WorldWideScience

Sample records for quantum filter reduction

  1. Quantum reality filters

    International Nuclear Information System (INIS)

    Gudder, Stan

    2010-01-01

    An anhomomorphic logic A* is the set of all possible realities for a quantum system. Our main goal is to find the 'actual reality' Φ a element of A* for the system. Reality filters are employed to eliminate unwanted potential realities until only φ a remains. In this paper, we consider three reality filters that are constructed by means of quantum integrals. A quantum measure μ can generate or actualize a Φ element of A* if μ(A) is a quantum integral with respect to φ for a density function f over events A. In this sense, μ is an 'average' of the truth values of φ with weights given by f. We mainly discuss relations between these filters and their existence and uniqueness properties. For example, we show that a quadratic reality generated by a quantum measure is unique. In this case we obtain the unique actual quadratic reality.

  2. A quantum extended Kalman filter

    International Nuclear Information System (INIS)

    Emzir, Muhammad F; Woolley, Matthew J; Petersen, Ian R

    2017-01-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements. (paper)

  3. A quantum extended Kalman filter

    Science.gov (United States)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2017-06-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.

  4. Quantum theory without reduction

    International Nuclear Information System (INIS)

    Cini, Marcello; Levy-Leblond, J.-M.

    1990-01-01

    Quantum theory offers a strange, and perhaps unique, case in the history of science. Although research into its roots has provided important results in recent years, the debate goes on. Some theorists argue that quantum theory is weakened by the inclusion of the so called 'reduction of the state vector' in its foundations. Quantum Theory without Reduction presents arguments in favour of quantum theory as a consistent and complete theory without this reduction, and which is capable of explaining all known features of the measurement problem. This collection of invited contributions defines and explores different aspects of this issue, bringing an old debate into a new perspective, and leading to a more satisfying consensus about quantum theory. (author)

  5. Quantum noise and stochastic reduction

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P

    2006-01-01

    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schroedinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this paper, two such models are investigated: one that achieves state reduction in infinite time and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions-algebraic in character and involving no integration-are obtained of both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems

  6. Quantum Image Filtering in the Frequency Domain

    Directory of Open Access Journals (Sweden)

    MANTA, V. I.

    2013-08-01

    Full Text Available In this paper we address the emerging field of Quantum Image Processing. We investigate the use of quantum computing systems to represent and manipulate images. In particular, we consider the basic task of image filtering. We prove that a quantum version for this operation can be achieved, even though the quantum convolution of two sequences is physically impossible. In our approach we use the principle of the quantum oracle to implement the filter function. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on grayscale images. There are important differences between the classical and the quantum implementations for image filtering. We analyze these differences and show that the major advantage of the quantum approach lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  7. Noise reduction with complex bilateral filter.

    Science.gov (United States)

    Matsumoto, Mitsuharu

    2017-12-01

    This study introduces a noise reduction technique that uses a complex bilateral filter. A bilateral filter is a nonlinear filter originally developed for images that can reduce noise while preserving edge information. It is an attractive filter and has been used in many applications in image processing. When it is applied to an acoustical signal, small-amplitude noise is reduced while the speech signal is preserved. However, a bilateral filter cannot handle noise with relatively large amplitudes owing to its innate characteristics. In this study, the noisy signal is transformed into the time-frequency domain and the filter is improved to handle complex spectra. The high-amplitude noise is reduced in the time-frequency domain via the proposed filter. The features and the potential of the proposed filter are also confirmed through experiments.

  8. Generalized Hofmann quantum process fidelity bounds for quantum filters

    Science.gov (United States)

    Sedlák, Michal; Fiurášek, Jaromír

    2016-04-01

    We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.

  9. Dimensional reduction in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica

    1994-12-31

    The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two- dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. (author). 13 refs, 2 figs.

  10. Volume reduction of contaminated filter wastes

    International Nuclear Information System (INIS)

    Buttedahl, O.I.; Terada, K.

    1976-01-01

    Reported are details of a pilot project to design and construct a compactor to reduce the handling of high efficiency particulate air (HEPA) filters used in air filtration systems at facilities where radioactive materials are processed. In such systems at Rocky Flats Plant, filters require frequent change and removal. Large quantities are used and will be increased for future operations. With the completion of the pilot model, it has been demonstrated that volume reductions of more than 80% can be achieved and cost savings will be realized also

  11. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    International Nuclear Information System (INIS)

    Collier, J; Aldoohan, S; Gill, K

    2014-01-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a

  12. Holistic Entropy Reduction for Collaborative Filtering

    Directory of Open Access Journals (Sweden)

    Szwabe Andrzej

    2014-07-01

    Full Text Available We propose a collaborative filtering (CF method that uses behavioral data provided as propositions having the RDF-compliant form of (user X, likes, item Y triples. The method involves the application of a novel self-configuration technique for the generation of vector-space representations optimized from the information-theoretic perspective. The method, referred to as Holistic Probabilistic Modus Ponendo Ponens (HPMPP, enables reasoning about the likelihood of unknown facts. The proposed vector-space graph representation model is based on the probabilistic apparatus of quantum Information Retrieval and on the compatibility of all operators representing subjects, predicates, objects and facts. The dual graph-vector representation of the available propositional data enables the entropy-reducing transformation and supports the compositionality of mutually compatible representations. As shown in the experiments presented in the paper, the compositionality of the vector-space representations allows an HPMPP-based recommendation system to identify which of the unknown facts having the triple form (user X, likes, item Y are the most likely to be true in a way that is both effective and, in contrast to methods proposed so far, fully automatic.

  13. Noise Reduction of Measurement Data using Linear Digital Filters

    Directory of Open Access Journals (Sweden)

    Hitzmann B.

    2007-12-01

    Full Text Available In this paper Butterworth, Chebyshev (Type I and II and Elliptic digital filters are designed for signal noise reduction. On-line data measurements of substrate concentration from E. coli fed-batch cultivation process are used. Application of the designed filters leads to a successful noise reduction of on-line glucose measurements. The digital filters presented here are simple, easy to implement and effective - the used filters allow for a smart compromise between signal information and noise corruption.

  14. Noise reduction in optically controlled quantum memory

    Science.gov (United States)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2018-05-01

    Quantum memory is an essential tool for quantum communications systems and quantum computers. An important category of quantum memory, called optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a single-photon signal through an atomic ensemble. In this type of memory, the residual light from the strong classical control beam can cause severe noise and degrade the system performance significantly. Efficiently suppressing this noise is a requirement for the successful implementation of optically controlled quantum memories. In this paper, we briefly introduce the latest and most common approaches to quantum memory and review the various noise-reduction techniques used in implementing them.

  15. Quantum Hamiltonian reduction in superspace formalism

    International Nuclear Information System (INIS)

    Madsen, J.O.; Ragoucy, E.

    1994-02-01

    Recently the quantum Hamiltonian reduction was done in the case of general sl(2) embeddings into Lie algebras and superalgebras. The results are extended to the quantum Hamiltonian reduction of N=1 affine Lie superalgebras in the superspace formalism. It is shown that if we choose a gauge for the supersymmetry, and consider only certain equivalence classes of fields, then our quantum Hamiltonian reduction reduces to quantum Hamiltonian reduction of non-supersymmetric Lie superalgebras. The super energy-momentum tensor is constructed explicitly as well as all generators of spin 1 (and 1/2); thus all generators in the superconformal, quasi-superconformal and Z 2 *Z 2 superconformal algebras are constructed. (authors). 21 refs

  16. Measurement-based local quantum filters and their ability to ...

    Indian Academy of Sciences (India)

    Debmalya Das

    2017-05-30

    May 30, 2017 ... Entanglement; local filters; quantum measurement. PACS No. 03.65 ... ties [4,5], it also plays a key role in quantum computing where it is ... Furthermore, we pro- vide an ..... Corresponding to each of these vectors, we can con-.

  17. Noise Reduction with Optimal Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2016-01-01

    In this paper, the problem of noise reduction is addressed as a linear filtering problem in a novel way by using concepts from subspace-based enhancement methods, resulting in variable span linear filters. This is done by forming the filter coefficients as linear combinations of a number...... included in forming the filter. Using these concepts, a number of different filter designs are considered, like minimum distortion, Wiener, maximum SNR, and tradeoff filters. Interestingly, all these can be expressed as special cases of variable span filters. We also derive expressions for the speech...... demonstrate the advantages and properties of the variable span filter designs, and their potential performance gain compared to widely used speech enhancement methods....

  18. Musical noise reduction using an adaptive filter

    Science.gov (United States)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  19. Quantum demolition filtering and optimal control of unstable systems.

    Science.gov (United States)

    Belavkin, V P

    2012-11-28

    A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  20. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  1. Potential-controlled filtering in quantum star graphs

    International Nuclear Information System (INIS)

    Turek, Ondřej; Cheon, Taksu

    2013-01-01

    We study the scattering in a quantum star graph with a Fülöp–Tsutsui coupling in its vertex and with external potentials on the lines. We find certain special couplings for which the probability of the transmission between two given lines of the graph is strongly influenced by the potential applied on another line. On the basis of this phenomenon we design a tunable quantum band-pass spectral filter. The transmission from the input to the output line is governed by a potential added on the controlling line. The strength of the potential directly determines the passband position, which allows to control the filter in a macroscopic manner. Generalization of this concept to quantum devices with multiple controlling lines proves possible. It enables the construction of spectral filters with more controllable parameters or with more operation modes. In particular, we design a band-pass filter with independently adjustable multiple passbands. We also address the problem of the physical realization of Fülöp–Tsutsui couplings and demonstrate that the couplings needed for the construction of the proposed quantum devices can be approximated by simple graphs carrying only δ potentials. - Highlights: ► Spectral filtering devices based on quantum graphs are designed theoretically. ► The passband is controlled by the application of macroscopic potentials on lines. ► The filters are built upon special Fulop–Tsutsui type couplings at graph vertices. ► A method of construction of Fulop–Tsutsui vertices from delta potentials is devised.

  2. Stability of continuous-time quantum filters with measurement imperfections

    Science.gov (United States)

    Amini, H.; Pellegrini, C.; Rouchon, P.

    2014-07-01

    The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.

  3. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    Science.gov (United States)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  4. Fraunhofer regime of operation for superconducting quantum interference filters

    DEFF Research Database (Denmark)

    Shadrin, A.V.; Constantinian, K.Y.; Ovsyannikov, G.A.

    2008-01-01

    Series arrays of superconducting quantum interference devices (SQUIDs) with incommensurate loop areas, so-called superconducting quantum interference filters (SQIFs), are investigated in the kilohertz and the gigahertz frequency range. In SQIFs made of high-T-c bicrystal junctions the flux...... range of more than 60 dB in the kilohertz range. In the 1-2 GHz range the estimated power gain is 20 dB and the magnetic flux noise level is as low as 10(-4)Phi(0)....

  5. High-order noise filtering in nontrivial quantum logic gates.

    Science.gov (United States)

    Green, Todd; Uys, Hermann; Biercuk, Michael J

    2012-07-13

    Treating the effects of a time-dependent classical dephasing environment during quantum logic operations poses a theoretical challenge, as the application of noncommuting control operations gives rise to both dephasing and depolarization errors that must be accounted for in order to understand total average error rates. We develop a treatment based on effective Hamiltonian theory that allows us to efficiently model the effect of classical noise on nontrivial single-bit quantum logic operations composed of arbitrary control sequences. We present a general method to calculate the ensemble-averaged entanglement fidelity to arbitrary order in terms of noise filter functions, and provide explicit expressions to fourth order in the noise strength. In the weak noise limit we derive explicit filter functions for a broad class of piecewise-constant control sequences, and use them to study the performance of dynamically corrected gates, yielding good agreement with brute-force numerics.

  6. Quantum Hamiltonian reduction and conformal field theories

    International Nuclear Information System (INIS)

    Bershadsky, M.

    1991-01-01

    It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity

  7. An adaptive Kalman filter for speckle reductions in ultrasound images

    International Nuclear Information System (INIS)

    Castellini, G.; Labate, D.; Masotti, L.; Mannini, E.; Rocchi, S.

    1988-01-01

    Speckle is the term used to describe the granular appearance found in ultrasound images. The presence of speckle reduces the diagnostic potential of the echographic technique because it tends to mask small inhomogeneities of the investigated tissue. We developed a new method of speckle reductions that utilizes an adaptive one-dimensional Kalman filter based on the assumption that the observed image can be considered as a superimposition of speckle on a ''true images''. The filter adaptivity, necessary to avoid loss of resolution, has been obtained by statistical considerations on the local signal variations. The results of the applications of this particular Kalman filter, both on A-Mode and B-MODE images, show a significant speckle reduction

  8. On single-time reduction in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1984-01-01

    It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory

  9. Double Rashba Quantum Dots Ring as a Spin Filter

    Directory of Open Access Journals (Sweden)

    Chi Feng

    2008-01-01

    Full Text Available AbstractWe theoretically propose a double quantum dots (QDs ring to filter the electron spin that works due to the Rashba spin–orbit interaction (RSOI existing inside the QDs, the spin-dependent inter-dot tunneling coupling and the magnetic flux penetrating through the ring. By varying the RSOI-induced phase factor, the magnetic flux and the strength of the spin-dependent inter-dot tunneling coupling, which arises from a constant magnetic field applied on the tunneling junction between the QDs, a 100% spin-polarized conductance can be obtained. We show that both the spin orientations and the magnitude of it can be controlled by adjusting the above-mentioned parameters. The spin filtering effect is robust even in the presence of strong intra-dot Coulomb interactions and arbitrary dot-lead coupling configurations.

  10. Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Geremia, J M; Stockton, John K; Doherty, Andrew C; Mabuchi, Hideo [Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, California, 91125 (United States)

    2003-12-19

    The shot-noise detection limit in current high-precision magnetometry [I. Kominis, T. Kornack, J. Allred, and M. Romalis, Nature (London) 422, 596 (2003)]10.1038/nature01484 is a manifestation of quantum fluctuations that scale as 1/{radical}(N) in an ensemble of N atoms. Here, we develop a procedure that combines continuous measurement and quantum Kalman filtering [V. Belavkin, Rep. Math. Phys. 43, 405 (1999)] to surpass this conventional limit by exploiting conditional spin squeezing to achieve 1/N field sensitivity. Our analysis demonstrates the importance of optimal estimation for high bandwidth precision magnetometry at the Heisenberg limit and also identifies an approximate estimator based on linear regression.

  11. Adaptive spatial filtering for daytime satellite quantum key distribution

    Science.gov (United States)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2014-11-01

    The rate of secure key generation (SKG) in quantum key distribution (QKD) is adversely affected by optical noise and loss in the quantum channel. In a free-space atmospheric channel, the scattering of sunlight into the channel can lead to quantum bit error ratios (QBERs) sufficiently large to preclude SKG. Furthermore, atmospheric turbulence limits the degree to which spatial filtering can reduce sky noise without introducing signal losses. A system simulation quantifies the potential benefit of tracking and higher-order adaptive optics (AO) technologies to SKG rates in a daytime satellite engagement scenario. The simulations are performed assuming propagation from a low-Earth orbit (LEO) satellite to a terrestrial receiver that includes an AO system comprised of a Shack-Hartmann wave-front sensor (SHWFS) and a continuous-face-sheet deformable mirror (DM). The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain waveoptics hardware emulator. Secure key generation rates are then calculated for the decoy state QKD protocol as a function of the receiver field of view (FOV) for various pointing angles. The results show that at FOVs smaller than previously considered, AO technologies can enhance SKG rates in daylight and even enable SKG where it would otherwise be prohibited as a consequence of either background optical noise or signal loss due to turbulence effects.

  12. Reduction of hexavalent chromium collected on PVC filters.

    Science.gov (United States)

    Shin, Y C; Paik, N W

    2000-01-01

    Chromium exists at various valences, including elemental, trivalent, and hexavalent chromium, and undergoes reduction-oxidation reactions in the environment. Since hexavalent chromium is known as a human carcinogen, it is most important to evaluate the oxidation-reduction characteristics of the hexavalent chromium species. Although hexavalent chromium can be reduced to trivalent state, the detailed information on this in workplace environments is limited. The purpose of this study was to investigate hexavalent chromium reduction in time in various conditions. A pilot chrome plating operation was prepared and operated in a laboratory for this study. There was evidence that the hexavalent chromium was reduced by time after mist generation. The percentage ratio (with 95% confidence intervals in parentheses) of hexavalent chromium to total chromium was almost 100% (99.1 approximately 102.3) immediately after mist generation, and was reduced to 87.4% (84.8 approximately 89.9) at 1 hour and 81.0% (78.3 approximately 83.5) at 2 hours, respectively. Another test indicated that hexavalent chromium collected on PVC filters was also reduced by time after sampling. Hexavalent chromium was reduced to 90.8% (88.2 approximately 93.3) at 2 hours after sampling. It also was found that hexavalent chromium was reduced during storage in air. It is recommended that air samples of hexavalent chromium be protected against reduction during storage.

  13. Leukocyte-reduction filters and radiation do not cause significant changes in platelet function

    International Nuclear Information System (INIS)

    Nagura, Yutaka; Tsuno, Hirokazu; Shibata, Yoichi; Takahashi, Koki

    2003-01-01

    In the present study, we investigated the effects of radiation and leukocyte-reduction filters on platelet function. Platelet aggregation in response to collagen and ADP were measured prior to and after irradiation and filtration, as were the platelet recovery rate and complement factor C3. Four types of leukocyte-reduction filter were used, namely positively-, negatively-, and non-charged filters (all of polyester composition), as well as a polyurethane filter. Radiation itself did not significantly affect either the platelet recovery rate, platelet function, or C3 value. On the other hand, filtration through polyester leukocyte-reduction filters resulted in a significant reduction in the platelet recovery rate, an effect not observed with the polyurethane filter. However, none of the filters caused significant changes in platelet function or in C3 value. We concluded that radiation and filtration do not cause significant changes in platelet function, but polyurethane filters are superior to polyester filters in relation to platelet recovery. (author)

  14. On the relation between reduced quantisation and quantum reduction for spherical symmetry in loop quantum gravity

    International Nuclear Information System (INIS)

    Bodendorfer, N; Zipfel, A

    2016-01-01

    Building on a recent proposal for a quantum reduction to spherical symmetry from full loop quantum gravity, we investigate the relation between a quantisation of spherically symmetric general relativity and a reduction at the quantum level. To this end, we generalise the previously proposed quantum reduction by dropping the gauge fixing condition on the radial diffeomorphisms, thus allowing us to make direct contact with previous work on reduced quantisation. A dictionary between spherically symmetric variables and observables with respect to the reduction constraints in the full theory is discussed, as well as an embedding of reduced quantum states to a subsector of the quantum symmetry reduced full theory states. On this full theory subsector, the quantum algebra of the mentioned observables is computed and shown to qualitatively reproduce the quantum algebra of the reduced variables in the large quantum number limit for a specific choice of regularisation. Insufficiencies in recovering the reduced algebra quantitatively from the full theory are attributed to the oversimplified full theory quantum states we use. (paper)

  15. Symmetry reduction of loop quantum gravity

    International Nuclear Information System (INIS)

    Brunnemann, Johannes; Koslowski, Tim A

    2011-01-01

    The relation between standard loop quantum cosmology (LQC) and full loop quantum gravity (LQG) fails already at the first nontrivial step: the configuration space of LQC cannot be embedded into the configuration space of full LQG due to a topological obstruction. We investigate this obstruction in detail, because many topological obstructions are the source of physical effects. For this, we derive the topology of a large class of subspaces of the LQG configuration space. This allows us to find the extension of the standard LQC configuration space that admits an embedding in agreement with Fleischhack (arXiv:1010.0449v1 [math-ph]). We then construct the embedding for flat FRW LQC and find the reassuring result that it coincides asymptotically with standard LQC. (paper)

  16. Simple and efficient absorption filter for single photons from a cold atom quantum memory.

    Science.gov (United States)

    Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia

    2015-03-09

    The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.

  17. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    Directory of Open Access Journals (Sweden)

    Yokoyama Tomohiro

    2011-01-01

    Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d

  18. Effect of exposure dose reduction using a compensating filter

    International Nuclear Information System (INIS)

    Katsuda, Toshizo; Nakajima, Tadashi; Kuwano, Tadao; Ueda, Kouki; Sasaki, Yasuhiro; Yoshida, Jiro

    1993-01-01

    It is empirically said that the application of the compensating filter leads to a decrease in the exposure dose of the filter-inserted area and an increase in that of the otherwise area. Using the area-dosimeter, comparison was made of exposure doses by the application of the above filter and the otherwise filter in head simple X-P, abdominal angiography and lower extremity X-P. Using the filter for head simple X-P and Mix-Dp phantom, measurement was made of the absorbed dose at the 5 cm-depth to compare the rate of decrease in absorbed dose between the above both areas. Head simple X-P gained a decrease in area dose of 29%. The absorbed dose at the 5 cm-depth in the phantom experiment showed a decrease of over 26% at the filter-inserted area, but little increase at the otherwise area. The above results indicated the interposition of the filter between the X-ray tube and the object to lead to decreases not only in the area dose but also in the patient's exposure dose. (author)

  19. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.

    Science.gov (United States)

    Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2017-08-30

    Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

  20. Adaptive Subband Filtering Method for MEMS Accelerometer Noise Reduction

    Directory of Open Access Journals (Sweden)

    Piotr PIETRZAK

    2008-12-01

    Full Text Available Silicon microaccelerometers can be considered as an alternative to high-priced piezoelectric sensors. Unfortunately, relatively high noise floor of commercially available MEMS (Micro-Electro-Mechanical Systems sensors limits the possibility of their usage in condition monitoring systems of rotating machines. The solution of this problem is the method of signal filtering described in the paper. It is based on adaptive subband filtering employing Adaptive Line Enhancer. For filter weights adaptation, two novel algorithms have been developed. They are based on the NLMS algorithm. Both of them significantly simplify its software and hardware implementation and accelerate the adaptation process. The paper also presents the software (Matlab and hardware (FPGA implementation of the proposed noise filter. In addition, the results of the performed tests are reported. They confirm high efficiency of the solution.

  1. A kinetic study of biological Cr(VI) reduction in trickling filters with different filter media types

    International Nuclear Information System (INIS)

    Dermou, E.; Vayenas, D.V.

    2007-01-01

    Two pilot-scale trickling filters were used in order to estimate Cr(VI) reduction through biological mechanisms in biofilm reactors operated in SBR mode with recirculation using different filter media types, i.e. plastic media and calcitic gravel. The feed concentrations of Cr(VI) examined were about 5, 10, 20, 30, 50 and 100 mg/l, while the concentration of the organic carbon was constant at 400 mg/l, in order to avoid carbon limitations in the bulk liquid. Maximum reduction rates of 4.8 and 4.7 g Cr(VI)/d were observed for feed Cr(VI) concentration of about 5 mg Cr(VI)/l, for the filters with the plastic support material and the gravel media, respectively. The reduction rates were significantly affected by the feed Cr(VI) concentration in both bioreactors. A dual-enzyme kinetic model was used in order to describe Cr(VI) reduction by aerobically grown mixed cultures. Model predictions were found to correspond very closely to experimental quantitative observations of Cr(VI) reduction at both pilot-scale trickling filters used

  2. Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

    International Nuclear Information System (INIS)

    Hilts, Michelle; Jirasek, Andrew

    2008-01-01

    X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR ∼20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR ∼5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur

  3. Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2018-02-01

    Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.

  4. Metric dimensional reduction at singularities with implications to Quantum Gravity

    International Nuclear Information System (INIS)

    Stoica, Ovidiu Cristinel

    2014-01-01

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained

  5. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bronn, Nicholas T., E-mail: ntbronn@us.ibm.com; Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Liu, Yanbing; Houck, Andrew A. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  6. Effect of 30-Gy irradiation in conjunction with leukocyte reduction filter on platelet and transfusion efficiency

    International Nuclear Information System (INIS)

    Shimojima, Hiromi; Sawada, Umihiko; Horie, Takashi; Itoh, Takeyoshi

    2001-01-01

    To evaluate the effect of 30-Gy irradiation in conjunction with leukocyte reduction filter on platelet and transfusion efficiency, we studied platelet recovery, leukocyte reduction rate, content of platelet factor 4 and β-thromboglobulin in platelet products, platelet functions, and positive rates of platelet surface membranes CD42 and CD62, prior to and after treatment. We also evaluated the efficiency of platelet transfusion by estimating post- transfusion (1 and 24 hour) corrected count increment (CCI), and transfusion side effects. Recovery of platelets was 91.8±6.5% and depletion rate of leukocytes was 1.7±1.1 log. There was no significant difference in platelet activation markers or function tests prior to and after the procedure. The mean post-transfusion CCI and 1 and 24 hours were 16,550 (n=114) and 13,310 (n=93), respectively, with 30-Gy irradiation and leukocyte reduction filter. Those treated solely with leukocyte reduction filter were 14,970 (n=114) and 10,880 (n=118), respectively. There was no increase in transfusion side effects after the treatment of platelet concentrate with 30-Gy irradiation combined with leukocyte reduction filter compared with treatment by leukocyte reduction filter alone. These results indicate that treatment with 30 Gy irradiation in conjunction with leukocyte reduction filter is safe and effective in platelet transfusion. (author)

  7. Walsh-synthesized noise filters for quantum logic

    International Nuclear Information System (INIS)

    Ball, Harrison; Biercuk, Michael J.

    2015-01-01

    We study a novel class of open-loop control protocols constructed to perform arbitrary nontrivial single-qubit logic operations robust against time-dependent non-Markovian noise. Amplitude and phase modulation protocols are crafted leveraging insights from functional synthesis and the basis set of Walsh functions. We employ the experimentally validated generalized filter-transfer function formalism in order to find optimized control protocols for target operations in SU(2) by defining a cost function for the filter-transfer function to be minimized through the applied modulation. Our work details the various techniques by which we define and then optimize the filter-synthesis process in the Walsh basis, including the definition of specific analytic design rules which serve to efficiently constrain the available synthesis space. This approach yields modulated-gate constructions consisting of chains of discrete pulse-segments of arbitrary form, whose modulation envelopes possess intrinsic compatibility with digital logic and clocking. We derive novel families of Walsh-modulated noise filters designed to suppress dephasing and coherent amplitude-damping noise, and describe how well-known sequences derived in NMR also fall within the Walsh-synthesis framework. Finally, our work considers the effects of realistic experimental constraints such as limited modulation bandwidth on achievable filter performance. (orig.)

  8. Walsh-synthesized noise filters for quantum logic

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Harrison; Biercuk, Michael J. [The University of Sydney, ARC Centre for Engineered Quantum Systems, School of Physics, Sydney, NSW (Australia); National Measurement Institute, Sydney, NSW (Australia)

    2015-05-14

    We study a novel class of open-loop control protocols constructed to perform arbitrary nontrivial single-qubit logic operations robust against time-dependent non-Markovian noise. Amplitude and phase modulation protocols are crafted leveraging insights from functional synthesis and the basis set of Walsh functions. We employ the experimentally validated generalized filter-transfer function formalism in order to find optimized control protocols for target operations in SU(2) by defining a cost function for the filter-transfer function to be minimized through the applied modulation. Our work details the various techniques by which we define and then optimize the filter-synthesis process in the Walsh basis, including the definition of specific analytic design rules which serve to efficiently constrain the available synthesis space. This approach yields modulated-gate constructions consisting of chains of discrete pulse-segments of arbitrary form, whose modulation envelopes possess intrinsic compatibility with digital logic and clocking. We derive novel families of Walsh-modulated noise filters designed to suppress dephasing and coherent amplitude-damping noise, and describe how well-known sequences derived in NMR also fall within the Walsh-synthesis framework. Finally, our work considers the effects of realistic experimental constraints such as limited modulation bandwidth on achievable filter performance. (orig.)

  9. Phonon squeezed states: quantum noise reduction in solids

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1999-03-01

    This article discusses quantum fluctuation properties of a crystal lattice, and in particular, phonon squeezed states. Squeezed states of phonons allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. Here we discuss our studies of both continuous-wave and impulsive second-order Raman scattering mechanisms. The later approach was used to experimentally suppress (by one part in a million) fluctuations in phonons. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments. Further information, including preprints and animations, are available in http://www-personal.engin.umich.edu/∼nori/squeezed.html.

  10. Quantum model for a periodically driven selectivity filter in a K+ ion channel

    International Nuclear Information System (INIS)

    Cifuentes, A A; Semião, F L

    2014-01-01

    In this work, we present a quantum transport model for the selectivity filter in the KcsA potassium ion channel. This model is fully consistent with the fact that two conduction pathways are involved in the translocation of ions through the filter, and we show that the presence of a second path may actually bring advantages for the filter as a result of quantum interference. To highlight interferences and resonances in the model, we consider the selectivity filter to be driven by a controlled time-dependent external field, which changes the free-energy scenario and consequently the conduction of the ions. In particular, we demonstrate that the two-pathway conduction mechanism is more advantageous for the filter when dephasing in the transient configurations is lower than in the main configurations. As a matter of fact, K + ions in the main configurations are highly coordinated by oxygen atoms of the filter backbone, and this increases noise. Moreover, we also show that for a wide range of dephasing rates and driving frequencies, the two-pathway conduction used by the filter leads to higher ionic currents than the single–path model. (paper)

  11. Measurement-based local quantum filters and their ability to ...

    Indian Academy of Sciences (India)

    Debmalya Das

    Berhampur (Transit Campus), National Highway 59, Berhampur 760 010, India. ∗. Corresponding author. E-mail: arvind@iisermohali.ac.in. MS received 29 July 2016; revised 21 October 2016; accepted 16 December 2016; published online 30 May 2017. Abstract. We introduce local filters as a means to detect the ...

  12. High-order noise filtering in nontrivial quantum logic gates

    CSIR Research Space (South Africa)

    Green, T

    2012-07-01

    Full Text Available composed of arbitrary control sequences. We present a general method to calculate the ensemble-averaged entanglement fidelity to arbitrary order in terms of noise filter functions, and provide explicit expressions to fourth order in the noise strength...

  13. [Examination of patient dose reduction in cardiovasucular X-ray systems with a metal filter].

    Science.gov (United States)

    Yasuda, Mitsuyoshi; Kato, Kyouichi; Tanabe, Nobuaki; Sakiyama, Koushi; Uchiyama, Yushi; Suzuki, Yoshiaki; Suzuki, Hiroshi; Nakazawa, Yasuo

    2012-01-01

    In interventional X-ray for cardiology of flat panel digital detector (FPD), the phenomenon that exposure dose was suddenly increased when a subject thickness was thickened was recognized. At that time, variable metal built-in filters in FPD were all off. Therefore, we examined whether dose reduction was possible without affecting a clinical image using metal filter (filter) which we have been conventionally using for dose reduction. About 45% dose reduction was achieved when we measured an exposure dose at 30 cm of acrylic thickness in the presence of a filter. In addition, we measured signal to noise ratio/contrast to noise ratio/a resolution limit by the visual evaluation, and there was no influence by filter usage. In the clinical examination, visual evaluation of image quality of coronary angiography (40 cases) using a 5-point evaluation scale by a physician was performed. As a result, filter usage did not influence the image quality (p=NS). Therefore, reduction of sudden increase of exposure dose was achieved without influencing an image quality by adding filter to FPD.

  14. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    Science.gov (United States)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  15. DFR Perturbative Quantum Field Theory on Quantum Space Time, and Wick Reduction

    Science.gov (United States)

    Piacitelli, Gherardo

    We discuss the perturbative approach à la Dyson to a quantum field theory with nonlocal self-interaction :φ⋆···⋆φ, according to Doplicher, Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction of nonlocally time-ordered products of Wick monomials can be performed as usual, and we discuss a very simple Dyson diagram.

  16. Evaluation of the effects of an arm artifact reduction filter in computed tomography

    International Nuclear Information System (INIS)

    Nozaki, Fumie; Ohno, Hajime; Hirako, Tetsuya

    2002-01-01

    While performing CT during arterial portography (CTAP) or CT arteriography (CTA), we have instructed patients to in order to reduce streak artifacts. However the repetitive raising and lowering their arms has made it difficult to keep a clean zone and as well as to maintain the position of a target organ. An arm artifact reduction (AAR) filter developed by GE Yokokawa Medical System has been reported to be useful for reducing streak artifacts in CTAP and CTA. The purpose of this study was to estimate the effectiveness of the AAR filter in terms of artifact reduction ratio, CT value, standard deviation and spatial resolution. The use of an AAR filter reduced streak artifacts on images by 15-22% compared with those on images obtained by without the use of the filter and limited deterioration of spatial resolution to within 1%. Moreover, CT value in examination using AAR filter showed no significant change compared with that in non-filter's examination. It is concluded that the use of an AAR filter reduces the burden for the patient and increase the accuracy and flexibility of CT examination while minimizing the reduction in the image quality in CTAP and CTA. (author)

  17. REDUCTION OF SOIL INFILTRATION AREA THANKS TO THE WASTEWATER SECONDARY TREATMENT FILTERS

    Directory of Open Access Journals (Sweden)

    Marcin Spychała

    2016-05-01

    Full Text Available The aim of the article was to determine the feasibility and advisability of the use of secondary filters applied before discharge of wastewater into the ground in the context of the fulfillment of the conditions of the current Regulation of the Minister of Environment of 18 November 2014 on the conditions to be met during the discharge of wastewater into the water or the ground and on substances particularly harmful to the aquatic environment. Due to expected in practice, an application and popularity, as compared variants, reactors having a very simple construction were used. The average values of removal of BOD5, COD and total suspended solids for three secondary filters technologies: biological trickling filter with natural ventilation, sand filter and nonwoven filter were compared. Additionally, as a fourth option a simple mathematical model has been presented. This model allows to estimate of BOD5 at the outflow from biological trickling filter and to verify the empirical data. Despite a large usefulness, it is rarely used in our country. It has been found the possibility of reduction of the infiltration area (surface area after reduction is 38–63% of the initial value due to the application of secondary filters. In the case of a high initial demand of the terrain area for drainage localization the benefit in costs resulting from the reduction (several thousand of PLN or may even significantly exceed the cost of buying and installing a cheap secondary filter. In addition, reduction the occupied area of the lot (in extreme cases up to 100 m2 by using the secondary filter allows to use the unoccupied space for other purposes, and thus gives additional economic advantage.

  18. Filter testing and development for prolonged transuranic service and waste reduction

    International Nuclear Information System (INIS)

    Geer, J.A.; Buttedahl, O.I.; Skaats, C.D.; Terada, K.; Woodard, R.W.

    1977-02-01

    The life of High Efficiency Particulate Air (HEPA) filters used in transuranic service is influenced greatly by the gaseous and particulate matter to which the filters are exposed. The most severe conditions encountered at Rocky Flats are at the ventilation systems serving the plutonium recovery operations in Bldg. 771. A project of filter testing and development for prolonged transuranic service and waste reduction was formally initiated at Rocky Flats on July 1, 1975. The project is directed toward improving filtration methods which will prolong the life of HEPA filter systems without sacrificing effectiveness. Another important aspect of the project is to reduce the volume of HEPA filter waste shipped from the plant for long-term storage. Progress to September 30, 1976, is reported

  19. Median Filter Noise Reduction of Image and Backpropagation Neural Network Model for Cervical Cancer Classification

    Science.gov (United States)

    Wutsqa, D. U.; Marwah, M.

    2017-06-01

    In this paper, we consider spatial operation median filter to reduce the noise in the cervical images yielded by colposcopy tool. The backpropagation neural network (BPNN) model is applied to the colposcopy images to classify cervical cancer. The classification process requires an image extraction by using a gray level co-occurrence matrix (GLCM) method to obtain image features that are used as inputs of BPNN model. The advantage of noise reduction is evaluated by comparing the performances of BPNN models with and without spatial operation median filter. The experimental result shows that the spatial operation median filter can improve the accuracy of the BPNN model for cervical cancer classification.

  20. Artifact reduction of compressed images and video combining adaptive fuzzy filtering and directional anisotropic diffusion

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Forchhammer, Søren; Korhonen, Jari

    2011-01-01

    and ringing artifacts, we have applied directional anisotropic diffusion. Besides that, the selection of the adaptive threshold parameter for the diffusion coefficient has also improved the performance of the algorithm. Experimental results on JPEG compressed images as well as MJPEG and H.264 compressed......Fuzzy filtering is one of the recently developed methods for reducing distortion in compressed images and video. In this paper, we combine the powerful anisotropic diffusion equations with fuzzy filtering in order to reduce the impact of artifacts. Based on the directional nature of the blocking...... videos show improvement in artifact reduction of the proposed algorithm over other directional and spatial fuzzy filters....

  1. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  2. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems

    Directory of Open Access Journals (Sweden)

    Min Chul Kim

    2011-10-01

    Full Text Available Recently, the range of available Radio Frequency Identification (RFID tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less Mean Squared Error (MSE than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  3. Improved Kalman filter method for measurement noise reduction in multi sensor RFID systems.

    Science.gov (United States)

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available radio frequency identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less mean squared error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  4. Comparison of conventional filtering and independent component analysis for artifact reduction in simultaneous gastric EMG and magnetogastrography from porcines.

    Science.gov (United States)

    Irimia, Andrei; Richards, William O; Bradshaw, L Alan

    2009-11-01

    In this study, we perform a comparative study of independent component analysis (ICA) and conventional filtering (CF) for the purpose of artifact reduction from simultaneous gastric EMG and magnetogastrography (MGG). EMG/MGG data were acquired from ten anesthetized pigs by obtaining simultaneous recordings using serosal electrodes (EMG) as well as with a superconducting quantum interference device biomagnetometer (MGG). The analysis of MGG waveforms using ICA and CF indicates that ICA is superior to the CF method in its ability to extract respiration and cardiac artifacts from MGG recordings. A signal frequency analysis of ICA- and CF-processed data was also undertaken using waterfall plots, and it was determined that the two methods produce qualitatively comparable results. Through the use of simultaneous EMG/MGG, we were able to demonstrate the accuracy and trustworthiness of our results by comparison and cross-validation within the framework of a porcine model.

  5. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Science.gov (United States)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  6. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    International Nuclear Information System (INIS)

    Comani, S; Mantini, D; Alleva, G; Luzio, S Di; Romani, G L

    2005-01-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz

  7. External modes in quantum dot light emitting diode with filtered optical feedback

    International Nuclear Information System (INIS)

    Al Husseini, Hussein B.; Al Naimee, Kais A.; Al-Khursan, Amin H.; Khedir, Ali. H.

    2016-01-01

    This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to a coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.

  8. Ammonia-nitrogen and Phosphate Reduction by Bio-Filter using Factorial Design

    Science.gov (United States)

    Kasmuri, Norhafezah; Ashikin Mat Damin, Nur; Omar, Megawati

    2018-02-01

    Untreated landfill leachate is known to have endangered the environment. As such new treatment must be sought to ensure its cost-effective and sustainable treatment. Thus this paper reports the effectiveness of bio-filter to remove pollutants. In this research, the reduction of nutrients concentration was evaluated in two conditions: using bio-filter and without bio-filter. Synthetic wastewater was used in the batch culture. It was conducted within 21 days in the initial mediums of 100 mg/L ammonia-nitrogen. The nitrification medium consisted of 100 mg/L of ammonia-nitrogen while the nitrite assay had none. The petri dish experiment was also conducted to observe the existence of any colony. The results showed 22% of ammonia- nitrogen reduction and 33% phosphate in the nitrification medium with the bio-filter. The outcome showed that the bio-filter was capable to reduce the concentration of pollutants by retaining the slow growing bacteria (AOB and NOB) on the plastic carrier surface. The factorial design was applied to study the effect of the initial ammonia-nitrogen concentration and duration on nitrite-nitrogen removal. Finally, a regression equation was produced to predict the rate of nitrite-nitrogen removal without conducting extended experiments and to reduce the number of trials experiment.

  9. Image pre-filtering for measurement error reduction in digital image correlation

    Science.gov (United States)

    Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing

    2015-02-01

    In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random

  10. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Mohammadi, Mahdi; Khotanlou, Hassan; Mohammadi, Mohammad

    2011-01-01

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  11. Supported quantum clusters of silver as enhanced catalysts for reduction

    Directory of Open Access Journals (Sweden)

    Leelavathi Annamalai

    2011-01-01

    Full Text Available Abstract Quantum clusters (QCs of silver such as Ag7(H2MSA7, Ag8(H2MSA8 (H2MSA, mercaptosuccinic acid were synthesized by the interfacial etching of Ag nanoparticle precursors and were loaded on metal oxide supports to prepare active catalysts. The supported clusters were characterized using high resolution transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and laser desorption ionization mass spectrometry. We used the conversion of nitro group to amino group as a model reaction to study the catalytic reduction activity of the QCs. Various aromatic nitro compounds, namely, 3-nitrophenol (3-np, 4-nitrophenol (4-np, 3-nitroaniline (3-na, and 4-nitroaniline (4-na were used as substrates. Products were confirmed using UV-visible spectroscopy and electrospray ionization mass spectrometry. The supported QCs remained active and were reused several times after separation. The rate constant suggested that the reaction followed pseudo-first-order kinetics. The turn-over frequency was 1.87 s-1 per cluster for the reduction of 4-np at 35°C. Among the substrates investigated, the kinetics followed the order, SiO2 > TiO2 > Fe2O3 > Al2O3.

  12. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    Science.gov (United States)

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Modeling of detective quantum efficiency considering scatter-reduction devices

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Woong; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The reduction of signal-to-noise ratio (SNR) cannot be restored and thus has become a severe issue in digital mammography.1 Therefore, antiscatter grids are typically used in mammography. Scatter-cleanup performance of various scatter-reduction devices, such as air gaps,2 linear (1D) or cellular (2D) grids,3, 4 and slot-scanning devices,5 has been extensively investigated by many research groups. In the present time, a digital mammography system with the slotscanning geometry is also commercially available.6 In this study, we theoretically investigate the effect of scattered photons on the detective quantum efficiency (DQE) performance of digital mammography detectors by using the cascaded-systems analysis (CSA) approach. We show a simple DQE formalism describing digital mammography detector systems equipped with scatter reduction devices by regarding the scattered photons as additive noise sources. The LFD increased with increasing PMMA thickness, and the amounts of LFD indicated the corresponding SF. The estimated SFs were 0.13, 0.21, and 0.29 for PMMA thicknesses of 10, 20, and 30 mm, respectively. While the solid line describing the measured MTF for PMMA with 0 mm was the result of least-squares of regression fit using Eq. (14), the other lines were simply resulted from the multiplication of the fit result (for PMMA with 0 mm) with the (1-SF) estimated from the LFDs in the measured MTFs. Spectral noise-power densities over the entire frequency range were not much changed with increasing scatter. On the other hand, the calculation results showed that the spectral noise-power densities increased with increasing scatter. This discrepancy may be explained by that the model developed in this study does not account for the changes in x-ray interaction parameters for varying spectral shapes due to beam hardening with increasing PMMA thicknesses.

  14. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    Energy Technology Data Exchange (ETDEWEB)

    Maitree, R; Guzman, G; Chundury, A; Roach, M; Yang, D [Washington University School of Medicine, St Louis, MO (United States)

    2016-06-15

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness of available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and

  15. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    International Nuclear Information System (INIS)

    Maitree, R; Guzman, G; Chundury, A; Roach, M; Yang, D

    2016-01-01

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness of available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and

  16. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  17. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  18. Volume reduction of filter media at Susquehanna steam and electric station

    International Nuclear Information System (INIS)

    Boris, G.F.; Hettinger, J.

    1990-01-01

    This paper describes the joint efforts between Pennsylvania Power ampersand Light (PPQL) and Scientific Ecology Group, Inc. (SEG) to reduce the volume of waste shipped to the burial site by the Susquehanna Steam and Electric Station (SSES) and the resulting savings realized as a result. The filter media used at SSES for its radwaste filters is composed of a mix of anion and cation powered resins, powered carbon, diatomaceous earth and a fibrous overlay. Due to the nature of this waste stream, dewatering was difficult using systems previously available in the industry. Thus, processing was accomplished by decanting (to concentrate the waste) and solidification. In the continuing effort to dewater wastes of this nature, SEG developed a new fabric filter dewatering system (RDU). To investigate its potential use in large containers, this dewatering system was installed in drum-size high integrity containers and used to test its dewatering capabilities on actual SSES waste. Promising results from these tests warranted a full-scale test. This proved successful and implementation of this processing scheme was immediate. Cost savings were substantial in transportation, burial and processing costs as well as personnel exposure. Also, additional waste volume reduction was found due to the volume reduction capability of the dewatering system (equivalent volume of new filter media approximately 1.2 times that of dewatered product volume). Additional savings resulted from SSES's continuing effort to minimize radwaste generation. Combined, these have reduced the number of shipments of filter media in 1989 to sixty percent of the number made in 1988 and have reduced costs by approximately fifty percent. 4 figs., 1 tab

  19. The 2D Hotelling filter - a quantitative noise-reducing principal-component filter for dynamic PET data, with applications in patient dose reduction

    International Nuclear Information System (INIS)

    Axelsson, Jan; Sörensen, Jens

    2013-01-01

    In this paper we apply the principal-component analysis filter (Hotelling filter) to reduce noise from dynamic positron-emission tomography (PET) patient data, for a number of different radio-tracer molecules. We furthermore show how preprocessing images with this filter improves parametric images created from such dynamic sequence. We use zero-mean unit variance normalization, prior to performing a Hotelling filter on the slices of a dynamic time-series. The Scree-plot technique was used to determine which principal components to be rejected in the filter process. This filter was applied to [ 11 C]-acetate on heart and head-neck tumors, [ 18 F]-FDG on liver tumors and brain, and [ 11 C]-Raclopride on brain. Simulations of blood and tissue regions with noise properties matched to real PET data, was used to analyze how quantitation and resolution is affected by the Hotelling filter. Summing varying parts of a 90-frame [ 18 F]-FDG brain scan, we created 9-frame dynamic scans with image statistics comparable to 20 MBq, 60 MBq and 200 MBq injected activity. Hotelling filter performed on slices (2D) and on volumes (3D) were compared. The 2D Hotelling filter reduces noise in the tissue uptake drastically, so that it becomes simple to manually pick out regions-of-interest from noisy data. 2D Hotelling filter introduces less bias than 3D Hotelling filter in focal Raclopride uptake. Simulations show that the Hotelling filter is sensitive to typical blood peak in PET prior to tissue uptake have commenced, introducing a negative bias in early tissue uptake. Quantitation on real dynamic data is reliable. Two examples clearly show that pre-filtering the dynamic sequence with the Hotelling filter prior to Patlak-slope calculations gives clearly improved parametric image quality. We also show that a dramatic dose reduction can be achieved for Patlak slope images without changing image quality or quantitation. The 2D Hotelling-filtering of dynamic PET data is a computer

  20. Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit

    Science.gov (United States)

    Tan, Ying-ying; Cheng, Xue-yun; Guan, Zhi-jin; Liu, Yang; Ma, Haiying

    2018-03-01

    With the development of reversible and quantum computing, study of reversible and quantum circuits has also developed rapidly. Due to physical constraints, most quantum circuits require quantum gates to interact on adjacent quantum bits. However, many existing quantum circuits nearest-neighbor have large quantum cost. Therefore, how to effectively reduce quantum cost is becoming a popular research topic. In this paper, we proposed multiple optimization strategies to reduce the quantum cost of the circuit, that is, we reduce quantum cost from MCT gates decomposition, nearest neighbor and circuit simplification, respectively. The experimental results show that the proposed strategies can effectively reduce the quantum cost, and the maximum optimization rate is 30.61% compared to the corresponding results.

  1. Optimal spatio-temporal filter for the reduction of crosstalk in surface electromyogram

    Science.gov (United States)

    Mesin, Luca

    2018-02-01

    Objective. Crosstalk can pose limitations to the applications of surface electromyogram (EMG). Its reduction can help in the identification of the activity of specific muscles. The selectivity of different spatial filters was tested in the literature both in simulations and experiments: their performances are affected by many factors (e.g. anatomy, conduction properties of the tissues and dimension/location of the electrodes); moreover, they reduce crosstalk by decreasing the detection volume, recording data that represent only the activity of a small portion of the muscle of interest. In this study, an alternative idea is proposed, based on a spatio-temporal filter. Approach. An adaptive method is applied, which filters both in time and among different channels, providing a signal that maximally preserves the energy of the EMG of interest and discards that of nearby muscles (increasing the signal to crosstalk ratio, SCR). Main results. Tests with simulations and experimental data show an average increase of the SCR of about 2 dB with respect to the single or double differential data processed by the filter. This allows to reduce the bias induced by crosstalk in conduction velocity and force estimation. Significance. The method can be applied to few channels, so that it is useful in applicative studies (e.g. clinics, gate analysis, rehabilitation protocols with EMG biofeedback and prosthesis control) where limited and not selective information is usually available.

  2. Parameter importance and uncertainty in predicting runoff pesticide reduction with filter strips.

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Fox, Garey A; Sabbagh, George J

    2010-01-01

    Vegetative filter strips (VFS) are an environmental management tool used to reduce sediment and pesticide transport from surface runoff. Numerical models of VFS such as the Vegetative Filter Strip Modeling System (VFSMOD-W) are capable of predicting runoff, sediment, and pesticide reduction and can be useful tools to understand the effectiveness of VFS and environmental conditions under which they may be ineffective. However, as part of the modeling process, it is critical to identify input factor importance and quantify uncertainty in predicted runoff, sediment, and pesticide reductions. This research used state-of-the-art global sensitivity and uncertainty analysis tools, a screening method (Morris) and a variance-based method (extended Fourier Analysis Sensitivity Test), to evaluate VFSMOD-W under a range of field scenarios. The three VFS studies analyzed were conducted on silty clay loam and silt loam soils under uniform, sheet flow conditions and included atrazine, chlorpyrifos, cyanazine, metolachlor, pendimethalin, and terbuthylazine data. Saturated hydraulic conductivity was the most important input factor for predicting infiltration and runoff, explaining >75% of the total output variance for studies with smaller hydraulic loading rates ( approximately 100-150 mm equivalent depths) and approximately 50% for the higher loading rate ( approximately 280-mm equivalent depth). Important input factors for predicting sedimentation included hydraulic conductivity, average particle size, and the filter's Manning's roughness coefficient. Input factor importance for pesticide trapping was controlled by infiltration and, therefore, hydraulic conductivity. Global uncertainty analyses suggested a wide range of reductions for runoff (95% confidence intervals of 7-93%), sediment (84-100%), and pesticide (43-100%) . Pesticide trapping probability distributions fell between runoff and sediment reduction distributions as a function of the pesticides' sorption. Seemingly

  3. Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire

    International Nuclear Information System (INIS)

    Xiao, Xianbo; Nie, Wenjie; Chen, Zhaoxia; Zhou, Guanghui; Li, Fei

    2014-01-01

    We perform a numerical study on the spin-resolved transport in a quantum wire (QW) under the modulation of both Rashba spin-orbit coupling (SOC) and a perpendicular magnetic field by using the developed Usuki transfer-matrix method in combination with the Landauer-Büttiker formalism. Wide spin filtering energy windows can be achieved in this system for unpolarized spin injection. In addition, both the width of energy window and the magnitude of spin conductance within these energy windows can be tuned by varying Rashba SOC strength, which can be apprehended by analyzing the energy dispersions and spin-polarized density distributions inside the QW, respectively. Further study also demonstrates that these Rashba-SOC-controlled spin filtering energy windows show a strong robustness against disorders. These findings may not only benefit to further understand the spin-dependent transport properties of a QW in the presence of external fields but also provide a theoretical instruction to design a spin filter device.

  4. Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xianbo, E-mail: xxb-11@hotmail.com; Nie, Wenjie [School of Computer, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China); Chen, Zhaoxia [School of Mechatronics Engineering, East China Jiaotong University, Nanchang 330013 (China); Zhou, Guanghui [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081 (China); Li, Fei, E-mail: wltlifei@sina.com [Office of Scientific Research, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China)

    2014-06-14

    We perform a numerical study on the spin-resolved transport in a quantum wire (QW) under the modulation of both Rashba spin-orbit coupling (SOC) and a perpendicular magnetic field by using the developed Usuki transfer-matrix method in combination with the Landauer-Büttiker formalism. Wide spin filtering energy windows can be achieved in this system for unpolarized spin injection. In addition, both the width of energy window and the magnitude of spin conductance within these energy windows can be tuned by varying Rashba SOC strength, which can be apprehended by analyzing the energy dispersions and spin-polarized density distributions inside the QW, respectively. Further study also demonstrates that these Rashba-SOC-controlled spin filtering energy windows show a strong robustness against disorders. These findings may not only benefit to further understand the spin-dependent transport properties of a QW in the presence of external fields but also provide a theoretical instruction to design a spin filter device.

  5. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    Science.gov (United States)

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  6. Risk reduction by filtered venting in PWR large dry-containments

    International Nuclear Information System (INIS)

    Gazzillo, F.; Kastenberg, W.E.

    1984-01-01

    The potential risk reduction associated with a Filtered-Vented Containment System is evaluated. A low-volume venting strategy has been considered and data referring to the Zion power plant, along with the results of the Zion Probabilistic Safety Study, have been used. An estimate of the reduction factor is first made for a single core melt accident sequence whose containment failure mode is late overpressure. The result, interpreted as a reduction factor applicable to the release category associated with containment late overpressure is then used for the estimation of the overall risk reduction factor. In particular, the case of internal and external risk for the Zion power plant are considered. Because the contribution from seismic events dominates the overall risk, the importance of different assumptions for seismic fragility is also assessed. Finally an uncertainty analysis of the risk reduction factor for a single accident sequence is performed. An estimate is also obtained on the level of confidence with which certain required values of risk reduction can be achieved. (orig.)

  7. Single-Channel Noise Reduction using Unified Joint Diagonalization and Optimal Filtering

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom

    2014-01-01

    consider two cases, where, respectively, no distortion and distortion are incurred on the desired signal. The former can be achieved when the covariance matrix of the desired signal is rank deficient, which is the case, for example, for voiced speech. In the latter case, the covariance matrix......In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and noise signals. More specifically, the eigenvectors from the joint...

  8. Experimental study on using a high-temperature superconducting inductor for power loss reduction in an active power filter

    International Nuclear Information System (INIS)

    Chao, C; To, H P; Grantham, C; Rahman, M F

    2006-01-01

    An active power filter improves the electric power quality through the compensation of harmonics in the power network. A current-source active power filter using a conventional copper inductor for its energy storage has a significant power loss. The loss in the copper inductor can be substantially reduced by using a high-temperature superconducting (HTS) inductor instead. Experiments have been conducted on a prototype current-source active power filter for studying the power loss reduction effect and harmonics compensation performance of the active power filter using a HTS inductor. Experimental results are analysed and discussed in this paper

  9. Models for universal reduction of macroscopic quantum fluctuations

    International Nuclear Information System (INIS)

    Diosi, L.

    1988-10-01

    If quantum mechanics is universal, then macroscopic bodies would, in principle, possess macroscopic quantum fluctuations (MQF) in their positions, orientations, densities etc. Such MQF, however, are not observed in nature. The hypothesis is adopted that the absence of MQF is due to a certain universal mechanism. Gravitational measures were applied for reducing MQF of the mass density. This model leads to classical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted macroscopic superpositions of quantum states will be destroyed within short times. (R.P.) 34 refs

  10. A study of glasses-type color CGH using a color filter considering reduction of blurring

    Science.gov (United States)

    Iwami, Saki; Sakamoto, Yuji

    2009-02-01

    We have developed a glasses-type color computer generated hologram (CGH) by using a color filter. The proposed glasses consist of two "lenses" made of overlapping holograms and color filters. The holograms, which are calculated to reconstruct images in each primary color, are divided to small areas, which we called cells, and superimposed on one hologram. In the same way, colors of the filter correspond to the hologram cells. We can configure it very simply without a complex optical system, and the configuration yields a small and light weight system suitable for glasses. When the cell is small enough, the colors are mixed and reconstructed color images are observed. In addition, color expression of reconstruction images improves, too. However, using small cells blurrs reconstructed images because of the following reasons: (1) interference between cells because of the correlation with the cells, and (2) reduction of resolution caused by the size of the cell hologram. We are investigating in order to make a hologram that has high resolution reconstructed color images without ghost images. In this paper, we discuss (1) the details of the proposed glasses-type color CGH, (2) appropriate cell size for an eye system, (3) effects of cell shape on the reconstructed images, and (4) a new method to reduce the blurring of the images.

  11. Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence

    CERN Document Server

    Orszag, Miguel

    2016-01-01

    This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to...

  12. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Science.gov (United States)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  13. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.

    Science.gov (United States)

    Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L

    2017-09-01

    Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dose reduction using non lineal diffusion and smoothing filters in computed radiography

    International Nuclear Information System (INIS)

    Sánchez, M.G.; Juste, B.; Vidal, V.; Verdú, G.; Mayo, P.; Rodenas, F.

    2014-01-01

    The use of Computed Radiography (CR) into clinical practice has been followed by a high increase in the number of examinations performed and overdose cases in patients, especially children in pediatric applications. Computed radiographic images are corrupted by noise because either data acquisition or data transmission. The level of this inherent noise is related with the X-ray dose exposure: lower radiation exposure involves higher noise level. The main aim of this work is to reduce the noise present in a low radiation dose CR image in order to the get a CR image of the same quality as a higher radiation exposure image. In this work, we use a non lineal diffusion filtering method to reduce the noise level in a CR, this means that we are able to reduce the exposure, milliampere-second (mAs), and the dose absorbed by the patients. In order to get an optimal result, the diffusive filter is complemented with a smoothing filter with edge detection in order to preserve edges. Therefore, the proposed method consists in obtaining a good quality CR image for diagnostic purposes by selection of lower X-ray exposure jointly with a reduction of the noise. We conclude that a good solution to minimize the dose to patients, especially children in pediatric applications, in X-ray computed radiography consists in decreasing the mAs of the X-ray exposure and then processing the image with the proposed method. - Highlights: • We have investigated the techniques to obtain the image quality to make a confident diagnosis. • We have used diffusion and smoothing filter in order to reduce the exposure. • Reducing CR doses, especially in pediatric applications. • The new CR images allow medical researchers to analyze how low dose affects the patient diagnosis

  15. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    Science.gov (United States)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  16. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    Energy Technology Data Exchange (ETDEWEB)

    Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi, E-mail: takikawa@ee.tut.ac.jp [Toyohashi University of Technology, 1-1 Habarigaoka, Tempaku, Toyohashi 441-8580 (Japan); Tanoue, Hideto [Kitakyushu National College of Technology, 5-20-1, Kokuraminami, Kitakyushu, Fukuoka 802-0985 (Japan)

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  17. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    Science.gov (United States)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  18. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    International Nuclear Information System (INIS)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-01-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD

  19. Speckle reduction process based on digital filtering and wavelet compounding in optical coherence tomography for dermatology

    Science.gov (United States)

    Gómez Valverde, Juan J.; Ortuño, Juan E.; Guerra, Pedro; Hermann, Boris; Zabihian, Behrooz; Rubio-Guivernau, José L.; Santos, Andrés.; Drexler, Wolfgang; Ledesma-Carbayo, Maria J.

    2015-07-01

    Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.

  20. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction.

    Science.gov (United States)

    Lam, Frank; Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S

    2017-01-01

    Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C , peripheral resistance R , aortic impedance r , and the inertia of blood L , to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.

  1. Novel noise reduction filter for improving visibility of early computed tomography signs of hyperacute stroke. Evaluation of the filter's performance. Preliminary clinical experience

    International Nuclear Information System (INIS)

    Takahashi, Noriyuki; Ishii, Kiyoshi; Lee, Y.; Tsai, D.Y.

    2007-01-01

    The aim of this study was to evaluate the performance of a novel noise reduction filter for improving the visibility of early computed tomography (CT) signs of hyperacute stroke on nonenhanced CT images. Fourteen patients with a middle cerebral artery occlusion within 4.5 h after onset were evaluated. The signal-to-noise ratio (SNR) of the processed images with the noise reduction filter and that of original images were measured. Two neuroradiologists visually rated all the processed and original images on the visibility of normal and abnormal gray-white matter interfaces. The SNR value of the processed images was approximately eight times as high as that of the original images, and a 87% reduction of noise was achieved using this technique. For the visual assessment, the results showed that the visibility of normal gray-white matter interface and that of the loss of the gray-white matter interface were significantly improved using the proposed method (P<0.05). The noise reduction filter proposed in the present study has the potential to improve the visibility of early CT signs of hyperacute stroke on nonenhanced CT images. (author)

  2. Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands.

    Science.gov (United States)

    Morvannou, Ania; Troesch, Stéphane; Esser, Dirk; Forquet, Nicolas; Petitjean, Alain; Molle, Pascal

    2017-07-01

    French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m 2 /P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter ® is one of the solutions developed in France by Epur Nature. Biho-Filter ® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter ® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter ® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO 3 -N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.

  3. Cost and waste volume reduction in HEPA filter trains by effective pre-filtration

    International Nuclear Information System (INIS)

    Chadwick, Chris; Kaufman, Seth

    2006-01-01

    Data published elsewhere (Moore, et el 1992; Bergman et al 1997) suggests that the then costs of disposable type Glass Fibre HEPA filtration trains to the DOE was USD 55 million per year (based on an average usage of HEPA panels of 11,748 pieces per year between 1987 and 1990), USD 50 million of which was attributable to installation, testing, removal and disposal - although the life cycle costs are themselves based on estimates dating from 1987-1990. The same authors suggest that by 1995 the number of HEPA panels being used had dropped to an estimated 4000 pieces per year due to the ending of the Cold War. The yearly cost to the DOE of 4000 units per year was estimated to be USD 29.5 million using the same parameters that suggested the previously stated USD 55 million for the larger quantity. Within that cost estimate, USD 300 was the value given to the filter and USD 4,450 was given to peripheral activity per filter. Clearly, if the USD 4,450 component could be reduced, tremendous saving could result, in addition to a significant reduction in the legacy burden of waste volumes. This same cost is applied to both the 11,748 and 4000 usage figures. The work up to now has focussed on the development of a low cost, long life (cleanable) direct replacement of the traditional filter train, but this paper will review an alternative strategy, that of preventing the contaminating dust from reaching and blinding the HEPA filters, and thereby removing the need to replace them. What has become clear is that 'low cost' and 'stainless HEPA' are not compatible terms. The original Bergman et al work suggested that 1000 ft 3 /min stainless HEPAs could be commercially available for USD 5000 each after development (although the USD 70,000 development unit may be somewhat exaggerated - the authors have estimated that development units able to be retro-fitted into strengthened standard housings would be available for perhaps USD 30,000). The likely true cost of such an item produced

  4. Cost and waste volume reduction in HEPA filter trains by effective pre-filtration

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2007-01-01

    Data published elsewhere (Moore, et al., 1992; Bergman et al., 1997) suggests that the then costs of disposable type Glass Fibre HEPA filtration trains to the DOE was $55 million per year (based on an average usage of HEPA panels of 11,748 pieces per year between 1987 and 1990), $50 million of which was attributable to installation, testing, removal and disposal. The same authors suggest that by 1995 the number of HEPA panels being used had dropped to an estimated 4000 pieces per year due to the ending of the Cold War. The yearly cost to the DOE of 4000 units per year was estimated to be $29.5 million using the same parameters that previously suggested the $55 million figure. Within that cost estimate, $300 each was the value given to the filter and $4,450 was given to peripheral activity per filter. Clearly, if the $4,450 component could be reduced, tremendous saving could result, in addition to a significant reduction in the legacy burden of waste volumes. This same cost is applied to both the 11,748 and 4000 usage figures. The work up to now has focussed on the development of a low cost, long life (cleanable), direct replacement of the traditional filter train. This paper will review an alternative strategy, that of preventing the contaminating dust from reaching and blinding the HEPA filters, and thereby removing the need to replace them. What has become clear is that 'low cost' and 'Metallic HEPA' are not compatible terms. The original Bergman et al., 1997 work suggested that 1000 cfm (cubic feet per minute) (1690 m 3 /hr) stainless HEPAs could be commercially available for $5000 each after development (although the $70,000 development unit may be somewhat exaggerated - the authors own company have estimated development units able to be retrofitted into strengthened standard housings would be available for perhaps $30,000). The likely true cost of such an item produced industrially in significant numbers may be closer to $15,000 each. That being the case, the

  5. Reduction of bacteria and somatic coliphages in constructed wetlands for the treatment of combined sewer overflow (retention soil filters).

    Science.gov (United States)

    Ruppelt, Jan P; Tondera, Katharina; Schreiber, Christiane; Kistemann, Thomas; Pinnekamp, Johannes

    2018-05-01

    Combined sewer overflows (CSOs) introduce numerous pathogens from fecal contamination, such as bacteria and viruses, into surface waters, thus endangering human health. In Germany, retention soil filters (RSFs) treat CSOs at sensitive discharge points and can contribute to reducing these hygienically relevant microorganisms. In this study, we evaluated the extent of how dry period, series connection and filter layer thickness influence the reduction efficiency of RSFs for Escherichia coli (E. coli), intestinal enterococci (I. E.) and somatic coliphages. To accomplish this, we had four pilot scale RSFs built on a test field at the wastewater treatment plant Aachen-Soers. While two filters were replicates, the other two filters were installed in a series connection. Moreover, one filter had a thinner filtration layer than the other three. Between April 2015 and December 2016, the RSFs were loaded in 37 trials with pre-conditioned CSO after dry periods ranging from 4 to 40 days. During 17 trials, samples for microbial analysis were taken and analyzed. The series connection of two filters showed that the removal increases when two systems with a filter layer of the same height are operated in series. Since the microorganisms are exposed twice to the environmental conditions on the filter surface and in the upper filter layers, there is a greater chance for abiotic adsorption increase. The same effect could be shown when filters with different depths were compared: the removal efficiency increases as filter thickness increases. This study provides new evidence that regardless of seasonal effects and dry period, RSFs can improve hygienic situation significantly. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect.

    Science.gov (United States)

    Yan, Xu; Li, Hongxia; Han, Xiaosong; Su, Xingguang

    2015-12-15

    In this work, we develop a novel and sensitive sensor for the detection of organophosphorus pesticides based on the inner-filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs has been designed by hybridizing two differently colored CdTe QDs, in which the red emissive QDs entrapped in the silica sphere acting as the reference signal, and the green emissive QDs covalently attached on the silica surface serving as the response signal.The fluorescence of RF-QDs could be quenched by AuNPs based on IFE. Protamine could effectively turn on the fluorescence due to the electrostatic attraction between protamine and AuNPs. Trypsin can easily hydrolyze protamine, leading to the quench of the fluorescence. Then, the fluorescence could be recovered again by the addition of parathion-methyl (PM) which could inhibit the activity of trypsin. By measuring the fluorescence of RF-QDs, the inhibition efficiency of PM to trypsin activity was evaluated. Under the optimized conditions, the inhibition efficiency was proportional to the logarithm of PM concentration in the range of 0.04-400 ng mL(-1), with a detection limit of 0.018 ng mL(-1). Furthermore, the simple and convenient method had been used for PM detection in environmental and agricultural samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. High-performance magnetic field sensor based on superconducting quantum interference filters

    Science.gov (United States)

    Caputo, P.; Oppenländer, J.; Häussler, Ch.; Tomes, J.; Friesch, A.; Träuble, T.; Schopohl, N.

    2004-08-01

    We have developed an absolute magnetic field sensor using a superconducting quantum interference filter (SQIF) made of high-Tc grain-boundary Josephson junctions. The device shows the typical magnetic-field-dependent voltage response V(B ), which is a sharp deltalike dip in the vicinity of zero-magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B0≈0 to a value B ≈B1, which is about the average value of the Earth's magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ≈B1, and the further shielding of the SQIF results in a shift of the dip towards B0≈0. The low hysteresis observed in the sequence of experiments (less than 5% of B1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-Tc SQIFs in magnetometry.

  8. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Ferrier, Alban [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonnes Universités, UPMC Univ Paris 06, 75005 Paris (France); Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Ramírez, Mariola O.; Bausá, Luisa E. [Departamento Física de Materiales and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Ikesue, Akio [World Laboratory, Mutsuno, Atsuta-ku, Nagoya 456-0023 (Japan)

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  9. Reduction of quantum systems and the local Gauss law

    Science.gov (United States)

    Stienstra, Ruben; van Suijlekom, Walter D.

    2018-05-01

    We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and the implementation of a local Gauss law in lattice gauge theories similar to the method discussed by Kijowski and Rudolph (J Math Phys 43:1796-1808, 2002; J Math Phys 46:032303, 2004).

  10. Size filtering effect in vertical stacks of In(Ga)As/GaAs self-assembled quantum rings

    International Nuclear Information System (INIS)

    Ouerghui, W.; Melliti, A.; Maaref, M.A.; Martinez-Pastor, J.; Gomis, J.; Granados, D.; Garcia, J.M.

    2006-01-01

    We present a systematic study of closely In(Ga)As/InAs quantum rings (QRs) grown by molecular beam epitaxy (MBE). Photoluminescence (PL) experiments show a strong filtering effect in the ring being stacked and simultaneous linewidth narrowing for the appropriate layer thickness (thinner thickness). If the spacer thickness is further reduced, a strong coupling between the nanostructures is produced and the signal shifts to low energy

  11. Axial sidelobe reduction in single-photon 4Pi microscopy by Toraldo filters

    International Nuclear Information System (INIS)

    Martinex-Corral, M.; Pons, A.; Caballero, M.T.

    2002-01-01

    Full text: The 4Pi-confocal fluorescence microscope is a recently developed 3D imaging technique in which two opposing high-NA objectives are used for coherently illuminating and/or detecting the same point of the fluorescent sample. The interference process yields an intensity point spread function (PSF) with an extremely narrow axial core, but with very large axial sidelobes, which compromise the actual improvement in axial resolution. To overcome this problem we propose the use, in the illumination arm of the 4Pi-confocal microscope, of multiple-zones phase filters whose design is based on the Toraldo-design principle. Note that the Toraldo procedure allows to select at will the positions of the zeros of the PSF of an optical system. Then, what we propose here if to design a phase pupil filter such that the position of the first zero of the illumination axial PSF is close to the position of the maximum of the first axial sidelobe of the detection PSF. In the design procedure it is taken into account that: 1. The value of the parameter ε = λ exc /λ det which, in a single-photon fluorescent process, is the responsible for the different scales of the illumination and detection PSFs. 2. The Toraldo procedure was originally designed to control the position of zeros of the transverse PSF. In this case the procedure is adapted to the aim of controlling the position of zeros of the axial PSF. 3. Since 4Pi-confocal microscopes are only useful when built with high-NA objectives, the Toraldo principle is reformulated in terms of the nonparaxial diffraction theory. We show that by using Toraldo filters in the illumination part of a 4Pi-confocal microscope it is possible to obtain up to a 60% reduction of height of the axial sidelobe of the whole-system axial PSF. This fact permits to fully benefit the axial resolution from the strong narrowness of the central peak of the axial PSF, inherent to the 4Pi principle. Copyright (2002) Australian Society for Electron Microscopy

  12. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    Science.gov (United States)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  13. Non-Causal Time-Domain Filters for Single-Channel Noise Reduction

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2012-01-01

    suppression and signal distortion by allowing the filters to be non-causal. Non-causal time-domain filters require knowledge of the future, and are therefore not directly implementable. If the observed signal is processed in blocks, however, the non-causal filters are implementable. In this paper, we propose...

  14. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  15. State vector reduction - 1: Dynamical reduction theories; changing quantum theory so the statevector represents reality

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Pearle, P.

    1991-02-01

    The propositions, that what we see around us is real and that reality should be represented by the statevector, conflict with quantum theory. In quantum theory, the statevector can readily become a sum of states of comparable norm, each state representing a different reality. In this paper we present the Continuous Spontaneous Localization (CSL) theory, in which a modified Schroedinger equation, while scarcely affecting the dynamics of a microscopic system, rapidly ''reduces'' the statevector of a macroscopic system to a state appropriate for representing individual reality. (author). Refs

  16. Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hosokawa, Takahiro, E-mail: hosokawa@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Tanami, Yutaka, E-mail: tanami@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Sugiura, Hiroaki, E-mail: hsugiura@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Abe, Takayuki, E-mail: tabe@z5.keio.jp [Center for Clinical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kuribayashi, Sachio, E-mail: skuribay@a5.keio.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2012-12-15

    Objectives: To assess the effectiveness of adaptive iterative dose reduction (AIDR) and AIDR 3D in improving the image quality in low-dose chest CT (LDCT). Materials and methods: Fifty patients underwent standard-dose chest CT (SDCT) and LDCT simultaneously, performed under automatic exposure control with noise index of 19 and 38 (for a 2-mm slice thickness), respectively. The SDCT images were reconstructed with filtered back projection (SDCT-FBP images), and the LDCT images with FBP, AIDR and AIDR 3D (LDCT-FBP, LDCT-AIDR and LDCT-AIDR 3D images, respectively). On all the 200 lung and 200 mediastinal image series, objective image noise and signal-to-noise ratio (SNR) were measured in several regions, and two blinded radiologists independently assessed the subjective image quality. Wilcoxon's signed rank sum test with Bonferroni's correction was used for the statistical analyses. Results: The mean dose reduction in LDCT was 64.2% as compared with the dose in SDCT. LDCT-AIDR 3D images showed significantly reduced objective noise and significantly increased SNR in all regions as compared to the SDCT-FBP, LDCT-FBP and LDCT-AIDR images (all, P ≤ 0.003). In all assessments of the image quality, LDCT-AIDR 3D images were superior to LDCT-AIDR and LDCT-FBP images. The overall diagnostic acceptability of both the lung and mediastinal LDCT-AIDR 3D images was comparable to that of the lung and mediastinal SDCT-FBP images. Conclusions: AIDR 3D is superior to AIDR. Intra-individual comparisons between SDCT and LDCT suggest that AIDR 3D allows a 64.2% reduction of the radiation dose as compared to SDCT, by substantially reducing the objective image noise and increasing the SNR, while maintaining the overall diagnostic acceptability.

  17. Covariant effective action for loop quantum cosmology from order reduction

    International Nuclear Information System (INIS)

    Sotiriou, Thomas P.

    2009-01-01

    Loop quantum cosmology (LQC) seems to be predicting modified effective Friedmann equations without extra degrees of freedom. A puzzle arises if one decides to seek for a covariant effective action which would lead to the given Friedmann equation: The Einstein-Hilbert action is the only action that leads to second order field equations and, hence, there exists no covariant action which, under metric variation, leads to a modified Friedmann equation without extra degrees of freedom. It is shown that, at least for isotropic models in LQC, this issue is naturally resolved and a covariant effective action can be found if one considers higher order theories of gravity but faithfully follows effective field theory techniques. However, our analysis also raises doubts on whether a covariant description without background structures can be found for anisotropic models.

  18. Measurements of local chemistry and structure in Ni(O)-YSZ composites during reduction using energy-filtered environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Quentin; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    Energy-filtered transmission electron microscopy images are acquired during the reduction of a NiO-YSZ composite in H-2 up to 600 degrees C. Temperature-resolved quantitative information about both chemistry and structure is extracted with nm spatial resolution from the data, paving the way...

  19. Evaluation of efficacy of prion reduction filters using blood from an endogenously infected 263K scrapie hamster model.

    Science.gov (United States)

    McLeod, Neil P; Nugent, Philip; Dixon, Douglas; Dennis, Mike; Cornwall, Mark; Mallinson, Gary; Watkins, Nicholas; Thomas, Stephen; Sutton, J Mark

    2015-10-01

    The P-Capt prion reduction filter (MacoPharma) removes prion infectivity in model systems. This independent evaluation assesses prion removal from endogenously infected animal blood, using CE-marked P-Capt filters, and replicates the proposed use of the filter within the UK Blood Services. Two units of blood, generated from 263K scrapie-infected hamsters, were processed using leukoreduction filters (LXT-quadruple, MacoPharma). Approximately 100 mL of the removed plasma was added back to the red blood cells (RBCs) and the blood was filtered through a P-Capt filter. Samples of unfiltered whole blood, the prion filter input (RBCs plus plasma and SAGM [RBCPS]), and prion-filtered leukoreduced blood (PFB) were injected intracranially into hamsters. Clinical symptoms were monitored for 500 ± 1 day, and brains were assessed for spongiosis and prion protein deposit. In Filtration Run 1, none of the 50 challenged animals were diagnosed with scrapie after inoculation with the RBCPS fraction, while two of 190 hamsters injected with PFB were infected. In Filtration Run 2, one of 49 animals injected with RBCPS and two of 193 hamsters injected with PFB were infected. Run 1 reduced the infectious dose (ID) by 1.467 log (>1.187 log and <0.280 log for leukoreduction and prion filtration, respectively). Run 2 reduced prion infectivity by 1.424 log (1.127 and 0.297 log, respectively). Residual infectivity was estimated at 0.212 ± 0.149 IDs/mL (Run 1) and 0.208 ± 0.147 IDs/mL (Run 2). Leukoreduction removed the majority of infectivity from 263K scrapie hamster blood. The P-Capt filter removed a proportion of the remaining infectivity, but residual infectivity was observed in two independent processes. © 2015 AABB.

  20. Front-end data reduction of diagnostic signals by real-time digital filtering

    International Nuclear Information System (INIS)

    Zasche, D.; Fahrbach, H.U.; Harmeyer, E.

    1985-01-01

    Diagnostic measurements on a fusion plasma with high resolution in space, time and signal amplitude involve handling large amounts of data. In the design of the soft-X-ray pinhole camera diagnostic for JET (100 detectors in 2 cameras) a new approach to this problem was found. The analogue-to-digital conversion is performed continuously at the highest sample rate of 200 kHz, lower sample rates (10 kHz, 1 kHz, 100 Hz) are obtained by real-time digital filters which calculate weighted averages over consecutive samples and are undersampled at their outputs to reduce the data rate. At any time, the signals from all detectors are available at all possible data rates in ring buffers. Thus the appropriate data rate can always be recorded on demand (preprogrammed or triggered by the experiment). With this system a reduction of the raw data by a factor of up to 2000 (typically 200) is possible without severe loss of information

  1. Twisted spin Sutherland models from quantum Hamiltonian reduction

    International Nuclear Information System (INIS)

    Feher, L; Pusztai, B G

    2008-01-01

    Recent general results on Hamiltonian reductions under polar group actions are applied to study some reductions of the free particle governed by the Laplace-Beltrami operator of a compact, connected, simple Lie group. The reduced systems associated with arbitrary finite-dimensional irreducible representations of the group by using the symmetry induced by twisted conjugations are described in detail. These systems generically yield integrable Sutherland-type many-body models with spin, which are called twisted spin Sutherland models if the underlying twisted conjugations are built on non-trivial Dynkin diagram automorphisms. The spectra of these models can be calculated, in principle, by solving certain Clebsch-Gordan problems, and the result is presented for the models associated with the symmetric tensorial powers of the defining representation of SU(N)

  2. The use of quantum chemically derived descriptors for QSAR modelling of reductive dehalogenation of aromatic compounds

    NARCIS (Netherlands)

    Rorije E; Richter J; Peijnenburg WJGM; ECO; IHE Delft

    1994-01-01

    In this study, quantum-chemically derived parameters are developed for a limited number of halogenated aromatic compounds to model the anaerobic reductive dehalogenation reaction rate constants of these compounds. It is shown that due to the heterogeneity of the set of compounds used, no single

  3. Logical spin-filtering in a triangular network of quantum nanorings with a Rashba spin-orbit interaction

    Science.gov (United States)

    Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.

    2018-01-01

    The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.

  4. Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations

    International Nuclear Information System (INIS)

    Schroeder, Markus; Brown, Alex

    2009-01-01

    We present a modified version of a previously published algorithm (Gollub et al 2008 Phys. Rev. Lett.101 073002) for obtaining an optimized laser field with more general restrictions on the search space of the optimal field. The modification leads to enforcement of the constraints on the optimal field while maintaining good convergence behaviour in most cases. We demonstrate the general applicability of the algorithm by imposing constraints on the temporal symmetry of the optimal fields. The temporal symmetry is used to reduce the number of transitions that have to be optimized for quantum gate operations that involve inversion (NOT gate) or partial inversion (Hadamard gate) of the qubits in a three-dimensional model of ammonia.

  5. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  6. Simplifying the complex 1H NMR spectra of fluorine-substituted benzamides by spin system filtering and spin-state selection: multiple-quantum-single-quantum correlation.

    Science.gov (United States)

    Baishya, Bikash; Reddy, G N Manjunatha; Prabhu, Uday Ramesh; Row, T N Guru; Suryaprakash, N

    2008-10-23

    The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.

  7. Reduction of delayed-neutron contribution to variance-to-mean ratio by application of difference filter technique

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Mouri, Tomoaki; Ohtani, Nobuo

    1999-01-01

    The difference-filtering correlation analysis was applied to time-sequence neutron count data measured in a slightly subcritical assembly, where the Feynman-α analysis suffered from large contribution of delayed neutron to the variance-to-mean ratio of counts. The prompt-neutron decay constant inferred from the present filtering analysis agreed very closely with that by pulsed neutron experiment, and no dependence on the gate-time range specified could be observed. The 1st-order filtering was sufficient for the reduction of the delayed-neutron contribution. While the conventional method requires a choice of analysis formula appropriate to a gate-time range, the present method is applicable to a wide variety of gate-time ranges. (author)

  8. Simulation model of harmonics reduction technique using shunt active filter by cascade multilevel inverter method

    Science.gov (United States)

    Andreh, Angga Muhamad; Subiyanto, Sunardiyo, Said

    2017-01-01

    Development of non-linear loading in the application of industry and distribution system and also harmonic compensation becomes important. Harmonic pollution is an urgent problem in increasing power quality. The main contribution of the study is the modeling approach used to design a shunt active filter and the application of the cascade multilevel inverter topology to improve the power quality of electrical energy. In this study, shunt active filter was aimed to eliminate dominant harmonic component by injecting opposite currents with the harmonic component system. The active filter was designed by shunt configuration with cascaded multilevel inverter method controlled by PID controller and SPWM. With this shunt active filter, the harmonic current can be reduced so that the current wave pattern of the source is approximately sinusoidal. Design and simulation were conducted by using Power Simulator (PSIM) software. Shunt active filter performance experiment was conducted on the IEEE four bus test system. The result of shunt active filter installation on the system (IEEE four bus) could reduce THD current from 28.68% to 3.09%. With this result, the active filter can be applied as an effective method to reduce harmonics.

  9. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I.

    Science.gov (United States)

    Anmei, Su; Qingmei, Zhong; Yuye, Chen; Yilin, Wang

    2018-09-06

    Carbon quantum dots (CQDs) with quantum yield of 14% were successfully synthesized via a simple, low-cost, and green hydrothermal treatment using cigarette filters as carbon source for the first time. The obtained CQDs showed a strong emission at the wavelength of 465 nm, with an optimum excitation of 365 nm.Sudan I with maximum absorption wavelength at 477 nm could selectively quench the fluorescence of CQDs. Based on this principle, a fluorescence probe was developed for Sudan I determination. Furthermore, the quenching mechanism of the CQDs was elucidated. A linear relationship was found in the range of 2.40-104.0 μmol/L Sudan I with the detection limit (3σ/k) of 0.95 μmol/L. Satisfactory results were achieved when the method was submitted to the determination of Sudan I in food samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.

    Science.gov (United States)

    Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael

    2015-01-01

    Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.

  11. Synthesis and characterization of graphene quantum dots and their size reduction using swift heavy ion beam

    Science.gov (United States)

    Mishra, Praveen; Bhat, Badekai Ramchandra

    2018-04-01

    Graphene quantum dots (GQDs) are nanosized fragments of graphene displaying quantum confinement effect. They have shown to be prepared from various methods which include ion beam etching of graphene. However, recently the modification of the GQDs has garnered tremendous attention owing to its suitability for various applications. Here, we have studied the effect of swift ion beam irradiation on the properties of GQDs. The ion beam treatment on the GQDs exhibited the change in observed photoluminescence of GQDs as they exhibited a blue luminescence on excitation with longwave UV (≈365 nm) due to the reduction in size and removal of the ethoxy (-C-O-C-) groups present on the quantum dots. This was confirmed by transmission electron microscopy, particle size analysis, and Fourier transform infrared spectroscopy.

  12. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    Science.gov (United States)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  13. Filter-fluorescer x-ray spectrometer using solid state detectors for γ-ray background reduction

    International Nuclear Information System (INIS)

    Yokoi, Takashi; Kitagawa, Yoneyoshi; Shiraga, Hiroyuki; Matsunaga, Hirohide; Kato, Yoshiaki; Yamanaka, Chiyoe.

    1986-01-01

    Filter-fluorescer x-ray spectrometer using solid state photo-detectors instead of the photomultiplier tubes in order to reduce the γ-ray background noise is reported. A significant reduction of the γ-ray background noise is expected, because solid state photo-detectors are very small in size compared with the photomultiplier tubes. It has been confirmed that the γ-ray background is reduced in the target irradiation experiments with the Gekko MII glass laser. (author)

  14. An LCMV Filter for Single-Channel Noise Cancellation and Reduction in the Time Domain

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2013-01-01

    In this paper, we consider a recent class of optimal rectangular fil- tering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters...... signal-to-interference ratio. This is showed for both synthetic and real speech signals....

  15. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    Science.gov (United States)

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).

  16. Optical performance evolutions of reductive glutathione coated CdSe quantum dots in different environments

    International Nuclear Information System (INIS)

    Wang Lili; Jiang Jisen

    2011-01-01

    Optical performances of reductive glutathione coated CdSe quantum dots were studied under different ageing conditions. The enhancements of luminescence were obviously occurred for the samples ageing under illumination. The quantum yield of CdSe was enhanced continuously over 44 days at room temperature, and reached as high as 36.6%. O 2 was proved to make a certain contribute to the enhancement. The evolutions of the systems during the ageing time were deduced according to the variations of pH values with ageing time and the XRD results of the samples ageing in air with illumination. We conferred that the reduction of surface defects resulted from the photo-induced decomposition of CdSe quantum dots was the main reason for the enhancement of fluorescence. The production of CdO as a result of the surface reaction with O 2 made contributions to the enhancement for a certain extent. The curves of quantum yield versus ageing time were fitted with a stretched exponential function. It was found that the course of fluorescence enhancement accorded with the dynamics of system with strongly coupled hierarchical degrees of freedom.

  17. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    Science.gov (United States)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2018-01-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  18. Radioactivity decontamination efficiency of ceramic filter in an incineration volume reduction system of radioactive waste

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Yoshiki, Sinya; Sema, Toru; Koyama, Hiroaki; Ono, Tetsuo; Nagae, Madoka; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    The small pilot facility of a cyclone type suspension incineration system of radioactive waste was set up in order to evaluate the decontamination efficiency of a high efficiency ceramic filter. The evaluation was made by use of 54 Mn, 59 Fe, 60 Co, 65 Zn and 137 Cs. 1. The decontamination factor by one line of ceramic filter for every species were over 10 5 . 2. The decontamination factor increased by one oder when water vapor exists in off-gas. The same tendency was also observed when iron dioxide existed at the incineration of cation exchange resin. (author)

  19. Speckle Reduction for Ultrasonic Imaging Using Frequency Compounding and Despeckling Filters along with Coded Excitation and Pulse Compression

    Directory of Open Access Journals (Sweden)

    Joshua S. Ullom

    2012-01-01

    Full Text Available A method for improving the contrast-to-noise ratio (CNR while maintaining the −6 dB axial resolution of ultrasonic B-mode images is proposed. The technique proposed is known as eREC-FC, which enhances a recently developed REC-FC technique. REC-FC is a combination of the coded excitation technique known as resolution enhancement compression (REC and the speckle-reduction technique frequency compounding (FC. In REC-FC, image CNR is improved but at the expense of a reduction in axial resolution. However, by compounding various REC-FC images made from various subband widths, the tradeoff between axial resolution and CNR enhancement can be extended. Further improvements in CNR can be obtained by applying postprocessing despeckling filters to the eREC-FC B-mode images. The despeckling filters evaluated were the following: median, Lee, homogeneous mask area, geometric, and speckle-reducing anisotropic diffusion (SRAD. Simulations and experimental measurements were conducted with a single-element transducer (f/2.66 having a center frequency of 2.25 MHz and a −3 dB bandwidth of 50%. In simulations and experiments, the eREC-FC technique resulted in the same axial resolution that would be typically observed with conventional excitation with a pulse. Moreover, increases in CNR of 348% were obtained in experiments when comparing eREC-FC with a Lee filter to conventional pulsing methods.

  20. Binaural noise reduction via cue-preserving MMSE filter and adaptive-blocking-based noise PSD estimation

    Science.gov (United States)

    Azarpour, Masoumeh; Enzner, Gerald

    2017-12-01

    Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome

  1. Tubular biotricking filter for reduction of odour and ammonia from live stock facilities

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Andersen, Mathias

    2007-01-01

    between 80 and 100 %. Hardly water soluble components like methanethiol, dimethyl sulfide and methane was reduced by 7-9 %. In relation to the greenhouse effect the degradation of methane fully compensate the nitrous oxide emission from the filters. These results were achieved with a pressure drop...

  2. Half Size Reduction of DC Output Filter Inductors With the Saturation-Gap Magnetic Bias Topology

    DEFF Research Database (Denmark)

    Aguilar, Andres Revilla; Munk-Nielsen, Stig

    2016-01-01

    Filter inductors are probably one of the heaviest and more voluminous components found in power supplies of most electronic devices. A known technique to reduce the inductor size in dc applications is the use of permanent magnet inductors (PMIs). One of the latest developed biasing topologies...

  3. Reduction of Switching Losses in Active Power Filters With a New Generalized Discontinuous-PWM Strategy

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Asiminoaei, Lucian; Malinowski, M.

    2008-01-01

    The classical discontinuous pulsewidth modulations (DPWMs) cannot be efficiently applied in active power filters (APFs) because it is difficult to predict the peak values of the inverter current. Consequently, it is difficult to calculate the optimal position of the clamped interval to minimize t...

  4. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  5. Harmonic reduction by using single-tuned passive filter in plastic processing industry

    Science.gov (United States)

    Fahmi, M. I.; Baafai, U.; Hazmi, A.; Nasution, T. H.

    2018-02-01

    The using of non-linear loads generated by industrial machines may result inconsistent harmonics that do not reach the IEEE 519 - 1992 standards. This study discusses the use of single-tuned passive filters in reducing harmonics in the plastics processing industry. The system modeling using matlab / simulink simulation resulted in total harmonic distortion (THD) of 15.55%, can be reduced to 4.77% harmonics in accordance with IEEE 519 - 1992 standards. From the simulation results also seen that single-tuned passive filter can reduce the harmonics of the current 82.23% harmonic that wants to be reduced and also can reduce other orders harmonics between 7% to 8%.

  6. Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering

    Science.gov (United States)

    Giraldo-Guzmán, Jader; Porto-Solano, Oscar; Cadena-Bonfanti, Alberto; Contreras-Ortiz, Sonia H.

    2015-01-01

    Echocardiography is a medical imaging technique based on ultrasound signals that is used to evaluate heart anatomy and physiology. Echocardiographic images are affected by speckle, a type of multiplicative noise that obscures details of the structures, and reduces the overall image quality. This paper shows an approach to enhance echocardiography using two processing techniques: temporal compounding and anisotropic diffusion filtering. We used twenty echocardiographic videos that include one or three cardiac cycles to test the algorithms. Two images from each cycle were aligned in space and averaged to obtain the compound images. These images were then processed using anisotropic diffusion filters to further improve their quality. Resultant images were evaluated using quality metrics and visual assessment by two medical doctors. The average total improvement on signal-to-noise ratio was up to 100.29% for videos with three cycles, and up to 32.57% for videos with one cycle.

  7. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems

    OpenAIRE

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available Radio Frequency Identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Perf...

  8. Optical anisotropy of non-common-atom quantum wells and dots: effects of interface symmetry reduction

    International Nuclear Information System (INIS)

    Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Nekrutkina, O.V.; Solnyshkov, D.D.; Ivanov, S.V.; Waag, A.; Landwehr, G.

    2003-01-01

    We report on the investigations of in-plane optical anisotropy in non-common-atom heterostructures: ZnSe/BeTe perfect quantum wells (QWs) and CdSe/BeTe rough QWs and quantum dots. A noticeable linear polarization of photoluminescence (PL) with respect to the in-plane [1-10] and [110] crystal axes was observed in the ZnSe/BeTe QWs with equivalent ZnTe-type interfaces due to the reduction of QW symmetry, induced by unintentional formation of BeSe chemical bonds at a ''BeTe-ZnSe'' interface. The BeSe bond concentration and, hence, the polarization degree depend on the Te/Be flux ratio during molecular beam epitaxy growth of the samples. Strongly linearly polarized (up to 80%) PL was detected in the CdSe/BeTe structures, evidencing QW-like flat symmetry of the emitting sites of carrier localization. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  9. Quantum filter reduction for measurement-feedback control via unsupervised manifold learning

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Hopkins, Asa S .; Mabuchi, Hideo

    2009-01-01

    We derive simple models for the dynamics of a single atom coupled to a cavity field mode in the absorptive bistable parameter regime by projecting the time evolution of the state of the system onto a suitably chosen nonlinear low-dimensional manifold, which is found by use of local tangent space ...

  10. Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction

    Science.gov (United States)

    Leverrier, Anthony

    2017-05-01

    Establishing the security of continuous-variable quantum key distribution against general attacks in a realistic finite-size regime is an outstanding open problem in the field of theoretical quantum cryptography if we restrict our attention to protocols that rely on the exchange of coherent states. Indeed, techniques based on the uncertainty principle are not known to work for such protocols, and the usual tools based on de Finetti reductions only provide security for unrealistically large block lengths. We address this problem here by considering a new type of Gaussian de Finetti reduction, that exploits the invariance of some continuous-variable protocols under the action of the unitary group U (n ) (instead of the symmetric group Sn as in usual de Finetti theorems), and by introducing generalized S U (2 ,2 ) coherent states. Crucially, combined with an energy test, this allows us to truncate the Hilbert space globally instead as at the single-mode level as in previous approaches that failed to provide security in realistic conditions. Our reduction shows that it is sufficient to prove the security of these protocols against Gaussian collective attacks in order to obtain security against general attacks, thereby confirming rigorously the widely held belief that Gaussian attacks are indeed optimal against such protocols.

  11. Real-time noise reduction for Mössbauer spectroscopy through online implementation of a modified Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Abrecht, David G., E-mail: david.abrecht@pnnl.gov [National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); Schwantes, Jon M. [National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); Kukkadapu, Ravi K. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); McDonald, Benjamin S.; Eiden, Gregory C.; Sweet, Lucas E. [National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States)

    2015-02-11

    Spectrum-processing software that incorporates a Gaussian smoothing kernel within the statistics of first-order Kalman filtration has been developed to provide cross-channel spectral noise reduction for increased real-time signal-to-noise ratios for Mössbauer spectroscopy. The filter was optimized for the breadth of the Gaussian using the Mössbauer spectrum of natural iron foil, and comparisons among the peak broadening, signal-to-noise ratios, and shifts in the calculated hyperfine parameters are presented. The results of optimization give a maximum improvement in the signal-to-noise ratio of 51.1% over the unfiltered spectrum at a Gaussian breadth of 27 channels, or 2.5% of the total spectrum width. The full-width half-maximum of the spectrum peaks showed an increase of 19.6% at this optimum point, indicating a relatively weak increase in the peak broadening relative to the signal enhancement, leading to an overall increase in the observable signal. Calculations of the hyperfine parameters showed that no statistically significant deviations were introduced from the application of the filter, confirming the utility of this filter for spectroscopy applications.

  12. Out-of-band and adjacent-channel interference reduction by analog nonlinear filters

    Science.gov (United States)

    Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.

    2015-12-01

    In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components

  13. An approximate framework for quantum transport calculation with model order reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Quan, E-mail: quanchen@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Li, Jun [Department of Chemistry, The University of Hong Kong (Hong Kong); Yam, Chiyung [Beijing Computational Science Research Center (China); Zhang, Yu [Department of Chemistry, The University of Hong Kong (Hong Kong); Wong, Ngai [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Chen, Guanhua [Department of Chemistry, The University of Hong Kong (Hong Kong)

    2015-04-01

    A new approximate computational framework is proposed for computing the non-equilibrium charge density in the context of the non-equilibrium Green's function (NEGF) method for quantum mechanical transport problems. The framework consists of a new formulation, called the X-formulation, for single-energy density calculation based on the solution of sparse linear systems, and a projection-based nonlinear model order reduction (MOR) approach to address the large number of energy points required for large applied biases. The advantages of the new methods are confirmed by numerical experiments.

  14. Efficacy of patient skin dose reduction by a compensating filter through of irradiation field overlaps on the area during percutaneous coronary intervention

    International Nuclear Information System (INIS)

    Yamasaki, Hiroyuki; Yamaguchi, Sadao; Yamamoto, Naomi; Miyagawa, Takashi; Hirose, Etsuko; Takenaka, Tatsuaki; Nakahara, Makoto

    2011-01-01

    Our study was involved with entrance surface dose reduction and irradiation field by the filter use of PCI, and insertion in place of an effective compensating filter to maximize entrance surface dose reduction, which we verified. The radiation dosimetry put a 6 cc ion chamber on the back side of the thorax phantom, and changed the filter of the four corners (a: upper left, b: upper right, c: lower right, d: lower left) of the monitor confirmed with fluoroscopy [(0) no filter, (1) one filter, (2) two filters]. The angle of C arm was assumed to be eight directions and 0 degrees adopted by this hospital. It was compared with a corrective rate of which one was no filter. Next, the presence of filter and irradiation field overlaps on the area in monitor in the angle of C arm was verified by this hospital's classic example. As for corrective rate, (1) becomes 0.41 and (2) become 0.25 at fluoroscopy, (1) becomes 0.26 and (2) become 0.16 at exposure. Irradiation field overlaps on the area (+) compensating filter (-) was many with d of right anterior oblique (RAO)/cranial (CAU), a of RAO and c of CAU at left coronary angiography (CAG), c of left anterior oblique (LAO) at right CAG, b of LAO/cranial (CRA) (left CAG), b of CRA (right CAG) and a and d of RAO (right CAG) at both CAG. Irradiation field overlaps on the area (+) compensating filter (+) was many with b of CRA at left CAG, a of LAO/CRA at right CAG, b of CRA (left CAG) and b of RAO (right CAG) at both CAG. When the compensating filter is used the entrance surface dose reduction effect was great. If automatic exposure control protects the part of irradiation field overlaps on the area in the range without operating excessively, the radiological risk can be reduced, and it is conceivable as useful clinical setting. (author)

  15. Front-end data reduction of diagnostic signals by real-time digital filtering

    International Nuclear Information System (INIS)

    Zasche, D.; Fahrbach, H.U.; Harmeyer, E.

    1984-01-01

    Diagnostic measurements on a fusion plasma with high resolution in space, time and signal amplitude involve handling large amounts of data. In the design of the soft-X-ray pinhole camera diagnostic for JET (100 detectors in 2 cameras) a new approach to this problem was found. The analogue-to-digital conversion is performed continuously at the highest sample rate of 200 kHz, lower sample rates (10 kHz, 1 kHz, 100 Hz) are obtained by real-time digital filters which calculate weighted averages over consecutive samples and are undersampled at their outputs to reduce the data rate. At any time, the signals from all detectors are available at all possible data rates in ring buffers. The appropriate data rate can always be recorded on demand. (author)

  16. AIRFIL: a FORTRAN program for reduction of data obtained from alpha spectrometry of perimeter air filters

    International Nuclear Information System (INIS)

    Hinton, E.R. Jr.; Howell, R.L.

    1984-03-01

    Isotopic alpha spectrometry of 238 U, 235 U, and 234 U, along with gross alpha/beta counting of perimeter air filters, is performed by the Oak Ridge Y-12 Plant Laboratory in support of the Envrirnomental Monitoring Section of the Radiation Safety Department. Weekly samples are gross alpha/beta counted and the isotopic analysis performed on quarterly composites. Calculations and data management represents a major portion of the anlaysis time when performed manually, even with a desktop calculator. In order to reduce calculation time, perform orderly data manipulation and management, reduce errors due to redundant calculations, and eliminate report typing turnaround time, a computer program (AIRFIL) has been developed that performs these functions. The program accepts data through user prompts, then calculates and prints intermediate and final data, including detection limits

  17. Radwaste reduction through use of condensate non-precoat filters at Perry Nuclear Power Plant

    International Nuclear Information System (INIS)

    Hartman, J.L.

    1996-01-01

    The concept of non-precoat filtration to remove iron oxide without generating traditional resin and fiber precoat material, which is expensive to dispose of as radwaste, is rapidly becoming a trend of the 90's. In 1991, in response to escalating radwaste disposal costs, Perry Nuclear Power Plant was the first BWR to install non-precoat filters (septa) on a full scale basis in a Condensate System. To date, non-precoat septa from three vendors; including Memtec Power Generation have been installed and operated at Perry. It is important that other utilities considering this technology be given as much open-quotes real lifeclose quotes operational data as possible. This paper presents the data from three different companies and provides recommendations for consideration

  18. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  19. Re-establishing filtering capabilities of machined porous beryllium via chemical reduction and cleaning

    International Nuclear Information System (INIS)

    Randall, W.L.

    1975-01-01

    Porous beryllium is furnished in sheets of varying sizes and thickness; it is therefore necessary that it be machined into specified sizes. A chemical reduction and cleaning procedure was devised to remove the disrupted surface, open the sealed pores of the material, and clean entrapped contaminates from the internal structure. Dimensional stability can be closely controlled and material size is of no consequence. (U.S.)

  20. RLS adaptive filtering for physiological interference reduction in NIRS brain activity measurement: a Monte Carlo study

    International Nuclear Information System (INIS)

    Zhang, Y; Sun, J W; Rolfe, P

    2012-01-01

    The non-invasive measurement of cerebral functional haemodynamics using near-infrared spectroscopy (NIRS) instruments is often affected by physiological interference. The suppression of this interference is crucial for reliable recovery of brain activity measurements because it can significantly affect the signal quality. In this study, we present a recursive least-squares (RLS) algorithm for adaptive filtering to reduce the magnitude of the physiological interference component. To evaluate it, we implemented Monte Carlo simulations based on a five-layer slab model of a human adult head with a multidistance source–detector arrangement, of a short pair and a long pair, for NIRS measurement. We derived measurements by adopting different interoptode distances, which is relevant to the process of optimizing the NIRS probe configuration. Both RLS and least mean squares (LMS) algorithms were used to attempt the removal of physiological interference. The results suggest that the RLS algorithm is more capable of minimizing the effect of physiological interference due to its advantages of faster convergence and smaller mean squared error (MSE). The influence of superficial layer thickness on the performance of the RLS algorithm was also investigated. We found that the near-detector position is an important variable in minimizing the MSE and a short source–detector separation less than 9 mm is robust to superficial layer thickness variation. (paper)

  1. Characterizing the continuously acquired cardiovascular time series during hemodialysis, using median hybrid filter preprocessing noise reduction

    Directory of Open Access Journals (Sweden)

    Wilson S

    2015-01-01

    Full Text Available Scott Wilson,1,2 Andrea Bowyer,3 Stephen B Harrap4 1Department of Renal Medicine, The Alfred Hospital, 2Baker IDI, Melbourne, 3Department of Anaesthesia, Royal Melbourne Hospital, 4University of Melbourne, Parkville, VIC, Australia Abstract: The clinical characterization of cardiovascular dynamics during hemodialysis (HD has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information. Keywords: continuous monitoring, blood pressure

  2. Characterizing the continuously acquired cardiovascular time series during hemodialysis, using median hybrid filter preprocessing noise reduction.

    Science.gov (United States)

    Wilson, Scott; Bowyer, Andrea; Harrap, Stephen B

    2015-01-01

    The clinical characterization of cardiovascular dynamics during hemodialysis (HD) has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP) changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP) readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF) algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information.

  3. Reduction of radiation dose during the complex explorations using additional filter in pediatric patients

    International Nuclear Information System (INIS)

    Minguez, C.; Espana, M. L.; Castro, P.; Sevillano, D.; Lopez Franco, P.

    2006-01-01

    The aim of this study is to investigate the influence on image contrast, tube load and effective dose in paediatric fluoroscopy using added filtration. A Philips Omnidiagnosti is used in Nino Jesus Hospital and was therefore chosen for radiation dose measurements. The phantom consisted of varying methacrylate thickness to represent different patients sizes. All measurements were performed in automatic mode. For each exposure and additional filtration added the following data was recorded: tube voltage, tube current, air kerma rate on phantom surface and brightness on the image monitor. An 2026 electrometer (Radical Corporation) in conjunction with a model 2025-60 ion chamber were used for entrance dose measurements and the luxometer IL-400A (International Light) was used for brightness measurements on the image monitor: Evaluation of image quality was performed using a Leeds TOR TVF test object. Finally, the program PCXMC 1.5 based on the Monte Carlo method was used for calculating organ doses and the effective dose in fluoroscopy examinations. By increasing the filtration of the x-ray tube 1st Entrance radiation exposure can be decreased 58%, organ dose up to 40%, and effective dose up to 44%. 2nd The tube load increased up to 33%. 3rd Significant dose reduction is achievable without compromising image quality. The use of additional filtration in paediatric fluoroscopy should be evaluated taking into account dose reduction, additional tube loading and the possibility of some deterioration in image quality. (Author)

  4. Optical anisotropy of non-common-atom quantum wells and dots: effects of interface symmetry reduction

    Energy Technology Data Exchange (ETDEWEB)

    Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Nekrutkina, O.V.; Solnyshkov, D.D.; Ivanov, S.V. [Ioffe Physico-Technical Institute of RAS, St. Petersburg 194021 (Russian Federation); Waag, A. [Abteilung Halbleiterphysik, Universitaet Ulm, 89081 Ulm (Germany); Landwehr, G. [Physikalisches Institut der Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2003-02-01

    We report on the investigations of in-plane optical anisotropy in non-common-atom heterostructures: ZnSe/BeTe perfect quantum wells (QWs) and CdSe/BeTe rough QWs and quantum dots. A noticeable linear polarization of photoluminescence (PL) with respect to the in-plane [1-10] and [110] crystal axes was observed in the ZnSe/BeTe QWs with equivalent ZnTe-type interfaces due to the reduction of QW symmetry, induced by unintentional formation of BeSe chemical bonds at a ''BeTe-ZnSe'' interface. The BeSe bond concentration and, hence, the polarization degree depend on the Te/Be flux ratio during molecular beam epitaxy growth of the samples. Strongly linearly polarized (up to 80%) PL was detected in the CdSe/BeTe structures, evidencing QW-like flat symmetry of the emitting sites of carrier localization. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Noise reduction and functional maps image quality improvement in dynamic CT perfusion using a new k-means clustering guided bilateral filter (KMGB).

    Science.gov (United States)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2017-07-01

    Dynamic CT perfusion (CTP) consists in repeated acquisitions of the same volume in different time steps, slightly before, during and slightly afterwards the injection of contrast media. Important functional information can be derived for each voxel, which reflect the local hemodynamic properties and hence the metabolism of the tissue. Different approaches are being investigated to exploit data redundancy and prior knowledge for noise reduction of such datasets, ranging from iterative reconstruction schemes to high dimensional filters. We propose a new spatial bilateral filter which makes use of the k-means clustering algorithm and of an optimal calculated guiding image. We named the proposed filter as k-means clustering guided bilateral filter (KMGB). In this study, the KMGB filter is compared with the partial temporal non-local means filter (PATEN), with the time-intensity profile similarity (TIPS) filter, and with a new version derived from it, by introducing the guiding image (GB-TIPS). All the filters were tested on a digital in-house developed brain CTP phantom, were noise was added to simulate 80 kV and 200 mAs (default scanning parameters), 100 mAs and 30 mAs. Moreover, the filters performances were tested on 7 noisy clinical datasets with different pathologies in different body regions. The original contribution of our work is two-fold: first we propose an efficient algorithm to calculate a guiding image to improve the results of the TIPS filter, secondly we propose the introduction of the k-means clustering step and demonstrate how this can potentially replace the TIPS part of the filter obtaining better results at lower computational efforts. As expected, in the GB-TIPS, the introduction of the guiding image limits the over-smoothing of the TIPS filter, improving spatial resolution by more than 50%. Furthermore, replacing the time-intensity profile similarity calculation with a fuzzy k-means clustering strategy (KMGB) allows to control the edge preserving

  6. A hybrid lattice basis reduction and quantum search attack on LWE

    NARCIS (Netherlands)

    Göpfert, F.; Van Vredendaal, C.; Wunderer, T.

    2017-01-01

    Recently, an increasing amount of papers proposing post-quantum schemes also provide concrete parameter sets aiming for concrete post-quantum security levels. Security evaluations of such schemes need to include all possible attacks, in particular those by quantum adversaries. In the case of

  7. Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study.

    Directory of Open Access Journals (Sweden)

    Erik Birgersson

    Full Text Available During expiration, the carbon dioxide (CO2 levels inside the dead space of a filtering facepiece respirator (FFR increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient - similar to the jets arising from natural expiration without a FFR - ensures that the expired air is removed and diluted more efficiently than a standard FFR.

  8. Investigation and reduction of excess low-frequency noise in rf superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Mueck, M.; Heiden, C.; Clarke, J.

    1994-01-01

    A detailed study has been made of the low-frequency excess noise of rf superconducting quantum interference devices (SQUIDs), fabricated from thin niobium films and operated at 4.2 K, with rf bias frequencies of 0.15, 1.7, and 3 GHz. When the SQUIDs were operated in an open-loop configuration in the absence of low-frequency flux modulation, the demodulated rf voltage exhibited a substantial level 1/f noise, which was essentially independent of the rf bias frequency. As the rf bias frequency was increased, the crossover frequency at which the 1/f noise power was equal to the white noise power moved to higher frequencies, because of the reduction in white noise. On the other hand, when the SQUID was flux modulated at 50 kHz and operated in a flux locked loop, no 1/f noise was observed at frequencies above 0.5 Hz. A detailed description of how the combination of rf bias and flux modulation removes 1/f noise due to critical current fluctuations is given. Thus, the results demonstrate that the 1/f noise observed in these SQUIDs is generated by critical current fluctuations, rather than by the hopping of flux vortices in the niobium films

  9. Miniaturized dielectric waveguide filters

    OpenAIRE

    Sandhu, MY; Hunter, IC

    2016-01-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  10. Reduction of ripening time of full-scale manganese removal filters with manganese oxide-coated media

    NARCIS (Netherlands)

    Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D.

    2015-01-01

    Effective manganese removal by conventional aeration-filtration with virgin filter media requires a long ripening time. The aim of this study was to assess the potential of manganese oxide-coated media to shorten the ripening time of filters with virgin media, under practical conditions. A full

  11. Effects of Particle Filters and Selective Catalytic Reduction on In-Use Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2016-12-01

    Heavy-duty diesel trucks (HDDT) are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Diesel particle filters (DPFs) and selective catalytic reduction (SCR) systems that target PM and NOx emissions, respectively, have recently become standard equipment on new HDDT. DPFs can also be installed on older engines as a retrofit device. Previous work has shown that DPF and SCR systems can reduce NOx and BC emissions by up to 70% and 90%, respectively, compared to modern trucks without these after-treatment controls (Preble et al., ES&T 2015). DPFs can have the undesirable side-effect of increasing ultrafine particle (UFP) and nitrogen dioxide (NO2) emissions. While SCR systems can partially mitigate DPF-related NO2 increases, these systems can emit nitrous oxide (N2O), a potent greenhouse gas. We report new results from a study of HDDT emissions conducted in fall 2015 at the Port of Oakland and Caldecott Tunnel in California's San Francisco Bay Area. We report pollutant emission factors (g kg-1) for emitted NOx, NO2, BC, PM2.5, UFP, and N2O on a truck-by-truck basis. Using a roadside license plate recognition system, we categorize each truck by its engine model year and installed after-treatment controls. From this, we develop emissions profiles for trucks with and without DPF and SCR. We evaluate the effectiveness of these devices as a function of their age to determine whether degradation is an issue. We also compare the emission profiles of trucks traveling at low speeds along a level, arterial road en route to the port and at high speeds up a 4% grade highway approaching the tunnel. Given the climate impacts of BC and N2O, we also examine the global warming potential of emissions from trucks with and without DPF and SCR.

  12. Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO2 Reduction.

    Science.gov (United States)

    Yan, Yibo; Chen, Jie; Li, Nan; Tian, Jingqi; Li, Kaixin; Jiang, Jizhou; Liu, Jiyang; Tian, Qinghua; Chen, Peng

    2018-04-24

    Graphene quantum dots (GQDs), which is the latest addition to the nanocarbon material family, promise a wide spectrum of applications. Herein, we demonstrate two different functionalization strategies to systematically tailor the bandgap structures of GQDs whereby making them snugly suitable for particular applications. Furthermore, the functionalized GQDs with a narrow bandgap and intramolecular Z-scheme structure are employed as the efficient photocatalysts for water splitting and carbon dioxide reduction under visible light. The underlying mechanisms of our observations are studied and discussed.

  13. Surface-related reduction of photoluminescence in GaAs quantum wires and its recovery by new passivation

    International Nuclear Information System (INIS)

    Shiozaki, Nanako; Anantathanasarn, Sanguan; Sato, Taketomo; Hashizume, Tamotsu; Hasegawa, Hideki

    2005-01-01

    Etched GaAs quantum wires (QWRs) and selectively grown (SG) QWRs were fabricated, and dependence of their photoluminescence (PL) properties on QWR width (W) and QWR distance to surface (d) were investigated. PL intensity greatly reduced with reduction of W and d, due to non-radiative recombination through surface states. Surface passivation by growing a Si interface control layer (Si-ICL) on group III-terminated surfaces greatly improved PL properties

  14. Exposure reduction in general dental practice using digital x-ray imaging system for intraoral radiography with additional x-ray beam filter

    International Nuclear Information System (INIS)

    Shibuya, Hitoshi; Mori, Toshimichi; Hayakawa, Yoshihiko; Kuroyanagi, Kinya; Ota, Yoshiko

    1997-01-01

    To measure exposure reduction in general dental practice using digital x-ray imaging systems for intraoral radiography with additional x-ray beam filter. Two digital x-ray imaging systems, Pana Digital (Pana-Heraus Dental) and CDR (Schick Technologies), were applied for intraoral radiography in general dental practice. Due to the high sensitivity to x-rays, additional x-ray beam filters for output reduction were used for examination. An Orex W II (Osada Electric Industry) x-ray generator was operated at 60 kVp, 7 mA. X-ray output (air-kerma; Gy) necessary for obtaining clinically acceptable images was measured at 0 to 20 cm in 5 cm steps from the cone tip using an ionizing chamber type 660 (Nuclear Associates) and compared with those for Ektaspeed Plus film (Eastman Kodak). The Pana Digital system was used with the optional filter supplied by Pana-Heraus Dental which reduced the output to 38%. The exposure necessary to obtain clinically acceptable images was only 40% of that for the film. The CDR system was used with the Dental X-ray Beam Filter Kit (Eastman Kodak) which reduced the x-ray output to 30%. The exposure necessary to obtain clinically acceptable images was only 20% of that for the film. The two digital x-ray imaging systems, Pana Digital and CDR, provided large dose savings (60-80%) compared with Ektaspeed Plus film when applied for intraoral radiography in general dental practice. (author)

  15. Quantum chemical analysis of Со2+ aqua complexes electrochemical reduction

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2017-11-01

    Full Text Available Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method as to [Co(H2On]z(H2O6–n clusters for z = 0, 1, 2 and n=1÷6, it has been demonstrated that electrochemical reduction of [Co(H2O6]2+ aqua complexes runs stage-wise. At the first stage, an electron injected into the [Co(H2O6]2+ complex is entirely located in the orbital of the central atom, as z(Co herewith changes from +1.714 е to +0.777 е. The weakening of Со–ОН2 bonds leads to decomposition of resulting [Co(H2O6]+ particles into two energetically related forms – [Co(H2O4]+ and [Co(H2O3]+. Further reduction of these intermediates runs differently. Electron injection into the [Co(H2O3]+ intermediate terminatesthe transition of Со2+-ions to Со0 z(Co= –0.264 е. This process is accompanied by rapid decomposition of [Co(H2O3]0 product into monohydrate atom of cobalt Со(Н2О. On the contrary, electron injection into the [Co(H2O4]+ intermediate leads to emergence of a specific structure – [Co+(H2O–(Н2О3]¹0, whereby the electron is located in the atoms of cobalt only by 28%, and by 72% in cobalt-coordinated water molecules, clearly focusing on one of the. In this molecule, z(H2O changes from +0.148 е to –0.347 е. There is an assumption that a non-equilibrium [Co+(H2O–(Н2О3]0¹ form transits to [Co(ОH(Н2О3]0 hydroxo-form, which further disproportionates turning into Co(ОH2 hydroxide. In order to reduce the impact of this unfavorable reaction pathway on the overall reaction rate Со2+ + 2ē = Со0, we suggest raising the temperature to ensure complete dissociation of [Co(H2O4]+ to [Co(H2O3]+.

  16. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  17. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Sidles, John A; Jacky, Jonathan P [Department of Orthopaedics and Sports Medicine, Box 356500, School of Medicine, University of Washington, Seattle, WA, 98195 (United States); Garbini, Joseph L; Malcomb, Joseph R; Williamson, Austin M [Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); Harrell, Lee E [Department of Physics, US Military Academy, West Point, NY 10996 (United States); Hero, Alfred O [Department of Electrical Engineering, University of Michigan, MI 49931 (United States); Norman, Anthony G [Department of Bioengineering, University of Washington, Seattle, WA 98195 (United States)], E-mail: sidles@u.washington.edu

    2009-06-15

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kaehler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kaehlerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kaehler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  18. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    International Nuclear Information System (INIS)

    Sidles, John A; Jacky, Jonathan P; Garbini, Joseph L; Malcomb, Joseph R; Williamson, Austin M; Harrell, Lee E; Hero, Alfred O; Norman, Anthony G

    2009-01-01

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kaehler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kaehlerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kaehler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  19. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    Science.gov (United States)

    Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.

    2009-06-01

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kähler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kählerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kähler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candès-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  20. Radium desorption, manganese and iron dissolution from sand filters of a conventional ground water treatment plant under reductive conditions

    International Nuclear Information System (INIS)

    Al-Hobaib, A.S.; Al-Sulaiman, K.M.; Al-Dhayan, D.M.; Al-Suhybani, A.A.

    2006-01-01

    Sand filters are used as a filter bed in many ground water treatment plants to remove the physical contaminants and oxidation products. A build-up of radioactivity may take place on the granules, where iron and manganese oxides are deposited and form thin films on the surface of sand filter. The oxides of iron and manganese play an important role in adsorbing radium from ground water. The disposal of those granules makes a significant problem. A batch technique is used for solubilization of radium from sand filters in the presence of some organic acids, which act as reducing agents. These acids are formic acid, acetic acid, benzoic acid, succinic acid, oxalic acid, phthalic acid, and adipic acid. The data were obtained as a function of acidity, temperature, contact time and liquid/solid ratio particle size and shaking speed. It was found that oxalic acid was the best for radium removal. The effectiveness of these acids on radium removal was as follows: oxalic acid > phthalic acid > adipic acid > succinic acid > formic acid > acetic acid. The maximum removal obtained was 69.9% at 1M oxalic acid at 8 ml/g ratio. Reaction kinetics and mechanism parameters of the dissolution process were studied and compared with other published data. (author)

  1. Ross filter pairs for metal artefact reduction in x-ray tomography: a case study based on imaging and segmentation of metallic implants

    Science.gov (United States)

    Arhatari, Benedicta D.; Abbey, Brian

    2018-01-01

    Ross filter pairs have recently been demonstrated as a highly effective means of producing quasi-monoenergetic beams from polychromatic X-ray sources. They have found applications in both X-ray spectroscopy and for elemental separation in X-ray computed tomography (XCT). Here we explore whether they could be applied to the problem of metal artefact reduction (MAR) for applications in medical imaging. Metal artefacts are a common problem in X-ray imaging of metal implants embedded in bone and soft tissue. A number of data post-processing approaches to MAR have been proposed in the literature, however these can be time-consuming and sometimes have limited efficacy. Here we describe and demonstrate an alternative approach based on beam conditioning using Ross filter pairs. This approach obviates the need for any complex post-processing of the data and enables MAR and segmentation from the surrounding tissue by exploiting the absorption edge contrast of the implant.

  2. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  3. Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots

    NARCIS (Netherlands)

    Pijpers, J. J. H.; Hendry, E.; Milder, M.T.W.; Fanciulli, R.; Savolainen, J.; Herek, J.L.; Vanmaekelbergh, D.A.M.|info:eu-repo/dai/nl/304829137; Ruhman, S.; Mocatta, D.; Oron, D.; Aharoni, A.; Banin, U.; Bonn, M.

    2007-01-01

    Carrier (exciton) multiplication in colloidal InAs/CdSe/ZnSe core-shell quantum dots (QDs) is investigated using terahertz time-domain spectroscopy, time-resolved transient absorption, and quasi-continuous wave excitation spectroscopy. For excitation by high-energy photons (~2.7 times the band gap

  4. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    International Nuclear Information System (INIS)

    Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson

    2017-01-01

    Highlights: • Cu-doped CdS QDs were deposited on TiO_2 by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J_S_C = 9.40 mA cm"−"2, V_O_C = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J_S_C = 7.12 mA cm"−"2, V_O_C = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  5. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Muthalif, Mohammed Panthakkal Abdul [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Lee, Young-Seok [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Sunesh, Chozhidakath Damodharan [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Kim, Hee-Je [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Choe, Youngson, E-mail: choe@pusan.ac.kr [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of)

    2017-02-28

    Highlights: • Cu-doped CdS QDs were deposited on TiO{sub 2} by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J{sub SC} = 9.40 mA cm{sup −2}, V{sub OC} = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J{sub SC} = 7.12 mA cm{sup −2}, V{sub OC} = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  6. Performance enhancement of the single-phase series active filter by employing the load voltage waveform reconstruction and line current sampling delay reduction methods

    DEFF Research Database (Denmark)

    Senturk, O.S.; Hava, A.M.

    2011-01-01

    This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference-frame-based methods. The analytical, simulation, and experimental studies of a 2.5 k...

  7. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    Directory of Open Access Journals (Sweden)

    P. G. Prabhash

    2016-05-01

    Full Text Available Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coated copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.

  8. Reduction of quantum noise in the Michelson interferometer by use of squeezed vacuum states

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob

    2002-01-01

    We develop further the unified model for treating photon-counting and radiation-pressure fluctuations in the Michelson interferometer with input of squeezed vacuum state. The dependence of the quantum fluctuations on the phase of the input light is calculated. The analysis is restricted to a single-mode interferometer, but generalized in a way that includes both harmonic-oscillator and floating mirrors. We compare our results with those of other authors

  9. A 23Na Multiple-Quantum-Filtered NMR Study of the Effect of the Cytoskeleton Conformation on the Anisotropic Motion of Sodium Ions in Red Blood Cells

    Science.gov (United States)

    Knubovets, Tatyana; Shinar, Hadassah; Eliav, Uzi; Navon, Gil

    1996-01-01

    Recently, it has been shown that23Na double-quantum-filtered NMR spectroscopy can be used to detect anisotropic motion of bound sodium ions in biological systems. The technique is based on the formation of the second-rank tensor when the quadrupolar interaction is not averaged to zero. Using this method, anisotropic motion of bound sodium in human and dog red blood cells was detected, and the effect was shown to depend on the integrity of the membrane cytoskeleton. In the present study, multiple-quantum-filtered techniques were applied in combination with a quadrupolar echo to measure the transverse-relaxation times,T2fandT2s. Line fitting was performed to obtain the values of the residual quadrupolar interaction, which was measured for sodium in a variety of mammalian erythrocytes of different size, shape, rheological properties, and sodium concentrations. Human unsealed white ghosts were used to study sodium bound at the anisotropic sites on the inner side of the RBC membrane. Modulations of the conformation of the cytoskeleton by the variation of either the ionic strength or pH of the suspending medium caused drastic changes in both the residual quadrupolar interaction andT2fdue to changes in the fraction of bound sodium ions as well as changes in the structure of the binding sites. By combining the two spectroscopic parameters, structural change can be followed. The changes in the structure of the sodium anisotropic binding sites deduced by this method were found to correlate with known conformational changes of the membrane cytoskeleton. Variations of the medium pH affected both the fraction of bound sodium ions and the structure of the anisotropic binding sites. Sodium and potassium were shown to bind to the anisotropic binding sites with the same affinity.

  10. Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter

    Directory of Open Access Journals (Sweden)

    Álvaro Moreno

    2014-08-01

    Full Text Available Time series of remotely sensed data are an important source of information for understanding land cover dynamics. In particular, the fraction of absorbed photosynthetic active radiation (fAPAR is a key variable in the assessment of vegetation primary production over time. However, the fAPAR series derived from polar orbit satellites are not continuous and consistent in space and time. Filtering methods are thus required to fill in gaps and produce high-quality time series. This study proposes an adapted (iteratively reweighted local regression filter (LOESS and performs a benchmarking intercomparison with four popular and generally applicable smoothing methods: Double Logistic (DLOG, smoothing spline (SSP, Interpolation for Data Reconstruction (IDR and adaptive Savitzky-Golay (ASG. This paper evaluates the main advantages and drawbacks of the considered techniques. The results have shown that ASG and the adapted LOESS perform better in recovering fAPAR time series over multiple controlled noisy scenarios. Both methods can robustly reconstruct the fAPAR trajectories, reducing the noise up to 80% in the worst simulation scenario, which might be attributed to the quality control (QC MODIS information incorporated into these filtering algorithms, their flexibility and adaptation to the upper envelope. The adapted LOESS is particularly resistant to outliers. This method clearly outperforms the other considered methods to deal with the high presence of gaps and noise in satellite data records. The low RMSE and biases obtained with the LOESS method (|rMBE| < 8%; rRMSE < 20% reveals an optimal reconstruction even in most extreme situations with long seasonal gaps. An example of application of the LOESS method to fill in invalid values in real MODIS images presenting persistent cloud and snow coverage is also shown. The LOESS approach is recommended in most remote sensing applications, such as gap-filling, cloud-replacement, and observing temporal

  11. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    Science.gov (United States)

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  12. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    Directory of Open Access Journals (Sweden)

    Chong Shen

    2016-05-01

    Full Text Available The different noise components in a dual-mass micro-electromechanical system (MEMS gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN, electronic-thermal noise (ETN, flicker noise (FN and Coriolis signal in-phase noise (IPN. The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD and time-frequency peak filtering (TFPF. There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  13. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering.

    Science.gov (United States)

    den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R

    1994-06-01

    Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and

  14. Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter

    Science.gov (United States)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo

    2016-08-01

    A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.

  15. HARLIE 3-D Aerosol Backscatter and Wind Profile Measurements During Recent Field Experiments: Background Noise Reduction with a Fabry-Perot Etalon Filter in the HARLIE System

    Science.gov (United States)

    Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)

    2002-01-01

    Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.

  16. Evaluation of the effects of different filters and helium bag on the reduction of electron contamination in photon beam of Neptune linac

    International Nuclear Information System (INIS)

    Bahreyni Toosi, M. T.; Saberi, H.; Momen Nejad, M.

    2005-01-01

    Skin sparing is one of the most desirable characteristics of high energy photon beams. However, the photons emerging from the target of linacs are contaminated by secondary electrons as a result of their interactions with air, collimators, flattening filter and any other objects in their path. This phenomenon tends to increase the skin dose received by the patients. A practical and simple way to reduce the contribution of electron contamination is to place a sheet of medium to high Z material just after the secondary collimator. In this study, filters having different thickness and atomic number were applied and their effectiveness on the reduction of skin dose was evaluated. Materials and Methods: The filters of different thickness and atomic number were applied. The percent depth dose values were determined by the direct measurements made in a Scanditronix water phantom using a PTW 31006 Pin Point chamber having a sensitive volume of 0.015 cm 3 . A Perspex filter holder was made to be installed on the accessory slot. A plastic bag containing helium was also made using thin plastic sheet to study the effect of the helium bag when it replaces the air column between the head of the linac and the phantom. All of the measurements were carried out for the three field sizes of 10*10, 20*20 and 25*25 cm 2 . The setups were adjusted for SSD 100 cm. The ratio of the surface dose to maximum dose (Ds) was used as the criterion to determine the optimum filter. Results: The dosimetry results obtained in the water phantom indicated that a 0.4 mm thick Pb filter is the most effective one. This filter reduces the Ds for the field sizes of 10*10, 20*20 and 25*25 cm 2 by 5.7, 7.9 and 9.6%, respectively. Also the simultaneous use of the optimum filter and He bag is more effective than the filter alone. It reduces the Ds by 6.3, 10.1 and 12.3% for the field sizes of 10*10,20*20 and 25*25 cm 2 , respectively. Discussion and Conclusion: Based on the results of this work it is evident

  17. Adaptive iterative dose reduction algorithm in CT: Effect on image quality compared with filtered back projection in body phantoms of different sizes

    International Nuclear Information System (INIS)

    Kim, Milim; Lee, Jeong Min; Son, Hyo Shin; Han, Joon Koo; Choi, Byung Ihn; Yoon, Jeong Hee; Choi, Jin Woo

    2014-01-01

    To evaluate the impact of the adaptive iterative dose reduction (AIDR) three-dimensional (3D) algorithm in CT on noise reduction and the image quality compared to the filtered back projection (FBP) algorithm and to compare the effectiveness of AIDR 3D on noise reduction according to the body habitus using phantoms with different sizes. Three different-sized phantoms with diameters of 24 cm, 30 cm, and 40 cm were built up using the American College of Radiology CT accreditation phantom and layers of pork belly fat. Each phantom was scanned eight times using different mAs. Images were reconstructed using the FBP and three different strengths of the AIDR 3D. The image noise, the contrast-to-noise ratio (CNR) and the signal-to-noise ratio (SNR) of the phantom were assessed. Two radiologists assessed the image quality of the 4 image sets in consensus. The effectiveness of AIDR 3D on noise reduction compared with FBP were also compared according to the phantom sizes. Adaptive iterative dose reduction 3D significantly reduced the image noise compared with FBP and enhanced the SNR and CNR (p < 0.05) with improved image quality (p < 0.05). When a stronger reconstruction algorithm was used, greater increase of SNR and CNR as well as noise reduction was achieved (p < 0.05). The noise reduction effect of AIDR 3D was significantly greater in the 40-cm phantom than in the 24-cm or 30-cm phantoms (p < 0.05). The AIDR 3D algorithm is effective to reduce the image noise as well as to improve the image-quality parameters compared by FBP algorithm, and its effectiveness may increase as the phantom size increases.

  18. Adaptive iterative dose reduction algorithm in CT: Effect on image quality compared with filtered back projection in body phantoms of different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Milim; Lee, Jeong Min; Son, Hyo Shin; Han, Joon Koo; Choi, Byung Ihn [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Yoon, Jeong Hee; Choi, Jin Woo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-04-15

    To evaluate the impact of the adaptive iterative dose reduction (AIDR) three-dimensional (3D) algorithm in CT on noise reduction and the image quality compared to the filtered back projection (FBP) algorithm and to compare the effectiveness of AIDR 3D on noise reduction according to the body habitus using phantoms with different sizes. Three different-sized phantoms with diameters of 24 cm, 30 cm, and 40 cm were built up using the American College of Radiology CT accreditation phantom and layers of pork belly fat. Each phantom was scanned eight times using different mAs. Images were reconstructed using the FBP and three different strengths of the AIDR 3D. The image noise, the contrast-to-noise ratio (CNR) and the signal-to-noise ratio (SNR) of the phantom were assessed. Two radiologists assessed the image quality of the 4 image sets in consensus. The effectiveness of AIDR 3D on noise reduction compared with FBP were also compared according to the phantom sizes. Adaptive iterative dose reduction 3D significantly reduced the image noise compared with FBP and enhanced the SNR and CNR (p < 0.05) with improved image quality (p < 0.05). When a stronger reconstruction algorithm was used, greater increase of SNR and CNR as well as noise reduction was achieved (p < 0.05). The noise reduction effect of AIDR 3D was significantly greater in the 40-cm phantom than in the 24-cm or 30-cm phantoms (p < 0.05). The AIDR 3D algorithm is effective to reduce the image noise as well as to improve the image-quality parameters compared by FBP algorithm, and its effectiveness may increase as the phantom size increases.

  19. Contrast-enhanced dual energy mammography with a novel anode/filter combination and artifact reduction: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Knogler, Thomas; Pinker-Domenig, Katja; Leitner, Sabine; Helbich, Thomas H. [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Molecular and Gender Imaging, Vienna (Austria); Homolka, Peter; Leithner, Robert [Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna (Austria); Hoernig, Mathias [Siemens AG, Healthcare, X-Ray Products, Erlangen (Germany); Langs, Georg; Waitzbauer, Martin [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Computational Imaging Research Laboratory, Vienna (Austria)

    2016-06-15

    To demonstrate the feasibility of contrast-enhanced dual-energy mammography (CEDEM) using titanium (Ti) filtering at 49 kVp for high-energy images and a novel artefact reducing image-subtraction post-processing algorithm. Fifteen patients with suspicious findings (ACR BI-RADS 4 and 5) detected with digital mammography (MG) that required biopsy were included. CEDEM examinations were performed on a modified prototype machine. Acquired HE and low-energy raw data images were registered non-rigidly to compensate for possible subtle tissue motion. Subtracted CEDEM images were generated via weighted subtraction, using a fully automatic, locally adjusted tissue thickness-dependent subtraction factor to avoid over-subtraction at the breast border. Two observers evaluated the MG and CEDEM images according to ACR BI-RADS in two reading sessions. Results were correlated with histopathology. Seven patients with benign and eight with malignant findings were included. All malignant lesions showed a strong contrast enhancement. BI-RADS assessment was altered in 66.6 % through the addition of CEDEM, resulting in increased overall accuracy. With CEDEM, additional lesions were depicted and false-positive rate was reduced compared to MG. CEDEM using Ti filtering with 49 kVp for HE exposures is feasible in a clinical setting. The proposed image-processing algorithm has the potential to reduce artefacts and improve CEDEM images. (orig.)

  20. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  1. Rhodium SPND's Error Reduction using Extended Kalman Filter combined with Time Dependent Neutron Diffusion Equation

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Tong Kyu; Jeon, Seong Su

    2014-01-01

    The Rhodium SPND is accurate in steady-state conditions but responds slowly to changes in neutron flux. The slow response time of Rhodium SPND precludes its direct use for control and protection purposes specially when nuclear power plant is used for load following. To shorten the response time of Rhodium SPND, there were some acceleration methods but they could not reflect neutron flux distribution in reactor core. On the other hands, some methods for core power distribution monitoring could not consider the slow response time of Rhodium SPND and noise effect. In this paper, time dependent neutron diffusion equation is directly used to estimate reactor power distribution and extended Kalman filter method is used to correct neutron flux with Rhodium SPND's and to shorten the response time of them. Extended Kalman filter is effective tool to reduce measurement error of Rhodium SPND's and even simple FDM to solve time dependent neutron diffusion equation can be an effective measure. This method reduces random errors of detectors and can follow reactor power level without cross-section change. It means monitoring system may not calculate cross-section at every time steps and computing time will be shorten. To minimize delay of Rhodium SPND's conversion function h should be evaluated in next study. Neutron and Rh-103 reaction has several decay chains and half-lives over 40 seconds causing delay of detection. Time dependent neutron diffusion equation will be combined with decay chains. Power level and distribution change corresponding movement of control rod will be tested with more complicated reference code as well as xenon effect. With these efforts, final result is expected to be used as a powerful monitoring tool of nuclear reactor core

  2. Rhodium SPND's Error Reduction using Extended Kalman Filter combined with Time Dependent Neutron Diffusion Equation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hun; Park, Tong Kyu; Jeon, Seong Su [FNC Technology Co., Ltd., Yongin (Korea, Republic of)

    2014-05-15

    The Rhodium SPND is accurate in steady-state conditions but responds slowly to changes in neutron flux. The slow response time of Rhodium SPND precludes its direct use for control and protection purposes specially when nuclear power plant is used for load following. To shorten the response time of Rhodium SPND, there were some acceleration methods but they could not reflect neutron flux distribution in reactor core. On the other hands, some methods for core power distribution monitoring could not consider the slow response time of Rhodium SPND and noise effect. In this paper, time dependent neutron diffusion equation is directly used to estimate reactor power distribution and extended Kalman filter method is used to correct neutron flux with Rhodium SPND's and to shorten the response time of them. Extended Kalman filter is effective tool to reduce measurement error of Rhodium SPND's and even simple FDM to solve time dependent neutron diffusion equation can be an effective measure. This method reduces random errors of detectors and can follow reactor power level without cross-section change. It means monitoring system may not calculate cross-section at every time steps and computing time will be shorten. To minimize delay of Rhodium SPND's conversion function h should be evaluated in next study. Neutron and Rh-103 reaction has several decay chains and half-lives over 40 seconds causing delay of detection. Time dependent neutron diffusion equation will be combined with decay chains. Power level and distribution change corresponding movement of control rod will be tested with more complicated reference code as well as xenon effect. With these efforts, final result is expected to be used as a powerful monitoring tool of nuclear reactor core.

  3. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    International Nuclear Information System (INIS)

    Kamezawa, H; Arimura, H; Ohki, M; Shirieda, K; Kameda, N

    2014-01-01

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems

  4. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    Energy Technology Data Exchange (ETDEWEB)

    Kamezawa, H [Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka (Japan); Fujimoto General Hospital, Miyakonojo, Miyazaki (Japan); Arimura, H; Ohki, M [Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka (Japan); Shirieda, K; Kameda, N [Fujimoto General Hospital, Miyakonojo, Miyazaki (Japan)

    2014-06-01

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.

  5. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

    International Nuclear Information System (INIS)

    Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; Genovese, Luigi

    2017-01-01

    We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same time a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.

  6. Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers

    Energy Technology Data Exchange (ETDEWEB)

    Habruseva, T. [CAPPA, Cork Institute of Technology, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland); Aston University, Aston Triangle, B4 7ET Birmingham (United Kingdom); Arsenijević, D.; Kleinert, M.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Huyet, G.; Hegarty, S. P. [CAPPA, Cork Institute of Technology, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2014-01-13

    Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively.

  7. Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers

    International Nuclear Information System (INIS)

    Habruseva, T.; Arsenijević, D.; Kleinert, M.; Bimberg, D.; Huyet, G.; Hegarty, S. P.

    2014-01-01

    Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively

  8. Green functions and dimensional reduction of quantum fields on product manifolds

    International Nuclear Information System (INIS)

    Haba, Z

    2008-01-01

    We discuss Euclidean Green functions on product manifolds P=N x M. We show that if M is compact and N is not compact then the Euclidean field on P can be approximated by its zero mode which is a Euclidean field on N. We estimate the remainder of this approximation. We show that for large distances on N the remainder is small. If P=R D-1 x S β , where S β is a circle of radius β, then the result reduces to the well-known approximation of the D-dimensional finite temperature quantum field theory by (D - 1)-dimensional one in the high-temperature limit. Analytic continuation of Euclidean fields is discussed briefly

  9. MOTION ARTIFACT REDUCTION IN FUNCTIONAL NEAR INFRARED SPECTROSCOPY SIGNALS BY AUTOREGRESSIVE MOVING AVERAGE MODELING BASED KALMAN FILTERING

    Directory of Open Access Journals (Sweden)

    MEHDI AMIAN

    2013-10-01

    Full Text Available Functional near infrared spectroscopy (fNIRS is a technique that is used for noninvasive measurement of the oxyhemoglobin (HbO2 and deoxyhemoglobin (HHb concentrations in the brain tissue. Since the ratio of the concentration of these two agents is correlated with the neuronal activity, fNIRS can be used for the monitoring and quantifying the cortical activity. The portability of fNIRS makes it a good candidate for studies involving subject's movement. The fNIRS measurements, however, are sensitive to artifacts generated by subject's head motion. This makes fNIRS signals less effective in such applications. In this paper, the autoregressive moving average (ARMA modeling of the fNIRS signal is proposed for state-space representation of the signal which is then fed to the Kalman filter for estimating the motionless signal from motion corrupted signal. Results are compared to the autoregressive model (AR based approach, which has been done previously, and show that the ARMA models outperform AR models. We attribute it to the richer structure, containing more terms indeed, of ARMA than AR. We show that the signal to noise ratio (SNR is about 2 dB higher for ARMA based method.

  10. A method of noise reduction in heterodyne interferometric vibration metrology by combining auto-correlation analysis and spectral filtering

    Science.gov (United States)

    Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng

    2018-01-01

    Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).

  11. Periodic additive noises reduction in 3D images used in building of voxel phantoms through an efficient implementation of the 3D FFT: zipper artifacts filtering

    International Nuclear Information System (INIS)

    Oliveira, Alex C.H. de; Lima, Fernando R.A.; Vieira, Jose W.; Leal Neto, Viriato

    2009-01-01

    The anthropomorphic models used in computational dosimetry are predominantly build from scanning CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) image stacks obtained of patients or volunteers. The building of these stacks (usually called of voxel phantoms or tomography phantoms) requires computer processing to be used in an exposure computational model. Noises present in these stacks can be confused with significant structures. In a 3D image with periodic additive noise in the frequency domain, the noise is fully added to its central slice. The discrete Fourier transform is the fundamental mathematical tool that allows the switch of the spatial domain for the frequency domain, and vice versa. The FFT (fast Fourier transform) algorithm is an ideal computational tool for this switch in domain with efficiency. This paper presents a new methodology for implementation in managed C++ language (Microsoft Visual Studio R .NET) of the fast Fourier transform of 3D digital images (FFT3D) using, essentially, the trigonometric recombination. The reduction of periodic additive noise consists in filtering only the central slice of 3D image in the frequency domain and transforms it back into the spatial domain through the inverse FFT3D. An example of application of this method it is the zipper artifacts filtering in images of MRI. These processes were implemented in the software DIP (Digital Image Processing). (author)

  12. Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF): A data assimilation scheme for memory intensive, high performance computing

    Science.gov (United States)

    Hut, Rolf; Amisigo, Barnabas A.; Steele-Dunne, Susan; van de Giesen, Nick

    2015-12-01

    Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF) is introduced as a variant on the Ensemble Kalman Filter (EnKF). RumEnKF differs from EnKF in that it does not store the entire ensemble, but rather only saves the first two moments of the ensemble distribution. In this way, the number of ensemble members that can be calculated is less dependent on available memory, and mainly on available computing power (CPU). RumEnKF is developed to make optimal use of current generation super computer architecture, where the number of available floating point operations (flops) increases more rapidly than the available memory and where inter-node communication can quickly become a bottleneck. RumEnKF reduces the used memory compared to the EnKF when the number of ensemble members is greater than half the number of state variables. In this paper, three simple models are used (auto-regressive, low dimensional Lorenz and high dimensional Lorenz) to show that RumEnKF performs similarly to the EnKF. Furthermore, it is also shown that increasing the ensemble size has a similar impact on the estimation error from the three algorithms.

  13. Performance of the RI exhaust filter at Chosun university cyclotron facility and {sup 18}F emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Cheol Ki; Jang, Han; Lee, Goung Jin [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-03-15

    Recently, the number of PET cyclotrons has increased in Korea. A cyclotron mainly produces {sup 18}F, which is used for the production of [{sup 18}F]FDG, a cancer diagnostic radiopharmaceutical. For radiation protection, the discharge control standard under the Nuclear Safety Act limits the radioactive concentration of {sup 18}F in the exhaust discharged from a nuclear power utilization facility to below 2,000 Bq m-3. However, the radioactive concentration of 18F discharged during [18F]FDG production at the cyclotron facility at Chosun University is maintained at about 1,500 Bq m{sup -3} on average, which is 75% of the concentration limit of the discharge control standard, and temporarily exceeds the standard as per the real-time monitoring results. This study evaluated the performance of the exhaust flter unit of the cyclotron facility at Chosun University by assessing the concentration of {sup 18}F in the exhaust, and an experiment was conducted on the discharge reduction, where {sup 18}F is discharged without reacting with the FDG precursors during [{sup 18}F]FDG synthesis and is immediately captured by the [{sup 18}F]FDG automatic synthesis unit. Based on the performance evaluation results of the exhaust flter at the cyclotron facility of Chosun University, the measured capture effciency before and after the flter was found to be 92%. Furthermore, the results of the discharge reduction experiment, where the exhaust {sup 18}F was immediately captured by the [{sup 18}F]FDG synthesizer, showed a very satisfactory 94.3% reduction in the concentration of discharge compared to the existing discharge concentration.

  14. Exactly solvable quantum state reduction models with time-dependent coupling

    International Nuclear Information System (INIS)

    Brody, Dorje C; Constantinou, Irene C; Dear, James D C; Hughston, Lane P

    2006-01-01

    A closed-form solution to the energy-based stochastic Schroedinger equation with a time-dependent coupling is obtained. The solution is algebraic in character, and is expressed directly in terms of independent random data. The data consist of (i) a random variable H which has the distribution P(H=E i ) = π i , where π i is the transition probability vertical bar (ψ 0 vertical bar Φ i ) vertical bar 2 from the initial state vertical bar ψ 0 ) to the Lueders state vertical bar Φ i ) with energy E i , and (ii) an independent P-Brownian motion, where P is the physical probability measure associated with the dynamics of the reduction process. When the coupling is time independent, it is known that state reduction occurs asymptotically-that is to say, over an infinite time horizon. In the case of a time-dependent coupling, we show that if the magnitude of the coupling decreases sufficiently rapidly, then the energy variance will be reduced under the dynamics, but the state need not reach an energy eigenstate. This situation corresponds to the case of a 'partial' or 'incomplete' measurement of the energy. We also construct an example of a model where the opposite situation prevails, in which complete state reduction is achieved after the passage of a finite period of time

  15. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Lonsdale, Richard; Reetz, Manfred T

    2015-11-25

    Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.

  16. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Xu, Yang-Fan; Yang, Mu-Zi; Chen, Bai-Xue; Wang, Xu-Dong; Chen, Hong-Yan; Kuang, Dai-Bin; Su, Cheng-Yong

    2017-04-26

    Halide perovskite quantum dots (QDs), primarily regarded as optoelectronic materials for LED and photovoltaic devices, have not been applied for photochemical conversion (e.g., water splitting or CO 2 reduction) applications because of their insufficient stability in the presence of moisture or polar solvents. Herein, we report the use of CsPbBr 3 QDs as novel photocatalysts to convert CO 2 into solar fuels in nonaqueous media. Under AM 1.5G simulated illumination, the CsPbBr 3 QDs steadily generated and injected electrons into CO 2 , catalyzing CO 2 reduction at a rate of 23.7 μmol/g h with a selectivity over 99.3%. Additionally, through the construction of a CsPbBr 3 QD/graphene oxide (CsPbBr 3 QD/GO) composite, the rate of electron consumption increased 25.5% because of improved electron extraction and transport. This study is anticipated to provide new opportunities to utilize halide perovskite QD materials in photocatalytic applications.

  17. Filtering out the noise: evaluating the impact of noise and sound reduction strategies on sleep quality for ICU patients.

    Science.gov (United States)

    Bosma, Karen J; Ranieri, V Marco

    2009-01-01

    The review article by Xie and colleagues examines the impact of noise and noise reduction strategies on sleep quality for critically ill patients. Evaluating the impact of noise on sleep quality is challenging, as it must be measured relative to other factors that may be more or less disruptive to patients' sleep. Such factors may be difficult for patients, observers, and polysomnogram interpreters to identify, due to our limited understanding of the causes of sleep disruption in the critically ill, as well as the challenges in recording and quantifying sleep stages and sleep fragmentation in the intensive care unit. Furthermore, most research in this field has focused on noise level, whereas acousticians typically evaluate additional parameters such as noise spectrum and reverberation time. The authors highlight the disparate results and limitations of existing studies, including the lack of attention to other acoustic parameters besides sound level, and the combined effects of different sleep disturbing factors.

  18. HEPA Filter Vulnerability Assessment

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection

  19. Viewing the proton through ''color'' filters

    International Nuclear Information System (INIS)

    Ji, Xiangdong

    2004-01-01

    While the form factors and parton distributions provide separately the shape of the proton in coordinate and momentum spaces, a more powerful imaging of the proton structure can be obtained through quantum phase-space distributions. Here we introduce the Wigner-type quark and gluon distributions which depict a full-3D proton at every fixed Feynman momentum, like what is seen through momentum(''color'')-filters. After appropriate reductions, the phase-space distributions are related to the generalized parton distributions (GPDs) and transverse-momentum dependent parton distributions measurable in high-energy experiments. (orig.)

  20. Quantum potential theory

    CERN Document Server

    Schürmann, Michael

    2008-01-01

    This volume contains the revised and completed notes of lectures given at the school "Quantum Potential Theory: Structure and Applications to Physics," held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald from February 26 to March 10, 2007. Quantum potential theory studies noncommutative (or quantum) analogs of classical potential theory. These lectures provide an introduction to this theory, concentrating on probabilistic potential theory and it quantum analogs, i.e. quantum Markov processes and semigroups, quantum random walks, Dirichlet forms on C* and von Neumann algebras, and boundary theory. Applications to quantum physics, in particular the filtering problem in quantum optics, are also presented.

  1. Entanglement enhancement through multirail noise reduction for continuous-variable measurement-based quantum-information processing

    Science.gov (United States)

    Su, Yung-Chao; Wu, Shin-Tza

    2017-09-01

    We study theoretically the teleportation of a controlled-phase (cz) gate through measurement-based quantum-information processing for continuous-variable systems. We examine the degree of entanglement in the output modes of the teleported cz-gate for two classes of resource states: the canonical cluster states that are constructed via direct implementations of two-mode squeezing operations and the linear-optical version of cluster states which are built from linear-optical networks of beam splitters and phase shifters. In order to reduce the excess noise arising from finite-squeezed resource states, teleportation through resource states with different multirail designs will be considered and the enhancement of entanglement in the teleported cz gates will be analyzed. For multirail cluster with an arbitrary number of rails, we obtain analytical expressions for the entanglement in the output modes and analyze in detail the results for both classes of resource states. At the same time, we also show that for uniformly squeezed clusters the multirail noise reduction can be optimized when the excess noise is allocated uniformly to the rails. To facilitate the analysis, we develop a trick with manipulations of quadrature operators that can reveal rather efficiently the measurement sequence and corrective operations needed for the measurement-based gate teleportation, which will also be explained in detail.

  2. CT urography in the urinary bladder: To compare excretory phase images using a low noise index and a high noise index with adaptive noise reduction filter

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Hayashi, Takaki; Ohgiya, Yoshimitsu

    2011-01-01

    Background: Although CT urography (CTU) is widely used for the evaluation of the entire urinary tract, the most important drawback is the radiation exposure. Purpose: To evaluate the effect of a noise reduction filter (NRF) using a phantom and to quantitatively and qualitatively compare excretory phase (EP) images using a low noise index (NI) with those using a high NI and postprocessing NRF (pNRF). Material and Methods: Each NI value was defined for a slice thickness of 5 mm, and reconstructed images with a slice thickness of 1.25 mm were assessed. Sixty patients who were at high risk of developing bladder tumors (BT) were divided into two groups according to whether their EP images were obtained using an NI of 9.88 (29 patients; group A) or an NI of 20 and pNRF (31 patients; group B). The CT dose index volume (CTDI vol ) and the contrast-to-noise ratio (CNR) of the bladder with respect to the anterior pelvic fat were compared in both groups. Qualitative assessment of the urinary bladder for image noise, sharpness, streak artifacts, homogeneity, and the conspicuity of polypoid or sessile-shaped BTs with a short-axis diameter greater than 10 mm was performed using a 3-point scale. Results: The phantom study showed noise reduction of approximately 40% and 76% dose reduction between group A and group B. CTDI vol demonstrated a 73% reduction in group B (4.6 ± 1.1 mGy) compared with group A (16.9 ± 3.4 mGy). The CNR value was not significantly different (P = 0.60) between group A (16.1 ± 5.1) and group B (16.6 ± 7.6). Although group A was superior (P < 0.01) to group B with regard to image noise, other qualitative analyses did not show significant differences. Conclusion: EP images using a high NI and pNRF were quantitatively and qualitatively comparable to those using a low NI, except with regard to image noise

  3. Trap elimination and reduction of size dispersion due to aging in CdS x Se1- x quantum dots

    Science.gov (United States)

    Verma, Abhishek; Nagpal, Swati; Pandey, Praveen K.; Bhatnagar, P. K.; Mathur, P. C.

    2007-12-01

    Quantum Dots of CdS x Se1- x embedded in borosilicate glass matrix have been grown using Double-Step annealing method. Optical characterization of the quantum dots has been done through the combinative analysis of optical absorption and photoluminescence spectroscopy at room temperature. Decreasing trend of photoluminescence intensity with aging has been observed and is attributed to trap elimination. The changes in particle size, size distribution, number of quantum dots, volume fraction, trap related phenomenon and Gibbs free energy of quantum dots, has been explained on the basis of the diffusion-controlled growth process, which continues with passage of time. For a typical case, it was found that after 24 months of aging, the average radii increased from 3.05 to 3.12 nm with the increase in number of quantum dots by 190% and the size-dispersion decreased from 10.8% to 9.9%. For this sample, the initial size range of the quantum dots was 2.85 to 3.18 nm. After that no significant change was found in these parameters for the next 12 months. This shows that the system attains almost a stable nature after 24 months of aging. It was also observed that the size-dispersion in quantum dots reduces with the increase in annealing duration, but at the cost of quantum confinement effect. Therefore, a trade off optimization has to be done between the size-dispersion and the quantum confinement.

  4. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots.

    Science.gov (United States)

    Tang, Dandan; Zhang, Jinyi; Zhou, Rongxin; Xie, Ya-Ni; Hou, Xiandeng; Xu, Kailai; Wu, Peng

    2018-05-10

    Overexpression and crystallization of uric acid have been recognized as the course of hyperuricemia and gout, which is produced via xanthine oxidase (XOD)-catalyzed oxidation of xanthine. Therefore, the medicinal therapy of hyperuricemia and gout is majorly based on the inhibition of the XOD enzymatic pathway. The spectroscopic nature of xanthine and uric acid, namely both absorption (near the ultraviolet region) and emission (non-fluorescent) characteristics, hinders optical assay development for XOD analysis. Therefore, the state-of-the-art analysis of XOD and the screening of XOD inhibitors are majorly based on chromatography. Here, we found the near ultraviolet absorption of uric acid overlapped well with the absorption of a large bandgap semiconductor quantum dots, ZnS. On the other hand, the intrinsic weak fluorescence of ZnS QDs can be substantially improved via transition metal ion doping. Therefore, herein, we developed an inner filter effect-based assay for XOD analysis and inhibitor screening with Mn-doped ZnS QDs. The phosphorescence of Mn-doped ZnS QDs could be quenched by uric acid generated from xanthine catabolism by XOD, leading to the phosphorescence turn-off detection of XOD with a limit of detection (3σ) of 0.02 U L-1. Furthermore, the existence of XOD inhibitors could inhibit the XOD enzymatic reaction, resulting in weakened phosphorescence quenching. Therefore, the proposed assay could also be explored for the facile screening analysis of XOD inhibitors, which is important for the potential medicinal therapy of hyperuricemia and gout.

  5. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    Science.gov (United States)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  6. Influence of water-filtered infrared-A (wIRA on reduction of local fat and body weight by physical exercise

    Directory of Open Access Journals (Sweden)

    Schmitz, Gerd

    2006-07-01

    Full Text Available Aim of the study: Investigation, whether water-filtered infrared-A (wIRA irradiation during moderate bicycle ergometer endurance exercise has effects especially on local fat reduction and on weight reduction beyond the effects of ergometer exercise alone. Methods: Randomised controlled study with 40 obese females (BMI 30-40 (median: 34.5, body weight 76-125 (median: 94.9 kg, age 20-40 (median: 35.5 years, isocaloric nutrition, 20 in the wIRA group and 20 in the control group. In both groups each participant performed 3 times per week over 4 weeks for 45 minutes bicycle ergometer endurance exercise with a constant load according to a lactate level of 2 mmol/l (aerobic endurance load, as determined before the intervention period. In the wIRA group in addition large parts of the body (including waist, hip, and thighs were irradiated during all ergometries of the intervention period with visible light and a predominant part of water-filtered infrared-A (wIRA, using the irradiation unit “Hydrosun® 6000” with 10 wIRA radiators (Hydrosun® Medizintechnik, Müllheim, Germany, radiator type 500, 4 mm water cuvette, yellow filter, water-filtered spectrum 500-1400 nm around a speed independent bicycle ergometer. Main variable of interest: change of “the sum of circumferences of waist, hip, and both thighs of each patient” over the intervention period (4 weeks. Additional variables of interest: body weight, body mass index BMI, body fat percentage, fat mass, fat-free mass, water mass (analysis of body composition by tetrapolar bioimpedance analysis, assessment of an arteriosclerotic risk profile by blood investigation of variables of lipid metabolism (cholesterol, triglycerides, high density lipoproteins HDL, low density lipoproteins LDL, apolipoprotein A1, apolipoprotein B, clinical chemistry (fasting glucose, alanin-aminotransferase ALT (= glutamyl pyruvic transaminase GPT, gamma-glutamyl-transferase GGT, creatinine, albumin, endocrinology

  7. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is

  8. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  9. A novel reduction approach to fabricate quantum-sized SnO₂-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors.

    Science.gov (United States)

    Ye, Yixing; Wang, Panpan; Dai, Enmei; Liu, Jun; Tian, Zhenfei; Liang, Changhao; Shao, Guosheng

    2014-05-21

    Quantum-sized SnO2 nanocrystals can be well dispersed on reduced graphene oxide (rGO) nanosheets through a convenient one-pot in situ reduction route without using any other chemical reagent or source. Highly reactive metastable tin oxide (SnO(x)) nanoparticles (NPs) were used as reducing agents and composite precursors derived by the laser ablation in liquid (LAL) technique. Moreover, the growth and phase transition of LAL-induced SnO(x) NPs and graphene oxide (GO) were examined by optical absorption, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy. Highly dispersed SnO(x) NPs can also prevent rGO from being restacked into a multilayer structure during GO reduction. Given the good electron transfer ability and unsaturated dangling bonds of rGO, as well as the ample electrocatalytic active sites of quantum-sized SnO2 NPs on unfolded rGO sheets, the fabricated SnO2-rGO nanocomposite exhibited excellent performance in the non-enzymatic electrochemical detection of glucose molecules. The use of LAL-induced reactive NPs for in situ GO reduction is also expected to be a universal and environmentally friendly approach for the formation of various rGO-based nanocomposites.

  10. Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Sano, K.; Muramatsu, Y.; Yamanashi, Y.; Yoshikawa, N.; Zen, N.; Ohkubo, M.

    2014-01-01

    Highlights: • We proposed single-flux-quantum (SFQ) time-to-digital converters (TDCs) for TOF-MS. • SFQ TDC can measure time intervals between multiple signals with high-resolution. • SFQ TDC can directly convert the time intervals into binary data. • We designed two types of SFQ TDCs to reduce the jitter. • The jitter is reduced to less than 100 ps. - Abstract: We have been developing a high-resolution superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter (TDC). The SFQ TDC can measure time intervals between multiple input signals and directly convert them into binary data. In our previous study, 24-bit SFQ TDC with a 3 × 24-bit First-In First-Out (FIFO) buffer was designed and implemented using the AIST Nb standard process 2 (STP2), whose time resolution and dynamic range are 100 ps and 1.6 ms, respectively. In this study we reduce the jitter of the TDC by using two different approaches: one uses an on-chip clock generator with an on-chip low-pass filter for reducing the noise in the bias current, and the other uses a low-jitter external clock source at room temperature. We confirmed that the jitter is reduced to less than 100 ps in the latter approach

  11. Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sano, K., E-mail: sano-kyosuke-cw@ynu.jp [Department Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Muramatsu, Y.; Yamanashi, Y.; Yoshikawa, N. [Department Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Zen, N.; Ohkubo, M. [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-09-15

    Highlights: • We proposed single-flux-quantum (SFQ) time-to-digital converters (TDCs) for TOF-MS. • SFQ TDC can measure time intervals between multiple signals with high-resolution. • SFQ TDC can directly convert the time intervals into binary data. • We designed two types of SFQ TDCs to reduce the jitter. • The jitter is reduced to less than 100 ps. - Abstract: We have been developing a high-resolution superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter (TDC). The SFQ TDC can measure time intervals between multiple input signals and directly convert them into binary data. In our previous study, 24-bit SFQ TDC with a 3 × 24-bit First-In First-Out (FIFO) buffer was designed and implemented using the AIST Nb standard process 2 (STP2), whose time resolution and dynamic range are 100 ps and 1.6 ms, respectively. In this study we reduce the jitter of the TDC by using two different approaches: one uses an on-chip clock generator with an on-chip low-pass filter for reducing the noise in the bias current, and the other uses a low-jitter external clock source at room temperature. We confirmed that the jitter is reduced to less than 100 ps in the latter approach.

  12. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Science.gov (United States)

    Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson

    2017-02-01

    In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including JSC = 9.40 mA cm-2, VOC = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, JSC = 7.12 mA cm-2, VOC = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV-vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  13. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters

  14. Numerical study of canister filters with alternatives filter cap configurations

    Science.gov (United States)

    Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.

    2017-09-01

    Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.

  15. Dispersion induced penalty for a 1xN passive interferometric optical MUX/DEMUX and its reduction using all-pass filters

    DEFF Research Database (Denmark)

    Leick, Lasse; Peucheret, Christophe

    2002-01-01

    The cascadability of 1timesN passband flattened interferometer DEMUX is investigated numerically. The passband flattening process results in detrimental dispersion induced penalty at 10 Gbit/s which can be significantly reduced with all-pass filters on the input arm......The cascadability of 1timesN passband flattened interferometer DEMUX is investigated numerically. The passband flattening process results in detrimental dispersion induced penalty at 10 Gbit/s which can be significantly reduced with all-pass filters on the input arm...

  16. Reduction of Polarization Field Strength in Fully Strained c-Plane InGaN/(In)GaN Multiple Quantum Wells Grown by MOCVD.

    Science.gov (United States)

    Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui

    2016-12-01

    The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

  17. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  18. Practical recipes for the model order reduction, dynamical simulation, and compressive sampling of large-scale open quantum systems

    OpenAIRE

    Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.

    2008-01-01

    This article presents numerical recipes for simulating high-temperature and non-equilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process...

  19. Variable Span Filters for Speech Enhancement

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2016-01-01

    In this work, we consider enhancement of multichannel speech recordings. Linear filtering and subspace approaches have been considered previously for solving the problem. The current linear filtering methods, although many variants exist, have limited control of noise reduction and speech...

  20. X-ray fluoroscopy spatio-temporal filtering with object detection

    International Nuclear Information System (INIS)

    Aufrichtig, R.; Wilson, D.L.; University Hospitals of Cleveland, OH

    1995-01-01

    One potential way to reduce patient and staff x-ray fluoroscopy dose is to reduce the quantum exposure to the detector and compensate the additional noise with digital filtering. A new filtering method, spatio-temporal filtering with object detection, is described that reduces noise while minimizing motion and spatial blur. As compared to some conventional motion-detection filtering schemes, this object-detection method incorporates additional a priori knowledge of image content; i.e. much of the motion occurs in isolated long thin objects (catheters, guide wires, etc.). The authors create object-likelihood images and use these to control spatial and recursive temporal filtering such as to reduce blurring the objects of interest. They use automatically computed receiver operating characteristic (ROC) curves to optimize the object-likelihood enhancement method and determine that oriented matched filter kernels with 4 orientations are appropriate. The matched filter kernels are simple projected cylinders. The authors demonstrate the method on several representative x-ray fluoroscopy sequences to which noise is added to simulate very low dose acquisitions. With processing, they find that noise variance is significantly reduced with slightly less noise reduction near moving objects. They estimate an effective exposure reduction greater than 80%

  1. Filter apparatus

    International Nuclear Information System (INIS)

    Butterworth, D.J.

    1980-01-01

    This invention relates to liquid filters, precoated by replaceable powders, which are used in the production of ultra pure water required for steam generation of electricity. The filter elements are capable of being installed and removed by remote control so that they can be used in nuclear power reactors. (UK)

  2. Phantom examination for reduction of radiation dose using new needle screen storage phosphor radiography and add beam filter in digital thoracic radiography on adolescents and larger children

    International Nuclear Information System (INIS)

    Heyne, J.P.; Mentzel, H.J.; Neumann, R.; Lopatta, E.; Zimmermann, U.; Kaiser, W.A.

    2008-01-01

    Purpose: how much can the radiation dose be reduced in thoracic radiography on adolescents and larger children by using needle screen storage phosphor (NIP) radiography and add beam filtration? Materials and methods: a chest phantom with typical anatomical structures, pathological findings, added catheters, and simulated nodules, tumors, and calcifications was X-rayed digitally (DX-S, Agfa Healthcare) in posterior-anterior (p.a.) orientation with and without add beam filter. While keeping the voltage constant, the tube current time product was reduced gradually. In addition to LgM, the surface entrance dose (ED) and the dose area product (DAP) were measured by the Dosimax sensor and Kerma X-plus (both Wellhoefer). Five investigators evaluated the images for characteristics and critical features, pathological findings, and catheter recognizability. Results: the ED of the digital chest radiogram p.a. with 115 kV and 0.71 mAs was 27 μGy, the DAP 3.6 μGy x m 2 , the LgM value 1.56. This initial radiogram was able to be evaluated very well and conforms to the quality guidelines. The dose-reduced chest radiograms with the add beam filter Al 1.0 mm/Cu 0.1 mm were evaluated as sufficiently reduced to a dose of 63% of the initial dose, with the add beam filter Al 1.0 mm/Cu 0.2 mm reduced to 50% (0.52 mAs, DAP 1.82 μGy x m 2 , LgM 1.35). P.a. radiograms were able to be X-rayed on 115 kV with 0.52 mAs. (orig.)

  3. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  4. Filter systems

    International Nuclear Information System (INIS)

    Vanin, V.R.

    1990-01-01

    The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)

  5. A cocatalyst-free Eosin Y-sensitized p-type of Co₃O₄ quantum dot for highly efficient and stable visible-light-driven water reduction and hydrogen production.

    Science.gov (United States)

    Zhang, Ning; Shi, Jinwen; Niu, Fujun; Wang, Jian; Guo, Liejin

    2015-09-07

    Owing to the effect of energy band bending, p-type Co3O4 quantum dots sensitized by Eosin Y showed a high and stable photocatalytic activity (∼13,440 μmol h(-1) g(-1)(cat)) for water reduction and hydrogen production under visible-light irradiation without any cocatalyst.

  6. Quantum Criticality

    Science.gov (United States)

    Drummond, P. D.; Chaturvedi, S.; Dechoum, K.; Comey, J.

    2001-02-01

    We investigate the theory of quantum fluctuations in non-equilibrium systems having large crit­ical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical sys­tems in which macroscopic 'Schrödinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrödinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrödinger cat. -Pacs: 03.65.Bz

  7. Controlled extracellular biosynthesis of ZnS quantum dots by sulphate reduction bacteria in the presence of hydroxypropyl starch as a mediator

    Science.gov (United States)

    Qi, Shiyue; Zhang, Mi; Guo, Xingming; Yue, Lei; Wang, Jia; Shao, Ziqiang; Xin, Baoping

    2017-06-01

    Metal sulphide quantum dots (QDs) have broad applications. Sulphate-reducing bacteria (SRB) have been recognized as synthesizers of metal sulphides, with the characteristics of a high-production efficiency and easy product harvest. However, SRB are incapable of synthesizing metal sulphide QDs. In the present study, cheap hydroxypropyl starch (HPS) was used to assist SRB in manufacturing the ZnS QDs. The results exhibited that the HPS accelerated the growth of SRB and reduction of SO4 2+ into S2-, while it blocked the precipitation between S2- and Zn2+ to control the nucleation and growth of ZnS, resulting in the formation of ZnS QDs. When the HPS concentration increased from 0.2 to 1.6 g/L, the average crystal size (ACS) of ZnS QDs dropped from 5.95 to 3.34 nm, demonstrating the controlled biosynthesis of ZnS QDs. The ZnS QDs were coated or adhered to by both HPS and proteins, which played an important role in the controlled biosynthesis of ZnS QDs. The remarkable blue shift of the narrow UV absorption peak was due to the quantum confinement effect. The sequential variation in the colour of the photoluminescence spectrum (PL) from red to yellow suggested a tunable PL of the ZnS QDs. The current work demonstrated that SRB can fabricate the formation of ZnS QDs with a controlled size and tunable PL at a high-production rate of approximately 8.7 g/(L × week) through the simple mediation of HPS, with the yield being 7.46 times the highest yield in previously reported studies. The current work is of great importance to the commercialization of the biosynthesis of ZnS QDs.

  8. Reduction of levels of radiation exposure over patients and medical staff by using additional filters of copper and aluminum on the outputs of X-ray tubes in hemodynamic equipment

    International Nuclear Information System (INIS)

    Weis, Guilherme L.; Müller, Felipe M.; Schuch, Luiz A.

    2013-01-01

    Radioprotection in hemodynamic services is extremely important. Decrease of total exposition time, better positioning of medical staff in the room, use of individual and collective protection equipment and shorter distance between the patient and the image intensifier tube are, among others, some ways to reduce the levels of radiation. It is noted that these possible forms of reducing the radiation exposition varies depending on the medical staff. Hence, the purpose of the present paper is to reduce such levels of radiation exposition in a way apart from medical staffs. It is proposed, therefore, the use of additional filters on the output of the X-ray tube in three hemodynamic equipment from different generations: detector with a flat panel of amorphous selenium, image intensifier tube with charge coupled device, and image intensifier tube with video camera. In order to quantify the quality of the images generated, a simulator made of aluminum plates and other devices was set up, so it was possible to measure and compare the acquired images. Methods of images analysis (threshold, histogram, 3D surface) were used to measure the signal/noise ratio, the spatial resolution, the contrast and the definition of the signal area, thus doubts regarding the analysis of the images among observers (inter-observers) and even for a single observer (intra-observer) can be avoided. Ionization chambers were also used in order to quantify the doses of radiation that penetrated the skin of the patients with and without the use of the filters. In all cases was found an arrangement of filters that combines quality of the images with a significant reduction of the levels of exposure to ionizing radiation, concerning both the patient and the medical staff. (author)

  9. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A. G., E-mail: smirnov@lpi.ru [I. E. Tamm Theory Department, P. N. Lebedev Physical Institute, Leninsky Prospect 53, Moscow 119991 (Russian Federation)

    2015-12-15

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.

  10. Observer dependence of quantum states in relativistic quantum field theories

    International Nuclear Information System (INIS)

    Malin, S.

    1982-01-01

    Quantum states can be understood as either (i) describing quantum systems or (ii) representing observers' knowledge about quantum systems. These different meanings are shown to imply different transformation properties in relativistic field theories. The rules for the reduction of quantum states and the transformation properties of quantum states under Lorentz transformations are derived for case (ii). The results obtained are applied to a quantum system recently presented and analyzed by Aharonov and Albert. It is shown that the present results, combined with Aharonov and Albert's, amount to a proof of Bohr's view that quantum states represent observers' knowledge about quantum systems

  11. Research on Palmprint Identification Method Based on Quantum Algorithms

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-01-01

    Full Text Available Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%.

  12. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  13. Filter This

    Directory of Open Access Journals (Sweden)

    Audrey Barbakoff

    2011-03-01

    Full Text Available In the Library with the Lead Pipe welcomes Audrey Barbakoff, a librarian at the Milwaukee Public Library, and Ahniwa Ferrari, Virtual Experience Manager at the Pierce County Library System in Washington, for a point-counterpoint piece on filtering in libraries. The opinions expressed here are those of the authors, and are not endorsed by their employers. [...

  14. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  15. Trap elimination and reduction of size dispersion due to aging in CdS{sub x}Se{sub 1-x} quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Abhishek [University of Delhi South Campus, Department of Electronic Science (India)], E-mail: abhiverma10@gmail.com; Nagpal, Swati [University of Delhi, Department of Physics and Electronics, Rajdhani College (India); Pandey, Praveen K.; Bhatnagar, P. K.; Mathur, P. C. [University of Delhi South Campus, Department of Electronic Science (India)

    2007-12-15

    Quantum Dots of CdS{sub x}Se{sub 1-x} embedded in borosilicate glass matrix have been grown using Double-Step annealing method. Optical characterization of the quantum dots has been done through the combinative analysis of optical absorption and photoluminescence spectroscopy at room temperature. Decreasing trend of photoluminescence intensity with aging has been observed and is attributed to trap elimination. The changes in particle size, size distribution, number of quantum dots, volume fraction, trap related phenomenon and Gibbs free energy of quantum dots, has been explained on the basis of the diffusion-controlled growth process, which continues with passage of time. For a typical case, it was found that after 24 months of aging, the average radii increased from 3.05 to 3.12 nm with the increase in number of quantum dots by 190% and the size-dispersion decreased from 10.8% to 9.9%. For this sample, the initial size range of the quantum dots was 2.85 to 3.18 nm. After that no significant change was found in these parameters for the next 12 months. This shows that the system attains almost a stable nature after 24 months of aging. It was also observed that the size-dispersion in quantum dots reduces with the increase in annealing duration, but at the cost of quantum confinement effect. Therefore, a trade off optimization has to be done between the size-dispersion and the quantum confinement.

  16. Bag filters

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M; Komeda, I; Takizaki, K

    1982-01-01

    Bag filters are widely used throughout the cement industry for recovering raw materials and products and for improving the environment. Their general mechanism, performance and advantages are shown in a classification table, and there are comparisons and explanations. The outer and inner sectional construction of the Shinto ultra-jet collector for pulverized coal is illustrated and there are detailed descriptions of dust cloud prevention, of measures used against possible sources of ignition, of oxygen supply and of other topics. Finally, explanations are given of matters that require careful and comprehensive study when selecting equipment.

  17. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  18. A practical approach to harmonic compensation in power systems-series connection of passive and active filters

    OpenAIRE

    Fujita, Hideaki; Akagi, Hirofumi

    1991-01-01

    The authors present a combined system with a passive filter and a small-rated active filter, both connected in series with each other. The passive filter removes load produced harmonics just as a conventional filter does. The active filter plays a role in improving the filtering characteristics of the passive filter. This results in a great reduction of the required rating of the active filter and in eliminating all the limitations faced by using only the passive filter, leading to a practica...

  19. Quantum solitons

    Energy Technology Data Exchange (ETDEWEB)

    Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)

    1999-02-01

    Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weakerand weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This

  20. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  1. Extension of the maintenance cycle of HEPA filters by optimization of the technical characteristics of filters and their construction

    International Nuclear Information System (INIS)

    Bella, H.; Stiehl, H.H.; Sinhuber, D.

    1977-01-01

    The knowledge of the parameters of HEPA filters used at present in nuclear plants allows optimization of such filters with respect to flow rate, pressure drop and service life. The application of optimizing new types of HEPA filters of improved performance is reported. The calculated results were checked experimentally. The use of HEPA filters optimized with respect to dust capacity and service life, and the effects of this new type of filter on the reduction of operating and maintenance costs are discussed

  2. High efficiency particulate air filter experience survey

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1983-01-01

    Causes and magnitude of HEPA filter changeouts and failures at DOE sites for the years 1977 to 1979 were evaluated. Conclusions inferred from the data follow: HEPA filters have been generally performing the task they were designed for; most changeouts have been made because of filter plugging, preventive maintenance, or precautionary reasons rather than evidence of filter failure; where failures have been experienced, records generally have not been adequate to determine the cause of failure; where cause of failure has been determined, damage attributed to personnel handling and installation has been substantially more prevalent than that from filter environmental exposure. The need for improved personnel training in handling and installation was stressed. Some reduction in filter failure frequency can be achieved by improving the acid and moisture resistance of filters, and providing adequate pretreatment of air prior to HEPA filtration

  3. Signal Enhancement with Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Benesty, Jacob; Christensen, Mads Græsbøll; Jensen, Jesper Rindom

    This book introduces readers to the novel concept of variable span speech enhancement filters, and demonstrates how it can be used for effective noise reduction in various ways. Further, the book provides the accompanying Matlab code, allowing readers to easily implement the main ideas discussed....... Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal......-to-noise ratio, Wiener, and tradeoff filters (including their new generalizations) can be obtained using the variable span filter framework. It then illustrates how the variable span filters can be applied in various contexts, namely in single-channel STFT-based enhancement, in multichannel enhancement in both...

  4. Analog Electronic Filters Theory, Design and Synthesis

    CERN Document Server

    Dimopoulos, Hercules G

    2012-01-01

    Filters are essential subsystems in a huge variety of electronic systems. Filter applications are innumerable; they are used for noise reduction, demodulation, signal detection, multiplexing, sampling, sound and speech processing, transmission line equalization and image processing, to name just a few. In practice, no electronic system can exist without filters. They can be found in everything from power supplies to mobile phones and hard disk drives and from loudspeakers and MP3 players to home cinema systems and broadband Internet connections. This textbook introduces basic concepts and methods and the associated mathematical and computational tools employed in electronic filter theory, synthesis and design.  This book can be used as an integral part of undergraduate courses on analog electronic filters. Includes numerous, solved examples, applied examples and exercises for each chapter. Includes detailed coverage of active and passive filters in an independent but correlated manner. Emphasizes real filter...

  5. Signal enhancement with variable span linear filters

    CERN Document Server

    Benesty, Jacob; Jensen, Jesper R

    2016-01-01

    This book introduces readers to the novel concept of variable span speech enhancement filters, and demonstrates how it can be used for effective noise reduction in various ways. Further, the book provides the accompanying Matlab code, allowing readers to easily implement the main ideas discussed. Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal-to-noise ratio, Wiener, and tradeoff filters (including their new generalizations) can be obtained using the variable span filter framework. It then illustrates how the variable span filters can be applied in various contexts, namely in single-channel STFT-based enhancement, in multichannel enhancement in both the time and STFT domains, and, lastly, in time-domain binaural enhancement. In these contexts, the properties of ...

  6. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  7. Comparison of cryogenic low-pass filters.

    Science.gov (United States)

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  8. The Generalized Quantum Statistics

    OpenAIRE

    Hwang, WonYoung; Ji, Jeong-Young; Hong, Jongbae

    1999-01-01

    The concept of wavefunction reduction should be introduced to standard quantum mechanics in any physical processes where effective reduction of wavefunction occurs, as well as in the measurement processes. When the overlap is negligible, each particle obey Maxwell-Boltzmann statistics even if the particles are in principle described by totally symmetrized wavefunction [P.R.Holland, The Quantum Theory of Motion, Cambridge Unversity Press, 1993, p293]. We generalize the conjecture. That is, par...

  9. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  10. Higher safety and saving of filter material with multi-way sorption filters

    International Nuclear Information System (INIS)

    Ohlmeyer, M.; Benzel, M.

    1978-01-01

    The multi-way filter 'Nuclear Karlsruhe' satisfies the requirements of operational safety, high utilisation of the filter material and low pressure drop. An important factor contributing to increased operational safety is due to the fact that the nearly total utilisation of the filter material eliminates the need for optimisation weighing costs against safety. The reduction in filter material consumption reduces not only the direct procurement costs but also the costs of nuclear plants, is radioactive. This contributes in several respects towards a better protection of the environment. The MWS filter can also be used, and presents the same advantages, in non-nuclear plants. (orig.) [de

  11. Method for discovering relationships in data by dynamic quantum clustering

    Science.gov (United States)

    Weinstein, Marvin; Horn, David

    2014-10-28

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  12. Feasible Dose Reduction in Routine Chest Computed Tomography Maintaining Constant Image Quality Using the Last Three Scanner Generations: From Filtered Back Projection to Sinogram-affirmed Iterative Reconstruction and Impact of the Novel Fully Integrated Detector Design Minimizing Electronic Noise

    Directory of Open Access Journals (Sweden)

    Lukas Ebner

    2014-01-01

    Full Text Available Objective:The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP and an iterative reconstruction (IR algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany was investigated. Materials and Methods: 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP, SOMATOM Definition Flash (IR, and SOMATOM Definition Edge (ICD and IR. Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. Results: Dose-length product (DLP with FBP for the average chest CT was 308 mGycm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGycm ± 68.8 (P = 0.0001. Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGycm ± 54.5 (P = 0.033. The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048. Overall contrast-to-noise ratio (CNR improved with declining DLP. Conclusion: The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

  13. Multistage parallel-serial time averaging filters

    International Nuclear Information System (INIS)

    Theodosiou, G.E.

    1980-01-01

    Here, a new time averaging circuit design, the 'parallel filter' is presented, which can reduce the time jitter, introduced in time measurements using counters of large dimensions. This parallel filter could be considered as a single stage unit circuit which can be repeated an arbitrary number of times in series, thus providing a parallel-serial filter type as a result. The main advantages of such a filter over a serial one are much less electronic gate jitter and time delay for the same amount of total time uncertainty reduction. (orig.)

  14. Signal Enhancement with Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Benesty, Jacob; Christensen, Mads Græsbøll; Jensen, Jesper Rindom

    . Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal...... the time and STFT domains, and, lastly, in time-domain binaural enhancement. In these contexts, the properties of these filters are analyzed in terms of their noise reduction capabilities and desired signal distortion, and the analyses are validated and further explored in simulations....

  15. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    ..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...

  16. Quantum Zeno effect

    International Nuclear Information System (INIS)

    Petrosky, T.; Tasaki, S.; Prigogine, I.

    1991-01-01

    In 1977, Misra and Sudarshan showed, based on the quantum measurement theory, that an unstable particle will never be found to decay when it is continuously observed. They called it the quantum Zeno effect (or paradox). More generally the quantum Zeno effect is associated to the inhibition of transitions by frequent measurements. This possibility has attracted much interest over the last years. Recently, Itano, Heinzen, Bollinger and Wineland have reported that they succeeded in observing the quantum Zeno effect. This would indeed be an important step towards the understanding of the role of the observer in quantum mechanics. However, in the present paper, we will show that their results can be recovered through conventional quantum mechanics and do not involve a repeated reduction (or collapse) of the wave function. (orig.)

  17. Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics

    Science.gov (United States)

    Belavkin, V. P.

    2009-02-01

    A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  18. Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.

    1999-01-01

    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.

  19. Quantum metrology

    International Nuclear Information System (INIS)

    Xiang Guo-Yong; Guo Guang-Can

    2013-01-01

    The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)

  20. Selection vector filter framework

    Science.gov (United States)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  1. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation.

    Science.gov (United States)

    Takahashi, Hideaki; Ohno, Hajime; Kishi, Ryohei; Nakano, Masayoshi; Matubayasi, Nobuyuki

    2008-11-28

    The isoalloxazine ring (flavin ring) is a part of the coenzyme flavin adenine dinucleotide and acts as an active site in the oxidation of a substrate. We have computed the free energy change Deltamicro(red) associated with one-electron reduction of the flavin ring immersed in water by utilizing the quantum mechanical/molecular mechanical method combined with the theory of energy representation (QM/MM-ER method) recently developed. As a novel treatment in implementing the QM/MM-ER method, we have identified the excess charge to be attached on the flavin ring as a solute while the remaining molecules, i.e., flavin ring and surrounding water molecules, are treated as solvent species. Then, the reduction free energy can be decomposed into the contribution Deltamicro(red)(QM) due to the oxidant described quantum chemically and the free energy Deltamicro(red)(MM) due to the water molecules represented by a classical model. By the sum of these contributions, the total reduction free energy Deltamicro(red) has been given as -80.1 kcal/mol. To examine the accuracy and efficiency of this approach, we have also conducted the Deltamicro(red) calculation using the conventional scheme that Deltamicro(red) is constructed from the solvation free energies of the flavin rings at the oxidized and reduced states. The conventional scheme has been implemented with the QM/MM-ER method and the calculated Deltamicro(red) has been estimated as -81.0 kcal/mol, showing excellent agreement with the value given by the new approach. The present approach is efficient, in particular, to compute free energy change for the reaction occurring in a protein since it enables ones to circumvent the numerical problem brought about by subtracting the huge solvation free energies of the proteins in two states before and after the reduction.

  2. Quantum Distinction: Quantum Distinctiones!

    OpenAIRE

    Zeps, Dainis

    2009-01-01

    10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...

  3. Theoretical model for a background noise limited laser-excited optical filter for doubled Nd lasers

    Science.gov (United States)

    Shay, Thomas M.; Garcia, Daniel F.

    1990-01-01

    A simple theoretical model for the calculation of the dependence of filter quantum efficiency versus laser pump power in an atomic Rb vapor laser-excited optical filter is reported. Calculations for Rb filter transitions that can be used to detect the practical and important frequency-doubled Nd lasers are presented. The results of these calculations show the filter's quantum efficiency versus the laser pump power. The required laser pump powers required range from 2.4 to 60 mW/sq cm of filter aperture.

  4. Recirculating electric air filter

    Science.gov (United States)

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  5. Passive Power Filters

    CERN Document Server

    Künzi, R.

    2015-06-15

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  6. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  7. GPU Accelerated Vector Median Filter

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  8. Independent component analysis based filtering for penumbral imaging

    International Nuclear Information System (INIS)

    Chen Yenwei; Han Xianhua; Nozaki, Shinya

    2004-01-01

    We propose a filtering based on independent component analysis (ICA) for Poisson noise reduction. In the proposed filtering, the image is first transformed to ICA domain and then the noise components are removed by a soft thresholding (shrinkage). The proposed filter, which is used as a preprocessing of the reconstruction, has been successfully applied to penumbral imaging. Both simulation results and experimental results show that the reconstructed image is dramatically improved in comparison to that without the noise-removing filters

  9. Optimization of filter loading

    International Nuclear Information System (INIS)

    Turney, J.H.; Gardiner, D.E.; Sacramento Municipal Utility District, Herald, CA)

    1985-01-01

    The introduction of 10 CFR Part 61 has created potential difficulties in the disposal of spent cartridge filters. When this report was prepared, Rancho Seco had no method of packaging and disposing of class B or C filters. This work examined methods to minimize the total operating cost of cartridge filters while maintaining them below the class A limit. It was found that by encapsulating filters in cement the filter operating costs could be minimized

  10. Restoration of nuclear medicine images using adaptive Wiener filters

    International Nuclear Information System (INIS)

    Meinel, G.

    1989-01-01

    An adaptive Wiener filter implementation for restoration of nuclear medicine images is described. These are considerably disturbed both deterministically (definition) and stochastically (Poisson's quantum noise). After introduction of an image model, description of necessary parameter approximations and information on optimum design methods the implementation is described. The filter operates adaptively as concerns the local signal-to-noise ratio and is based on a filter band concept. To verify the restoration effect size numbers are introduced and the filter is tested against these numbers. (author)

  11. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  12. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  13. Investigating Quantum Modulation States

    Science.gov (United States)

    2016-03-01

    Coherent state quantum data encryption is highly interoperable with current classical optical infrastructure in both fiber and free space optical networks...hub’s field of regard has a transmit/receive module that are endpoints of the Lyot filter stage tree within the hub’s backend electro-optics control... mobile airborne and space-borne networking. Just like any laser communication technology, QC links are affected by several sources of distortions

  14. Laboratory for filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1987-07-01

    Filters used for mine draining in brown coal surface mines are tested by the Mine Draining Department of Poltegor. Laboratory tests of new types of filters developed by Poltegor are analyzed. Two types of tests are used: tests of scale filter models and tests of experimental units of new filters. Design and operation of the test stands used for testing mechanical properties and hydraulic properties of filters for coal mines are described: dimensions, pressure fluctuations, hydraulic equipment. Examples of testing large-diameter filters for brown coal mines are discussed.

  15. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  16. Passive target tracking using marginalized particle filter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A marginalized particle filtering(MPF)approach is proposed for target tracking under the background of passive measurement.Essentially,the MPF is a combination of particle filtering technique and Kalman filter.By making full use of marginalization,the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter,and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter.Simulation studies are performed on an illustrative example,and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation.Real data test results also validate the effectiveness of the presented method.

  17. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...

  18. Evaluation of residential furnace filters

    Energy Technology Data Exchange (ETDEWEB)

    Bowser, D. [Bowser Technical Inc. (Canada)

    1999-07-01

    Various filters rotated through six houses in southern Ontario during the heating season were evaluated for their filtration efficiency, including their ability to trap respirable particulate matter. Particulate levels were continuously monitored in the outside air, before and after the filter in the ducting system; also in the air in two rooms in each house. Results show that the filters performed according to their respective efficiency ratings. The integrated breathing zone exposure reading were not considered as significant as the reductions in the ducting system, dur to the fact that the integrated breathing zone exposure reflects both dust generation and dust removal mechanisms. Electronic air filters were found to produce ozone inside the home when the air-handling system was in operation. There was no evidence of any particular relationship between cleanliness and ozone production. Indoor ozone levels were always lower than outdoor levels. Continuous blower operation was found to improve filtration efficiency , however, it could result in an increase of about $250 in annual energy expenses. Bypass filters recorded significantly higher electrical energy consumption than full-flow systems. Continuous low-speed air handler fan operation appeared to be the most effective strategy. Portable air cleaners were shown to be highly effective in removing particulates in a single room. Removing footwear on entering the house, keeping major dust generators out of the house, frequent vacuuming, improving the air tightness of the house, and installing an air intake filter on the air supply may all be all be helpful in controlling exposure to particulates. 21 refs., 8 tabs., 32 figs.

  19. Quantum Computing

    OpenAIRE

    Scarani, Valerio

    1998-01-01

    The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...

  20. Quantum Malware

    OpenAIRE

    Wu, Lian-Ao; Lidar, Daniel A.

    2005-01-01

    When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...

  1. Quantum imaging technologies

    International Nuclear Information System (INIS)

    Malik, M.; Boyd, R.W.

    2014-01-01

    Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum lithography, quantum ghost imaging, and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of accurate and efficient methods of measuring and characterizing the elusive quantum state itself. In this paper, we describe new technologies that use the quantum properties of light for security. The first of these is a technique that extends the principles behind QKD to the field of imaging and optical ranging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that are secure against any interceptresend jamming attacks. The second technology presented in this article is based on an extension of quantum ghost imaging, a technique that uses position-momentum entangled photons to create an image of an object without directly obtaining any spatial information from it. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this document is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. We discuss the development of two OAM-QKD protocols based on the BB84 and Ekert protocols of QKD. The fourth and final technology presented in this article is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state

  2. Quantumness beyond quantum mechanics

    International Nuclear Information System (INIS)

    Sanz, Ángel S

    2012-01-01

    Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).

  3. Quantum computing with incoherent resources and quantum jumps.

    Science.gov (United States)

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  4. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state....... The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....

  5. Simon-nitinol filter

    International Nuclear Information System (INIS)

    Simon, M.; Kim, D.; Porter, D.H.; Kleshinski, S.

    1989-01-01

    This paper discusses a filter that exploits the thermal shape-memory properties of the nitinol alloy to achieve an optimized filter shape and a fine-bore introducer. Experimental methods and materials are given and results are analyzed

  6. Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons

    OpenAIRE

    Kröger, H.

    2003-01-01

    We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.

  7. Reduction of the internal electric field in GaN/AlN quantum dots grown on the a-plane of SiC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Garro, N.; Cros, A.; Budagosky, J.A.; Cantarero, A. [Institut de Ciencia dels Materials, Universitat de Valencia, 46071 Valencia (Spain); Vinattieri, A.; Gurioli, M. [INFM, Dept. of Physics and LENS, Universita di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (Italy); Founta, S.; Mariette, H.; Daudin, B. [CEA-CNRS Group ' ' Nanophysique et Semiconducteurs' ' , Departement de Recherche Fondamentale sur la Matiere Condensee, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble (France)

    2005-11-01

    We present a study of the emission of a multi-layer stack of self-assembled GaN/AlN quantum dots grown on the a-plane of 6H-SiC. We look for signatures of the internal electric field in the power dependence of the time-integrated and time-resolved photoluminescence spectra. The lack of a dynamical red-shift reveals that internal electric fields are significantly reduced in these dots. A band on the low energy side of the emission is observed whose intensity quenches fast when increasing the temperature. The polarization selection rules of the emission are examined in order to determine the physical nature of this band. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  9. AER image filtering

    Science.gov (United States)

    Gómez-Rodríguez, F.; Linares-Barranco, A.; Paz, R.; Miró-Amarante, L.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows real-time virtual massive connectivity among huge number of neurons located on different chips.[1] By exploiting high speed digital communication circuits (with nano-seconds timing), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Neurons generate "events" according to their activity levels. That is, more active neurons generate more events per unit time and access the interchip communication channel more frequently than neurons with low activity. In Neuromorphic system development, AER brings some advantages to develop real-time image processing system: (1) AER represents the information like time continuous stream not like a frame; (2) AER sends the most important information first (although this depends on the sender); (3) AER allows to process information as soon as it is received. When AER is used in artificial vision field, each pixel is considered like a neuron, so pixel's intensity is represented like a sequence of events; modifying the number and the frequency of these events, it is possible to make some image filtering. In this paper we present four image filters using AER: (a) Noise addition and suppression, (b) brightness modification, (c) single moving object tracking and (d) geometrical transformations (rotation, translation, reduction and magnification). For testing and debugging, we use USB-AER board developed by Robotic and Technology of Computers Applied to Rehabilitation (RTCAR) research group. This board is based on an FPGA, devoted to manage the AER functionality. This board also includes a micro-controlled for USB communication, 2 Mbytes RAM and 2 AER ports (one for input and one for output).

  10. Advanced Filter Technology For Nuclear Thermal Propulsion

    Science.gov (United States)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  11. QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES

    International Nuclear Information System (INIS)

    Geiger, G.

    2000-01-01

    The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory

  12. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  13. Quantum mechanics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum

  14. Quantum matter

    International Nuclear Information System (INIS)

    Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin

    2008-01-01

    The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)

  15. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  16. Retina-Inspired Filter.

    Science.gov (United States)

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2018-07-01

    This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.

  17. Study of different filters

    International Nuclear Information System (INIS)

    Cochinal, R.; Rouby, R.

    1959-01-01

    This note first contains a terminology related to filters and to their operation, and then proposes an overview of general characteristics of filters such as load loss with respect to gas rate, efficiency, and clogging with respect to filter pollution. It also indicates standard aerosols which are generally used, how they are dosed, and how efficiency is determined with a standard aerosol. Then, after a presentation of the filtration principle, this note reports the study of several filters: glass wool, filter papers provided by different companies, Teflon foam, English filters, Teflon wool, sintered Teflonite, quartz wool, polyvinyl chloride foam, synthetic filter, sintered bronze. The third part reports the study of some aerosol and dust separators

  18. Changing ventilation filters

    International Nuclear Information System (INIS)

    Hackney, S.

    1980-01-01

    A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)

  19. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  20. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  1. Communication: practical and rigorous reduction of the many-electron quantum mechanical Coulomb problem to O(N(2/3)) storage.

    Science.gov (United States)

    Pederson, Mark R

    2015-04-14

    It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N(4)) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N(2)) integrals. Here, it is shown that the storage can be further reduced to O(N(2/3)) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulomb integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.

  2. Generalized Bell states map physical systems’ quantum evolution into a grammar for quantum information processing

    Science.gov (United States)

    Delgado, Francisco

    2017-12-01

    Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.

  3. Quantum information

    International Nuclear Information System (INIS)

    Kilin, Sergei Ya

    1999-01-01

    A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)

  4. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    1999-05-31

    A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)

  5. Quantum ontologies

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs

  6. Multichannel Signal Enhancement using Non-Causal, Time-Domain Filters

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Benesty, Jacob

    2013-01-01

    In the vast amount of time-domain filtering methods for speech enhancement, the filters are designed to be causal. Recently, however, it was shown that the noise reduction and signal distortion capabilities of such single-channel filters can be improved by allowing the filters to be non-causal. W......In the vast amount of time-domain filtering methods for speech enhancement, the filters are designed to be causal. Recently, however, it was shown that the noise reduction and signal distortion capabilities of such single-channel filters can be improved by allowing the filters to be non......-causal, multichannel filters for enhancement based on an orthogonal decomposition is proposed. The evaluation shows that there is a potential gain in noise reduction and signal distortion by introducing non-causality. Moreover, experiments on real-life speech show that we can improve the perceptual quality....

  7. Quantum Computer Games: Quantum Minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  8. Filter material charging apparatus for filter assembly for radioactive contaminants

    International Nuclear Information System (INIS)

    Goldsmith, J.M.; O'Nan, A. Jr.

    1977-01-01

    A filter charging apparatus for a filter assembly is described. The filter assembly includes a housing with at least one filter bed therein and the filter charging apparatus for adding filter material to the filter assembly includes a tank with an opening therein, the tank opening being disposed in flow communication with opposed first and second conduit means, the first conduit means being in flow communication with the filter assembly housing and the second conduit means being in flow communication with a blower means. Upon activation of the blower means, the blower means pneumatically conveys the filter material from the tank to the filter housing

  9. Conceptual foundations of quantum mechanics

    International Nuclear Information System (INIS)

    Shimony, A.

    1989-01-01

    Radical innovation in the quantum mechanical framework such as objective indefiniteness, objective chance, objective probability, potentiality, entanglement and quantum nonlocality are discussed and related to the standard formalism. Examples are given which though problematic in classical mechanics are simply explained with these new concepts. Evidence is presented that the conceptual innovations of quantum mechanics cannot be separated from its predictive power. Proposals for solving ''the reduction of the wave packet'' anomaly are presented. Further radical innovations in quantum mechanics are anticipated. (U.K.)

  10. Provable quantum advantage in randomness processing

    OpenAIRE

    Dale, H; Jennings, D; Rudolph, T

    2015-01-01

    Quantum advantage is notoriously hard to find and even harder to prove. For example the class of functions computable with classical physics actually exactly coincides with the class computable quantum-mechanically. It is strongly believed, but not proven, that quantum computing provides exponential speed-up for a range of problems, such as factoring. Here we address a computational scenario of "randomness processing" in which quantum theory provably yields, not only resource reduction over c...

  11. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  12. Development of circular filters for active facilities

    International Nuclear Information System (INIS)

    Pratt, R.P.

    1986-01-01

    An assessment of problems associated with remote handling, changing and disposal of filters suggested that significant improvements to filtration systems could be made if circular geometries were adopted in place of conventional systems. Improved systems have been developed and are now available for a range of applications and air flow rates. Where primary filters are installed within the active cell or cave, circular filters incorporating a lip seal have been developed which enable the filters to be sealed into the facility without recourse to clamping. For smaller cells, a range of push-through filter change systems have been developed, the principal feature being that the filter is passed into the housing from the clean side, but transferred from the housing directly into the cell for subsequent disposal. For plant room applications, circular bag change canister systems have been developed which ease the sealing and bag change operation. Such systems have a rated air flow of up to 3000 m 3 /h whilst still allowing ultimate disposal via the 200 litre waste drum route without prior volume reduction of the filter inserts. (author)

  13. Detection of stably bright squeezed light with the quantum noise reduction of 12.6  dB by mutually compensating the phase fluctuations.

    Science.gov (United States)

    Yang, Wenhai; Shi, Shaoping; Wang, Yajun; Ma, Weiguang; Zheng, Yaohui; Peng, Kunchi

    2017-11-01

    We present a mutual compensation scheme of three phase fluctuations, originating from the residual amplitude modulation (RAM) in the phase modulation process, in the bright squeezed light generation system. The influence of the RAM on each locking loop is harmonized by using one electro-optic modulator (EOM), and the direction of the phase fluctuation is manipulated by positioning the photodetector (PD) that extracts the error signal before or after the optical parametric amplifier (OPA). Therefore a bright squeezed light with non-classical noise reduction of π is obtained. By fitting the squeezing and antisqueezing measurement results, we confirm that the total phase fluctuation of the system is around 3.1 mrad. The fluctuation of the noise suppression is 0.2 dB for 3 h.

  14. Self-healing diffusion quantum Monte Carlo algorithms: methods for direct reduction of the fermion sign error in electronic structure calculations

    International Nuclear Information System (INIS)

    Reboredo, F.A.; Hood, R.Q.; Kent, P.C.

    2009-01-01

    We develop a formalism and present an algorithm for optimization of the trial wave-function used in fixed-node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator of the ground state probability density. We take advantage of a basic property of the walker configuration distribution generated in a DMC calculation, to (i) project-out a multi-determinant expansion of the fixed node ground state wave function and (ii) to define a cost function that relates the interacting-ground-state-fixed-node and the non-interacting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node ground-state wave function at the node generates a new trial wave function with better nodal structure and (b) we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role, allowing the nodes to adjust towards the ones of the exact many-body ground state in a simulated annealing-like process. Based on these principles, we propose a method to improve both single determinant and multi-determinant expansions of the trial wave function. The method can be generalized to other wave function forms such as pfaffians. We test the method in a model system where benchmark configuration interaction calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved. The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to the exact solutions for the model. In the optimization process we find an optimal non-interacting nodal potential of density-functional-like form whose existence was predicted in a previous publication (Phys. Rev. B 77 245110 (2008)). Tests of the method are

  15. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  16. The efficacy of K-edge filters in diagnostic radiology

    International Nuclear Information System (INIS)

    Williamson, B.D.P.; van Doorn, T.

    1994-01-01

    The application of K-edge filters in diagnostic has been investigated by many workers for over twenty years. These investigations have analysed the effects of such filters on image quality and radiation dose as well as the practicalities of their application. This paper presents a synopsis of the published works and concludes that K-edge filters do not perceptibly improve image quality and make only limited reductions in patient dose. K-edge filters are also costly to purchase and potentially result in a reduction in the cost effectiveness of x-ray examinations by increasing the x-ray tube loading. Equivalent contrast enhancement and dose reductions can be achieved by the assiduous choice of non-selective filters. 51 refs., 2 tab., 6 figs

  17. Quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department

    1999-07-01

    Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.

  18. Backflushable filter insert

    International Nuclear Information System (INIS)

    Keith, R.C.; Vandenberg, T.; Randolph, M.C.; Lewis, T.B.; Gillis, P.J. Jr.

    1988-01-01

    Filter elements are mounted on a tube plate beneath an accumulator chamber whose wall is extended by skirt and flange to form a closure for the top of pressure vessel. The accumulator chamber is annular around a central pipe which serves as the outlet for filtered water passing from the filter elements. The chamber contains filtered compressed air from supply. Periodically the filtration of water is stopped and vessel is drained. Then a valve is opened, allowing the accumulated air to flow from chamber up a pipe and down pipe, pushing the filtered water from pipe back through the filter elements to clean them. The accumulator chamber is so proportioned, relative to the volume of the system communicating therewith during backflushing, that the equilibrium pressure during backflushing cannot exceed the pressure rating of the vessel. However a line monitors the pressure at the top of the vessel, and if it rises too far a bleed valve is automatically opened to depressurise the system. The chamber is intended to replace the lid of an existing vessel to convert a filter using filter aid to one using permanent filter elements. (author)

  19. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Wells, George; Beaton, Dorcas E; Tugwell, Peter

    2014-01-01

    The "Discrimination" part of the OMERACT Filter asks whether a measure discriminates between situations that are of interest. "Feasibility" in the OMERACT Filter encompasses the practical considerations of using an instrument, including its ease of use, time to complete, monetary costs......, and interpretability of the question(s) included in the instrument. Both the Discrimination and Reliability parts of the filter have been helpful but were agreed on primarily by consensus of OMERACT participants rather than through explicit evidence-based guidelines. In Filter 2.0 we wanted to improve this definition...

  20. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  1. Filters in nuclear facilities

    International Nuclear Information System (INIS)

    Berg, K.H.; Wilhelm, J.G.

    1985-01-01

    The topics of the nine papers given include the behavior of HEPA filters during exposure to air flows of high humidity as well as of high differential pressure, the development of steel-fiber filters suitable for extreme operating conditions, and the occurrence of various radioactive iodine species in the exhaust air from boiling water reactors. In an introductory presentation the German view of the performance requirements to be met by filters in nuclear facilities as well as the present status of filter quality assurance are discussed. (orig.) [de

  2. Washing method of filter

    International Nuclear Information System (INIS)

    Izumidani, Masakiyo; Tanno, Kazuo.

    1978-01-01

    Purpose: To enable automatic filter operation and facilitate back-washing operation by back-washing filters used in a bwr nuclear power plant utilizing an exhaust gas from a ventilator or air conditioner. Method: Exhaust gas from an exhaust pipe of an ventilator or air conditioner is pressurized in a compressor and then introduced in a back-washing gas tank. Then, the exhaust gas pressurized to a predetermined pressure is blown from the inside to the outside of a filter to thereby separate impurities collected on the filter elements and introduce them to a waste tank. (Furukawa, Y.)

  3. Evaluation of multistage filtration to reduce sand filter exhaust activity

    International Nuclear Information System (INIS)

    Zippler, D.B.

    1975-01-01

    Air from the Savannah River Plant Fuel Reprocessing facilities is filtered through deep bed sand filters consisting of 8 1 / 2 feet of gravel and sand. These filters have performed satisfactorily for the past 18 years in maintaining radioactive release levels to a minimum. The apparent filter efficiency has been determined for many years by measurements of the quantity of radioactivity in the air stream before and after the filter. Such tests have indicated efficiencies of 99.9 percent or better. Even with sand filter efficiency approaching a single stage HEPA filter, new emphasis on further reduction in release of plutonium activity to the environment prompted a study to determine what value backup HEPA filtration could provide. To evaluate the specific effect additional HEPA filtration would have on the removal of Pu from the existing sand filter exhaust stream, a test was conducted by passing a sidestream of sand-filtered air through a standard 24 x 24 x 11 1 / 2 in. HEPA filter. Isokinetic air samples were withdrawn upstream and downstream of the HEPA filter and counted for alpha activity. Efficiency calculations indicated that backup HEPA filtration could be expected to provide an additional 99 percent removal of the Pu activity from the present sand-filter exhaust. (U.S.)

  4. Two-dimensional filtering of SPECT images using the Metz and Wiener filters

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Penney, B.C.; Doherty, P.W.

    1984-01-01

    Presently, single photon emission computed tomographic (SPECT) images are usually reconstructed by arbitrarily selecting a one-dimensional ''window'' function for use in reconstruction. A better method would be to automatically choose among a family of two-dimensional image restoration filters in such a way as to produce ''optimum'' image quality. Two-dimensional image processing techniques offer the advantages of a larger statistical sampling of the data for better noise reduction, and two-dimensional image deconvolution to correct for blurring during acquisition. An investigation of two such ''optimal'' digital image restoration techniques (the count-dependent Metz filter and the Wiener filter) was made. They were applied both as two-dimensional ''window'' functions for preprocessing SPECT images, and for filtering reconstructed images. Their performance was compared by measuring image contrast and per cent fractional standard deviation (% FSD) in multiple-acquisitions of the Jaszczak SPECT phantom at two different count levels. A statistically significant increase in image contrast and decrease in % FSD was observed with these techniques when compared to the results of reconstruction with a ramp filter. The adaptability of the techniques was manifested in a lesser % reduction in % FSD at the high count level coupled with a greater enhancement in image contrast. Using an array processor, processing time was 0.2 sec per image for the Metz filter and 3 sec for the Wiener filter. It is concluded that two-dimensional digital image restoration with these techniques can produce a significant increase in SPECT image quality

  5. Quantum entanglement and quantum teleportation

    International Nuclear Information System (INIS)

    Shih, Y.H.

    2001-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)

  6. A latent model for collaborative filtering

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2012-01-01

    Recommender systems based on collaborative filtering have received a great deal of interest over the last two decades. In particular, recently proposed methods based on dimensionality reduction techniques and using a symmetrical representation of users and items have shown promising results. Foll...

  7. Quantum physics meets the philosophy of mind new essays on the mind-body relation in quantum-theoretical perspective

    CERN Document Server

    Meixner, Uwe

    2014-01-01

    Quantum physics, unlike classical physics, suggests a non-physicalistic metaphysics. Whereas physicalism implies a reductive position in the philosophy of mind, quantum physics is compatible with non-reductionism, and actually seems to support it. The essays in this book explore, from various points of view, the possibilities of basing a non-reductive philosophy of mind on quantum physics.

  8. Application of an active current filter in the harmonics reduction in industrial electric systems; Aplicacion de un filtro activo de corriente en la reduccion de armonicos en sistemas electricos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Trujillo, Eleazar

    2005-08-15

    In this work it is presented the pattern of an active filter of current and their implementation in the program Simulink of MatLab to reduce the content of harmonics generated for different non lineal load. For the active filter of current they were developed each one of the stages that integrate it, from the obtaining of references, the control block and the stage of power. For the obtaining of references, the reactivates instantaneous power theory was used. For the control of the shots of the IGBT's a control knot was used based on a hysteresis band and for the stage of power, an inversor complete bridge was used with a capacitor like source of direct voltage. To analyze the behavior of the active filter, a real industrial electric system was modeled with a lineal load RL and two non lineal load, a using a converter to diodes of 6 pulses and other a working of a machine of dc with a converter to tiristores of 6 pulses. These configurations were used because their content of harmonicas is high. To this system was integrated the active filter modeled in the exit of the non lineal load to avoid that the harmonic components generated by the loads non lineal distortions the current signals. The current signals, voltage signals, power flow, power factor and the harmonic components that circulate in the industrial electric system were analyzed. [Spanish] Actualmente, la presencia de equipos basados en electronica de potencia cuya operacion es no lineal, instalados en los sistemas electricos industriales, ha incrementado la presencia de distorsion en la senal de corriente y/o tension electrica por armonicos, originando problemas en la calidad de la energia electrica. Como una solucion a este problema, en este trabajo, se presenta el modelo de un filtro activo de corriente y su implementacion en el programa Simulink de MatLab para reducir el contenido de armonicos generados por diferentes cargas no lineales. Para el filtro activo de corriente se desarrollaron cada

  9. Functional Blocks and Biquadratic ARC Filters using Transimpedance Amplifiers

    OpenAIRE

    R. Sarman; R. Prokop; T. Dostal

    1997-01-01

    The aims of the article are design and analysis of modern circuits including high performance functional blocks and biquadratic filters using transimpedance amplifiers. Here are given various types of these circuits, that works in classical voltage, current or hybrid mode. In this paper are also compared various possibilities of connection of single amplifier filters as for reduction of influence of transimpedance amplifier parasitic elements.

  10. Utilization of plastics as transparent x-ray filter

    International Nuclear Information System (INIS)

    Masuda, Yathuhiko; Inui, Saburo; Kooda, Kazunao; Takiguchi, Kiyomi; Abe, Yoshinobu.

    1980-01-01

    An attempt has been made to develop heavy atom containing transparent plastic filters which are identical with conventional aluminum or copper filters in X-ray attenuating property. These transparent filters can be used as fixed at the front of a conventional multilayer collimator without obstructing the optical detection of the field size of X-ray exposure. It has become a serious problem that recent increasing use of X-ray in diagnostics, namely increasing patient exposure, may cause baneful influence upon the patients. To reduce such patient exposure, the I.C.R.P. has recommended the proper use of metal filters made of aluminum or copper with regards to the applied tube potential. These filters are generally used as fixed at the X-ray tube window or used at the front of a multilayer collimator as added filters. In the former case, and exchange of filters to select the best one with regards to the applied tube potential needs complicated works, and in the latter, the use of the added filters also needs complicated works to confirm field size before each radiography. These troublesome works have at time resulted in improper uses of the filters although the effective selection of filters is known to be useful to the reduction of patient exposure. Therefore, the problem of reduction of patient exposure by means of filtration still remains practically unsolved. To offer practical added filters which do not possess above mentioned disadvantages of metal filters, we tried to develop transparent added filters. Transparent plastics as the material of the filters were loaded with heavy atoms to equalize X-ray attenuating property with aluminum or copper. (author)

  11. Quantum robots and quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.

    1998-07-01

    Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.

  12. Quantum computers and quantum computations

    International Nuclear Information System (INIS)

    Valiev, Kamil' A

    2005-01-01

    This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)

  13. Generation of Control by SU(2) Reduction for the Anisotropic Ising Model

    International Nuclear Information System (INIS)

    Delgado, F

    2016-01-01

    Control of entanglement is fundamental in Quantum Information and Quantum Computation towards scalable spin-based quantum devices. For magnetic systems, Ising interaction with driven magnetic fields modifies entanglement properties of matter based quantum systems. This work presents a procedure for dynamics reduction on SU(2) subsystems using a non-local description. Some applications for Quantum Information are discussed. (paper)

  14. Quantum mystery

    CERN Document Server

    Chanda, Rajat

    1997-01-01

    The book discusses the laws of quantum mechanics, several amazing quantum phenomena and some recent progress in understanding the connection between the quantum and the classical worlds. We show how paradoxes arise and how to resolve them. The significance of Bell's theorem and the remarkable experimental results on particle correlations are described in some detail. Finally, the current status of our understanding of quantum theory is summerised.

  15. Numerical Study on Self-Cleaning Canister Filter With Add-On Filter Cap

    Directory of Open Access Journals (Sweden)

    Mohammed Akmal Nizam

    2017-01-01

    Full Text Available Filtration in a turbo machinery system such as a gas turbine will ensure that the air entering the inlet is free from contaminants that could bring damage to the main system. Self-cleaning filter systems for gas turbines are designed for continuously efficient flow filtration. A good filter would be able to maintain its effectiveness over a longer time period, prolonging the duration between filter replacements and providing lower pressure drop over its operating lifetime. With this goal in mind, the current study is focused on the difference in pressure loss of the benchmark Salutary Avenue Self-cleaning filter in comparison to a new design with an add-on filter cap. Geometry for the add-on filter cap will be based from Salutary Avenue Manufacturing Sdn.Bhd. SOLIDWORKS software was used to model the geometry of the filter, while simulation analysis on the flow through the filter was done using Computational Fluid Dynamic (CFD software. The simulations are based on a low velocity condition, in which the parameter for the inlet velocity are set at 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s respectively. From the simulation data obtained for the inlet velocities considered, the pressure drop reduction of the modified filter compared to the benchmark was found to be between 7.59% and 30.18%. All in all, the modification of the filter cap produced a lower pressure drop in comparison with the benchmark filter; an improvement of 27.02% for the total pressure drop was obtained.

  16. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey; Hoel, Haakon; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  17. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  18. Side loading filter apparatus

    International Nuclear Information System (INIS)

    Reynolds, K.E.

    1981-01-01

    A side loading filter chamber for use with radioactive gases is described. The equipment incorporates an inexpensive, manually operated, mechanism for aligning filter units with a number of laterally spaced wall openings and for removing the units from the chamber. (U.K.)

  19. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  20. A nested sampling particle filter for nonlinear data assimilation

    KAUST Repository

    Elsheikh, Ahmed H.; Hoteit, Ibrahim; Wheeler, Mary Fanett

    2014-01-01

    . The proposed nested sampling particle filter (NSPF) iteratively builds the posterior distribution by applying a constrained sampling from the prior distribution to obtain particles in high-likelihood regions of the search space, resulting in a reduction

  1. Quantum criticality.

    Science.gov (United States)

    Coleman, Piers; Schofield, Andrew J

    2005-01-20

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.

  2. Quantum Computing

    Indian Academy of Sciences (India)

    In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.

  3. I, Quantum Robot: Quantum Mind control on a Quantum Computer

    OpenAIRE

    Zizzi, Paola

    2008-01-01

    The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.

  4. Filtering and prediction

    CERN Document Server

    Fristedt, B; Krylov, N

    2007-01-01

    Filtering and prediction is about observing moving objects when the observations are corrupted by random errors. The main focus is then on filtering out the errors and extracting from the observations the most precise information about the object, which itself may or may not be moving in a somewhat random fashion. Next comes the prediction step where, using information about the past behavior of the object, one tries to predict its future path. The first three chapters of the book deal with discrete probability spaces, random variables, conditioning, Markov chains, and filtering of discrete Markov chains. The next three chapters deal with the more sophisticated notions of conditioning in nondiscrete situations, filtering of continuous-space Markov chains, and of Wiener process. Filtering and prediction of stationary sequences is discussed in the last two chapters. The authors believe that they have succeeded in presenting necessary ideas in an elementary manner without sacrificing the rigor too much. Such rig...

  5. Filter cake breaker systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)

    2004-07-01

    Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)

  6. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  7. Quantum Logic and Quantum Reconstruction

    OpenAIRE

    Stairs, Allen

    2015-01-01

    Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.

  8. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  9. Spontaneous wave packet reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1994-06-01

    There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs

  10. Quantum frames

    Science.gov (United States)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  11. Quantum Darwinism

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2009-03-01

    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.

  12. Contributions of depth filter components to protein adsorption in bioprocessing.

    Science.gov (United States)

    Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M

    2018-04-16

    Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.

  13. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Vasenko, Andrey S.; Ozaeta, Asier; Bergeret, Sebastian F.; Hekking, Frank W.J.

    2015-01-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits

  14. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Vasenko, Andrey S. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France); Ozaeta, Asier [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Bergeret, Sebastian F. [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Hekking, Frank W.J. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France)

    2015-06-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits.

  15. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  16. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  17. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Watzke, Oliver; Kalender, Willi A.

    2001-01-01

    In modern computed tomography (CT) there is a strong desire to reduce patient dose and/or to improve image quality by increasing spatial resolution and decreasing image noise. These are conflicting demands since increasing resolution at a constant noise level or decreasing noise at a constant resolution level implies a higher demand on x-ray power and an increase of patient dose. X-ray tube power is limited due to technical reasons. We therefore developed a generalized multi-dimensional adaptive filtering approach that applies nonlinear filters in up to three dimensions in the raw data domain. This new method differs from approaches in the literature since our nonlinear filters are applied not only in the detector row direction but also in the view and in the z-direction. This true three-dimensional filtering improves the quantum statistics of a measured projection value proportional to the third power of the filter size. Resolution tradeoffs are shared among these three dimensions and thus are considerably smaller as compared to one-dimensional smoothing approaches. Patient data of spiral and sequential single- and multi-slice CT scans as well as simulated spiral cone-beam data were processed to evaluate these new approaches. Image quality was assessed by evaluation of difference images, by measuring the image noise and the noise reduction, and by calculating the image resolution using point spread functions. The use of generalized adaptive filters helps to reduce image noise or, alternatively, patient dose. Image noise structures, typically along the direction of the highest attenuation, are effectively reduced. Noise reduction values of typically 30%-60% can be achieved in noncylindrical body regions like the shoulder. The loss in image resolution remains below 5% for all cases. In addition, the new method has a great potential to reduce metal artifacts, e.g., in the hip region

  18. An improved filtered spherical harmonic method for transport calculations

    International Nuclear Information System (INIS)

    Ahrens, C.; Merton, S.

    2013-01-01

    Motivated by the work of R. G. McClarren, C. D. Hauck, and R. B. Lowrie on a filtered spherical harmonic method, we present a new filter for such numerical approximations to the multi-dimensional transport equation. In several test problems, we demonstrate that the new filter produces results with significantly less Gibbs phenomena than the filter used by McClarren, Hauck and Lowrie. This reduction in Gibbs phenomena translates into propagation speeds that more closely match the correct propagation speed and solutions that have fewer regions where the scalar flux is negative. (authors)

  19. Quantum information. Teleporation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    Breuer, Reinhard

    2010-01-01

    The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)

  20. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  1. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  2. EMI filter design

    CERN Document Server

    Ozenbaugh, Richard Lee

    2011-01-01

    With today's electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised

  3. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed...... in the expected sense. The second scheme is a Las Vegas algorithm using filtering triggers: Its effectiveness is the same as enforcing are consistency after every domain event, while in the expected case it is faster by a factor of m/n, where n and m are, respectively, the number of nodes and edges...

  4. Biogas Filter Based on Local Natural Zeolite Materials

    Directory of Open Access Journals (Sweden)

    Satriyo Krido Wahono

    2014-02-01

    Full Text Available UPT BPPTK LIPI has created a biogas filter tool to improve the purity of methane in the biogas. The device shaped cylindrical tube containing absorbent materials which based on local natural zeolite of Indonesia. The absorbent has been activated and modified with other materials. This absorbtion material has multi-adsorption capacity for almost impurities gas of biogas. The biogas  filter increase methane content of biogas for 5-20%. The biogas filter improve the biogas’s performance such as increasing methane contents, increasing heating value, reduction of odors, reduction of corrosion potential, increasing the efficiency and stability of the generator.

  5. Metalcasting: Filtering Molten Metal

    International Nuclear Information System (INIS)

    Lauren Poole; Lee Recca

    1999-01-01

    A more efficient method has been created to filter cast molten metal for impurities. Read about the resulting energy and money savings that can accrue to many different industries from the use of this exciting new technology

  6. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-01

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  7. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  8. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets...... the criteria for content, face, and construct validity. METHODS: Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. RESULTS: The case studies showed...... that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. CONCLUSION: These issues will require resolution to reach consensus on how Truth...

  9. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...... for defining core areas of measurement ("Filter 2.0 Core Areas of Measurement") was presented at OMERACT 11 to explore areas of consensus and to consider whether already endorsed core outcome sets fit into this newly proposed framework. METHODS: Discussion groups critically reviewed the extent to which case......, presentation, and clarity of the framework were questioned. The discussion groups and subsequent feedback highlighted 20 such issues. CONCLUSION: These issues will require resolution to reach consensus on accepting the proposed Filter 2.0 framework of Core Areas as the basis for the selection of Core Outcome...

  10. Paul Rodgersi filter Kohilas

    Index Scriptorium Estoniae

    2000-01-01

    28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.

  11. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  12. Quantum games as quantum types

    Science.gov (United States)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other

  13. Spatial filter issues

    International Nuclear Information System (INIS)

    Murray, J.E.; Estabrook, K.G.; Milam, D.; Sell, W.D.; Van Wonterghem, R.M.; Feil, M.D.; Rubenchick, A.M.

    1996-01-01

    Experiments and calculations indicate that the threshold pressure in spatial filters for distortion of a transmitted pulse scales approximately as I O.2 and (F number-sign) 2 over the intensity range from 10 14 to 2xlO 15 W/CM 2 . We also demonstrated an interferometric diagnostic that will be used to measure the scaling relationships governing pinhole closure in spatial filters

  14. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  15. Staging with spatial filters

    International Nuclear Information System (INIS)

    Glaze, J.

    1974-01-01

    It is known that small scale beam instabilities limit the focusable energy that can be achieved from a terawatt laser chain. Spatial filters are currently being used on CYCLOPS to ameliorate this problem. Realizing the full advantage of such a filter, however, may require certain staging modifications. A staging methodology is discussed that should be applicable to the CYCLOPS, 381, and SHIVA systems. Experiments are in progress on CYCLOPS that will address directly the utility of the proposed approach

  16. Speckle reduction techniques in digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, David; Kelly, Damien; Hennelly, Bryan [Department of Computer Science, National University of Ireland, Maynooth, Co. Kildare (Ireland); Javidi, Bahram, E-mail: bryanh@cs.nuim.i [University of Connecticut Electrical and Computer Engineering Department 371 Fairfield Road, Unit 2157 Storrs, CT 06269-2157 (United States)

    2010-02-01

    We have studied several speckle reduction techniques, applicable to digital holography. These include the use of optical diffusers, wavelet filtering, simulating temporal incoherence and filtering in the Fourier domain. The Digital Holograms (DHs) used in this study are captured using a Phase Shift Interferometric (PSI) in-line setup and subsequently reconstructed numerically.

  17. A Low Cost Structurally Optimized Design for Diverse Filter Types

    Science.gov (United States)

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image

  18. Robust estimation of event-related potentials via particle filter.

    Science.gov (United States)

    Fukami, Tadanori; Watanabe, Jun; Ishikawa, Fumito

    2016-03-01

    In clinical examinations and brain-computer interface (BCI) research, a short electroencephalogram (EEG) measurement time is ideal. The use of event-related potentials (ERPs) relies on both estimation accuracy and processing time. We tested a particle filter that uses a large number of particles to construct a probability distribution. We constructed a simple model for recording EEG comprising three components: ERPs approximated via a trend model, background waves constructed via an autoregressive model, and noise. We evaluated the performance of the particle filter based on mean squared error (MSE), P300 peak amplitude, and latency. We then compared our filter with the Kalman filter and a conventional simple averaging method. To confirm the efficacy of the filter, we used it to estimate ERP elicited by a P300 BCI speller. A 400-particle filter produced the best MSE. We found that the merit of the filter increased when the original waveform already had a low signal-to-noise ratio (SNR) (i.e., the power ratio between ERP and background EEG). We calculated the amount of averaging necessary after applying a particle filter that produced a result equivalent to that associated with conventional averaging, and determined that the particle filter yielded a maximum 42.8% reduction in measurement time. The particle filter performed better than both the Kalman filter and conventional averaging for a low SNR in terms of both MSE and P300 peak amplitude and latency. For EEG data produced by the P300 speller, we were able to use our filter to obtain ERP waveforms that were stable compared with averages produced by a conventional averaging method, irrespective of the amount of averaging. We confirmed that particle filters are efficacious in reducing the measurement time required during simulations with a low SNR. Additionally, particle filters can perform robust ERP estimation for EEG data produced via a P300 speller. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  20. Quantum objects. Non-local correlation, causality and objective indefiniteness in the quantum world

    International Nuclear Information System (INIS)

    Jaeger, Gregg

    2014-01-01

    Presents interpretation of quantum mechanics, advances in quantum foundations and philosophy of quantum mechanics. Explains non-locality and its relationship to causality and probability in quantum theory. Displays foundational characteristics of quantum physic to understand conceptual origins of the unusual nature of quantum phenomena. Describes relationship of subsystems and space-time. Gives a careful review of existing views. Confronts the old approaches with recent results and approaches from quantum information theory. Delivers a clear and thorough analysis of the quantum events in the context of relativistic space-time, which impacts the problem of creating a theory of quantum gravity. Supplies a detailed discussion of non-local correlation within and beyond the bounds set by standard quantum mechanics, which impacts the foundations of information theory. Gives a detailed discussion of probabilistic causation (central to contemporary accounts of causation) in quantum mechanics and relativity. Leads a thorough discussion of the nature of ''quantum potentiality,'' the novel form of existence arising for the first time in quantum mechanics. This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum subsystems. Careful attention is paid to the relationships among such property correlations, physical causation, probability, and symmetry in quantum theory. In this way, the text identifies and clarifies the conceptual grounds

  1. Quantum objects. Non-local correlation, causality and objective indefiniteness in the quantum world

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Gregg [Boston Univ., MA (United States). Natural Sciences and Mathematics

    2014-07-01

    Presents interpretation of quantum mechanics, advances in quantum foundations and philosophy of quantum mechanics. Explains non-locality and its relationship to causality and probability in quantum theory. Displays foundational characteristics of quantum physic to understand conceptual origins of the unusual nature of quantum phenomena. Describes relationship of subsystems and space-time. Gives a careful review of existing views. Confronts the old approaches with recent results and approaches from quantum information theory. Delivers a clear and thorough analysis of the quantum events in the context of relativistic space-time, which impacts the problem of creating a theory of quantum gravity. Supplies a detailed discussion of non-local correlation within and beyond the bounds set by standard quantum mechanics, which impacts the foundations of information theory. Gives a detailed discussion of probabilistic causation (central to contemporary accounts of causation) in quantum mechanics and relativity. Leads a thorough discussion of the nature of ''quantum potentiality,'' the novel form of existence arising for the first time in quantum mechanics. This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum subsystems. Careful attention is paid to the relationships among such property correlations, physical causation, probability, and symmetry in quantum theory. In this way, the text identifies and clarifies the

  2. Quantum measurement

    CERN Document Server

    Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari

    2016-01-01

    This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....

  3. Quantum Optics

    CERN Document Server

    Walls, D F

    2007-01-01

    Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.

  4. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  5. Clinical evaluation of image quality and radiation dose reduction in upper abdominal computed tomography using model-based iterative reconstruction; comparison with filtered back projection and adaptive statistical iterative reconstruction

    International Nuclear Information System (INIS)

    Nakamoto, Atsushi; Kim, Tonsok; Hori, Masatoshi; Onishi, Hiromitsu; Tsuboyama, Takahiro; Sakane, Makoto; Tatsumi, Mitsuaki; Tomiyama, Noriyuki

    2015-01-01

    Highlights: • MBIR significantly improves objective image quality. • MBIR reduces the radiation dose by 87.5% without increasing objective image noise. • A half dose will be needed to maintain the subjective image quality. - Abstract: Purpose: To evaluate the image quality of upper abdominal CT images reconstructed with model-based iterative reconstruction (MBIR) in comparison with filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) on scans acquired with various radiation exposure dose protocols. Materials and methods: This prospective study was approved by our institutional review board, and informed consent was obtained from all 90 patients who underwent both control-dose (CD) and reduced-dose (RD) CT of the upper abdomen (unenhanced: n = 45, contrast-enhanced: n = 45). The RD scan protocol was randomly selected from three protocols; Protocol A: 12.5% dose, Protocol B: 25% dose, Protocol C: 50% dose. Objective image noise, signal-to-noise (SNR) ratio for the liver parenchyma, visual image score and lesion conspicuity were compared among CD images of FBP and RD images of FBP, ASIR and MBIR. Results: RD images of MBIR yielded significantly lower objective image noise and higher SNR compared with RD images of FBP and ASIR for all protocols (P < .01) and CD images of FBP for Protocol C (P < .05). Although the subjective image quality of RD images of MBIR was almost acceptable for Protocol C, it was inferior to that of CD images of FBP for Protocols A and B (P < .0083). The conspicuity of the small lesions in RD images of MBIR tended to be superior to that in RD images of FBP and ASIR and inferior to that in CD images for Protocols A and B, although the differences were not significant (P > .0083). Conclusion: Although 12.5%-dose MBIR images (mean size-specific dose estimates [SSDE] of 1.13 mGy) yielded objective image noise and SNR comparable to CD-FBP images, at least a 50% dose (mean SSDE of 4.63 mGy) would be needed to

  6. Clinical evaluation of image quality and radiation dose reduction in upper abdominal computed tomography using model-based iterative reconstruction; comparison with filtered back projection and adaptive statistical iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Atsushi, E-mail: a-nakamoto@radiol.med.osaka-u.ac.jp; Kim, Tonsok, E-mail: kim@radiol.med.osaka-u.ac.jp; Hori, Masatoshi, E-mail: mhori@radiol.med.osaka-u.ac.jp; Onishi, Hiromitsu, E-mail: h-onishi@radiol.med.osaka-u.ac.jp; Tsuboyama, Takahiro, E-mail: t-tsuboyama@radiol.med.osaka-u.ac.jp; Sakane, Makoto, E-mail: m-sakane@radiol.med.osaka-u.ac.jp; Tatsumi, Mitsuaki, E-mail: m-tatsumi@radiol.med.osaka-u.ac.jp; Tomiyama, Noriyuki, E-mail: tomiyama@radiol.med.osaka-u.ac.jp

    2015-09-15

    Highlights: • MBIR significantly improves objective image quality. • MBIR reduces the radiation dose by 87.5% without increasing objective image noise. • A half dose will be needed to maintain the subjective image quality. - Abstract: Purpose: To evaluate the image quality of upper abdominal CT images reconstructed with model-based iterative reconstruction (MBIR) in comparison with filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) on scans acquired with various radiation exposure dose protocols. Materials and methods: This prospective study was approved by our institutional review board, and informed consent was obtained from all 90 patients who underwent both control-dose (CD) and reduced-dose (RD) CT of the upper abdomen (unenhanced: n = 45, contrast-enhanced: n = 45). The RD scan protocol was randomly selected from three protocols; Protocol A: 12.5% dose, Protocol B: 25% dose, Protocol C: 50% dose. Objective image noise, signal-to-noise (SNR) ratio for the liver parenchyma, visual image score and lesion conspicuity were compared among CD images of FBP and RD images of FBP, ASIR and MBIR. Results: RD images of MBIR yielded significantly lower objective image noise and higher SNR compared with RD images of FBP and ASIR for all protocols (P < .01) and CD images of FBP for Protocol C (P < .05). Although the subjective image quality of RD images of MBIR was almost acceptable for Protocol C, it was inferior to that of CD images of FBP for Protocols A and B (P < .0083). The conspicuity of the small lesions in RD images of MBIR tended to be superior to that in RD images of FBP and ASIR and inferior to that in CD images for Protocols A and B, although the differences were not significant (P > .0083). Conclusion: Although 12.5%-dose MBIR images (mean size-specific dose estimates [SSDE] of 1.13 mGy) yielded objective image noise and SNR comparable to CD-FBP images, at least a 50% dose (mean SSDE of 4.63 mGy) would be needed to

  7. Quantum Locality?

    OpenAIRE

    Stapp, Henry P.

    2011-01-01

    Robert Griffiths has recently addressed, within the framework of a 'consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. O...

  8. Quantum ratchets

    OpenAIRE

    Grifoni, Milena

    1997-01-01

    In this thesis, ratchet systems operating in the quantum regime are investigated. Ratchet systems, also known as Brownian motors, are periodic systems presenting an intrinsic asymmetry which can be exploited to extract work out of unbiased forces. As a model for ratchet systems, we consider the motion of a particle in a one-dimensional periodic and asymmetric potential, interacting with a thermal environment, and subject to an unbiased driving force. In quantum ratchets, intrinsic quantum flu...

  9. FEATURES OF THE REGENERATION PROCESS OF THE FILTER

    Directory of Open Access Journals (Sweden)

    S. Yu. Panov

    2015-01-01

    Full Text Available The regeneration system exercises significant influence on the efficiency and reliability of the filters. During operation of the filter it continuously increases the hydraulic resistance and the gas permeability of the filter material decreases as the deposition of the disperse phase capturable on the filter element, and to maintain the bandwidth of the filter in the filter element within the set must be periodically changed or regenerated. Thus, regeneration of a process of removing part of the dust layer with the purpose of full or partial reduction of the initial filter partitioning properties. On the basis of theoretical synthesis, physico-chemical effects of dust in layers, analysis of energy effects, developed methods of intensification of the process of regeneration of particulate filters. Pneumopulse regeneration of bag filter has been investigated, and based on it a regression equation for regeneration efficiency has been derived. It has been shown that pulse pressure exerts the dominant influence on the regeneration efficiency. The obtained model was used for assessment and prediction of the efficiency of the pneumopulse system of regeneration of bag filters at a number of structural materials producing enterprises in the Voronezh region.

  10. Quantum space and quantum completeness

    Science.gov (United States)

    Jurić, Tajron

    2018-05-01

    Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.

  11. Quantum Nonlocality and Reality

    Science.gov (United States)

    Bell, Mary; Gao, Shan

    2016-09-01

    Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective

  12. Quantum mechanics

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibard, J.; Joffre, M.

    2008-01-01

    All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)

  13. Quantum information

    International Nuclear Information System (INIS)

    Rodgers, P.

    1998-01-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  14. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, P

    1998-03-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  15. Quantum Integers

    International Nuclear Information System (INIS)

    Khrennikov, Andrei; Klein, Moshe; Mor, Tal

    2010-01-01

    In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.

  16. Quantum computation

    International Nuclear Information System (INIS)

    Deutsch, D.

    1992-01-01

    As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)

  17. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, P

    1998-03-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  18. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  19. Quantum system lifetimes and measurement perturbations

    International Nuclear Information System (INIS)

    Najakov, E.

    1977-05-01

    The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied

  20. Rotation speed measurement for turbine governor: torsion filtering by using Kalman filter

    International Nuclear Information System (INIS)

    Houry, M.P.; Bourles, H.

    1996-01-01

    The rotation speed of a turbogenerator is disturbed by its shaft torsion. Obtaining a filtered measure of this speed is a problem of a great practical importance for turbine governor. A good filtering of this speed must meet two requirements: it must cut frequencies of the shaft torsion oscillation and it must not reduce or delay the signal in the pass-band, i.e. at lower frequencies. At Electricite de France, the speed measure is used to set in motion the fast valving system as quickly as possible, after a short circuit close to the unit or rather an islanding. It is difficult to satisfy these two requirements by using conventional filtering methods. The standard solution consists in a first order filter: at Electricite de France, its time constant is equal to 80 ms. We have decided to improve this filtering by designing a new filter which cuts the frequencies of the shaft torsion oscillation without reducing the bandwidth to the speed measure. If one uses conventional methods to obtain a band stop filter, it is easy to obtain the desired magnitude but not a phase near zero in the whole pass-band. Therefore, we have chosen to design the filter by using Kalman'a theory. The measurement noise is modeled as a colored one, generated by a very lightly damped system driven by a while noise. The resulting Kalman filter is an effective band stop filter, whose phase nicely remains near zero in the whole pass-band. The digital simulations we made and the tests we carried out with the Electricite de France Micro Network laboratory show the advantages of the rotation speed filter we designed using Kalman's theory. With the proposed filter, the speed measure filtering is better in terms of reduction and phase shift. the result is that there are less untimely solicitations of the fast valving system. Consequently, this device improves the power systems stability by minimizing the risks of deep perturbations due to a temporary lack of generation and the risks of under-speed loss

  1. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  2. Optical crosstalk reduction using Amplified Spontaneous Emission (ASE)

    NARCIS (Netherlands)

    Chen, H.; Fontaine, N.K.; Ryf, R.; Alvarado, J.C.; van Weerdenburg, J.A.A.; Amezcua-Correa, R.; Okonkwo, C.; Koonen, A.M.J.

    2018-01-01

    We employ spectrally filtered amplified spontaneous emission as the signal carrier and matched local oscillator to mitigate optical crosstalk. We demonstrate polarization crosstalk reduction in single-mode fiber transmission and modal crosstalk reduction over multimode fiber.

  3. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  4. Ghost suppression in image restoration filtering

    Science.gov (United States)

    Riemer, T. E.; Mcgillem, C. D.

    1975-01-01

    An optimum image restoration filter is described in which provision is made to constrain the spatial extent of the restoration function, the noise level of the filter output and the rate of falloff of the composite system point-spread away from the origin. Experimental results show that sidelobes on the composite system point-spread function produce ghosts in the restored image near discontinuities in intensity level. By redetermining the filter using a penalty function that is zero over the main lobe of the composite point-spread function of the optimum filter and nonzero where the point-spread function departs from a smoothly decaying function in the sidelobe region, a great reduction in sidelobe level is obtained. Almost no loss in resolving power of the composite system results from this procedure. By iteratively carrying out the same procedure even further reductions in sidelobe level are obtained. Examples of original and iterated restoration functions are shown along with their effects on a test image.

  5. Quantum group and quantum symmetry

    International Nuclear Information System (INIS)

    Chang Zhe.

    1994-05-01

    This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs

  6. Anti-clogging filter system

    Science.gov (United States)

    Brown, Erik P.

    2015-05-19

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.

  7. Backflushable filter experience at the N Reactor

    International Nuclear Information System (INIS)

    Ball, B.; Best, W.T.; Keith, R.C.

    1987-01-01

    The N Reactor is an 4000 MWt, light-water cooled, graphite-moderated reactor located on the Hanford Site in Washington State. A radwaste pilot plant to process plant effluent was constructed in order to maximize future efficiency when a full size radioactive processing facility is built. The pilot plant's purpose is to vary operational parameters such as filtration and ion exchange on a smaller scale to gather as much data as possible. The input to the pilot plant is radioactive drain lines from the N Reactor. The effluent passes through a backflushable filter and a series of ion exchange columns all scaled down from the future proposed facility. A backflushable filter was selected for this application because of the specific characteristics of the plant effluent and the potential reduced operating costs. The filter performance has been excellent in terms of filtration of the effluent. Typical total suspended solids in the plant effluent range from 1 to 6.1 ppm; the filter reduces this value to less than 0.1 ppm. In addition to outstanding filtration efficiency, the use of a precoat material on the filter has resulted in impressive decontamination factors. The filter has been successful in removing up to 50% of the influent activity. An improved performance of several nuclides over other filtration systems has also been achieved. By varying the composition and amount of precoat material on the filter, substantial reductions in waste volumes (and associated operating and disposal costs) have been demonstrated while maintaining a high degree of removal of both activity and total suspended solids

  8. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon

    2016-01-08

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  9. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon; Chernov, Alexey; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  10. Treatment of Stormwater using Fibre Filter Media

    International Nuclear Information System (INIS)

    Johir, M. A. H.; Lee, J. J.; Vigneswaran, S.; Kandasamy, J.; Shaw, K.

    2009-01-01

    In this study, a high-rate fibre filter was used as a pre-treatment to stormwater in conjunction with in-line flocculation. The effect of operating the fibre filter with different packing densities (105, 115 and 125 kg/m 3 ) and filtration velocities (20, 40, 60 m/h) with and without in-line flocculation was investigated. In-line flocculation was provided using 5, 10 and 15 mg/L of ferric chloride (FeCl 3 .6H 2 O). The filter performance was studied in terms of pressure drop (ΔP), solids removal efficiency, heavy metals (total) removal efficiency and total organic carbon (TOC) removal efficiency. It is found that the use of in-line flocculation at a dose of 15 mg/L improved the performance of fibre filter as measured by turbidity removal (95%), total suspended solids reduction (98%), colour removal efficiency (99%), TOC removal (reduced by 30-40 %) and total coliform removal (93%). The modified fouling index reduced from 750-950 to 12 s/L 2 proving that fibre filter can be an excellent pre-treatment to membrane filtration that may be consider as post-treatment. The removal efficiency of heavy metal was variable as their concentration in raw water was small. Even though the concentration of some of these metals such as iron, aluminium, copper and zinc were reduced, others like nickel, chromium and cadmium showed lower removal rates.

  11. Treatment of Stormwater using Fibre Filter Media

    Energy Technology Data Exchange (ETDEWEB)

    Johir, M. A. H.; Lee, J. J.; Vigneswaran, S., E-mail: s.vigneswaran@uts.edu.au; Kandasamy, J. [University of Technology, Faculty of Engineering and IT (Australia); Shaw, K. [Veolia Water Solutions and Technologies Australia (Australia)

    2009-12-15

    In this study, a high-rate fibre filter was used as a pre-treatment to stormwater in conjunction with in-line flocculation. The effect of operating the fibre filter with different packing densities (105, 115 and 125 kg/m{sup 3}) and filtration velocities (20, 40, 60 m/h) with and without in-line flocculation was investigated. In-line flocculation was provided using 5, 10 and 15 mg/L of ferric chloride (FeCl{sub 3}.6H{sub 2}O). The filter performance was studied in terms of pressure drop ({Delta}P), solids removal efficiency, heavy metals (total) removal efficiency and total organic carbon (TOC) removal efficiency. It is found that the use of in-line flocculation at a dose of 15 mg/L improved the performance of fibre filter as measured by turbidity removal (95%), total suspended solids reduction (98%), colour removal efficiency (99%), TOC removal (reduced by 30-40 %) and total coliform removal (93%). The modified fouling index reduced from 750-950 to 12 s/L{sup 2} proving that fibre filter can be an excellent pre-treatment to membrane filtration that may be consider as post-treatment. The removal efficiency of heavy metal was variable as their concentration in raw water was small. Even though the concentration of some of these metals such as iron, aluminium, copper and zinc were reduced, others like nickel, chromium and cadmium showed lower removal rates.

  12. Quantum information. Teleportation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    Koenneker, Carsten

    2012-01-01

    The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

  13. Quantum ensembles of quantum classifiers.

    Science.gov (United States)

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  14. Quantum computer games: quantum minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-07-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.

  15. Quantum Physics Without Quantum Philosophy

    CERN Document Server

    Dürr, Detlef; Zanghì, Nino

    2013-01-01

    It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.

  16. Quantum measurement in quantum optics

    International Nuclear Information System (INIS)

    Kimble, H.J.

    1993-01-01

    Recent progress in the generation and application of manifestly quantum or nonclassical states of the electromagnetic field is reviewed with emphasis on the research of the Quantum Optics Group at Caltech. In particular, the possibilities for spectroscopy with non-classical light are discussed both in terms of improved quantitative measurement capabilities and for the fundamental alteration of atomic radiative processes. Quantum correlations for spatially extended systems are investigated in a variety of experiments which utilize nondegenerate parametric down conversion. Finally, the prospects for measurement of the position of a free mass with precision beyond the standard quantum limit are briefly considered. (author). 38 refs., 1 fig

  17. Multirate Digital Filters Based on FPGA and Its Applications

    International Nuclear Information System (INIS)

    Sharaf El-Din, R.M.A.

    2013-01-01

    Digital Signal Processing (DSP) is one of the fastest growing techniques in the electronics industry. It is used in a wide range of application fields such as, telecommunications, data communications, image enhancement and processing, video signals, digital TV broadcasting, and voice synthesis and recognition. Field Programmable Gate Array (FPGA) offers good solution for addressing the needs of high performance DSP systems. The focus of this thesis is on one of the basic DSP functions, namely filtering signals to remove unwanted frequency bands. Multi rate Digital Filters (MDFs) are the main theme here. Theory and implementation of MDF, as a special class of digital filters, will be discussed. Multi rate digital filters represent a class of digital filters having a number of attractive features like, low requirements for the coefficient word lengths, significant saving in computation and storage requirements results in a significant reduction in its dynamic power consumption. This thesis introduces an efficient FPGA realization of a multi rate decimation filter with narrow pass-band and narrow transition band to reduce the frequency sample rate by factor of 64 for noise thermometer applications. The proposed multi rate decimation filter is composed of three stages; the first stage is a Cascaded Integrator Comb (CIC) decimation filter, the second stage is a two-coefficient Half-Band (HB) filter and the last stage is a sharper transition HB filter. The frequency responses of individual stages as well as the overall filter response have been demonstrated with full simulation using MATLAB. The design and implementation of the proposed MDF on FPGA (XILINX Virtex XCV800 BG432-4), using VHSIC Hardware Description Language (VHDL), has been introduced. The implementation areas of the proposed filter stages are compared. Using CIC-HB technique saves 18% of the design area, compared to using six stages HB decimation filters.

  18. Realizing Controllable Quantum States

    Science.gov (United States)

    Takayanagi, Hideaki; Nitta, Junsaku

    excitations in low-dimensional electron gases studied by far-infrared photoconductivity spectroscopy / C.-M. Hu. Control of photogenerated carriers and spins using surface acoustic waves / P. V. Santos, J. A. H. Stotz and R. Hey. PbTe nanostructures for spin filtering and detecting / G. Grabecki. G-factor control in an Ids-inserted InGaAs/InAlAs heterostructure / J. Nitta et al. Spin hall effect in p-type semiconductors / S. Murakami. Spin diffusion in mesoscopic superconducting A1 wires / Y.-S. Shin. H.-J. Lee and H.-W. Lee. Magnetization processes revealed by in-plane DC magnetoresistance measurements on manganite bicrystal thin film devices / R. Gunnarsson. M. Hanson and T. Claeson. Giant magnetoconductance at interface between a two-dimensional hole system and a magnetic semiconductor (Ga, Mn)As / Y. Hashimoto, S. Katsumoto and Y. Iye. Diffusion modes of the transport in diluted magnetic semiconductors / I. Kanazawa. Effect of an invasive voltage probe on the spin polarized current / J. Ohe and T. Ohtsuki -- 9. Spintronics in quantum dots. Tunable exchange interaction and Kondo screening in quantum dot devices / H. Tamura et al. Kondo effect in quantum dots in presence of itinerant-electron magnetism / J. Martinek et al. Optical band edge of II-VI and III-V based diluted magnetic semiconductors / M. Takahashi. Spin-polarized transport properties through double quantum dots / Y. Tanaka and N. Kawakami. RKKY interaction between two quantum dots embedded in an Aharonov-Bohm ring / Y. Utsumi et al. Fabrication and characterization of quantum dot single electron spin resonance devices / T. Kodera et al. Kondo effect in quantum dots with two orbitals and spin 1/2 - crossover from SU (4) to SU (2) symmetry / M. Eto. Detecting spin polarization of electrons in quantum dot edge channels by photoluminescence / S. Nomura. Manipulation of exchange interaction in a double quantum dot / M. Stopa, S. Tarucha and T. Hatano. Electron-density dependence of photoluminescence from Be

  19. The sudden death and sudden birth of quantum discord.

    Science.gov (United States)

    Xia, Wei; Hou, Jin-Xing; Wang, Xiao-Hui; Liu, Si-Yuan

    2018-03-28

    The interaction of quantum system and its environment brings out abundant quantum phenomenons. The sudden death of quantum resources, including entanglement, quantum discord and coherence, have been studied from the perspective of quantum breaking channels (QBC). QBC of quantum resources reveal the common features of quantum resources. The definition of QBC implies the relationship between quantum resources. However, sudden death of quantum resources can also appear under some other quantum channels. We consider the dynamics of Bell-diagonal states under a stochastic dephasing noise along the z-direction, and the sudden death and sudden birth of quantum discord are investigated. Next we explain this phenomenon from the geometric structure of quantum discord. According to the above results, the states with sudden death and sudden birth can be filtered in three-parameter space. Then we provide two necessary conditions to judge which kind of noise channels can make Bell-diagonal states sudden death and sudden birth. Moreover, the relation between quantum discord and coherence indicates that the sudden death and sudden birth of quantum discord implies the sudden death and sudden birth of coherence in an optimal basis.

  20. Quantum Computing

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Quantum spacetime

    International Nuclear Information System (INIS)

    Doplicher, S.

    1996-01-01

    We review some recent result and work in progress on the quantum structure of spacetime at scales comparable with the Planck length; the models discussed here are operationally motivated by the limitations in the accuracy of localization of events in spacetime imposed by the interplay between quantum mechanics and classical general relativity. (orig.)

  2. Adaptive digital filters

    CERN Document Server

    Kovačević, Branko; Milosavljević, Milan

    2013-01-01

    “Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms.   The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...

  3. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    D'Agostino, Maria-Antonietta; Boers, Maarten; Kirwan, John

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides a framework for the validation of outcome measures for use in rheumatology clinical research. However, imaging and biochemical measures may face additional validation challenges because of their technical nature. The Imaging...... using the original OMERACT Filter and the newly proposed structure. Breakout groups critically reviewed the extent to which the candidate biomarkers complied with the proposed stepwise approach, as a way of examining the utility of the proposed 3-dimensional structure. RESULTS: Although...... was obtained for a proposed tri-axis structure to assess validation of imaging and soluble biomarkers; nevertheless, additional work is required to better evaluate its place within the OMERACT Filter 2.0....

  4. Automated electronic filter design

    CERN Document Server

    Banerjee, Amal

    2017-01-01

    This book describes a novel, efficient and powerful scheme for designing and evaluating the performance characteristics of any electronic filter designed with predefined specifications. The author explains techniques that enable readers to eliminate complicated manual, and thus error-prone and time-consuming, steps of traditional design techniques. The presentation includes demonstration of efficient automation, using an ANSI C language program, which accepts any filter design specification (e.g. Chebyschev low-pass filter, cut-off frequency, pass-band ripple etc.) as input and generates as output a SPICE(Simulation Program with Integrated Circuit Emphasis) format netlist. Readers then can use this netlist to run simulations with any version of the popular SPICE simulator, increasing accuracy of the final results, without violating any of the key principles of the traditional design scheme.

  5. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  6. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  7. Quantum cosmology

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1984-01-01

    The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)

  8. Quantum mechanics

    CERN Document Server

    Rae, Alastair I M

    2016-01-01

    A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...

  9. Quantum magnetism

    CERN Document Server

    Richter, Johannes; Farnell, Damian; Bishop, Raymod

    2004-01-01

    The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.

  10. Reduced Kalman Filters for Clock Ensembles

    Science.gov (United States)

    Greenhall, Charles A.

    2011-01-01

    This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.

  11. Quantum computing

    International Nuclear Information System (INIS)

    Steane, Andrew

    1998-01-01

    The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from

  12. Quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Steane, Andrew [Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Oxford (United Kingdom)

    1998-02-01

    The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from

  13. Analog and digital filtering of the brain stem auditory evoked response.

    Science.gov (United States)

    Kavanagh, K T; Franks, R

    1989-07-01

    This study compared the filtering effects on the auditory evoked potential of zero and standard phase shift digital filters (the former was a mathematical approximation of a standard Butterworth filter). Conventional filters were found to decrease the height of the evoked response in the majority of waveforms compared to zero phase shift filters. A 36-dB/octave zero phase shift high pass filter with a cutoff frequency of 100 Hz produced a 16% reduction in wave amplitude compared to the unfiltered control. A 36-dB/octave, 100-Hz standard phase shift high pass filter produced a 41% reduction, and a 12-dB/octave, 150-Hz standard phase shift high pass filter produced a 38% reduction in wave amplitude compared to the unfiltered control. A decrease in the mean along with an increase in the variability of wave IV/V latency was also noted with conventional compared to zero phase shift filters. The increase in the variability of the latency measurement was due to the difficulty in waveform identification caused by the phase shift distortion of the conventional filter along with the variable decrease in wave latency caused by phase shifting responses with different spectral content. Our results indicated that a zero phase shift high pass filter of 100 Hz was the most desirable filter studied for the mitigation of spontaneous brain activity and random muscle artifact.

  14. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  15. Alarm filtering and presentation

    International Nuclear Information System (INIS)

    Bray, M.A.

    1989-01-01

    This paper discusses alarm filtering and presentation in the control room of nuclear and other process control plants. Alarm generation and presentation is widely recognized as a general process control problem. Alarm systems often fail to provide meaningful alarms to operators. Alarm generation and presentation is an area in which computer aiding is feasible and provides clear benefits. Therefore, researchers have developed several computerized alarm filtering and presentation approaches. This paper discusses problems associated with alarm generation and presentation. Approaches to improving the alarm situation and installation issues of alarm system improvements are discussed. The impact of artificial intelligence (AI) technology on alarm system improvements is assessed. (orig.)

  16. Ripple reduction activities in the MG room at the Bevatron, August 1991 to August 1992

    International Nuclear Information System (INIS)

    Blasbalg, M.; Bennett, M.

    1992-08-01

    This report discusses the following topics: magnet - voltage dividers temperature ampersand voltage influence error calculation; magnet filters summarized data table; magnet transfer function measurement setup and connection diagrams; response of existing magnet system including ripple reduction filters - Dec 1991; magnet filters - mutual inductance problem; and damping the magnet filters

  17. Quantum objects non-local correlation, causality and objective indefiniteness in the quantum world

    CERN Document Server

    Jaeger, Gregg

    2013-01-01

    This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum

  18. Quantum mechanics with quantum time

    International Nuclear Information System (INIS)

    Kapuscik, E.

    1984-01-01

    Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)

  19. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups

  20. Statistically-Efficient Filtering in Impulsive Environments: Weighted Myriad Filters

    Directory of Open Access Journals (Sweden)

    Juan G. Gonzalez

    2002-01-01

    Full Text Available Linear filtering theory has been largely motivated by the characteristics of Gaussian signals. In the same manner, the proposed Myriad Filtering methods are motivated by the need for a flexible filter class with high statistical efficiency in non-Gaussian impulsive environments that can appear in practice. Myriad filters have a solid theoretical basis, are inherently more powerful than median filters, and are very general, subsuming traditional linear FIR filters. The foundation of the proposed filtering algorithms lies in the definition of the myriad as a tunable estimator of location derived from the theory of robust statistics. We prove several fundamental properties of this estimator and show its optimality in practical impulsive models such as the α-stable and generalized-t. We then extend the myriad estimation framework to allow the use of weights. In the same way as linear FIR filters become a powerful generalization of the mean filter, filters based on running myriads reach all of their potential when a weighting scheme is utilized. We derive the “normal” equations for the optimal myriad filter, and introduce a suboptimal methodology for filter tuning and design. The strong potential of myriad filtering and estimation in impulsive environments is illustrated with several examples.

  1. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Abstract. Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive ...

  2. Quantum physics

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibart, J.

    1997-01-01

    This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)

  3. Quantum communications

    CERN Document Server

    Cariolaro, Gianfranco

    2015-01-01

    This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: ·         development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; ·         general formulation of a transmitter–receiver system ·         particular treatment of the most popular quantum co...

  4. The ATLAS event filter

    CERN Document Server

    Beck, H P; Boissat, C; Davis, R; Duval, P Y; Etienne, F; Fede, E; Francis, D; Green, P; Hemmer, F; Jones, R; MacKinnon, J; Mapelli, Livio P; Meessen, C; Mommsen, R K; Mornacchi, Giuseppe; Nacasch, R; Negri, A; Pinfold, James L; Polesello, G; Qian, Z; Rafflin, C; Scannicchio, D A; Stanescu, C; Touchard, F; Vercesi, V

    1999-01-01

    An overview of the studies for the ATLAS Event Filter is given. The architecture and the high level design of the DAQ-1 prototype is presented. The current status if the prototypes is briefly given. Finally, future plans and milestones are given. (11 refs).

  5. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  6. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  7. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  8. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  9. Quantum mechanics

    CERN Document Server

    Powell, John L

    2015-01-01

    Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ

  10. Quantum mechanics

    International Nuclear Information System (INIS)

    Rae, A.I.M.

    1981-01-01

    This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)

  11. Quantum chaos

    International Nuclear Information System (INIS)

    Steiner, F.

    1994-01-01

    A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formular is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found. (orig.)

  12. Quantum thermodynamics

    International Nuclear Information System (INIS)

    Beretta, G.P.; Gyftopoulos, E.P.; Park, J.L.

    1985-01-01

    A novel nonlinear equation of motion is proposed for a general quantum system consisting of more than one distinguishable elementary constituent of matter. In the domain of idempotent quantum-mechanical state operators, it is satisfied by all unitary evolutions generated by the Schroedinger equation. But in the broader domain of nonidempotent state operators not contemplated by conventional quantum mechanics, it generates a generally nonunitary evolution, it keeps the energy invariant and causes the entropy to increase with time until the system reaches a state of equilibrium or a limit cycle

  13. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  14. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    Science.gov (United States)

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  15. Filter assembly for metallic and intermetallic tube filters

    Science.gov (United States)

    Alvin, Mary Anne; Lippert, Thomas E.; Bruck, Gerald J.; Smeltzer, Eugene E.

    2001-01-01

    A filter assembly (60) for holding a filter element (28) within a hot gas cleanup system pressure vessel is provided, containing: a filter housing (62), said filter housing having a certain axial length and having a peripheral sidewall, said sidewall defining an interior chamber (66); a one piece, all metal, fail-safe/regenerator device (68) within the interior chamber (66) of the filter housing (62) and/or extending beyond the axial length of the filter housing, said device containing an outward extending radial flange (71) within the filter housing for seating an essential seal (70), the device also having heat transfer media (72) disposed inside and screens (80) for particulate removal; one compliant gasket (70) positioned next to and above the outward extending radial flange of the fail-safe/regenerator device; and a porous metallic corrosion resistant superalloy type filter element body welded at the bottom of the metal fail-safe/regenerator device.

  16. Digital Simulation of a Hybrid Active Filter - An Active Filter in Series with a Shunt Passive Filter

    OpenAIRE

    Sitaram, Mahesh I; Padiyar, KR; Ramanarayanan, V

    1998-01-01

    Active filters have long been in use for the filtering of power system load harmonics. In this paper, the digital simulation results of a hybrid active power filter system for a rectifier load are presented. The active filter is used for filtering higher order harmonics as the dominant harmonics are filtered by the passive filter. This reduces the rating of the active filter significantly. The DC capacitor voltage of the active filter is controlled using a PI controller.

  17. Analysis and control of a shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Ottersten, R.; Petersson, Andreas [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1999-09-01

    This report deals with active power filtering of low-frequency current harmonics. The active filter consists of a forced-commutated voltage source inverter with a digital control system. The aim of this master thesis is to investigate the performance of a shunt active power filter, and the parameters influence on the system performance. Three different harmonic identification methods are presented and compared. The shunt active power filter is very well suited for harmonic current reduction, provided that the phase shift due to the digital implementation of the control system is compensated. The performance of the active power filter depends on the switching frequency. When using individual harmonic detection methods the amount of compensation can be fully controlled for each current harmonic.

  18. Quantum decoherence and interlevel relations

    Science.gov (United States)

    Crull, Elise M.

    Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful

  19. Experimental study of filter cake formation on different filter media

    International Nuclear Information System (INIS)

    Saleem, M.

    2009-01-01

    Removal of particulate matter from gases generated in the process industry is important for product recovery as well as emission control. Dynamics of filtration plant depend on operating conditions. The models, that predict filter plant behaviour, involve empirical resistance parameters which are usually derived from limited experimental data and are characteristics of the filter media and filter cake (dust deposited on filter medium). Filter cake characteristics are affected by the nature of filter media, process parameters and mode of filter regeneration. Removal of dust particles from air is studied in a pilot scale jet pulsed bag filter facility resembling closely to the industrial filters. Limestone dust and ambient air are used in this study with two widely different filter media. All important parameters like pressure drop, gas flow rate, dust settling, are recorded continuously at 1s interval. The data is processed for estimation of the resistance parameters. The pressure drop rise on test filter media is compared. Results reveal that the surface of filter media has an influence on pressure drop rise (concave pressure drop rise). Similar effect is produced by partially jet pulsed filter surface. Filter behaviour is also simulated using estimated parameters and a simplified model and compared with the experimental results. Distribution of cake area load is therefore an important aspect of jet pulse cleaned bag filter modeling. Mean specific cake resistance remains nearly constant on thoroughly jet pulse cleaned membrane coated filter bags. However, the trend can not be confirmed without independent cake height and density measurements. Thus the results reveal the importance of independent measurements of cake resistance. (author)

  20. Reduction redux.

    Science.gov (United States)

    Shapiro, Lawrence

    2018-04-01

    Putnam's criticisms of the identity theory attack a straw man. Fodor's criticisms of reduction attack a straw man. Properly interpreted, Nagel offered a conception of reduction that captures everything a physicalist could want. I update Nagel, introducing the idea of overlap, and show why multiple realization poses no challenge to reduction so construed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Filtered atmospheric venting of LWR containments

    International Nuclear Information System (INIS)

    Hoegberg, L.; Ahlstroem, P.E.; Bachofner, E.; Graeslund, C.; Johansson, K.; Nilsson, L.; Persson, Aa.; Eriksson, B.

    1981-03-01

    The FILTRA project is a cooperative Swedish programme which started in February 1980. It is aimed at investigating the possibility of reducing the risk for a large release of radioactivity, assuming a severe reactor accident. The project has been focused on filtered venting of the reactor containment. The first stage of the project has dealt with two types of severe accident sequences, namely core meltdown as a result of the complete loss of water supplies to the reactor pressure vessel and insufficient cooling of the reactor containment. Some important conclusion are the following. The applicability of computer models used to describe various phenomena in the accident sequence must be scrutinized. The details of the design of the containment are important and must be taken into consideration in a more accurate manner than in previous analyses. A pressure relief area of less than 1 m 2 appears to be adequate. The following principles should guide the technical design of filtered venting systems, namely reduction of the risk for the release of those radioactive substances which could cause long term land contamination, provision for a passive function of the vent filter system during the first 24 hours and achievement of filtering capabilities which make leakages in severe accidents comparable to the leakages of radioactive substances in less severe accidents, which do not necessarily actuate the pressure relief system. Nothing indicates that a system for filtered venting of a BWR containment would have a significant negative effect on the safety within the framework of the design basis. Efforts should be directed towards designing a filtered venting system for a BWR such as Barsebaeck. (authors)

  2. Generalized Selection Weighted Vector Filters

    Directory of Open Access Journals (Sweden)

    Rastislav Lukac

    2004-09-01

    Full Text Available This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03 in Grado, Italy.

  3. Quantum Bidding in Bridge

    Science.gov (United States)

    Muhammad, Sadiq; Tavakoli, Armin; Kurant, Maciej; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed

    2014-04-01

    Quantum methods allow us to reduce communication complexity of some computational tasks, with several separated partners, beyond classical constraints. Nevertheless, experimental demonstrations of this have thus far been limited to some abstract problems, far away from real-life tasks. We show here, and demonstrate experimentally, that the power of reduction of communication complexity can be harnessed to gain an advantage in a famous, immensely popular, card game—bridge. The essence of a winning strategy in bridge is efficient communication between the partners. The rules of the game allow only a specific form of communication, of very low complexity (effectively, one has strong limitations on the number of exchanged bits). Surprisingly, our quantum technique does not violate the existing rules of the game (as there is no increase in information flow). We show that our quantum bridge auction corresponds to a biased nonlocal Clauser-Horne-Shimony-Holt game, which is equivalent to a 2→1 quantum random access code. Thus, our experiment is also a realization of such protocols. However, this correspondence is not complete, which enables the bridge players to have efficient strategies regardless of the quality of their detectors.

  4. Functional Blocks and Biquadratic ARC Filters using Transimpedance Amplifiers

    Directory of Open Access Journals (Sweden)

    R. Sarman

    1997-04-01

    Full Text Available The aims of the article are design and analysis of modern circuits including high performance functional blocks and biquadratic filters using transimpedance amplifiers. Here are given various types of these circuits, that works in classical voltage, current or hybrid mode. In this paper are also compared various possibilities of connection of single amplifier filters as for reduction of influence of transimpedance amplifier parasitic elements.

  5. A Differential Geometric Approach to Nonlinear Filtering: The Projection Filter

    NARCIS (Netherlands)

    Brigo, D.; Hanzon, B.; LeGland, F.

    1998-01-01

    This paper presents a new and systematic method of approximating exact nonlinear filters with finite dimensional filters, using the differential geometric approach to statistics. The projection filter is defined rigorously in the case of exponential families. A convenient exponential family is

  6. Quantum Noise

    International Nuclear Information System (INIS)

    Beenakker, C W J

    2005-01-01

    Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The

  7. Quantum exam

    International Nuclear Information System (INIS)

    Nguyen, Ba An

    2006-01-01

    Absolutely and asymptotically secure protocols for organizing an exam in a quantum way are proposed basing judiciously on multipartite entanglement. The protocols are shown to stand against common types of eavesdropping attack

  8. Quantum cryptography

    International Nuclear Information System (INIS)

    Tittel, W.; Brendel, J.; Gissin, N.; Ribordy, G.; Zbinden, H.

    1999-01-01

    The principles of quantum cryptography based on non-local correlations of entanglement photons are outlined. The method of coding and decoding of information and experiments is also described. The prospects of the technique are briefly discussed. (Z.J.)

  9. Quantum chaos

    International Nuclear Information System (INIS)

    Cejnar, P.

    2007-01-01

    Chaos is a name given in physics to a branch which, within classical mechanics, studies the consequences of sensitive dependences of the behavior of physical systems on the starting conditions, i.e., the 'butterfly wing effect'. However, how to describe chaotic behavior in the world of quantum particles? It appears that quantum mechanics does not admit the sensitive dependence on the starting conditions, and moreover, predicts a substantial suppression of chaos also at the macroscopic level. Still, the quantum properties of systems that are chaotic in terms of classical mechanics differ basically from the properties of classically arranged systems. This topic is studied by a field of physics referred to as quantum chaos. (author)

  10. Quantum transformations

    International Nuclear Information System (INIS)

    Faraggi, A.E.; Matone, M.

    1998-01-01

    We show that the quantum Hamilton-Jacobi equation can be written in the classical form with the spatial derivative ∂ q replaced by ∂ q with dq = dq/√1-β 2 (q), where β 2 (q) is strictly related to the quantum potential. This can be seen as the opposite of the problem of finding the wave function representation of classical mechanics as formulated by Schiller and Rosen. The structure of the above open-quotes quantum transformationclose quotes, related to the recently formulated equivalence principle, indicates that the potential deforms space geometry. In particular, a result by Flanders implies that both W(q) = V(q) - E and the quantum potential Q are proportional to the curvatures κ W and κ Q which arise as natural invariants in an equivalence problem for curves in the projective line. In this formulation the Schroedinger equation takes the geometrical form (∂ q 2 + κ W )ψ = 0

  11. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  12. Quantum Correlations Evolution Asymmetry in Quantum Channels

    International Nuclear Information System (INIS)

    Li Meng; Huang Yun-Feng; Guo Guang-Can

    2017-01-01

    It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. (paper)

  13. Duality Quantum Information and Duality Quantum Communication

    International Nuclear Information System (INIS)

    Li, C. Y.; Wang, W. Y.; Wang, C.; Song, S. Y.; Long, G. L.

    2011-01-01

    Quantum mechanical systems exhibit particle wave duality property. This duality property has been exploited for information processing. A duality quantum computer is a quantum computer on the move and passing through a multi-slits. It offers quantum wave divider and quantum wave combiner operations in addition to those allowed in an ordinary quantum computer. It has been shown that all linear bounded operators can be realized in a duality quantum computer, and a duality quantum computer with n qubits and d-slits can be realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality quantum computing mode. The quantum particle-wave duality can be used in providing secure communication. In this paper, we will review duality quantum computing and duality quantum key distribution.

  14. Quantum correlations and distinguishability of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Spehner, Dominique [Université Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France and Laboratoire de Physique et Modélisation des Milieux Condensés, F-38000 Grenoble (France)

    2014-07-15

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.

  15. Quantum correlations and distinguishability of quantum states

    International Nuclear Information System (INIS)

    Spehner, Dominique

    2014-01-01

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature

  16. Quantum Locality?

    Science.gov (United States)

    Stapp, Henry P.

    2012-05-01

    Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows

  17. Quantum lottery

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail...   Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".

  18. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  19. Quantum torsors

    OpenAIRE

    Grunspan, C.

    2003-01-01

    This text gives some results about quantum torsors. Our starting point is an old reformulation of torsors recalled recently by Kontsevich. We propose an unification of the definitions of torsors in algebraic geometry and in Poisson geometry. Any quantum torsor is equipped with two comodule-algebra structures over Hopf algebras and these structures commute with each other. In the finite dimensional case, these two Hopf algebras share the same finite dimension. We show that any Galois extension...

  20. Quantum conversion

    OpenAIRE

    Mazilu, Michael

    2015-01-01

    ICOAM 2015 The electromagnetic momentum transferred transferred to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ℏk does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the tran...