic integrated photoreceiver for 1.3--1.55-μm wavelengths: Association of a Schottky photodiode and a field-effect transistor on GaInP-GaInAs heteroepitaxy

    International Nuclear Information System (INIS)

    Therani, A.H.; Decoster, D.; Vilcot, J.P.; Razeghi, M.

    1988-01-01

    We present a monolithic integrated circuit associating a Schottky photodiode and a field-effect transistor which has been fabricated, for the first time, on Ga/sub 0.49/In/sub 0.51/P/Ga/sub 0.47/In/sub 0.53/As strained heteroepitaxial material. Static, dynamic, and noise properties of the Schottky photodiode, the field-effect transistor, and the integrated circuit have been investigated and are reported. As an example, dynamic responsivity up to 50 A/W can be achieved at 1.3-μm wavelength for the integrated photoreceiver. The performance of the device is discussed, taking into account the integrated circuit design and the main characteristics of the material

  14. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polymer quantum mechanics some examples using path integrals

    International Nuclear Information System (INIS)

    Parra, Lorena; Vergara, J. David

    2014-01-01

    In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems

  16. An integrated processor for photonic quantum states using a broadband light–matter interface

    International Nuclear Information System (INIS)

    Saglamyurek, E; Sinclair, N; Slater, J A; Heshami, K; Oblak, D; Tittel, W

    2014-01-01

    Faithful storage and coherent manipulation of quantum optical pulses are key for long distance quantum communications and quantum computing. Combining these functions in a light–matter interface that can be integrated on-chip with other photonic quantum technologies, e.g. sources of entangled photons, is an important step towards these applications. To date there have only been a few demonstrations of coherent pulse manipulation utilizing optical storage devices compatible with quantum states, and that only in atomic gas media (making integration difficult) and with limited capabilities. Here we describe how a broadband waveguide quantum memory based on the atomic frequency comb (AFC) protocol can be used as a programmable processor for essentially arbitrary spectral and temporal manipulations of individual quantum optical pulses. Using weak coherent optical pulses at the few photon level, we experimentally demonstrate sequencing, time-to-frequency multiplexing and demultiplexing, splitting, interfering, temporal and spectral filtering, compressing and stretching as well as selective delaying. Our integrated light–matter interface offers high-rate, robust and easily configurable manipulation of quantum optical pulses and brings fully practical optical quantum devices one step closer to reality. Furthermore, as the AFC protocol is suitable for storage of intense light pulses, our processor may also find applications in classical communications. (paper)

  17. Fractional quantum integral operator with general kernels and applications

    Science.gov (United States)

    Babakhani, Azizollah; Neamaty, Abdolali; Yadollahzadeh, Milad; Agahi, Hamzeh

    In this paper, we first introduce the concept of fractional quantum integral with general kernels, which generalizes several types of fractional integrals known from the literature. Then we give more general versions of some integral inequalities for this operator, thus generalizing some previous results obtained by many researchers.2,8,25,29,30,36

  18. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    Energy Technology Data Exchange (ETDEWEB)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M., E-mail: MuhammadMustafa.Hussain@kaust.edu.sa [Integrated Nanotechnology Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Aljedaani, Abdulrahman B. [High-Speed Fluids Imaging Laboratory, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2015-10-26

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  19. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    International Nuclear Information System (INIS)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M.; Aljedaani, Abdulrahman B.

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties

  20. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    KAUST Repository

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Aljedaani, Abdulrahman B.; Hussain, Muhammad Mustafa

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  1. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    Science.gov (United States)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  2. Classical and Quantum Nonlinear Integrable Systems: Theory and Application

    International Nuclear Information System (INIS)

    Brzezinski, Tomasz

    2003-01-01

    This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical

  3. Integrated Visible Photonics for Trapped-Ion Quantum Computing

    Science.gov (United States)

    2017-06-10

    etch to provide a smooth oxide facet, and clearance for fiber positioning for edge input coupling. Integrated Visible Photonics for Trapped-Ion...capability to optically address individual ions at several wavelengths. We demonstrate a dual-layered silicon nitride photonic platform for integration...coherence times, strong coulomb interactions, and optical addressability, hold great promise for implementation of practical quantum information

  4. Supersymmetric quantum spin chains and classical integrable systems

    International Nuclear Information System (INIS)

    Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

    2015-01-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  5. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  6. Recent advances in quantum integrable systems

    International Nuclear Information System (INIS)

    Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F.

    2005-01-01

    This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies

  7. Recent advances in quantum integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F

    2005-07-01

    This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.

  8. High-performance integrated field-effect transistor-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: mohd.khairuddin@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Microelectronic Engineering (SoME), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: subash@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Bioprocess Engineering (SBE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis (Malaysia); Ruslinda, A.R., E-mail: ruslinda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Fathil, M.F.M., E-mail: faris.fathil@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Ayub, R.M., E-mail: ramzan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Nor, M. Nuzaihan Mohd, E-mail: m.nuzaihan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Voon, C.H., E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia)

    2016-04-21

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  9. High-performance integrated field-effect transistor-based sensors

    International Nuclear Information System (INIS)

    Adzhri, R.; Md Arshad, M.K.; Gopinath, Subash C.B.; Ruslinda, A.R.; Fathil, M.F.M.; Ayub, R.M.; Nor, M. Nuzaihan Mohd; Voon, C.H.

    2016-01-01

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  10. Integral transforms of the quantum mechanical path integral: Hit function and path-averaged potential

    Science.gov (United States)

    Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel

    2018-04-01

    We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).

  11. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  12. E-Learning System for Design and Construction of Amplifier Using Transistors

    Science.gov (United States)

    Takemura, Atsushi

    2014-01-01

    This paper proposes a novel e-Learning system for the comprehensive understanding of electronic circuits with transistors. The proposed e-Learning system allows users to learn a wide range of topics, encompassing circuit theories, design, construction, and measurement. Given the fact that the amplifiers with transistors are an integral part of…

  13. Realization of solid-state nanothermometer using Ge quantum-dot single-hole transistor in few-hole regime

    International Nuclear Information System (INIS)

    Chen, I. H.; Lai, W. T.; Li, P. W.

    2014-01-01

    Semiconductor Ge quantum-dot (QD) thermometry has been demonstrated based on extraordinary temperature-dependent oscillatory differential conductance (G D ) characteristics of Ge-QD single-hole transistors (SHTs) in the few-hole regime. Full-voltage width-at-half-minimum, V 1/2 , of G D valleys appears to be fairly linear in the charge number (n) and temperature within the QD in a relationship of eV 1/2  ≅ (1 − 0.11n) × 5.15k B T, providing the primary thermometric quantity. The depth of G D valley is also proportional to charging energy (E C ) and 1/T via ΔG D  ≅ E C /9.18k B T, providing another thermometric quantity. This experimental demonstration suggests our Ge-QD SHT offering effective building blocks for nanothermometers over a wide temperature range with a detection temperature as high as 155 K in a spatial resolution less than 10 nm and temperature accuracy of sub-kelvin.

  14. Realization of solid-state nanothermometer using Ge quantum-dot single-hole transistor in few-hole regime

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I. H.; Lai, W. T.; Li, P. W., E-mail: pwli@ee.ncu.edu.tw [Department of Electrical Engineering and Center for Nano Science and Technology, National Central University, ChungLi 32001, Taiwan (China)

    2014-06-16

    Semiconductor Ge quantum-dot (QD) thermometry has been demonstrated based on extraordinary temperature-dependent oscillatory differential conductance (G{sub D}) characteristics of Ge-QD single-hole transistors (SHTs) in the few-hole regime. Full-voltage width-at-half-minimum, V{sub 1/2}, of G{sub D} valleys appears to be fairly linear in the charge number (n) and temperature within the QD in a relationship of eV{sub 1/2} ≅ (1 − 0.11n) × 5.15k{sub B}T, providing the primary thermometric quantity. The depth of G{sub D} valley is also proportional to charging energy (E{sub C}) and 1/T via ΔG{sub D} ≅ E{sub C}/9.18k{sub B}T, providing another thermometric quantity. This experimental demonstration suggests our Ge-QD SHT offering effective building blocks for nanothermometers over a wide temperature range with a detection temperature as high as 155 K in a spatial resolution less than 10 nm and temperature accuracy of sub-kelvin.

  15. Quantum integrability and supersymmetric vacua

    International Nuclear Information System (INIS)

    Nekrasov, Nikita; Shatashvili, Samson

    2009-01-01

    Supersymmetric vacua of two dimensional N=4 gauge theories with matter, softly broken by the twisted masses down to N=2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2) XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as T * Gr(N,L) and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. These more general spin chains correspond to quiver gauge theories with twisted masses, with classical gauge groups. We give the gauge-theoretic interpretation of Drinfeld polynomials and Baxter operators. In the classical weak coupling limit our results make contact with Nakajima constructions. Toric compactifications of four dimensional N=2 theories lead to the instanton corrected Bethe equations. (author)

  16. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  17. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

    International Nuclear Information System (INIS)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2015-01-01

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments

  18. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    Science.gov (United States)

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  19. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2009-11-01

    Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.

  20. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    Science.gov (United States)

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.

  1. Vertically integrated logic circuits constructed using ZnO-nanowire-based field-effect transistors on plastic substrates.

    Science.gov (United States)

    Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig

    2013-05-01

    ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.

  2. An introduction to: the quantum world

    International Nuclear Information System (INIS)

    Le Bellac, M.

    2010-01-01

    Quantum physics has entered our daily life since it has allowed the invention of transistors and lasers. Now quantum engineering produces atomic clocks, semi-conductors, laser diodes and Led. This book is a popularization work on the quantum world, it introduces not only the basic principles but also explains its applications. 10 chapters compose this book each one illustrating a particular feature or an application as follows: chapter 1) the superposition principle, chapter 2) application to cryptography, chapter 3) Einstein's interpretation versus Bohr's, chapter 4) Heisenberg's inequalities and energy levels, chapters 5) and 6) the collective effects of quantum particles: applications to atom cooling and semi-conductors, chapter 7) relativity and quantum physics, chapter 8) quantum computers, chapter 9) quantum decoherence phenomenon and chapter 10) new interpretations of quantum physics. (A.C.)

  3. Non-integrable quantum field theories as perturbations of certain integrable models

    International Nuclear Information System (INIS)

    Delfino, G.; Simonetti, P.

    1996-03-01

    We approach the study of non-integrable models of two-dimensional quantum field theory as perturbations of the integrable ones. By exploiting the knowledge of the exact S-matrix and Form Factors of the integrable field theories we obtain the first order corrections to the mass ratios, the vacuum energy density and the S-matrix of the non-integrable theories. As interesting applications of the formalism, we study the scaling region of the Ising model in an external magnetic field at T ∼ T c and the scaling region around the minimal model M 2 , τ . For these models, a remarkable agreement is observed between the theoretical predictions and the data extracted by a numerical diagonalization of their Hamiltonian. (author). 41 refs, 9 figs, 1 tab

  4. Multiple logic functions from extended blockade region in a silicon quantum-dot transistor

    International Nuclear Information System (INIS)

    Lee, Youngmin; Lee, Sejoon; Im, Hyunsik; Hiramoto, Toshiro

    2015-01-01

    We demonstrate multiple logic-functions at room temperature on a unit device of the Si single electron transistor (SET). Owing to the formation of the multi-dot system, the device exhibits the enhanced Coulomb blockade characteristics (e.g., large peak-to-valley current ratio ∼200) that can improve the reliability of the SET-based logic circuits. The SET displays a unique feature useful for the logic applications; namely, the Coulomb oscillation peaks are systematically shifted by changing either of only the gate or the drain voltage. This enables the SET to act as a multi-functional one-transistor logic gate with AND, OR, NAND, and XOR functions

  5. Multiple logic functions from extended blockade region in a silicon quantum-dot transistor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Lee, Sejoon, E-mail: sejoon@dongguk.edu; Im, Hyunsik [Department of Semiconductor Science, Dongguk University-Seoul, Seoul 100-715 (Korea, Republic of); Hiramoto, Toshiro [Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan)

    2015-02-14

    We demonstrate multiple logic-functions at room temperature on a unit device of the Si single electron transistor (SET). Owing to the formation of the multi-dot system, the device exhibits the enhanced Coulomb blockade characteristics (e.g., large peak-to-valley current ratio ∼200) that can improve the reliability of the SET-based logic circuits. The SET displays a unique feature useful for the logic applications; namely, the Coulomb oscillation peaks are systematically shifted by changing either of only the gate or the drain voltage. This enables the SET to act as a multi-functional one-transistor logic gate with AND, OR, NAND, and XOR functions.

  6. Going ballistic: Graphene hot electron transistors

    Science.gov (United States)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  7. High mobility solution-processed hybrid light emitting transistors

    International Nuclear Information System (INIS)

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B.; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa

    2014-01-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm 2 /V s, current on/off ratios of >10 7 , and external quantum efficiency of 10 −2 % at 2100 cd/m 2 . These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective

  8. Silicon based cryogenic platform for the integration of qubit and classical control chips

    Science.gov (United States)

    Leonhardt, T.; Hollmann, A.; Jirovec, D.; Neumann, R.; Klemt, B.; Kindel, S.; Kucharski, M.; Fischer, G.; Bougeard, D.; Bluhm, H.; Schreiber, L. R.

    Electrostatically confined electron-spin-qubits proved viable for quantum information processing. Yet their up-scaling not only demands improvement of physical qubits, but also the development and cryogenic integration of classical control hardware. Therefore, we created a platform to integrate quantum chips and classical electronics. These multilayer interposer chips incorporate passive circuit elements, high bandwidth coplanar wave guides and interconnects for electron spin resonant qubit control as well as low impedance DC microstrips reducing EM-crosstalk from AC to DC lines. We used the interposer for measurements of a Si/SiGe quantum dot at 30 mK. We also characterized a commercial voltage controlled oszillator (VCO) based on hetero-bipolar transistors. Tunable about 30 GHz it is ideal for electron spin resonant qubit control. Cooled from 300 to 4 K it exhibits a slightly increased output power and frequency, while the phase noise level is constant. The device remains functional up to magnetic fields of 6 T.

  9. Inexpensive Measuring System for the Characterization of Organic Transistors

    Directory of Open Access Journals (Sweden)

    Clara Pérez-Fuster

    2018-01-01

    Full Text Available A measuring module has been specifically designed for the electrical characterization of organic semiconductor devices such as organic field effect transistors (OFETs and organic electrochemical transistors (OECTs according to the IEEE 1620-2008 standard. This device has been tested with OFETs based on 6,13-bis(triisopropylsilylethinylpentacene (TIPS-pentacene. The measuring system has been constructed using a NI-PXIe-1073 chassis with integrated controller and two NI-PXI-4132 programmable high-precision source measure units (SMUs that offer a four-quadrant ± 100 V output, with resolution down to 10 pA. LabVIEW™ has been used to develop the appropriate program. Most of the main OFET parameters included in the IEEE 1620 standard can be measured by means of this device. Although nowadays expensive devices for the characterization of Si-based transistors are available, devices for the characterization of organic transistors are not yet widespread in the market. Fabrication of a specific and flexible module that can be used to characterize this type of transistors would provide a powerful tool to researchers.

  10. Doped Organic Transistors.

    Science.gov (United States)

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  11. Transport Characteristics of Mesoscopic Radio-Frequency Single Electron Transistor

    International Nuclear Information System (INIS)

    Phillips, A. H.; Kirah, K.; Aly, N. A. I.; El-Sayes, H. E.

    2008-01-01

    The transport property of a quantum dot under the influence of external time-dependent field is investigated. The mesoscopic device is modelled as semiconductor quantum dot coupled weakly to superconducting leads via asymmetric double tunnel barriers of different heights. An expression for the current is deduced by using the Landauer–Buttiker formula, taking into consideration of both the Coulomb blockade effect and the magnetic field. It is found that the periodic oscillation of the current with the magnetic field is controlled by the ratio of the frequency of the applied ac-field to the electron cyclotron frequency. Our results show that the present device operates as a radio-frequency single electron transistor

  12. Band-to-Band Tunneling Transistors: Scalability and Circuit Performance

    Science.gov (United States)

    2013-05-01

    The largest company in the world is now a technology company (Apple Inc.) whose products are all enabled by transistors [2]. Any changes, for better...increasing standby battery life. The nVidia Tegra 3 mobile processor for applications in smartphones and tablets contains five cores: one low power...white paper, NVIDIA , 2011. 14. W. G. Vandenberghe, B. Sorée, W. Magnus, G. Groeseneken, and M. V. Fischetti, “Impact of field-induced quantum

  13. Towards room temperature solid state quantum devices at the edge of quantum chaos for long-living quantum states

    International Nuclear Information System (INIS)

    Prati, Enrico

    2015-01-01

    Long living coherent quantum states have been observed in biological systems up to room temperature. Light harvesting in chromophoresis realized by excitonic systems living at the edge of quantum chaos, where energy level distribution becomes semi-Poissonian. On the other hand, artificial materials suffer the loss of coherence of quantum states in quantum information processing, but semiconductor materials are known to exhibit quantum chaotic conditions, so the exploitation of similar conditions are to be considered. The advancements of nanofabrication, together with the control of implantation of individual atoms at nanometric precision, may open the experimental study of such special regime at the edge of the phase transitions for the electronic systems obtained by implanting impurity atoms in a silicon transistor. Here I review the recent advancements made in the field of theoretical description of the light harvesting in biological system in its connection with phase transitions at the few atoms scale and how it would be possible to achieve transition point to quantum chaotic regime. Such mechanism may thus preserve quantum coherent states at room temperature in solid state devices, to be exploited for quantum information processing as well as dissipation-free quantum electronics. (paper)

  14. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    International Nuclear Information System (INIS)

    Liu, Zhaojun; Ma, Jun; Huang, Tongde; Liu, Chao; May Lau, Kei

    2014-01-01

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing

  15. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    Science.gov (United States)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  16. Design of quaternary logic circuit using quantum dot gate-quantum dot channel FET (QDG-QDCFET)

    Science.gov (United States)

    Karmakar, Supriya

    2014-10-01

    This paper presents the implementation of quaternary logic circuits based on quantum dot gate-quantum dot channel field effect transistor (QDG-QDCFET). The super lattice structure in the quantum dot channel region of QDG-QDCFET and the electron tunnelling from inversion channel to the quantum dot layer in the gate region of a QDG-QDCFET change the threshold voltage of this device which produces two intermediate states between its ON and OFF states. This property of QDG-QDCFET is used to implement multi-valued logic for future multi-valued logic circuit. This paper presents the design of basic quaternary logic operation such as inverter, AND and OR operation based on QDG-QDCFET.

  17. Time-dependent description of quantum interference nanotransistor

    International Nuclear Information System (INIS)

    Konopka, M.; Bokes, P.

    2012-01-01

    In this contribution we have presented simulations of electron current response to applied gate potentials in a ring-shaped quantum interference device. Such device could function like a current-switching quantum-interference transistor. We demonstrated capability of our approach to describe this kind of system keeping full quantum coherence in the description for extended periods of time. This have been achieved thanks to the unique feature of our method which allows for explicit simulations of small quantum subsystems with open boundary conditions. Further generalisation of the method is needed to reduce the number of basis set functions required to describe the system. (authors)

  18. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits.

    Science.gov (United States)

    Wang, Ruijun; Sprengel, Stephan; Muneeb, Muhammad; Boehm, Gerhard; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2015-10-05

    The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform.

  19. Quantum Mechanics, Path Integrals and Option Pricing: Reducing the Complexity of Finance

    OpenAIRE

    Baaquie, Belal E.; Coriano, Claudio; Srikant, Marakani

    2002-01-01

    Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear sy...

  20. Low-power bacteriorhodopsin-silicon n-channel metal-oxide field-effect transistor photoreceiver.

    Science.gov (United States)

    Shin, Jonghyun; Bhattacharya, Pallab; Yuan, Hao-Chih; Ma, Zhenqiang; Váró, György

    2007-03-01

    A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W.

  1. Total dose effects on elementary transistors of a comparator in bipolar technology

    International Nuclear Information System (INIS)

    Sarrabayrouse, G.; Guerre, F.X.

    1995-01-01

    In the present work we investigate elementary transistors behaviour of an Integrated Circuit using junction isolation bipolar technology. Polarization conditions and dose rate effects on the main elementary transistor types are analysed. Furthermore, the IC electronic function degradations are studied. Finally, a comparison between the function degradations and the elementary component ones is attempted. (author)

  2. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L.; Fang, Lei; Bao, Zhenan

    2013-01-01

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight

  3. Unijunction transistors

    International Nuclear Information System (INIS)

    1981-01-01

    The electrical characteristics of unijunction transistors can be modified by irradiation with electron beams in excess of 400 KeV and at a dose rate of 10 13 to 10 16 e/cm 2 . Examples are given of the effect of exposing the emitter-base junctions of transistors to such lattice defect causing radiation for a time sufficient to change the valley current of the transistor. (U.K.)

  4. The quench action approach to out-of-equilibrium quantum integrable models

    NARCIS (Netherlands)

    Wouters, B.M.

    2015-01-01

    In this PhD thesis quantum quenches to 1D quantum integrable models are studied by means of the quench action approach. Using the large-system-size scaling of overlaps between the initial state and Bethe states as basic input, this method gives an exact description in the thermodynamic limit of the

  5. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    DEFF Research Database (Denmark)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld

    2017-01-01

    is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...

  6. Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics

    Science.gov (United States)

    Shalaginov, Mikhail Y.

    Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.

  7. InAs/InAsP composite channels for antimonide-based field-effect transistors

    International Nuclear Information System (INIS)

    Lin, H.-K.; Kadow, C.; Dahlstroem, M.; Bae, J.-U.; Rodwell, M.J.W.; Gossard, A.C.; Brar, B.; Sullivan, G.; Nagy, G.; Bergman, J.

    2004-01-01

    We report the growth and transport characteristics of stepped InAs/InAs 1-x P x quantum wells with AlSb barriers. Electron mobilities and carrier concentrations in these composite stepped quantum wells were studied as a function of growth temperature and phosphorus content. For InAs 1-x P x grown at 430 deg. C substrate temperature (nominal x=0.2), a high 22 500 cm 2 /V s electron mobility was observed, while 7100 cm 2 /V s mobility was observed in a single strained InAs 1-x P x quantum well layer. Heterostructure field-effect transistors fabricated using the composite quantum wells exhibited increased breakdown voltage and a 14:1 reduction in source-drain dc conduction when compared to a similar InAs-channel device

  8. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics.

    Science.gov (United States)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-05-07

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.

  9. Quantum transport through a deformable molecular transistor

    Science.gov (United States)

    Cornaglia, P. S.; Grempel, D. R.; Ness, H.

    2005-02-01

    The linear transport properties of a model molecular transistor with electron-electron and electron-phonon interactions were investigated analytically and numerically. The model takes into account phonon modulation of the electronic energy levels and of the tunneling barrier between the molecule and the electrodes. When both effects are present they lead to asymmetries in the dependence of the conductance on gate voltage. The Kondo effect is observed in the presence of electron-phonon interactions. There are important qualitative differences between the cases of weak and strong coupling. In the first case the standard Kondo effect driven by spin fluctuations occurs. In the second case, it is driven by charge fluctuations. The Fermi-liquid relation between the spectral density of the molecule and its charge is altered by electron-phonon interactions. Remarkably, the relation between the zero-temperature conductance and the charge remains unchanged. Therefore, there is perfect transmission in all regimes whenever the average number of electrons in the molecule is an odd integer.

  10. Integrated digital superconducting logic circuits for the quantum synthesizer. Report

    International Nuclear Information System (INIS)

    Buchholz, F.I.; Kohlmann, J.; Khabipov, M.; Brandt, C.M.; Hagedorn, D.; Balashov, D.; Maibaum, F.; Tolkacheva, E.; Niemeyer, J.

    2006-11-01

    This report presents the results, which were reached in the framework of the BMBF cooperative plan ''Quantum Synthesizer'' in the partial plan ''Integrated Digital Superconducting Logic Circuits''. As essential goal of the plan a novel instrument on the base of quantum-coherent superconducting circuits should be developed. which allows to generate praxis-relevant wave forms with quantum accuracy, the quantum synthesizer. The main topics of development of the reported partial plan lied at the one hand in the development of integrated, digital, superconducting circuit in rapid-single-flux (RSFQ) quantum logics for the pattern generator of the quantum synthesizer, at the other hand in the further development of the fabrication technology for the aiming of high circuit complexity. In order to fulfil these requirements at the PTB a new design system was implemented, based on the software of Cadence. Together with the required RSFQ extensions for the design of digital superconducting circuits was a platform generated, on which the reachable circuit complexity is exclusively limited by the technology parameters of the available fabrication technology: Physical simulations are with PSCAN up to a complexity of more than 1000 circuit elements possible; furthermore VHDL allows the verification of arbitrarily large circuit architectures. In accordance for this the production line at the PTB was brought to a level, which allows in Nb/Al-Al x O y /Nb SIS technology implementation the fabrication of highly integrable RSFQ circuit architectures. The developed and fabricated basic circuits of the pattern generator have proved correct functionality and reliability in the measuring operation. Thereby for the circular RSFQ shift registers a key role as local memories in the construction of the pattern generator is devolved upon. The registers were realized with the aimed bit lengths up to 128 bit and with reachable signal-processing speeds of above 10 GHz. At the interface RSFQ

  11. Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits.

    Science.gov (United States)

    Larentis, Stefano; Fallahazad, Babak; Movva, Hema C P; Kim, Kyounghwan; Rai, Amritesh; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; Tutuc, Emanuel

    2017-05-23

    Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe 2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.

  12. Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities

    DEFF Research Database (Denmark)

    Reitzenstein, S.; Schneider, C.; Albert, F.

    2011-01-01

    Semiconductor quantum dots (QDs) are fascinating nanoscopic structures for photonics and future quantum information technology. However, the random position of self-organized QDs inhibits a deterministic coupling in devices relying on cavity quantum electrodynamics (cQED) effects which complicates......, e.g., the large scale fabrication of quantum light sources. As a result, large efforts focus on the growth and the device integration of site-controlled QDs. We present the growth of low density arrays of site-controlled In(Ga)As QDs where shallow etched nanoholes act as nucleation sites...... linewidth, the oscillator strength and the quantum efficiency. A stacked growth of strain coupled SCQDs forming on wet chemically etched nanoholes provide the smallest linewidth with an average value of 210 μeV. Using time resolved photoluminescence studies on samples with a varying thickness of the capping...

  13. An analog front-end bipolar-transistor integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1994-01-01

    Since 1989 the Solenoidal Detector Collaboration (SDC) has been developing a general purpose detector to be operated at the Superconducting Super Collider (SSC). A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDS silicon tracker. The IC was designed and tested at LBL and was fabricated using AT and T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16nsec time-walk for 1.25 to 10 fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a φ = 10 14 protons/cm 2 have been performed on the JC, demonstrating the radiation hardness of the complementary bipolar process

  14. Integrable systems and quantum field theory. Works in progress Nr 75

    International Nuclear Information System (INIS)

    Baird, Paul; Helein, Frederic; Kouneiher, Joseph; Roubtsov, Volodya; Antunes, Paulo; Banos, Bertrand; Barbachoux, Cecile; Desideri, Laura; Kahouadji, Nabil; Gerding, Aaron; Heller, Sebastian; Schmitt, Nicholas; Harrivel, Dikanaina; Hoevenaars, Luuk K.; Iftime, Mihaela; Levy, Thierry; Lisovyy, Oleg; Masson, Thierry; Skrypnyk, Taras; Pedit, Franz; Egeileh, Michel

    2009-01-01

    The contributions of this collective book address the quantum field theory (integrable systems and quantum field theory, introduction to supermanifolds and supersymmetry, beyond geometric quantification, Gaussian measurements and Fock spaces), differential geometry and physics (gravitation and geometry, physical events and the superspace about the hole argument, the Cartan-Kaehler theory and applications to local isometric and conformal embedding, calibrations, Cabal-Yau structures and Monge-Ampere structures, Hamiltonian multi-symplectic formalism and Monge-Ampere equations, big bracket, derivations and derivative multi-brackets), integrable system, geometry and physics (finite-volume correlation functions of monodromy fields on the lattice with the Toeplitz representation, Frobenius manifolds and algebraic integrability, an introduction to twistors, Hamiltonian systems on the 'coupled' curves, Nambu-Poisson mechanics and Fairlie-type integrable systems, minimal surfaces with polygonal boundary and Fuchsian equations, global aspects of integrable surface geometry), and non commutative geometry (an informal introduction to the ideas and concepts of non commutative geometry)

  15. Modeling of charge transport in ion bipolar junction transistors.

    Science.gov (United States)

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  16. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu

    2017-10-04

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  17. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Li, Ming-Yang; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L.; Lan, Yann-Wen

    2017-01-01

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  18. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon.

    Science.gov (United States)

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L; Lan, Yann-Wen

    2017-11-28

    High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe 2 -MoS 2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.

  19. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    Science.gov (United States)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  20. Suppressing the memory state of floating gate transistors with repeated femtosecond laser backside irradiations

    Science.gov (United States)

    Chambonneau, Maxime; Souiki-Figuigui, Sarra; Chiquet, Philippe; Della Marca, Vincenzo; Postel-Pellerin, Jérémy; Canet, Pierre; Portal, Jean-Michel; Grojo, David

    2017-04-01

    We demonstrate that infrared femtosecond laser pulses with intensity above the two-photon ionization threshold of crystalline silicon induce charge transport through the tunnel oxide in floating gate Metal-Oxide-Semiconductor transistor devices. With repeated irradiations of Flash memory cells, we show how the laser-produced free-electrons naturally redistribute on both sides of the tunnel oxide until the electric field of the transistor is suppressed. This ability enables us to determine in a nondestructive, rapid and contactless way the flat band and the neutral threshold voltages of the tested device. The physical mechanisms including nonlinear ionization, quantum tunneling of free-carriers, and flattening of the band diagram are discussed for interpreting the experiments. The possibility to control the carriers in memory transistors with ultrashort pulses holds promises for fast and remote device analyses (reliability, security, and defectivity) and for considerable developments in the growing field of ultrafast microelectronics.

  1. Recent advances in understanding total-dose effects in bipolar transistors

    International Nuclear Information System (INIS)

    Schrimpf, R.D.

    1996-01-01

    Gain degradation in irradiated bipolar transistors can be a significant problem, particularly in linear integrated circuits. In many bipolar technologies, the degradation is greater for irradiation at low dose rates than it is for typical laboratory dose rates. Ionizing radiation causes the base current in bipolar transistors to increase, due to the presence of net positive charge in the oxides covering sensitive device areas and increases in surface recombination velocity. Understanding the mechanisms responsible for radiation-induced gain degradation in bipolar transistors is important in developing appropriate hardness assurance methods. This paper reviews recent modeling and experimental work, with the emphasis on low-dose-rate effects. A promising hardness assurance method based on irradiation at elevated temperatures is described

  2. Reprogrammable read only variable threshold transistor memory with isolated addressing buffer

    Science.gov (United States)

    Lodi, Robert J.

    1976-01-01

    A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.

  3. A quantum relativistic integrable model as the continuous limit of the six-vertex model

    International Nuclear Information System (INIS)

    Zhou, Y.K.

    1992-01-01

    The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)

  4. Generation of a quantum integrable class of discrete-time or relativistic periodic Toda chains

    International Nuclear Information System (INIS)

    Kundu, Anjan

    1994-01-01

    A new integrable class of quantum models representing a family of different discrete-time or relativistic generalisations of the periodic Toda chain (TC), including that of a recently proposed classical model close to TC [Lett. Math. Phys. 29 (1993) 165] is presented. All such models are shown to be obtainable from a single ancestor model at different realisations of the underlying quantised algebra. As a consequence the 2x2 Lax operators and the associated quantum R-matrices for these models are easily derived ensuring their quantum integrability. It is shown that the functional Bethe ansatz developed for the quantum TC is trivially generalised to achieve separation of variables also for the present models. ((orig.))

  5. Interpretation of quarks having fractional quantum numbers as structural quasi-particles by means of the composite model with integral quantum numbers

    International Nuclear Information System (INIS)

    Tyapkin, A.A.

    1976-01-01

    The problem is raised on the interpretation of quarks having fractional quantum numbers as structural quasi-particles. A new composite model is proposed on the basis of the fundamental triplet representation of fermions having integral quantum numbers

  6. Bottom-Up Tri-gate Transistors and Submicrosecond Photodetectors from Guided CdS Nanowalls.

    Science.gov (United States)

    Xu, Jinyou; Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto

    2017-11-08

    Tri-gate transistors offer better performance than planar transistors by exerting additional gate control over a channel from two lateral sides of semiconductor nanowalls (or "fins"). Here we report the bottom-up assembly of aligned CdS nanowalls by a simultaneous combination of horizontal catalytic vapor-liquid-solid growth and vertical facet-selective noncatalytic vapor-solid growth and their parallel integration into tri-gate transistors and photodetectors at wafer scale (cm 2 ) without postgrowth transfer or alignment steps. These tri-gate transistors act as enhancement-mode transistors with an on/off current ratio on the order of 10 8 , 4 orders of magnitude higher than the best results ever reported for planar enhancement-mode CdS transistors. The response time of the photodetector is reduced to the submicrosecond level, 1 order of magnitude shorter than the best results ever reported for photodetectors made of bottom-up semiconductor nanostructures. Guided semiconductor nanowalls open new opportunities for high-performance 3D nanodevices assembled from the bottom up.

  7. Integrability of a family of quantum field theories related to sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Ridout, David [Australian National Univ., Canberra, ACT (Australia). Dept. of Theoretical Physics; DESY, Hamburg (Germany). Theory Group; Teschner, Joerg [DESY, Hamburg (Germany). Theory Group

    2011-03-15

    A method is introduced for constructing lattice discretizations of large classes of integrable quantum field theories. The method proceeds in two steps: The quantum algebraic structure underlying the integrability of the model is determined from the algebra of the interaction terms in the light-cone representation. The representation theory of the relevant quantum algebra is then used to construct the basic ingredients of the quantum inverse scattering method, the lattice Lax matrices and R-matrices. This method is illustrated with four examples: The Sinh-Gordon model, the affine sl(3) Toda model, a model called the fermionic sl(2 vertical stroke 1) Toda theory, and the N=2 supersymmetric Sine-Gordon model. These models are all related to sigma models in various ways. The N=2 supersymmetric Sine-Gordon model, in particular, describes the Pohlmeyer reduction of string theory on AdS{sub 2} x S{sup 2}, and is dual to a supersymmetric non-linear sigma model with a sausage-shaped target space. (orig.)

  8. Critical current in the Integral Quantum Hall Effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    A multiparticle theory of the Integral Quantum Hall Effect (IQHE) was constructed operating with pairs wave function as an order parameter. The IQHE is described with bosonic macroscopic states while the fractional QHE with fermionic ones. The calculation of the critical current and Hall conductivity temperature dependence is presented. (author)

  9. A Transistor Sizing Tool for Optimization of Analog CMOS Circuits: TSOp

    OpenAIRE

    Y.C.Wong; Syafeeza A. R; N. A. Hamid

    2015-01-01

    Optimization of a circuit by transistor sizing is often a slow, tedious and iterative manual process which relies on designer intuition. It is highly desirable to automate the transistor sizing process towards being able to rapidly design high performance integrated circuit. Presented here is a simple but effective algorithm for automatically optimizing the circuit parameters by exploiting the relationships among the genetic algorithm's coefficient values derived from the analog circuit desig...

  10. Solution of quantum integrable systems from quiver gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Dorey, Nick [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge (United Kingdom); Zhao, Peng [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook (United States)

    2017-02-23

    We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.

  11. Nonenzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods.

    Science.gov (United States)

    Jung, Da-Un-Jin; Ahmad, Rafiq; Hahn, Yoon-Bong

    2018-02-15

    Herein, we fabricated nonenzymatic flexible field-effect transistor (f-FET) based glucose sensor using nickel oxide quantum dots (NiO QDs) modified zinc oxide nanorods (ZnO NRs). The ZnO NRs surfaces were coated with NiO QDs using radio frequency (RF) magnetron sputtering to enhance the electrocatalytic feature and the surface area of ZnO NRs. Under physiological conditions (pH 7.4), the nonenzymatic f-FET glucose sensor shows two linear ranges of 0.001-10mM and 10-50mM with the high sensitivity of 13.14μAcm -2 mM -1 and 7.31μAcm -2 mM -1 , respectively, along with good selectivity, stability and repeatability during glucose detection. The examination of human whole blood and serum samples reveal that the nonenzymatic f-FET based glucose sensor is capable of measuring glucose concentration efficiently in the presence of interfering species and thus can be offered as a promising device for further applications in clinical and non-clinical fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    Science.gov (United States)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  13. Effects of quantum coupling on the performance of metal-oxide ...

    Indian Academy of Sciences (India)

    LING-FENG MAO. School of Electronics & Information Engineering, Soochow University, ... Quantum coupling; metal-oxide-semiconductor field transistors. ... effects of the barrier height reduction caused by the channel electron velocity due to.

  14. Toward quantum FinFET

    CERN Document Server

    Wang, Zhiming

    2013-01-01

    This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introductio...

  15. An alternative path integral for quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Chethan; Kumar, K.V. Pavan; Raju, Avinash [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)

    2016-10-10

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This “Neumann ensemble” perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  16. Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup

    International Nuclear Information System (INIS)

    Leyre, S.; Coutino-Gonzalez, E.; Hofkens, J.; Joos, J. J.; Poelman, D.; Smet, P. F.; Ryckaert, J.; Meuret, Y.; Durinck, G.; Hanselaer, P.; Deconinck, G.

    2014-01-01

    An integrating sphere-based setup to obtain a quick and reliable determination of the internal quantum efficiency of strongly scattering luminescent materials is presented. In literature, two distinct but similar measurement procedures are frequently mentioned: a “two measurement” and a “three measurement” approach. Both methods are evaluated by applying the rigorous integrating sphere theory. It was found that both measurement procedures are valid. Additionally, the two methods are compared with respect to the uncertainty budget of the obtained values of the quantum efficiency. An inter-laboratory validation using the two distinct procedures was performed. The conclusions from the theoretical study were confirmed by the experimental data

  17. Heterogeneous Integration Technology

    Science.gov (United States)

    2017-05-19

    integrated CMOS imaging system for high frame rate applications [171]. .................... 68 Figure 83: CPU-DRAM Memory Landscape . [127... film transistors (TFT) were integrated with GaN HEMTs on the same wafer at AFRL. The thin film transistor fabrication using metal-oxide...second layer. Layer transfer produces the best quality devices compared to other additive technologies such as re-crystallization of thin films [148

  18. Are Nanotube Architectures More Advantageous Than Nanowire Architectures For Field Effect Transistors?

    KAUST Repository

    Fahad, Hossain M.

    2012-06-27

    Decade long research in 1D nanowire field effect transistors (FET) shows although it has ultra-low off-state leakage current and a single device uses a very small area, its drive current generation per device is extremely low. Thus it requires arrays of nanowires to be integrated together to achieve appreciable amount of current necessary for high performance computation causing an area penalty and compromised functionality. Here we show that a FET with a nanotube architecture and core-shell gate stacks is capable of achieving the desirable leakage characteristics of the nanowire FET while generating a much larger drive current with area efficiency. The core-shell gate stacks of silicon nanotube FETs tighten the electrostatic control and enable volume inversion mode operation leading to improved short channel behavior and enhanced performance. Our comparative study is based on semi-classical transport models with quantum confinement effects which offers new opportunity for future generation high performance computation.

  19. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2017-01-01

    Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

  20. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    Science.gov (United States)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  1. Quantum information

    International Nuclear Information System (INIS)

    Rodgers, P.

    1998-01-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  2. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, P

    1998-03-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  3. The dual role of multiple-transistor charge sharing collection in single-event transients

    International Nuclear Information System (INIS)

    Guo Yang; Chen Jian-Jun; He Yi-Bai; Liang Bin; Liu Bi-Wei

    2013-01-01

    As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing collection of the adjacent multiple-transistors. In this paper, not only the off-state p-channel metal—oxide semiconductor field-effect transistor (PMOS FET), but also the on-state PMOS is struck by a heavy-ion in the two-transistor inverter chain, due to the charge sharing collection and the electrical interaction. The SET induced by striking the off-state PMOS is efficiently mitigated by the pulse quenching effect, but the SET induced by striking the on-state PMOS becomes dominant. It is indicated in this study that in the advanced technologies, the SET will no longer just be induced by an ion striking the off-state transistor, and the SET sensitive region will no longer just surround the off-state transistor either, as it is in the older technologies. We also discuss this issue in a three-transistor inverter in depth, and the study illustrates that the three-transistor inverter is still a better replacement for spaceborne integrated circuit design in advanced technologies. (condensed matter: structural, mechanical, and thermal properties)

  4. Coherent molecular transistor: control through variation of the gate wave function.

    Science.gov (United States)

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  5. Coherent molecular transistor: Control through variation of the gate wave function

    International Nuclear Information System (INIS)

    Ernzerhof, Matthias

    2014-01-01

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor

  6. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-López, Manuel Angel Quevedo

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  7. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-Ló pez, Manuel Angel Quevedo; Wondmagegn, Wudyalew T.; Alshareef, Husam N.; Ramí rez-Bon, Rafael; Gnade, Bruce E.

    2011-01-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  8. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, Jordi; Pérez-Murano, Francesc, E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K., E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Arbiol, Jordi [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra, Catalonia (Spain); CELLS-ALBA Synchrotron Light Facility, 08290 Cerdanyola, Catalonia (Spain)

    2015-11-30

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations.

  9. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    International Nuclear Information System (INIS)

    Llobet, Jordi; Pérez-Murano, Francesc; Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K.; Arbiol, Jordi

    2015-01-01

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations

  10. Quantum integrable systems related to lie algebras

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1983-01-01

    Some quantum integrable finite-dimensional systems related to Lie algebras are considered. This review continues the previous review of the same authors (1981) devoted to the classical aspects of these systems. The dynamics of some of these systems is closely related to free motion in symmetric spaces. Using this connection with the theory of symmetric spaces some results such as the forms of spectra, wave functions, S-matrices, quantum integrals of motion are derived. In specific cases the considered systems describe the one-dimensional n-body systems interacting pairwise via potentials g 2 v(q) of the following 5 types: vsub(I)(q)=q - 2 , vsub(II)(q)=sinh - 2 q, vsub(III)(q)=sin - 2 q, vsub(IV)(q)=P(q), vsub(V)(q)=q - 2 +#betta# 2 q 2 . Here P(q) is the Weierstrass function, so that the first three cases are merely subcases on the fourth. The system characterized by the Toda nearest-neighbour potential exp(qsub(j)-qsub(j+1)) is moreover considered. This review presents from a general and universal point of view results obtained mainly over the past fifteen years. Besides, it contains some new results both of physical and mathematical interest. (orig.)

  11. Nonperturbative time-convolutionless quantum master equation from the path integral approach

    International Nuclear Information System (INIS)

    Nan Guangjun; Shi Qiang; Shuai Zhigang

    2009-01-01

    The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.

  12. Integration of quantum cascade lasers and passive waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William [MIT Lincoln Laboratory, 244 Wood St, Lexington, Massachusetts 02420 (United States)

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  13. Integration of quantum cascade lasers and passive waveguides

    International Nuclear Information System (INIS)

    Montoya, Juan; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William

    2015-01-01

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm −1 in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  14. Graphene quantum dot (GQD)-induced photovoltaic and photoelectric memory elements in a pentacene/GQD field effect transistor as a probe of functional interface

    Science.gov (United States)

    Kim, Youngjun; Cho, Seongeun; Kim, Hyeran; Seo, Soonjoo; Lee, Hyun Uk; Lee, Jouhahn; Ko, Hyungduk; Chang, Mincheol; Park, Byoungnam

    2017-09-01

    Electric field-induced charge trapping and exciton dissociation were demonstrated at a penatcene/grapheme quantum dot (GQD) interface using a bottom contact bi-layer field effect transistor (FET) as an electrical nano-probe. Large threshold voltage shift in a pentacene/GQD FET in the dark arises from field-induced carrier trapping in the GQD layer or GQD-induced trap states at the pentacene/GQD interface. As the gate electric field increases, hysteresis characterized by the threshold voltage shift depending on the direction of the gate voltage scan becomes stronger due to carrier trapping associated with the presence of a GQD layer. Upon illumination, exciton dissociation and gate electric field-induced charge trapping simultaneously contribute to increase the threshold voltage window, which can potentially be exploited for photoelectric memory and/or photovoltaic devices through interface engineering.

  15. Fundamental and future prospects of printed ambipolar fluorene-type polymer light-emitting transistors for improved external quantum efficiency, mobility, and emission pattern

    Science.gov (United States)

    Kajii, Hirotake

    2018-05-01

    In this review, we focus on the improved external quantum efficiency, field-effect mobility, and emission pattern of top-gate-type polymer light-emitting transistors (PLETs) based on ambipolar fluorene-type polymers. A low-temperature, high-efficiency, printable red phosphorescent PLET based on poly(alkylfluorene) with modified alkyl side chains fabricated by a film transfer process is demonstrated. Device fabrication based on oriented films leads to an improved EL intensity owing to the increase in field-effect mobility. There are three factors that affect the transport of carriers, i.e., the energy level, threshold voltage, and mobility of each layer for heterostructure PLETs, which result in various emission patterns such as the line-shaped, multicolor and in-plane emission pattern in the full-channel area between source and drain electrodes. Fundamentals and future prospects in heterostructure devices are discussed and reviewed.

  16. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jingtian, E-mail: jingtian.fang@utdallas.edu; Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2016-01-21

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ∼66 mV/decade and a drain-induced barrier-lowering of ∼2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  17. Investigation of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors for logic application

    Science.gov (United States)

    Tsai, Jung-Hui

    2014-01-01

    DC performance of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors (DCFETs) grown on a low-cost GaAs substrate is first demonstrated. In the complementary DCFETs, the n-channel device was fabricated on the InxGa1-xP metamorphic linearly graded buffer layer and the p-channel field-effect transistor was stacked on the top of the n-channel device. Particularly, the saturation voltage of the n-channel device is substantially reduced to decrease the VOL and VIH values attributed that two-dimensional electron gas is formed and could be modulated in the n-InGaAs channel. Experimentally, a maximum extrinsic transconductance of 215 (17) mS/mm and a maximum saturation current density of 43 (-27) mA/mm are obtained in the n-channel (p-channel) device. Furthermore, the noise margins NMH and NML are up to 0.842 and 0.330 V at a supply voltage of 1.5 V in the complementary logic inverter application.

  18. Transistor analogs of emergent iono-neuronal dynamics.

    Science.gov (United States)

    Rachmuth, Guy; Poon, Chi-Sang

    2008-06-01

    Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.

  19. Entanglement dynamics after quantum quenches in generic integrable systems

    Directory of Open Access Journals (Sweden)

    Vincenzo Alba, Pasquale Calabrese

    2018-03-01

    Full Text Available The time evolution of the entanglement entropy in non-equilibrium quantum systems provides crucial information about the structure of the time-dependent state. For quantum quench protocols, by combining a quasiparticle picture for the entanglement spreading with the exact knowledge of the stationary state provided by Bethe ansatz, it is possible to obtain an exact and analytic description of the evolution of the entanglement entropy. Here we discuss the application of these ideas to several integrable models. First we show that for non-interacting systems, both bosonic and fermionic, the exact time-dependence of the entanglement entropy can be derived by elementary techniques and without solving the dynamics. We then provide exact results for interacting spin chains that are carefully tested against numerical simulations. Finally, we apply this method to integrable one-dimensional Bose gases (Lieb-Liniger model both in the attractive and repulsive regimes. We highlight a peculiar behaviour of the entanglement entropy due to the absence of a maximum velocity of excitations.

  20. Principles of transistor circuits introduction to the design of amplifiers, receivers and digital circuits

    CERN Document Server

    Amos, S W

    2013-01-01

    For over thirty years, Stan Amos has provided students and practitioners with a text they could rely on to keep them at the forefront of transistor circuit design. This seminal work has now been presented in a clear new format and completely updated to include the latest equipment such as laser diodes, Trapatt diodes, optocouplers and GaAs transistors, and the most recent line output stages and switch-mode power supplies.Although integrated circuits have widespread application, the role of discrete transistors is undiminished, both as important building blocks which students must understand an

  1. A III-V nanowire channel on silicon for high-performance vertical transistors.

    Science.gov (United States)

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-09

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.

  2. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  3. The foundational origin of integrability in quantum field theory

    International Nuclear Information System (INIS)

    Schroer, Bert; FU-Berlin

    2012-02-01

    There are two foundational model-independent concepts of integrability in QFT. One is 'dynamical' and generalizes the solvability in closed analytic form of the dynamical aspects as known from the Kepler two-body problem and its quantum mechanical counterpart. The other, referred to as 'kinematical' integrability, has no classical nor even quantum mechanical counterpart; it describes the relation between so called eld algebra and its local observable subalgebras and their discrete inequivalent representation classes (the DHR theory of superselection sectors). In the standard case of QFTs with mass gaps it contains the information about the representation of the (necessary compact) internal symmetry group and statistics in form of a tracial state on a 'dual group'. In Lagrangian or functional quantization one deals with the eld algebra and the division into observable /eld algebras does presently not play a role in constructive approaches to QFT. 'Kinematical' integrability is however of particular interest in conformal theories where the observable algebra fulfils the Huygens principle (light like propagation) and lives on the compactified Minkowski spacetime whereas the eld algebra, whose spacetime symmetry group is the universal covering of the conformal group lives on the universal covering of the compactified Minkowski spacetime. Since the (anomalous) dimensions of fields show up in the spectrum of the unitary representative of the center of this group , the kinematical structure contained in the relation fields/Huygens observables valuable information which in the usual terminology would be called 'dynamical'. The dynamical integrability is defined in terms of properties of 'wedge localization' and uses the fact that modular localization theory allows to 'emulate' interaction-free wedge-localized operators in a objective manner with the wedge localized interacting algebra. Emulation can be viewed as a generalization of the functorial relation between localized

  4. Integrable models of quantum optics

    Directory of Open Access Journals (Sweden)

    Yudson Vladimir

    2017-01-01

    Full Text Available We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.

  5. Monolithic integration of detectors and transistors on high-resistivity silicon

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Batignani, Giovanni; Boscardin, Maurizio; Bosisio, Luciano; Gregori, Paolo; Pancheri, Lucio; Piemonte, Claudio; Ratti, Lodovico; Verzellesi, Giovanni; Zorzi, Nicola

    2007-01-01

    We report on the most recent results from an R and D activity aimed at the development of silicon radiation detectors with embedded front-end electronics. The key features of the fabrication technology and the available active devices are described. Selected results from the characterization of transistors and test structures are presented and discussed, and the considered application fields are addressed

  6. Investigation of the spinfoam path integral with quantum cuboid intertwiners

    Science.gov (United States)

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-05-01

    In this work, we investigate the 4d path integral for Euclidean quantum gravity on a hypercubic lattice, as given by the spinfoam model by Engle, Pereira, Rovelli, Livine, Freidel and Krasnov. To tackle the problem, we restrict to a set of quantum geometries that reflects the large amount of lattice symmetries. In particular, the sum over intertwiners is restricted to quantum cuboids, i.e. coherent intertwiners which describe a cuboidal geometry in the large-j limit. Using asymptotic expressions for the vertex amplitude, we find several interesting properties of the state sum. First of all, the value of coupling constants in the amplitude functions determines whether geometric or nongeometric configurations dominate the path integral. Secondly, there is a critical value of the coupling constant α , which separates two phases. In both phases, the diffeomorphism symmetry appears to be broken. In one, the dominant contribution comes from highly irregular, in the other from highly regular configurations, both describing flat Euclidean space with small quantum fluctuations around them, viewed in different coordinate systems. On the critical point diffeomorphism symmetry is nearly restored, however. Thirdly, we use the state sum to compute the physical norm of kinematical states, i.e. their norm in the physical Hilbert space. We find that states which describe boundary geometry with high torsion have an exponentially suppressed physical norm. We argue that this allows one to exclude them from the state sum in calculations.

  7. Concept of rewritable organic ferroelectric random access memory in two lateral transistors-in-one cell architecture

    International Nuclear Information System (INIS)

    Kim, Min-Hoi; Lee, Gyu Jeong; Keum, Chang-Min; Lee, Sin-Doo

    2014-01-01

    We propose a concept of rewritable ferroelectric random access memory (RAM) with two lateral organic transistors-in-one cell architecture. Lateral integration of a paraelectric organic field-effect transistor (OFET), being a selection transistor, and a ferroelectric OFET as a memory transistor is realized using a paraelectric depolarizing layer (PDL) which is patterned on a ferroelectric insulator by transfer-printing. For the selection transistor, the key roles of the PDL are to reduce the dipolar strength and the surface roughness of the gate insulator, leading to the low memory on–off ratio and the high switching on–off current ratio. A new driving scheme preventing the crosstalk between adjacent memory cells is also demonstrated for the rewritable operation of the ferroelectric RAM. (paper)

  8. Yang-Baxter algebras of monodromy matrices in integrable quantum field theories

    International Nuclear Information System (INIS)

    Vega, H.J. de; Maillet, J.M.; Eichenherr, H.

    1984-01-01

    We consider a large class of two-dimensional integrable quantum field theories with nonabelian internal symmetry and classical scale invariance. We present a general procedure to determine explicitly the conserved quantum monodromy operator generating infinitely many non-local charges. The main features of our methods are a factorization principle and the use of P, T, and internal symmetries. The monodromy operator is shown to satisfy a Yang-Baxter algebra, the structure constants (i.e. the quantum R-matrix) of which are determined by the two-particle S-matrix of the theory. We apply the method to the chiral SU(N) and the O(2N) Gross-Neveu models. (orig.)

  9. Higher quantum conserved current in a new completely integrable model

    International Nuclear Information System (INIS)

    Nissimov, E.R.

    1980-06-01

    The first higher local quantum conserved current is the recently proposed new completely integrable (2esup(βphi)+esup(-2βphi)) 2 model is explicitly constructed thus proving absence of particle production and factorization of multiparticle scattering. (author)

  10. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2016-01-01

    Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.

  11. A sub k{sub B}T/q semimetal nanowire field effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, L.; Fagas, G.; Gity, F.; Greer, J. C., E-mail: Jim.Greer@Tyndall.ie [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork T12 R5CP (Ireland)

    2016-08-08

    The key challenge for nanoelectronics technologies is to identify the designs that work on molecular length scales, provide reduced power consumption relative to classical field effect transistors (FETs), and that can be readily integrated at low cost. To this end, a FET is introduced that relies on the quantum effects arising for semimetals patterned with critical dimensions below 5 nm, that intrinsically has lower power requirements due to its better than a “Boltzmann tyranny” limited subthreshold swing (SS) relative to classical field effect devices, eliminates the need to form heterojunctions, and mitigates against the requirement for abrupt doping profiles in the formation of nanowire tunnel FETs. This is achieved through using a nanowire comprised of a single semimetal material while providing the equivalent of a heterojunction structure based on shape engineering to avail of the quantum confinement induced semimetal-to-semiconductor transition. Ab initio calculations combined with a non-equilibrium Green's function formalism for charge transport reveals tunneling behavior in the OFF state and a resonant conduction mechanism for the ON state. A common limitation to tunnel FET (TFET) designs is related to a low current in the ON state. A discussion relating to the semimetal FET design to overcome this limitation while providing less than 60 meV/dec SS at room temperature is provided.

  12. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, P

    1998-03-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  13. Quantum nondemolition squeezing of a nanomechanical resonator

    Science.gov (United States)

    Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander

    2005-03-01

    We discuss squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wavepacket center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.

  14. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  15. Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.

    1999-01-01

    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.

  16. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  17. Quantum phase slip interference device based on a shaped superconducting nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zorin, Alexander; Hongisto, Terhi [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2012-07-01

    As was predicted by Mooij and Nazarov, the superconducting nanowires may exhibit, depending on the impedance of external electromagnetic environment, not only quantum slips of phase, but also the quantum-mechanically dual effect of coherent transfer of single Cooper pairs. We propose and realize a transistor-like superconducting circuit including two serially connected segments of a narrow (10 nm by 18 nm) nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a high external impedance (>>h/e{sup 2}∼25.8 kΩ) and, eventually, a charge bias regime. Virtual quantum phase slips in two narrow segments of the wire lead in this case to quantum interference of voltages on these segments making this circuit dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUID) and remarkable periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUID). The obtained experimental results and the model of this QPS transistor will be presented.

  18. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  19. Graphene as tunable contact for high performance thin film transistor

    Science.gov (United States)

    Liu, Yuan

    Graphene has been one of the most extensively studied materials due to its unique band structure, the linear dispersion at the K point. It gives rise to novel phenomena, such as the anomalous quantum Hall effect, and has opened up a new category of "Fermi-Dirac" physics. Graphene has also attracted enormous attention for future electronics because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. However, graphene has zero intrinsic band gap, thus can not be used as the active channel material for logic transistors with sufficient on/off current ratio. Previous approaches to address this challenge include the induction of a transport gap in graphene nanostructures or bilayer graphene. However, these approaches have proved successful in improving the on-- off ratio of the resulting devices, but often at a severe sacrifice of the deliverable current density. Alternatively, with a finite density of states, tunable work-function and optical transparency, graphene can function as a unique tunable contact material to create a new structure of electronic devices. In this thesis, I will present my effort toward on-off ratio of graphene based vertical thin film transistor. I will include the work form four of my first author publication. I will first present my research studies on the a dramatic enhancement of the overall quantum efficiency and spectral selectivity of graphene photodetector, by coupling with plasmonic nanostructures. It is observed that metallic plasmonic nanostructures can be integrated with graphene photodetectors to greatly enhance the photocurrent and external quantum efficiency by up to 1,500%. Plasmonic nanostructures of variable resonance frequencies selectively amplify the photoresponse of graphene to light of different wavelengths, enabling highly specific detection of multicolours. Then I will show a new design of highly flexible vertical TFTs (VTFTs) with superior electrical

  20. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    Science.gov (United States)

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1987-06-08

    A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space. The layer thicknesses of the quantum well layers are selected to provide a superlattice L/sub 2D/-valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley. 2 figs.

  1. Accelerating the life of transistors

    International Nuclear Information System (INIS)

    Qi Haochun; Lü Changzhi; Zhang Xiaoling; Xie Xuesong

    2013-01-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 10 4 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 10 3 . Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation. (semiconductor devices)

  2. A large class of solvable multistate Landau–Zener models and quantum integrability

    Science.gov (United States)

    Chernyak, Vladimir Y.; Sinitsyn, Nikolai A.; Sun, Chen

    2018-06-01

    The concept of quantum integrability has been introduced recently for quantum systems with explicitly time-dependent Hamiltonians (Sinitsyn et al 2018 Phys. Rev. Lett. 120 190402). Within the multistate Landau–Zener (MLZ) theory, however, there has been a successful alternative approach to identify and solve complex time-dependent models (Sinitsyn and Chernyak 2017 J. Phys. A: Math. Theor. 50 255203). Here we compare both methods by applying them to a new class of exactly solvable MLZ models. This class contains systems with an arbitrary number of interacting states and shows quick growth with N number of exact adiabatic energy crossing points, which appear at different moments of time. At each N, transition probabilities in these systems can be found analytically and exactly but complexity and variety of solutions in this class also grow with N quickly. We illustrate how common features of solvable MLZ systems appear from quantum integrability and develop an approach to further classification of solvable MLZ problems.

  3. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.

    Science.gov (United States)

    Nakazato, Kazuo

    2014-03-28

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor.

  4. Engineering integrated photonics for heralded quantum gates

    Science.gov (United States)

    Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.

    2016-06-01

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  5. Engineering integrated photonics for heralded quantum gates.

    Science.gov (United States)

    Meany, Thomas; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Delanty, Michael; Steel, M J; Gilchrist, Alexei; Marshall, Graham D; White, Andrew G; Withford, Michael J

    2016-06-10

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  6. Quantum Information Science: An Update

    Science.gov (United States)

    Kwek, L. C.; Zen, Freddy P.

    2016-08-01

    It is now roughly thirty years since the incipient ideas on quantum information science was concretely formalized. Over the last three decades, there has been much development in this field, and at least one technology, namely devices for quantum cryptography, is now commercialized. Yet, the holy grail of a workable quantum computing machine still lies faraway at the horizon. In any case, it took nearly several centuries before the vacuum tubes were invented after the first mechanical calculating were constructed, and several decades later, for the transistor to bring the current computer technology to fruition. In this review, we provide a short survey of the current development and progress in quantum information science. It clearly does not do justice to the amount of work in the past thirty years. Nevertheless, despite the modest attempt, this review hopes to induce younger researchers into this exciting field.

  7. Quantum Information Science: An Update

    International Nuclear Information System (INIS)

    Kwek, L.C.; Zen, Freddy P.

    2016-01-01

    It is now roughly thirty years since the incipient ideas on quantum information science was concretely formalized. Over the last three decades, there has been much development in this field, and at least one technology, namely devices for quantum cryptography, is now commercialized. Yet, the holy grail of a workable quantum computing machine still lies faraway at the horizon. In any case, it took nearly several centuries before the vacuum tubes were invented after the first mechanical calculating were constructed, and several decades later, for the transistor to bring the current computer technology to fruition. In this review, we provide a short survey of the current development and progress in quantum information science. It clearly does not do justice to the amount of work in the past thirty years. Nevertheless, despite the modest attempt, this review hopes to induce younger researchers into this exciting field. (paper)

  8. Certain integrable system on a space associated with a quantum search algorithm

    International Nuclear Information System (INIS)

    Uwano, Y.; Hino, H.; Ishiwatari, Y.

    2007-01-01

    On thinking up a Grover-type quantum search algorithm for an ordered tuple of multiqubit states, a gradient system associated with the negative von Neumann entropy is studied on the space of regular relative configurations of multiqubit states (SR 2 CMQ). The SR 2 CMQ emerges, through a geometric procedure, from the space of ordered tuples of multiqubit states for the quantum search. The aim of this paper is to give a brief report on the integrability of the gradient dynamical system together with quantum information geometry of the underlying space, SR 2 CMQ, of that system

  9. Trapped-Ion Quantum Logic with Global Radiation Fields.

    Science.gov (United States)

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  10. Quantum and Classical Magnetoresistance in Ambipolar Topological Insulator Transistors with Gate-tunable Bulk and Surface Conduction

    Science.gov (United States)

    Tian, Jifa; Chang, Cuizu; Cao, Helin; He, Ke; Ma, Xucun; Xue, Qikun; Chen, Yong P.

    2014-01-01

    Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials. PMID:24810663

  11. Impact of doped boron concentration in emitter on high- and low-dose-rate damage in lateral PNP transistors

    International Nuclear Information System (INIS)

    Zheng Yuzhan; Lu Wu; Ren Diyuan; Wang Yiyuan; Wang Zhikuan; Yang Yonghui

    2010-01-01

    The characteristics of radiation damage under a high or low dose rate in lateral PNP transistors with a heavily or lightly doped emitter is investigated. Experimental results show that as the total dose increases, the base current of transistors would increase and the current gain decreases. Furthermore, more degradation has been found in lightly-doped PNP transistors, and an abnormal effect is observed in heavily doped transistors. The role of radiation defects, especially the double effects of oxide trapped charge, is discussed in heavily or lightly doped transistors. Finally, through comparison between the high- and low-dose-rate response of the collector current in heavily doped lateral PNP transistors, the abnormal effect can be attributed to the annealing of the oxide trapped charge. The response of the collector current, in heavily doped PNP transistors under high- and low-dose-rate irradiation is described in detail. (semiconductor integrated circuits)

  12. Analysis of the background noise of field effect transistors in MOS complementary technology and application in the construction of a current-sensitive integrated amplifier

    International Nuclear Information System (INIS)

    Beuville, E.

    1989-10-01

    A low noise amplifier for use in high energy physics is developed. The origin and the mechanisms of the noise in MOSFET transistors is carried out with the aim of minimizing such effects in amplifiers. The research is applied in the construction of a current-sensitive integrated amplifier. The time scale continuous filtering principle is used and allows the detection of particles arriving in the counter in a random distribution. The rules which must be taken into account in the construction of an analog integrated circuit are shown [fr

  13. Total dose induced latch in short channel NMOS/SOI transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Quoizola, S.; Musseau, O.; Flament, O.; Leray, J.L.; Pelloie, J.L.; Raynaud, C.; Faynot, O.

    1998-01-01

    A latch effect induced by total dose irradiation is observed in short channel SOI transistors. This effect appears on NMOS transistors with either a fully or a partially depleted structure. It is characterized by a hysteresis behavior of the Id-Vg characteristics at high drain bias for a given critical dose. Above this dose, the authors still observe a limited leakage current at low drain bias (0.1 V), but a high conduction current at high drain bias (2 V) as the transistor should be in the off-state. The critical dose above which the latch appears strongly depends on gate length, transistor structure (fully or partially depleted), buried oxide thickness and supply voltage. Two-dimensional (2D) numerical simulations indicate that the parasitic condition is due to the latch of the back gate transistor triggered by charge trapping in the buried oxide. To avoid the latch induced by the floating body effect, different techniques can be used: doping engineering, body contacts, etc. The study of the main parameters influencing the latch (gate length, supply voltage) shows that the scaling of technologies does not necessarily imply an increased latch sensitivity. Some technological parameters like the buried oxide hardness and thickness can be used to avoid latch, even at high cumulated dose, on highly integrated SOI technologies

  14. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A statistical-based material and process guidelines for design of carbon nanotube field-effect transistors in gigascale integrated circuits.

    Science.gov (United States)

    Ghavami, Behnam; Raji, Mohsen; Pedram, Hossein

    2011-08-26

    Carbon nanotube field-effect transistors (CNFETs) show great promise as building blocks of future integrated circuits. However, synthesizing single-walled carbon nanotubes (CNTs) with accurate chirality and exact positioning control has been widely acknowledged as an exceedingly complex task. Indeed, density and chirality variations in CNT growth can compromise the reliability of CNFET-based circuits. In this paper, we present a novel statistical compact model to estimate the failure probability of CNFETs to provide some material and process guidelines for the design of CNFETs in gigascale integrated circuits. We use measured CNT spacing distributions within the framework of detailed failure analysis to demonstrate that both the CNT density and the ratio of metallic to semiconducting CNTs play dominant roles in defining the failure probability of CNFETs. Besides, it is argued that the large-scale integration of these devices within an integrated circuit will be feasible only if a specific range of CNT density with an acceptable ratio of semiconducting to metallic CNTs can be adjusted in a typical synthesis process.

  16. Introduction to functional and path integral methods in quantum field theory

    International Nuclear Information System (INIS)

    Strathdee, J.

    1991-11-01

    The following aspects concerning the use of functional and path integral methods in quantum field theory are discussed: generating functionals and the effective action, perturbation series, Yang-Mills theory and BRST symmetry. 10 refs, 3 figs

  17. Large signal S-parameters: modeling and radiation effects in microwave power transistors

    International Nuclear Information System (INIS)

    Graham, E.D. Jr.; Chaffin, R.J.; Gwyn, C.W.

    1973-01-01

    Microwave power transistors are usually characterized by measuring the source and load impedances, efficiency, and power output at a specified frequency and bias condition in a tuned circuit. These measurements provide limited data for circuit design and yield essentially no information concerning broadbanding possibilities. Recently, a method using large signal S-parameters has been developed which provides a rapid and repeatable means for measuring microwave power transistor parameters. These large signal S-parameters have been successfully used to design rf power amplifiers. Attempts at modeling rf power transistors have in the past been restricted to a modified Ebers-Moll procedure with numerous adjustable model parameters. The modified Ebers-Moll model is further complicated by inclusion of package parasitics. In the present paper an exact one-dimensional device analysis code has been used to model the performance of the transistor chip. This code has been integrated into the SCEPTRE circuit analysis code such that chip, package and circuit performance can be coupled together in the analysis. Using []his computational tool, rf transistor performance has been examined with particular attention given to the theoretical validity of large-signal S-parameters and the effects of nuclear radiation on device parameters. (auth)

  18. A pattern recognition approach to transistor array parameter variance

    Science.gov (United States)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  19. Room Temperature Silicene Field-Effect Transistors

    Science.gov (United States)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  20. A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates

    International Nuclear Information System (INIS)

    Shiga, Motoyuki; Fujisaki, Hiroshi

    2012-01-01

    We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the ''centroid IRC,'' corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH 3 molecule and N 2 H 5 - ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH 3 , the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N 2 H 5 - , the centroid IRC is largely deviated from the ''classical'' IRC, and the free energy barrier is reduced by the quantum effects even more drastically.

  1. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  2. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  3. Shootthrough fault protection system for bipolar transistors in a voltage source transistor inverter

    International Nuclear Information System (INIS)

    Wirth, W.F.

    1982-01-01

    Faulted bipolar transistors in a voltage source transistor inverter are protected against shootthrough fault current, from the filter capacitor of the d-c voltage source which drives the inverter over the d-c bus, by interposing a small choke in series with the filter capacitor to limit the rate of rise of that fault current while at the same time causing the d-c bus voltage to instantly drop to essentially zero volts at the beginning of a shootthrough fault. In this way, the load lines of the faulted transistors are effectively shaped so that they do not enter the second breakdown area, thereby preventing second breakdown destruction of the transistors

  4. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  5. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  6. Modelling of multidimensional quantum systems by the numerical functional integration

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Zhidkov, E.P.

    1990-01-01

    The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs

  7. Structure of the conversion laws in quantum integrable spin chains with short range interactions

    International Nuclear Information System (INIS)

    Grabowski, M.P.; Mathieu, P.

    1995-01-01

    The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, for two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form. 62 refs., 4 figs

  8. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  9. Vertical organic transistors

    International Nuclear Information System (INIS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-01-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. (topical review)

  10. Vertical organic transistors.

    Science.gov (United States)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  11. Modeling quantization effects in field effect transistors

    International Nuclear Information System (INIS)

    Troger, C.

    2001-06-01

    Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied

  12. Integration of classical and quantum physics

    International Nuclear Information System (INIS)

    Tisza, L.

    1989-01-01

    The perennial aspect of the Newtonian foundation of mathematical physics is that the concept of ''motion,'' that is, ''kinematics,'' is to serve as the interface between mathematics and physics. Kinematics subdivides into the theory of orbital translation and that of undulation and spinning. Newtonian mechanics is based on giving to translational kinematics a priority over the other modes, since planetary revolution can be represented as translation modified by gravitation. The so-called breakdown of classical physics stems from giving the translational priority a canonical status and extending it to the constituents of matter. We claim that in this case the priority is to be reversed. The main content of this paper is to establish the algebraic model for an indivisible, undulating entity that we call a ''wave simplex.'' It is used as the point of departure for a non-Newtonian quantum dynamics in which physical and algebraic concepts are in close correspondence. The postulates of the classical phenomenological theories and those of the canonical theories based on translational priority are established as theorems under the proper limiting conditions, and forces are constructed rather than postulated. While the formal structure of two-level quantum mechanics is established as well, exception is taken to treating spin as a property of a point particle. It is considered self-evident that a spinning object is orientable, a property accounted for in terms of a unitary triplet. This is the point of departure for an intrinsic particle dynamics. A main result is the integration of classical and quantum physics, thus closing the gap created by the heuristic method of canonical quantization

  13. Silicon CMOS architecture for a spin-based quantum computer.

    Science.gov (United States)

    Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S

    2017-12-15

    Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.

  14. Integrable multiparametric quantum spin chains

    CERN Document Server

    Förster, A; Roditi, I; Foerster, Angela; Links, Jon; Roditi, Itzhak

    1998-01-01

    Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions. We illustrate how this general formalism applies to construct multiparametric versions of the supersymmetric t-J and U models.

  15. Array of organic thin film transistors integrated with organic light emitting diodes on a plastic substrate

    International Nuclear Information System (INIS)

    Ryu, Gi-Seong; Choe, Ki-Beom; Song, Chung-Kun

    2006-01-01

    In order to demonstrate the possible application of an organic thin film transistor (OTFT) to a flexible active matrix organic light emitting diode (OLED) an array of 64 x 64 pixels was fabricated on a 4-in. size poly-ethylene-terephehalate substrate. Each pixel was composed of one OTFT integrated with one OLED. OTFTs successfully drove OLEDs by varying current in a wide range and some images were displayed on the array by emitting green light. The OTFTs used poly(4-vinylphenol) for the gate and pentacene for the semiconductor taking account compatibility with the PET substrate. The average mobility in the array was 0.2 cm 2 /V.s, which was reduced from 1.0 cm 2 /V.s in a single OTFT, and its variation over the entire substrate was 10%

  16. Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor.

    Science.gov (United States)

    Kim, Yo-Han; Lee, Eun Yeol; Lee, Hyun Ho; Seo, Tae Seok

    2017-05-17

    Reduced graphene oxide quantum dot (rGOQD) devices in formats of capacitor and thin film transistor (TFT) were demonstrated and examined as the first trial to achieve nonambipolar channel property. In addition, through a gold nanoparticle (Au NP) layer embedded between the rGOQD active channel and dielectric layer, memory capacitor and TFT performances were realized by capacitance-voltage (C-V) hysteresis and gate program, erase, and reprogram biases. First, capacitor structure of the rGOQD memory device was constructed to examine memory charging effect featured in hysteretic C-V behavior with a 30 nm dielectric layer of cross-linked poly(vinyl alcohol). For the intervening Au NP charging layer, self-assembled monolayer (SAM) formation of the Au NP was executed to utilize electrostatic interaction by a dip-coating process under ambient environments with a conformal fabrication uniformity. Second, the rGOQD memory TFT device was also constructed in the same format of the Au NPs SAMs on a flexible substrate. Characteristics of the rGOQD TFT output showed novel saturation curves unlike typical graphene-based TFTs. However, The rGOQD TFT device reveals relatively low on/off ratio of 10 1 and mobility of 5.005 cm 2 /V·s. For the memory capacitor, the flat-band voltage shift (ΔV FB ) was measured as 3.74 V for ±10 V sweep, and for the memory TFT, the threshold voltage shift (ΔV th ) by the Au NP charging was detected as 7.84 V. In summary, it was concluded that the rGOQD memory device could accomplish an ideal graphene-based memory performance, which could have provided a wide memory window and saturated output characteristics.

  17. On theory of single-molecule transistor

    International Nuclear Information System (INIS)

    Tran Tien Phuc

    2009-01-01

    The results of the study on single-molecule transistor are mainly investigated in this paper. The structure of constructed single-molecule transistor is similar to a conventional MOSFET. The conductive channel of the transistors is a single-molecule of halogenated benzene derivatives. The chemical simulation software CAChe was used to design and implement for the essential parameter of the molecules utilized as the conductive channel. The GUI of Matlab has been built to design its graphical interface, calculate and plot the output I-V characteristic curves for the transistor. The influence of temperature, length and width of the conductive channel, and gate voltage is considered. As a result, the simulated curves are similar to the traditional MOSFET's. The operating temperature range of the transistors is wider compared with silicon semiconductors. The supply voltage for transistors is only about 1 V. The size of transistors in this research is several nanometers.

  18. Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review

    Science.gov (United States)

    Deen, M. Jamal; Pascal, Fabien

    2003-05-01

    For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.

  19. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Frank, H.; Petr, I.

    1977-01-01

    The structure of MOS transistors is described and their characteristics given. The experiments performed and data in the literature show the following dosimetric properties of MOS transistors: while for low gamma doses the transistor response to exposure is linear, it shows saturation for higher doses (exceeding 10 3 Gy in tissue). The response is independent of the energy of radiation and of the dose rate (within 10 -2 to 10 5 Gy/s). The spontaneous reduction with time of the spatial charge captured by the oxide layer (fading) is small and acceptable from the point of view of dosimetry. Curves are given of isochronous annealing of the transistors following irradiation with 137 Cs and 18 MeV electrons for different voltages during irradiation. The curves show that in MOS transistors irradiated with high-energy electrons the effect of annealing is less than in transistors irradiated with 137 Cs. In view of the requirement of using higher temperatures (approx. 400 degC) for the complete ''erasing'' of the captured charge, unsealed systems must be used for dosimetric purposes. The effect was also studied of neutron radiation, proton radiation and electron radiation on the MOS transistor structure. For MOS transistor irradiation with 14 MeV neutrons from a neutron generator the response was 4% of that for gamma radiation at the same dose equivalent. The effect of proton radiation was studied as related to the changes in MOS transistor structure during space flights. The response curve shapes are similar to those of gamma radiation curves. The effect of electron radiation on the MOS structure was studied by many authors. The experiments show that for each thickness of the SiO 2 layer an electron energy exists at which the size of the charge captured in SiO 2 is the greatest. All data show that MOS transistors are promising for radiation dosimetry. The main advantage of MOS transistors as gamma dosemeters is the ease and speed of evaluation, low sensitivity to neutron

  20. Fused integrable lattice models with quantum impurities and open boundaries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2003-01-01

    The alternating integrable spin chain and the RSOS(q 1 ,q 2 ;p) model in the presence of a quantum impurity are investigated. The boundary free energy due to the impurity is derived, the ratios of the corresponding g functions at low and high temperature are specified and their relevance to boundary flows in unitary minimal and generalized coset models is discussed. Finally, the alternating spin chain with diagonal and non-diagonal integrable boundaries is studied, and the corresponding boundary free energy and g functions are derived

  1. Colour tuneable light-emitting transistor

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Eva J.; Melzer, Christian; Seggern, Heinz von [Electronic Materials Department, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    In recent years the interest in ambipolar organic light-emitting field-effect transistors has increased steadily as the devices combine switching behaviour of transistors with light emission. Usually, small molecules and polymers with a band gap in the visible spectral range serve as semiconducting materials. Mandatory remain balanced injection and transport properties for both charge carrier types to provide full control of the spatial position of the recombination zone of electrons and holes in the transistor channel via the applied voltages. As will be presented here, the spatial control of the recombination zone opens new possibilities towards light-emitting devices with colour tuneable emission. In our contribution an organic light-emitting field-effect transistors is presented whose emission colour can be changed by the applied voltages. The organic top-contact field-effect transistor is based on a parallel layer stack of acenes serving as organic transport and emission layers. The transistor displays ambipolar characteristics with a narrow recombination zone within the transistor channel. During operation the recombination zone can be moved by a proper change in the drain and gate bias from one organic semiconductor layer to another one inducing a change in the emission colour. In the presented example the emission maxima can be switched from 530 nm to 580 nm.

  2. Negative differential resistance of InGaAs dual channel transistors

    International Nuclear Information System (INIS)

    Sugaya, T; Yamane, T; Hori, S; Komori, K; Yonei, K

    2006-01-01

    We demonstrate a new type of velocity modulation transistor (VMT) with an InGaAs dual channel structure fabricated on an InP (001) substrate. The dual channel structure consists of a high mobility 10 nm In 0.53 Ga 0.47 As quantum well, a 2 nm In 0.52 Al 0.48 As barrier layer, and a low mobility 1 nm In 0.26 Ga 0.74 As quantum well. The VMTs have a negative differential resistance (NDR) effect with a low source-drain voltage of 0.38 V. The NDR characteristics can be clearly seen in the temperature range of 50 to 220 K with a gate voltage of 5 V. The NDR mechanism is thought to be the carrier transfer from the high mobility to the low mobility channels. Three-terminal VMTs are favorable for applications to highfrequency, high-speed, and low-power consumption devices

  3. Simple Exact Algorithm for Transistor Sizing of Low-Power High-Speed Arithmetic Circuits

    Directory of Open Access Journals (Sweden)

    Tooraj Nikoubin

    2010-01-01

    Full Text Available A new transistor sizing algorithm, SEA (Simple Exact Algorithm, for optimizing low-power and high-speed arithmetic integrated circuits is proposed. In comparison with other transistor sizing algorithms, simplicity, accuracy, independency of order and initial sizing factors of transistors, and flexibility in choosing the optimization parameters such as power consumption, delay, Power-Delay Product (PDP, chip area or the combination of them are considered as the advantages of this new algorithm. More exhaustive rules of grouping transistors are the main trait of our algorithm. Hence, the SEA algorithm dominates some major transistor sizing metrics such as optimization rate, simulation speed, and reliability. According to approximate comparison of the SEA algorithm with MDE and ADC for a number of conventional full adder circuits, delay and PDP have been improved 55.01% and 57.92% on an average, respectively. By comparing the SEA and Chang's algorithm, 25.64% improvement in PDP and 33.16% improvement in delay have been achieved. All the simulations have been performed with 0.13 m technology based on the BSIM3v3 model using HSpice simulator software.

  4. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Peter, I.; Frank, G.

    1977-01-01

    The performance of MOS transistors as gamma detectors has been tested. The dosimeter sensitivity has proved to be independent on the doses ranging from 10 3 to 10 6 R, and gamma energy of 137 Cs, 60 Co - sources and 5 - 18 MeV electrons. Fading of the space charge trapped by the SiO 2 layer of the transistor has appeared to be neglegible at room temperature after 400 hrs. The isochronous annealing in the temperature range of 40-260 deg C had a more substantial effect on the space charge of the transistor irradiated with 18 MeV electrons than on the 137 Cs gamma-irradiated transistors. This proved a repeated use of γ-dosemeters. MOS transistors are concluded to be promising for gamma dosimetry [ru

  5. Schwinger's quantum action principle from Dirac’s formulation through Feynman’s path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory

    CERN Document Server

    Milton, Kimball A

    2015-01-01

    Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger’s Quantum Action Principle descended from Dirac’s formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle method of extracting matrix elements is described. Part II will discuss the variational formulation of quantum electrodynamics and the development of source theory.

  6. Silicon-on-insulator field effect transistor with improved body ties for rad-hard applications

    Science.gov (United States)

    Schwank, James R.; Shaneyfelt, Marty R.; Draper, Bruce L.; Dodd, Paul E.

    2001-01-01

    A silicon-on-insulator (SOI) field-effect transistor (FET) and a method for making the same are disclosed. The SOI FET is characterized by a source which extends only partially (e.g. about half-way) through the active layer wherein the transistor is formed. Additionally, a minimal-area body tie contact is provided with a short-circuit electrical connection to the source for reducing floating body effects. The body tie contact improves the electrical characteristics of the transistor and also provides an improved single-event-upset (SEU) radiation hardness of the device for terrestrial and space applications. The SOI FET also provides an improvement in total-dose radiation hardness as compared to conventional SOI transistors fabricated without a specially prepared hardened buried oxide layer. Complementary n-channel and p-channel SOI FETs can be fabricated according to the present invention to form integrated circuits (ICs) for commercial and military applications.

  7. Indium antimonide quantum well structures for electronic device applications

    Science.gov (United States)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  8. Transistor-based particle detection systems and methods

    Science.gov (United States)

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  9. Generalized optomechanics and its applications quantum optical properties of generalized optomechanical system

    CERN Document Server

    Li, Jin Jin

    2013-01-01

    A mechanical oscillator coupled to the optical field in a cavity is a typical cavity optomechanical system. In our textbook, we prepare to introduce the quantum optical properties of optomechanical system, i.e. linear and nonlinear effects. Some quantum optical devices based on optomechanical system are also presented in the monograph, such as the Kerr modulator, quantum optical transistor, optomechanical mass sensor, and so on. But most importantly, we extend the idea of typical optomechanical system to coupled mechanical resonator system and demonstrate that the combined two-level structure

  10. Electron irradiation of power transistors

    International Nuclear Information System (INIS)

    Hower, P.L.; Fiedor, R.J.

    1982-01-01

    A method for reducing storage time and gain parameters in a semiconductor transistor includes the step of subjecting the transistor to electron irradiation of a dosage determined from measurements of the parameters of a test batch of transistors. Reduction of carrier lifetime by proton bombardment and gold doping is mentioned as an alternative to electron irradiation. (author)

  11. Joint Mapping of Mobility and Trap Density in Colloidal Quantum Dot Solids

    KAUST Repository

    Stadler, Philipp; Sutherland, Brandon R.; Ren, Yuan; Ning, Zhijun; Simchi, Arash; Thon, Susanna M.; Hoogland, Sjoerd; Sargent, Edward H.

    2013-01-01

    to be harnessed. Here, we deploy nanodielectric field-effect transistors to map the energy landscape within the band gap of a colloidal quantum dot solid. We exploit the self-limiting nature of the potentiostatic anodization growth mode to produce the thinnest

  12. Fractional quantum mechanics

    CERN Document Server

    Laskin, Nick

    2018-01-01

    Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...

  13. FY 1999 Report on research and development project results of industrial science and technology. Research and development of quantum functional devices; 1999 nendo ryoshika kino soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the FY 1999 research and development results of quantum functional devices. This project is aimed at establishment of the basic technologies related to quantum functional devices, which utilize various quantum mechanical effects appearing in superfine regions, for development of the microelectronics technologies serving as the bases for superhigh-speed, superhigh-function information processing. The technologies are developed for advancing the elementary devices by quantum functions and development of integrated devices. The results include development, on a trial basis, of the world smallest MOS transistor with a gate length of 10 nm or less and analysis of its behavior, improved characteristics of the tunnel devices, and development, on a trial basis, of a semiconductor memory working based on the principle of single electron capturing/releasing and evaluation thereof. The device-building techniques are developed. The results include demonstration of the logic circuit which controls a small number of electrons, and development of an opto-electronic device on a trial basis, which are the world first results. Progresses are noted in confirmation of behavior of the 3-value basic logic circuit which uses an InGaAs-based tunnel device, demonstration of behavior of the SRAM circuit which uses ME-RHET device, confirmation of possibility of terabit-size memory integration, advancing performance of the quantum MMIC, and designs of the single electron-CMOS integrated circuit. (NEDO)

  14. Generalized thermalization for integrable system under quantum quench.

    Science.gov (United States)

    Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S

    2018-01-01

    We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.

  15. A photocurrent compensation method of bipolar transistors under high dose rate radiation and its experimental research

    International Nuclear Information System (INIS)

    Yin Xuesong; Liu Zhongli; Li Chunji; Yu Fang

    2005-01-01

    Experiment using discrete bipolar transistors has been performed to verify the effect of the photocurrent compensation method. The theory of the dose rate effects of bipolar transistors and the photocurrent compensation method are introduced. The comparison between the response of hardened and unhardened circuits under high dose rate radiation is discussed. The experimental results show instructiveness to the hardness of bipolar integrated circuits under transient radiation. (authors)

  16. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    International Nuclear Information System (INIS)

    Li Ou-Peng; Zhang Yong; Xu Rui-Min; Cheng Wei; Wang Yuan; Niu Bing; Lu Hai-Yan

    2016-01-01

    Design and characterization of a G-band (140–220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are −2.688 dBm at 210 GHz and −2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. (paper)

  17. A quantum group structure in integrable conformal field theories

    International Nuclear Information System (INIS)

    Smit, D.J.

    1990-01-01

    We discuss a quantization prescription of the conformal algebras of a class of d=2 conformal field theories which are integrable. We first give a geometrical construction of certain extensions of the classical Virasoro algebra, known as classical W algebras, in which these algebras arise as the Lie algebra of the second Hamiltonian structure of a generalized Korteweg-de Vries hierarchy. This fact implies that the W algebras, obtained as a reduction with respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the intergrability of a Toda field theory. Subsequently we determine the coadjoint operators of the W algebras, and relate these to classical Yang-Baxter matrices. The quantization of these algebras can be carried out using the concept of a so-called quantum group. We derive the condition under which the representations of these quantum groups admit a Hilbert space completion by exploring the relation with the braid group. Then we consider a modification of the Miura transformation which we use to define a quantum W algebra. This leads to an alternative interpretation of the coset construction for Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently we use the connection between the induced braid group representations and the representations of the mapping class group of Riemann surfaces to identify an action of the W algebras on the moduli space of stable curves, and we give the invariants of this action. This provides a generalization of the situation for the Virasoro algebra, where such an invariant is given by the so-called Mumford form which describes the partition function of the bosonic string. (orig.)

  18. The point of practical use for the transistor circuit

    International Nuclear Information System (INIS)

    1996-01-01

    This is comprised of eight chapters and goes as follows; what is transistor? the first step for use of transistor such as connection between power and signal source, static characteristic of transistor and equivalent circuit of transistor, design of easy small-signal amplifier circuit, design for amplification of electric power and countermeasure for prevention of trouble, transistor concerned interface, transistor circuit around micro computer, transistor in active use of FET and power circuit and transistor. It has an appendix on transistor and design of bias of FET circuits like small signal transistor circuit and FET circuit.

  19. Calculation of quantum-mechanical system energy spectra using path integrals

    International Nuclear Information System (INIS)

    Evseev, A.M.; Dmitriev, V.P.

    1977-01-01

    A solution of the Feynman quantum-mechanical integral connecting a wave function (psi (x, t)) at a moment t+tau (tau → 0) with the wave function at the moment t is provided by complex variable substitution and subsequent path integration. Time dependence of the wave function is calculated by the Monte Carlo method. The Fourier inverse transformation of the wave function by path integration calculated has been applied to determine the energy spectra. Energy spectra are presented of a hydrogen atom derived from wave function psi (x, t) at different x, as well as boson energy spectra of He, Li, and Be atoms obtained from psi (x, t) at X = O

  20. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  1. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-01-01

    This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving

  2. An enhanced close-in phase noise LC-VCO using parasitic V-NPN transistors in a CMOS process

    International Nuclear Information System (INIS)

    Gao Peijun; Min Hao; Oh, N J

    2009-01-01

    A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative g m -cell is presented to improve the close-in phase noise. The V-NPN transistors have lower flicker noise compared to MOS transistors. DC and AC characteristics of the V-NPN transistors are measured to facilitate the VCO design. The proposed VCO is implemented in a 0.18 μm CMOS RF/mixed signal process, and the measurement results show the close-in phase noise is improved by 3.5-9.1 dB from 100 Hz to 10 kHz offset compared to that of a similar CMOS VCO. The proposed VCO consumes only 0.41 mA from a 1.5 V power supply. (semiconductor integrated circuits)

  3. Physical limits of silicon transistors and circuits

    International Nuclear Information System (INIS)

    Keyes, Robert W

    2005-01-01

    A discussion on transistors and electronic computing including some history introduces semiconductor devices and the motivation for miniaturization of transistors. The changing physics of field-effect transistors and ways to mitigate the deterioration in performance caused by the changes follows. The limits of transistors are tied to the requirements of the chips that carry them and the difficulties of fabricating very small structures. Some concluding remarks about transistors and limits are presented

  4. Classical and quantum integrability for a class of potentials in two dimensions

    International Nuclear Information System (INIS)

    Hiranwal, Roshan; Mishra, S.C.; Mishra, Veena

    2004-01-01

    A method for the construction of the second constant of motion in fourth order is carried out. Correspondingly the fourth order potential equation is obtained whose solutions directly provide the classical integrable systems. Second constant of motion is obtained for a large class of potentials. Quantum invariants are also obtained with second order quantum corrections of the order O(ℎ 2 ) to the corresponding classical invariants. The phase space diagrams for these cases are drawn using a mathematical computer software package in two dimensions

  5. Intrinsic decoherence theory applied to single C{sub 60} solid state transistors: Robustness in the transmission regimen

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.C., E-mail: cflores@uta.cl

    2016-03-06

    In relation to a given Hamiltonian and intrinsic decoherence, there are subspaces for which coherence remains robust. Robustness can be classified by the parameter ratios (integer, rational or irrational numbers) defining each subspace. Of particular novelty in this work is application to the single-C{sub 60} transistor where coherence becomes robust in the tunnel transmission regime. In this case, the intrinsic-decoherence parameter defining the theory is explicitly evaluated in good agreement with experimental data. Many of these results are expected to hold for standard quantum dots and mesoscopic devices. - Highlights: • Intrinsic decoherence and transport (mesoscopic). • Robustness condition face to decoherence. • Application to the single C{sub 60} solid state transistor. • Parameter determination based on experiments. • Other cases of robustness.

  6. Path integrals in quantum mechanics, statistics, polymer physics, and financial markets

    CERN Document Server

    Kleinert, Hagen

    2009-01-01

    This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying p

  7. A metric for characterizing the bistability of molecular quantum-dot cellular automata

    International Nuclear Information System (INIS)

    Lu Yuhui; Lent, Craig S

    2008-01-01

    Much of molecular electronics involves trying to use molecules as (a) wires, (b) diodes or (c) field-effect transistors. In each case the criterion for determining good performance is well known: for wires it is conductance, for diodes it is conductance asymmetry, while for transistors it is high transconductance. Candidate molecules can be screened in terms of these criteria by calculating molecular conductivity in forward and reverse directions, and in the presence of a gating field. Hence so much theoretical work has focused on understanding molecular conductance. In contrast a molecule used as a quantum-dot cellular automata (QCA) cell conducts no current at all. The keys to QCA functionality are (a) charge localization, (b) bistable charge switching within the cell and (c) electric field coupling between one molecular cell and its neighbor. The combination of these effects can be examined using the cell-cell response function which relates the polarization of one cell to the induced polarization of a neighboring cell. The response function can be obtained by calculating the molecular electronic structure with ab initio quantum chemistry techniques. We present an analysis of molecular QCA performance that can be applied to any candidate molecule. From the full quantum chemistry, all-electron ab initio calculations we extract parameters for a reduced-state model which reproduces the cell-cell response function very well. Techniques from electron transfer theory are used to derive analytical models of the response function and can be employed on molecules too large for full ab initio treatment. A metric is derived which characterizes molecular QCA performance the way transconductance characterizes transistor performance. This metric can be assessed from absorption measurements of the electron transfer band or quantum chemistry calculations of appropriate sophistication

  8. Analytical bounds on SET charge sensitivity for qubit readout in a solid-state quantum computer

    International Nuclear Information System (INIS)

    Green, F.; Buehler, T.M.; Brenner, R.; Hamilton, A.R.; Dzurak, A.S.; Clark, R.G.

    2002-01-01

    Full text: Quantum Computing promises processing powers orders of magnitude beyond what is possible in conventional silicon-based computers. It harnesses the laws of quantum mechanics directly, exploiting the in built potential of a wave function for massively parallel information processing. Highly ordered and scaleable arrays of single donor atoms (quantum bits, or qubits), embedded in Si, are especially promising; they are a very natural fit to the existing, highly sophisticated, Si industry. The success of Si-based quantum computing depends on precisely initializing the quantum state of each qubit, and on precise reading out its final form. In the Kane architecture the qubit states are read out by detecting the spatial distribution of the donor's electron cloud using a sensitive electrometer. The single-electron transistor (SET) is an attractive candidate readout device for this, since the capacitive, or charging, energy of a SET's metallic central island is exquisitely sensitive to its electronic environment. Use of SETs as high-performance electrometers is therefore a key technology for data transfer in a solid-state quantum computer. We present an efficient analytical method to obtain bounds on the charge sensitivity of a single electron transistor (SET). Our classic Green-function analysis provides reliable estimates of SET sensitivity optimizing the design of the readout hardware. Typical calculations, and their physical meaning, are discussed. We compare them with the measured SET-response data

  9. Detection of saliva-range glucose concentrations using organic thin-film transistors

    International Nuclear Information System (INIS)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-01-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  10. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  11. Development of high-performance printed organic field-effect transistors and integrated circuits.

    Science.gov (United States)

    Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young

    2015-10-28

    Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.

  12. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    Science.gov (United States)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  13. Counted Sb donors in Si quantum dots

    Science.gov (United States)

    Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2015-03-01

    Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  14. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuhai; Kasemann, Daniel, E-mail: daniel.kasemann@iapp.de; Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Strasse 1, 01069 Dresden (Germany)

    2015-03-09

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  15. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems

    International Nuclear Information System (INIS)

    Contreras-Astorga, A.; Negro, J.; Tristao, S.

    2016-01-01

    This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.

  16. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Astorga, A., E-mail: alonso.contreras.astorga@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Tristao, S., E-mail: hetsudoyaguiu@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2016-01-08

    This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.

  17. Real-time functional integral approach to the quantum disordered spin systems

    International Nuclear Information System (INIS)

    Kopec, T.K.

    1989-01-01

    In this paper the effect of randomness and frustration in the quantum Ising spin glass in a transverse field is studied by using the thermofield dynamics (TFD), the real time, finite temperature quantum field theory. It is shown that the method can be conveniently used for the averaging of the free energy of the system by completely avoiding the use of the n-replica trick. The effective dynamic Lagrangian for the disorder averaged causal, correlations and response Green functions is derived by functional integral approach. Furthermore, the properties of this Lagrangian are analyzed by the saddle point method which leads to the self-consistent equation for the spin glass order parameter

  18. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics.

    Science.gov (United States)

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-10-08

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT~0.9 GHz, fMAX~1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics.

  19. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics

    Science.gov (United States)

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT ~ 0.9 GHz, fMAX ~ 1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics. PMID:25295573

  20. Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers.

    Science.gov (United States)

    Rivnay, Jonathan; Leleux, Pierre; Hama, Adel; Ramuz, Marc; Huerta, Miriam; Malliaras, George G; Owens, Roisin M

    2015-06-26

    Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the "tightness" of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity.

  1. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Palomares, A. [Departamento de Matemática Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2016-01-28

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinement holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.

  2. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  3. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  4. Intrinsic noise in aggressively scaled field-effect transistors

    International Nuclear Information System (INIS)

    Albareda, G; Jiménez, D; Oriols, X

    2009-01-01

    According to roadmap projections, nanoscale field-effect transistors (FETs) with channel lengths below 30 nm and several gates (for improving their gate control over the source–drain conductance) will come to the market in the next few years. However, few studies deal with the noise performance of these aggressively scaled FETs. In this work, a study of the effect of the intrinsic (thermal and shot) noise of such FETs on the performance of an analog amplifier and a digital inverter is carried out by means of numerical simulations with a powerful Monte Carlo (quantum) simulator. The numerical data indicate important drawbacks in the noise performance of aggressively scaled FETs that could invalidate roadmap projections as regards analog and digital applications

  5. Low-Voltage Solution-Processed Hybrid Light-Emitting Transistors.

    Science.gov (United States)

    Chaudhry, Mujeeb Ullah; Tetzner, Kornelius; Lin, Yen-Hung; Nam, Sungho; Pearson, Christopher; Groves, Chris; Petty, Michael C; Anthopoulos, Thomas D; Bradley, Donal D C

    2018-05-21

    We report the development of low operating voltages in inorganic-organic hybrid light-emitting transistors (HLETs) based on a solution-processed ZrO x gate dielectric and a hybrid multilayer channel consisting of the heterojunction In 2 O 3 /ZnO and the organic polymer "Super Yellow" acting as n- and p-channel/emissive layers, respectively. Resulting HLETs operate at the lowest voltages reported to-date (<10 V) and combine high electron mobility (22 cm 2 /(V s)) with appreciable current on/off ratios (≈10 3 ) and an external quantum efficiency of 2 × 10 -2 % at 700 cd/m 2 . The charge injection, transport, and recombination mechanisms within this HLET architecture are discussed, and prospects for further performance enhancement are considered.

  6. Area and energy efficient high-performance ZnO wavy channel thin-film transistor

    KAUST Repository

    Hanna, Amir; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Hussain, Aftab M.; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2014-01-01

    of the transistor width in the direction perpendicular to the substrate through integrating continuous fin features on the underlying substrate. This architecture enables expanding the TFT width without consuming any additional chip area, thus enabling increased

  7. Computer algebra in quantum field theory integration, summation and special functions

    CERN Document Server

    Schneider, Carsten

    2013-01-01

    The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including

  8. Principles of transistor circuits introduction to the design of amplifiers, receivers and digital circuits

    CERN Document Server

    Amos, S W

    2013-01-01

    Principles of Transistor Circuits: Sixth Edition discusses the principles, concepts, and practices involved integrated circuits. The current edition includes up-to-date circuits, the section on thyristors has been revised to give more information on modern types, and dated information has been eliminated. The book covers related topics such as semiconductors and junction diodes; the principles behind transistors; and common amplifiers. The book also covers bias and DC stabilization; large-signal and small-signal AF amplifiers; DC and pulse amplifiers; sinusoidal oscillators; pulse and sawtooth

  9. Power transistor module for high current applications

    International Nuclear Information System (INIS)

    Cilyo, F.F.

    1975-01-01

    One of the parts needed for the control system of the 400-GeV accelerator at Fermilab was a power transistor with a safe operating area of 1800A at 50V, dc current gain of 100,000 and 20 kHz bandwidth. Since the commercially available discrete devices and power hybrid packages did not meet these requirements, a power transistor module was developed which performed satisfactorily. By connecting 13 power transistors in parallel, with due consideration for network and heat dissipation problems, and by driving these 13 with another power transistor, a super power transistor is made, having an equivalent current, power, and safe operating area capability of 13 transistors. For higher capabilities, additional modules can be conveniently added. (auth)

  10. Sidewall gated double well quasi-one-dimensional resonant tunneling transistors

    Science.gov (United States)

    Kolagunta, V. R.; Janes, D. B.; Melloch, M. R.; Youtsey, C.

    1997-12-01

    We present gating characteristics of submicron vertical resonant tunneling transistors in double quantum well heterostructures. Current-voltage characteristics at room temperature and 77 K for devices with minimum feature widths of 0.9 and 0.7 μm are presented and discussed. The evolution of the I-V characteristics with increasing negative gate biases is related to the change in the lateral confinement, with a transition from a large area 2D to a quasi-1D. Even gating of multiple wells and lateral confinement effects observable at 77 K make these devices ideally suited for applications in multi-valued logic systems and low-dimensional structures.

  11. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    International Nuclear Information System (INIS)

    Sesé, Luis M.

    2016-01-01

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  12. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    Energy Technology Data Exchange (ETDEWEB)

    Sesé, Luis M., E-mail: msese@ccia.uned.es [Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid (Spain)

    2016-03-07

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  13. Analysing organic transistors based on interface approximation

    International Nuclear Information System (INIS)

    Akiyama, Yuto; Mori, Takehiko

    2014-01-01

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region

  14. Type-I integrable quantum impurities in the Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr

    2013-12-21

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  15. Type-I integrable quantum impurities in the Heisenberg model

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2013-01-01

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified

  16. Impact of Process Technologies on ELDRS of Bipolar Transistors

    International Nuclear Information System (INIS)

    Lu Wu; Ren Diyuan; Guo Qi; Yu Xuefeng; Zheng Yuzhan

    2010-01-01

    Radiation effects under different dose rates and annealing behaviors of domestic bipolar transistors, with same manufacture technology, were investigated.These transistors include NPN transistors of various emitter area, and LPNP transistors with different doping concentrations in emitter. It is shown that different types of transistors have different radiation responses. The results of NPN transistors show that more degradation occurs at less emitter area. Yet, the results of LPNP transistors demonstrate that transistors with lightly doped emitter are more sensitive to radiation, compared with heavily doped emitter. Finally,the mechanisms of the difference between various radiation responses were analyzed. (authors)

  17. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits

    International Nuclear Information System (INIS)

    Bonneau, D; Engin, E; O'Brien, J L; Thompson, M G; Ohira, K; Suzuki, N; Yoshida, H; Iizuka, N; Ezaki, M; Natarajan, C M; Tanner, M G; Hadfield, R H; Dorenbos, S N; Zwiller, V

    2012-01-01

    Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-on-insulator material system, where quantum interference and the manipulation of quantum states of light are demonstrated in components orders of magnitude smaller than previous implementations. Two-photon quantum interference is presented in a multi-mode interference coupler, and the manipulation of entanglement is demonstrated in a Mach-Zehnder interferometer, opening the way to an all-silicon photonic quantum technology platform. (paper)

  18. Controlling morphology and molecular order of solution-processed organic semiconductors for transistors

    NARCIS (Netherlands)

    Li, X.

    2012-01-01

    As a potential low-cost alternative to traditional amorphous-silicon based devices, organic field-effect transistors (OFETs) are expected to be incorporated into all-plastic integrated circuits and flexible display backplanes. More recently, breakthroughs have been made in the performance of OFETs

  19. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya; Yaacobi-Gross, Nir; Zhao, Kui; Ndjawa, Guy Olivier Ngongang; Li, Jinhua; Yan, Feng; O'Regan, Brian C.; Amassian, Aram; Anthopoulos, Thomas D.

    2012-01-01

    ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm2 V-1 s-1. By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated. Copyright © 2013 WILEY

  20. Distributed amplifier using Josephson vortex flow transistors

    International Nuclear Information System (INIS)

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  1. Mapping brain activity with flexible graphene micro-transistors

    Science.gov (United States)

    Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.

    2017-06-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.

  2. Gauge-fields and integrated quantum-classical theory

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1986-01-01

    Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs

  3. Quantum mechanical path integrals in curved spaces and the type-A trace anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università di Modena e Reggio Emilia,Via Campi 213/A, I-41125 Modena (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Vassura, Edoardo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2017-04-10

    Path integrals for particles in curved spaces can be used to compute trace anomalies in quantum field theories, and more generally to study properties of quantum fields coupled to gravity in first quantization. While their construction in arbitrary coordinates is well understood, and known to require the use of a regularization scheme, in this article we take up an old proposal of constructing the path integral by using Riemann normal coordinates. The method assumes that curvature effects are taken care of by a scalar effective potential, so that the particle lagrangian is reduced to that of a linear sigma model interacting with the effective potential. After fixing the correct effective potential, we test the construction on spaces of maximal symmetry and use it to compute heat kernel coefficients and type-A trace anomalies for a scalar field in arbitrary dimensions up to d=12. The results agree with expected ones, which are reproduced with great efficiency and extended to higher orders. We prove explicitly the validity of the simplified path integral on maximally symmetric spaces. This simplified path integral might be of further use in worldline applications, though its application on spaces of arbitrary geometry remains unclear.

  4. Quantum integrable models of field theory

    International Nuclear Information System (INIS)

    Faddeev, L.D.

    1979-01-01

    Fundamental features of the classical method of the inverse problem have been formulated in the form which is convenient for its quantum reformulation. Typical examples are studied which may help to formulate the quantum method of the inverse problem. Examples are considered for interaction with both attraction and repulsion at a final density. The sine-Gordon model and the XYZ model from the quantum theory of magnetics are examined in short. It is noted that all the achievements of the one-dimensional mathematical physics as applied to exactly solvable quantum models may be put to an extent within the framework of the quantum method of the inverse problem. Unsolved questions are enumerated and perspectives of applying the inverse problem method are shown

  5. Photosensitive graphene transistors.

    Science.gov (United States)

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback

    Science.gov (United States)

    Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander N.

    2005-06-01

    We analyze squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wave packet center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; a similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.

  7. Growth of a single-wall carbon nanotube film and its patterning as an n-type field effect transistor device using an integrated circuit compatible process

    Energy Technology Data Exchange (ETDEWEB)

    Shiau, S H; Gau, C [Institute of Aeronautics and Astronautics, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan (China); Liu, C W; Dai, B T [National Nano Device Laboratories, No. 27, Nanke 3rd Road, Science-based Industrial Park, Hsin-shi, Tainan, Taiwan (China)], E-mail: gauc@mail.ncku.edu.tw

    2008-03-12

    This study presents the synthesis of a dense single-wall carbon nanotube (SWNT) network on a silicon substrate using alcohol as the source gas. The nanosize catalysts required are made by the reduction of metal compounds in ethanol. The key point in spreading the nanoparticles on the substrate, so that the SWNT network can be grown over the entire wafer, is making the substrate surface hydrophilic. This SWNT network is so dense that it can be treated like a thin film. Methods of patterning this SWNT film with integrated circuit compatible processes are presented and discussed for the first time in the literature. Finally, fabrication and characteristic measurements of a field effect transistor (FET) using this SWNT film are also demonstrated. This FET is shown to have better electronic properties than any other kind of thin film transistor. This thin film with good electronic properties can be readily applied in the processing of many other SWNT electronic devices.

  8. Coulomb Blockade and Multiple Andreev Reflection in a Superconducting Single-Electron Transistor

    Science.gov (United States)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke

    2018-06-01

    In superconducting quantum point contacts, multiple Andreev reflection (MAR), which describes the coherent transport of m quasiparticles each carrying an electron charge with m≥3, sets in at voltage thresholds eV = 2Δ /m. In single-electron transistors, Coulomb blockade, however, suppresses the current at low voltage. The required voltage for charge transport increases with the square of the effective charge eV∝ ( me) ^2. Thus, studying the charge transport in all-superconducting single-electron transistors (SSETs) sets these two phenomena into competition. In this article, we present the fabrication as well as a measurement scheme and transport data for a SSET with one junction in which the transmission and thereby the MAR contributions can be continuously tuned. All regimes from weak to strong coupling are addressed. We extend the Orthodox theory by incorporating MAR processes to describe the observed data qualitatively. We detect a new transport process the nature of which is unclear at present. Furthermore, we observe a renormalization of the charging energy when approaching the strong coupling regime.

  9. Quantum walks in brain microtubules--a biomolecular basis for quantum cognition?

    Science.gov (United States)

    Hameroff, Stuart

    2014-01-01

    Cognitive decisions are best described by quantum mathematics. Do quantum information devices operate in the brain? What would they look like? Fuss and Navarro () describe quantum lattice registers in which quantum superpositioned pathways interact (compute/integrate) as 'quantum walks' akin to Feynman's path integral in a lattice (e.g. the 'Feynman quantum chessboard'). Simultaneous alternate pathways eventually reduce (collapse), selecting one particular pathway in a cognitive decision, or choice. This paper describes how quantum walks in a Feynman chessboard are conceptually identical to 'topological qubits' in brain neuronal microtubules, as described in the Penrose-Hameroff 'Orch OR' theory of consciousness. Copyright © 2013 Cognitive Science Society, Inc.

  10. Introductory quantum mechanics for applied nanotechnology

    CERN Document Server

    Kim, Dae Mann

    2015-01-01

    This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.

  11. Gold nanoparticle-pentacene memory-transistors

    OpenAIRE

    Novembre , Christophe; Guerin , David; Lmimouni , Kamal; Gamrat , Christian; Vuillaume , Dominique

    2008-01-01

    We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold (Au) nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift (22 V) and on/off drain current ratio of ~3E4 are obtained. The hole field-effect mobility of the transistor is similar in the on and off sta...

  12. Quantum group and quantum symmetry

    International Nuclear Information System (INIS)

    Chang Zhe.

    1994-05-01

    This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs

  13. The Complete Semiconductor Transistor and Its Incomplete Forms

    International Nuclear Information System (INIS)

    Jie Binbin; Sah, C.-T.

    2009-01-01

    This paper describes the definition of the complete transistor. For semiconductor devices, the complete transistor is always bipolar, namely, its electrical characteristics contain both electron and hole currents controlled by their spatial charge distributions. Partially complete or incomplete transistors, via coined names or/and designed physical geometries, included the 1949 Shockley p/n junction transistor (later called Bipolar Junction Transistor, BJT), the 1952 Shockley unipolar 'field-effect' transistor (FET, later called the p/n Junction Gate FET or JGFET), as well as the field-effect transistors introduced by later investigators. Similarities between the surface-channel MOS-gate FET (MOSFET) and the volume-channel BJT are illustrated. The bipolar currents, identified by us in a recent nanometer FET with 2-MOS-gates on thin and nearly pure silicon base, led us to the recognition of the physical makeup and electrical current and charge compositions of a complete transistor and its extension to other three or more terminal signal processing devices, and also the importance of the terminal contacts.

  14. New Technique for Fabrication of Scanning Single-Electron Transistor Microscopy Tips

    Science.gov (United States)

    Goodwin, Eric; Tessmer, Stuart

    Fabrication of glass tips for Scanning Single-Electron Transistor Microscopy (SSETM) can be expensive, time consuming, and inconsistent. Various techniques have been tried, with varying levels of success in regards to cost and reproducibility. The main requirement for SSETM tips is to have a sharp tip ending in a micron-scale flat face to allow for deposition of a quantum dot. Drawing inspiration from methods used to create tips from optical fibers for Near-Field Scanning Optical Microscopes, our group has come up with a quick and cost effective process for creating SSETM tips. By utilizing hydrofluoric acid to etch the tips and oleic acid to guide the etch profile, optical fiber tips with appropriate shaping can be rapidly prepared. Once etched, electric leads are thermally evaporated onto each side of the tip, while an aluminum quantum dot is evaporated onto the face. Preliminary results using various metals, oxide layers, and lead thicknesses have proven promising.

  15. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  16. Kondo effect in single-molecule magnet transistors

    Science.gov (United States)

    Gonzalez, Gabriel; Leuenberger, Michael; Mucciolo, Eduardo

    2009-03-01

    We present a careful and thorough microscopic derivation of the anisotropic Kondo Hamiltonian for single-molecule magnet (SMM) transistors. When the molecule is strongly coupled to metallic leads, we show that by applying a transverse magnetic field it is possible to topologically induce or quench the Kondo effect in the conductance of a SMM with either an integer or a half-integer spin S>1/2. This topological Kondo effect is due to the Berry-phase interference between multiple quantum tunneling paths of the spin. We calculate the renormalized Berry-phase oscillations of the two Kondo peaks as a function of a transverse magnetic field by means of the poor man's scaling approach. We illustrate our findings with the SMM Ni4, which we propose as a possible candidate for the experimental observation of the conductance oscillations.

  17. Numerical calculations in elementary quantum mechanics using Feynman path integrals

    International Nuclear Information System (INIS)

    Scher, G.; Smith, M.; Baranger, M.

    1980-01-01

    We show that it is possible to do numerical calculations in elementary quantum mechanics using Feynman path integrals. Our method involves discretizing both time and space, and summing paths through matrix multiplication. We give numerical results for various one-dimensional potentials. The calculations of energy levels and wavefunctions take approximately 100 times longer than with standard methods, but there are other problems for which such an approach should be more efficient

  18. Integrable quantum impurity models

    International Nuclear Information System (INIS)

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  19. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    International Nuclear Information System (INIS)

    Feng Yexin; Chen Ji; Wang Enge; Li Xin-Zheng

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. (topical review)

  20. Introductory quantum mechanics for semiconductor nanotechnology

    International Nuclear Information System (INIS)

    Kim, Dae Mann

    2010-01-01

    The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals. (orig.)

  1. Cobalt micro-magnet integration on silicon MOS quantum dots

    Science.gov (United States)

    Camirand Lemyre, Julien; Rochette, Sophie; Anderson, John; Manginell, Ronald P.; Pluym, Tammy; Ward, Dan; Carroll, Malcom S.; Pioro-Ladrière, Michel

    Integration of cobalt micro-magnets on silicon metal-oxide-semiconductor (MOS) quantum dot devices has been investigated. The micro-magnets are fabricated in a lift-off process with e-beam lithography and deposited directly on top of an etched poly-silicon gate stack. Among the five resist stacks tested, one is found to be compatible with our MOS specific materials (Si and SiO2) . Moreover, devices with and without additional Al2O3 insulating layer show no additional gate leakage after processing. Preliminary transport data indicates electrostatic stability of our devices with integrated magnets. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  2. Proposal for an Experimental Test of the Role of Confining Potentials in the Integral Quantum Hall Effect

    OpenAIRE

    Brueckner, Reinhold

    2000-01-01

    We propose an experiment using a three-gate quantum Hall device to probe the dependence of the integral quantum Hall effect (IQHE) on the shape of the lateral confining potential in edge regions. This shape can, in a certain configuration determine whether or not the IQHE occurs.

  3. Non-uniqueness of quantum transition state theory and general dividing surfaces in the path integral space.

    Science.gov (United States)

    Jang, Seogjoo; Voth, Gregory A

    2017-05-07

    Despite the fact that quantum mechanical principles do not allow the establishment of an exact quantum analogue of the classical transition state theory (TST), the development of a quantum TST (QTST) with a proper dynamical justification, while recovering the TST in the classical limit, has been a long standing theoretical challenge in chemical physics. One of the most recent efforts of this kind was put forth by Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)], which can be specified for any cyclically invariant dividing surface defined in the space of the imaginary time path integral. The present work revisits the issue of the non-uniqueness of QTST and provides a detailed theoretical analysis of HA-QTST for a general class of such path integral dividing surfaces. While we confirm that HA-QTST reproduces the result based on the ring polymer molecular dynamics (RPMD) rate theory for dividing surfaces containing only a quadratic form of low frequency Fourier modes, we find that it produces different results for those containing higher frequency imaginary time paths which accommodate greater quantum fluctuations. This result confirms the assessment made in our previous work [Jang and Voth, J. Chem. Phys. 144, 084110 (2016)] that HA-QTST does not provide a derivation of RPMD-TST in general and points to a new ambiguity of HA-QTST with respect to its justification for general cyclically invariant dividing surfaces defined in the space of imaginary time path integrals. Our analysis also offers new insights into similar path integral based QTST approaches.

  4. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters

    Science.gov (United States)

    Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535

  5. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  6. Memristive device based on a depletion-type SONOS field effect transistor

    Science.gov (United States)

    Himmel, N.; Ziegler, M.; Mähne, H.; Thiem, S.; Winterfeld, H.; Kohlstedt, H.

    2017-06-01

    State-of-the-art SONOS (silicon-oxide-nitride-oxide-polysilicon) field effect transistors were operated in a memristive switching mode. The circuit design is a variation of the MemFlash concept and the particular properties of depletion type SONOS-transistors were taken into account. The transistor was externally wired with a resistively shunted pn-diode. Experimental current-voltage curves show analog bipolar switching characteristics within a bias voltage range of ±10 V, exhibiting a pronounced asymmetric hysteresis loop. The experimental data are confirmed by SPICE simulations. The underlying memristive mechanism is purely electronic, which eliminates an initial forming step of the as-fabricated cells. This fact, together with reasonable design flexibility, in particular to adjust the maximum R ON/R OFF ratio, makes these cells attractive for neuromorphic applications. The relative large set and reset voltage around ±10 V might be decreased by using thinner gate-oxides. The all-electric operation principle, in combination with an established silicon manufacturing process of SONOS devices at the Semiconductor Foundry X-FAB, promise reliable operation, low parameter spread and high integration density.

  7. Silicon on ferroelectic insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Science.gov (United States)

    Es-Sakhi, Azzedin D.

    Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in sub-nanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor's Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the

  8. A review of selected topics in physics based modeling for tunnel field-effect transistors

    Science.gov (United States)

    Esseni, David; Pala, Marco; Palestri, Pierpaolo; Alper, Cem; Rollo, Tommaso

    2017-08-01

    The research field on tunnel-FETs (TFETs) has been rapidly developing in the last ten years, driven by the quest for a new electronic switch operating at a supply voltage well below 1 V and thus delivering substantial improvements in the energy efficiency of integrated circuits. This paper reviews several aspects related to physics based modeling in TFETs, and shows how the description of these transistors implies a remarkable innovation and poses new challenges compared to conventional MOSFETs. A hierarchy of numerical models exist for TFETs covering a wide range of predictive capabilities and computational complexities. We start by reviewing seminal contributions on direct and indirect band-to-band tunneling (BTBT) modeling in semiconductors, from which most TCAD models have been actually derived. Then we move to the features and limitations of TCAD models themselves and to the discussion of what we define non-self-consistent quantum models, where BTBT is computed with rigorous quantum-mechanical models starting from frozen potential profiles and closed-boundary Schrödinger equation problems. We will then address models that solve the open-boundary Schrödinger equation problem, based either on the non-equilibrium Green’s function NEGF or on the quantum-transmitting-boundary formalism, and show how the computational burden of these models may vary in a wide range depending on the Hamiltonian employed in the calculations. A specific section is devoted to TFETs based on 2D crystals and van der Waals hetero-structures. The main goal of this paper is to provide the reader with an introduction to the most important physics based models for TFETs, and with a possible guidance to the wide and rapidly developing literature in this exciting research field.

  9. Yang-Baxter algebra - Integrable systems - Conformal quantum field theories

    International Nuclear Information System (INIS)

    Karowski, M.

    1989-01-01

    This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)

  10. Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching.

    Science.gov (United States)

    Sainato, Michela; Strambini, Lucanos Marsilio; Rella, Simona; Mazzotta, Elisabetta; Barillaro, Giuseppe

    2015-04-08

    Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.

  11. Quantum mechanical path integrals with Wiener measures for all polynomial Hamiltonians

    International Nuclear Information System (INIS)

    Klauder, J.R.; Daubechies, I.

    We construct arbitrary matrix elements of the quantum evolution operator for a wide class of self-adjoint canonical Hamiltonians, including those which are polynomial in the Heisenberg operators, as the limit of well-defined path integrals involving Wiener measure on phase space, as a diffusion constant diverges. A related construction achieves a similar result for an arbitrary spin Hamiltonian. (orig.)

  12. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    Science.gov (United States)

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  13. High-Performance Vertical Organic Electrochemical Transistors.

    Science.gov (United States)

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Al transmon qubits on silicon-on-insulator for quantum device integration

    Science.gov (United States)

    Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar

    2017-07-01

    We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.

  15. Hole states in diamond p-delta-doped field effect transistors

    International Nuclear Information System (INIS)

    Martinez-Orozco, J C; Rodriguez-Vargas, I; Mora-Ramos, M E

    2009-01-01

    The p-delta-doping in diamond allows to create high density two-dimensional hole gases. This technique has already been applied in the design and fabrication of diamond-based field effect transistors. Consequently, the knowledge of the electronic structure is of significant importance to understand the transport properties of diamond p-delta-doped systems. In this work the hole subbands of diamond p-type delta-doped quantum wells are studied within the framework of a local-density Thomas-Fermi-based approach for the band bending profile. The calculation incorporates an independent three-hole-band scheme and considers the effects of the contact potential, the delta-channel to contact distance, and the ionized impurity density.

  16. Hole states in diamond p-delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Rodriguez-Vargas, I [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad Esquina con Paseo la Bufa S/N, CP 98060 Zacatecas, ZAC. (Mexico); Mora-Ramos, M E, E-mail: jcmover@correo.unam.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP 62209 Cuernavaca, MOR. (Mexico)

    2009-05-01

    The p-delta-doping in diamond allows to create high density two-dimensional hole gases. This technique has already been applied in the design and fabrication of diamond-based field effect transistors. Consequently, the knowledge of the electronic structure is of significant importance to understand the transport properties of diamond p-delta-doped systems. In this work the hole subbands of diamond p-type delta-doped quantum wells are studied within the framework of a local-density Thomas-Fermi-based approach for the band bending profile. The calculation incorporates an independent three-hole-band scheme and considers the effects of the contact potential, the delta-channel to contact distance, and the ionized impurity density.

  17. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  18. High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation.

    Science.gov (United States)

    Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu

    2018-01-31

    The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.

  19. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-07-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

  20. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  1. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Matematica Aplicada]. E-mail: botelho.luiz@superig.com.br

    2008-07-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R{sup {infinity}}, we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  2. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2008-01-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R ∞ , we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  3. Random matrix theory and higher genus integrability: the quantum chiral Potts model

    International Nuclear Information System (INIS)

    Angles d'Auriac, J.Ch.; Maillard, J.M.; Viallet, C.M.

    2002-01-01

    We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)

  4. Recent progress in photoactive organic field-effect transistors.

    Science.gov (United States)

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  5. Recent progress in photoactive organic field-effect transistors

    International Nuclear Information System (INIS)

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-01-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts. (review)

  6. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    Science.gov (United States)

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential

  7. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    Science.gov (United States)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  8. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    International Nuclear Information System (INIS)

    Li, Wei; Zhang, Qin; Kirillov, Oleg A.; Levin, Igor; Richter, Curt A.; Gundlach, David J.; Nguyen, N. V.; Bijesh, R.; Datta, S.; Liang, Yiran; Peng, Lian-Mao; Liang, Xuelei

    2014-01-01

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al 2 O 3 /InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al 2 O 3 conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al 2 O 3 valence band to the bottom of the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance

  9. Programmable automated transistor test system

    International Nuclear Information System (INIS)

    Truong, L.V.; Sundberg, G.R.

    1986-01-01

    The paper describes a programmable automated transistor test system (PATTS) and its utilization to evaluate bipolar transistors and Darlingtons, and such MOSFET and special types as can be accommodated with the PATTS base-drive. An application of a pulsed power technique at low duty cycles in a non-destructive test is used to examine the dynamic switching characteristic curves of power transistors. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software. In addition a library of test data is established on disks, tapes, and hard copies for future reference

  10. Advancement in organic nanofiber based transistors

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    and characterization of OLETs using the organic semiconductors para-hexaphenylene (p6P), 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP) and 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2). These molecules can self-assemble forming molecular crystalline nanofibers. Organic nanofibers can form the basis for light......The focus of this project is to study the light emission from nanofiber based organic light-emitting transistors (OLETs) with the overall aim of developing efficient, nanoscale light sources with different colors integrated on-chip. The research performed here regards the fabrication...

  11. Industrial and scientific technology research and development project in fiscal 1997 commissioned by the New Energy and Industrial Technology Development Organization. Research and development of superconducting materials and transistors (report on overall investigation of superconductive devices); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (chodendo soshika gijutsu kaihatsu seika hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of superconducting new function transistors. Fiscal 1997 as the final year of the project advanced improvement in such transistor-using processes as formation and micro-processing of superconducting thin films to show enhancement in characteristics of high-temperature superconducting transistors and possibility of their application utilizing their high speed motions. Furthermore, fundamental technologies were studied with an aim on junction transistors to be applied as circuits. For field effect transistors, evaluation was performed on critical current distribution of step-type particle boundary junction to make it possible to evaluate characteristics of hundreds of transistors. At the same time, a magnetic flux quantum parametron gate with three-layer structure was fabricated to identify its operation. In superconducting-base transistors, strong reflection was recognized on temperature dependence of permittivity of an Nb-doped strontium titanate substrate used for collectors, by which barrier height was reduced. In the junction transistor and circuit technology, isotropic ramp-edge junctions were fabricated, and so was a frequency divider circuit with single magnetic flux quantum mode operation for evaluating high-speed response characteristics. High time resolution current was observed successfully by using a high-temperature superconducting sampler system. 148 refs., 127 figs., 4 tabs.

  12. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    International Nuclear Information System (INIS)

    Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert

    2013-01-01

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies

  13. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Balondo Iyela, Daddy [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Département de Physique, Université de Kinshasa (UNIKIN), B.P. 190 Kinshasa XI, Democratic Republic of Congo (Congo, The Democratic Republic of the); Govaerts, Jan [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Hounkonnou, M. Norbert [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin)

    2013-09-15

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.

  14. Universal power transistor base drive control unit

    Science.gov (United States)

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  15. Thermal Management in Fine-Grained 3-D Integrated Circuits

    OpenAIRE

    Iqbal, Md Arif; Macha, Naveen Kumar; Danesh, Wafi; Hossain, Sehtab; Rahman, Mostafizur

    2018-01-01

    For beyond 2-D CMOS logic, various 3-D integration approaches specially transistor based 3-D integrations such as monolithic 3-D [1], Skybridge [2], SN3D [3] holds most promise. However, such 3D architectures within small form factor increase hotspots and demand careful consideration of thermal management at all levels of integration [4] as stacked transistors are detached from the substrate (i.e., heat sink). Traditional system level approaches such as liquid cooling [5], heat spreader [6], ...

  16. Low-background transistors for application in nuclear electronics

    International Nuclear Information System (INIS)

    Krasnokutskij, R.N.; Kurchaninov, L.L.; Fedyakin, N.N.; Shuvalov, R.S.

    1988-01-01

    Investigations of silicon transistors were carried out to determine transistors with low value of base distributed resistance (R). Measurement results for R and current amplification coefficient β are presented for bipolar transistor several types. Correlations between R and β were studied. KT 399A, 2T640A and KT3117B transistors are found to be most adequate ones as a base for low-background amplifier development

  17. Optimization of ultra-low-power CMOS transistors

    International Nuclear Information System (INIS)

    Stockinger, M.

    2000-01-01

    Ultra-low-power CMOS integrated circuits have constantly gained importance due to the fast growing portable electronics market. High-performance applications like mobile telephones ask for high-speed computations and low stand-by power consumption to increase the actual operating time. This means that transistors with low leakage currents and high drive currents have to be provided. Common fabrication methods will soon reach their limits if the on-chip feature size of CMOS technology continues to shrink at this very fast rate. New device architectures will help to keep track with the roadmap of the semiconductor industry. Especially doping profiles offer much freedom for performance improvements as they determine the 'inner functioning' of a transistor. In this work automated doping profile optimization is performed on MOS transistors within the TCAD framework SIESTA. The doping between and under the source/drain wells is discretized on an orthogonal optimization grid facilitating almost arbitrary two-dimensional shapes. A linear optimizer issued to find the optimum doping profile by variation of the doping parameters utilizing numerical device simulations with MINIMOS-NT. Gaussian functions are used in further optimization runs to make the doping profiles smooth. Two device generations are considered, one with 0.25 μm, the other with 0.1 μm gate length. The device geometries and source/drain doping profiles are kept fixed during optimization and supply voltages are chosen suitable for ultra-low-power purposes. In a first optimization study the drive current of NMOS transistors is maximized while keeping the leakage current below a limit of 1 pA/μm. This results in peaking channel doping devices (PCD) with narrow doping peaks placed asymmetrically in the channel. Drive current improvements of 45 % and 71 % for the 0.25 μm and 0.1 μm devices, respectively, are achieved compared to uniformly doped devices. The PCD device is studied in detail and explanations for

  18. Determination of the electronic energy levels of colloidal nanocrystals using field-effect transistors and Ab-initio calculations.

    Science.gov (United States)

    Bisri, Satria Zulkarnaen; Degoli, Elena; Spallanzani, Nicola; Krishnan, Gopi; Kooi, Bart Jan; Ghica, Corneliu; Yarema, Maksym; Heiss, Wolfgang; Pulci, Olivia; Ossicini, Stefano; Loi, Maria Antonietta

    2014-08-27

    Colloidal nanocrystals electronic energy levels are determined by strong size-dependent quantum confinement. Understanding the configuration of the energy levels of nanocrystal superlattices is vital in order to use them in heterostructures with other materials. A powerful method is reported to determine the energy levels of PbS nanocrystal assemblies by combining the utilization of electric-double-layer-gated transistors and advanced ab-initio theory. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  20. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya

    2012-12-27

    The wide bandgap and highly transparent inorganic compound copper(I) thiocyanate (CuSCN) is used for the first time to fabricate p-type thin-film transistors processed from solution at room temperature. By combining CuSCN with the high-k relaxor ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm2 V-1 s-1. By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Mocuta, Anda; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Sorée, Bart [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium)

    2015-10-07

    Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In{sub 0.53}Ga{sub 0.47}As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET.

  2. The quantum physics bible the definitive guide to 200 years of subatomic science

    CERN Document Server

    Clegg, Brian

    2017-01-01

    An easy-to-understand guide to the complex subject of quantum physics. Quantum physics is how scientists describe the world of the very small. For other people, however, the rules of quantum physics seem to violate all logic: How can a particle be in more than one place at the same time? How can it tunnel through an impenetrable barrier? How can a cat in a box be both alive and dead? This book explains the complexities of quantum physics in bite-sized "lessons" that make it clear and accessible to all readers. The sections and chapters are: 1. Atoms -- quantum; quantum physics in everyday life; the periodic table; atoms and nuclei; isotopes; hydrogen atom (energy levels and spectra) 2. Photons -- photoelectric effect; thermal emission and the Planck distribution; wave particle duality (Young's slit experiment) 3. Quantum devices -- superconductors; transistor, diode; light-emitting diode; laser 4. Spin -- spin; fermions; exclusion principle; Fermi Dirac distribution; Bose-Einstein statistics 5. Wave Mechan...

  3. Highly coalesced quantum beam science (1)

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro

    2014-01-01

    The construction of the large-scale facilities of quantum beam is under way in our country, and these are the facilities to use specific quantum beam individually. For this reason, only limited information brought about from the specific intrinsic performance that the beam has can be obtained. To understand the function and structure of a target substance, it is required to integrate various types of complementary information obtainable from each quantum beam. In FY2009, a leading research and development committee on 'quantum beam integration research' was established in Japan Study for the Promotion of Science, and the establishment of a new technology to integrate quantum beams and the creation of a new research region developed from this integration were examined. This committee defined the new academic research region as 'quantum beam integration science' and examined various fields of the new research region. This paper takes out a material science field among them, and tries the systematization of the new academic research region related to the scientific research on quantum beam integration advanced materials by promoting the following: (1) search for the needs for material science research, (2) examination of integration facilities capable of corresponding to the research needs, and (3) basic integration research for the above. (A.O.)

  4. Quantum stochastic calculus associated with quadratic quantum noises

    International Nuclear Information System (INIS)

    Ji, Un Cig; Sinha, Kalyan B.

    2016-01-01

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus

  5. Quantum stochastic calculus associated with quadratic quantum noises

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju, Chungbuk 28644 (Korea, Republic of); Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-64, India and Department of Mathematics, Indian Institute of Science, Bangalore-12 (India)

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.

  6. Robust mode space approach for atomistic modeling of realistically large nanowire transistors

    Science.gov (United States)

    Huang, Jun Z.; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard

    2018-01-01

    Nanoelectronic transistors have reached 3D length scales in which the number of atoms is countable. Truly atomistic device representations are needed to capture the essential functionalities of the devices. Atomistic quantum transport simulations of realistically extended devices are, however, computationally very demanding. The widely used mode space (MS) approach can significantly reduce the numerical cost, but a good MS basis is usually very hard to obtain for atomistic full-band models. In this work, a robust and parallel algorithm is developed to optimize the MS basis for atomistic nanowires. This enables engineering-level, reliable tight binding non-equilibrium Green's function simulation of nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) with a realistic cross section of 10 nm × 10 nm using a small computer cluster. This approach is applied to compare the performance of InGaAs and Si nanowire n-type MOSFETs (nMOSFETs) with various channel lengths and cross sections. Simulation results with full-band accuracy indicate that InGaAs nanowire nMOSFETs have no drive current advantage over their Si counterparts for cross sections up to about 10 nm × 10 nm.

  7. Path integral approach to multidimensional quantum tunnelling

    International Nuclear Information System (INIS)

    Balantekin, A.B.; Takigawa, N.

    1985-01-01

    Path integral formulation of the coupled channel problem in the case of multidimensional quantum tunneling is presented and two-time influence functionals are introduced. The two-time influence functionals are calculated explicitly for the three simplest cases: Harmonic oscillators linearly or quadratically coupled to the translational motion and a system with finite number of equidistant energy levels linearly coupled to the translational motion. The effects of these couplings on the transmission probability are studied for two limiting cases, adiabatic case and when the internal system has a degenerate energy spectrum. The condition for the transmission probability to show a resonant structure is discussed and exemplified. Finally, the properties of the dissipation factor in the adiabatic limit and its correlation with the friction coefficient in the classically accessible region are studied

  8. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    Science.gov (United States)

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  9. High extinction ratio integrated optical modulator for quantum telecommunication systems

    Science.gov (United States)

    Tronev, A.; Parfenov, M.; Agruzov, P.; Ilichev, I.; Shamray, A.

    2018-01-01

    A method for increasing the extinction ratio of integrated optical Mach-Zehnder modulators based on LiNbO3 via the photorefractive effect is proposed. The influence of the photorefractive effect on the X- and Y-splitters of intensity modulators is experimentally studied. An increase in the modulator extinction ratio by 17 dB (from 30 to 47 dB) is obtained. It is shown that fabricated modulators with a high extinction ratio are important for quantum key distribution systems.

  10. Input Stage for Low-Voltage, Low-Noise Preamplifiers Based on a Floating-Gate MOS Transistor

    DEFF Research Database (Denmark)

    Igor, Mucha

    1997-01-01

    A novel input stage for low-voltage, low-noise preamplifiers for integrated capacitive sensors is presented. The input stage of the preamplifier employs floating-gate MOS transistors which are capable of storing the operation point of the input stage over several years without any severe degradat......A novel input stage for low-voltage, low-noise preamplifiers for integrated capacitive sensors is presented. The input stage of the preamplifier employs floating-gate MOS transistors which are capable of storing the operation point of the input stage over several years without any severe...... degradation of the performance of the circuit and without the need for a repeating programming. In this way the noise originating from any resistance previously used for the definition of the operating point is avoided completely and, moreover, by avoiding the input high-pass filter both the saturation...

  11. Planar-Processed Polymer Transistors.

    Science.gov (United States)

    Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young

    2016-10-01

    Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  13. High-Precision Displacement Sensing of Monolithic Piezoelectric Disk Resonators Using a Single-Electron Transistor

    Science.gov (United States)

    Li, J.; Santos, J. T.; Sillanpää, M. A.

    2018-02-01

    A single-electron transistor (SET) can be used as an extremely sensitive charge detector. Mechanical displacements can be converted into charge, and hence, SETs can become sensitive detectors of mechanical oscillations. For studying small-energy oscillations, an important approach to realize the mechanical resonators is to use piezoelectric materials. Besides coupling to traditional electric circuitry, the strain-generated piezoelectric charge allows for measuring ultrasmall oscillations via SET detection. Here, we explore the usage of SETs to detect the shear-mode oscillations of a 6-mm-diameter quartz disk resonator with a resonance frequency around 9 MHz. We measure the mechanical oscillations using either a conventional DC SET, or use the SET as a homodyne or heterodyne mixer, or finally, as a radio-frequency single-electron transistor (RF-SET). The RF-SET readout is shown to be the most sensitive method, allowing us to measure mechanical displacement amplitudes below 10^{-13} m. We conclude that a detection based on a SET offers a potential to reach the sensitivity at the quantum limit of the mechanical vibrations.

  14. Entanglement and thermodynamics after a quantum quench in integrable systems.

    Science.gov (United States)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-07-25

    Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.

  15. Surveying the quantum group symmetries of integrable open spin chains

    Science.gov (United States)

    Nepomechie, Rafael I.; Retore, Ana L.

    2018-05-01

    Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.

  16. Iterative quantum-classical path integral with dynamically consistent state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Peter L.; Makri, Nancy [Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-01-28

    We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort.

  17. Graphene-based flexible and stretchable thin film transistors.

    Science.gov (United States)

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  18. The Bipolar Field-Effect Transistor: XIII. Physical Realizations of the Transistor and Circuits (One-Two-MOS-Gates on Thin-Thick Pure-Impure Base)

    International Nuclear Information System (INIS)

    Sah, C.-T.; Jie Binbin

    2009-01-01

    This paper reports the physical realization of the Bipolar Field-Effect Transistor (BiFET) and its one-transistor basic building block circuits. Examples are given for the one and two MOS gates on thin and thick, pure and impure base, with electron and hole contacts, and the corresponding theoretical current-voltage characteristics previously computed by us, without generation-recombination-trapping-tunneling of electrons and holes. These examples include the one-MOS-gate on semi-infinite thick impure base transistor (the bulk transistor) and the impurethin-base Silicon-on-Insulator (SOI) transistor and the two-MOS-gates on thin base transistors (the FinFET and the Thin Film Transistor TFT). Figures are given with the cross-section views containing the electron and hole concentration and current density distributions and trajectories and the corresponding DC current-voltage characteristics.

  19. Quantum­holographic framework for psychosomatics and spirituality: Complete healing and spiritual integration without a mask

    OpenAIRE

    Raković, Dejan

    2017-01-01

    The subject of this paper is quantum­holographic framework for holistic psychosomatics (including integrative medicine and transpersonal psychology). Such a framework could have significant implications for understanding the mechanisms of quantum­holographic feedback control in the morphogenesis and bio­resonant application of the healing boundary conditions in psychosomatics, based on acupuncture and consciousness. It sheds new light on the long standing open problems of the holistic role an...

  20. A bispectral q-hypergeometric basis for a class of quantum integrable models

    Science.gov (United States)

    Baseilhac, Pascal; Martin, Xavier

    2018-01-01

    For the class of quantum integrable models generated from the q-Onsager algebra, a basis of bispectral multivariable q-orthogonal polynomials is exhibited. In the first part, it is shown that the multivariable Askey-Wilson polynomials with N variables and N + 3 parameters introduced by Gasper and Rahman [Dev. Math. 13, 209 (2005)] generate a family of infinite dimensional modules for the q-Onsager algebra, whose fundamental generators are realized in terms of the multivariable q-difference and difference operators proposed by Iliev [Trans. Am. Math. Soc. 363, 1577 (2011)]. Raising and lowering operators extending those of Sahi [SIGMA 3, 002 (2007)] are also constructed. In the second part, finite dimensional modules are constructed and studied for a certain class of parameters and if the N variables belong to a discrete support. In this case, the bispectral property finds a natural interpretation within the framework of tridiagonal pairs. In the third part, eigenfunctions of the q-Dolan-Grady hierarchy are considered in the polynomial basis. In particular, invariant subspaces are identified for certain conditions generalizing Nepomechie's relations. In the fourth part, the analysis is extended to the special case q = 1. This framework provides a q-hypergeometric formulation of quantum integrable models such as the open XXZ spin chain with generic integrable boundary conditions (q ≠ 1).