On kaonic deuterium. Quantum field theoretic and relativistic covariant approach
Ivanov, A N; Faber, M; Fuhrmann, H; Ivanova, V A; Marton, J; Troitskaya, N I; Zmeskal, J
2004-01-01
We study kaonic deuterium, the bound K^-d state A_{K d}. Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic deuterium in terms of the amplitude of K^-d scattering for arbitrary relative momenta. Near threshold our formula reduces to the well-known DGBT formula. The S-wave amplitude of K^-d scattering near threshold is defined by the resonances Lambda(1405), Sigma(1750) and a smooth elastic background, and the inelastic channels K^- d -> NY and K^- d -> NY pion, with Y = Sigma^{+/-}, Sigma^0 and Lambda^0, where the final-state interactions play an important role. The Ericson-Weise formula for the S-wave scattering length of K^-d scattering is derived. The total width of the energy level of the ground state of kaonic deuterium is estimated using the theoretical predictions of the partial widths of the two-body decays A_{Kd} -> NY and experimental data on the rates of the NY-pair production in the reactions K^-d -> NY. We obt...
On kaonic hydrogen. Quantum field theoretic and relativistic covariant approach
Ivanov, A N; Faber, M; Marton, J; Troitskaya, N I; Zmeskal, J
2003-01-01
We study kaonic hydrogen, the bound K^-p state A_(Kp). Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic hydrogen in terms of the amplitude of K^-p scattering for arbitrary energies. The amplitude of low-energy K^-p scattering near threshold is defined by the contributions of three resonances Lambda(1405), Lambda(1800) and Sigma^0(1750) and a smooth elastic background. The amplitudes of inelastic channels of low-energy K^-p scattering fit experimental data on near threshold behaviour of the cross sections and the experimental data by the DEAR Collaboration. We use the soft-pion technique (leading order in Chiral Perturbation Theory) for the calculate of the partial width of the radiative decay of pionic hydrogen A_(pi p) -> n + gamma and the Panofsky ratio. The theoretical prediction for the Panofsky ratio agrees well with experimental data. We apply the soft-kaon technique (leading order in Chiral Perturbation Theory) to...
On kaonic hydrogen. Quantum field theoretic and relativistic covariant approach
Ivanov, A. N.; Cargnelli, M.; Faber, M.; Marton, J.; Troitskaya, N. I.; Zmeskal, J.
2004-07-01
We study kaonic hydrogen, the bound K - p state A K p . Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic hydrogen in terms of the amplitude of K - p scattering for arbitrary relative momenta. The amplitude of low-energy K - p scattering near threshold is defined by the contributions of three resonances Λ(1405), Λ(1800) and Σ^0(1750) and a smooth elastic background. The amplitudes of inelastic channels of low-energy K - p scattering fit experimental data on the near-threshold behaviour of the cross-sections and the experimental data by the DEAR Collaboration. We use the soft-pion technique (leading order in Chiral Perturbation Theory) for the calculation of the partial width of the radiative decay of pionic hydrogen A_{π p} to n + γ and the Panofsky ratio. The theoretical prediction for the Panofsky ratio agrees well with experimental data. We apply the soft-kaon technique (leading order in Chiral Perturbation Theory) to the calculation of the partial widths of radiative decays of kaonic hydrogen A_{Kp} to Λ^0 + γ and A_{K p} to Σ^0 + γ. We show that the contribution of these decays to the width of the energy level of the ground state of kaonic hydrogen is less than 1%.
Quantum field theoretic behavior of a deterministic cellular automaton
Hooft, G. 't; Isler, K.; Kalitzin, S.
1992-01-01
A certain class of cellular automata in 1 space + 1 time dimension is shown to be closely related to quantum field theories containing Dirac fermions. In the massless case this relation can be studied analytically, while the introduction of Dirac mass requires numerical simulations. We show that in
Quantum field theoretic behavior of a deterministic cellular automaton
Hooft, G. 't; Isler, K.; Kalitzin, S.
1992-01-01
A certain class of cellular automata in 1 space + 1 time dimension is shown to be closely related to quantum field theories containing Dirac fermions. In the massless case this relation can be studied analytically, while the introduction of Dirac mass requires numerical simulations. We show that in
Quantum field theory and coalgebraic logic in theoretical computer science.
Basti, Gianfranco; Capolupo, Antonio; Vitiello, Giuseppe
2017-05-04
We suggest that in the framework of the Category Theory it is possible to demonstrate the mathematical and logical dual equivalence between the category of the q-deformed Hopf Coalgebras and the category of the q-deformed Hopf Algebras in quantum field theory (QFT), interpreted as a thermal field theory. Each pair algebra-coalgebra characterizes a QFT system and its mirroring thermal bath, respectively, so to model dissipative quantum systems in far-from-equilibrium conditions, with an evident significance also for biological sciences. Our study is in fact inspired by applications to neuroscience where the brain memory capacity, for instance, has been modeled by using the QFT unitarily inequivalent representations. The q-deformed Hopf Coalgebras and the q-deformed Hopf Algebras constitute two dual categories because characterized by the same functor T, related with the Bogoliubov transform, and by its contravariant application T(op), respectively. The q-deformation parameter is related to the Bogoliubov angle, and it is effectively a thermal parameter. Therefore, the different values of q identify univocally, and label the vacua appearing in the foliation process of the quantum vacuum. This means that, in the framework of Universal Coalgebra, as general theory of dynamic and computing systems ("labelled state-transition systems"), the so labelled infinitely many quantum vacua can be interpreted as the Final Coalgebra of an "Infinite State Black-Box Machine". All this opens the way to the possibility of designing a new class of universal quantum computing architectures based on this coalgebraic QFT formulation, as its ability of naturally generating a Fibonacci progression demonstrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
A field-theoretic approach to Spin Foam models in Quantum Gravity
Vitale, Patrizia
2011-01-01
We present an introduction to Group Field Theory models, motivating them on the basis of their relationship with discretized BF models of gravity. We derive the Feynmann rules and compute quantum corrections in the coherent states basis.
Strauss, Y
1999-01-01
We apply the quantum Lax-Phillips scattering theory to a relativistically covariant quantum field theoretical form of the (soluble) Lee model. We construct the translation representations with the help of the wave operators, and show that the resulting Lax-Phillips $S$-matrix is an inner function (the Lax-Phillips theory is essentially a theory of translation invariant subspaces). We then discuss the non-relativistic limit of this theory, and show that the resulting kinematic relations coincide with the conditions required for the Galilean description of a decaying system.
Maruyama, Tomoyuki; Kajino, Toshitaka; Kwon, Yongshin; Mathews, Grant J; Ryu, Chung-Yeol
2015-01-01
We study pion production from proton synchrotron radiation in the presence of strong magnetic fields. We derive the exact proton propagator from the Dirac equation in a strong magnetic field by explicitly including the anomalous magnetic moment. In this exact quantum-field approach the magnitude of pion synchrotron emission turns out to be much smaller than that obtained in the semi-classical approach. However, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two order magnitude.
Energy Technology Data Exchange (ETDEWEB)
Sadovskii, Michael V.
2013-06-01
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
Quantum mechanics the theoretical minimum
Susskind, Leonard
2014-01-01
From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Institute of Scientific and Technical Information of China (English)
YAN XiuFen; JIANG Nan; MA Jing
2009-01-01
A series of theoretical approaches,including conventional FF03 and FF03-based polarization model,as well as the generalized energy-based fragmentation (GEBF) quantum chemistry method,have been applied to investigate the interactions between acetate ion (CH_3COO~-) and the α-subunit of human adult hemoglobin (designated as Hb-α) at four binding sites (Lys16,Lys90,Arg92,and Lys127),respectively.The FF03-based polarizable force fields show that the interaction energies between the CH_3COO~-group and Hb-α follow the trend of Arg92＞Lys127＞Lys90＞Lys16.The complexation of CH_3COO~-with Hb-α is governed by the long-range electrostatic interactions and steric effect.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A series of theoretical approaches,including conventional FF03 and FF03-based polarization model,as well as the generalized energy-based fragmentation(GEBF) quantum chemistry method,have been applied to investigate the interactions between acetate ion(CH3COO-) and the α-subunit of human adult hemoglobin(designated as Hb-α) at four binding sites(Lys16,Lys90,Arg92,and Lys127),respectively.The FF03-based polarizable force fields show that the interaction energies between the CH3COO-group and Hb-α follow the trend of Arg92>Lys127>Lys90>Lys16.The complexation of CH3COO-with Hb-α is governed by the long-range electrostatic interactions and steric effect.
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Energy Technology Data Exchange (ETDEWEB)
Woellert, Anton
2016-07-27
Pair production of electron-positron pairs in ultra-intense laser fields is considered in this work. Two regimes are investigated separately. The first regime is the so-called tunnel regime of pair production. The existing tunneling picture which is applicable in this regime will be enhanced by the effects of a magnetic field and an additional, perturbatively treated photon. Both effects are incorporated by the semi-classical approximation. In contrast, no straightforward approach exists so far for the second regime of pair production. Therefore, numerical calculations will be carried out by applying the framework of the in/out-formalism in external fields. These simulations show non-trivial effects that are be expected in this regime. Specifically, the influence of the electromagnetic fields' polarization upon the produced pair spectra is investigated. Furthermore, multi-pair states are studied.
Patrascu, Andrei T
2014-01-01
I present here a new method that allows the introduction of a discrete auxiliary symmetry in a theory in such a way that the eigenvalue spectrum of the fermion functional determinant is made up of complex conjugated pairs. The method implies a particular way of introducing and integrating over auxiliary fields related to a set of artificial shift symmetries. Gauge-fixing the artificial continuous shift symmetries in the direct and dual sector leads to the implementation of a Kahler structure over the field space. The discrete symmetry appears to be induced by the Hodge-* operator. The particular extension of the field space presented here makes the operators of the de-Rham cohomology manifest. This method implies the identification of the (anti)-BRST and dual-(anti)-BRST operators with the exterior derivative and its dual in the context of the complex de-Rham cohomology. The novelty of this method relies on the fact that the field structure is doubled two times in order to make use of a supplemental symmetry ...
The theoretical foundations of quantum mechanics
Baaquie, Belal E
2013-01-01
The Theoretical Foundations of Quantum Mechanics addresses fundamental issues that are not discussed in most books on quantum mechanics. This book focuses on analyzing the underlying principles of quantum mechanics and explaining the conceptual and theoretical underpinning of quantum mechanics. In particular, the concepts of quantum indeterminacy, quantum measurement and quantum superposition are analyzed to clarify the concepts that are implicit in the formulation of quantum mechanics. The Schrodinger equation is never solved in the book. Rather, the discussion on the fundamentals of quantum mechanics is treated in a rigorous manner based on the mathematics of quantum mechanics. The new concept of the interplay of empirical and trans-empirical constructs in quantum mechanics is introduced to clarify the foundations of quantum mechanics and to explain the counter-intuitive construction of nature in quantum mechanics. The Theoretical Foundations of Quantum Mechanics is aimed at the advanced undergraduate and a...
Stoof, Henk T C; Gubbels, Koos
2009-01-01
Ultracold Quantum Fields provides a self-contained introduction to quantum field theory for many-particle systems, using functional methods throughout. The general focus is on the behaviour of so-called quantum fluids, i.e., quantum gases and liquids, but trapped atomic gases are always used as an example. Both equilibrium and non-equilibrium phenomena are considered. Firstly, in the equilibrium case, the appropriate Hartree-Fock theory for the properties of a quantum fluid in the normal phase is derived. The focus then turns to the properties in the superfluid phase, and the authors present a microscopic derivation of the Bogoliubov theory of Bose-Einstein condensation and the Bardeen-Cooper-Schrieffer theory of superconductivity. The former is applicable to trapped bosonic gases such as rubidium, lithium, sodium and hydrogen, and the latter in particular to the fermionic isotope of atomic lithium. In the non-equilibrium case, a few topics are discussed for which a field-theoretical approach is especially su...
Matteucci, G.
2007-01-01
In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…
Quantum turbulence: Theoretical and numerical problems
Nemirovskii, Sergey K.
2013-03-01
The term “quantum turbulence” (QT) unifies the wide class of phenomena where the chaotic set of one dimensional quantized vortex filaments (vortex tangles) appear in quantum fluids and greatly influence various physical features. Quantum turbulence displays itself differently depending on the physical situation, and ranges from quasi-classical turbulence in flowing fluids to a near equilibrium set of loops in phase transition. The statistical configurations of the vortex tangles are certainly different in, say, the cases of counterflowing helium and a rotating bulk, but in all the physical situations very similar theoretical and numerical problems arise. Furthermore, quite similar situations appear in other fields of physics, where a chaotic set of one dimensional topological defects, such as cosmic strings, or linear defects in solids, or lines of darkness in nonlinear light fields, appear in the system. There is an interpenetration of ideas and methods between these scientific topics which are far apart in other respects. The main purpose of this review is to bring together some of the most commonly discussed results on quantum turbulence, focusing on analytic and numerical studies. We set out a series of results on the general theory of quantum turbulence which aim to describe the properties of the chaotic vortex configuration, starting from vortex dynamics. In addition we insert a series of particular questions which are important both for the whole theory and for the various applications. We complete the article with a discussion of the hot topic, which is undoubtedly mainstream in this field, and which deals with the quasi-classical properties of quantum turbulence. We discuss this problem from the point of view of the theoretical results stated in the previous sections. We also included section, which is devoted to the experimental and numerical suggestions based on the discussed theoretical models.
Energy Technology Data Exchange (ETDEWEB)
Kohandani, R; Kaatuzian, H [Photonics Research Laboratory, Electrical Engineering Department, AmirKabir University of Technology, Hafez Ave., Tehran (Iran, Islamic Republic of)
2015-01-31
We report a theoretical study of optical properties of AlGaAs/GaAs multiple quantum-well (MQW), slow-light devices based on excitonic population oscillations under applied external magnetic and electric fields using an analytical model for complex dielectric constant of Wannier excitons in fractional dimension. The results are shown for quantum wells (QWs) of different width. The significant characteristics of the exciton in QWs such as exciton energy and exciton oscillator strength (EOS) can be varied by application of external magnetic and electric fields. It is found that a higher bandwidth and an appropriate slow-down factor (SDF) can be achieved by changing the QW width during the fabrication process and by applying magnetic and electric fields during device functioning, respectively. It is shown that a SDF of 10{sup 5} is obtained at best. (slowing of light)
Local, nonlocal quantumness and information theoretic measures
Agrawal, Pankaj; Sazim, Sk; Chakrabarty, Indranil; Pati, Arun K.
2016-08-01
It has been suggested that there may exist quantum correlations that go beyond entanglement. The existence of such correlations can be revealed by information theoretic quantities such as quantum discord, but not by the conventional measures of entanglement. We argue that a state displays quantumness, that can be of local and nonlocal origin. Information theoretic measures not only characterize the nonlocal quantumness, but also the local quantumness, such as the “local superposition”. This can be a reason, why such measures are nonzero, when there is no entanglement. We consider a generalized version of the Werner state to demonstrate the interplay of local quantumness, nonlocal quantumness and classical mixedness of a state.
Directory of Open Access Journals (Sweden)
Marco Panero
2006-11-01
Full Text Available We review some recent progress in quantum field theory in non-commutative space, focusing onto the fuzzy sphere as a non-perturbative regularisation scheme. We first introduce the basic formalism, and discuss the limits corresponding to different commutative or non-commutative spaces. We present some of the theories which have been investigated in this framework, with a particular attention to the scalar model. Then we comment on the results recently obtained from Monte Carlo simulations, and show a preview of new numerical data, which are consistent with the expected transition between two phases characterised by the topology of the support of a matrix eigenvalue distribution.
Banks, Tom
2008-09-01
1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.
Quantum field theory competitive models
Tolksdorf, Jürgen; Zeidler, Eberhard
2009-01-01
For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...
Directory of Open Access Journals (Sweden)
Alejandro Morales-Bayuelo
2014-01-01
Full Text Available A theoretical study on the molecular polarization of thiophene and furan under the action of an electric field using Local Quantum Similarity Indexes (LQSI was performed. This model is based on Hirshfeld partitioning of electron density within the framework of Density Functional Theory (DFT. Six local similarity indexes were used: overlap, overlap-interaction, coulomb, coulomb-interaction, Euclidian distances of overlap, and Euclidean distances of coulomb. In addition Topo-Geometrical Superposition Algorithm (TGSA was used as a method of alignment. This method provides a straightforward procedure to solve the problem of molecular relative orientation. It provides a tool to evaluate molecular quantum similarity, enabling the study of structural systems, which differ in only one atom such as thiophene and furan (point group C2v and cyclopentadienyl molecule (point group D5h. Additionally, this model can contribute to the interpretation of chemical bonds, and molecular interactions in the framework of the solvent effect theory.
Wentzel, Gregor
2003-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Energy Technology Data Exchange (ETDEWEB)
Pejov, Ljupčo, E-mail: ljupcop@pmf.ukim.mk [Department of Physical Chemistry, Institute of Chemistry, SS. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1001 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Petreska, Irina [Institute of Physics, Faculty of Natural Sciences and Mathematics, SS. Cyril and Methodius University, P.O. Box 162, 1001 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Kocarev, Ljupčo [Macedonian Academy of Sciences and Arts, Krste Misirkov 2, P.O. Box 428, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Faculty of Computer Science and Engineering, SS. Cyril and Methodius University, P.O. Box 393, 100 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); BioCircuits Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0402 (United States)
2015-12-28
A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a “quantum dot”), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1–014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1–245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green’s function formalism, as well as by analysis of frontier molecular orbitals’ behavior.
Pejov, Ljupčo; Petreska, Irina; Kocarev, Ljupčo
2015-12-01
A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a "quantum dot"), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1-014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1-245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green's function formalism, as well as by analysis of frontier molecular orbitals' behavior.
Pejov, Ljupčo; Petreska, Irina; Kocarev, Ljupčo
2015-12-28
A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a "quantum dot"), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1-014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1-245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green's function formalism, as well as by analysis of frontier molecular orbitals' behavior.
Theoretical and quantum mechanics fundamentals for chemists
Ivanov, Stefan
2006-01-01
Provides the basics of theoretical and quantum mechanics in one place and emphasizes the continuity between themUniquely presented to be used for self-taught courses covering theoretical and quantum mechanicsEach chapter includes a detailed outline, a summary, self-assessment questions for which answers can be found in the textInvaluable for chemistry undergraduate and graduate students, chemists, other non-physical scientists, engineering students of modern techniques and technology, specialists who need a better understanding of quantum mechanics.
Quantum speed problem: Theoretical hints for control
Lisboa, Alexandre Coutinho; Piqueira, José Roberto Castilho
2016-06-01
The transition time between states plays an important role in designing quantum devices as they are very sensitive to environmental influences. Decoherence phenomenon is responsible for possible destructions of the entanglement that is a fundamental requirement to implement quantum information processing systems. If the time between states is minimized, the decoherence effects can be reduced, thus, it is advantageous to the designer to develop expressions for time performance measures. Quantum speed limit (QSL) problem has been studied from the theoretical point of view, providing general results. Considering the implementation of quantum control systems, as the decoherence phenomenon is unavoidable, it is important to apply these general results to particular cases, developing expressions and performance measures, to assist control engineering designers. Here, a minimum time performance measure is defined for quantum control problems, for time-independent or time-dependent Hamiltonians, and applied to some practical examples, providing hints that may be useful for researchers pursuing optimization strategies for quantum control systems.
Diffeomorphisms of quantum fields
Kreimer, Dirk
2016-01-01
We study field diffeomorphisms $\\Phi(x)= F(\\rho(x))=a_0\\rho(x)+a_1\\rho^2(x)+\\ldots=\\sum_{j+0}^\\infty a_j \\rho^{j+1}$, for free and interacting quantum fields $\\Phi$. We find that the theory is invariant under such diffeomorphisms if and only if kinematic renormalization schemes are used.
Fsusy and Field Theoretical Construction
Sedra, M B
2009-01-01
Following our previous work on fractional spin symmetries (FSS) \\cite{6, 7}, we consider here the construction of field theoretical models that are invariant under the $D=2(1/3,1/3)$ supersymmetric algebra.
Quantum probabilities: an information-theoretic interpretation
Bub, Jeffrey
2010-01-01
This Chapter develops a realist information-theoretic interpretation of the nonclassical features of quantum probabilities. On this view, what is fundamental in the transition from classical to quantum physics is the recognition that \\emph{information in the physical sense has new structural features}, just as the transition from classical to relativistic physics rests on the recognition that space-time is structurally different than we thought. Hilbert space, the event space of quantum systems, is interpreted as a kinematic (i.e., pre-dynamic) framework for an indeterministic physics, in the sense that the geometric structure of Hilbert space imposes objective probabilistic or information-theoretic constraints on correlations between events, just as the geometric structure of Minkowski space in special relativity imposes spatio-temporal kinematic constraints on events. The interpretation of quantum probabilities is more subjectivist in spirit than other discussions in this book (e.g., the chapter by Timpson)...
Mossbauer neutrinos in quantum mechanics and quantum field theory
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Mossbauer neutrino oscillations. First, we compute the combined rate $\\Gamma$ of Mossbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for $\\Gamma$ is identical to the one obtained previously (Akhmedov et al., arXiv:0802.2513) for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Mossbauer neutrinos and show that the oscillation, coherence and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detecti...
Xue, Y
1998-01-01
In this thesis, the lowest-order gluon condensate contributions to the QED vertex are calculated. The conclusions appear to be that the presence of a gluon condensate eliminates any possibility of an anomalous magnetic moment. Single instanton contributions to pseudo-scalar finite energy sum rules are derived both asymptotically and theoretically. The one- resonance finite energy sum rule fit in the scalar channel is explored, in an effort to see if such sum rules support the existence of a very light ($\\sigma$) scalar resonance. Cancellation of infrared singularities in two-gluon condensate contributions to finite energy sum rules are demonstrated not to be peculiar to the channels in which they are studied. The explicit cancellation of quark-mass singularities via operator mixing is also demonstrated for the channels in which they naively occur. The hard photon spectrum in radiative leptonic $\\tau$ decays $\\tau\\to \\mu\\bar\
Quantum cellular automata and free quantum field theory
D'Ariano, Giacomo Mauro; Perinotti, Paolo
2017-02-01
In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Experimental quantum field theory
Bell, J S
1977-01-01
Presented here, is, in the opinion of the author, the essential minimum of quantum field theory that should be known to cultivated experimental particle physicists. The word experimental describes not only the audience aimed at but also the level of mathematical rigour aspired to. (0 refs).
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
Hybrid quantum teleportation: A theoretical model
Energy Technology Data Exchange (ETDEWEB)
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
Quantum Field Theory, Revised Edition
Mandl, F.; Shaw, G.
1994-01-01
Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Quantum emitters dynamically coupled to a quantum field
Energy Technology Data Exchange (ETDEWEB)
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J. [Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá (Colombia); Johnson, N. F. [Department of Physics, University of Miami, Coral Gables, Miami, FL 33124 (United States)
2013-12-04
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Quantum emitters dynamically coupled to a quantum field
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2013-12-01
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Quantum Mechanics and Quantum Field Theory
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
From classical to quantum fields
Baulieu, Laurent; Sénéor, Roland
2017-01-01
Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...
Quantum simulation of quantum field theory using continuous variables
Marshall, Kevin; Pooser, Raphael; Siopsis, George; Weedbrook, Christian
2015-12-01
The year 1982 is often credited as the year that theoretical quantum computing was started with a keynote speech by Richard Feynman, who proposed a universal quantum simulator, the idea being that if you had such a machine you could in principle "imitate any quantum system, including the physical world." With that in mind, we present an algorithm for a continuous-variable quantum computing architecture which gives an exponential speedup over the best-known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is believed to be hard using a classical computer. Building on this, we give an experimental implementation based on continuous-variable states that is feasible with today's technology.
Supergeometry in locally covariant quantum field theory
Hack, Thomas-Paul; Schenkel, Alexander
2015-01-01
In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the en...
Quantum dynamic imaging theoretical and numerical methods
Ivanov, Misha
2011-01-01
Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differ...
Theoretical physics 6 quantum mechanics : basics
Nolting, Wolfgang
2017-01-01
This textbook offers a clear and comprehensive introduction to the basics of quantum mechanics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, thus developing the physical understanding further on to quantized states. The first part of the book introduces wave equations while exploring the Schrödinger equation and the hydrogen atom. More complex themes are covered in the second part of the book, which describes the Dirac formulism of quantum mechanics. Ideally suited to undergraduate students with some grounding in classical mechanics and electrodynamics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this...
Gurau, R; Rivasseau, V
2008-01-01
We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.
Quantum Computing over Finite Fields
James, Roshan P; Sabry, Amr
2011-01-01
In recent work, Benjamin Schumacher and Michael~D. Westmoreland investigate a version of quantum mechanics which they call "modal quantum theory" but which we prefer to call "discrete quantum theory". This theory is obtained by instantiating the mathematical framework of Hilbert spaces with a finite field instead of the field of complex numbers. This instantiation collapses much the structure of actual quantum mechanics but retains several of its distinguishing characteristics including the notions of superposition, interference, and entanglement. Furthermore, discrete quantum theory excludes local hidden variable models, has a no-cloning theorem, and can express natural counterparts of quantum information protocols such as superdense coding and teleportation. Our first result is to distill a model of discrete quantum computing from this quantum theory. The model is expressed using a monadic metalanguage built on top of a universal reversible language for finite computations, and hence is directly implementab...
Wilson lines in quantum field theory
Cherednikov, Igor O; Veken, Frederik F van der
2014-01-01
The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. It teaches how to perform independently with some elementary calculations on Wilson lines, and shows the recent development of the subject in different important areas of research.
Field redefinition invariance in quantum field theory
Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos
1994-01-01
We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...
A Field Theoretic Approach to Roughness Corrections
Wu, Hua Yao
2011-01-01
We develop a systematic field theoretic description for the roughness correction to the Casimir free energy of parallel plates. Roughness is modeled by specifying a generating functional for correlation functions of the height profile, the two-point correlation function being characterized by the variance, \\sigma^2, and correlation length, \\ell, of the profile. We obtain the partition function of a massless scalar quantum field interacting with the height profile of the surface via a \\delta-function potential. The partition function of this model is also given by a holographic reduction to three coupled scalar fields on a two-dimensional plane. The original three-dimensional space with a parallel plate at separation 'a' is encoded in the non-local propagators of the surface fields on its boundary. Feynman rules for this equivalent 2+1-dimensional model are derived and its counter terms constructed. The two-loop contribution to the free energy of this model gives the leading roughness correction. The absolute ...
Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier
2013-02-19
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of
Quantum field theory in a nutshell
Zee, A
2010-01-01
Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading
Remarks on Exactly Solvable Noncommutative Quantum Field
Institute of Scientific and Technical Information of China (English)
WANG Ning
2007-01-01
We study exactly the solvable noncommutative scalar quantum Geld models of (2n) or (2n + 1) dimensions. By writing out an equivalent action of the noncommutative field, it is shown that the special condition B·θ =±I in field theoretic context means the full restoration of the maximal U(∞) gauge symmetries broken due to kinetic term. It is further shown that the model can be obtained by dimensional reduction of a 2n- dimensional exactly solvable noncommutative φ4 quantum field model closely related to the 1+1- dimensional Moyal/ matrix-valued nonlinear Schr(o)dinger (MNLS) equation. The corresponding quantum fundamental commutation relation of the MNLS model is also given explicitly.
Theory of interacting quantum fields
Rebenko, Alexei L
2012-01-01
This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.
Quantum Markov fields on graphs
2009-01-01
We introduce generalized quantum Markov states and generalized d-Markov chains which extend the notion quantum Markov chains on spin systems to that on $C^*$-algebras defined by general graphs. As examples of generalized d-Markov chains, we construct the entangled Markov fields on tree graphs. The concrete examples of generalized d-Markov chains on Cayley trees are also investigated.
A group theoretic approach to quantum information
Hayashi, Masahito
2017-01-01
This textbook is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solu...
Quantum information processing and relativistic quantum fields
Benincasa, Dionigi M. T.; Borsten, Leron; Buck, Michel; Dowker, Fay
2014-04-01
It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Electric fields and quantum wormholes
Engelhardt, Dalit; Iqbal, Nabil
2015-01-01
Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole". We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a non-perturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U(1) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.
Electric fields and quantum wormholes
Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil
2015-09-01
Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.
Causal signal transmission by quantum fields. V: Quantum electrodynamics in response representation
Plimak, L I
2011-01-01
Using electromagnetic interaction as an example, response transformations [L.P. and S.S., Ann.Phys. 323, 1963, 1989 (2008), 324, 600 (2009)] are applied to the standard perturbative approach of quantum field theory. This approach is rewritten in the form where the place of field propagators is taken by the retarded Green function of the field. Unlike in conventional quantum-field-theoretical techniques, the concept of space-time propagation of quantized field is built into our techniques.
Quantum fields in curved spacetime
Energy Technology Data Exchange (ETDEWEB)
Hollands, Stefan, E-mail: stefan.hollands@uni-leipzig.de [Universität Leipzig, Institut für Theoretische Physik, Brüderstrasse 16, D-04103 Leipzig (Germany); Wald, Robert M., E-mail: rmwa@uchicago.edu [Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637 (United States)
2015-04-16
We review the theory of quantum fields propagating in an arbitrary, classical, globally hyperbolic spacetime. Our review emphasizes the conceptual issues arising in the formulation of the theory and presents known results in a mathematically precise way. Particular attention is paid to the distributional nature of quantum fields, to their local and covariant character, and to microlocal spectrum conditions satisfied by physically reasonable states. We review the Unruh and Hawking effects for free fields, as well as the behavior of free fields in deSitter spacetime and FLRW spacetimes with an exponential phase of expansion. We review how nonlinear observables of a free field, such as the stress–energy tensor, are defined, as well as time-ordered-products. The “renormalization ambiguities” involved in the definition of time-ordered products are fully characterized. Interacting fields are then perturbatively constructed. Our main focus is on the theory of a scalar field, but a brief discussion of gauge fields is included. We conclude with a brief discussion of a possible approach towards a nonperturbative formulation of quantum field theory in curved spacetime and some remarks on the formulation of quantum gravity.
The quantum field theory interpretation of quantum mechanics
de la Torre, Alberto C.
2015-01-01
It is shown that adopting the \\emph{Quantum Field} ---extended entity in space-time build by dynamic appearance propagation and annihilation of virtual particles--- as the primary ontology the astonishing features of quantum mechanics can be rendered intuitive. This interpretation of quantum mechanics follows from the formalism of the most successful theory in physics: quantum field theory.
Wilson lines in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.
2014-07-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
General principles of quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bogolubov, N.N.; Logunov, A.A. (AN SSSR, Moscow (USSR) Moskovskij Gosudarstvennyj Univ., Moscow (USSR)); Oksak, A.I. (Institute for High Energy Physics, Moscow (USSR)); Todorov, I.T. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria) Bulgarian Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria))
1990-01-01
This major volume provides a account of general quantum field theory, with an emphasis on model-independent methods. The important aspects of the development of the subject are described in detail and are shown to have promising links with many branches of modern mathematics and theoretical physics, such as random fields (probability), statistical physics, and elemantary particles. The material is presented in a thorough, systematic way and the mathematical methods of quantum field theory are also given. The text is self-contained and contains numerous exercises. Topics of independent interest are given in appendices. The book also contains a large bibliography. (author). 1181 refs. Includes index of notation and subject index; includes 1181 refs.
Towards the mathematics of quantum field theory
Paugam, Frédéric
2014-01-01
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...
Quantum Information Processing and Relativistic Quantum Fields
Benincasa, Dionigi M T; Buck, Michel; Dowker, Fay
2014-01-01
It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of ...
Born--Oppenheimer decomposition for quantum fields on quantum spacetimes
Giesel, Kristina; Thiemann, Thomas
2009-01-01
Quantum Field Theory on Curved Spacetime (QFT on CS) is a well established theoretical framework which intuitively should be a an extremely effective description of the quantum nature of matter when propagating on a given background spacetime. If one wants to take care of backreaction effects, then a theory of quantum gravity is needed. It is now widely believed that such a theory should be formulated in a non-perturbative and therefore background independent fashion. Hence, it is a priori a puzzle how a background dependent QFT on CS should emerge as a semiclassical limit out of a background independent quantum gravity theory. In this article we point out that the Born-Oppenheimer decomposition (BOD) of the Hilbert space is ideally suited in order to establish such a link, provided that the Hilbert space representation of the gravitational field algebra satisfies an important condition. If the condition is satisfied, then the framework of QFT on CS can be, in a certain sense, embedded into a theory of quantu...
Quantum State Tomography Based on Quantum Games Theoretic Setup
Nawaz, Ahmad
2009-01-01
We develop a technique for single qubit quantum state tomography using the mathematical setup of generalized quantization scheme for games. In our technique Alice sends an unknown pure quantum state to Bob who appends it with |0><0| and then applies the unitary operators on the appended quantum state and finds the payoffs for Alice and himself. It is shown that for a particular set of unitary operators these elements become equal to Stokes parameters for an unknown quantum state. In this way an unknown quantum state can be measured and reconstructed. Strictly speaking this technique is not a game as no strategic competitions are involved.
A Naturally Renormalized Quantum Field Theory
2006-01-01
It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...
A quantum information theoretic analysis of three flavor neutrino oscillations
Banerjee, Subhashish; Srikanth, R; Hiesmayr, Beatrix C
2015-01-01
Correlations exhibited by neutrino oscillations are studied via quantum information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavour changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum information theoretic quantities capturing different aspects of quantum correlations, we elucidate the differences between the flavour types, shedding light on the quantum-information theoretic aspects of the weak force.
Lectures on quantum field theory
Das, Ashok
2008-01-01
This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio
Neutrino oscillations: Quantum mechanics vs. quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Akhmedov, Evgeny Kh.; Kopp, Joachim
2010-01-01
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
Electric fields and quantum wormholes
Engelhardt, D.; Freivogel, B.; Iqbal, N.
2015-01-01
Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a
Electric fields and quantum wormholes
Engelhardt, D.; Freivogel, B.; Iqbal, N.
2015-01-01
Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "
Infinite-time average of local fields in an integrable quantum field theory after a quantum quench.
Mussardo, G
2013-09-06
The infinite-time average of the expectation values of local fields of any interacting quantum theory after a global quench process are key quantities for matching theoretical and experimental results. For quantum integrable field theories, we show that they can be obtained by an ensemble average that employs a particular limit of the form factors of local fields and quantities extracted by the generalized Bethe ansatz.
Quantum Computing: Theoretical versus Practical Possibility
Paraoanu, G S
2011-01-01
An intense effort is being made today to build a quantum computer. Instead of presenting what has been achieved, I invoke here analogies from the history of science in an attempt to glimpse what the future might hold. Quantum computing is possible in principle - there are no known laws of Nature that prevent it - yet scaling up the few qubits demonstrated so far has proven to be exceedingly difficult. While this could be regarded merely as a technological or practical impediment, I argue that this difficulty might be a symptom of new laws of physics waiting to be discovered. I also introduce a distinction between "strong" and "weak" emergentist positions. The former assumes that a critical value of a parameter exists (one that is most likely related to the complexity of the states involved) at which the quantum-mechanical description breaks down, in other words, that quantum mechanics will turn out to be an incomplete description of reality. The latter assumes that quantum mechanics will remain as a universal...
de Wit, Bernard
1990-01-01
After a brief and practical introduction to field theory and the use of Feynman diagram, we discuss the main concept in gauge theories and their application in elementary particle physics. We present all the ingredients necessary for the construction of the standard model.
A theoretical model of multi-agent quantum computing
Mihelic, F. Matthew
2011-05-01
The best design for practical quantum computing is one that emulates the multi-agent quantum logic function of natural biological systems. Such systems are theorized to be based upon a quantum gate formed by a nucleic acid Szilard engine (NASE) that converts Shannon entropy of encountered molecules into useful work of nucleic acid geometric reconfiguration. This theoretical mechanism is logically and thermodynamically reversible in this special case because it is literally constructed out of the (nucleic acid) information necessary for its function, thereby allowing the nucleic acid Szilard engine to function reversibly because, since the information by which it functions exists on both sides of the theoretical mechanism simultaneously, there would be no build-up of information within the theoretical mechanism, and therefore no irreversible thermodynamic energy cost would be necessary to erase information inside the mechanism. This symmetry breaking Szilard engine function is associated with emission and/or absorption of entangled photons that can provide quantum synchronization of other nucleic acid segments within and between cells. In this manner nucleic acids can be considered as a natural model of topological quantum computing in which the nonabelian interaction of genes can be represented within quantum knot/braid theory as anyon crosses determined by entropic loss or gain that leads to changes in nucleic acid covalent bond angles. This naturally occurring biological form of topological quantum computing can serve as a model for workable man-made multi-agent quantum computing systems.
Zitterbewegung in quantum field theory
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Yong; Xiong Cai-Dong
2008-01-01
Traditionally,the zitterbewegung (ZB) of the Dirac electron has just been studied at the level of quantum mechanics.Seeing the fact that an old interest in ZB has recently been rekindled by the investigations on spintronic,graphene,and superconducting systems,etc.,this paper presents a quantum-field-theory investigation on ZB and obtains the con clusion that,the ZB of an electron arises from the influence of virtual electron-positron pairs (or vacuum fluctuations)on the electron.
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Thermalization Using Quantum Field Dynamics?
Salle, M; Vink, Jeroen C
2001-01-01
We describe a Hartree ensemble method to approximately solve the Heisenberg equations for the \\phi^4 model in 1+1 dimensions. We compute the energies and number densities of the quantum particles described by the \\phi field and find that the particles initially thermalize with a Bose-Einstein distribution for the particle density. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.
Quantum field theories on categories fibered in groupoids
Benini, Marco
2016-01-01
We introduce an abstract concept of quantum field theory on categories fibered in groupoids over the category of spacetimes. This provides us with a general and flexible framework to study quantum field theories defined on spacetimes with extra geometric structures such as bundles, connections and spin structures. Using right Kan extensions, we can assign to any such theory an ordinary quantum field theory defined on the category of spacetimes and we shall clarify under which conditions it satisfies the axioms of locally covariant quantum field theory. The same constructions can be performed in a homotopy theoretic framework by using homotopy right Kan extensions, which allows us to obtain first examples of homotopical quantum field theories resembling some aspects of gauge theories.
Quantum Jacobi fields in Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Johnston, Steven
2010-01-01
Causal set theory provides a model of discrete spacetime in which spacetime events are represented by elements of a causal set---a locally finite, partially ordered set in which the partial order represents the causal relationships between events. The work presented here describes a model for matter on a causal set, specifically a theory of quantum scalar fields on a causal set spacetime background. The work starts with a discrete path integral model for particles on a causal set. Here quantum mechanical amplitudes are assigned to trajectories within the causal set. By summing these over all trajectories between two spacetime events we obtain a causal set particle propagator. With a suitable choice of amplitudes this is shown to agree (in an appropriate sense) with the retarded propagator for the Klein-Gordon equation in Minkowski spacetime. This causal set propagator is then used to define a causal set analogue of the Pauli-Jordan function that appears in continuum quantum field theories. A quantum scalar fi...
A short course in quantum information theory. An approach from theoretical physics
Energy Technology Data Exchange (ETDEWEB)
Diosi, L. [KFKI Research Institute for Partical and Nuclear Physics, Budapest (Hungary)
2007-07-01
This short and concise primer takes the vantage point of theoretical physics and the unity of physics. It sets out to strip the burgeoning field of quantum information science to its basics by linking it to universal concepts in physics. An extensive lecture rather than a comprehensive textbook, this volume is based on courses delivered over several years to advanced undergraduate and beginning graduate students, but essentially it addresses anyone with a working knowledge of basic quantum physics. Readers will find these lectures a most adequate entry point for theoretical studies in this field. (orig.)
Quantum optical dipole radiation fields
Stokes, Adam
2016-01-01
We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields, and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component.
Theoretically extensible quantum digital signature with starlike cluster states
Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min
2017-01-01
Chen et al. (Phys Rev A 73:012303, 2006) constructed this "starlike cluster" state, which involves one qubit located at the center and n neighboring two-qubit arms. This genuine entangled state has been used for the construction of 2D and 3D cluster states, topological one-way computation, and dynamical quantum secret sharing. In this paper, we investigate the usefulness of this starlike cluster state and propose a theoretically extensible quantum digital signature scheme. The proposed scheme can be theoretically generalized to more than three participants. Moreover, it retains the merits of no requirements such as authenticated quantum channels and long-term quantum memory. We also give a security proof for the proposed scheme against repudiation and forgery.
Beyond Quantum Fields: A Classical Fields Approach to QED
Directory of Open Access Journals (Sweden)
Chafin C.
2015-07-01
Full Text Available A classical field theory is introduced that is defined on a tower of dimensionally in- creasing spaces and is argued to be equivalent to QED. The domain of dependence is discussed to show how an equal times picture of the many coordinate space gives QED results as part of a well posed initial value formalism. Identical particle symmetries are not, a priori, required but when introduced are clearly propagated. This construc- tion uses only classical fields to provide some explanation for why quantum fields and canonical commutation results have been successful. Some old and essential questions regarding causality of propagators are resolved. The problem of resummation, gener- ally forbidden for conditionally convergent series, is dis cussed from the standpoint of particular truncations of the infinite tower of functions an d a two step adiabatic turn on for scattering. As a result of this approach it is shown that the photon inherits its quantization ~ ω from the free lagrangian of the Dirac electrons despite the fact that the free electromagnetic lagrangian has no ~ in it. This provides a possible explanation for the canonical commutation relations for quantum operators , [ ˆ P , ˆ Q ] = i ~ , without ever needing to invoke such a quantum postulate. The form of the equal times conservation laws in this many particle field theory suggests a simplification of the radiation reaction process for fields that allows QED to arise from a sum of path integrals in the various particle time coordinates. A novel method of unifying this theory with gravity, but that has no obvious quantum field theoretic computational scheme , is introduced.
Quantum fields on the computer
1992-01-01
This book provides an overview of recent progress in computer simulations of nonperturbative phenomena in quantum field theory, particularly in the context of the lattice approach. It is a collection of extensive self-contained reviews of various subtopics, including algorithms, spectroscopy, finite temperature physics, Yukawa and chiral theories, bounds on the Higgs meson mass, the renormalization group, and weak decays of hadrons.Physicists with some knowledge of lattice gauge ideas will find this book a useful and interesting source of information on the recent developments in the field.
Quantum mechanics of Proca fields
Zamani, Farhad; Mostafazadeh, Ali
2009-05-01
We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.
Quasiparticle excitations in relativistic quantum field theory
Arteaga, Daniel
2008-01-01
We analyze the particle-like excitations arising in relativistic field theories in states different than the vacuum. The basic properties characterizing the quasiparticle propagation are studied using two different complementary methods. First we introduce a frequency-based approach, wherein the quasiparticle properties are deduced from the spectral analysis of the two-point propagators. Second, we put forward a real-time approach, wherein the quantum state corresponding to the quasiparticle excitation is explicitly constructed, and the time-evolution is followed. Both methods lead to the same result: the energy and decay rate of the quasiparticles are determined by the real and imaginary parts of the retarded self-energy respectively. Both approaches are compared, on the one hand, with the standard field-theoretic analysis of particles in the vacuum and, on the other hand, with the mean-field-based techniques in general backgrounds.
Localisation in Quantum Field Theory
Balachandran, A P
2016-01-01
In nonrelativistic quantum mechanics , Born's principle of localisation is as follows: For a single particle, if a wave function $\\psi_K$ vanishes outside a spatial region $K$, it is said to be localised in $K$. In particular if a spatial region $K'$ is disjoint from $K$, a wave function $\\psi_{K'}$ localised in $K'$ is orthogonal to $\\psi_K$. Such a principle of localisation does not exist compatibly with relativity and causality in quantum field theory (Newton and Wigner) or interacting point particles (Currie,Jordan and Sudarshan).It is replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with `continuous' spin. This review outlines the basic principles underlying symplectic localisation and shows or mentions its deep implications. In particular, it has the potential to affect...
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Statistical approach to quantum field theory an introduction
Wipf, Andreas
2013-01-01
Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an “experimental” tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems w...
Decoherence and dynamical entropy generation in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Koksma, Jurjen F., E-mail: J.F.Koksma@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Prokopec, Tomislav, E-mail: T.Prokopec@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Schmidt, Michael G., E-mail: M.G.Schmidt@thphys.uni-heidelberg.de [Institut fuer Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)
2012-01-20
We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
Computational approach for calculating bound states in quantum field theory
Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.
2016-09-01
We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.
Lectures on Classical and Quantum Theory of Fields
Arodź, Henryk
2010-01-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
Lectures on classical and quantum theory of fields
Energy Technology Data Exchange (ETDEWEB)
Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics
2010-07-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Theoretical Study on Absorption of Magnetically Tunable Terahertz Quantum- Well Photodetectors
Institute of Scientific and Technical Information of China (English)
CHEN Yu-Ling; GUO Xu-Guang; CAO Jun-Cheng
2006-01-01
Because of the Zeeman splitting effect in diluted semiconductor (Zn,Cd,Mn)Se, the absorption spectrum of ZnSe/(Zn,Cd,Mn)Se quantum wells can be adjusted by magnetic field effectively. Within the effective-mass approximation, the conduction electronic structure and the absorption spectrum of ZnSe/(Zn,Cd,Mn)Se quantum wells subjected to in-plane magnetic Gelds are investigated. Our theoretical results show that it is possible to use the ZnSe/(Zn,Cd,Mn)Se quantum well as magnetically tunable terahertz photodetectors.
Theoretical Proposals of Quantum Phase-slip Devices
Hriscu, A.M.
2012-01-01
This thesis describes a series of theoretical proposals of novel circuits that embed ultrathin superconducting nanowires with coherent quantum phase-slips (QPS). The motivation for our proposals is twofold: firstly, to facilitate unambiguous experimental verification of coherent phase-slips. Secondl
Analytic aspects of quantum fields
Bytsenko, A A; Elizalde, E; Moretti, V; Zerbini, S
2003-01-01
One of the aims of this book is to explain in a basic manner the seemingly difficult issues of mathematical structure using some specific examples as a guide. In each of the cases considered, a comprehensible physical problem is approached, to which the corresponding mathematical scheme is applied, its usefulness being duly demonstrated. The authors try to fill the gap that always exists between the physics of quantum field theories and the mathematical methods best suited for its formulation, which are increasingly demanding on the mathematical ability of the physicist. Contents: Survey of Pa
Quantum field theory lectures of Sidney Coleman
Derbes, David; Griffiths, David; Hill, Brian; Sohn, Richard; Ting, Yuan-Sen
2017-01-01
Sidney Coleman was a physicist's physicist. He is largely unknown outside of the theoretical physics community, and known only by reputation to the younger generation. He was an unusually effective teacher, famed for his wit, his insight and his encyclopedic knowledge of the field to which he made many important contributions. There are many first-rate quantum field theory books (the ancient Bjorken and Drell, the more modern Itzykson and Zuber, the now-standard Peskin and Schroder, and the recent Zee), but the immediacy of Prof. Coleman's approach and his ability to present an argument simply without sacrificing rigor makes his book easy to read and ideal for the student. Part of the motivation in producing this book is to pass on the work of this outstanding physicist to later generations, a record of his teaching that he was too busy to leave himself.
Quantum field theory on projective modules
Gayral, V; Krajewski, T; Wulkenhaar, R
2006-01-01
We propose a general formulation of perturbative quantum field theory on (finitely generated) projective modules over noncommutative algebras. This is the analogue of scalar field theories with non-trivial topology in the noncommutative realm. We treat in detail the case of Heisenberg modules over noncommutative tori and show how these models can be understood as large rectangular pxq matrix models, in the limit p/q->theta, where theta is a possibly irrational number. We find out that the modele is highly sensitive to the number-theoretical aspect of theta and suffers from an UV/IR-mixing. We give a way to cure the entanglement and prove one-loop renormalizability.
Quantum field theory a tourist guide for mathematicians
Folland, Gerald B
2008-01-01
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theor...
Theoretical study of quantum confined Stark shift in InAs/GaAs quantum dots
Institute of Scientific and Technical Information of China (English)
Guo Ru-Hai; Shi Hong-Yan; Sun Xiu-Dong
2004-01-01
The quantum confined Stark effect (QCSE) of the self-assembled InAs/GaAs quantum dots has been investigated theoretically. The ground-state transition energies for quantum dots in the shape of a cube, pyramid or "truncated pyramid" are calculated and analysed. We use a method based on the Green function technique for calculating the strain in quantum dots and an efficient plane-wave envelope-function technique to determine the ground-state electronic structure of them with different shapes. The symmetry of quantum dots is broken by the effect of strain. So the properties of carriers show different behaviours from the traditional quantum device. Based on these results, we also calculate permanent built-in dipole moments and compare them with recent experimental data. Our results demonstrate that the measured Stark effect in self-assembled InAs/GaAs quantum dot structures can be explained by including linear grading.
Discrete Scalar Quantum Field Theory
Gudder, Stan
2016-01-01
We begin with a description of spacetime by a 4-dimensional cubic lattice $\\sscript$. It follows from this framework that the the speed of light is the only nonzero instantaneous speed for a particle. The dual space $\\sscripthat$ corresponds to a cubic lattice of energy-momentum. This description implies that there is a discrete set of possible particle masses. We then define discrete scalar quantum fields on $\\sscript$. These fields are employed to define interaction Hamiltonians and scattering operators. Although the scattering operator $S$ cannot be computed exactly, approximations are possible. Whether $S$ is unitary is an unsolved problem. Besides the definitions of these operators, our main assumption is conservation of energy-momentum for a scattering process. This article concludes with various examples of perturbation approximations. These include simplified versions of electron-electron and electron-proton scattering as well as simple decay processes. We also define scattering cross-sections, decay ...
Tensor Fields in Relativistic Quantum Mechanics
Dvoeglazov, Valeriy V
2015-01-01
We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We discuss corresponding massless limits. We analize the quantum field theory taking into account the mass dimensions of the notoph and the photon. Next, we deduced the gravitational field equations from relativistic quantum mechanics.
Quantum Electrodynamics on background external fields
Marecki, P
2003-01-01
The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.
Quantum electrodynamics on background external fields
2003-01-01
The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.
Quantum transport in a two-level quantum dot driven by coherent and stochastic fields
Ke, Sha-Sha; Miao, Ling-E.; Guo, Zhen; Guo, Yong; Zhang, Huai-Wu; Lü, Hai-Feng
2016-12-01
We study theoretically the current and shot noise properties flowing through a two-level quantum dot driven by a strong coherent field and a weak stochastic field. The interaction x(t) between the quantum dot and the stochastic field is assumed to be a Gaussian-Markovian random process with zero mean value and correlation function = Dκe - κ | t - t ‧ | , where D and κ are the strength and bandwidth of the stochastic field, respectively. It is found that the stochastic field could enhance the resonant effect between the quantum dot and the coherent field, and generate new resonant points. At the resonant points, the state population difference between two levels is suppressed and the current is considerably enhanced. The zero-frequency shot noise of the current varies dramatically between sub- and super-Poissonian characteristics by tuning the stochastic field appropriately.
Field theoretic description of partially reflective surfaces
Barone, F E
2014-01-01
The issue of electric charges in interaction with partially reflective surfaces is addressed by means of field theoretic methods. It is proposed an enlarged Maxwell lagrangian, describing the electromagnetic field in the presence of a semitransparent surface, and its corresponding photon propagator is computed exactly. The amended Green function reduces to the one for a perfect conductor in the appropriate limit, and leads to the interaction between charges and surfaces with varying degrees of transparency, featured by a phenomenological parameter. The interaction found via image method is recovered, in the limiting case of perfect mirrors, as a testimony to the validity of the model.
Lectures on classical and quantum theory of fields
Arodz, Henryk
2017-01-01
This textbook addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
An Introduction to Quantum Field Theory
Peskin, Michael E
1995-01-01
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the sta
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Fulling, S A [Texas A and M University (United States)
2006-05-21
-valued parameters (e.g., a-type external sources) which, themselves, are introduced in order to present, in a compact algebraic way, certain relationships between real physical amplitudes. Real physics is restricted to the ordinary Hilbert space that fits inside the super Hilbert space. Ultimately, the quantum theory of a conventional fermion field is expressible in the same spinors and Dirac matrices as before supersymmetry was invented. On the other hand, since products of two a-numbers are commuting objects, the full algebra of supernumbers includes an infinite hierarchy of positive even degree in addition to the ordinary real or complex numbers at degree 0 and the anticommuting things of odd degree. DeWitt calls all the even supernumbers 'c-numbers'; quantities of degree 0 are 'body' and those of all positive degrees are 'soul'. For consistency this parallel spirit world must be carried along even when the theory is purely bosonic; but it can be shown that the c-number soul makes no net contribution to the integrals that arise in field-theoretic calculations, and in the end it seems that the reader is not misled by interpreting 'c-number' in the traditional way in most contexts. The supernumber examples continue up through spin-3/2 fields, but there is no discussion anywhere of full supergravity. As part VIII progresses, the examples become less pedagogical and more a catalogue of formulas for particular field theories. Filling in the details of these calculations will indeed be strenuous exercises for the diligent student. Certainly it is not intended for a beginner. Nevertheless, this wide-ranging and deep picture of the fundamental structure of our universe is awe-inspiring. Bryce DeWitt was uncommonly lucky in being able to complete a comprehensive statement of his world view right at the end of his life. We and our successors should revere it, even as we sift it critically for those ideas that should survive as principles of the
A short course in quantum information theory. An approach from theoretical physics. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Diosi, Lajos [KFKI Research Institute for Particle and Nuclear Physics (RMKI), Budapest (Hungary). MTA Budapest
2011-07-01
This short and concise primer takes the vantage point of theoretical physics and the unity of physics. It sets out to strip the burgeoning field of quantum information science to its basics by linking it to universal concepts in physics. An extensive lecture rather than a comprehensive textbook, this volume is based on courses delivered over several years to advanced undergraduate and beginning graduate students, but essentially it addresses anyone with a working knowledge of basic quantum physics. Readers will find these lectures a most adequate entry point for theoretical studies in this field. For the second edition, the authors has succeeded in adding many new topics while sticking to the conciseness of the overall approach. A new chapter on qubit thermodynamics has been added, while new sections and subsections have been incorporated in various chapter to deal with weak and time-continuous measurements, period-finding quantum algorithms and quantum error corrections. From the reviews of the first edition: ''The best things about this book are its brevity and clarity. In around 100 pages it provides a tutorial introduction to quantum information theory, including problems and solutions.. it's worth a look if you want to quickly get up to speed with the language and central concepts of quantum information theory, including the background classical information theory.'' (Craig Savage, Australian Physics, Vol. 44 (2), 2007). (orig.)
On the embedding of quantum field theory on curved spacetimes into loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Stottmeister, Alexander
2015-07-15
The main theme of this thesis is an investigation into possible connections between loop quantum gravity and quantum field theory on curved spacetimes: On the one hand, we aim for the formulation of a general framework that allows for a derivation of quantum field theory on curved spacetimes in a semi-classical limit. On the other hand, we discuss representation-theoretical aspects of loop quantum gravity and quantum field theory on curved spacetimes as both of the latter presumably influence each other in the aforesaid semi-classical limit. Regarding the first point, we investigate the possible implementation of the Born-Oppenheimer approximation in the sense of space-adiabatic perturbation theory in models of loop quantum gravity-type. In the course of this, we argue for the need of a Weyl quantisation and an associated symbolic calculus for loop quantum gravity, which we then successfully define, at least to a certain extent. The compactness of the Lie groups, which models a la loop quantum gravity are based on, turns out to be a main obstacle to a fully satisfactory definition of a Weyl quantisation. Finally, we apply our findings to some toy models of linear scalar quantum fields on quantum cosmological spacetimes and discuss the implementation of space-adiabatic perturbation theory therein. In view of the second point, we start with a discussion of the microlocal spectrum condition for quantum fields on curved spacetimes and how it might be translated to a background-independent Hamiltonian quantum theory of gravity, like loop quantum gravity. The relevance of this lies in the fact that the microlocal spectrum condition selects a class of physically relevant states of the quantum matter fields and is, therefore, expected to play an important role in the aforesaid semi-classical limit of gravity-matter systems. Following this, we switch our perspective and analyse the representation theory of loop quantum gravity. We find some intriguing relations between the
"Quantum Field Theory and QCD"
Energy Technology Data Exchange (ETDEWEB)
Jaffe, Arthur M.
2006-02-25
This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.
Parameterized quantum field theory without Haag's theorem
Seidewitz, Ed
2015-01-01
Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that quantum field theory can be formulated, using an invariant, fifth path parameter in addition to the usual four position parameters, in such a way that Haag's theorem no longer applies, but such that the Dyson perturbation expansion for the sc...
Unusual signs in quantum field theory
O'Connell, Donal
Quantum field theory is by now a mature field. Nevertheless, certain physical phenomena remain difficult to understand. This occurs in some cases because well-established quantum field theories are strongly coupled and therefore difficult to solve; in other cases, our current understanding of quantum field theory seems to be inadequate. In this thesis, we will discuss various modifications of quantum field theory which can help to alleviate certain of these problems, either in their own right or as a component of a greater computational scheme. The modified theories we will consider all include unusual signs in some aspect of the theory. We will also discuss limitations on what we might expect to see in experiments, imposed by sign constraints in the customary formulation of quantum field theory.
Theoretical physics 7 quantum mechanics : methods and applications
Nolting, Wolfgang
2017-01-01
This textbook offers a clear and comprehensive introduction to methods and applications in quantum mechanics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, thus developing the understanding of quantized states further on. The first part of the book introduces the quantum theory of angular momentum and approximation methods. More complex themes are covered in the second part of the book, which describes multiple particle systems and scattering theory. Ideally suited to undergraduate students with some grounding in the basics of quantum mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this seri...
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
Theoretical discussion for quantum computation in biological systems
Baer, Wolfgang
2010-04-01
Analysis of the brain as a physical system, that has the capacity of generating a display of every day observed experiences and contains some knowledge of the physical reality which stimulates those experiences, suggests the brain executes a self-measurement process described by quantum theory. Assuming physical reality is a universe of interacting self-measurement loops, we present a model of space as a field of cells executing such self-measurement activities. Empty space is the observable associated with the measurement of this field when the mass and charge density defining the material aspect of the cells satisfy the least action principle. Content is the observable associated with the measurement of the quantum wave function ψ interpreted as mass-charge displacements. The illusion of space and its content incorporated into cognitive biological systems is evidence of self-measurement activity that can be associated with quantum operations.
The Monte Carlo method in quantum field theory
Morningstar, C
2007-01-01
This series of six lectures is an introduction to using the Monte Carlo method to carry out nonperturbative studies in quantum field theories. Path integrals in quantum field theory are reviewed, and their evaluation by the Monte Carlo method with Markov-chain based importance sampling is presented. Properties of Markov chains are discussed in detail and several proofs are presented, culminating in the fundamental limit theorem for irreducible Markov chains. The example of a real scalar field theory is used to illustrate the Metropolis-Hastings method and to demonstrate the effectiveness of an action-preserving (microcanonical) local updating algorithm in reducing autocorrelations. The goal of these lectures is to provide the beginner with the basic skills needed to start carrying out Monte Carlo studies in quantum field theories, as well as to present the underlying theoretical foundations of the method.
Quantum Brownian motion representation for the quantum field modes
Arteaga, Daniel
2007-01-01
Any pair of modes of opposite momentum of any interacting quantum field theory can be regarded as an open quantum system. Provided that the state of the field is stationary, homogeneous and isotropic, under a Gaussian approximation the two-mode system can be equivalently represented in terms of a pair of quantum Brownian oscillators, namely, by two identical harmonic oscillators linearly coupled to an effective environment. The precise details of the correspondence are explained, and its usefulness is commented. As an example of application, the interpretation of the imaginary part of the retarded self-energy in a general background state is rederived.
Neutrix Calculus and Finite Quantum Field Theory
Ng, Y J
2004-01-01
In general, quantum field theories require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like QED are not convergent series, but are asymptotic series in their interaction couplings. We propose to apply neutrix calculus, developed by van der Corput and Hadamard in connection with asymptotic series, to tackle divergent integrals, yielding finite renormalizations for the parameters in quantum field theories. We observe that quantum gravity theories are rendered more manageable, and that both renormalizable field theories and effective field theories can be accommodated in the framework of neutrix calculus.
Free Quantum Field Theory from Quantum Cellular Automata
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).
Quantum game interpretation of Dirac spinor field
Zhi, Haizhao
2011-01-01
This paper introduced the classical prisoner dilemma with the character and structure of quantum prisoner dilemma's strategy space. Associate with the Dirac spinor field, apply the basic quantum game strategy to the translation of the dynamics of Dirac equation. Decompose the real space and time to lattice we found that the basic interaction of spinor could be translated into quantum game theory. At the same time, we gained the new dynamics of quantized spacial evolutionary game.
Pilot-wave theory and quantum fields
Struyve, Ward
2010-10-01
Pilot-wave theories provide possible solutions to the measurement problem. In such theories, quantum systems are not only described by the state vector but also by some additional variables. These additional variables, also called beables, can be particle positions, field configurations, strings, etc. In this paper we focus our attention on pilot-wave theories in which the additional variables are field configurations. The first such theory was proposed by Bohm for the free electromagnetic field. Since Bohm, similar pilot-wave theories have been proposed for other quantum fields. The purpose of this paper is to present an overview and further development of these proposals. We discuss various bosonic quantum field theories such as the Schrödinger field, the free electromagnetic field, scalar quantum electrodynamics and the Abelian Higgs model. In particular, we compare the pilot-wave theories proposed by Bohm and by Valentini for the electromagnetic field, finding that they are equivalent. We further discuss the proposals for fermionic fields by Holland and Valentini. In the case of Holland's model we indicate that further work is required in order to show that the model is capable of reproducing the standard quantum predictions. We also consider a similar model, which does not seem to reproduce the standard quantum predictions. In the case of Valentini's model we point out a problem that seems hard to overcome.
Haag's theorem in renormalised quantum field theories
Klaczynski, Lutz
2016-01-01
We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption.
Quantum Stability of Chameleon Field Theories
Upadhye, Amol; Khoury, Justin
2012-01-01
Chameleon scalar fields are dark energy candidates which suppress fifth forces in high density regions of the universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound $m 0.0042$\\,eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential.
Noncommutative Common Cause Principles in algebraic quantum field theory
Hofer-Szabó, Gábor; Vecsernyés, Péter
2013-04-01
States in algebraic quantum field theory "typically" establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions VA and VB, respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of VA and VB and the set {C, C⊥} screens off the correlation between A and B.
Noncommutative Common Cause Principles in Algebraic Quantum Field Theory
Hofer-Szabó, Gábor
2012-01-01
States in algebraic quantum field theory "typically" establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions V_A and V_B, respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of V_A and V_B and the set {C, non-C} screens off the correlation between A and B.
Mathematical methods of many-body quantum field theory
Lehmann, Detlef
2004-01-01
Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2007-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental ingredients f
Characterizing quantum theory in terms of information-theoretic constraints
Clifton, R; Halvorson, H; Clifton, Rob; Bub, Jeffrey; Halvorson, Hans
2003-01-01
We show that three fundamental information-theoretic constraints--the impossibility of superluminal information transfer between two physical systems by performing measurements on one of them, the impossibility of broadcasting the information contained in an unknown physical state, and the impossibility of unconditionally secure bit commitment--suffice to entail that the observables and state space of a physical theory are quantum-mechanical. We demonstrate the converse derivation in part, and consider the implications of alternative answers to a remaining open question about nonlocality and bit commitment.
Quantum Algorithms for Fermionic Quantum Field Theories
2014-04-28
construction that gives quasi- linear asymptotic scaling in time and the number of lattice sites, as in the bosonic case. In contrast with bosonic field...components, γ µ is a two-dimensional representation of the Dirac algebra , and ψ̄ = ψ†γ0.1 We use the Majorana representation, namely, γ0 = [ 0 −i i 0...Hilbert spaces and can therefore be efficiently decomposed into elementary gates for any constant number of particle species, N , via the Solovay
A brief history of hidden quantum symmetries in Conformal Field Theories
Gómez, C; Gomez, Cesar; Sierra, German
1992-01-01
We review briefly a stream of ideas concerning the role of quantum groups as hidden symmetries in conformal field theories, paying particular attention to the field theoretical representations of quantum groups based on Coulomb gas methods. An extensive bibliography is also included.
Quantum description of electromagnetic fields in waveguides
Kitagawa, Akira
2015-01-01
Using quantum theory, we study the propagation of an optical field in an inhomogeneous dielectric, and apply this scheme to traveling optical fields in a waveguide. We introduce a field-atom interaction Hamiltonian and derive the refractive index using quantum optics. We show that the transmission and reflection of optical fields at an interface between different materials can be described with normalized Fresnel coefficients and that this representation is related to the beam splitter operator. We then study the propagation properties of the optical fields for two types of slab waveguides: step-index and graded-index. The waveguides are divided into multiple layers to represent the spatial dependence of the optical field. We can evaluate the number of photons in an arbitrary volume in the waveguide using this procedure. Using the present method, the quantum properties of weak optical fields in a waveguide are revealed, while coherent states with higher amplitudes reduces to representation of classical wavegu...
Role of information theoretic uncertainty relations in quantum theory
Energy Technology Data Exchange (ETDEWEB)
Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz [FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1 (Czech Republic); ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin (Germany); Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom); Joo, Jaewoo, E-mail: j.joo@surrey.ac.uk [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)
2015-04-15
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.
Introductory Lectures on Quantum Field Theory
Alvarez-Gaumé, Luís
2014-01-01
In these lectures we present a few topics in Quantum Field Theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to Particle Physics and String Theory.
Classical and quantum wormholes with tachyon field
Institute of Scientific and Technical Information of China (English)
高长军; 沈有根
2003-01-01
The wormhole equations are presented in the presence of tachyon field. Specializing at some values of ω (the ratio of pressure to energy density), we find a family of classical and quantum wormhole solutions.
Quantum field theory for the gifted amateur
Lancaster, Tom
2014-01-01
Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...
A measure theoretical approach to quantum stochastic processes
Energy Technology Data Exchange (ETDEWEB)
Waldenfels, Wilhelm von
2014-04-01
Authored by a leading researcher in the field. Self-contained presentation of the subject matter. Examines a number of worked examples in detail. This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
Quantum Field Theory from First Principles
Esposito, Giampiero
2000-01-01
When quantum fields are studied on manifolds with boundary, the corresponding one-loop quantum theory for bosonic gauge fields with linear covariant gauges needs the assignment of suitable boundary conditions for elliptic differential operators of Laplace type. There are however deep reasons to modify such a scheme and allow for pseudo-differential boundary-value problems. When the boundary operator is allowed to be pseudo-differential while remaining a projector, the conditions on its kernel...
Quantum field theory the why, what and how
Padmanabhan, Thanu
2016-01-01
This book describes, in clear terms, the Why, What and the How of Quantum Field Theory. The raison d'etre of QFT is explained by starting from the dynamics of a relativistic particle and demonstrating how it leads to the notion of quantum fields. Non-perturbative aspects and the Wilsonian interpretation of field theory are emphasized right from the start. Several interesting topics such as the Schwinger effect, Davies-Unruh effect, Casimir effect and spontaneous symmetry breaking introduce the reader to the elegance and breadth of applicability of field theoretical concepts. Complementing the conceptual aspects, the book also develops all the relevant mathematical techniques in detail, leading e.g., to the computation of anomalous magnetic moment of the electron and the two-loop renormalisation of the self-interacting scalar field. It contains nearly a hundred problems, of varying degrees of difficulty, making it suitable for both self-study and classroom use.
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Macroscopic Quantum-Type Potentials in Theoretical Systems Biology
Directory of Open Access Journals (Sweden)
Laurent Nottale
2013-12-01
Full Text Available We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided.
"Hot Entanglement"? -- A Nonequilibrium Quantum Field Theory Scrutiny
Hsiang, Jen-Tsung
2015-01-01
The possibility of maintaining entanglement in a quantum system at finite, even high, temperatures -- the so-called `hot entanglement' -- has obvious practical interest, but also requires closer theoretical scrutiny. Since quantum entanglement in a system evolves in time and is continuously subjected to environmental degradation, a nonequilibrium description by way of open quantum systems is called for. To identify the key issues and the contributing factors that may permit `hot entanglement' to exist, or the lack thereof, we carry out a model study of two spatially-separated, coupled oscillators in a shared bath depicted by a finite-temperature scalar field. From the Langevin equations we derived for the normal modes and the entanglement measure constructed from the covariance matrix we examine the interplay between direct coupling, field-induced interaction and finite separation on the structure of late-time entanglement. We show that the coupling between oscillators plays a crucial role in sustaining entan...
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Quantum teleportation between moving detectors in a quantum field
Lin, Shih-Yuin; Chou, Chung-Hsien; Hu, B L
2012-01-01
We consider the quantum teleportation of continuous variables modeled by Unruh-DeWitt detectors coupled to a common quantum field initially in the Minkowski vacuum. An unknown coherent state of an Unruh-DeWitt detector is teleported from one inertial agent (Alice) to an almost uniformly accelerated agent (Rob, for relativistic motion), using a detector pair initially entangled and shared by these two agents. The averaged physical fidelity of quantum teleportation, which is independent of the observer's frame, always drops below the best fidelity value from classical teleportation before the detector pair becomes disentangled with the measure of entanglement evaluated around the future lightcone of the joint measurement event by Alice. The distortion of the quantum state of the entangled detector pair from the initial state can suppress the fidelity significantly even when the detectors are still strongly entangled around the lightcone. We point out that the dynamics of entanglement of the detector pair observ...
Quantum Fields, Stochastic PDE, and Reflection Positivity
Jaffe, Arthur
2014-01-01
We outline some known relations between classical random fields and quantum fields. In the scalar case, the existence of a quantum field is equivalent to the existence of a Euclidean-invariant, reflection-positive (RP) measure on the Schwartz space tempered distributions. Martin Hairer recently investigated random fields in a series of interesting papers, by studying non-linear stochastic partial differential equations, with a white noise driving term. To understand such stochastic quantization, we consider a linear example. We ask: does the measure on the solution induced by the stochastic driving term yield a quantum field? The RP property yields a general method to implement quantization. We show that the RP property fails for finite stochastic parameter $\\lambda$, although it holds in the limiting case $\\lambda=\\infty$.
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Bell inequalities for quantum optical fields
Żukowski, Marek; Wieśniak, Marcin; Laskowski, Wiesław
2016-08-01
The commonly used "practical" Bell inequalities for quantum optical fields, which use intensities as the observables, are derivable only if specific additional assumptions hold. This limits the range of local hidden variable theories, which are invalidated by their violation. We present alternative Bell inequalities, which do not suffer from any (theoretical) loophole. The inequalities are for correlations of averaged products of local rates. By rates we mean ratios of the measured intensity in the given local output channel to the total local measured intensity, in the given run of the experiment. Bell inequalities of this type detect entanglement in situations in which the "practical" ones fail. Thus, we have full consistency with Bell's theorem, and better device-independent entanglement indicators. Strongly driven type-II parametric down conversion (bright squeezed vacuum) is our working example. The approach can be used to modify many types of standard Bell inequalities, to the case of undefined particle numbers. The rule is to replace the usual probabilities by rates.
Reflections on Topological Quantum Field Theory
Picken, R F
1997-01-01
(Talk presented at the XVth Workshop on Geometric Methods in Physics, Quantizations, Deformations and Coherent States, in Bialowieza, Poland, July 1-7, 1996.) The aim of this article is to introduce some basic notions of Topological Quantum Field Theory (TQFT) and to consider a modification of TQFT, applicable to embedded manifolds. After an introduction based around a simple example (Section 1) the notion of a d-dimensional TQFT is defined in category-theoretical terms, as a certain type of functor from a category of d-dimensional cobordisms to the category of vector spaces (Section 2). A construction due to Turaev, an operator-valued invariant of tangles, is discussed in Section 3. It bears a strong resemblance to 1-dimensional TQFTs, but carries much richer structure due to the fact that the 1-dimensional manifolds involved are embedded in a 3-dimensional space. This leads us, in Section 4, to propose a class of TQFT-like theories, appropriate to embedded, rather than pure, manifolds.
Group field cosmology: a cosmological field theory of quantum geometry
Calcagni, Gianluca; Oriti, Daniele
2012-01-01
Following the idea of a field quantization of gravity as realized in group field theory, we construct a minisuperspace model where the wavefunction of canonical quantum cosmology (either Wheeler-DeWitt or loop quantum cosmology) is promoted to a field, the coordinates are minisuperspace variables, the kinetic operator is the Hamiltonian constraint operator, and the action features a nonlinear and possibly nonlocal interaction term. We discuss free-field classical solutions, the quantum propagator, and a mean-field approximation linearizing the equation of motion and augmenting the Hamiltonian constraint by an effective term mixing gravitational and matter variables. Depending on the choice of interaction, this can reproduce, for example, a cosmological constant, a scalar-field potential, or a curvature contribution.
Quantum Electrodynamics in a Uniform Magnetic Field
Suzuki, J
2005-01-01
A systematic formalism for quantum electrodynamics in a classical uniform magnetic field is discussed. The first order radiative correction to the ground state energy of an electron is calculated. This then leads to the anomalous magnetic moment of an electron without divergent integrals. Thorough analyses of this problem are given for the weak magnetic field limit. A new expression for the radiative correction to the ground state energy is obtained. This contains only one integral with an additional summation with respect to each Landau level. The importance of this formalism is also addressed in order to deal with quantum electrodynamics in an intense external field.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, N; Weigel, H; Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
2002-01-01
We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Classical Simulation of Quantum Fields I
Hirayama, T
2005-01-01
We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler-Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In $\\lambda\\phi^{4}$ theory in 1+1 dimensions we find results, in particular for mass renormalization and the critical coupling for symmetry breaking, that are in agreement with their quantum counterparts. We then study the perturbative expansion of the $n$-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously.
Classical simulation of quantum fields I
Hirayama, T.; Holdom, B.
2006-10-01
We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler-Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In lambda phi(4) theory in 1 + 1 dimensions, we find results, in particular, for mass renormalization and the critical coupling for symmetry breaking that are in agreement with their quantum counterparts. We then study the perturbative expansion of the n-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously.
Quantum Field Theory: From Operators to Path Integrals
Huang, Kerson
1998-07-01
A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalization is explained. Quantum Field Theory is an exceptional textbook for graduate students familiar with advanced quantum mechanics as well as physicists with an interest in theoretical physics. It features: * Coverage of quantum electrodynamics with practical calculations and a discussion of perturbative renormalization * A discussion of the Feynman path integrals and a host of current subjects, including the physical approach to renormalization, spontaneous symmetry breaking and superfluidity, and topological excitations * Nineteen self-contained chapters with exercises, supplemented with graphs and charts
Diffusion Equations, Quantum Fields and Fundamental Interactions
Directory of Open Access Journals (Sweden)
Tosto S.
2015-04-01
Full Text Available The paper concerns an “ab initio” theoretical model based on the space-time quantum uncertainty and aimed to identify the conceptual root common to all four fundamental interactions known in nature. The essential information that identifies unambiguously each kind of interaction is inferred in a straightforward way via simple considerations involving the diffusion laws. The conceptual frame of the model is still that introduced in previous papers, where the basic statements of the relativity and wave mechanics have been contextually obtained as corollaries of the quantum uncertainty.
Dynamical symmetry breaking in quantum field theories
Miransky, Vladimir A
1993-01-01
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Quantum switches and nonlocal microwave fields
Davidovich, L.; Maali, A.; Brune, M.; Raimond, J. M.; Haroche, S.
1993-10-01
A scheme to realize an optical switch with quantum coherence between its ``open'' and ``closed'' states is presented. It involves a single atom in a superposition of circular Rydberg states crossing a high Q cavity. A combination of switches could be used to prepare a quantum superposition of coherent microwave field states located simultaneously in two cavities. Such nonclassical states and their decoherence due to cavity dissipation could be studied by performing atom correlation experiments.
Quantum Field Theory and Decoherence in the Early Universe
Koksma, J. F.
2011-06-01
by realising that higher order, non-Gaussian correlators are usually perturbatively suppressed. A quantum system with a large entropy corresponds to an effectively classical, stochastic system. To allow for a quantitative comparison between our correlator approach and the conventional approach to decoherence, we apply both formalisms to two simple quantum mechanical models. We find that the entropy in the conventional approach to decoherence quite generically reveals secular growth, indicating physically unacceptable behaviour. The conventional approach furthermore suffers from the fact that no well-established treatment to take perturbative corrections into account exists, nor has the framework of renormalisation ever been implemented. Our correlator approach to decoherence is taylored to applications in quantum field theory. We perform the first realistic study of decoherence in a renormalised quantum field theoretical setting. Using out-of-equilibrium field theory techniques, we extract two quantitative measures of decoherence in our model: the total amount of decoherence and the decoherence rate. The main finding in this part of the thesis is that, although a pure state remains pure under unitary evolution, an observer perceives this state over time as a mixed state with positive entropy as non-Gaussianities are dynamically generated. Alternatively, one could say that a realistic observer cannot probe all information about the system and thus discerns a loss of coherence of the pure state
Evolutionary Optimization of State Selective Field Ionization for Quantum Computing
Jones, M L; Majeed, H O; Varcoe, B T H
2009-01-01
State selective field ionization detection techniques in physics require a specific progression through a complicated atomic state space to optimize state selectivity and overall efficiency. For large principle quantum number n, the theoretical models become computationally intractable and any results are often rendered irrelevant by small deviations from ideal experimental conditions, for example external electromagnetic fields. Several different proposals for quantum information processing rely heavily upon the quality of these detectors. In this paper, we show a proof of principle that it is possible to optimize experimental field profiles in situ by running a genetic algorithm to control aspects of the experiment itself. A simple experiment produced novel results that are consistent with analyses of existing results.
Classical Fields and the Quantum Concept
De Souza, M M
1996-01-01
We do a critical review of the Faraday-Maxwell concept of classical field and of its quantization process. With the hindsight knowledge of the essentially quantum character of the interactions, we use a naive classical model of field, based on exchange of classical massless particles, for a comparative and qualitative analysis of the physical content of the Coulomb's and Gauss's laws. It enlightens the physical meaning of a field singularity and of a static field. One can understand the problems on quantizing a classical field but not the hope of quantizing the gravitational field right from General Relativity.
Conformal invariance in quantum field theory
Todorov, Ivan T; Petkova, Valentina B
1978-01-01
The present volume is an extended and up-to-date version of two sets of lectures by the first author and it reviews more recent work. The notes aim to present a self-contained exposition of a constructive approach to conformal invariant quantum field theory. Other parts in application of the conformal group to quantum physics are only briefly mentioned. The relevant mathematical material (harmonic analysis on Euclidean conformal groups) is briefly summarized. A new exposition of physical applications is given, which includes an explicit construction of the vacuum operator product expansion for the free zero mass fields.
Quantum gravity, effective fields and string theory
Bjerrum-Bohr, N E J
2004-01-01
We look at the various aspects of treating general relativity as a quantum theory. It is briefly studied how to consistently quantize general relativity as an effective field theory. A key achievement here is the long-range low-energy leading quantum corrections to both the Schwarzschild and Kerr metrics. The leading quantum corrections to the pure gravitational potential between two sources are also calculated, both in the mixed theory of scalar QED and quantum gravity and in the pure gravitational theory. The (Kawai-Lewellen-Tye) string theory gauge/gravity relations is next dealt with. We investigate if the KLT-operator mapping extends to the case of higher derivative effective operators. The KLT-relations are generalized, taking the effective field theory viewpoint, and remarkable tree-level amplitude relations between the field theory operators are derived. Quantum gravity is finally looked at from the the perspective of taking the limit of infinitely many spatial dimensions. It is verified that only a c...
Dual Field Theories of Quantum Computation
Vanchurin, Vitaly
2016-01-01
Given two quantum states of $N$ q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large $N$ limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an $N+1$ dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an $N$ dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli $Z$ matrices. Since such situation is not generic we call it the $Z$-problem. On the dual field the...
Spinning Particles in Quantum Mechanics and Quantum Field Theory
Corradini, Olindo
2015-01-01
The first part of the lectures, given by O. Corradini, covers introductory material on quantum-mechanical Feynman path integrals, which are here derived and applied to several particle models. We start considering the nonrelativistic bosonic particle, for which we compute the exact path integrals for the case of the free particle and for the harmonic oscillator, and then describe perturbation theory for an arbitrary potential. We then move to relativistic particles, both bosonic and fermionic (spinning) particles. We first investigate them from the classical view-point, studying the symmetries of their actions, then consider their canonical quantization and path integrals, and underline the role these models have in the study of space-time quantum field theories (QFT), by introducing the "worldline" path integral representation of propagators and effective actions. We also describe a special class of spinning particles that constitute a first-quantized approach to higher-spin fields. Since the fifties the qua...
Atomic focusing by quantum fields: Entanglement properties
Energy Technology Data Exchange (ETDEWEB)
Paz, I.G. da [Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CEP 64049-550, Teresina, PI (Brazil); Frazão, H.M. [Universidade Federal do Piauí, Campus Profa. Cinobelina Elvas, CEP 64900-000, Bom Jesus, PI (Brazil); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Nemes, M.C. [Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Peixoto de Faria, J.G. [Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas 7675, Belo Horizonte, MG 30510-000 (Brazil)
2014-04-01
The coherent manipulation of the atomic matter waves is of great interest both in science and technology. In order to study how an atom optic device alters the coherence of an atomic beam, we consider the quantum lens proposed by Averbukh et al. [1] to show the discrete nature of the electromagnetic field. We extend the analysis of this quantum lens to the study of another essentially quantum property present in the focusing process, i.e., the atom–field entanglement, and show how the initial atomic coherence and purity are affected by the entanglement. The dynamics of this process is obtained in closed form. We calculate the beam quality factor and the trace of the square of the reduced density matrix as a function of the average photon number in order to analyze the coherence and purity of the atomic beam during the focusing process.
Student friendly quantum field theory basic principles & quantum electrodynamics
Klauber, Robert D
2013-01-01
By incorporating extensive student input and innovative teaching methodologies, this book aims to make the process of learning quantum field theory easier, and thus more rapid, profound, and efficient, for both students and instructors. Comprehensive explanations are favored over conciseness, every step in derivations is included, and ‘big picture’ overviews are provided throughout. Typical student responses indicate how well the text achieves its aim.
Computer animations of quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Cohen, E. (Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)
1992-07-01
A visualization mehtod for quantum field theories based on the transfer matrix formalism is presented. It generates computer animations simulating the time evolution of complex physical systems subject to local Hamiltonians. The method may be used as a means of gaining insight to theories such as QCD, and as an educational tool in explaining high-energy physics. (orig.).
Quantum wells, wires and dots theoretical and computational physics of semiconductor nanostructures
Harrison, Paul
2016-01-01
Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: - Properties of non-parabolic energy bands - Matrix solutions of the Poisson and Schrodinger equations - Critical thickness of strained materials - Carrier scattering by interface roughness, alloy disorder and impurities - Density matrix transport modelling -Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is pr...
Anderson Localization with Second Quantized Fields: Quantum Statistical Aspects
Thompson, Clinton; Agarwal, G S
2010-01-01
We report a theoretical study of Anderson localization of nonclassical light with emphasis on the quantum statistical aspects of localized light. We demonstrate, from the variance in mean intensity of localized light, as well as site-to-site correlations, that the localized light carries signatures of quantum statistics of input light. For comparison, we also present results for input light with coherent field statistics and thermal field statistics. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We also find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we compare the effects of Gaussian and Rectangular distributions for the disorder, and show that Gaussian disorder accelerates the localization of light.
De Sitter Space, Interacting Quantum Field Theory And Alpha Vacua
Goldstein, K
2005-01-01
Inspired by recent evidence for a positive cosmological constant, this thesis considers some of the implications of trying to incorporate approximately seventy percent of the universe, namely dark energy, consistently into quantum field theory on a curved background. Such considerations may have implications for inflation, the understanding of dark energy at the present time and finally the challenging topic of trying to incorporate a positive cosmological constant into string theory. We will mainly examine various aspects of the one parameter family of de Sitter invariant states—the so called α-vacua. On the phenomenological side, not only could such states provide a window into trans-planckian physics through their imprint on the cosmological microwave background (CMB), but they may also be a source of ultra-high energy cosmic rays (UHECR) at the present time. From a purely theoretical perspective, formulating interacting quantum field theory in these states is a challenging problem whic...
Spin-Orbit Coupling, Antilocalization, and Parallel Magnetic Fields in Quantum Dots
DEFF Research Database (Denmark)
Zumbuhl, D.; Miller, Jessica; M. Marcus, C.
2002-01-01
We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak localizat......We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak...
Quantum revivals in free field CFT
Dowker, J S
2016-01-01
A commentary is made on the recent work by Cardy, arXiv:1603.08267, on quantum revivals and higher dimensional CFT. The actual expressions used here are those derived some time ago. The calculation is extended to fermion fields for which the power spectrum involves the odd divisor function. Comments are made on the equivalence of operator counting and eigenvalue methods, which is quickly verified. A curious duality involving wrongly quantised fields is sketched.
Banerjee, Subhashish; Alok, Ashutosh Kumar; Srikanth, R.; Hiesmayr, Beatrix C.
2015-10-01
Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Subhashish; Alok, Ashutosh Kumar [Indian Institute of Technology Jodhpur, Jodhpur (India); Srikanth, R. [Poornaprajna Institute of Scientific Research, Banglore (India); Hiesmayr, Beatrix C. [University of Vienna, Vienna (Austria)
2015-10-15
Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force. (orig.)
Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology
Directory of Open Access Journals (Sweden)
Aiyalam P. Balachandran
2010-06-01
Full Text Available In the present work we review the twisted field construction of quantum field theory on noncommutative spacetimes based on twisted Poincaré invariance. We present the latest development in the field, in particular the notion of equivalence of such quantum field theories on a noncommutative spacetime, in this regard we work out explicitly the inequivalence between twisted quantum field theories on Moyal and Wick-Voros planes; the duality between deformations of the multiplication map on the algebra of functions on spacetime F(R^4 and coproduct deformations of the Poincaré-Hopf algebra HP acting on F(R^4; the appearance of a nonassociative product on F(R^4 when gauge fields are also included in the picture. The last part of the manuscript is dedicated to the phenomenology of noncommutative quantum field theories in the particular approach adopted in this review. CPT violating processes, modification of two-point temperature correlation function in CMB spectrum analysis and Pauli-forbidden transition in Be^4 are all effects which show up in such a noncommutative setting. We review how they appear and in particular the constraint we can infer from comparison between theoretical computations and experimental bounds on such effects. The best bound we can get, coming from Borexino experiment, is >10^{24} TeV for the energy scale of noncommutativity, which corresponds to a length scale <10^{-43} m. This bound comes from a different model of spacetime deformation more adapted to applications in atomic physics. It is thus model dependent even though similar bounds are expected for the Moyal spacetime as well as argued elsewhere.
Gallilei covariant quantum mechanics in electromagnetic fields
Directory of Open Access Journals (Sweden)
H. E. Wilhelm
1985-01-01
Full Text Available A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocity w is in magnitude comparable with the velocity of light c. The electromagnetic substratum velocity w occurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.
Finite temperature simulations from quantum field dynamics?
Energy Technology Data Exchange (ETDEWEB)
Salle, Mischa; Smit, Jan; Vink, Jeroen C
2001-03-01
We describe a Hartree ensemble method to approximately solve the Heisenberg equations for the phi (cursive,open) Greek{sup 4} model in 1 + 1 dimensions. We compute the energies and number densities of the quantum particles described by the phi (cursive,open) Greek field and find that the particles initially thermalize with a Bose-Einstein distribution for the particle density. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.
Information-theoretic approach to quantum error correction and reversible measurement
Nielsen, M A; Schumacher, B; Barnum, H N; Caves, Carlton M.; Schumacher, Benjamin; Barnum, Howard
1997-01-01
Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive information-theoretic conditions and equivalent algebraic conditions that are necessary and sufficient for a general quantum operation to be reversible. We analyze the thermodynamic cost of error correction and show that error correction can be regarded as a kind of ``Maxwell demon,'' for which there is an entropy cost associated with information obtained from measurements performed during error correction. A prescription for thermodynamically efficient error correction is given.
Energy Technology Data Exchange (ETDEWEB)
Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-01-15
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.
Teleportation of the Relativistic Quantum Field
Laiho, R; Nazin, S S
2000-01-01
The process of teleportation of a completely unknown one-particle state of a free relativistic quantum field is considered. In contrast to the non-relativistic quantum mechanics, the teleportation of an unknown state of the quantum field cannot be in principle described in terms of a measurement in a tensor product of two Hilbert spaces to which the unknown state and the state of the EPR-pair belong. The reason is of the existence of a cyclic (vacuum) state common to both the unknown state and the EPR-pair. Due to the common vacuum vector and the microcausality principle (commutation relations for the field operators), the teleportation amplitude contains inevitably contributions which are irrelevant to the teleportation process. Hence in the relativistic theory the teleportation in the sense it is understood in the non-relativistic quantum mechanics proves to be impossible because of the impossibility of the realization of the appropriate measurement as a tensor product of the measurements related to the ind...
String Field Theory from Quantum Gravity
Crane, Louis
2012-01-01
Recent work on neutrino oscillations suggests that the three generations of fermions in the standard model are related by representations of the finite group A(4), the group of symmetries of the tetrahedron. Motivated by this, we explore models which extend the EPRL model for quantum gravity by coupling it to a bosonic quantum field of representations of A(4). This coupling is possible because the representation category of A(4) is a module category over the representation categories used to construct the EPRL model. The vertex operators which interchange vacua in the resulting quantum field theory reproduce the bosons and fermions of the standard model, up to issues of symmetry breaking which we do not resolve. We are led to the hypothesis that physical particles in nature represent vacuum changing operators on a sea of invisible excitations which are only observable in the A(4) representation labels which govern the horizontal symmetry revealed in neutrino oscillations. The quantum field theory of the A(4) ...
Quantum gravity and scalar fields
Energy Technology Data Exchange (ETDEWEB)
Mackay, Paul T. [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Toms, David J., E-mail: d.j.toms@newcastle.ac.u [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)
2010-02-15
In this Letter we consider the quantization of a scalar field coupled to gravity at one loop order. We investigate the divergences appearing in the mass (i.e. phi{sup 2}) term in the effective action. We use the Vilkovisky-DeWitt effective action technique which guarantees that the result is gauge invariant as well as gauge condition independent in contrast to traditional calculations. Our final result is to identify the complete pole part of the effective action.
Laser parameter influence on quantum path selection in a bichromatic field
Energy Technology Data Exchange (ETDEWEB)
Wang Shaoyi; Hong Weiyi; Lan Pengfei; Zhang Qingbin; Lu Peixiang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: lupeixiang@mail.hust.edu.cn
2009-05-28
We theoretically investigate the laser parameter influence on quantum path selection in a two-colour laser pulse, of which both fundamental field and its controlling field are linearly polarized. The laser's parameters, namely, the relative intensity of the controlling field and its relative phase with respect to the fundamental field, determine the quantum path selection by affecting their ionization probabilities. In both cases of the {omega} + 3{omega} and {omega} + 2{omega} laser fields, it is shown that the quantum path selection in the multi-cycle pulse is more dependent on the parameters than that in the few-cycle pulse, and the selection of the quantum path in the multi-cycle {omega} + 3{omega} pulse shows stability to the phase and intensity variation. Our results are very beneficial to choosing appropriate parameters for quantum path selection in experiments.
Linear Transformation Theory of Quantum Field Operators and Its Applications
Institute of Scientific and Technical Information of China (English)
MA Lei
2003-01-01
We extend the linear quantum transformation theory to the case of quantum field operators. The corresponding general transformation expressions of CPT transformations and gauge field transformations are considered as its applications.
Quantum Finite Elements for Lattice Field Theory
Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan
2016-01-01
Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Revisiting the quantum scalar field in spherically symmetric quantum gravity
Borja, Enrique F.; Garay, Iñaki; Strobel, Eckhard
2012-07-01
We extend previous results in spherically symmetric gravitational systems coupled with a massless scalar field within the loop quantum gravity framework. As a starting point, we take the Schwarzschild spacetime. The results presented here rely on the uniform discretization method. We are able to minimize the associated discrete master constraint using a variational method. The trial state for the vacuum consists of a direct product of a Fock vacuum for the matter part and a Gaussian centered around the classical Schwarzschild solution. This paper follows the line of research presented by Gambini et al (2009 Class. Quantum Grav. 26 215011 (arXiv:0906.1774v1)) and a comparison between their result and the one given in this work is made.
Quantum fields on closed timelike curves
Energy Technology Data Exchange (ETDEWEB)
Pienaar, J. L.; Myers, C. R.; Ralph, T. C. [School of Mathematics and Physics, The University of Queensland, Brisbane 4072, Queensland (Australia)
2011-12-15
Recently, there has been much interest in the evolution of quantum particles on closed timelike curves (CTCs). However, such models typically assume pointlike particles with only two degrees of freedom; a very questionable assumption given the relativistic setting of the problem. We show that it is possible to generalize the Deutsch model of CTCs to fields using the equivalent circuit formalism. We give examples for coherent, squeezed, and single-photon states interacting with the CTC via a beamsplitter. The model is then generalized further to account for the smooth transition to normal quantum mechanics as the CTC becomes much smaller than the size of the modes interacting on it. In this limit, we find that the system behaves like a standard quantum-mechanical feedback loop.
Partial discharge transients: The field theoretical approach
DEFF Research Database (Denmark)
McAllister, Iain Wilson; Crichton, George C
1998-01-01
Up until the mid-1980s the theory of partial discharge transients was essentially static. This situation had arisen because of the fixation with the concept of void capacitance and the use of circuit theory to address what is in essence a field problem. Pedersen rejected this approach and instead...
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Problem Book in Quantum Field Theory
Radovanovič, Voja
2008-01-01
The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers. The new edition is a corrected paperback edition for students.
Quantum revivals in free field CFT
Dowker, J. S.
2017-03-01
The recent work by Cardy (arXiv:1603.08267) on quantum revivals and higher dimensional CFT is revisited and enlarged upon for free fields. The expressions for the free energy used here are those derived some time ago. The calculation is extended to spin–half fields for which the power spectrum involves the odd divisor function. An explanation of the rational revivals for odd spheres is given in terms of wrongly quantised fields and modular transformations. Comments are made on the equivalence of operator counting and eigenvalue methods, which is quickly verified.
Undergraduate Lecture Notes in Topological Quantum Field Theory
2008-01-01
These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mechanics and basic electromagnetism. Keywords: quantum mechanics/field theory, path integral, Hodge decomposition, Chern-Simons and Yang-Mills gauge theories, conformal field theory
Quantum field theories of extended objects
Friedan, Daniel
2016-01-01
First steps are taken in a project to construct a general class of conformal and perhaps, eventually, non-conformal quantum field theories of (n-1)-dimensional extended objects in a d=2n dimensional conformal space-time manifold M. The fields live on the spaces E of relative integral (n-1)-cycles in M -- the integral (n-1)-currents of given boundary. Each E is a complete metric space geometrically analogous to a Riemann surface $\\Sigma$. For example, if $M=S^d$, $\\Sigma = S^2$. The quantum fields on E are to be mapped to observables in a 2d CFT on $\\Sigma$. The correlation functions on E are to be given by the 2d correlation functions on $\\Sigma$. The goal is to construct a CFT of extended objects in d=2n dimensions for every 2d CFT, and eventually a non-conformal QFT of extended objects for every non-conformal 2d QFT, so that all the technology of 2d QFT can be applied to the construction and analysis of quantum field theories of extended objects. The project depends crucially on settling some mathematical q...
Quantum-size resonance tunneling in the field emission phenomenon
Litovchenko, V.; Evtukh, A.; Kryuchenko, Yu.; Goncharuk, N.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.
2004-07-01
Theoretical analyses have been performed of the quantum-size (QS) resonance tunneling in the field-emission (FE) phenomenon for different models of the emitting structures. Such experimentally observed peculiarities have been considered as the enhancement of the FE current, the deviation from the Fowler-Nordheim law, the appearance of sharp current peaks, and a negative resistance. Different types of FE cathodes with QS structures (quantized layers, wires, or dots) have been studied experimentally. Resonance current peaks have been observed, from which the values of the energy-level splitting can be estimated.
Coherent feedback control of multipartite quantum entanglement for optical fields
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)
2011-12-15
Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.
Quantum Field Theory and the Electroweak Standard Model
Boos, E
2015-01-01
The Standard Model is one of the main intellectual achievements for about the last 50 years, a result of many theoretical and experimental studies. In this lecture a brief introduction to the electroweak part of the Standard Model is given. Since the Standard Model is a quantum field theory, some aspects for understanding of quantization of abelian and non-abelian gauge theories are also briefly discussed. It is demonstrated how well the electroweak Standard Model works in describing a large variety of precise experimental measure- ments at lepton and hadron collider.
Ultraviolet Finite Quantum Field Theory on Quantum Spacetime
Bahns, D; Fredenhagen, Klaus; Piacitelli, G
2003-01-01
We discuss a formulation of quantum field theory on quantum space time where the perturbation expansion of the S-matrix is term by term ultraviolet finite. The characteristic feature of our approach is a quantum version of the Wick product at coinciding points: the differences of coordinates q_j - q_k are not set equal to zero, which would violate the commutation relation between their components. We show that the optimal degree of approximate coincidence can be defined by the evaluation of a conditional expectation which replaces each function of q_j - q_k by its expectation value in optimally localized states, while leaving the mean coordinates (q_1 + ... + q_n)/n invariant. The resulting procedure is to a large extent unique, and is invariant under translations and rotations, but violates Lorentz invariance. Indeed, optimal localization refers to a specific Lorentz frame, where the electric and magnetic parts of the commutator of the coordinates have to coincide*). Employing an adiabatic switching, we show...
Revisiting the quantum scalar field in spherically symmetric quantum gravity
Borja, Enrique F; Strobel, Eckhard
2012-01-01
We extend previous results in spherically symmetric gravitational systems coupled with a massless scalar field within the loop quantum gravity framework. As starting point, we take the Schwarzschild spacetime. The results presented here rely on the uniform discretization method. We are able to minimize the associated discrete master constraint using a variational method. The trial state for the vacuum consists of a direct product of a Fock vacuum for the matter part and a Gaussian centered around the classical Schwarzschild solution. This paper follows the line of research presented by Gambini, Pullin and Rastgoo and a comparison between their result and the one given in this work is made.
Quantum Gravitational Contributions to Gauge Field Theoriest
Institute of Scientific and Technical Information of China (English)
汤勇; 吴岳良
2012-01-01
We revisit quantum gravitational contributions to quantum gauge field theories in the gauge condition independent Vilkovisky-DeWitt formalism based on the background field method. With the advantage of Landau- DeWitt gauge, we explicitly obtain the gauge condition independent result for the quadratically divergent gravitational corrections to gauge couplings. By employing, in a general way, a scheme-independent regularization method that can preserve both gauge invariance and original divergent behavior of integrals, we show that the resulting gauge coupling is power-law running and asymptotically free. The regularization scheme dependence is clarified by comparing with results obtained by other methods. The loop regularization scheme is found to be applicable for a consistent calculation.
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the
Quantum field theory on locally noncommutative spacetimes
Energy Technology Data Exchange (ETDEWEB)
Lechner, Gandalf [Univ. Leipzig (Germany). Inst. fuer Theoretische Physik; Waldmann, Stefan [Leuven Univ. (Belgium)
2012-07-01
A class of spacetimes which are noncommutative only in a prescribed region is presented. These spacetimes are obtained by a generalization of Rieffel's deformation procedure to deformations of locally convex algebras and modules by smooth polynomially bounded R{sup n}-actions with compact support. Extending previous results of Bahns and Waldmann, it is shown how to perform such deformations in a strict sense. Some results on quantum fields propagating on locally noncommutative spacetimes are also given.
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Quantum field theory on brane backgrounds
Flachi, A
2001-01-01
stabilize the radius and simultaneously solving the hierarchy problem, unless the brane tensions are fine tuned to a high degree. The development of higher dimensional quantum field theories is reviewed from the older Kaluza-Klein theory to the new brane models, emphasising their relevance in modern particle physics. The issue of spontaneous symmetry breaking in the Randall-Sundrum model is considered. The role of the coupling between bulk fields and the curvature is investigated and a model in favour of bulk symmetry breaking is presented. The lowest order quantum corrections arising from a quantized scalar field in the Randall-Sundrum spacetime are computed. A careful discussion of the boundary conditions as well as the renormalization is provided. The massless case is also discussed and a proof of the vanishing of the conformal anomaly in this model is given. An analysis of the self-consistency is presented and the radius stabilization problem studied. It is shown that quantum effects may provide a stabili...
NMR quantum computing: applying theoretical methods to designing enhanced systems.
Mawhinney, Robert C; Schreckenbach, Georg
2004-10-01
Density functional theory results for chemical shifts and spin-spin coupling constants are presented for compounds currently used in NMR quantum computing experiments. Specific design criteria were examined and numerical guidelines were assessed. Using a field strength of 7.0 T, protons require a coupling constant of 4 Hz with a chemical shift separation of 0.3 ppm, whereas carbon needs a coupling constant of 25 Hz for a chemical shift difference of 10 ppm, based on the minimal coupling approximation. Using these guidelines, it was determined that 2,3-dibromothiophene is limited to only two qubits; the three qubit system bromotrifluoroethene could be expanded to five qubits and the three qubit system 2,3-dibromopropanoic acid could also be used as a six qubit system. An examination of substituent effects showed that judiciously choosing specific groups could increase the number of available qubits by removing rotational degeneracies in addition to introducing specific conformational preferences that could increase (or decrease) the magnitude of the couplings. The introduction of one site of unsaturation can lead to a marked improvement in spectroscopic properties, even increasing the number of active nuclei.
Conformal field theory approach to Abelian and non-Abelian quantum Hall quasielectrons.
Hansson, T H; Hermanns, M; Regnault, N; Viefers, S
2009-04-24
The quasiparticles in quantum Hall liquids carry fractional charge and obey fractional quantum statistics. Of particular recent interest are those with non-Abelian statistics, since their braiding properties could, in principle, be used for robust coding of quantum information. There is already a good theoretical understanding of quasiholes in both Abelian and non-Abelian quantum Hall states. Here we develop conformal field theory methods that allow for an equally precise description of quasielectrons and explicitly construct two- and four-quasielectron excitations of the non-Abelian Moore-Read state.
Malpetti, Daniele; Roscilde, Tommaso
2017-02-01
The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical
A Field-Theoretic Approach to the Wiener Sausage
Nekovar, S.; Pruessner, G.
2016-05-01
The Wiener Sausage, the volume traced out by a sphere attached to a Brownian particle, is a classical problem in statistics and mathematical physics. Initially motivated by a range of field-theoretic, technical questions, we present a single loop renormalised perturbation theory of a stochastic process closely related to the Wiener Sausage, which, however, proves to be exact for the exponents and some amplitudes. The field-theoretic approach is particularly elegant and very enjoyable to see at work on such a classic problem. While we recover a number of known, classical results, the field-theoretic techniques deployed provide a particularly versatile framework, which allows easy calculation with different boundary conditions even of higher momenta and more complicated correlation functions. At the same time, we provide a highly instructive, non-trivial example for some of the technical particularities of the field-theoretic description of stochastic processes, such as excluded volume, lack of translational invariance and immobile particles. The aim of the present work is not to improve upon the well-established results for the Wiener Sausage, but to provide a field-theoretic approach to it, in order to gain a better understanding of the field-theoretic obstacles to overcome.
Noncommutative Time in Quantum Field Theory
Salminen, Tapio
2011-01-01
We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-K\\"all\\'{e}n equation) and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of light-like noncommutativity.
Torque Anomaly in Quantum Field Theory
Fulling, S A; Trendafilova, C S
2012-01-01
The expectation values of energy density and pressure of a quantum field inside a wedge-shaped region appear to violate the expected relationship between torque and total energy as a function of angle. In particular, this is true of the well-known Deutsch--Candelas stress tensor for the electromagnetic field, whose definition requires no regularization except possibly at the vertex. Unlike a similar anomaly in the pressure exerted by a reflecting boundary against a perpendicular wall, this problem cannot be dismissed as an artifact of an ad hoc regularization.
A Quantum Theoretical Explanation for Probability Judgment Errors
Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.
2011-01-01
A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…
A Quantum Theoretical Explanation for Probability Judgment Errors
Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.
2011-01-01
A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…
Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach
Espinosa, Olivier R; Lepe, S; Méndez, F
2001-01-01
The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.
A quantum-information theoretic analysis of three-flavor neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in; Alok, Ashutosh Kumar, E-mail: akalok@iitj.ac.in [Indian Institute of Technology Jodhpur, 342011, Jodhpur (India); Srikanth, R., E-mail: srik@poornaprajna.org [Poornaprajna Institute of Scientific Research, Sadashivnagar, 560080, Banglore (India); Hiesmayr, Beatrix C., E-mail: Beatrix.Hiesmayr@univie.ac.at [University of Vienna, Boltzmanngasse 5, 1090, Vienna (Austria)
2015-10-13
Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.
On space of integrable quantum field theories
Smirnov, F A
2016-01-01
We study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as "effective field theories", with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields $X_s$, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars $X_s$ are built from the components of the associated conserved currents in a universal way. The first of these scalars, $X_1$, coincides with the composite field $(T{\\bar T})$ built from the components of the energy-momentum tensor. The deformations of quantum field theories generated by $X_1$ are "solvable" in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations $X_s$ are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit...
On space of integrable quantum field theories
Directory of Open Access Journals (Sweden)
F.A. Smirnov
2017-02-01
Full Text Available We study deformations of 2D Integrable Quantum Field Theories (IQFT which preserve integrability (the existence of infinitely many local integrals of motion. The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (TT¯ built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.
On space of integrable quantum field theories
Smirnov, F. A.; Zamolodchikov, A. B.
2017-02-01
We study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as "effective field theories", with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (T T bar) built from the components of the energy-momentum tensor. The deformations of quantum field theories generated by X1 are "solvable" in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.
Underwriting information-theoretic accounts of quantum mechanics with a realist, psi-epistemic model
Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy
2016-05-01
We propose an adynamical interpretation of quantum theory called Relational Blockworld (RBW) where the fundamental ontological element is a 4D graphical amalgam of space, time and sources called a “spacetimesource element.” These are fundamental elements of space, time and sources, not source elements in space and time. The transition amplitude for a spacetimesource element is computed using a path integral with discrete graphical action. The action for a spacetimesource element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint between sources, the spacetime metric and the energy-momentum content of the spacetimesource element, rather than a dynamical law for time-evolved entities. To illustrate this interpretation, we explain the simple EPR-Bell and twin-slit experiments. This interpretation of quantum mechanics constitutes a realist, psi-epistemic model that might underwrite certain information-theoretic accounts of the quantum.
On Set-Theoretical Solutions to Quantum Yang-Baxter Equation
Institute of Scientific and Technical Information of China (English)
GU Pei; BAI Cheng-Ming
2003-01-01
The problem on the set-theoretical solutions to the quantum Yang-Baxter equation was presented byDrinfel'd as a main unsolved problem in quantum group theory. The set-theoretical solutions are a natural extensionof the usual (linear) solutions. In this paper, we not only give a further study on some known set-theoretical solutions(the Venkov's solutions), but also find a new kind of set-theoretical solutions which have a geometric interpretation.Moreover, the new solutions lead to the metahomomorphisms in group theory.
Directory of Open Access Journals (Sweden)
Changiz. Vatankhah
2015-06-01
Full Text Available Nano particles of zinc sulfide (ZnS of face centered cubic (fcc structures were synthesized using sulphur source of soium sulphide and mercaptoethanol respectively via Chemical Bath Deposition method. The synthesized quantum dots were characterized using X-ray diffraction (XRD, transmission electron microscopy (TEM and UV-visible spectrophotometry. The average crystallite size calculated from TEM and XRD pattern has been found to in the range 4.6 – 1.9 nm, the pariticles size decreases with the increase of the capping agent concentrations from 0. 001 to 0.7 Mol. The absorption coefficient in the range 325 - 250 nm decreases with increasing capping agent and the particles. ZnS nanoparticles were also derived from time independent Schrodinger equations for ZnS system and calculated the coefficient absorption using the density functional theory (DFT . It is shown that decreasing of ZnS nanosize lead to changes the optical properties and coefficient absorption in the visible region does not occur and the particles act like a transparent material. In this work, the blue shift was observed in absorption-wavelength both theoretical and experimental method due to the quantum confinement effects.
Scalar Quantum Field Theory on Fractals
Kar, Arnab
2011-01-01
We construct a family of measures for random fields based on the iterated subdivision of simple geometric shapes (triangles, squares, tetrahedrons) into a finite number of similar shapes. The intent is to construct continuum limits of scale invariant scalar field theories, by imitating Wiener's construction of the measure on the space of functions of one variable. These are Gaussian measures, except for one example of a non-Gaussian fixed point for the Ising model on a fractal. In the continuum limits what we construct have correlation functions that vary as a power of distance. In most cases this is a positive power (as for the Wiener measure) but we also find a few examples with negative exponent. In all cases the exponent is an irrational number, which depends on the particular subdivision scheme used. This suggests that the continuum limits corresponds to quantum field theories (random fields) on spaces of fractional dimension.
Simple field theoretical approach of Coulomb systems. Entropic effects
Energy Technology Data Exchange (ETDEWEB)
Di Caprio, D; Badiali, J P [Laboratory of Electrochemistry and Analytical Chemistry, University Paris 6, CNRS, ENSCP, BP 39, 4, Place Jussieu, 75252 Paris, Cedex 05 (France); Holovko, M [Institute for Condensed Matter Physics, National Academy of Sciences, 1 Svientsitskii Str, 79011 Lviv (Ukraine)], E-mail: dung.di_caprio@upmc.fr
2009-05-29
We discuss a new simple field theory approach of Coulomb systems. Using a description in terms of fields, we introduce in a new way the statistical degrees of freedom in relation to the quantum mechanics. We show by a series of examples that these fundamental entropic effects can help account for physical phenomena in relation to Coulomb systems whether symmetric or asymmetric in valence. Overall, this gives a new understanding of these systems.
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
The actual content of quantum theoretical kinematics and mechanics
Heisenberg, W.
1983-01-01
First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.
Phase space picture of quantum mechanics group theoretical approach
Kim, Y S
1991-01-01
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.
Instantons and large N an introduction to non-perturbative methods in quantum field theory
Marino, Marcos
2015-01-01
This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang-Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behaviour of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.
Interacting Quantum Fields on de Sitter Space
Barata, João C A; Mund, Jen
2016-01-01
In 1975 Figari, H{\\o}egh-Krohn and Nappi constructed the ${\\mathscr P}(\\varphi)_2$ model on the two-dimensional de Sitter space. Here we complement their work with a number of new results. In particular, we show that $i.)$ the unitary irreducible representations of $SO_0(1,2)$ for both the principal and the complementary series can be formulated on the Hilbert space spanned by wave functions supported on the Cauchy surface; $ii.)$ physical infrared problems are absent on de Sitter space; $iii.)$ the interacting quantum fields satisfy the equations of motion in their covariant form; $iv.)$ the generators of the boosts and the rotations for the interacting quantum field theory arise by contracting the stress-energy tensor with the relevant Killing vector fields and integrating over the relevant line segments. They generate a reducible, unitary representation of the Lorentz group on the Fock space for the free field. We establish also relations to the modular objects of (relative) Tomita-Takesaki theory. In addi...
Lyapunov control of quantum systems with impulsive control fields.
Yang, Wei; Sun, Jitao
2013-01-01
We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method.
Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism
2016-06-09
AFRL-AFOSR-VA-TR-2016-0204 Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism Jose Rodriguez CALIFORNIA...TITLE AND SUBTITLE Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism 5a. CONTRACT NUMBER 5b. GRANT...SUBJECT TERMS quantum magnetism, HTS, superconductivity 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF
Field-theoretical formulation of Regge–Teitelboim gravity
Energy Technology Data Exchange (ETDEWEB)
Sheykin, A. A., E-mail: a.sheykin@spbu.ru; Paston, S. A., E-mail: s.paston@spbu.ru [St. Petersburg State University (Russian Federation)
2016-12-15
Theory of gravity is considered in the Regge–Teitelboim approach in which the pseudo-Rimannian space is treated as a surface isometrically embedded in an ambient Minkowski space of higher dimension. This approach is formulated in terms of a field theory in which the original pseudo-Rimannian space is defined by the field constant-value surfaces. The symmetry properties of the proposed theory are investigated, and possible structure of the field-theoretical Lagrangian is discussed.
Quantum groups and quantum field theory III. Renormalisation
Brouder, C; Brouder, Christian; Schmitt, William
2002-01-01
The Hopf algebra of renormalisation in quantum field theory is described at a general level. The products of fields at a point are assumed to form a bialgebra B and renormalisation endows T(T(B)^+), the double tensor algebra of B, with the structure of a noncommutative bialgebra. When the bialgebra B is commutative, renormalisation turns S(S(B)^+), the double symmetric algebra of B, into a commutative bialgebra. The usual Hopf algebra of renormalisation is recovered when the elements of $T^1(B)$ are not renormalised, i.e. when Feynman diagrams containing one single vertex are not renormalised. When B is the Hopf algebra of a commutative group, a homomorphism is established between the bialgebra S(S(B)^+) and the Faa di Bruno bialgebra of composition of series. The relation with the Connes-Moscovici Hopf algebra of diffeomorphisms is given. Finally, the bialgebra S(S(B)^+) is shown to give the same results as the standard renormalisation procedure for the scalar field.
Quantum Field Theory on Noncommutative Spaces
Szabó, R J
2003-01-01
A pedagogical and self-contained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the Weyl-Wigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative Yang-Mills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an in-depth study of the gauge group of noncommutative Yang-Mills theory. Some of the more mathematical ideas and techniques of noncommutative geometry are also briefly explained.
Quantum Field Theory Without Divergence A
Chen Sow Hsin
2002-01-01
We anew explain the meaning of negative energies in the relativistic theory. On the basis we present two new conjectures. According to the conjectures, particles have two sorts of existing forms which are symmetric. From this we present a new Lagrangian density and a new quantization method for QED. That the energy of the vacuum state is equal to zero is naturally obtained. From this we can easily determine the cosmological constant according to experiments, and it is possible to correct nonperturbational methods which depend on the energy of the ground state in quantum field theory.
Completely local interpretation of quantum field theory
Sverdlov, Roman
2010-01-01
The purpose of this paper is to come up with a framework that "converts" existing concepts from configuration space to ordinary one. This is done by modeling our universe as a big "computer" that simulates configuration space. If that "computer" exists in ordinary space and is ran by "classical" laws, our theory becomes "classical" by default. We have first applied this concept to a version of quantum field theory in which elementary particles have size (that is, a theory that does not yet exists). After that, we have also done the same with Pilot Wave model of discrete jumps, due to D\\"urr et el.
Bilinear covariants and spinor fields duality in quantum Clifford algebras
Energy Technology Data Exchange (ETDEWEB)
Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu [Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br [Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, SP (Brazil); Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy)
2014-10-15
Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.
Energy Technology Data Exchange (ETDEWEB)
Abdali, Salim; Jensen, Morten O; Bohr, Henrik [Quantum Protein Centre (QUP), Department of Physics, Bldg. 309, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)
2003-05-14
This paper describes a theoretical and experimental study of [Leu]enkephalin conformations with respect to the quantum states of the atomic structure of the peptide. Results from vibrational absorption measurements and quantum calculations are used to outline a quantum picture and to assign vibrational modes to the different conformations. The energy landscape of the conformations is reported as a function of a Hamming distance in Ramachandran space. Molecular dynamics simulations reveal a pronounced stability of the so-called single-bend low-energy conformation, which supports the derived quantum picture of this peptide.
DEFF Research Database (Denmark)
Abdali, Salim; Jensen, Morten Østergaard; Bohr, Henrik
2003-01-01
This paper describes a theoretical and experimental study of [Leu]enkephalin conformations with respect to the quantum estates of the atomic structure of the peptide. Results from vibrational absorption measurements and quantum calculations are used to outline a quantum picture and to assign...... vibrational modes to the different conformations. The energy landscape of the conformations is reported as a function of a Hamming distance in Ramachandran space. Molecular dynamics simulations reveal a pronounced stability of the so-called single-bend low-energy conformation, which supports the derived...... quantum picture of this peptide....
Ohsaku, T; Yamaki, D; Yamaguchi, K
2002-01-01
For studying the group theoretical classification of the solutions of the density functional theory in relativistic framework, we propose quantum electrodynamical density-matrix functional theory (QED-DMFT). QED-DMFT gives the energy as a functional of a local one-body $4\\times4$ matrix $Q(x)\\equiv -$, where $\\psi$ and $\\bar{\\psi}$ are 4-component Dirac field and its Dirac conjugate, respectively. We examine some characters of QED-DMFT. After these preparations, by using Q(x), we classify the solutions of QED-DMFT under O(3) rotation, time reversal and spatial inversion. The behavior of Q(x) under nonrelativistic and ultrarelativistic limits are also presented. Finally, we give plans for several extensions and applications of QED-DMFT.
Quantum Monte Carlo calculations with chiral effective field theory interactions.
Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A
2013-07-19
We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.
Haag's Theorem and Parameterized Quantum Field Theory
Seidewitz, Edwin
2017-01-01
``Haag's theorem is very inconvenient; it means that the interaction picture exists only if there is no interaction''. In traditional quantum field theory (QFT), Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. But the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field, but which must still account for interactions. So, the usual derivation of the scattering matrix in QFT is mathematically ill defined. Nevertheless, perturbative QFT is currently the only practical approach for addressing realistic scattering, and it has been very successful in making empirical predictions. This success can be understood through an alternative derivation of the Dyson series in a covariant formulation of QFT using an invariant, fifth path parameter in addition to the usual four position parameters. The parameterization provides an additional degree of freedom that allows Haag's Theorem to be avoided, permitting the consistent use of a form of interaction picture in deriving the Dyson expansion. The extra symmetry so introduced is then broken by the choice of an interacting vacuum.
Quantum physics, fields and closed timelike curves: The D-CTC condition in quantum field theory
Tolksdorf, Juergen
2016-01-01
The D-CTC condition is a condition originally proposed by David Deutsch as a condition on states of a quantum communication network that contains "backward time-steps" in some of its branches. It has been argued that this is an analogue for quantum processes in the presence of closed timelike curves (CTCs). The unusual properties of states of quantum communication networks that fulfill the D-CTC condition have been discussed extensively in recent literature. In this work, the D-CTC condition is investigated in the framework of quantum field theory in the local, operator-algebraic approach due to Haag and Kastler. It is shown that the D-CTC condition cannot be fulfilled in states which are analytic for the energy, or satisfy the Reeh-Schlieder property, for a certain class of processes and initial conditions. On the other hand, if a quantum field theory admits sufficiently many uncorrelated states across acausally related spacetime regions (as implied by the split property), then the D-CTC condition can always...
Probabilities and Signalling in Quantum Field Theory
Dickinson, Robert; Millington, Peter
2016-01-01
We present an approach to computing probabilities in quantum field theory for a wide class of source-detector models. The approach works directly with probabilities and not with squared matrix elements, and the resulting probabilities can be written in terms of expectation values of nested commutators and anti-commutators. We present results that help in the evaluation of these, including an expression for the vacuum expectation values of general nestings of commutators and anti-commutators in scalar field theory. This approach allows one to see clearly how faster-than-light signalling is prevented, because it leads to a diagrammatic expansion in which the retarded propagator plays a prominent role. We illustrate the formalism using the simple case of the much-studied Fermi two-atom problem.
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
Barrier Li Quantum Dots in Magnetic Fields
Institute of Scientific and Technical Information of China (English)
LIUYi-Min; LIXiao-Zhu; YANWen-Hong; BAOCheng-Guang
2003-01-01
The methods for the few-body system are introduced to investigate the states of the barrier Li quantum dots (QDs) in an arbitrary strength of magnetic field. The configuration, which consists of a positive ion located on the z-axis at a distaneed from the two-dimensional QD plane (the x-y plane) and three electrons in the dot plane bound by the positive ion, is called a barrier Li center. The system, which consists of three electrons in the dot plane bound by the ion,is called a barrier Li QD. The dependence of energy of the state of the barrier Li QD on an external magnetic field B and the distance d is obtained. The angular momentum L of the ground states is found to jump not only with the variation orB but also with d.
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
Wolters, Sander A M
2010-01-01
The aim of this paper is to compare the two topos-theoretic approaches to quantum mechanics that may be found in the literature to date. The first approach, which we will call the contravariant approach, was proposed by Isham and Butterfield, and was later extended by Doering and Isham. The second approach, which we will call the covariant approach, was developed by Heunen, Landsman and Spitters. Motivated by coarse-graining and the Kochen-Specker theorem, the contravariant approach uses the topos of presheaves on a specific context category, defined as the poset of commutative von Neumann subalgebras of some given von Neumann algebra. The intuitionistic logic of this approach is presented by the (complete) Heyting algebra of closed open subobjects of the so-called spectral presheaf. We demonstrate that in a natural way, this Heyting algebra defines a locale, internal to the given presheaf topos. This locale is not regular, which is connected to undesirable properties of the Heyting negation. In the covariant...
Quantum Field Thoery at the Limits
2016-01-01
The Helmholtz International Summer School (HISS) - Dubna International Advanced School of Theoretical Physics (DIAS-TH) "Physics of Heavy Quarks and Hadrons", organized by the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, will be held from 18 to 30 July, 2016 in Dubna. It continues a series of workshops and schools held in Dubna (1993, 1996, 2000, 2002, 2005, 2008, 2013) and Bad Honnef (1994) and Rostock (1997). The School will cover the main topics in heavy flavor physics. It will provide a first hand opportunity to a good number of graduate students and postdocs in high energy physics to hear the latest results on heavy quark physics from all four experimental collaborations at the LHC (ATLAS, CMS, LHCb, ALICE) and from the B-factory at the KEK. Leading experts in this field will read a series of lectures devoted to theoretical analysis of the experimental results. Some lectures will be devoted to strong-field QED and high-intensity plasma physics. The lecture...
Quantum theoretical study of hydrogen under high pressure
Biermann, S
2001-01-01
In the first chapter we will review our knowledge of the phase diagram of hydrogen. Chapter 2 is a summary of the standard density functional and molecular dynamics methods and shows how these are combined in the Car-Parrinello method. Here the nuclei are still treated as classical particles obeying Newtonian mechanics. In chapter 3 we drop this approximation. The path integral description of quantum statistics is added on top of the classical Car-Parrinello method and yields a formalism that includes quantum effects due to the finite de Broglie wavelength of the nuclei. Some technical aspects, namely the parallel implementation of the Path Integral Car-Parrinello (PICP) method, are discussed in chapter 4. In chapter 5 we present the results of our PICP calculations and compare them with prior calculations using the classical Car-Parrinello method as described in chapter 2.
Theoretical Study of Solid State Quantum Information Processing
2013-08-28
Physical Review A, (02 2013): 0. doi: 10.1103/PhysRevA.87.022332 08/28/2013 30.00 Peihao Huang, Xuedong Hu. Spin qubit relaxation in a moving quantum dot, Physical Review B, (08 2013): 0. doi: 10.1103/PhysRevB.88.075301 08/28/2013 29.00 Lukasz Cywinski, Xuedong Hu, S. Das Sarma, Jo-Tzu Hung. Hyperfine interaction induced dephasing of coupled spin qubits in semiconductor double quantum dots, Physical Review B, (08 2013): 0. doi: 10.1103/PhysRevB.88.085314 08/28/2013 28.00 Ting Yu, WenXian Zhang, XueDong Hu,
Field-theoretic calculation of kinetic helicity flux
Indian Academy of Sciences (India)
V Avinash; Mahendra K Verma; Amar K Chandra
2006-02-01
In this paper we apply perturbative field-theoretic technique to helical turbulence. In the inertial range the kinetic helicity flux is found to be constant and forward. The universal constant H appearing in the spectrum of kinetic helicity was found to be 2.47.
Group Theoretical Approach for Controlled Quantum Mechanical Systems
2007-11-06
evolution equation with Hamiltonians which may possess discrete , continuous, and mixed spectrum. For such a quantum system, the Hamiltonian operator...study of classical linear and nonlinear systems, which proves to be very useful in understanding the design problems such as disturbance decoupling...developed by Kunita can then be implemented to establish controllability conditions for the original time-dependent Schrodinger control problem. The end
Spin-Orbit Coupling, Antilocalization, and Parallel Magnetic Fields in Quantum Dots
DEFF Research Database (Denmark)
Zumbuhl, D.; Miller, Jessica; M. Marcus, C.;
2002-01-01
We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak...... localization, consistent with random matrix theory results once orbital coupling of the parallel field is included. In situ control of spin-orbit coupling in dots is demonstrated as a gate-controlled crossover from weak localization to antilocalization....
Theoretical Study of Quantum Bit Rate in Free-Space Quantum Cryptography
Institute of Scientific and Technical Information of China (English)
MA Jing; ZHANG Guang-Yu; TAN Li-Ying
2006-01-01
The quantum bit rate is an important operating parameter in free-space quantum key distribution. We introduce the measuring factor and the sifting factor, and present the expressions of the quantum bit rate based on the ideal single-photon sources and the single-photon sources with Poisson distribution. The quantum bit rate is studied in the numerical simulation for the laser links between a ground station and a satellite in a low earth orbit. The results show that it is feasible to implement quantum key distribution between a ground station and a satellite in a low earth orbit.
Quantum and classical statistics of the electromagnetic zero-point field
Ibison, M
1996-01-01
A classical electromagnetic zero-point field (ZPF) analogue of the vacuum of quantum field theory has formed the basis for theoretical investigations in the discipline known as random or stochastic electrodynamics (SED) wherein quantum measurements are imitated by the introduction of a stochastic classical background EM field. Random EM fluctuations are assumed to provide perturbations which can mimic some quantum phenomena while retaining a purely classical basis, e.g. the Casimir force, the Van-der-Waals force, the Lamb shift, spontaneous emission, the RMS radius of the harmonic oscillator, and the radius of the Bohr atom. This classical ZPF is represented as a homogeneous, isotropic ensemble of plane waves with fixed amplitudes and random phases. Averaging over the random phases is assumed to be equivalent to taking the ground-state expectation values of the corresponding quantum operator. We demonstrate that this is not precisely correct by examining the statistics of the classical ZPF in contrast to that...
Present and future particle colliders are able to measure fundamental scattering reactions with unprecedent experimental precision. Interpretation of these high-quality data demands an equally high theoretical precison, which is acheived through radiative corrections in quantum field theory. The symposium will especially focus precision physics in the upcoming CERN LHC era.
On the binding energies of excitons in polar quantum well structures in a weak electric field
Institute of Scientific and Technical Information of China (English)
Wu Yun-Feng; Liang Xi-Xia; K. K. Bajaj
2005-01-01
The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies and corresponding Stark shifts for Ⅲ-Ⅴ and Ⅱ-Ⅵ compound semiconductor quantum well structures have been numerically computed.The results for GaAs/AlGaAs and ZnCdSe/ZnSe quantum wells are given and discussed. Theoretical results show that the exciton-phonon coupling reduces both the exciton binding energies and the Stark shifts by screening the Coulomb interaction. This effect is observable experimentally and cannot be neglected.
Electromagnetic fields on a quantum scale. I.
Grimes, Dale M; Grimes, Craig A
2002-10-01
This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.
Effective and fundamental quantum fields at criticality
Energy Technology Data Exchange (ETDEWEB)
Scherer, Michael
2010-10-28
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
The $\\hbar$ Expansion in Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Hoyer, Paul; /Southern Denmark U., CP3-Origins /Helsinki U. /Helsinki Inst. of Phys.
2010-10-27
We show how expansions in powers of Planck's constant {h_bar} = h = 2{pi} can give new insights into perturbative and nonperturbative properties of quantum field theories. Since {h_bar} is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the {h_bar} expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of {h_bar}. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of {h_bar}, then each loop in perturbation theory brings a factor of {h_bar}. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in {h_bar}. The connection between the number of loops and factors of {h_bar} is more subtle for bound states since the binding energies and bound-state momenta themselves scale with {h_bar}. The {h_bar} expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in {h_bar} and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.
Protected gates for topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Beverland, Michael E.; Pastawski, Fernando; Preskill, John [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Buerschaper, Oliver [Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin (Germany); Koenig, Robert [Institute for Advanced Study and Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Sijher, Sumit [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)
2016-02-15
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study
Directory of Open Access Journals (Sweden)
Stephan Michael
2016-05-01
Full Text Available In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. Here, we study the influence of two important quantum-dot material parameters, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. However, by minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.
Excitons and trions in single and vertically coupled quantum dots under an electric field
Zhai, Li-Xue; Wang, Yan; An, Zhong
2017-08-01
We present a theoretical study of the exciton (X0), the positive and negative trions (X+ and X-) in single and vertically coupled configurations of self-assembled InGaAs quantum dots under an electric field. The quantum states of X0, X+ and X- have been investigated using a quasi-one-dimensional (Q1D) model within the effective-mass approximation. For the single quantum dots, the electric-field dependent energy levels and the average inter-particle distances for the exciton and trions have been calculated. For the coupled quantum dots, the ground and the excited states for X0, X+ and X- have also been calculated and discussed. It is found that either the hole or the electron can be tuned into resonance states by the electric field and that the transition energy spectra for both trions consequently show crossing and anticrossing patterns. The recombination probabilities of the exciton and trion optical transitions are also calculated. The theoretical results have been compared with previously reported photoluminescence data and qualitative agreement is obtained. The trion conditional wave functions are also plotted under different electric field intensities, and it is found that a molecular orbital can be formed at a critical electric field intensity. The evolution of the energy levels of the trions in coupled quantum dots can be explained by the interplay of particle transfer and the electric field.
Confined excitons in a semiconductor quantum dot in a magnetic field
Nomura, Shintaro; Segawa, Yusaburo; Kobayashi, Takayoshi
1994-05-01
Magnetic field effects in a semiconductor quantum dot (QD) are studied theoretically. Magneto-optical effects originating from electron-hole pairs in the lowest and the higher excited states are discussed. The theory is based on the effective-mass approximation with the following effects taken into account: the direct Coulomb interaction, the electron-hole exchange interaction, and the valence-band mixing effect. A calculation is performed with a numerical diagonalization method. The transition from the quantum confined Zeeman effect for a weak magnetic field to the quantum confined Paschen-Back effect for a strong magnetic field is discussed. Special attention is paid to a magnetic field dependence of the optical transition probabilities which is found to be a pronounced effect for a CdSe QD, where the confinement by a potential and a magnetic field have competing contributions.
Theoretical Studies of the Optoelectronic Properties of Semiconductor Quantum Wells.
Chao, Calvin Yi-Ping
The valence-band structure of a semiconductor quantum well is calculated based on the multiband effective -mass theory. A unitary transformation is found to diagonalize the six-by-six Luttinger-Kohn Hamiltonian into two three -by-three blocks, making the computation more efficient. With this new formulation, the effect of strain on the band structure is studied systematically for both the compressional and tensile strain. The importance of the coupling between the heavy-hole, light-hole bands and the spin-orbit split -off bands is especially pointed out. The resonant tunneling of holes through a double -barrier structure is investigated using a transfer-matrix technique. It is shown that the strong mixing between the heavy holes and the light holes results in a totally different I-V characteristic from that predicted previously by the parabolic-band model. The exciton equation in momentum space is solved by using a modified Gaussian quadrature method. The exact solutions for a pure-two-dimensional exciton are derived by means of the Mehler-Fock transform, and the accuracy of the quadrature method is checked by comparing the numerical solutions against the exact solutions. A complete theory for quantum-well excitons is developed taking into account the effects of the valence -band mixing and the intersubband Coulomb interaction. Optical absorption spectra are calculated and compared to experimental data. The comparison demonstrates that the theory explains very well the quantum-confined Stark effect, the polarization selection rule, the coupling between the interwell and intrawell excitons in a multiwell structure, and the anticrossing between the ground state of a light-hole exciton and the excited state of a heavy-hole exciton observed experimentally.
The universality question for noncommutative quantum field theory
Schlesinger, K G
2006-01-01
Present day physics rests on two main pillars: General relativity and quantum field theory. We discuss the deep and at the same time problematic interplay between these two theories. Based on an argument by Doplicher, Fredenhagen, and Roberts, we propose a possible universality property for noncommutative quantum field theory in the sense that any theory of quantum gravity should involve quantum field theories on noncommutative space-times as a special limit. We propose a mathematical framework to investigate such a universality property and start the discussion of its mathematical properties. The question of its connection to string theory could be a starting point for a new perspective on string theory.
2012-01-01
The question of how irreversibility can emerge as a generic phenomena when the underlying mechanical theory is reversible has been a long-standing fundamental problem for both classical and quantum mechanics. We describe a mechanism for the appearance of irreversibility that applies to coherent, isolated systems in a pure quantum state. This equilibration mechanism requires only an assumption of sufficiently complex internal dynamics and natural information-theoretic constraints arising from ...
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ =6 , I obtain results that are consistent with the mean-field theory. For λ =4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ >5 , but it continuously deviates from the mean-field theory as λ becomes smaller.
Spin Quantum Beats in InP Quantum Dots in a Magnetic Field
2001-06-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013252 TITLE: Spin Quantum Beats in InP Quantum Dots in a Magnetic Field...Technology" SRPN.05 St Petersburg, Russia, June 18-22, 2001 (0 2001 loffe Institute Spin quantum beats in InP quantum dots in a magnetic field L A... quantum dots . A detailed description of the structure is given in [ ]. The luminescence was excited by 3 ps pulses of a Ti:sapphire laser, 40 meV above
Group Field Theory and Loop Quantum Gravity
Oriti, Daniele
The following sections are included: * GFT from LQG Perspective: The Underlying Ideas * GFT Kinematics: Hilbert Space and Observables * The Quantum Dynamics * The Continuum Limit of Quantum Geometry in GFT * Extracting Effective Continuum Physics from GFTs * Conclusions * References
Quantum reduced loop gravity: extension to gauge vector field
Bilski, Jakub; Cianfrani, Francesco; Donà, Pietro; Marciano, Antonino
2016-01-01
Within the framework of Quantum Reduced Loop Gravity we quantize the Hamiltonian for a gauge vector field. The regularization can be performed using tools analogous to the ones adopted in full Loop Quantum Gravity, while the matrix elements of the resulting operator between basis states are analytic coefficients. This analysis is the first step towards deriving the full quantum gravity corrections to the vector field semiclassical dynamics.
Lectures on algebraic quantum field theory and operator algebras
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Berlin Univ. (Germany). Institut fuer Theoretische Physik. E-mail: schroer@cbpf.br
2001-04-01
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
Quantum tunneling and field electron emission theories
Liang, Shi-Dong
2013-01-01
Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f
Euclidean Quantum Field Theory on Commutative and Noncommutative Spaces
Wulkenhaar, R.
I give an introduction to Euclidean quantum field theory from the point of view of statistical physics, with emphasis both on Feynman graphs and on the Wilson-Polchinski approach to renormalisation. In the second part I discuss attempts to renormalise quantum field theories on noncommutative spaces.
From Scalar Field Theories to Supersymmetric Quantum Mechanics
Bazeia, D
2016-01-01
In this work we report a new result that appears when one investigates the route that starts from a scalar field theory and ends on a supersymmetric quantum mechanics. The subject has been studied before in several distinct ways and here we unveil an interesting novelty, showing that the same scalar field model may describe distinct quantum mechanical problems.
CPT/Lorentz Invariance Violation and Quantum Field Theory
Arias, P; Gamboa-Rios, J; López-Sarrion, J; Méndez, F; Arias, Paola; Das, Ashok; Gamboa, Jorge; Lopez-Sarrion, Justo; Mendez, Fernando
2006-01-01
Analogies between the noncommutative harmonic oscillator and noncommutative fields are analyzed. Following this analogy we construct examples of quantum fields theories with explicit CPT and Lorentz symmetry breaking. Some applications to baryogenesis and neutrino oscillation are also discussed
Quantum radiation produced by the entanglement of quantum fields
Iso, Satoshi; Tatsukawa, Rumi; Yamamoto, Kazuhiro; Zhang, Sen
2016-01-01
We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006)]. We infer that this quantum radiation from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state, which has its origin in the entanglement of the state between the left and the right Rindler wedges.
On the Notion of Truth in Quantum Mechanics: a Category-Theoretic Standpoint
Karakostas, Vassilios; Zafiris, Elias
The category-theoretic representation of quantum event structures provides a canonical setting for confronting the fundamental problem of truth valuation in quantum mechanics as exemplified, in particular, by Kochen-Specker's theorem. In the present study, this is realized on the basis of the existence of a categorical adjunction between the category of sheaves of variable local Boolean frames, constituting a topos, and the category of quantum event algebras. We show explicitly that the latter category is equipped with an object of truth values, or classifying object, which constitutes the appropriate tool for assigning truth values to propositions describing the behavior of quantum systems. Effectively, this category-theoretic representation scheme circumvents consistently the semantic ambiguity with respect to truth valuation that is inherent in conventional quantum mechanics by inducing an objective contextual account of truth in the quantum domain of discourse. The philosophical implications of the resulting account are analyzed. We argue that it subscribes neither to a pragmatic instrumental nor to a relative notion of truth. Such an account essentially denies that there can be a universal context of reference or an Archimedean standpoint from which to evaluate logically the totality of facts of nature. In this light, the transcendence condition of the usual conception of correspondence truth is superseded by a reflective-like transcendental reasoning of the proposed account of truth that is suitable to the quantum domain of discourse.
Mass renormalization and binding energies in quantum field theory
Lv, Q. Z.; Stefanovich, E.; Su, Q.; Grobe, R.
2017-10-01
We compare the predictions of two methods of determining the amount of binding energy between two distinguishable fermions that interact with each other through force-intermediating bosons. Both measures try to quantify this binding energy by the downward shift of the fully interacting two-fermion ground state energy relative to the sum of the corresponding two single-particle ground state energies. The first method computes this energy difference directly from the standard quantum field theoretical Hamiltonian. The second method uses the mass renormalized form of this Hamiltonian. In order to have a concrete example for this comparison, we employ a simple Yukawa-like model system in one spatial dimension. We find that both approaches lead to identical predictions in the second and fourth order perturbation of the coupling constant, and they remain remarkably close even in the strong coupling domain where perturbation theory diverges. This illustrates that there are field theoretical systems for which rather accurate binding energies can be obtained even without the mass renormalization procedure.
Institute of Scientific and Technical Information of China (English)
Jia Bo-Yong; Yu Zhong-Yuan; Liu Yu-Min; Han Li-Hong; Yao Wen-Jie; Feng Hao; Ye Han
2011-01-01
Electronic structures of the artificial molecule comprising two truncated pyramidal quantum dots vertically coupled and embedded in the matrix are theoretically analysed via the finite element method. When the quantum dots are completely aligned, the electron energy levels decrease with the horizontally applied electric field. However, energy levels may have the maxima at non-zero electric field if the dots are staggered by a distance of several nanometers in the same direction of the electric field. In addition to shifting the energy levels, the electric field can also manipulate the electron wavefunctions confined in the quantum dots, in company with the non-perfect alignment.
Quantum Field Theory on Pseudo-Complex Spacetime
Schuller, F P; Grimm, T W; Schuller, Frederic P.; Wohlfarth, Mattias N.R.; Grimm, Thomas W.
2003-01-01
The pseudo-complex Poincare group encodes both a universal speed and a maximal acceleration, which can be viewed as the kinematics of Born-Infeld electrodynamics. The irreducible representations of this group are constructed, providing the particle spectrum of a relativistic quantum theory that also respects a maximal acceleration. One finds that each standard relativistic particle is associated with a 'pseudo'-partner of equal spin but generically different mass. These pseudo-partners act as Pauli-Villars regulators for the other member of the doublet, as is found from the explicit construction of quantum field theory on pseudo-complex spacetime. Conversely, a Pauli-Villars regularised quantum field theory on real spacetime possesses a field phase space with integrable pseudo-complex structure, which gives rise to a quantum field theory on pseudo-complex spacetime. This equivalence between (i) maximal acceleration kinematics, (ii) pseudo-complex quantum field theory, and (iii) Pauli-Villars regularisation ri...
PREFACE: Particles and Fields: Classical and Quantum
Asorey, M.; Clemente-Gallardo, J.; Marmo, G.
2007-07-01
This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee George Sudarshan International Advisory Committee A. Ashtekhar (Pennsylvania State University, USA) L. J. Boya (Universidad de Zaragoza, Spain) I. Cirac (Max Planck Institute, Garching, Germany) G. F. Dell Antonio (Universitá di Roma La Sapienza, Italy) A. Galindo (Universidad Complutense de Madrid, Spain) S. L. Glashow (Boston University
Entanglement negativity in quantum field theory.
Calabrese, Pasquale; Cardy, John; Tonni, Erik
2012-09-28
We develop a systematic method to extract the negativity in the ground state of a 1+1 dimensional relativistic quantum field theory, using a path integral formalism to construct the partial transpose ρ(A)(T(2) of the reduced density matrix of a subsystem [formula: see text], and introducing a replica approach to obtain its trace norm which gives the logarithmic negativity E=ln//ρ(A)(T(2))//. This is shown to reproduce standard results for a pure state. We then apply this method to conformal field theories, deriving the result E~(c/4)ln[ℓ(1)ℓ(2)/(ℓ(1)+ℓ(2))] for the case of two adjacent intervals of lengths ℓ(1), ℓ(2) in an infinite system, where c is the central charge. For two disjoint intervals it depends only on the harmonic ratio of the four end points and so is manifestly scale invariant. We check our findings against exact numerical results in the harmonic chain.
Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology
Barvinsky, A. O.
2014-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining...
The Evolution of Quantum Field Theory, From QED to Grand Unification
Hooft, Gerard 't
2016-01-01
In the early 1970s, after a slow start, and lots of hurdles, Quantum Field Theory emerged as the superior doctrine for understanding the interactions between relativistic sub-atomic particles. After the conditions for a relativistic field theoretical model to be renormalizable were established, there were two other developments that quickly accelerated acceptance of this approach: first the Brout-Englert-Higgs mechanism, and then asymptotic freedom. Together, these gave us a complete understanding of the perturbative sector of the theory, enough to give us a detailed picture of what is now usually called the Standard Model. Crucial for this understanding were the strong indications and encouragements provided by numerous experimental findings. Subsequently, non-perturbative features of the quantum field theories were addressed, and the first proposals for completely unified quantum field theories were launched. Since the use of continuous symmetries of all sorts, together with other topics of advanced mathema...
Tesch, Carmen M; de Vivie-Riedle, Regina
2004-12-22
The phase of quantum gates is one key issue for the implementation of quantum algorithms. In this paper we first investigate the phase evolution of global molecular quantum gates, which are realized by optimally shaped femtosecond laser pulses. The specific laser fields are calculated using the multitarget optimal control algorithm, our modification of the optimal control theory relevant for application in quantum computing. As qubit system we use vibrational modes of polyatomic molecules, here the two IR-active modes of acetylene. Exemplarily, we present our results for a Pi gate, which shows a strong dependence on the phase, leading to a significant decrease in quantum yield. To correct for this unwanted behavior we include pressure on the quantum phase in our multitarget approach. In addition the accuracy of these phase corrected global quantum gates is enhanced. Furthermore we could show that in our molecular approach phase corrected quantum gates and basis set independence are directly linked. Basis set independence is also another property highly required for the performance of quantum algorithms. By realizing the Deutsch-Jozsa algorithm in our two qubit molecular model system, we demonstrate the good performance of our phase corrected and basis set independent quantum gates.
Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation
Lee, Jonghoon; Popov, Yuri O.; Fredrickson, Glenn H.
2008-06-01
Using the complex Langevin sampling strategy, field theoretic simulations are performed to study the equilibrium phase behavior and structure of symmetric polycation-polyanion mixtures without salt in good solvents. Static structure factors for the segment density and charge density are calculated and used to study the role of fluctuations in the electrostatic and chemical potential fields beyond the random phase approximation. We specifically focus on the role of charge density and molecular weight on the structure and complexation behavior of polycation-polyanion solutions. A demixing phase transition to form a ``complex coacervate'' is observed in strongly charged systems, and the corresponding spinodal and binodal boundaries of the phase diagram are investigated.
Generating nonclassical quantum input field states with modulating filters
Energy Technology Data Exchange (ETDEWEB)
Gough, John E. [Aberystwyth University, Department of Physics, Aberystwyth, Wales (United Kingdom); Zhang, Guofeng [The Hong Kong Polytechnic University, Department of Applied Mathematics, Hong Kong (China)
2015-12-15
We give explicit constructions of quantum dynamical filters which generate nonclassical states (coherent states, cat states, shaped single and multi-photon states) of quantum optical fields as inputs to general quantum Markov systems. The filters will be quantum harmonic oscillators damped by the input fields, and we exploit the fact that the cascaded filter and system will have a Lindbladian that is naturally Wick-ordered in the filter modes. In particular the initialization of the modulating filter will determine the signal state generated. (orig.)
Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach
Borrelli, Raffaele; Gelin, Maxim F.
2016-12-01
Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.
DEFF Research Database (Denmark)
Poel, Mike van der; Gehrig, Edeltraud; Hess, Ortwin;
2005-01-01
Ultrafast gain dynamics in an optical amplifier with an active layer of self-organized quantum dots (QDs) emitting near 1.3$muhbox m$is characterized experimentally in a pump-probe experiment and modeled theoretically on the basis of QD Maxwell–Bloch equations. Experiment and theory are in good...
Physics in one dimension: theoretical concepts for quantum many-body systems.
Schönhammer, K
2013-01-09
Various sophisticated approximation methods exist for the description of quantum many-body systems. It was realized early on that the theoretical description can simplify considerably in one-dimensional systems and various exact solutions exist. The focus in this introductory paper is on fermionic systems and the emergence of the Luttinger liquid concept.
Quantum Gravity Effects in Scalar, Vector and Tensor Field Propagation
Dutta, Anindita
Quantum theory of gravity deals with the physics of the gravitational field at Planck length scale (10-35 m). Even though it is experimentally hard to reach the Planck length scale, on can look for evidence of quantum gravity that is detectable in astrophysics. In this thesis, we try to find effects of loop quantum gravity corrections on observable phenomena. We show that the quantum fluctuation strain for LIGO data would be 10 -125 on the Earth. Th correction is, however, substantial near the black hole horizon. We discuss the effect of this for scalar field propagation followed by vector and tensor fields. For the scalar field, the correction introduces a new asymmetry; for the vector field, we found a new perturbation solution and for the tensor field, we found the corrected Einstein equations which are yet to solve. These will affect phenomena like Hawking radiation, black hole entropy and gravitational waves.
Bridging global and local quantum quenches in conformal field theories
Wen, Xueda
2016-01-01
Entanglement evolutions after a global quantum quench and a local quantum quench in 1+1 dimensional conformal field theories (CFTs) show qualitatively different behaviors, and are studied within two different setups. In this work, we bridge global and local quantum quenches in (1+1)-d CFTs in the same setup, by studying the entanglement evolution from a specific inhomogeneous initial state. By utilizing conformal mappings, this inhomogeneous quantum quench is analytically solvable. It is found that the entanglement evolution shows a global quantum quench feature in the short time limit, and a local quantum quench feature in the long time limit. The same features are observed in single-point correlation functions of primary fields. We provide a clear physical picture for the underlying reason.
Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
Kilina, Svetlana V; Tamukong, Patrick K; Kilin, Dmitri S
2016-10-18
Colloidal quantum dots (QDs) are near-ideal nanomaterials for energy conversion and lighting technologies. However, their photophysics exhibits supreme sensitivity to surface passivation and defects, of which control is problematic. The role of passivating ligands in photodynamics remains questionable and is a focus of ongoing research. The optically forbidden nature of surface-associated states makes direct measurements on them challenging. Therefore, computational modeling is imperative for insights into surface passivation and its impact on light-driven processes in QDs. This Account discusses challenges and recent progress in understanding surface effects on the photophysics of QDs addressed via quantum-chemical calculations. We overview different methods, including the effective mass approximation (EMA), time-dependent density functional theory (TDDFT), and multiconfiguration approaches, considering their strengths and weaknesses relevant to modeling of QDs with a complicated surface. We focus on CdSe, PbSe, and Si QDs, where calculations successfully explain experimental trends sensitive to surface defects, doping, and ligands. We show that the EMA accurately describes both linear and nonlinear optical properties of large-sized CdSe QDs (>2.5 nm), while TDDFT is required for smaller QDs where surface effects dominate. Both approaches confirm efficient two-photon absorption enabling applications of QDs as nonlinear optical materials. TDDFT also describes the effects of morphology on the optical response of QDs: the photophysics of stoichiometric, magic-sized XnYn (X = Cd, Pb; Y = S, Se) QDs is less sensitive to their passivation compared with nonstoichiometric Xn≠mYm QDs. In the latter, surface-driven optically inactive midgap states can be eliminated by anionic ligands, explaining the better emission of metal-enriched QDs compared with nonmetal-enriched QDs. Ideal passivation of magic-sized QDs by amines and phosphine oxides leaves lower-energy transitions
Temperatures of renormalizable quantum field theories in curved spacetime
Lynch, Morgan H
2016-01-01
We compute the instantaneous temperature registered by an Unruh-DeWitt detector coupled to a Hadamard renormalizable massless quantum field in a generic state, which is moving along an accelerated trajectory in curved spacetime. The general expression for the temperature depends on the 4-acceleration, Raychaudhuri scalar, and renormalized field polarization. We can further find a novel constraint on the renormalized quantum field polarization in relativistic systems in global thermal equilibrium.
Quantum Wells, Wires and Dots Theoretical and Computational Physics of Semiconductor Nanostructures
Harrison, Paul
2011-01-01
Quantum Wells, Wires and Dots, 3rd Edition is aimed at providing all the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. Completely revised and updated, this text is designed to lead the reader through a series of simple theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their
Continuum regularization of quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bern, Z.
1986-04-01
Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.
Simple theoretical analysis of the Einstein’s photoemission from quantum confined superlattices
Pahari, S.; Bhattacharya, S.; Roy, S.; Saha, A.; De, D.; Ghatak, K. P.
2009-11-01
In this paper, we study the Einstein's photoemission from III-V, II-VI, IV-VI and HgTe/CdTe quantum well superlattices (QWSLs) with graded interfaces and quantum well effective mass superlattices in the presence of a quantizing magnetic field on the basis of newly formulated dispersion relations in the respective cases. Besides, the same has been studied from the afore-mentioned quantum dot superlattices and it appears that the photoemission oscillates with increasing carrier degeneracy and quantizing magnetic field in different manners. In addition, the photoemission oscillates with film thickness and increasing photon energy in quantum steps together with the fact that the solution of the Boltzmann transport equation will introduce new physical ideas and new experimental findings under different external conditions. The influence of band structure is apparent from all the figures and we have suggested three applications of the analyses of this paper in the fields of superlattices and microstructures.
Spin network quantum simulator
Energy Technology Data Exchange (ETDEWEB)
Marzuoli, Annalisa; Rasetti, Mario
2002-12-30
We propose a general setting for a universal representation of the quantum structure on which quantum information stands, whose dynamical evolution (information manipulation) is based on angular momentum recoupling theory. Such scheme complies with the notion of 'quantum simulator' in the sense of Feynman, and is shown to be related with the topological quantum field theoretical approach to quantum computation.
An implementation problem for boson fields and quantum Girsanov transform
Ji, Un Cig; Obata, Nobuaki
2016-08-01
We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier-Gauss and Fourier-Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.
Vertically coupled double quantum rings at zero magnetic field
Malet i Giralt, Francesc; Barranco Gómez, Manuel; Lipparini, Enrico; Mayol Sánchez, Ricardo; Pi Pericay, Martí; Climente, J. I.; Planelles, Josep
2006-01-01
Within local-spin-density functional theory, we have investigated the `dissociation' of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of inter-ring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble thos...
Motivating quantum field theory: the boosted particle in a box
Vutha, Amar C
2013-01-01
It is a maxim often stated, yet rarely illustrated, that the combination of special relativity and quantum mechanics necessarily leads to quantum field theory. An elementary illustration is provided, using the familiar particle in a box, boosted to relativistic speeds. It is shown that quantum fluctuations of momentum lead to energy fluctuations, that are inexplicable without a framework that endows the vacuum with dynamical degrees of freedom and allows particle creation/annihilation.
An implementation problem for boson fields and quantum Girsanov transform
Energy Technology Data Exchange (ETDEWEB)
Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Obata, Nobuaki, E-mail: obata@math.is.tohoku.ac.jp [Graduate School of Information Sciences, Tohoku University, Sendai 980-8579 (Japan)
2016-08-15
We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.
Euclidean quantum field theory: Curved spacetimes and gauge fields
Ritter, William Gordon
This thesis presents a new formulation of quantum field theory (QFT) on curved spacetimes, with definite advantages over previous formulations, and an introduction to the millennium prize problem on four-dimensional gauge theory. Our constructions are completely rigorous, making QFT on curved spacetimes into a subfield of mathematics, and we achieve the first analytic control over nonperturbative aspects of interacting theories on curved spacetimes. The success of Euclidean path integrals to capture nonperturbative aspects of QFT has been striking. The Euclidean path integral is the most accurate method of calculating strong-coupling effects in gauge theory (such as glueball masses). Euclidean methods are also useful in the study of black holes, as evidenced by the Hartle-Hawking calculation of black-hole radiance. From a mathematical point of view, on flat spacetimes the Euclidean functional integral provides the most elegant method of constructing examples of interacting relativistic field theories. Yet until now, the incredibly-useful Euclidean path integral had never been given a definitive mathematical treatment on curved backgrounds. It is our aim to rectify this situation. Along the way, we discover that the Dirac operator on an arbitrary Clifford bundle has a resolvent kernel which is the Laplace transform of a positive measure. In studying spacetime symmetries, we discover a new way of constructing unitary representations of noncompact Lie groups. We also define and explore an interesting notion of convergence for Laplacians. The same mathematical framework applies to scalar fields, fermions, and gauge fields. The later chapters are devoted to gauge theory. We present a rigorous, self-contained introduction to the subject, aimed at mathematicians and using the language of modern mathematics, with a view towards nonperturbative renormalization in four dimensions. The latter ideas are unfinished. A completion of the final chapter would imply the construction
Field-Theoretic Studies of Nanostructured Triblock Polyelectrolyte Gels
Audus, Debra; Fredrickson, Glenn
2012-02-01
Recently, experimentalists have developed nanostructured, reversible gels formed from triblock polyelectrolytes (Hunt et al. 2011, Lemmers et al. 2010, 2011). These gels have fascinating and tunable properties that reflect a heterogeneous morphology with domains on the order of tens of nanometers. The complex coacervate domains, aggregated oppositely charged end-blocks, are embedded in a continuous aqueous matrix and are bridged by uncharged, hydrophilic polymer mid-blocks. We report on simulation studies that employ statistical field theory models of triblock polyelectrolytes, and we explore the equilibrium self-assembly of these remarkable systems. As the charge complexation responsible for the formation of coacervate domains is driven by electrostatic correlations, we have found it necessary to pursue full ``field-theoretic simulations'' of the models, as opposed to the familiar self-consistent field theory approach. Our investigations have focused on morphological trends with mid- and end-block lengths, polymer concentration, salt concentration and charge density.
Baumann, Gerd
2005-01-01
Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...
Young's Double Slit Experiment in Quantum Field Theory
Kenmoku, Masakatsu
2011-01-01
Young's double slit experiment is formulated in the framework of canonical quantum field theory in view of the modern quantum optics. We adopt quantum scalar fields instead of quantum electromagnetic fields ignoring the vector freedom in gauge theory. The double slit state is introduced in Fock space corresponding to experimental setup. As observables, expectation values of energy density and positive frequency part of current with respect to the double slit state are calculated which give the interference term. Classical wave states are realized by coherent double slit states in Fock space which connect quantum particle states with classical wave states systematically. In case of incoherent sources, the interference term vanishes by averaging random phase angles as expected.
Quantum field theory in curved spacetime and black hole thermodynamics
Wald, Robert M
1994-01-01
In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum f...
High-field spin dynamics of antiferromagnetic quantum spin chains
DEFF Research Database (Denmark)
Enderle, M.; Regnault, L.P.; Broholm, C.;
2000-01-01
The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory
Is there a "most perfect fluid" consistent with quantum field theory?
Cohen, Thomas D
2007-07-13
It was recently conjectured that the ratio of the shear viscosity to entropy density eta/s for any fluid always exceeds [formula: see text]. A theoretical counterexample to this bound can be constructed from a nonrelativistic gas by increasing the number of species in the fluid while keeping the dynamics essentially independent of the species type. The question of whether the underlying structure of relativistic quantum field theory generically inhibits the realization of such a system and thereby preserves the possibility of a universal bound is considered here. Using rather conservative assumptions, it is shown here that a metastable gas of heavy mesons in a particular controlled regime of QCD provides a realization of the counterexample and is consistent with a well-defined underlying relativistic quantum field theory. Thus, quantum field theory appears to impose no lower bound on eta/s, at least for metastable fluids.
Experimenting with Quantum Fields in Curved Spacetime in the Lab
Prémont-Schwarz, Isabeau
2011-01-01
In this paper we will investigate how one can create emergent curved spacetimes by locally tuning the coupling constants of condensed matter systems. In the continuum limit we thus obtain continuous effective quantum fields living on curved spacetimes. In particular, using Stingnet condensates we can obtain effective electromagnetism. We will show for example how we obtain quantum electrodynamics in a blackhole (Schwarzschild) spacetime.
Auxiliary-field quantum Monte Carlo methods in nuclei
Alhassid, Y
2016-01-01
Auxiliary-field quantum Monte Carlo methods enable the calculation of thermal and ground state properties of correlated quantum many-body systems in model spaces that are many orders of magnitude larger than those that can be treated by conventional diagonalization methods. We review recent developments and applications of these methods in nuclei using the framework of the configuration-interaction shell model.
Quantum Dynamics of Biological Plasma in the External Coulomb Field
Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.
2013-10-01
A quantum solution to the truncated Fisher-Kolmogorov-Petrovskii-Piskunov equation with Coulomb convection and linear diffusion is derived. The quantum radiation of biological systems, individual microorganisms (cells, bacteria), and dust plasma particles in the Coulomb field is studied using the foregoing solution.
Quantum field theory II introductions to quantum gravity, supersymmetry and string theory
Manoukian, Edouard B
2016-01-01
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...
Theoretical study of phosphorene tunneling field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Chang, Jiwon; Hobbs, Chris [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)
2015-02-23
In this work, device performances of tunneling field effect transistors (TFETs) based on phosphorene are explored via self-consistent atomistic quantum transport simulations. Phosphorene is an ultra-thin two-dimensional (2-D) material with a direct band gap suitable for TFETs applications. Our simulation shows that phosphorene TFETs exhibit subthreshold slope below 60 mV/dec and a wide range of on-current depending on the transport direction due to highly anisotropic band structures of phosphorene. By benchmarking with monolayer MoTe{sub 2} TFETs, we predict that phosphorene TFETs oriented in the small effective mass direction can yield much larger on-current at the same on-current/off-current ratio than monolayer MoTe{sub 2} TFETs. It is also observed that a gate underlap structure is required for scaling down phosphorene TFETs in the small effective mass direction to suppress the source-to-drain direct tunneling leakage current.
Yuan, Jian-Hui; Chen, Ni; Zhang, Yan; Mo, Hua; Zhang, Zhi-Hai
2016-03-01
Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.
Avoiding Haag's Theorem with Parameterized Quantum Field Theory
Seidewitz, Ed
2017-03-01
Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that Haag's Theorem can be avoided when quantum field theory is formulated using an invariant, fifth path parameter in addition to the usual four position parameters, such that the Dyson perturbation expansion for the scattering matrix can still be reproduced. As a result, the parameterized formalism provides a consistent foundation for the interpretation of quantum field theory as used in practice and, perhaps, for better dealing with other mathematical issues.
Field-theoretic simulations of random copolymers with structural rigidity.
Mao, Shifan; MacPherson, Quinn; Qin, Jian; Spakowitz, Andrew J
2017-04-12
Copolymers play an important role in a range of soft-materials applications and biological phenomena. Prevalent works on block copolymer phase behavior use flexible chain models and incorporate interactions using a mean-field approximation. However, when phase separation takes place on length scales comparable to a few monomers, the structural rigidity of the monomers becomes important. In addition, concentration fluctuations become significant at short length scales, rendering the mean-field approximation invalid. In this work, we use simulation to address the role of finite monomer rigidity and concentration fluctuations in microphase segregation of random copolymers. Using a field-theoretic Monte-Carlo simulation of semiflexible polymers with random chemical sequences, we generate phase diagrams for random copolymers. We find that the melt morphology of random copolymers strongly depends on chain flexibility and chemical sequence correlation. Chemically anti-correlated copolymers undergo first-order phase transitions to local lamellar structures. With increasing degree of chemical correlation, this first-order phase transition is softened, and melts form microphases with irregular shaped domains. Our simulations in the homogeneous phase exhibit agreement with the density-density correlation from mean-field theory. However, conditions near a phase transition result in deviations between simulation and mean-field theory for the density-density correlation and the critical wavemode. Chain rigidity and sequence randomness lead to frustration in the segregated phase, introducing heterogeneity in the resulting morphologies.
PT-Symmetric Quantum Field Theory
Milton, K A
2003-01-01
In the context of the PT-symmetric version of quantum electrodynamics, it is argued that the C operator introduced in order to define a unitary inner product has nothing to do with charge conjugation.
Combinatorial Hopf Algebras in (Noncommutative) Quantum Field Theory
Tanasa, Adrian
2010-01-01
We briefly review the r\\^ole played by algebraic structures like combinatorial Hopf algebras in the renormalizability of (noncommutative) quantum field theory. After sketching the commutative case, we analyze the noncommutative Grosse-Wulkenhaar model.
Aspects of quantum field theory in curved space-time
Fulling, Stephen A
1989-01-01
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology
New Initial Conditions for Quantum Field Simulations after a Quench
Salle, M; Vink, Jeroen C
2002-01-01
We investigate a new way of using the quantum fluctuations in the vacuum as initial conditions for subsequent classical field dynamics. This method avoids problems with renormalization and leads to better thermalization.
Advancements in the Field of Quantum Dots
Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.
2012-08-01
Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.
Maier-Saupe nematogenic fluid: field theoretical approach
Directory of Open Access Journals (Sweden)
M. Holovko
2011-09-01
Full Text Available We adopt a field theoretical approach to study the structure and thermodynamics of a homogeneous Maier-Saupe nematogenic fluid interacting with anisotropic Yukawa potential. In the mean field approximation we retrieve the standard Maier-Saupe theory for liquid crystals. In this theory the density is expressed via the second order Legendre polynomial of molecule orientations. In the Gaussian approximation we obtain analytical expressions for the correlation functions, the elasticity constant, the free energy, the pressure, and the chemical potential. We also use Ward symmetry identities to set a simple condition for the correlation functions. Subsequently we find corrections due to fluctuations and show that density now contains Legendre polynomials of higher orders.
A field theoretical prediction of the tropical cyclone properties
Spineanu, Florin
2013-01-01
The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization, an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose - Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all co...
Khrennikov, Andrei
2017-02-01
The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations.
Illustrating the quantum approach with an Earth magnetic field MRI
Pars Benli, Kami; Dillmann, Baudouin; Louelh, Ryma; Poirier-Quinot, Marie; Darrasse, Luc
2015-05-01
Teaching imaging of magnetic resonance (MR) today is still as challenging as it has always been, because it requires admitting that we cannot express fundamental questions of quantum mechanics with straightforward language or without using extensive theory. Here we allow students to face a real MR setup based on the Earth's magnetic field. We address the applied side of teaching MR using a device that is affordable and that proves to be sufficiently robust, at universities in Orsay, France, and San Sebastian, Spain, in experimental practicals at undergraduate and graduate levels. We specifically present some of the advantages of low field for measuring R2 relaxation rates, reaching a power of separation of 1.5 μmol on Mn(II) ions between two water bottles each of half a liter. Finally we propose key approaches for the lecturers to adopt when they are asked to pass from theoretical knowledge to teachable knowhow. The outcomes are fast calibration and the MR acquisition protocols, demonstrating the reproducibility of energy transfer during the saturation pulses, and the quantitative nature of MR, with water protons and a helium-3 sample.
Quantum cosmology from group field theory condensates: a review
Gielen, Steffen
2016-01-01
We give, in some detail, a critical overview over recent work towards deriving a cosmological phenomenology from the fundamental quantum dynamics of group field theory (GFT), based on the picture of a macroscopic universe as a "condensate" of a large number of quanta of geometry which are given by excitations of the GFT field over a "no-space" vacuum. We emphasise conceptual foundations, relations to other research programmes in GFT and the wider context of loop quantum gravity (LQG), and connections to the quantum physics of real Bose-Einstein condensates. We show how to extract an effective dynamics for GFT condensates from the microscopic GFT physics, and how to compare it with predictions of more conventional quantum cosmology models, in particular loop quantum cosmology (LQC). No detailed familiarity with the GFT formalism is assumed.
Optimal information transfer in enzymatic networks: A field theoretic formulation
Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.
2017-07-01
Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in
Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory
Brunetti, Romeo; Fredenhagen, Klaus; Rejzner, Katarzyna
2016-08-01
We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.
Photocurrent Control in a Magnetic Field through Quantum Interference
Rao, Kiran Murti
Quantum-mechanical interference between excitation pathways can be used to inject photocurrents optically in semiconductors, the properties of which can be coherently controlled through the phases and polarizations of the optical pulses. In this thesis, coherent photocurrent control is investigated theoretically for two-dimensional semiconductor systems in a perpendicular magnetic field. The semiconductor systems are subjected to optical pulses with centre frequencies o 0 and 2o0, which excite interband transitions through one- and two-photon processes, selection rules for which are determined from envelope wave functions. It is shown using time-dependent perturbation theory that the interference between one- and two-photon pathways connecting a particular valence Landau level to two different but adjacent conduction Landau levels manifests itself as electron currents that rotate counterclockwise, while interference between pathways connecting two adjacent valence Landau levels to a particular conduction Landau level manifests itself as hole currents that rotate clockwise. The initial directions of the currents can be controlled by adjusting the polarizations and a relative phase parameter of the pulses. The analysis is performed for a GaAs quantum well, monolayer graphene and bilayer graphene. For GaAs, the equally spaced Landau levels in each band lead to electron currents rotating at a single frequency and hole currents rotating at a different frequency. Monolayer and bilayer graphene allow currents with multiple frequency components as well as other peculiarities resulting from additional interference processes not present for GaAs. The photocurrents in all of these systems radiate in the terahertz regime. This radiation is calculated for realistic experimental conditions, with scattering and relaxation processes accounted for phenomenologically. Finally, the effect of Coulomb interactions on the coherent control process is considered for an undoped Ga
Electronic structure of GaAs/AlGaAs quantum double rings in lateral electric field
Institute of Scientific and Technical Information of China (English)
Y.Yao; T.Ochiai; T.Mano; T.Kuroda; T.Noda; N.Koguchi; K.Sakoda
2009-01-01
A three-dimensional model of GaAs/A1GaAs quantum double rings in the lateral static electric field is investigated theoretically.The eigenvalue problem with the effective-mass approximation is solved by means of the finite-element method.The energy levels and wave functions of quantum-confined electrons and heavy holes are obtained and show an agreement with our previous theoretical and experimental studies.It is shown in the approximation of neglecting the Coulomb attraction between the electron and heavy hole that a relatively large Stark shift of exciton emission of 4 meV is attainable with an applied electric field of 0.7 kV/cm.
Ududec, Cozmin; Wiebe, Nathan; Emerson, Joseph
2013-08-23
The question of how irreversibility can emerge as a generic phenomenon when the underlying mechanical theory is reversible has been a long-standing fundamental problem for both classical and quantum mechanics. We describe a mechanism for the appearance of irreversibility that applies to coherent, isolated systems in a pure quantum state. This equilibration mechanism requires only an assumption of sufficiently complex internal dynamics and natural information-theoretic constraints arising from the infeasibility of collecting an astronomical amount of measurement data. Remarkably, we are able to prove that irreversibility can be understood as typical without assuming decoherence or restricting to coarse-grained observables, and hence occurs under distinct conditions and time scales from those implied by the usual decoherence point of view. We illustrate the effect numerically in several model systems and prove that the effect is typical under the standard random-matrix conjecture for complex quantum systems.
Quantum perceptron over a field and neural network architecture selection in a quantum computer.
da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa
2016-04-01
In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator.
Perturbative Quantum Field Theory in the String-Inspired Formalism
Schubert, C
2001-01-01
We review the status and present range of applications of the ``string-inspired'' approach to perturbative quantum field theory. This formalism offers the possibility of computing effective actions and S-matrix elements in a way which is similar in spirit to string perturbation theory, and bypasses much of the apparatus of standard second-quantized field theory. Its development was initiated by Bern and Kosower, originally with the aim of simplifying the calculation of scattering amplitudes in quantum chromodynamics and quantum gravity. We give a short account of the original derivation of the Bern-Kosower rules from string theory. Strassler's alternative approach in terms of first-quantized particle path integrals is then used to generalize the formalism to more general field theories, and, in the abelian case, also to higher loop orders. A considerable number of sample calculations are presented in detail, with an emphasis on quantum electrodynamics.
Pilot-wave approaches to quantum field theory
Struyve, Ward
2011-01-01
The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of de Broglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as `measurement' and `observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.
Representations of Homogeneous Quantum Lévy Fields
Indian Academy of Sciences (India)
V P Belavkin; L Gregory
2006-11-01
We study homogeneous quantum Lévy processes and fields with independent additive increments over a noncommutative ∗-monoid. These are described by infinitely divisible generating state functionals, invariant with respect to an endomorphic injective action of a symmetry semigroup. A strongly covariant GNS representation for the conditionally positive logarithmic functionals of these states is constructed in the complex Minkowski space in terms of canonical quadruples and isometric representations on the underlying pre-Hilbert field space. This is of much use in constructing quantum stochastic representations of homogeneous quantum Lévy fields on Itô monoids, which is a natural algebraic way of defining dimension free, covariant quantum stochastic integration over a space-time indexing set.
Local Thermal Equilibrium States in Relativistic Quantum Field Theory
Gransee, Michael
2016-01-01
It is well-known that thermal equilibrium states in quantum statistical mechanics and quantum field theory can be described in a mathematically rigorous manner by means of the so-called Kubo-Martin-Schwinger (KMS) condition, which is based on certain analyticity and periodicity properties of correlation functions. On the other hand, the characterization of non-equilibrium states which only locally have thermal properties still constitutes a challenge in quantum field theory. We discuss a recent proposal for characterization of such states by a generalized KMS condition. The connection of this proposal to a proposal by D. Buchholz, I. Ojima and H.-J. Roos for characterizing local thermal equilibrium states in quantum field theory is discussed.
Quantum correlations in nuclear mean field theory through source terms
Lee, S J
1996-01-01
Starting from full quantum field theory, various mean field approaches are derived systematically. With a full consideration of external source dependence, the stationary phase approximation of an action gives a nuclear mean field theory which includes quantum correlation effects (such as particle-hole or ladder diagram) in a simpler way than the Brueckner-Hartree-Fock approach. Implementing further approximation, the result can be reduced to Hartree-Fock or Hartree approximation. The role of the source dependence in a mean field theory is examined.
Quantum Galileo's experiments and mass estimation in a gravitational field
Seveso, Luigi; Paris, Matteo G A
2016-01-01
We address the problem of estimating the mass of a (quantum) particle interacting with a classical gravitational field. In particular, we analyze in details the ultimate bounds to precision imposed by quantum mechanics and study the effects of gravity in a variety of settings. Our results show that the presence of a gravitational field generally leads to a precision gain, which can be significant in a regime half-way between the quantum and classical domains. We also address quantum enhancement to precision, i.e. the advantages coming from taking into account the quantum nature of the probe particle, and show that non-classicality is indeed a relevant resource for mass estimation. In particular, we suggest schemes for mass-sensing measurements using quantum probes and show that upon employing non-classical states like quantum coherent superpositions one may improve precisions by orders of magnitude. In addition, we discuss the compatibility of the weak equivalence principle (WEP) within the quantum regime usi...
Peskin, Michael E.
2011-04-01
Anthony Zee is not only a leading theoretical physicist but also an author of popular books on both physics and non-physics topics. I recommend especially `Swallowing Clouds', on Chinese cooking and its folklore. Thus, it is not surprising that his textbook has a unique flavor. Derivations end, not with `QED' but with exclamation points. At the end of one argument, we read `Vive Cauchy!', in another `the theorem practically exudes generality'. This is quantum field theory taught at the knee of an eccentric uncle; one who loves the grandeur of his subject, has a keen eye for a slick argument, and is eager to share his repertoire of anecdotes about Feynman, Fermi, and all of his heroes. A one-page section entitled `Electric Charge' illustrates the depth and tone of the book. In the previous section, Zee has computed the Feynman diagram responsible for vacuum polarization, in which a photon converts briefly to a virtual electron-positron pair. In the first paragraph, he evaluates this expression, giving a concrete formula for the momentum-dependence of the electric charge, an important effect of quantum field theory. Next, he dismisses other possible diagrams that could affect the value of the electric charge. Most authors would give an explicit argument that these diagrams cancel, but for Zee it is more important to make the point that this result is expected and, from the right point of view, obvious. Finally, he discusses the implications for the relative size of the charges of the electron and the proton. If the magnitudes of charges are affected by interactions, and the proton has strong interactions but the electron does not, can it make sense that the charges of the proton and the electron are exactly equal and opposite? The answer is yes, and also that this was the real point of the whole derivation. The book takes on the full range of topics covered in typical graduate course in quantum field theory, and many additional topics: magnetic monopoles, solitons
On the Role of Information Theoretic Uncertainty Relations in Quantum Theory
Jizba, Petr; Dunningham, Jacob A.; Joo, Jaewoo
2014-01-01
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) R\\'{e}nyi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson-Schr\\"{o}ding...
Khrennikov, Andrei
2016-01-01
The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...
Theoretical Study of One-Intermediate Band Quantum Dot Solar Cell
Directory of Open Access Journals (Sweden)
Abou El-Maaty Aly
2014-01-01
Full Text Available The intermediate bands (IBs between the valence and conduction bands play an important role in solar cells. Because the smaller energy photons than the bandgap energy can be used to promote charge carriers transfer to the conduction band and thereby the total output current increases while maintaining a large open circuit voltage. In this paper, the influence of the new band on the power conversion efficiency for the structure of the quantum dots intermediate band solar cell (QDIBSC is theoretically investigated and studied. The time-independent Schrödinger equation is used to determine the optimum width and location of the intermediate band. Accordingly, achievement of maximum efficiency by changing the width of quantum dots and barrier distances is studied. Theoretical determination of the power conversion efficiency under the two different ranges of QD width is presented. From the obtained results, the maximum power conversion efficiency is about 70.42% for simple cubic quantum dot crystal under full concentration light. It is strongly dependent on the width of quantum dots and barrier distances.
A Theoretic Approach to SU(4) Kondo Effect in Carbon Nanotube Quantum Dots
Institute of Scientific and Technical Information of China (English)
ZHU Rui
2006-01-01
We propose a mean Geld approach to the transport properties of carbon nanotube quantum dots. Quantum interaction between spin and orbital pseudo-spin degrees of freedom results in an SU(4) Kondo effect at low temperatures. By calculating the chemical potentials and the tunnelling strengths, and hence the spectral functions for different coupling constants and applied magnetic fields, we find that this exotic Kondo effect manifests as a four-peak splitting in the non-linear conductance when an axial magnetic field is applied.
Bucharest PhD Training School : Modern Aspects of Quantum Field Theory and Applications
2015-01-01
Bucharest 2015 – Modern Aspects of Quantum Field Theory is part of the CERN – SEENET-MTP PhD Training Program, which consists of a number of seminars in theoretical high energy Physics. This is the second seminar organized by this Program. Here are some photos from this event held in Bucharest between 8-14 November 2015. The previous seminar was organized in Belgrade, under the name Belgrade 2015 - Supergravity.
Classical and Quantum Mechanical Motion in Magnetic Fields
Franklin, J
2016-01-01
We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum mechanical solution, there are also differences, and we demonstrate some of these.
Field theoretic simulations of the interfacial properties of complex coacervates
Riggleman, Robert; Fredrickson, Glenn
2011-03-01
Many biological processes and emerging technologies, such as wet adhesives and biosensors, rely on the association between oppositely charged polyelectrolytes. Such association is driven not only by the electrostatic interactions between the polyelectrolytes, but there is also a substantial entropy gain associated with counterion release upon complexation. In some cases, the association between oppositely charged polymers can lead to a solid precipitate while others can result in a fluid phase rich in polyelectrolytes (coacervate phase) coexisting with a polyelectrolyte-dilute solvent phase. For many of the applications seeking to exploit coacervation, characterization of the interface between the solvent phase and the coacervate is of paramount importance. In this talk, we will present the results of field-theoretic simulations for a coarse-grained polyelectrolyte model that exhibits complex coacervation. Our simulations sample the fully-fluctuating fields in three-dimensions and provide a detailed characterization of the interface between the solvent and the coacervate phase for symmetric polyelectrolytes (where both the polycations and the polyanions carry identical charge densities) as a function of salt concentration and strength of the electrostatic fields. Finally, we characterize the interfacial properties for a select set of asymmetric conditions.
A field theoretical approach to the quasi-continuum method
Iyer, Mrinal; Gavini, Vikram
2011-08-01
The quasi-continuum method has provided many insights into the behavior of lattice defects in the past decade. However, recent numerical analysis suggests that the approximations introduced in various formulations of the quasi-continuum method lead to inconsistencies—namely, appearance of ghost forces or residual forces, non-conservative nature of approximate forces, etc.—which affect the numerical accuracy and stability of the method. In this work, we identify the source of these errors to be the incompatibility of using quadrature rules, which is a local notion, on a non-local representation of energy. We eliminate these errors by first reformulating the extended interatomic interactions into a local variational problem that describes the energy of a system via potential fields. We subsequently introduce the quasi-continuum reduction of these potential fields using an adaptive finite-element discretization of the formulation. We demonstrate that the present formulation resolves the inconsistencies present in previous formulations of the quasi-continuum method, and show using numerical examples the remarkable improvement in the accuracy of solutions. Further, this field theoretic formulation of quasi-continuum method makes mathematical analysis of the method more amenable using functional analysis and homogenization theories.
Li, L. L.; Moldovan, D.; Xu, W.; Peeters, F. M.
2017-02-01
Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to-edge transitions differently due to the different responses of bulk and edge states to these fields.
Quantum Field Theory in de Sitter spacetime
So, Ashaq Hussain; Sibuea, Marlina Rosalinda; Akhoon, Shabir Ahmad; Khanday, Bilal Nisar; Majeed, Sajad Ul; Rather, Asloob Ahmad; Nahvi, Ishaq
2013-01-01
In this paper we will analyse quantum ?eld theory on de Sitter space- time. We will ?rst analyse a general scalar and vector ?eld theory on de Sitter spacetime. This is done by ?rst calculating these propagators on four-Sphere and then analytically continuing it to de Sitter spacetime.
Quantum correlations and measurements
Energy Technology Data Exchange (ETDEWEB)
Sperling, Jan
2015-07-16
The present thesis is a state of the art report on the characterization techniques and measurement strategies to verify quantum correlations. I mainly focus on research which has been performed in the theoretical quantum optics group at the University of Rostock during the last few years. The results include theoretical findings and analysis of experimental studies of radiation fields. We investigate the verification of quantum properties, the quantification of these quantum effects, and the characterization of quantum optical detector systems.
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.
Qubit-Programmable Operations on Quantum Light Fields.
Barbieri, Marco; Spagnolo, Nicolò; Ferreyrol, Franck; Blandino, Rémi; Smith, Brian J; Tualle-Brouri, Rosa
2015-10-15
Engineering quantum operations is a crucial capability needed for developing quantum technologies and designing new fundamental physics tests. Here we propose a scheme for realising a controlled operation acting on a travelling continuous-variable quantum field, whose functioning is determined by a discrete input qubit. This opens a new avenue for exploiting advantages of both information encoding approaches. Furthermore, this approach allows for the program itself to be in a superposition of operations, and as a result it can be used within a quantum processor, where coherences must be maintained. Our study can find interest not only in general quantum state engineering and information protocols, but also details an interface between different physical platforms. Potential applications can be found in linking optical qubits to optical systems for which coupling is best described in terms of their continuous variables, such as optomechanical devices.
Quantum entanglement of identical particles by standard information-theoretic notions
Lo Franco, Rosario; Compagno, Giuseppe
2016-02-01
Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates.
Energy Technology Data Exchange (ETDEWEB)
Dacal, Luis Carlos Ogando
2001-08-01
A physical system where indistinguishable particles interact with each other creates the possibility of studying correlation and exchange effect. The simplest system is that one with only two indistinguishable particles. In condensed matter physics, these complexes are represented by charged excitons, donors and acceptors. In quantum wells, the valence band is not parabolic, therefore, the negatively charged excitons and donors are theoretically described in a simpler way. Despite the fact that the stability of charged excitons (trions) is known since the late 50s, the first experimental observation occurred only at the early 90s in quantum well samples, where their binding energies are one order of magnitude larger due to the one dimensional carriers confinement. After this, these complexes became the subject of an intense research because the intrinsic screening of electrical interactions in semiconductor materials allows that magnetic fields that are usual in laboratories have strong effects on the trion binding energy. Another rich possibility is the study of trions as an intermediate state between the neutral exciton and the Fermi edge singularity when the excess of doping carriers is increased. In this thesis, we present a theoretical study of charged excitons and negatively charged donors in GaAs/Al{sub 0.3}Ga{sub 0.7}As quantum wells considering the effects of external electric and magnetic fields. We use a simple, accurate and physically clear method to describe these systems in contrast with the few and complex treatments s available in the literature. Our results show that the QW interface defects have an important role in the trion dynamics. This is in agreement with some experimental works, but it disagrees with other ones. (author)
THz-field-induced electronic transmission step-structure for a quantum wire
Institute of Scientific and Technical Information of China (English)
Xiao Xian-Bo; Zhou Guang-Hui; Yang Mou; Li Yuan; Xu Zhi-Feng
2004-01-01
We study theoretically the low-temperature electronic transport property of a straight quantum wire under the irradiation of a finite-range transversely polarized external terahertz (THz) electromagnetic (EM) field. Using the freeelectron model and the scattering matrix approach, we show an unusual behaviour of the electronic transmission of this system. A sharp step-structure appears in the electronic transmission probability as the EM field strength increases to a threshold value when a coherent EM field is applied. We demonstrate that this effect physically comes from the inelastic scattering of electrons with lateral photons through intersubband transitions.
Niculescu, E. C.
2017-02-01
Electromagnetically induced transparency in an asymmetric double quantum well subjected to a non-resonant, intense laser field is theoretically investigated. We found that the energy levels configuration could be switched between a Λ-type and a ladder-type scheme by varying the non-resonant radiation intensity. This effect is due to the laser-induced electron tunneling between the wells and it allows a substantial flexibility in the manipulation of the optical properties. The dependence of the susceptibilities on the control field Rabi frequency, intensity of the nonresonant laser, and the control field detuning for both configurations are discussed and compared.
Families of particles with different masses in PT-symmetric quantum field theory.
Bender, Carl M; Klevansky, S P
2010-07-16
An elementary field-theoretic mechanism is proposed that allows one Lagrangian to describe a family of particles having different masses but otherwise similar physical properties. The mechanism relies on the observation that the Dyson-Schwinger equations derived from a Lagrangian can have many different but equally valid solutions. Nonunique solutions to the Dyson-Schwinger equations arise when the functional integral for the Green's functions of the quantum field theory converges in different pairs of Stokes' wedges in complex-field space, and the solutions are physically viable if the pairs of Stokes' wedges are PT symmetric.
Computer algebra in quantum field theory integration, summation and special functions
Schneider, Carsten
2013-01-01
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including
Aspects of nonlocality in quantum field theory, quantum gravity and cosmology
Barvinsky, A. O.
2015-02-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter (dS) cosmological evolution at an arbitrary value of Λ — a model of dark energy with the dynamical scale selected by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of a scalar mediated gravity and the short distance general relativistic limit in a special metric frame related by a nonlocal conformal transformation to the original metric.
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Quantum de Finetti theorems and mean-field theory from quantum phase space representations
Trimborn, F.; Werner, R. F.; Witthaut, D.
2016-04-01
We introduce the number-conserving quantum phase space description as a versatile tool to address fundamental aspects of quantum many-body systems. Using phase space methods we prove two alternative versions of the quantum de Finetti theorem for finite-dimensional bosonic quantum systems, which states that a reduced density matrix of a many-body quantum state can be approximated by a convex combination of product states where the error is proportional to the inverse particle number. This theorem provides a formal justification for the mean-field description of many-body quantum systems, as it shows that quantum correlations can be neglected for the calculation of few-body observables when the particle number is large. Furthermore we discuss methods to derive the exact evolution equations for quantum phase space distribution functions as well as upper and lower bounds for the ground state energy. As an important example, we consider the Bose-Hubbard model and show that the mean-field dynamics is given by a classical phase space flow equivalent to the discrete Gross-Pitaevskii equation.
The Causal Interpretation of Conformally Coupled Scalar Field Quantum Cosmology
De Barros, J A; Sagioro-Leal, M A
2000-01-01
We apply the causal interpretation of quantum mechanics to homogeneous and isotropic quantum cosmology, where the source of the gravitational field is a conformally coupled scalar field, and the maximally symmetric hypersurfaces are flat. The classical solutions are expanding or contracting singular universes. The general solution of the Wheeler-DeWitt equation is a discrete superposition of Hermite polynomials multiplied by complex exponentials. Superpositions with up to two parcels are studied, and the phase diagrams of their corresponding Bohmian trajectories are analyzed in detail. Nonsingular periodic quantum solutions are found. They are nonclassical but they can be arbitrarily big. Some of them can represent the universe we live in but the majority present too small oscillations. We also find that singular quantum solutions present an inflation era in the begining of the universe. Numerical calculations indicates that these results remain valid for general superpositions.
Thermodynamics of relativistic quantum fields: extracting energy from gravitational waves
Bruschi, David Edward
2016-01-01
We investigate the quantum thermodynamical properties of localised relativistic quantum fields that can be used as quantum thermal machines. We study the efficiency and power of energy transfer between the classical degrees of freedom, such as the energy input due to motion or to an impinging gravitational wave, and the excitations of the confined quantum field. We find that the efficiency of energy transfer depends dramatically on the input initial state of the system. Furthermore, we investigate the ability to extract the energy and to store it in a battery. This process is inefficient in optical cavities but is significantly enhanced when employing trapped Bose Einstein Condensates. Finally, we apply our techniques to a setup where an impinging gravitational wave excites the phononic modes of a Bose Einstein Condensate. We find that, in this case, the amount of energy transfer to the phonons increases with time and quickly approaches unity. These results suggest that, in the future, it might be possible to...
A quantum model of a real scalar field
Institute of Scientific and Technical Information of China (English)
吴宁; 阮图南
1997-01-01
A quantum model of a real scalar field with local operator gauge symmetry is discussed. In the localized theory, in order to keep the local operator gauge symmetry, an operator gauge potential Bμ is needed. By combining the constraint of operator gauge potential Bμ and the microscopic causality theorem, the usual canonical quantization condition of a real scalar field is obtained. Therefore, a quantum model of a real scalar field without the usual procedure of quantizing a related classical model can be directly constructed.
On Quantum Field Theories in Operator and Functional Integral Formalisms
Teleki, A; Noga, Milan; Teleki, Aba
2006-01-01
Relations and isomorphisms between quantum field theories in operator and functional integral formalisms are analyzed from the viewpoint of inequivalent representations of commutator or anticommutator rings of field operators. A functional integral in quantum field theory cannot be regarded as a Newton-Lebesgue integral but rather as a formal object to which one associates distinct numerical values for different processes of its integration. By choosing an appropriate method for the integration of a given functional integral, one can select a single representation out of infinitely many inequivalent representations for an operator whose trace is expressed by the corresponding functional integral. These properties are demonstrated with two exactly solvable examples.
Perturbative algebraic quantum field theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Lindner, Falk
2013-08-15
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Quantum well electronic states in a tilted magnetic field
Trallero-Giner, C.; Padilha, J. X.; Lopez-Richard, V.; Marques, G. E.; Castelano, L. K.
2017-08-01
We report the energy spectrum and the eigenstates of conduction and uncoupled valence bands of a quantum well under the influence of a tilted magnetic field. In the framework of the envelope approximation, we implement two analytical approaches to obtain the nontrivial solutions of the tilted magnetic field: (a) the Bubnov-Galerkin spectral method and b) the perturbation theory. We discuss the validity of each method for a broad range of magnetic field intensity and orientation as well as quantum well thickness. By estimating the accuracy of the perturbation method, we provide explicit analytical solutions for quantum wells in a tilted magnetic field configuration that can be employed to study several quantitative phenomena.
Dynamics of classical and quantum fields an introduction
Setlur, Girish S
2014-01-01
Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...
Concepts in quantum field theory a practitioner's toolkit
Ilisie, Victor
2015-01-01
This book uses less strict yet still formal mathematical language to clarify a variety of concepts in Quantum Field Theory that remain somewhat “fuzzy” in many books designed for undergraduates and fresh graduates. The aim is not to replace formal books on Quantum Field Theory, but rather to offer a helpful complementary tool for beginners in the field. Features include a reader-friendly introduction to tensor calculus and the concept of manifolds; a simple and robust treatment for dimensional regularization; a consistent explanation of the renormalization procedure, step by step and in a transparent manner at all orders, using the QED Lagrangian; and extensive treatment of infrared as well as ultraviolet divergences. The most general (Lorentz invariant) form of Noether's theorem is presented and applied to a few simple yet relevant examples in Quantum Field Theory. These and further interesting topics are addressed in a way that will be accessible for the target readership. Some familiarity with basic no...
Towards state locality in quantum field theory: free fermions
Oeckl, Robert
2013-01-01
We provide a restricted solution to the state locality problem in quantum field theory for the case of free fermions. Concretely, we present a functorial quantization scheme that takes as input a classical free fermionic field theory. Crucially, no data is needed beyond the classical structures evident from a Lagrangian setting. The output is a quantum field theory encoded in a weakened version of the positive formalism of the general boundary formulation. When the classical data is augmented with complex structures on hypersurfaces, the quantum data correspondingly augment to the full positive formalism and the standard quantization of free fermionic field theory is recovered. This augmentation can be performed selectively, i.e., it may be limited to a subcollection of hypersurfaces. The state locality problem arises from the fact that suitable complex structures only exist on a very restricted class of unbounded hypersurfaces. But standard quantization requires them on all hypersurfaces and is thus only abl...
Deformations of quantum field theories on spacetimes with Killing vector fields
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Lechner, Gandalf [Wien Univ. (Austria). Fakultaet fuer Physik; Morfa-Morales, Eric [Erwin Schroedinger Institut fuer Mathematische Physik, Wien (Austria)
2010-06-15
The recent construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry a family of wedge-like regions which share the essential causal properties of the Poincare transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field theories, they play the role of typical localization regions of quantum fields and observables. As a concrete example of such a procedure, the deformation of the free Dirac field is studied. (orig.)
Trapped-Ion Quantum Logic with Global Radiation Fields
Weidt, S.; Randall, J.; Webster, S. C.; Lake, K.; Webb, A. E.; Cohen, I.; Navickas, T.; Lekitsch, B.; Retzker, A.; Hensinger, W. K.
2016-11-01
Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.
Trapped-Ion Quantum Logic with Global Radiation Fields.
Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K
2016-11-25
Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.
Theoretical femtosecond physics atoms and molecules in strong laser fields
Grossmann, Frank
2013-01-01
Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...
Information Theoretic Inequalities as Bounds in Superconformal Field Theory
Zhou, Yang
2016-01-01
An information theoretic approach to bounds in superconformal field theories is proposed. It is proved that the supersymmetric R\\'enyi entropy $\\bar S_\\alpha$ is a monotonically decreasing function of $\\alpha$ and $(\\alpha-1)\\bar S_\\alpha$ is a concave function of $\\alpha$. Under the assumption that the thermal entropy associated with the "replica trick" time circle is bounded from below by the charge in the supersymmetric system, it is further proved that both ${\\alpha-1\\over \\alpha}\\bar S_\\alpha$ and $(\\alpha-1)\\bar S_\\alpha$ monotonically increase as functions of $\\alpha$. Because $\\bar S_\\alpha$ enjoys universal relations with the Weyl anomaly coefficients in even-dimensional superconformal field theories, one therefore obtains a set of bounds on these coefficients by imposing the inequalities of $\\bar S_\\alpha$. Some of the bounds coincide with Hofman-Maldacena bounds and the others are new. We also check the inequalities for examples in odd-dimensions.
Quantum Fields on the Groenewold-Moyal Plane
Akofor, Earnest; Joseph, Anosh
2008-01-01
We give an introductory review of quantum physics on the noncommutative spacetime called the Groenewold-Moyal plane. Basic ideas like star products, twisted statistics, second quantized fields and discrete symmetries are discussed. We also outline some of the recent developments in these fields and mention where one can search for experimental signals.
Quantum and field effects of oxide heterostructures
DEFF Research Database (Denmark)
Trier, Felix
, these interfaces are the ones between CaZrO3/SrTiO3 and amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. The sample preparation section is ended by outlininga patterning strategy for the high-electron mobility interface at amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. Subsequently, the effects of electrostatic gating is studied...... with a gradual tuning of the interface conductivity. Finally, the so-called quantum Hall effect is demonstrated at the interface between amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. The manifestation of the quantum Hall effect reveals that the interface conductivity is comprised of several subbands conducting...
Vieira, Pedro; DeWolfe, Oliver
2017-01-01
The program will consist of a pedagogical series of lectures and seminars. Lectures will be given over a four-week period, three or four lectures per day, Monday through Friday. The audience will be composed primarily of advanced theoretical graduate students. Experimentalists with a strong background in theory are also encouraged to apply. Some post-doctoral fellows will be admitted, but preference will be given to applicants who will not have received their Ph.D. before 2015. The minimum background needed to get full benefit of TASI is a knowledge of quantum field theory (including RGEs) and familiarity with the Standard Model. Some familiarity with SUSY and string theory would be helpful. We hope to provide some subsidy, but students will need partial support from other sources. Rooms, meals, and access to all facilities will be provided at reasonable rates in beautifully located dormitories at the University of Colorado.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Fodor, Z; Katz, S D; Lellouch, L; Portelli, A; Szabo, K K; Toth, B C
2015-01-01
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Fodor, Z. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); Hoelbling, C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Katz, S.D. [Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group, H-1117 Budapest (Hungary); Lellouch, L., E-mail: lellouch@cpt.univ-mrs.fr [CNRS, Aix-Marseille U., U. de Toulon, CPT, UMR 7332, F-13288, Marseille (France); Portelli, A. [School of Physics & Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Szabo, K.K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Toth, B.C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany)
2016-04-10
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Directory of Open Access Journals (Sweden)
Z. Fodor
2016-04-01
Full Text Available Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Danon, J.; Nazarov, Y.V.
2008-01-01
We study nuclear spin dynamics in a quantum dot close to the conditions of electron spin resonance. We show that at a small frequency mismatch, the nuclear field detunes the resonance. Remarkably, at larger frequency mismatch, its effect is opposite: The nuclear system is bistable, and in one of the
Quantum Mind from a Classical Field Theory of the Brain
Zizzi, Paola
2011-01-01
We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzatz for the gauge field, which breaks Lorentz invariance. In the ansatz, a contraction mapping plays the role of dissipation. In the limit of maximal dissipation, which corresponds to the attractive fixed point of the contraction mapping, the gauge fields reduce, up to constant factors, to the Pauli quantum gates for one-qubit states. Then tubuline-qubits can be processed in the quantum vacuum of the classical field theory of the brain, where decoherence is avoided due to the extremely low temperature. Finally, we interpret...
BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory
Mann, Robert
2013-02-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is
Lamers, J
2015-01-01
These are lecture notes of an introduction to quantum integrability given at the Tenth Modave Summer School in Mathematical Physics, 2014, aimed at PhD candidates and junior researchers in theoretical physics. We introduce spin chains and discuss the coordinate Bethe Ansatz (CBA) for a representative example: the Heisenberg XXZ model. The focus lies on the structure of the CBA and on its main results, deferring a detailed treatment of the CBA for the general $M$-particle sector of the XXZ model to an appendix. Subsequently the transfer-matrix method is discussed for the six-vertex model, uncovering a relation between that model and the XXZ spin chain. Equipped with this background the quantum inverse-scattering method (QISM) and algebraic Bethe Ansatz (ABA) are treated. We emphasize the use of graphical notation for algebraic quantities as well as computations. Finally we turn to quantum integrability in the context of theoretical high-energy physics. We discuss factorized scattering in two-dimensional QFT, a...
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C
2014-06-13
Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.
Qian, Xiao-Feng; Howell, John C; Eberly, J H
2015-01-01
The growing recognition that entanglement is not exclusively a quantum property, and does not even originate with Schr\\"odinger's famous remark about it [Proc. Camb. Phil. Soc. {\\bf 31}, 555 (1935)], prompts examination of its role in marking the quantum-classical boundary. We have done this by subjecting correlations of classical optical fields to new Bell-analysis experiments, and report here values of the Bell parameter greater than ${\\cal B} = 2.54$. This is many standard deviations outside the limit ${\\cal B} = 2$ established by the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [Phys. Rev. Lett. {\\bf 23}, 880 (1969)], in agreement with our theoretical classical prediction, and not far from the Tsirelson limit ${\\cal B} = 2.828...$. These results cast a new light on the standard quantum-classical boundary description, and suggest a reinterpretation of it.
Single-ion microwave near-field quantum sensor
Wahnschaffe, M.; Hahn, H.; Zarantonello, G.; Dubielzig, T.; Grondkowski, S.; Bautista-Salvador, A.; Kohnen, M.; Ospelkaus, C.
2017-01-01
We develop an intuitive model of 2D microwave near-fields in the unusual regime of centimeter waves localized to tens of microns. Close to an intensity minimum, a simple effective description emerges with five parameters that characterize the strength and spatial orientation of the zero and first order terms of the near-field, as well as the field polarization. Such a field configuration is realized in a microfabricated planar structure with an integrated microwave conductor operating near 1 GHz. We use a single 9 Be+ ion as a high-resolution quantum sensor to measure the field distribution through energy shifts in its hyperfine structure. We find agreement with simulations at the sub-micron and few-degree level. Our findings give a clear and general picture of the basic properties of oscillatory 2D near-fields with applications in quantum information processing, neutral atom trapping and manipulation, chip-scale atomic clocks, and integrated microwave circuits.
Entanglement of a quantum field with a dispersive medium.
Klich, Israel
2012-08-10
In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.
Field-emission from quantum-dot-in-perovskite solids
García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward
2017-03-01
Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.
Rarita-Schwinger Quantum Free Field Via Deformation Quantization
Perez, B Carballo
2011-01-01
Rarita-Schwinger (RS) quantum free field is reexamined in the context of deformation quantization. It is found out that the subsidiary condition does not introduce any change either in the Wigner function or in other aspects of the deformation quantization formalism, in relation to the Dirac field case. This happens because the vector structure of the RS field imposes constraints on the space of wave function solutions and not on the operator structure. The RS propagator was also calculated within this formalism.
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Schenkel, Alexander
2011-10-24
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the
Electric field engineering using quantum-size-effect-tuned heterojunctions
Adinolfi, V.
2013-07-03
A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.
Field emission from quantum size GaN structures
Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu. M.; Hubbard, S.; Tiginyanu, I. M.; Mutamba, K.; Hartnagel, H. L.; Litovchenko, V. G.; Evtukh, A.
2003-12-01
Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2×10 17 or 3×10 18 cm -3) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/μm and the appearance of quantum-size effect in the I- V curves.
Field emission from quantum size GaN structures
Energy Technology Data Exchange (ETDEWEB)
Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu.M.; Hubbard, S.; Tiginyanu, I.M.; Mutamba, K.; Hartnagel, H.L.; Litovchenko, V.G.; Evtukh, A
2003-12-30
Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2x10{sup 17} or 3x10{sup 18} cm{sup -3}) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/{mu}m and the appearance of quantum-size effect in the I-V curves.
Electric field engineering using quantum-size-effect-tuned heterojunctions
Adinolfi, V.; Ning, Z.; Xu, J.; Masala, S.; Zhitomirsky, D.; Thon, S. M.; Sargent, E. H.
2013-07-01
A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.
Quantum field theory from operators to path integrals
Huang, Kerson
1998-01-01
A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalization is explained
Strong field quantum control by selective population of dressed states
Energy Technology Data Exchange (ETDEWEB)
Wollenhaupt, M; Praekelt, A; Sarpe-Tudoran, C; Liese, D; Baumert, T [University of Kassel, Institute of Physics, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel (Germany)
2005-10-01
We study the dynamics of potassium atoms in intense laser fields using femtosecond phase-locked pulse pairs in order to extract physical mechanisms of strong field quantum control. The structure of the Autler-Townes (AT) doublet in the photoelectron spectra is measured to analyse transient processes. The analysis shows that the physical mechanism is based on the selective population of dressed states (SPODS). Experimental results of closed loop optimization of SPODS are presented in addition. Applications to decoherence measurements with implications for quantum information are also proposed.
Quantum Gravity as a Deformed Topological Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Mikovic, Aleksandar [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Av. do Campo Grande, 376, 1749-024 Lisbon (Portugal)
2006-03-01
It is known that the Einstein-Hilbert action with a positive cosmological constant can be represented as a perturbation of the SO(4, 1) BF theory by a symmetry-breaking term quadratic in the B field. Introducing fermionic matter generates additional terms in the action which are polynomial in the tetrads and the spin connection. We describe how to construct the generating functional in the spin foam formalism for a generic BF theory when the sources for the B and the gaugefield are present. This functional can be used to obtain a path integral for General Relativity with matter as a perturbative series whose the lowest order term is a path integral for a topological gravity coupled to matter.
Methods of quantum field theory in statistical physics
Abrikosov, A A; Gorkov, L P; Silverman, Richard A
1975-01-01
This comprehensive introduction to the many-body theory was written by three renowned physicists and acclaimed by American Scientist as ""a classic text on field theoretic methods in statistical physics."
Quantum fields and "Big Rip" expansion singularities
Calderon, H; Calderon, Hector; Hiscock, William A.
2005-01-01
The effects of quantized conformally invariant massless fields on the evolution of cosmological models containing a ``Big Rip'' future expansion singularity are examined. Quantized scalar, spinor, and vector fields are found to strengthen the accelerating expansion of such models as they approach the expansion singularity.
Quantum Field Theories and Prime Numbers Spectrum
Menezes, G
2012-01-01
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie on the critical line $\\Re(s)=1/2$. Hilbert and P\\'olya suggested a possible approach to prove it, based on spectral theory. Within this context, some authors formulated the question: is there a quantum mechanical system related to the sequence of prime numbers? In this Letter we assume that there is a class of hypothetical physical systems described by self-adjoint operators with countable infinite number of degrees of freedom with spectra given by the sequence of primes numbers. We prove a no-go theorem. We show that the generating functional of connected Schwinger functions of such theories cannot be constructed.
Radiation reaction in quantum field theory
Higuchi, Atsushi
2002-11-01
We investigate radiation-reaction effects for a charged scalar particle accelerated by an external potential realized as a space-dependent mass term in quantum electrodynamics. In particular, we calculate the position shift of the final-state wave packet of the charged particle due to radiation at lowest order in the fine structure constant α and in the small ħ approximation. We show that it disagrees with the result obtained using the Lorentz-Dirac formula for the radiation-reaction force, and that it agrees with the classical theory if one assumes that the particle loses its energy to radiation at each moment of time according to the Larmor formula in the static frame of the potential. However, the discrepancy is much smaller than the Compton wavelength of the particle. We also point out that the electromagnetic correction to the potential has no classical limit.
Quantum Corrections on Relativistic Mean Field Theory for Nuclear Matter
Institute of Scientific and Technical Information of China (English)
ZHANG Qi-Ren; GAO Chun-Yuan
2011-01-01
We propose a quantization procedure for the nucleon-scalar meson system, in which an arbitrary mean scalar meson field Φ is introduced.The equivalence of this procedure with the usual one is proven for any given value of Φ.By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field.Its corrections on these theories are considered by perturbation up to the second order.The arbitrariness of Φ makes us free to fix it at any stage in the calculation.When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge.When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent.It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not.We suggest to fix the parameter Φ at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.
Fractional Quantum Field Theory: From Lattice to Continuum
Directory of Open Access Journals (Sweden)
Vasily E. Tarasov
2014-01-01
Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.
3rd UK-QFT Meeting: Non-Perturbative Quantum Field Theory and Quantum Gravity
2014-01-01
The meeting aims to bringing together Students, Postdoctoral Researchers and Senior Scientists to discuss recent trends in advanced Quantum Field Theory and Quantum Gravity. The format of the meeting is a series of informal talks to allow for discussion and the exchange of ideas amongst participants. We plan for up to 8 slots for short presentations depending on demand and one final longer seminar given by Frank Saueressig (Mainz). This is the third meeting of its kind and details on the previous two can be found on the following: 1st UK-QFT Meeting: Non-perturbative aspects in field theory (KCL) 2nd UK-QFT Meeting: Advances in quantum field theory and gravity (Sussex)
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.
Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-12-15
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Musso, Daniele
2012-01-01
The non-perturbative dynamics of quantum field theories is studied using theoretical tools inspired by string formalism. Two main lines are developed: the analysis of stringy instantons in a class of four-dimensional N=2 gauge theories and the holographic study of the minimal model for a strongly coupled unbalanced superconductor. The field theory instanton calculus admits a natural and efficient description in terms of D-brane models. In addition, the string viewpoint offers the possibility of generalizing the ordinary instanton configurations. Even though such generalized, or stringy, instantons would be absent in a purely field-theoretical, low-energy treatment, we demonstrate that they do alter the IR effective description of the brane dynamics by introducing contributions related to the string scale. In the first part of this thesis we compute explicitly the stringy instanton corrections to the effective prepotential in a class of quiver gauge theories. In the second part of the thesis, we present a deta...
Directory of Open Access Journals (Sweden)
VLADIMIR M. PETRUSEVSKI
2000-06-01
Full Text Available Hofmann type clatharates are host-guest compounds with the general formula M(NH32M'(CN4·2G, in which M(NH32M'(CN4 is the host lattice and G is benzene, the guest molecule. In previous studies, host-guest interactions have been investigated by analyzing the RT and LNT vibrational (infrared, far infrared and Raman spectra of these clathrates. All the observed changes in the vibrational spectra of these clathrates are referred to a host-guest interaction originating from weak hydrogen bonding between the ammonia hydrogen atoms from the host lattice and the p electron cloud of the guest (benzene molecules. In order to obtain an insight into the relative importance of the local crystalline field vs. the anharmonicity effects on the spectroscopic properties of the guest species upon enclathration, as well as to explain the observed band shifts and splittings, several quantum theoretical approaches are proposed.
Introduction to a Quantum Theory over a Galois Field
Directory of Open Access Journals (Sweden)
Felix M. Lev
2010-11-01
Full Text Available We consider a quantum theory based on a Galois field. In this approach infinities cannot exist, the cosmological constant problem does not arise, and one irreducible representation (IR of the symmetry algebra splits into independent IRs describing a particle an its antiparticle only in the approximation when de Sitter energies are much less than the characteristic of the field. As a consequence, the very notions of particles and antiparticles are only approximate and such additive quantum numbers as the electric, baryon and lepton charges are conserved only in this approximation. There can be no neutral elementary particles and the spin-statistics theorem can be treated simply as a requirement that standard quantum theory should be based on complex numbers.
Cosmological applications of algebraic quantum field theory in curved spacetimes
Hack, Thomas-Paul
2016-01-01
This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.
Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes
Hack, Thomas-Paul
2015-01-01
This monograph provides a largely self--contained and broadly accessible exposition of two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology and a fundamental study of the perturbations in Inflation. The two central sections of the book dealing with these applications are preceded by sections containing a pedagogical introduction to the subject as well as introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation. The target reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but does not need to have a background in QFT on curved spacetimes or the algebraic approach to QFT. In particul...
Nonlocal scalar quantum field theory from causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano
2015-03-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Nonlocal Scalar Quantum Field Theory from Causal Sets
Belenchia, Alessio; Liberati, Stefano
2014-01-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Institute of Scientific and Technical Information of China (English)
REN ZhiPeng; WAN WeiXing; WEI Yong; LIU LiBo; YU Tao
2008-01-01
The geomagnetic fields, which play important roles in the ionospheric dynamo, can greatly affect the global distribution of ionospheric electric fields, currents and other ionospheric electrodynamics phenomena. In the study of ionospheric electrodynamics phenomena, such as the longitudinal variations of ionospheric electric fields, the non-dipolar component of the geomagnetic fields must be taken into account. In this paper, we deduce a theoretical electric field model for ionospheric dynamo at midand low-latitude which adopt a modified magnetic apex coordinates system. In the new electric field model, the geomagnetic fields can be calculated from either the IGRF model or the dipole field model,and the neutral winds and conductivities are calculated based on empirical models. Then the dynamo equation for the electric potential is finally solved in terms of the line-by-line iteration method, and the ionospheric electric fields and currents are derived from the calculated potential. Our model can reproduce the main features of the ionospheric electrodynamics processes, so it will be a useful tool for the investigation of the upper atmosphere and ionosphere.
Toward a Quantum Theory of Tachyon Fields
Schwartz, Charles
2016-01-01
We construct momentum space expansions for the wave functions that solve the Klein-Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between spacetime points separated by a timelike interval. Calculating the conserved charge and 4-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.
Toward a quantum theory of tachyon fields
Schwartz, Charles
2016-03-01
We construct momentum space expansions for the wave functions that solve the Klein-Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between space-time points separated by a timelike interval. Calculating the conserved charge and four-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.
Decoherence and thermalization of a pure quantum state in quantum field theory.
Giraud, Alexandre; Serreau, Julien
2010-06-11
We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.
Socorro, J.; Nuñez, Omar E.
2017-04-01
The multi-scalar field cosmology of the anisotropic Bianchi type-I model is used in order to construct a family of potentials that are the best suited to model the inflation phenomenon. We employ the quantum potential approach to quantum mechanics due to Bohm in order to solve the corresponding Wheeler-DeWitt equation; which in turn enables us to restrict sensibly the aforementioned family of potentials. Supersymmetric Quantum Mechanics (SUSYQM) is also employed in order to constrain the superpotential function, at the same time the tools from SUSY Quantum Mechanics are used to test the family of potentials in order to infer which is the most convenient for the inflation epoch. For completeness solutions to the wave function of the universe are also presented.
Determining Student Competency in Field Placements: An Emerging Theoretical Model
Directory of Open Access Journals (Sweden)
Twyla L. Salm
2016-06-01
Full Text Available This paper describes a qualitative case study that explores how twenty-three field advisors, representing three human service professions including education, nursing, and social work, experience the process of assessment with students who are struggling to meet minimum competencies in field placements. Five themes emerged from the analysis of qualitative interviews. The field advisors primary concern was the level of professional competency achieved by practicum students. Related to competency were themes concerned with the field advisor's role in being accountable and protecting the reputation of his/her profession as well as the reputation of the professional program affiliated with the practicum student's professional education. The final theme – teacher-student relationship –emerged from the data, both as a stand-alone and global or umbrella theme. As an umbrella theme, teacher-student relationship permeated each of the other themes as the participants interpreted their experiences of the process of assessment through the mentor relationships. A theoretical model was derived from these findings and the description of the model is presented. Cet article décrit une étude de cas qualitative qui explore comment vingt-trois conseillers de stages, représentant trois professions de services sociaux comprenant l’éducation, les soins infirmiers et le travail social, ont vécu l’expérience du processus d’évaluation avec des étudiants qui ont des difficultés à acquérir les compétences minimales durant les stages. Cinq thèmes ont été identifiés lors de l’analyse des entrevues qualitatives. La préoccupation principale des conseillers de stages était le niveau de compétence professionnelle acquis par les stagiaires. Les thèmes liés à la compétence étaient le rôle des conseillers de stages dans leur responsabilité pour protéger la réputation de leur profession ainsi que la réputation d’un programme professionnel
Dynamical mean-field theory from a quantum chemical perspective.
Zgid, Dominika; Chan, Garnet Kin-Lic
2011-03-07
We investigate the dynamical mean-field theory (DMFT) from a quantum chemical perspective. Dynamical mean-field theory offers a formalism to extend quantum chemical methods for finite systems to infinite periodic problems within a local correlation approximation. In addition, quantum chemical techniques can be used to construct new ab initio Hamiltonians and impurity solvers for DMFT. Here, we explore some ways in which these things may be achieved. First, we present an informal overview of dynamical mean-field theory to connect to quantum chemical language. Next, we describe an implementation of dynamical mean-field theory where we start from an ab initio Hartree-Fock Hamiltonian that avoids double counting issues present in many applications of DMFT. We then explore the use of the configuration interaction hierarchy in DMFT as an approximate solver for the impurity problem. We also investigate some numerical issues of convergence within DMFT. Our studies are carried out in the context of the cubic hydrogen model, a simple but challenging test for correlation methods. Finally, we finish with some conclusions for future directions.
Quantum pumping in graphene with a perpendicular magnetic field
Tiwari, R.P.; Blaauboer, M.
2010-01-01
We consider quantum pumping of Dirac fermions in a monolayer of graphene in the presence of a perpendicular magnetic field in the central pumping region. The two external pump parameters are electrical voltages applied to the graphene sheet on either side of the pumping region. We analyze this pump
Critical fluctuations for quantum mean-field models
Energy Technology Data Exchange (ETDEWEB)
Fannes, M.; Kossakowski, A.; Verbeure, A. (Univ. Louvain (Belgium))
1991-11-01
A Ginzburg-Landau-type approximation is proposed for the local Gibbs states for quantum mean-field models that leads to the exact thermodynamics. Using this approach, the spin fluctuations are computed for some spin-1/2 models. At the critical temperature, the distribution function showing abnormal fluctuations is found explicitly.
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
The Construction of Quantum Field Operators: Something of Interest
Dvoeglazov, Valeri V
2010-01-01
We draw attention to some tune problems in constructions of the quantum-field operators for spins 1/2 and 1. They are related to the existence of negative-energy and acausal solutions of relativistic wave equations. Particular attention is paid to the chiral theories, and to the method of the Lorentz boosts.
Existence of Asymptotic Expansions in Noncommutative Quantum Field Theories
Linhares, C A; Roditi, I
2007-01-01
Starting from the complete Mellin representation of Feynman amplitudes for noncommutative vulcanized scalar quantum field theory, introduced in a previous publication, we generalize to this theory the study of asymptotic behaviours under scaling of arbitrary subsets of external invariants of any Feynman amplitude. This is accomplished for both convergent and renormalized amplitudes.
GENERALIZED OPERATORS AND P(φ)2 QUANTUM FIELDS
Institute of Scientific and Technical Information of China (English)
黄志远; 让光林
2004-01-01
In this paper by Sobolev imbedding theorem and characterization theorem of generalized operators the existence of P(φ)2 quantum fields as generalized operators is obtained and a rigorous mathematical interpretation of renormalization procedure is given under white noise theory.
Towards a quantum Hall effect for atoms using electric fields
Ericsson, M; Ericsson, Marie; Sjoqvist, Erik
2002-01-01
An atomic analogue of Landau quantization based on the Aharonov-Casher (AC) interaction is developed. The effect provides a first step towards an atomic quantum Hall system using electric fields, which may be realized in a Bose-Einstein condensate.
Thermal Reservoir coupled to External Field and Quantum Dissipation
Patriarca, M; Patriarca, Fabrizio Illuminati & Marco
1992-01-01
In the framework of the Caldeira-Leggett model of dissipative quantum mechanics, we investigate the effects of the interaction of the thermal reservoir with an external field. In particular, we discuss how the interaction modifies the conservative dynamics of the central particle, and the mechanism of dissipation. We briefly comment on possible observable consequencies.
Preheating in an asymptotically safe quantum field theory
DEFF Research Database (Denmark)
Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert
2016-01-01
We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, ...
Loop quantum effect and the fate of tachyon field collapse
Tavakoli, Y.; Moniz, P. Vargas; Marto, J.; Ziaie, A. H.
2012-01-01
We study the fate of gravitational collapse of a tachyon field matter. In presence of an inverse square potential a black hole forms. Loop quantum corrections lead to the avoidance of classical singularities, which is followed by an outward flux of energy.
A quantum field theory of the extended electron
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1993-12-01
In a recent paper, the classical model of Barut and Zanghi (BZ) for the electron spin which interpreted the Zitterbewegung (zbw) motion along helical paths and its quantum version have been investigated by using the language of Clifford algebras. In also doing, a new non-linear Dirac-like equation (NDE) was derived. We want to readdress the whole subject, and complete it, by adopting - for the sake of physical clarity - the ordinary tensorial language. In particular, we re-derive here the NDE for the electron quantum field, show it to be associated with a new conserved probability current, and stress its importance for a quantum field theory of spin 1/2 fermions. Actually, we propose this equation in substitution for the Dirac equation, which comes from the former by averaging over a zbw cycle. We then derive a new equation of motion for the quantum field velocity, which will allow us to regard the electron as an extended object, with a classically intelligible internal structure (thus overcoming some known, long-standing problems). We carefully the solutions of the NDE; with special attention to those implying (at the classical limit) light-like helical motions, since these appear to be the most adequate equations for the electron description, from the kinematical and physical points of view, and do cope with the electron electromagnetic properties (such as Coulomb field and intrinsic magnetic moment). (author). 18 refs.
Effective action for a quantum scalar field in warped spaces
Energy Technology Data Exchange (ETDEWEB)
Hoff da Silva, J.M.; Mendonca, E.L.; Scatena, E. [Universidade Estadual Paulista ' ' Julio de Mesquita Filho' ' -UNESP, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2015-11-15
We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case. (orig.)
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-01
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
Studies on the second-harmonic generations in cubical quantum dots with applied electric field
Energy Technology Data Exchange (ETDEWEB)
Shao Shuai [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.co [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Zhang Zhihai; Li Ning; Peng Chao [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China)
2011-02-01
The second-harmonic generation (SHG) coefficient for cubical quantum dots (CQDs) with the applied electric field is theoretically investigated. Using the compact density-matrix approach and the iterative method, we get the analytical expression of the SHG coefficient. And the numerical calculations for the typical GaAs/AlAs CQDs are presented. The results show that the SHG coefficient can reach the magnitude of 10{sup -5} m/V, about two orders higher than that in spherical quantum dot system. More importantly, the SHG coefficient is not a monotonic function of the length L of CQDs as well as the applied field F. If we select suitable values of F and L, we will get a higher value of the SHG coefficient. In addition, the relaxation rate also affects the SHG coefficient obviously.
Tachyon field in Loop Quantum Cosmology: inflation and evolution picture
Xiong, H H; Xiong, Hua-Hui; Zhu, Jian-Yang
2007-01-01
Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. We show that this is always true in tachyon matter LQC. Different from the classical FRW cosmology, the superinflation can appear in the tachyon matter LQC; furthermore, the inflation can be extended to the region where classical inflation stops. Using numerical method, we give an evolution picture of the tachyon field with an exponential potential in the context of LQC. It indicates that the quantum dynamical solutions have the attractor behavior as the classical solutions does. And, the whole evolution of the tachyon field is that: at the far past, the tachyon field, being in the contracting cosmology, is accelerated to climb up the potential hill with a negative velocity; and then, the tachyon field at the boundary is bounced into an expanding universe with positive velocity rolling down to the bottom of the potential.
Quantum fields from the Hubble to the Planck scale
Kachelriess, Michael
2017-01-01
This book introduces quantum field theory, together with its most important applications to cosmology and astroparticle physics, in a coherent framework. The path integral approach is employed right from the start, and the use of Green functions and generating functionals is illustrated first in quantum mechanics and then in scalar field theory. Massless spin one and two fields are discussed on an equal footing, and gravity is presented as a gauge theory in close analogy with the Yang-Mills case. Concepts relevant to modern research such as helicity methods, effective theories, decoupling, or the stability of the electroweak vacuum are introduced. Various applications such as topological defects, dark matter, baryogenesis, processes in external gravitational fields, inflation and black holes help students to bridge the gap between undergraduate courses and the research literature.
Generating Functionals for Quantum Field Theories with Random Potentials
Jain, Mudit
2015-01-01
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include condensed matter systems with quenched disorder (e.g. spin glass) or cosmological systems in context of the string theory landscape (e.g. cosmic inflation). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out ...
N=2 Quantum Field Theories and Their BPS Quivers
Alim, Murad; Cordova, Clay; Espahbodi, Sam; Rastogi, Ashwin; Vafa, Cumrun
2011-01-01
We explore the relationship between four-dimensional N=2 quantum field theories and their associated BPS quivers. For a wide class of theories including super-Yang-Mills theories, Argyres-Douglas models, and theories defined by M5-branes on punctured Riemann surfaces, there exists a quiver which implicitly characterizes the field theory. We study various aspects of this correspondence including the quiver interpretation of flavor symmetries, gauging, decoupling limits, and field theory dualities. In general a given quiver describes only a patch of the moduli space of the field theory, and a key role is played by quantum mechanical dualities, encoded by quiver mutations, which relate distinct quivers valid in different patches. Analyzing the consistency conditions imposed on the spectrum by these dualities results in a powerful and novel mutation method for determining the BPS states. We apply our method to determine the BPS spectrum in a wide class of examples, including the strong coupling spectrum of super-...
Spin and Rotations in Galois Field Quantum Mechanics
Chang, Lay Nam; Minic, Djordje; Takeuchi, Tatsu
2012-01-01
We discuss the properties of Galois Field Quantum Mechanics constructed on a vector space over the finite Galois field GF(q). In particular, we look at 2-level systems analogous to spin, and discuss how SO(3) rotations could be embodied in such a system. We also consider two-particle `spin' correlations and show that the Clauser-Horne-Shimony-Holt (CHSH) inequality is nonetheless not violated in this model.
Relativistic quantum mechanics and introduction to field theory
Energy Technology Data Exchange (ETDEWEB)
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Scalar Field Dynamics Classical, Quantum and in Between
Salle, M; Vink, Jeroen C
2000-01-01
Using a Hartree ensemble approximation, we investigate the dynamics of the \\phi^4 model in 1+1 dimensions. We find that the fields initially thermalize with a Bose-Einstein distribution for the fields. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.
Quantum mechanics in strong time dependent external fields
Energy Technology Data Exchange (ETDEWEB)
Pomeau, Y.
1986-01-01
In quantum mechanics, time dependent Hamiltonians are most often studied by perturbation methods, the amplitude of the unsteady force being assumed to be small. On two examples (two level system with a large time dependent coupling, and atoms in large external unsteady field). I show that the opposite limit (large time dependent field) can be analyzed in some details too. For a particle in a central potential and submitted to a large periodic external field, one is led to make a Kapitza averaging because the intrinsic frequency tends to zero when the external field diverges. In that way one has to introduce a steady effective potential with singular turning points.
NEGATIVE DONOR CENTER QUANTUM DOTS IN MAGNETIC FIELDS
Institute of Scientific and Technical Information of China (English)
Xie Wen-fang
2000-01-01
The method of few-body physics is applied to treat a D- center quantumdot system in a magnetic field. The magnetic field is applied in the zdirection. Using this method, we investigate the energy spectra of low-lyingstates of D- center quantum dots as a function of magnetic field. Thedependence of the binding energies of the ground-state of the D- centerare calculated as a function of the dot radius with a few values of themagnetic field strength and compared with other results.
One-loop quantum corrections to cosmological scalar field potentials
Arbey, A; Arbey, Alexandre; Mahmoudi, Farvah
2007-01-01
We study the loop corrections to potentials of complex or coupled real scalar fields used in cosmology to account for dark energy, dark matter or dark fluid. We show that the SUGRA quintessence and dark matter scalar field potentials are stable against the quantum fluctuations, and we propose solutions to the instability of the potentials of coupled quintessence and dark fluid scalar fields. We also find that a coupling to fermions is very restricted, unless this coupling has a structure which already exists in the scalar field potential or which can be compensated by higher order corrections. Finally, we study the influence of the curvature and kinetic term corrections.
N = 8 supersingleton quantum field theory
Bergshoeff, Eric; Salam, Abdus; Sezgin, Ergin; Tanii, Yoshiaki
1988-01-01
We quantize the N = 8 supersymmetric singleton field theory which is formulated on the boundary of the four-dimensional anti-de Sitter spacetime (ADS4). The theory has rigid OSp(8, 4) symmetry which acts as a superconformal group on the boundary of AdS4. We show that the generators of this symmetry
Perturbative quantum gravity in double field theory
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Perturbative quantum gravity in double field theory
Boels, Rutger H
2015-01-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Theoretical study of quantum capacitance and associated delay in armchair-edge graphene nanoribbons
Hassan, Asif; Hossain, Md. Faruque; Rana, Md. Sohel; Kouzani, Abbas Z.
2015-09-01
This work presents a comprehensive investigation of the quantum capacitance and the associated effects on the carrier transit delay in armchair-edge graphene nanoribbons (A-GNRs) based on semi-analytical method. We emphasize on the realistic analysis of bandgap with taking edge effects into account by means of modified tight binding (TB) model. The results show that the edge effects have significant influence in defining the bandgap which is a necessary input in the accurate analyses of capacitance. The quantum capacitance is discussed in both nondegenerate (low gate voltage) and degenerate (high gate voltage) regimes. We observe that the classical capacitance limits the total gate (external) capacitance in the degenerate regime, whereas, quantum capacitance limits the external gate capacitance in the nondegenerate regime. The influence of gate capacitances on the gate delay is studied extensively to demonstrate the optimization of switching time. Moreover, the high-field behavior of a GNR is studied in the degenerate and nondegenerate regimes. We find that a smaller intrinsic capacitance appears in the channel due to high velocity carrier, which limits the quantum capacitance and thus limit the gate delay. Such detail analysis of GNRs considering a realistic model would be useful for the optimized design of GNR-based nanoelectronic devices.
Optical Conductivity of Anisotropic Quantum Dots in Magnetic Fields
Institute of Scientific and Technical Information of China (English)
GUO Kang-Xian; CHEN Chuan-Yu
2005-01-01
@@ Optical conductivity of anisotropic double-parabolic quantum dots is investigated with the memory-function approach, and the analytic expression for the optical conductivity is derived. With characteristic parameterspertaining to GaAs, the numerical results are presented. It is shown that: (1) the larger the optical phonon frequency ωLO, the stronger the peak intensity of the optical conductivity, and the more asymmetric the shape of the optical conductivity; (2) the magnetic field enhances the optical conductivity for levels l = 0 and l = 1, with or without electron-LO-phonon interactions; (3) the larger the quantum dot thickness lz, the smaller the optical conductivity σ(ω).
Quantum Phase Analysis of Field-Free Molecular Alignment
Yun, Sang Jae; Lee, Jongmin; Nam, Chang Hee
2015-01-01
We present quantum mechanical explanations for unresolved phenomena observed in field-free molecular alignment by a femtosecond laser pulse. Quantum phase analysis of molecular rotational states reveals the physical origin of the following phenomena: strong alignment peaks appear periodically, and the temporal shape of each alignment peak changes in an orderly fashion depending on molecular species; the strongest alignment is not achieved at the first peak; the transition between aligned and anti-aligned states is very fast compared to the time scale of rotational dynamics. These features are understood in a unified way analogous to that describing a carrier-envelope-phase-stabilized mode-locked laser.
Three-Electron Quantum Dots in Zero Magnetic Field
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By using the exact diagonalization method, a system of three electrons confined in a parabolic quantum dot in zero magnetic field is studied. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understanding the optical properties and internal electron-electron correlations of quantum dot materials.
Nonlinear interaction of electromagnetic field with quantum plasma
Latyshev, A V
2014-01-01
The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures.
Aspects of quantum field theory in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Fulling, S.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mathematics)
1989-01-01
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the Klein 'paradox', particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalization of the stress tensor. (author).
Dynamical mean-field theory for quantum chemistry.
Lin, Nan; Marianetti, C A; Millis, Andrew J; Reichman, David R
2011-03-04
The dynamical mean-field concept of approximating an unsolvable many-body problem in terms of the solution of an auxiliary quantum impurity problem, introduced to study bulk materials with a continuous energy spectrum, is here extended to molecules, i.e., finite systems with a discrete energy spectrum. The application to small clusters of hydrogen atoms yields ground state energies which are competitive with leading quantum chemical approaches at intermediate and large interatomic distances as well as good approximations to the excitation spectrum.
Emergence of particles from bosonic quantum field theory
Wallace, D
2001-01-01
An examination is made of the way in which particles emerge from linear, bosonic, massive quantum field theories. Two different constructions of the one-particle subspace of such theories are given, both illustrating the importance of the interplay between the quantum-mechanical linear structure and the classical one. Some comments are made on the Newton-Wigner representation of one-particle states, and on the relationship between the approach of this paper and those of Segal, and of Haag and Ruelle.
Information Geometry of Entanglement Renormalization for free Quantum Fields
Molina-Vilaplana, Javier
2015-01-01
We provide an explicit connection between the differential generation of entanglement entropy in a tensor network representation of the ground states of two field theories, and a geometric description of these states based on the Fisher information metric. We show how the geometrical description remains invariant despite there is an irreducible gauge freedom in the definition of the tensor network. The results might help to understand how spacetimes may emerge from distributions of quantum states, or more concretely, from the structure of the quantum entanglement concomitant to those distributions.
Schuch, Dieter
2014-04-01
Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.
Quantum fields and Poisson processes: interaction of a cut-off boson field with a quantum particle
Energy Technology Data Exchange (ETDEWEB)
Bertrand, J.; Rideau, G.; Gaveau, B.
1985-01-01
The solution of the Schroedinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful.
Quantum fields and poisson processes: Interaction of a cut-off boson field with a quantum particle
Bertrand, Jacqueline; Gaveau, Bernard; Rideau, Guy
1985-01-01
The solution of the Schrödinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful.
Quantum Coherence and Random Fields at Mesoscopic Scales
Energy Technology Data Exchange (ETDEWEB)
Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)
2016-03-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.
Directory of Open Access Journals (Sweden)
Ion C. Baianu
2009-04-01
Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.
Quantum Computation and Information From Theory to Experiment
Imai, Hiroshi
2006-01-01
Recently, the field of quantum computation and information has been developing through a fusion of results from various research fields in theoretical and practical areas. This book consists of the reviews of selected topics charterized by great progress and cover the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.
Institute of Scientific and Technical Information of China (English)
舒维星; 吴普训; 余洪伟
2003-01-01
Negative energy density and the quantum inequality are examined for the Dirac field. A proof is given of the quantum inequality for negative energy densities in the massive Dirac field produced by the superposition of two single particle electron states.
Locality and entanglement in bandlimited quantum field theory
Pye, Jason; Kempf, Achim
2015-01-01
We consider a model for a Planck scale ultraviolet cutoff which is based on Shannon sampling. Shannon sampling originated in information theory, where it expresses the equivalence of continuous and discrete representations of information. When applied to quantum field theory, Shannon sampling expresses a hard ultraviolet cutoff in the form of a bandlimitation. This introduces nonlocality at the cutoff scale in a way that is more subtle than a simple discretization of space: quantum fields can then be represented as either living on continuous space or, entirely equivalently, as living on any one lattice whose average spacing is sufficiently small. We explicitly calculate vacuum entanglement entropies in 1+1 dimension and we find a transition between logarithmic and linear scaling of the entropy, which is the expected 1+1 dimensional analog of the transition from an area to a volume law. We also use entanglement entropy and mutual information as measures to probe in detail the localizability of the field degre...
Quantum electron self-interaction in a strong laser field
Meuren, S
2011-01-01
The quantum state of an electron in a strong laser field is altered if the interaction of the electron with its own electromagnetic field is taken into account. Starting from the Schwinger-Dirac equation, we determine the states of an electron in a plane-wave field with inclusion, at leading order, of its electromagnetic self-interaction. On the one hand, the electron states show a pure "quantum" contribution to the electron quasi-momentum, conceptually different from the conventional "classical" one arising from the quiver motion of the electron. On the other hand, the electron self-interaction induces a distinct dynamics of the electron spin, whose effects are shown to be measurable in principle with available technology.
Quantum entanglement of local operators in conformal field theories.
Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi
2014-03-21
We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.
Noether symmetric classical and quantum scalar field cosmology
Vakili, Babak
2011-01-01
We study the evolution of a two dimensional minisuperspace cosmological model in classical and quantum levels by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a Friedmann-Robertson-Walker (FRW) model and a scalar field with which the action of the model is augmented. It is shown that the minisuperspace of such a model is a two dimensional manifold with vanishing Ricci scalar. We present a coordinate transformation which cast the corresponding minisuper metric to a Minkowskian or Euclidean one according to the choices of an ordinary or phantom model for the scalar field. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generators of the desired symmetry. We explicitly calculate the form of the scalar field potential functions for which such symmetries exist. For these potential functions, the exact classical and quantum solutions in the cases where th...
Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes
Schenkel, Alexander
2012-01-01
The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that ...
String-localized quantum fields and modular localization
Energy Technology Data Exchange (ETDEWEB)
Mund, J. [Juiz de Fora Univ., MG (Brazil). Dept. de Fisica; Schroer, B. [FU-Berlin, Berlin (Germany). Inst. fuer Theoretische Physik; Yngvason, J. [Erwin Schroedinger Institute for Mathematical Physics, Vienna (Austria)
2005-12-15
We study free, covariant, quantum (Bose) fields that are associated with irreducible representations of the Poincare group and localized in semi-infinite strings extending to spacelike infinity. Among these are fields that generate the irreducible representations of mass zero and infinite spin that are known to be incompatible with point-like localized fields. For the massive representation and the massless representations of finite helicity, all string-localized free fields can be written as an integral, along the string, of point-localized tensor or spinor fields. As a special case we discuss the string-localized vector fields associated with the point-like electromagnetic field and their relation to the axial gauge condition in the usual setting. (author)
SNS potential with exchange field in quantum dusty plasmas
Zeba, I.; Batool, Maryam; Khan, Arroj A.; Jamil, M.; Rozina, Ch
2017-02-01
The shielding potential of a static test charge is studied in quantum dusty plasmas. The plasma system consisting upon electrons, ions and negatively static charged dust species, is embedded in an ambient magnetic field. The modified equation of dispersion is derived using quantum hydrodynamic model (QHD) for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, tunneling effect and exchange-correlation effects. The study of shielding is important to know the existence of the silence zones in space and astrophysical objects as well as crystal formation. The graphical description of the normalized potential depict the significance of the exchange and correlation effects arising through spin and other variables on the shielding potential.
Exact quantum defect theory approach for lithium in magnetic fields
Institute of Scientific and Technical Information of China (English)
Xu Jia-Kun; Chen Hai-Qing; Liu Hong-Ping
2013-01-01
We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach.The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively.Lithium has a small quantum defect value 0.05 for the np states,and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit.However,a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than-70 cm-1.The effect of the quantum defect is also discussed for the Stark spectrum.It is found that the σ transition to the np states in an electric field has a similar behavior to that of hydrogen due to zero interaction with channel ns.
Nonideal effects in quantum field-effect directional coupler
Institute of Scientific and Technical Information of China (English)
Xie Yue-E; Yan Xiao-Hong; Chen Yuan-Ping
2006-01-01
The nonideal effects in a quantum field-effect directional coupler where two quantum wires are coupled through a finite potential barrier are studied by adopting the lattice Green function method. The results show that the electron energy distribution, asymmetric geometry and finite temperature all have obvious influence on the electron transfer of the coupler. Only for the electrons with energies in a certain region, can the complete periodic transfer between two quantum wires take place. The conductance of these electrons as a function of the barrier length and potential height exhibits a fine periodic or quasi-periodic pattern. For the electrons with energies beyond the region, however, the complete periodic transfer does not hold any more since many irregular oscillations are superimposed on the conductance profile. In addition, the finite temperature and asymmetric geometry both can reduce the electron transfer efficiency.
A tunable colloidal quantum dot photo field-effect transistor
Ghosh, Subir
2011-01-01
We fabricate and investigate field-effect transistors in which a light-absorbing photogate modulates the flow of current along the channel. The photogate consists of colloidal quantum dots that efficiently transfer photoelectrons to the channel across a charge-separating (type-II) heterointerface, producing a primary and sustained secondary flow that is terminated via electron back-recombination across the interface. We explore colloidal quantum dot sizes corresponding to bandgaps ranging from 730 to 1475 nm and also investigate various stoichiometries of aluminum-doped ZnO (AZO) channel materials. We investigate the role of trap state energies in both the colloidal quantum dot energy film and the AZO channel. © 2011 American Institute of Physics.
Ahluwalia, Dharam Vir
2013-01-01
Since the 1928 seminal work of Dirac, and its subsequent development by Weinberg, a view is held that there is a unique Fermi field of spin one-half. It is endowed with mass dimension three-half. Combined, these characteristics profoundly affect the phenomenology of the high energy physics, astrophysics, and cosmology. We here present a counter example by providing a local, mass dimension one, Fermi field of spin one-half. The theory, inter alia, thus allows dimensionless quartic self interaction for the new fermions, and its only other dimensionless coupling is quadratic in the new fermions and in the standard-model scalar field. For these reasons, the immediate application of the new theory resides in the dark-matter sector of physical reality. The lowest-mass associated new particle may leave its unique signature at the Large Hadron Collider. We discuss in detail the theoretical crevice that allows the existence of the new quantum field.
General Quantum Modeling of Combining Concepts: A Quantum Field Model in Fock Space
Aerts, Diederik
2007-01-01
We extend a quantum model in Hilbert space developed in Aerts (2007a) into a quantum field theoric model in Fock space for the modeling of the combination of concepts. Items and concepts are represented by vectors in Fock space and membership weights of items are modeled by quantum probabilities. We apply this theory to model the disjunction of concepts and show that the predictions of our theory for the membership weights of items regarding the disjunction of concepts match with great accuracy the complete set of results of an experiment conducted by Hampton (1988b). It are the quantum effects of interference and superposition of that are at the origin of the effects of overextension and underextension observed by Hampton as deviations from a classical use of the disjunction. It is essential for the perfect matches we obtain between the predictions of the quantum field model and Hampton's experimental data that items can be in superpositions of `different numbers states' which proves that the genuine structu...
Generation of families of spectra in PT-symmetric quantum mechanics and scalar bosonic field theory.
Schmidt, Steffen; Klevansky, S P
2013-04-28
This paper explains the systematics of the generation of families of spectra for the -symmetric quantum-mechanical Hamiltonians H=p(2)+x(2)(ix)(ε), H=p(2)+(x(2))(δ) and H=p(2)-(x(2))(μ). In addition, it contrasts the results obtained with those found for a bosonic scalar field theory, in particular in one dimension, highlighting the similarities to and differences from the quantum-mechanical case. It is shown that the number of families of spectra can be deduced from the number of non-contiguous pairs of Stokes wedges that display PT symmetry. To do so, simple arguments that use the Wentzel-Kramers-Brillouin approximation are used, and these imply that the eigenvalues are real. However, definitive results are in most cases presently only obtainable numerically, and not all eigenvalues in each family may be real. Within the approximations used, it is illustrated that the difference between the quantum-mechanical and the field-theoretical cases lies in the number of accessible regions in which the eigenfunctions decay exponentially. This paper reviews and implements well-known techniques in complex analysis and PT-symmetric quantum theory.