DEFF Research Database (Denmark)
Bialynicki-Birula, I; Cirone, M.A.; Dahl, Jens Peder
2002-01-01
We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii......) a singular quantum force located at the origin, and (iii) the centrifugal force associated with non-vanishing angular momentum. Moreover, we use Heisenberg's uncertainty relation to introduce a lower bound for the kinetic energy of an ensemble of neutral particles. This bound is quadratic in the number...... of atoms and can be traced back to the repulsive quantum fictitious potential. All three forces arise for a free particle: "Force without force"....
Geometry, commutation relations and the quantum fictitious force
DEFF Research Database (Denmark)
Botero, J.; Cirone, M.A.; Dahl, Jens Peder
2003-01-01
We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schrodinger equation of an s-wave.......We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schrodinger equation of an s-wave....
A parallel direct-forcing fictitious domain method for simulating microswimmers
Gao, Tong; Lin, Zhaowu
2017-11-01
We present a 3D parallel direct-forcing fictitious domain method for simulating swimming micro-organisms at small Reynolds numbers. We treat the motile micro-swimmers as spherical rigid particles using the ``Squirmer'' model. The particle dynamics are solved on the moving Larangian meshes that overlay upon a fixed Eulerian mesh for solving the fluid motion, and the momentum exchange between the two phases is resolved by distributing pseudo body-forces over the particle interior regions which constrain the background fictitious fluids to follow the particle movement. While the solid and fluid subproblems are solved separately, no inner-iterations are required to enforce numerical convergence. We demonstrate the accuracy and robustness of the method by comparing our results with the existing analytical and numerical studies for various cases of single particle dynamics and particle-particle interactions. We also perform a series of numerical explorations to obtain statistical and rheological measurements to characterize the dynamics and structures of Squirmer suspensions. NSF DMS 1619960.
Foladori, Guillermo
2016-01-01
Science and Technology (S&T), like Research and Development (R&D), has become a case of capital investment like any other economic sector. This has distanced R&D from social needs, to the extent that part of R&D ends up actually being fictitious, in the sense that it acquires a price on the market but never becomes part of material…
Directory of Open Access Journals (Sweden)
Nina Engelhardt
2014-09-01
Full Text Available Gravity is a prominent physical concept in 'Gravity's Rainbow', as already announced by the novel's title. If the second part of the title – the poetic image of the rainbow – is bound up with mathematical formulas and the parabolic path of the Rocket, so conversely, this paper argues, Pynchon's novel introduces a relation between gravity and fiction. The paper explores 'Gravity's Rainbow''s use of the changing historical understandings of gravitation from the seventeenth to the twentieth centuries by examining the novel's illustration of Newton and Leibniz's opposed concepts as well as its references to gravity as understood in Einstein's theory of relativity. When tracing the notions of gravity as force, fictitious force, and frame of reference, a particular focus lies on the relation of physical imagery to ethical questions and on the way 'Gravity's Rainbow' provides a physico-ethical explanation of Slothrop's disappearance from the novel.
International Nuclear Information System (INIS)
Cirone, M.A.; Schleich, W.P.; Straub, F.; Rzazewski, K.; Wheeler, J.A.
2002-01-01
In a two-dimensional world, a free quantum particle of vanishing angular momentum experiences an attractive force. This force originates from a modification of the classical centrifugal force due to the wave nature of the particle. For positive energies the quantum anticentrifugal force manifests itself in a bunching of the nodes of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound state in a two-dimensional δ-function potential. In a counterintuitive way, the attractive force pushes the particle away from the location of the δ-function potential. As a consequence, the particle is localized in a band-shaped domain around the origin
Gravity as Quantum Entanglement Force
Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai
2010-01-01
We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...
Casimir Force Between Quantum Plasmas
International Nuclear Information System (INIS)
Buenzli, P.
2005-01-01
Field fluctuations are responsible for an attractive force - the Casimir force - between two parallel (globally neutral) metallic plates separated by a distance d. At high temperature, or equivalently large d, this force is known to exhibit a classical and universal character (independent of the material constitution of the plates). In a recent work, we have displayed the microscopic mechanisms responsible for this universality within a classical model. The plates consist of slabs containing classical charged particles in fluid phase and thermal equilibrium (plasmas). The universality of the force proves to originate from screening sum rules satisfied by the charge correlations. Here we show how this result is altered when the quantum-mechanical nature of the particles is taken into account. It turns out that in addition to the classical result, the asymptotic force for large d comprises a non-universal quantum correction, which is, however, small at high temperature. The method relies on an exact representation of the charge correlations by quantum Mayer graphs, based on the Feynman-Kac path integral formalism. (author)
Nonconservative Forces via Quantum Reservoir Engineering
Vuglar, Shanon L.; Zhdanov, Dmitry V.; Cabrera, Renan; Seideman, Tamar; Jarzynski, Christopher; Bondar, Denys I.
2018-06-01
A systematic approach is given for engineering dissipative environments that steer quantum wave packets along desired trajectories. The methodology is demonstrated with several illustrative examples: environment-assisted tunneling, trapping, effective mass assignment, and pseudorelativistic behavior. Nonconservative stochastic forces do not inevitably lead to decoherence—we show that purity can be well preserved. These findings highlight the flexibility offered by nonequilibrium open quantum dynamics.
New gravitational forces from quantum theory
International Nuclear Information System (INIS)
Nieto, M.M.; Goldman, T.; Hughes, R.J.
1988-01-01
When a classical theory is quantized, new physical effects result. The prototypical example is the Lamb Shift of quantum electrodynamics. Even though this phenomenon could be parametrized by the ''Uehling Potential,'' it was always realized that it was a quantum aspect of electromagnetism, not a ''new force'' of nature. So, too, with theories of quantum gravity. Generically they predict that there will be spin-1 (graviphoton) and spin-0 (graviscalar) partners of the spin-2 graviton. At some level, these partners will generate new effects. Among them are (1) non-Newtonian gravitational forces and (2) substance dependance (violation of the Principle of Equivalence). We discuss these ideas in the context of recent experiments. (Experiments usually test only one of the above effects, which could be distinct.) We contrast these ideas with the alternative point of view, that there actually may be a ''fifth force'' of nature. 20 refs
Attractive and repulsive quantum forces from dimensionality of space
DEFF Research Database (Denmark)
Bialynicki-Birula, I.; Cirone, M.A.; Dahl, Jens Peder
2002-01-01
Two particles of identical mass attract and repel each other even when there exist no classical external forces and their average relative momentum vanishes. This quantum force depends crucially on the number of dimensions of space.......Two particles of identical mass attract and repel each other even when there exist no classical external forces and their average relative momentum vanishes. This quantum force depends crucially on the number of dimensions of space....
On fictitious domain formulations for Maxwell's equations
DEFF Research Database (Denmark)
Dahmen, W.; Jensen, Torben Klint; Urban, K.
2003-01-01
We consider fictitious domain-Lagrange multiplier formulations for variational problems in the space H(curl: Omega) derived from Maxwell's equations. Boundary conditions and the divergence constraint are imposed weakly by using Lagrange multipliers. Both the time dependent and time harmonic formu...
Fictitious play in extensive form games
DEFF Research Database (Denmark)
Hendon, Ebbe; Whitta-Jacobsen, Hans Jørgen; Sloth, Birgitte
1996-01-01
This article analyzes the fictitious play process originally proposed for strategic form games by Brown (1951) and Robinson (1951). We interpret the process as a model of preplay thinking performed by players before acting in a one-shot game. This model is one of bounded rationality. We discuss how...
On the Emergence of the Coulomb Forces in Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Jan Naudts
2017-01-01
Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.
The Meissner effect puzzle and the quantum force in superconductor
International Nuclear Information System (INIS)
Nikulov, A.V.
2012-01-01
The puzzle of the acceleration of the mobile charge carriers and the ions in the superconductor in direction opposite to the electromagnetic force revealed formerly in the Meissner effect is considered in the case of the transition of a narrow ring from normal to superconducting state. It is elucidated that the azimuthal quantum force was deduced eleven years ago from the experimental evidence of this acceleration but it cannot solve this puzzle. This quantum force explains other paradoxical phenomena connected with reiterated switching of the ring between normal and superconducting states.
Gravity and strong force: potentially linked by Quantum Wormholes
International Nuclear Information System (INIS)
Goradia, Sh.G.
2004-01-01
If Newtonian gravitation is modified to use surface-to-surface separation between particles, can have the strength of nuclear force between nucleons. This may be justified by possible existence of quantum wormholes in particles. All gravitational interactions would be between coupled wormholes, emitting graviton flux in proportional to particle size, allowing for the point-like treatment above. When le wormholes are 1 Planck length apart, the resultant force is 10 40 times the normal gravitational strength for nucleons. Additionally, the invisible quantum wormholes may form binary effects imparting we properties to all particles
Quantum chromodynamics: A theory of the nuclear force
International Nuclear Information System (INIS)
Craigie, N.S.
1980-06-01
A brief outline is given of a possible theory of the nuclear force and the strong interactions between elementary particles, which is supposed responsible for nuclear matter. The theory is known as quantum chromodynamics because of its association with a new kind of nuclear charge called colour and its resemblance to quantum electrodynamics. Early ideas on the nuclear force and the emergence of the quark model and the QCD Lagrangian are described first. Then properties of this theory and the problem of quark confinement, the perturbative phase of QCD, and the non-perturbative or confinement phase of QCD and the description of hadrons and their interactions are discussed
Quantum mode phonon forces between chainmolecules
DEFF Research Database (Denmark)
Bohr, Jakob
2001-01-01
bimolecular interaction is a truly many-body force that is temperature dependent and can be of the order of 1 eV. These phonon forces depend on molecular shape, composition, and density. They may therefore also be important for large molecular conformational changes, including the unfolding of chain molecules....... For the later case, a significant change in zero-point energy is found. This may be the underlying cause for cold denaturation of proteins. (C) 2001 John Wiley & Sons, Inc....
Nonequilibrium forces between neutral atoms mediated by a quantum field
International Nuclear Information System (INIS)
Behunin, Ryan O.; Hu, Bei-Lok
2010-01-01
We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.
Magnus force on quantum Hall skyrmions and vortices
International Nuclear Information System (INIS)
Dhar, S.; Basu, B.; Bandyopadhyay, P.
2003-01-01
We have discussed here the Magnus force acting on the vortices and skyrmions in the quantum Hall systems. We have found that it is generated by the chirality of the system which is associated with the Berry phase and is same for both the cases
Preface: Special Topic: From Quantum Mechanics to Force Fields
Piquemal, Jean-Philip; Jordan, Kenneth D.
2017-10-01
This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.
Fictitious employment contracts in loan recovery processes in Latvia
Directory of Open Access Journals (Sweden)
Neilands R.
2018-01-01
The aim of the paper is to research how fictitious employmentcontracts are used and to propose a solution for the fictitious labour agreements issue. Methods of qualitative research were employed in the paper – comparative method, analytic method, inductive method, and deductive method.
Quantum mechanical force field for water with explicit electronic polarization.
Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali
2013-08-07
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across
Modified Dugdale cracks and Fictitious cracks
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1998-01-01
A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...
Force law in material media, hidden momentum and quantum phases
International Nuclear Information System (INIS)
Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.
2016-01-01
We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.
Smoothing of Gaussian quantum dynamics for force detection
Huang, Zhishen; Sarovar, Mohan
2018-04-01
Building on recent work by Gammelmark et al. [Phys. Rev. Lett. 111, 160401 (2013), 10.1103/PhysRevLett.111.160401] we develop a formalism for prediction and retrodiction of Gaussian quantum systems undergoing continuous measurements. We apply the resulting formalism to study the advantage of incorporating a full measurement record and retrodiction for impulselike force detection and accelerometry. We find that using retrodiction can only increase accuracy in a limited parameter regime, but that the reduction in estimation noise that it yields results in better detection of impulselike forces.
The Quantum Space Phase Transitions for Particles and Force Fields
Directory of Open Access Journals (Sweden)
Chung D.-Y.
2006-07-01
Full Text Available We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space, and there is no separation between attachment space and detachment spaces. In binary partition space, detachment space and attachment space are in two separat continuous regions. The transition from wavefunction to the collapse of wavefuction under interference becomes the quantum space phase transition from binary lattice space to miscible space. At extremely conditions, the gauge boson force field undergoes a quantum space phase transition to a "hedge boson force field", consisting of a "vacuum" core surrounded by a hedge boson shell, like a bubble with boundary.
A Momentum-Exchange/Fictitious Domain-Lattice Boltzmann Method for Solving Particle Suspensions
Energy Technology Data Exchange (ETDEWEB)
Jeon, Seok Yun; Yoon, Joon Yong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Chul Kyu [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Shin, Myung Seob [Korea Intellectual Property Office(KIPO), Daejeon (Korea, Republic of)
2016-06-15
This study presents a Lattice Boltzmann Method (LBM) coupled with a momentum-exchange approach/fictitious domain (MEA/FD) method for the simulation of particle suspensions. The method combines the advantages of the LB and the FD methods by using two unrelated meshes, namely, a Eulerian mesh for the flow domain and a Lagrangian mesh for the solid domain. The rigid body conditions are enforced by the momentum-exchange scheme in which the desired value of velocity is imposed directly in the particle inner domain by introducing a pseudo body force to satisfy the constraint of rigid body motion, which is the key idea of a fictitious domain (FD) method. The LB-MEA/FD method has been validated by simulating two different cases, and the results have been compared with those through other methods. The numerical evidence illustrated the capability and robustness of the present method for simulating particle suspensions.
Quantum and classical vacuum forces at zero and finite temperature
International Nuclear Information System (INIS)
Niekerken, Ole
2009-06-01
In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of ℎ. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)
A Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon
Berman, G. P.; Doolen, G. D.; Tsifrinovich, V. I.
2000-01-01
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines the well-developed silicon technology with expected advances in MRFM.
Measurement-only topological quantum computation without forced measurements
International Nuclear Information System (INIS)
Zheng, Huaixiu; Dua, Arpit; Jiang, Liang
2016-01-01
We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons. (paper)
Analytical Model for Fictitious Crack Propagation in Concrete Beams
DEFF Research Database (Denmark)
Ulfkjær, J. P.; Krenk, Steen; Brincker, Rune
1995-01-01
An analytical model for load-displacement curves of concrete beams is presented. The load-displacement curve is obtained by combining two simple models. The fracture is modeled by a fictitious crack in an elastic layer around the midsection of the beam. Outside the elastic layer the deformations...... are modeled by beam theory. The state of stress in the elastic layer is assumed to depend bilinearly on local elongation corresponding to a linear softening relation for the fictitious crack. Results from the analytical model are compared with results from a more detailed model based on numerical methods...... for different beam sizes. The analytical model is shown to be in agreement with the numerical results if the thickness of the elastic layer is taken as half the beam depth. It is shown that the point on the load-displacement curve where the fictitious crack starts to develop and the point where the real crack...
Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.
Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I
2001-03-26
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.
Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon
International Nuclear Information System (INIS)
Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.
2001-01-01
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations
Quantum mechanical force fields for condensed phase molecular simulations
Giese, Timothy J.; York, Darrin M.
2017-09-01
Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.
International Nuclear Information System (INIS)
Lan, B.L.
2001-01-01
An alternative interpretation to Bohm's 'quantum force' and 'active information' is proposed. Numerical evidence is presented, which suggests that the time series of Bohm's 'quantum force' evaluated at the Bohmian position for non-stationary quantum states are typically non-Gaussian stable distributed with a flat power spectrum in classically chaotic Hamiltonian systems. An important implication of these statistical properties is briefly mentioned. (orig.)
Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy
International Nuclear Information System (INIS)
Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.
2000-01-01
We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society
The Role of Frame Force in Quantum Detection
National Research Council Canada - National Science Library
Benedetto, John J; Kebo, Andrew
2007-01-01
.... In this paper, we focus on a quantum detection problem, where the goal is to construct a tight frame that minimizes an error term, which in quantum physics has the interpretation of the probability of a detection error...
Analytical Model for Fictitious Crack Propagation in Concrete Beams
DEFF Research Database (Denmark)
Ulfkjær, J. P.; Krenk, S.; Brincker, Rune
An analytical model for load-displacement curves of unreinforced notched and un-notched concrete beams is presented. The load displacement-curve is obtained by combining two simple models. The fracture is modelled by a fictitious crack in an elastic layer around the mid-section of the beam. Outside...... the elastic layer the deformations are modelled by the Timoshenko beam theory. The state of stress in the elastic layer is assumed to depend bi-lineary on local elongation corresponding to a linear softening relation for the fictitious crack. For different beam size results from the analytical model...... is compared with results from a more accurate model based on numerical methods. The analytical model is shown to be in good agreement with the numerical results if the thickness of the elastic layer is taken as half the beam depth. Several general results are obtained. It is shown that the point on the load...
TAX EVASION THROUGH FICTITIOUS ECONOMIC OPERATIONS, OBSTACLE TO SUSTAINABLE DEVELOPMENT
SERGIU-BOGDAN CONSTANTIN
2016-01-01
Tax evasion means the avoidance of declaring and paying taxes. The purpose of the research is to identify ways and mechanisms of tax evasion through fictitious economic operations and how this kind o tax evasion can influence sustainable development. The principal methods are researching tax evasion cases investigated by the Romanian authorities responsible for combating this phenomenon, court trials on tax evasion and using the bibliographic references in the field. The data used...
Relaxation dispersion in MRI induced by fictitious magnetic fields.
Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom
2011-04-01
A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.
Effective quantum theories with short- and long-range forces
International Nuclear Information System (INIS)
Koenig, Sebastian
2013-01-01
At low energies, nonrelativistic quantum systems are essentially governed by their wave functions at large distances. For this reason, it is possible to describe a wide range of phenomena with short- or even finite-range interactions. In this thesis, we discuss several topics in connection with such an effective description and consider, in particular, modifications introduced by the presence of additional long-range potentials. In the first part we derive general results for the mass (binding energy) shift of bound states with angular momentum L ≥ 1 in a periodic cubic box in two and three spatial dimensions. Our results have applications to lattice simulations of hadronic molecules, halo nuclei, and Feshbach molecules. The sign of the mass shift can be related to the symmetry properties of the state under consideration. We verify our analytical results with explicit numerical calculations. Moreover, we discuss the case of twisted boundary conditions that arise when one considers moving bound states in finite boxes. The corresponding finite-volume shifts in the binding energies play an important role in the study of composite-particle scattering on the lattice, where they give rise to topological correction factors. While the above results are derived under the assumption of a pure finite-range interaction - and are still true up to exponentially small correction in the short-range case - in the second part we consider primarily systems of charged particles, where the Coulomb force determines the long-range part of the potential. In quantum systems with short-range interactions, causality imposes nontrivial constraints on low-energy scattering parameters. We investigate these causality constraints for systems where a long-range Coulomb potential is present in addition to a short-range interaction. The main result is an upper bound for the Coulomb-modified effective range parameter. We discuss the implications of this bound to the effective feld theory (EFT) for
International Nuclear Information System (INIS)
Silveira, R. da
1996-07-01
Possible effects of quantum-mechanical interferences between gravitational forces and the nucleus-nucleus Coulomb interaction are discussed. It is shown that, although very small, these effects could be measured using low energy scattering between identical heavy nuclei, e.g. for the system 208 Pb + 208 Pb (E L = 5 MeV). (author)
Casimir Forces and Quantum Friction from Ginzburg Radiation in Atomic Bose-Einstein Condensates.
Marino, Jamir; Recati, Alessio; Carusotto, Iacopo
2017-01-27
We theoretically propose an experimentally viable scheme to use an impurity atom in an atomic Bose-Einstein condensate, in order to realize condensed-matter analogs of quantum vacuum effects. In a suitable atomic level configuration, the collisional interaction between the impurity atom and the density fluctuations in the condensate can be tailored to closely reproduce the electric-dipole coupling of quantum electrodynamics. By virtue of this analogy, we recover and extend the paradigm of electromagnetic vacuum forces to the domain of cold atoms, showing in particular the emergence, at supersonic atomic speeds, of a novel power-law scaling of the Casimir force felt by the atomic impurity, as well as the occurrence of a quantum frictional force, accompanied by the Ginzburg emission of Bogoliubov quanta. Observable consequences of these quantum vacuum effects in realistic spectroscopic experiments are discussed.
Huygens' principle, the free Schrodinger particle and the quantum anti-centrifugal force
DEFF Research Database (Denmark)
Cirone, M.A.; Dahl, Jens Peder; Fedorov, M.
2002-01-01
Huygens' principle following from the d'Alembert wave equation is not valid in two-dimensional space. A Schrodinger particle of vanishing angular momentum moving freely in two dimensions experiences an attractive force-the quantum anti-centrifugal force-towards its centre. We connect these two...
International Nuclear Information System (INIS)
Hoffman, M J H; Claassens, C H
2006-01-01
A density matrix based fictitious electron dynamics method for calculating electronic structure has been implemented within a semi-empirical quantum chemistry environment. This method uses an equation of motion that implicitly ensures the idempotency constraint on the density matrix. Test calculations showed that this method has potential of being combined with simultaneous atomic dynamics, in analogy to the popular Car-Parrinello method. In addition, the sparsity of the density matrix and the sophisticated though flexible way of ensuring idempotency conservation while integrating the equation of motion creates the potential of developing a fast linear scaling method
Classical Wigner method with an effective quantum force: application to reaction rates.
Poulsen, Jens Aage; Li, Huaqing; Nyman, Gunnar
2009-07-14
We construct an effective "quantum force" to be used in the classical molecular dynamics part of the classical Wigner method when determining correlation functions. The quantum force is obtained by estimating the most important short time separation of the Feynman paths that enter into the expression for the correlation function. The evaluation of the force is then as easy as classical potential energy evaluations. The ideas are tested on three reaction rate problems. The resulting transmission coefficients are in much better agreement with accurate results than transmission coefficients from the ordinary classical Wigner method.
Bonitz, M.; Pehlke, E.; Schoof, T.
2013-03-01
This is the last of a series of three papers. In the first [Phys. Rev. E10.1103/PhysRevE.87.033105 87, 033105 (2013)], the same authors presented a critical analysis of the prediction of “novel attractive forces” between protons in dense hydrogen put forward by Shukla and Eliasson in a recent Letter [Phys. Rev. Lett.10.1103/PhysRevLett.108.165007 108, 165007 (2012)]. Based on ab initio density functional theory (DFT) calculations and general considerations, it was shown that no such force exists. In the second of the three papers [Phys. Rev. E10.1103/PhysRevE.87.037101 87, 037101 (2013)], Shukla, Eliasson, and Akbari-Moghanjoughi (SEA) rejected this analysis. SEA did not discuss our arguments but claimed that the discrepancy between their quantum hydrodynamic model (QHD) and DFT is due to a failure of the latter. It is the purpose of the present Reply to demonstrate that this claim is incorrect because DFT is more accurate than QHD, by construction.
The Quantum Space Phase Transitions for Particles and Force Fields
Chung D.-Y.; Krasnoholovets V.
2006-01-01
We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment spac...
Perspective: Ab initio force field methods derived from quantum mechanics
Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.
2018-03-01
It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.
On the quantum mechanical theory of stress and force
International Nuclear Information System (INIS)
Nielsen, O.H.; Martin, R.M.
1985-01-01
The stress theorem presented previously by the present authors is derived in detail and is related to the virial and force theorems. Stress fields are considered in two alternative forms, which both give the same macroscopic stress and forces on nuclei when integrated over appropriate surfaces. A crucial concept is interactions that ''cross'' surfaces. Explicit forms of the stress field within the local-density approximation are given, together with a generalization of the approximate Liberman form for pressure. Reciprocal-space expressions and ab-initio calculations are considered in detail in an accompanying paper. (orig.)
A verification of quantum field theory – measurement of Casimir force
Indian Academy of Sciences (India)
journal of. Feb. & Mar. 2001 physics pp. 239–243. A verification of quantum field theory ... minum coated a sphere and flat plate using an atomic force microscope. ... where R is the radius of curvature of the spherical surface. The finite .... sured by AFM) of 60% Au/40% Pd, to form a nonreactive and conductive top layer. For.
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-28
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
Quantum limited force measurement in a cavityless optomechanical system
International Nuclear Information System (INIS)
Fermani, Rachele; Mancini, Stefano; Tombesi, Paolo
2004-01-01
We study the possibility of revealing a weak coherent force by using a pendular mirror as a probe, and coupling this to a radiation field, which acts as the meter, in a cavityless configuration. We determine the sensitivity of such a scheme and show that the use of an entangled meter state greatly improves the ultimate detection limit. We also compare this scheme with that involving an optical cavity
Quantum mechanical methods for calculation of force constants
International Nuclear Information System (INIS)
Mullally, D.J.
1985-01-01
The focus of this thesis is upon the calculation of force constants; i.e., the second derivatives of the potential energy with respect to nuclear displacements. This information is useful for the calculation of molecular vibrational modes and frequencies. In addition, it may be used for the location and characterization of equilibrium and transition state geometries. The methods presented may also be applied to the calculation of electric polarizabilities and infrared and Raman vibrational intensities. Two approaches to this problem are studied and evaluated: finite difference methods and analytical techniques. The most suitable method depends on the type and level of theory used to calculate the electronic wave function. Double point displacement finite differencing is often required for accurate calculation of the force constant matrix. These calculations require energy and gradient calculations on both sides of the geometry of interest. In order to speed up these calculations, a novel method is presented that uses geometry dependent information about the wavefunction. A detailed derivation for the analytical evaluation of force constants with a complete active space multiconfiguration self consistent field wave function is presented
Explicit polarization: a quantum mechanical framework for developing next generation force fields.
Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel
2014-09-16
Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples
TAX EVASION THROUGH FICTITIOUS ECONOMIC OPERATIONS, OBSTACLE TO SUSTAINABLE DEVELOPMENT
Directory of Open Access Journals (Sweden)
SERGIU-BOGDAN CONSTANTIN
2016-06-01
Full Text Available Tax evasion means the avoidance of declaring and paying taxes. The purpose of the research is to identify ways and mechanisms of tax evasion through fictitious economic operations and how this kind o tax evasion can influence sustainable development. The principal methods are researching tax evasion cases investigated by the Romanian authorities responsible for combating this phenomenon, court trials on tax evasion and using the bibliographic references in the field. The data used are obtained through open sources of the authorities specialized in combating tax evasion for the cases made public, the media and also from specialised literature. The principal results are that this type of tax evasion is manifested through transactions with “ghost companies”, with offshore companies and transactions between associated enterprises. The main causes of this problem are: high taxation, corruption, inefficient government and tax authorities, no fiscal education and very hard tax legislation. The consequences are that the state budget is affected, the companies that do business legally are affected and also the final consumers, so Romania will not have economic growth and the quality of life will not improve. The main conclusion is that in order to have sustainable development, tax evasion in general and this kind of tax evasion in particular must be eradicated. The measures that have to be taken are to prevent tax evasion and to tighten controls but without violating taxpayers rights and without making abuses
Ideal quantum gas in an expanding cavity: nature of nonadiabatic force.
Nakamura, K; Avazbaev, S K; Sobirov, Z A; Matrasulov, D U; Monnai, T
2011-04-01
We consider a quantum gas of noninteracting particles confined in the expanding cavity and investigate the nature of the nonadiabatic force which is generated from the gas and acts on the cavity wall. First, with use of the time-dependent canonical transformation, which transforms the expanding cavity to the nonexpanding one, we can define the force operator. Second, applying the perturbative theory, which works when the cavity wall begins to move at time origin, we find that the nonadiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of the force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with the use of transitionless quantum states is also explained. The study is done for both cases of the hard- and soft-wall confinement with the time-dependent confining length. ©2011 American Physical Society
Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).
Comparison of three empirical force fields for phonon calculations in CdSe quantum dots
Energy Technology Data Exchange (ETDEWEB)
Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)
2016-06-07
Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.
Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L
2018-01-01
An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.
Projection and nested force-gradient methods for quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Shcherbakov, Dmitry
2017-07-26
For the Hybrid Monte Carlo algorithm (HMC), often used to study the fundamental quantum field theory of quarks and gluons, quantum chromodynamics (QCD), on the lattice, one is interested in efficient numerical time integration schemes which preserve geometric properties of the flow and are optimal in terms of computational costs per trajectory for a given acceptance rate. High order numerical methods allow the use of larger step sizes, but demand a larger computational effort per step; low order schemes do not require such large computational costs per step, but need more steps per trajectory. So there is a need to balance these opposing effects. In this work we introduce novel geometric numerical time integrators, namely, projection and nested force-gradient methods in order to improve the efficiency of the HMC algorithm in application to the problems of quantum field theories.
Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique
Directory of Open Access Journals (Sweden)
Sakuma Y
2006-01-01
Full Text Available AbstractAn atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs. Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.
Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions
Directory of Open Access Journals (Sweden)
Ryan eBabbush
2013-10-01
Full Text Available Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.
Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7
Directory of Open Access Journals (Sweden)
A. V. Sulimov
2017-01-01
Full Text Available Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.
Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7.
Sulimov, A V; Kutov, D C; Katkova, E V; Sulimov, V B
2017-01-01
Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.
Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David
2018-04-10
Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.
Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David
2018-04-01
Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.
Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J
2009-04-01
Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.
Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik
2017-07-24
We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.
Empirical Centroid Fictitious Play: An Approach For Distributed Learning In Multi-Agent Games
Swenson, Brian; Kar, Soummya; Xavier, Joao
2013-01-01
The paper is concerned with distributed learning in large-scale games. The well-known fictitious play (FP) algorithm is addressed, which, despite theoretical convergence results, might be impractical to implement in large-scale settings due to intense computation and communication requirements. An adaptation of the FP algorithm, designated as the empirical centroid fictitious play (ECFP), is presented. In ECFP players respond to the centroid of all players' actions rather than track and respo...
Shukla, P. K.; Eliasson, B.; Akbari-Moghanjoughi, M.
2013-03-01
In a recent paper, Bonitz, Pehlke, and Schoof [Phys. Rev. E10.1103/PhysRevE.87.033105 87, 033105 (2013)], hereafter referred to as BPS, have raised some points against the Shukla-Eliasson attractive potential [P. K. Shukla and B. Eliasson, Phys. Rev. Lett.0031-900710.1103/PhysRevLett.108.165007 108, 165007 (2012); P. K. Shukla and B. Eliasson, Phys. Rev. Lett.0031-900710.1103/PhysRevLett.108.219902 108, 219902(E) (2012); P. K. Shukla and B. Eliasson, Phys. Rev. Lett.10.1103/PhysRevLett.109.019901 109, 019901(E) (2012)], hereafter referred to as SEAP, around a stationary test charge in a quantum plasma. Our objective here is to discuss the insufficiency of the BPS reasoning concerning the applicability of the linearized quantum hydrodynamic theory, as well as to point out the shortcomings in BPS’s arguments and to suggest how to salvage BPS’s density functional theory and simulations, which have failed to produce results that correctly match with that of Shukla and Eliasson.
Stomp, Romain-Pierre
This thesis is devoted to the studies of self-assembled InAs quantum dots (QD) by low-temperature Atomic Force Microscopy (AFM) in frequency modulation mode. Several spectroscopic methods are developed to investigate single electron charging from a two-dimensional electron gas (2DEG) to an individual InAs QD. Furthermore, a new technique to measure the absolute tip-sample capacitance is also demonstrated. The main observables are the electrostatic force between the metal-coated AFM tip and sample as well as the sample-induced energy dissipation, and therefore no tunneling current has to be collected at the AFM tip. Measurements were performed by recording simultaneously the shift in the resonant frequency and the Q-factor degradation of the oscillating cantilever either as a function of tip-sample voltage or distance. The signature of single electron charging was detected as an abrupt change in the frequency shift as well as corresponding peaks in the dissipation. The main experimental features in the force agree well with the semi-classical theory of Coulomb blockade by considering the free energy of the system. The observed dissipation peaks can be understood as a back-action effect on the oscillating cantilever beam due to the fluctuation in time of electrons tunneling back and forth between the 2DEG and the QD. It was also possible to extract the absolute value of the tip-sample capacitance, as a consequence of the spectroscopic analysis of the electrostic force as a function of tip-sample distance for different values of the applied voltage. At the same time, the contact potential difference and the residual non-capacitive force could also be determined as a function of tip-sample distance.
International Nuclear Information System (INIS)
Klink, W.H.; Wickramasekara, S.
2014-01-01
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration can equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected
Nonequilibrium forces between atoms and dielectrics mediated by a quantum field
International Nuclear Information System (INIS)
Behunin, Ryan O.; Hu, Bei-Lok
2011-01-01
In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.
International Nuclear Information System (INIS)
Motazedifard, Ali; Bemani, F; Naderi, M H; Roknizadeh, R; Vitali, D
2016-01-01
We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers. (paper)
Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.
2016-07-01
We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.
Meldrum, Ryan Charles; Piquero, Alex R
2015-08-01
A variety of methodological issues have been raised over self-reports of delinquency and its correlates. In this study, we call attention to the provision of untruthful information and provide an investigation of this issue using a survey item that assesses a respondent's use of a fictitious drug in relation to reports of delinquency and traditional criminological correlates. Bivariate and multivariate analyses were conducted based on data drawn from a probability sample of middle and high school students in Florida. Results show (a) there are important differences on key criminological variables between respondents who report use of a fictitious drug and those who do not; (b) the internal consistency of a variety index of delinquency is particularly sensitive to the inclusion of respondents reporting the use of a fictitious drug; and (c) the effect size of some criminological variables on delinquency may be sensitive to controlling for reports of fictitious drug use. Overall, the inclusion of fictitious drug use items within etiological models may serve as a useful approach to further establishing the reliability and validity of information provided by survey respondents. © The Author(s) 2014.
Usman, K.; Walayat, K.; Mahmood, R.; Kousar, N.
2018-06-01
We have examined the behavior of solid particles in particulate flows. The interaction of particles with each other and with the fluid is analyzed. Solid particles can move freely through a fixed computational mesh using an Eulerian approach. Fictitious boundary method (FBM) is used for treating the interaction between particles and the fluid. Hydrodynamic forces acting on the particle's surface are calculated using an explicit volume integral approach. A collision model proposed by Glowinski, Singh, Joseph and coauthors is used to handle particle-wall and particle-particle interactions. The particulate flow is computed using multigrid finite element solver FEATFLOW. Numerical experiments are performed considering two particles falling and colliding and sedimentation of many particles while interacting with each other. Results for these experiments are presented and compared with the reference values. Effects of the particle-particle interaction on the motion of the particles and on the physical behavior of the fluid-particle system has been analyzed.
Energy Technology Data Exchange (ETDEWEB)
Zanette, Rodrigo; Petersen, Caudio Zen [Univ. Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcello [Univ. Federal de Pelotas (Brazil). Centro de Engenharias; Zabadal, Jorge Rodolfo [Univ. Federal do Rio Grande do Sul, Tramandai (Brazil)
2017-05-15
In this paper a solution for the one-dimensional steady state Multilayer Multigroup Neutron Diffusion Equation in cartesian geometry by Fictitious Borders Power Method and a perturbative analysis of this solution is presented. For each new iteration of the power method, the neutron flux is reconstructed by polynomial interpolation, so that it always remains in a standard form. However when the domain is long, an almost singular matrix arises in the interpolation process. To eliminate this singularity the domain segmented in R regions, called fictitious regions. The last step is to solve the neutron diffusion equation for each fictitious region in analytical form locally. The results are compared with results present in the literature. In order to analyze the sensitivity of the solution, a perturbation in the nuclear parameters is inserted to determine how a perturbation interferes in numerical results of the solution.
Quantum effective force and Bohmian approach to time-dependent traps
International Nuclear Information System (INIS)
Mousavi, S V
2014-01-01
Trajectories of a Bohmian particle confined in time-dependent cylindrical and spherical traps are computed for both contracting and expanding boxes. A quantum effective force is considered in arbitrary directions. It is seen that in contrast to the case for the problem of a particle in an infinite rectangular box with one wall in motion, if the particle is initially in an energy eigenstate of a tiny box, the force is zero in all directions. Trajectories of a two-body system confined in the spherical trap are also computed for different statistics types. Computations show that there are situations for which the distance between bosons is greater than that between fermions. However, the results on the average separation of the particles confirm our expectation as regards the statistics
Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space
International Nuclear Information System (INIS)
Rodriguez D, R.
2007-01-01
In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)
Magnetic forces and localized resonances in electron transfer through quantum rings.
Poniedziałek, M R; Szafran, B
2010-11-24
We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.
Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán
2018-04-05
Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.
Recent advances toward a general purpose linear-scaling quantum force field.
Giese, Timothy J; Huang, Ming; Chen, Haoyuan; York, Darrin M
2014-09-16
Conspectus There is need in the molecular simulation community to develop new quantum mechanical (QM) methods that can be routinely applied to the simulation of large molecular systems in complex, heterogeneous condensed phase environments. Although conventional methods, such as the hybrid quantum mechanical/molecular mechanical (QM/MM) method, are adequate for many problems, there remain other applications that demand a fully quantum mechanical approach. QM methods are generally required in applications that involve changes in electronic structure, such as when chemical bond formation or cleavage occurs, when molecules respond to one another through polarization or charge transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables. Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems. Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too computationally intensive to be applied with the degree of configurational sampling often required to make meaningful comparison with experiment. In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM approaches to produce a fully QM method that is able to
International Nuclear Information System (INIS)
Di Ventra, Massimiliano; Pantelides, Sokrates T.
2000-01-01
The conventional Hellmann-Feynman theorem for the definition of forces on nuclei is not directly applicable to quantum time-dependent and transport problems. We present a rigorous derivation of a general Hellmann-Feynman-like theorem that applies to all quantum mechanical systems and reduces to well-known results for ground-state problems. It provides a rigorous definition of forces in time-dependent and transport problems. Explicit forms of Pulay-like forces are derived and the conditions for them to be zero are identified. A practical scheme for ab initio calculations of current-induced forces is described and the study of the transfer of a Si atom between two electrodes is presented as an example. (c) 2000 The American Physical Society
Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations
DEFF Research Database (Denmark)
Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.
2004-01-01
of the (gg, gt and tg) rotamers of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol. respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second...... for monosaccharide carbohydrate benchmark systems. Selected results are: (i) The interaction energy of the alpha-D-alucopyranose-H2O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error...
International Nuclear Information System (INIS)
Preobrazhenskii, M.A.; Golovinskii, P.A.
1996-01-01
Expressions for cross sections for multiphonon disintegration of quantum systems bound by short-range forces are obtained in the plane-wave approximation taking into account retardation effects. It is shown that, in the region of nonrelativistic energies, their contribution is factored, and the resulting universal factor is expressed for an arbitrary degree of process nonlinearity n in terms of elementary functions. Arguments of functions are determined only by the mode ω, the radiation spectrum width β, and the bound-state energy of a system. The dependence of the contribution of retardation effects on ω, β, and n is studied in detail. Analytical expressions for cross sections for multiquantum disintegration in the first nonvanishing order with respect to correlation interaction, which exactly take into account retardation effects, are obtained. It is shown that for two-quantum processes, the contribution of correlation effects is expressed in terms of a function representing an extension of dipole polarizability, whereas for n>2, it can be described in the dipole approximation
Babajanova, Gulmira; Matrasulov, Jasur; Nakamura, Katsuhiro
2018-04-01
With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale, we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity with the time-dependent size L =L (t ) . In the fast-forward variants of equation of states, i.e., Bernoulli's formula and Poisson's adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity (L ˙) and acceleration (L ̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself. The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics. The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard form of the equilibrium equation of states.
Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo
2015-07-08
We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
Motta, Mario; Zhang, Shiwei
2018-05-01
We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.
Energy Technology Data Exchange (ETDEWEB)
Ahn, Hyeong Joon [Dept. of Mechanical Engineering, Soongsil University, Seoul (Korea, Republic of); Kim, Chan Jung [Dept. of Mechanical Design Engineering, Pukyong National University, Busan(Korea, Republic of)
2016-12-15
It is very difficult to directly identify an unstable system with uncertain dynamics from frequency domain input-output data. Hence, in these cases, closed-loop frequency responses calculated using a fictitious feedback could be more identifiable than open-loop data. This paper presents a frequency domain indirect identification of AMB rotor systems based on a Fictitious proportional feedback gain (FPFG). The closed-loop effect due to the FPFG can enhance the detectability of the system by moving the system poles, and significantly weigh the target mode in the frequency domain. The effectiveness of the proposed identification method was verified through the frequency domain identification of active magnetic bearing rotor systems.
International Nuclear Information System (INIS)
Miller, W.F. Jr.
1975-10-01
The coarse-mesh rebalance method, based on neutron conservation, is used in discrete ordinates neutron transport codes to accelerate convergence of the within-group scattering source. Though very powerful for this application, the method is ineffective in accelerating the iteration on the discrete-ordinates-to-spherical-harmonics fictitious sources used for ray-effect elimination. This is largely because this source makes a minimum contribution to the neutron balance equation. The traditional rebalance approach is derived in a variational framework and compared with new rebalance approaches tailored to be compatible with the fictitious source. The new approaches are compared numerically to determine their relative advantages. It is concluded that there is little incentive to use the new methods. (3 tables, 5 figures)
Directory of Open Access Journals (Sweden)
Hans J. Markowitsch
2000-01-01
Full Text Available What distinguishes the recall of real-life experiences from that of self-created, fictitious emotionally laden information? Both kinds of information belong to the episodic memory system. Autobiographic memories constitute that part of the episodic memory system that is composed of significant life episodes, primarily of the distant past. Functional imaging was used to study the neural networks engaged in retrieving autobiographic and fictitious information of closely similar content. The principally activated brain regions overlapped considerably and constituted temporal and inferior prefrontal regions plus the cerebellum. Selective activations of the right amygdala and the right ventral prefrontal cortex (at the level of the uncinate fascicle interconnnecting prefrontal and temporopolar areas were found when subtracting fictitious from autobiographic retrieval. Furthermore, distinct foci in the left temporal lobe were engaged. These data demonstrate that autobiographic memory retrieval uses (at least in non-brain damaged individuals a network of right hemispheric ventral prefrontal and temporopolar regions and left hemispheric lateral temporal regions. It is concluded that it is the experiential character, its special emotional infiltration and its arousal which distinguishes memory of real-life from that of fictitious episodes. Consequently, our results point to the engagement of a bi-hemispheric network in which the right temporo-prefrontal hemisphere is likely to be responsible for the affective/arousal side of information retrieval and the left-hemispheric temporal gyrus for its engram-like representation. Portions of the neural activation found during retrieval might, however, reflect re-encoding processes as well.
Short-range and long-range forces in quantum theory: selected topics
International Nuclear Information System (INIS)
Hiller, J.R.
1980-01-01
Short-range forces (SRF) are encountered when the effects of the parity-violating (PV) weak neutral current are considered in atomic systems. We consider these and other SRF that are associated with operators that contain delta functions. Identities which convert a delta-function matrix element to that of a global operator are reviewed. Past and possible future applications of such identities are described. It has been found that use of these identities can substantially improve the results obtained with less accurate wave functions. We present a further application to the hyperfine structure of the ground state of lithium where we again find that results are improved by the use of an identity. A long-range force (LRF) is here defined to be one that is associated with a potential V(r) that is asymptotically of the form lambda r - 1 (r 0 /r)/sup N-1/. We use a dispersion-theoretic approach to study LRF between hadrons due to two-glucon exchange within the framework of quantum chromodynamics. Such an LRF is usually related to the presence of a spectrum of physical states that extends to zero mass. A speculative scheme put forward by Feinberg and Sucher is used to avoid requiring the existence of massless gluons as observable particles. Semi-quantitative expressions for the two-glucon exchange potential between hadrons and, in particular, between two nucleons are obtained. Limits on two-gluon corrections to πp forward scattering dispersion relations are used to provide an upper bound for lambda, the coupling constant in the nucleon-nucleon potential. For N greater than or equal to 7, expected on heuristic grounds, we obtain the bound lambda less than or equal to 10 6 , which is very weak; gluon effects as treated here do not lead to significant effects in the dispersion-theoretic analysis of πp scattering
International Nuclear Information System (INIS)
Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.
2015-01-01
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation
Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B
2017-11-01
Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.
Modeling non-locality of plasmonic excitations with a fictitious film
Kong, Jiantao; Shvonski, Alexander; Kempa, Krzysztof
Non-local effects, requiring a wavevector (q) dependent dielectric response are becoming increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic approximation (HDA) is the simplest, and most often used model, but it often fails. We show that the d-function formalism, exact to first order in q, is a powerful and simple-to-use alternative. Recently, we developed a mapping of the d-function formalism into a purely local fictitious film. This geometric mapping allows for non-local extensions of any local calculation scheme, including FDTD. We demonstrate here, that such mapped FDTD simulation of metallic nanoclusters agrees very well with various experiments.
A nonlinear flow-induced energy harvester by considering effects of fictitious springs
Zhang, Guangcheng; Lin, Yueh-Jaw
2018-01-01
In this paper, a newly proposed energy harvesting approach involving nonlinear coupling effects is demonstrated by utilizing a pair of inducing bluff bodies that are put on both sides of the flag-shaped cantilever beam, and placed in a side-by-side configuration to harvest the energy of the flow. One patch of macro fiber composite is attached to the fixed end of the cantilever beam to facilitate converting the kinetic energy into electric power. It is the first time in recent literature that two fluid dynamic phenomena (i.e. the vortex shedding and the Bernoulli effect) are considered simultaneously in the flow-induced energy harvesting field. The fictitious springs are introduced to explain the nonlinear characteristics of the proposed structure. With the effect of the fictitious springs, the speed range of the flow-induced energy harvester is extended. The proposed structure not only improves the output of the induced-based energy harvester compared to one that has just one cylinder, but can also be utilized in an actual hostile ambient environment. The experimental results for the energy harvester prototype are also investigated. The output power of the energy harvester with two cylinders (D = 25 mm) is measured to be 1.12 μW when the flow speed is 0.325 m s-1 and the center-to-center transverse spacing is 45 mm. This research also delves into the geometric variations of the proposed structure and its optimization.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
International Nuclear Information System (INIS)
Usenko, O.; Vinante, A.; Wijts, G.; Oosterkamp, T. H.
2011-01-01
We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic temperature. The technique is based on the use of a superconducting quantum interference device to detect the magnetic flux change induced by a magnetized particle attached on the end of the resonator. Unlike conventional interferometric techniques, our detection scheme does not involve direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of 0.5 aN/√(Hz).
Li, H; Atkin, R; Page, A J
2015-06-28
The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.
Fictitious Capital and the Elusive Quest in Understanding its Implications: Illusions and Paradoxes
Directory of Open Access Journals (Sweden)
Joanilio Rodolpho Teixeira
2014-10-01
Full Text Available This paper deals with the interaction between fictitious capital and the neoliberal model of growth and distribution, inspired by the classical economic tradition. Our renewed interest in this literature has a close connection with the recent international crisis in the capitalist economy. However, this discussion takes as its point of departure the fact that standard economic theory teaches that financial capital, in this world of increasing globalization, leads to new investment opportunities which improve levels of growth, employment, income distribution, and equilibrium. Accordingly, it is said that such financial resources expand the welfare of people and countries worldwide. Here we examine some illusions and paradoxes of such a paradigm. We show some theoretical and empirical consequences of this vision, which are quite different and have harmful constraints.
International Nuclear Information System (INIS)
Tyszka, K.; Moraru, D.; Samanta, A.; Mizuno, T.; Tabe, M.; Jabłoński, R.
2015-01-01
We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots
Hoogerheide, Vincent; Deijkers, Lian; Loyens, Sofie M M; Heijltjes, Anita; van Gog, Tamara
2016-01-01
Two experiments investigated whether studying a text with an "explanation intention" and then actually explaining it to (fictitious) other students in writing, would yield the same benefits as previously found for explaining on video. Experiment 1 had participants first studying a text either with
Lemkul, Justin A; MacKerell, Alexander D
2017-05-09
Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.
Pavlova, Anna; Parks, Jerry M; Gumbart, James C
2018-02-13
Corrinoid cofactors such as cobalamin are used by many enzymes and are essential for most living organisms. Therefore, there is broad interest in investigating cobalamin-protein interactions with molecular dynamics simulations. Previously developed parameters for cobalamins are based mainly on crystal structure data. Here, we report CHARMM-compatible force field parameters for several corrinoids developed from quantum mechanical calculations. We provide parameters for corrinoids in three oxidation states, Co 3+ , Co 2+ , and Co 1+ , and with various axial ligands. Lennard-Jones parameters for the cobalt center in the Co(II) and Co(I) states were optimized using a helium atom probe, and partial atomic charges were obtained with a combination of natural population analysis (NPA) and restrained electrostatic potential (RESP) fitting approaches. The Force Field Toolkit was used to optimize all bonded terms. The resulting parameters, determined solely from calculations of cobalamin alone or in water, were then validated by assessing their agreement with density functional theory geometries and by analyzing molecular dynamics simulation trajectories of several corrinoid proteins for which X-ray crystal structures are available. In each case, we obtained excellent agreement with the reference data. In comparison to previous CHARMM-compatible parameters for cobalamin, we observe a better agreement for the fold angle and lower RMSD in the cobalamin binding site. The approach described here is readily adaptable for developing CHARMM-compatible force-field parameters for other corrinoids or large biomolecules.
International Nuclear Information System (INIS)
Decca, R.S.; Fischbach, E.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Krause, D.E.; Lopez, D.
2003-01-01
We report new constraints on extra-dimensional models and other physics beyond the standard model based on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2-1.2 μm. The Casimir force between a Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between two parallel plates was determined dynamically with an absolute error of ≅0.6 mPa. Within the limits of experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite conductivity and roughness of the two metals. The level of agreement between experiment and theory was then used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown that two theoretical approaches to the thermal Casimir force which predict effects linear in temperature are ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton's law of gravity are strengthened by more than an order of magnitude in the range 56-330 nm
International Nuclear Information System (INIS)
Anni, R.; Taffara, L.
1976-01-01
A fictitious scattering phenomenon between neutral heavy particles is analysed by using both the square-well and trapezoidal complex potentials. After a preliminary phenomenological discussion based on the behaviour of the exact scattering matrix and the trajectories of Regge poles and zeros as continuous functions of the imaginary part of the potential, the contributions to the scattering amplitude from the external and multiple internal reflections and from the ''surface waves'' are separated by using the Debye expansion of the S(lambda)-matrix. The most important first two terms of this expansion are then compared with the exact behaviour of both the partial-wave scattering amplitude and cross-section, and the results are discussed. In particular, for potentials with large imaginary parts, the first term of the Debye expansion, which is associated with the rays directly reflected by the surface, well approximates the exact scattering matrix for all angular momenta. In these cases, by applying to this first term the Watson transformation, one is able to separate the contributions from the reflected rays (saddle-point contribution in the background integral)from that of the surface waves(surface pole contribution) which are responsible for the diffraction phenomenon. Studies are in progress in order to extend this approach to the Saxon-Wood potential with Coulomb interaction
International Nuclear Information System (INIS)
Yeh, M.; Kim, J.; Khan, F.S.
1995-01-01
We present a parallel decomposition of the tight-binding fictitious Lagrangian algorithm for the Intel iPSC/860 and the Intel Paragon parallel computers. We show that it is possible to perform long simulations, of the order of 10 000 time steps, on semiconducting clusters consisting of as many as 512 atoms, on a time scale of the order of 20 h or less. We have made a very careful timing analysis of all parts of our code, and have identified the bottlenecks. We have also derived formulas which can predict the timing of our code, based on the number of processors, message passing bandwidth, floating point performance of each node, and the set up time for message passing, appropriate to the machine being used. The time of the simulation scales as the square of the number of particles, if the number of processors is made to scale linearly with the number of particles. We show that for a system as large as 512 atoms, the main bottleneck of the computation is the orthogonalization of the wave functions, which consumes about 90% of the total time of the simulation
Directory of Open Access Journals (Sweden)
Kihong Shin
2015-01-01
Full Text Available Most existing techniques for machinery health monitoring that utilize measured vibration signals usually require measurement points to be as close as possible to the expected fault components of interest. This is particularly important for implementing condition-based maintenance since the incipient fault signal power may be too small to be detected if a sensor is located further away from the fault source. However, a measurement sensor is often not attached to the ideal point due to geometric or environmental restrictions. In such a case, many of the conventional diagnostic techniques may not be successfully applicable. In this paper, a two-channel analysis method is proposed to overcome such difficulty. It uses two vibration signals simultaneously measured at arbitrary points in a machine. The proposed method is described theoretically by introducing a fictitious system frequency response function. It is then verified experimentally for bearing fault detection. The results show that the suggested method may be a good alternative when ideal points for measurement sensors are not readily available.
Mian, Rubina; Shelton-Rayner, Graham; Harkin, Brendan; Williams, Paul
2003-03-01
The aim of this study was to assess the effect of watching a psychological stressful event on the activation of leukocytes in healthy human volunteers. Blood samples were obtained from 32 healthy male and female subjects aged between 20 and 26 years before, during and after either watching an 83-minute horror film that none of the subjects had previously seen (The Texas Chainsaw Massacre, 1974) or by sitting quietly in a room (control group). Total differential cell counts, leukocyte activation as measured by the nitroblue tetrazolium (NBT) test, heart rate and blood pressure (BP) measurements were taken at defined time points. There were significant increases in peripheral circulating leukocytes, the number of activated circulating leukocytes, haemoglobin (Hb) concentration and haematocrit (Hct) in response to the stressor. These were accompanied by significant increases in heart rate, systolic and diastolic BP (P<0.05 from baseline). This is the first reported study on the effects of observing a psychologically stressful, albeit fictitious event on circulating leukocyte numbers and the state of leukocyte activation as determined by the nitrotetrazolium test.
DEFF Research Database (Denmark)
Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.
2012-01-01
We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....
Exact solution of a quantum forced time-dependent harmonic oscillator
Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN
1992-01-01
The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.
Coleman, Piers; Schofield, Andrew J
2005-01-20
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.
Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter
2015-04-08
We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.
Quantum degeneracy in atomic point contacts revealed by chemical force and conductance
Czech Academy of Sciences Publication Activity Database
Sugimoto, Y.; Ondráček, Martin; Abe, M.; Pou, P.; Morita, S.; Perez, R.; Flores, F.; Jelínek, Pavel
2013-01-01
Roč. 111, č. 10 (2013), "106803-1"-"106803-5" ISSN 0031-9007 R&D Projects: GA ČR(CZ) GPP204/11/P578 Grant - others:GA AV ČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : scanning tunneling microscopy * atomic force microscopy * degenerate states * silicon surface * dangling bonds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.728, year: 2013
Ground Contact Analysis for Korea’s Fictitious Lunar Orbiter Mission
Directory of Open Access Journals (Sweden)
Young-Joo Song
2013-12-01
Full Text Available In this research, the ground contact opportunity for the fictitious low lunar orbiter is analyzed to prepare for a future Korean lunar orbiter mission. The ground contact opportunity is basically derived from geometrical relations between the typical ground stations at the Earth, the relative positions of the Earth and Moon, and finally, the lunar orbiter itself. Both the cut-off angle and the orbiter’s Line of Sight (LOS conditions (weather orbiter is located at near or far side of the Moon seen from the Earth are considered to determine the ground contact opportunities. Four KOMPSAT Ground Stations (KGSs are assumed to be Korea’s future Near Earth Networks (NENs to support lunar missions, and world-wide separated Deep Space Networks (DSNs are also included during the contact availability analysis. As a result, it is concluded that about 138 times of contact will be made between the orbiter and the Daejeon station during 27.3 days of prediction time span. If these contact times are converted into contact duration, the duration is found to be about 8.55 days, about 31.31% of 27.3 days. It is discovered that selected four KGSs cannot provide continuous tracking of the lunar orbiter, meaning that international collaboration is necessary to track Korea’s future lunar orbiter effectively. Possible combinations of world-wide separated DSNs are also suggested to compensate for the lack of contact availability with only four KGSs, as with primary and backup station concepts. The provided algorithm can be easily modified to support any type of orbit around the Moon, and therefore, the presented results could aid further progress in the design field of Korea’s lunar orbiter missions.
Shukla, P. K.; Eliasson, B.; Akbari-Moghanjoughi, M.
2013-01-01
In a paper on arXiv, Bonitz et al (2012 arXiv:1205.4922v1 [physics.plasm-ph]) (hereafter referred to as BPS) erroneously attributed the qualitative discrepancy between their density functional theory (DFT) simulation results with the analytical discovery of the Shukla-Eliasson (SE) attractive force which brings ions closer to the failure of the linearized quantum hydrodynamic theory. In this paper, we describe the underlying physics of the novel SE attractive force and its validity, as well as discuss some of the key features of the well-established quantum hydrodynamic theory and working mechanisms for DFT simulations, in addition to giving some critical notes on the falsified and misleading conclusions presented by BPS in their dubious paper. Furthermore, we also present a mass-density value for possible 4He metallic plasma lattice formation under the SE force.
International Nuclear Information System (INIS)
Shukla, P K; Eliasson, B; Akbari-Moghanjoughi, M
2013-01-01
In a paper on arXiv, Bonitz et al (2012 arXiv:1205.4922v1 [physics.plasm-ph]) (hereafter referred to as BPS) erroneously attributed the qualitative discrepancy between their density functional theory (DFT) simulation results with the analytical discovery of the Shukla-Eliasson (SE) attractive force which brings ions closer to the failure of the linearized quantum hydrodynamic theory. In this paper, we describe the underlying physics of the novel SE attractive force and its validity, as well as discuss some of the key features of the well-established quantum hydrodynamic theory and working mechanisms for DFT simulations, in addition to giving some critical notes on the falsified and misleading conclusions presented by BPS in their dubious paper. Furthermore, we also present a mass-density value for possible 4 He metallic plasma lattice formation under the SE force.
Grifoni, Milena
1997-01-01
In this thesis, ratchet systems operating in the quantum regime are investigated. Ratchet systems, also known as Brownian motors, are periodic systems presenting an intrinsic asymmetry which can be exploited to extract work out of unbiased forces. As a model for ratchet systems, we consider the motion of a particle in a one-dimensional periodic and asymmetric potential, interacting with a thermal environment, and subject to an unbiased driving force. In quantum ratchets, intrinsic quantum flu...
Development of a Scaled Quantum Mechanical Force Field for Peptides in Aqueous Solution
1996-03-01
differ. Raman and IR techniques are complimentary which helps in assignment of observed vibrational modes. As described in beginning organic ...1588 I NH, .i.sor(98) 2076 2100 24 CH3 55(95) 2125 2207 82 CH3 as’ (56), CH3 as’ (43) 2235 2253 18 CH3 as’(55), CH3 as’(41) 2888 COff .(100) 3155 NH...Application of self- consistent-field ab initio calculations to organic molecules I. Equilibrium struc- ture and force constants of hydrocarbons
A general intermolecular force field based on tight-binding quantum chemical calculations
Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas
2017-10-01
A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.
Buhmann, Stefan Yoshi
2012-01-01
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...
Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan
2017-02-14
In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.
Coriolis force and Sagnac effect
International Nuclear Information System (INIS)
Gogberashvili, Merab
2002-02-01
The optical Sagnac effect is considered, when the fictitious gravitational field simulates the reflections from the mirrors. It is shown that no contradiction exists between the conclusions of the laboratory and rotated observers. Because of the acting of gravity-like Coriolis force the trajectories of co- and anti-rotating photons have different radii in the rotating reference frame, while in the case of the equal radius the effective gravitational potentials for the photons have to be different. (author)
Energy Technology Data Exchange (ETDEWEB)
Williams, Robert W. [Department of Biomedical Informatics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20815 (United States)], E-mail: bob@bob.usuhs.mil; Schluecker, Sebastian [Institute of Physical Chemistry, University of Wuerzburg, Wuerzburg (Germany); Hudson, Bruce S. [Department of Chemistry, Syracuse University, Syracuse, NY (United States)
2008-01-22
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
International Nuclear Information System (INIS)
Williams, Robert W.; Schluecker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes
Evtikhiev, V P; Kotelnikov, E Y; Matveentsev, A V; Titkov, A N; Shkolnik, A S
2002-01-01
The methodology for processing the images, obtained through the atomic force microscopy, is proposed. It is shown by the concrete example, how the parameters of the InAs clusters on the vicinal surface of the GaAs crystal are determined. This makes it possible to calculate the energy levels of the electrons and holes in the quantum point with application of the previously developed cluster spherical model
On the presence of fictitious solar neutrino flux variations in radiochemical experiments
International Nuclear Information System (INIS)
Vladimirskii, B.M.; Bruns, A.V.
2004-01-01
time interval in the SAGE measurements is opposite in sign to that detected with the Brookhaven and GALLEX detectors. The anticorrelation with the A p activity index, which is absent in the SAGE measurements, contributes significantly to the flux variations on the GALLEX detector. If a magnetic storm with a sudden commencement occurs in the last 7 days of the run, then an effect of generally the same type, a significant increase in the variance, is observed for all three detectors. In all other indices, the flux variations on the Brookhaven and GALLEX detectors are the opposite of those on the SAGE detector. We have found that the GALLEX and SAGE measurements for the runs that ended simultaneously, to within about 10 days or less, anticorrelate, while the Brookhaven and GALLEX measurements correlate. We conclude that there are fictitious variations in the measurements under consideration that are attributable to the influence of geophysical factors (probably, very-low-frequency electromagnetic fields) controllable by solar activity on the physical-chemical kinetics of the target material. We discuss possible experiments to check whether the detected effects are real. If all of these effects are indeed real, then the neutrino flux was underestimated in the radiochemical measurements
On the generalized potential of inertial forces
International Nuclear Information System (INIS)
Siboni, S
2009-01-01
The generalized potential of the inertial forces acting on a holonomic system in an accelerated reference frame is derived in a way which admits a simple physical interpretation. It is shown that the generalized potential refers to all the inertial forces and, apart from the very special case of a uniformly rotating frame, it is impossible to distinguish a contribution to only the Coriolis force and a contribution pertaining to the residual, velocity-independent fictitious forces. Such an approach to the determination of the generalized potential of inertial forces may be helpful in introducing the topic of the generalized potential to advanced undergraduate and graduate students
Energy Technology Data Exchange (ETDEWEB)
Niekerken, Ole
2009-06-15
In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of {Dirac_h}. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)
International Nuclear Information System (INIS)
Ernst, V.
1978-01-01
The idea of the systematic Weisskopf-Wigner approximation as used sporadically in atomic physics and quantum optics, is extended here to the interaction of a field of non-relativistic fermions with a field of relativistic bosons. It is shown that the usual (non-existing) interaction Hamiltonian of this system can be written as a sum of a countable number of self-adjoint and bounded partial Hamiltonians. The system of these Hamiltonians defines the order hierarchy of the present approximation scheme. To demonstrate its physical utility it is shown that in a certain order it provides satisfactory quantum theory of the 'self-energy' of the fermions under discussion. This is defined as the binding energy of bosons bound to the fermions and building up the latter's 'individual Coulomb or Yukawa fields' in the sense of expectation values of the corresponding field operator. In states of more than one fermion the bound photons act as a mediating agent between the fermions; this mechanism closely resembles the Coulomb or Yukawa 'forces' used in conventional non-relativistic quantum mechanics. (author)
Hu, Chia-Ren
2004-03-01
We present classical macroscopic, microscopic, and quantum mechanical arguments to show that in a metallic or electron/hole-doped semiconducting sheet thinner than the screening length, a displacement current applied normal to it can induce a spinomotive force along it. The magnitude is weak but clearly detectable. The classical arguments are purely electromagnetic. The quantum argument, based on the Dirac equation, shows that the predicted effect originates from the spin-orbit interaction, but not of the usual kind. That is, it relies on an external electric field, whereas the usual S-O interaction involves the electric field generated by the ions. Because the Dirac equation incorporatesThomas precession, which is due to relativistic kinematics, the quantum prediction is a factor of two smaller than the classical prediction. Replacing the displacement current by a charge current, and one obtains a new source for the spin-Hall effect. Classical macroscopic argument also predicts its existence, but the other two views are controversial.
Wigner tomography of multispin quantum states
Leiner, David; Zeier, Robert; Glaser, Steffen J.
2017-12-01
We study the tomography of multispin quantum states in the context of finite-dimensional Wigner representations. An arbitrary operator can be completely characterized and visualized using multiple shapes assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A 91, 042122 (2015), 10.1103/PhysRevA.91.042122]. We develop a general methodology to experimentally recover these shapes by measuring expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three spins using nuclear magnetic resonance spectroscopy.
Czech Academy of Sciences Publication Activity Database
Yamazaki, S.; Maeda, K.; Sugimoto, Y.; Abe, M.; Zobač, Vladimír; Pou, P.; Rodrigo, L.; Mutombo, Pingo; Perez, R.; Jelínek, Pavel; Morita, S.
2015-01-01
Roč. 15, č. 7 (2015), 4356-4363 ISSN 1530-6984 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : atomic manipulation * atomic switch * Si quantum dot * scanning tunneling microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.779, year: 2015
Barone, Vincenzo; Cacelli, Ivo; De Mitri, Nicola; Licari, Daniele; Monti, Susanna; Prampolini, Giacomo
2013-03-21
The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules. The parameterization protocol is also applied to two other larger molecules, namely nicotine and a coumarin based dye. In the former case, the parameterized force field is employed in molecular dynamics simulations of solvated nicotine, and the solute conformational distribution at room temperature is discussed. Force fields parameterized with Joyce2.0, for both the dye's ground and first excited electronic states, are validated through the calculation of absorption and emission vertical energies with molecular mechanics optimized structures. Finally, the newly implemented procedure to handle polarizable force fields is discussed and applied to the pyrimidine molecule as a test case.
Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.
2018-01-01
We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xiaohong; Liu, He; Zhang, Xingtang; Cheng, Gang; Wang, Shujie; Du, Zuliang, E-mail: zld@henu.edu.cn [Key Laboratory for Special Functional Materials, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, PR. China (China)
2016-04-15
The composite assembly of C{sub 60} and CdS Quantum Dots (QDs) on ITO substrate was prepared by Langmuir-Blodgett (LB) technique using arachic acid (AA), stearic acid (SA) and octadecanyl amine (OA) as additives. Photoassisted conductive atomic force microscopy was used to make point contact current-voltage (I-V) measurements on both the CdS QDs and the composite assembly of C{sub 60}/CdS. The result make it clear that the CdS, C{sub 60}/CdS assemblies deposited on ITO substrate showed linear characteristics and the current increased largely under illumination comparing with that in the dark. The coherent, nonresonant tunneling mechanism was used to explain the current occurrence. It is considered that the photoinduced carriers CdS QDs tunneled through alkyl chains increased the current rapidly.
Kato, Rodrigo B; Silva, Frederico T; Pappa, Gisele L; Belchior, Jadson C
2015-01-28
We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy. Quantum-mechanical (QM) calculations are carried out for the isolated canonical ribonucleosides (adenosine, guanosine, cytidine and uridine) that are taken as reference data. In this particular study, the dihedral and electrostatic energies are reparametrized in order to test the proposed approach, i.e., GA coupled with QM calculations. Overall, RMSE comparison with recent published results for ribonucleosides energies shows an improvement, on average, of 50%. Finally, the new reparametrized potential energy function is used to determine the spatial structure of RNA (PDB code ) that was not taken into account in the parametrization process. This structure was improved about 82% comparable with previously published results.
Directory of Open Access Journals (Sweden)
Xiaohong Jiang
2016-04-01
Full Text Available The composite assembly of C60 and CdS Quantum Dots (QDs on ITO substrate was prepared by Langmuir-Blodgett (LB technique using arachic acid (AA, stearic acid (SA and octadecanyl amine (OA as additives. Photoassisted conductive atomic force microscopy was used to make point contact current-voltage (I-V measurements on both the CdS QDs and the composite assembly of C60/CdS. The result make it clear that the CdS, C60/CdS assemblies deposited on ITO substrate showed linear characteristics and the current increased largely under illumination comparing with that in the dark. The coherent, nonresonant tunneling mechanism was used to explain the current occurrence. It is considered that the photoinduced carriers CdS QDs tunneled through alkyl chains increased the current rapidly.
Quantum thermodynamic cycles and quantum heat engines. II.
Quan, H T
2009-04-01
We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.
International Nuclear Information System (INIS)
Ramiere, I.
2006-09-01
This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain
Lv, Y; Cui, J; Jiang, Z M; Yang, X J
2013-02-15
Atomic force microscopy imaging combined with selective chemical etching is employed to quantitatively investigate three-dimensional (3D) composition distributions of single GeSi quantum rings (QRs). In addition, the 3D quantitative composition distributions and the corresponding conductance distributions are simultaneously obtained on the same single GeSi QRs by conductive atomic force microscopy combined with selective chemical etching, allowing us to investigate the correlations between the conductance and composition distributions of single QRs. The results show that the QRs' central holes have higher Ge content, but exhibit lower conductance, indicating that the QRs' conductance distribution is not consistent with their composition distribution. By comparing the topography, composition and conductance profiles of the same single QRs before and after different etching processes, it is found that the conductance distributions of GeSi QRs do not vary with the change of composition distribution. Instead, the QRs' conductance distributions are found to be consistent with their topographic shapes, which can be supposed to be due to the shape determined electronic structures.
International Nuclear Information System (INIS)
Isham, C.
1989-01-01
Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibart, J.
1997-01-01
This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)
Nesvizhevsky, Valery
2015-01-01
This unique book demonstrates the undivided unity and infinite diversity of quantum mechanics using a single phenomenon: quantum bounces of ultra-cold particles. Various examples of such "quantum bounces" are: gravitational quantum states of ultra-cold neutrons (the first observed quantum states of matter in a gravitational field), the neutron whispering gallery (an observed matter-wave analog of the whispering gallery effect well known in acoustics and for electromagnetic waves), and gravitational and whispering gallery states for anti-matter atoms that remain to be observed. These quantum states are an invaluable tool in the search for additional fundamental short-range forces, for exploring the gravitational interaction and quantum effects of gravity, for probing physics beyond the standard model, and for furthering studies into the foundations of quantum mechanics, quantum optics, and surface science.
Directory of Open Access Journals (Sweden)
Alessandro Sergi
2009-06-01
Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.
Energy Technology Data Exchange (ETDEWEB)
Bylaska, Eric J., E-mail: Eric.Bylaska@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Weare, Jonathan Q., E-mail: weare@uchicago.edu [Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (United States); Weare, John H., E-mail: jweare@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)
2013-08-21
to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H{sub 2}O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.
Bylaska, Eric J; Weare, Jonathan Q; Weare, John H
2013-08-21
distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.
International Nuclear Information System (INIS)
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-01-01
distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H 2 O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step
International Nuclear Information System (INIS)
Habib, S.
1994-01-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source
Pathak, Ashish; Raessi, Mehdi
2016-04-01
We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.
Swami, Viren; Coles, Rebecca; Stieger, Stefan; Pietschnig, Jakob; Furnham, Adrian; Rehim, Sherry; Voracek, Martin
2011-08-01
Despite evidence of widespread belief in conspiracy theories, there remains a dearth of research on the individual difference correlates of conspiracist ideation. In two studies, we sought to overcome this limitation by examining correlations between conspiracist ideation and a range of individual psychological factors. In Study 1, 817 Britons indicated their agreement with conspiracist ideation concerning the July 7, 2005 (7/7), London bombings, and completed a battery of individual difference scales. Results showed that stronger belief in 7/7 conspiracy theories was predicted by stronger belief in other real-world conspiracy theories, greater exposure to conspiracist ideation, higher political cynicism, greater support for democratic principles, more negative attitudes to authority, lower self-esteem, and lower Agreeableness. In Study 2, 281 Austrians indicated their agreement with an entirely fictitious conspiracy theory and completed a battery of individual difference measures not examined in Study 1. Results showed that belief in the entirely fictitious conspiracy theory was significantly associated with stronger belief in other real-world conspiracy theories, stronger paranormal beliefs, and lower crystallized intelligence. These results are discussed in terms of the potential of identifying individual difference constellations among conspiracy theorists. ©2011 The British Psychological Society.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Chester, Marvin
2003-01-01
Introductory text examines the classical quantum bead on a track: its state and representations; operator eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and bead in a spherical shell. Also, spin, matrices and structure of quantum mechanics; simplest atom; indistinguishable particles; and stationary-state perturbation theory.
Mesic forces in quantum mechanics
Czech Academy of Sciences Publication Activity Database
Šimáně, Čestmír
T151, NOV 2012 (2012), 014072/1-014072/3 ISSN 0031-8949 Institutional support: RVO:61389005 Keywords : matter * continuum Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.032, year: 2012
Bevelander, Kirsten E; Anschütz, Doeschka J; Engels, Rutger C M E
2012-09-28
The present experimental study was the first to investigate the impact of a remote (non-existent) peer on children's food choice of familiar v. unfamiliar low- and high-energy-dense food products. In a computer task, children (n 316; 50·3 % boys; mean age 7·13 (SD 0·75) years) were asked to choose between pictures of familiar and unfamiliar foods in four different choice blocks using the following pairs: (1) familiar v. unfamiliar low-energy-dense foods (fruits and vegetables), (2) familiar v. unfamiliar high-energy-dense foods (high sugar, salt and/or fat content), (3) familiar low-energy-dense v. unfamiliar high-energy-dense foods and (4) unfamiliar low-energy-dense v. familiar high-energy-dense foods. Participants who were not in the control group were exposed to the food choices (either always the familiar or always the unfamiliar food product) of a same-sex and same-age fictitious peer who was supposedly completing the same task at another school. The present study provided insights into children's choices between (un)familiar low- and high-energy-dense foods in an everyday situation. The findings revealed that the use of fictitious peers increased children's willingness to try unfamiliar foods, although children tended to choose high-energy-dense foods over low-energy-dense foods. Intervention programmes that use peer influence to focus on improving children's choice of healthy foods should take into account children's strong aversion to unfamiliar low-energy-dense foods as well as their general preference for familiar and unfamiliar high-energy-dense foods.
Composite fermions in the quantum Hall effect
International Nuclear Information System (INIS)
Johnson, B.L.; Kirczenow, G.
1997-01-01
The quantum Hall effect and associated quantum transport phenomena in low-dimensional systems have been the focus of much attention for more than a decade. Recent theoretical development of interesting quasiparticles - 'composite fermions' - has led to significant advances in understanding and predicting the behaviour of two-dimensional electron systems under high transverse magnetic fields. Composite fermions may be viewed as fermions carrying attached (fictitious) magnetic flux. Here we review models of the integer and fractional quantum Hall effects, including the development of a unified picture of the integer and fractional effects based upon composite fermions. The composite fermion picture predicts remarkable new physics: the formation of a Fermi surface at high magnetic fields, and anomalous ballistic transport, thermopower, and surface acoustic wave behaviour. The specific theoretical predictions of the model, as well as the body of experimental evidence for these phenomena are reviewed. We also review recent edge-state models for magnetotransport in low-dimensional devices based on the composite fermion picture. These models explain the fractional quantum Hall effect and transport phenomena in nanoscale devices in a unified framework that also includes edge state models of the integer quantum Hall effect. The features of the composite fermion edge-state model are compared and contrasted with those of other recent edge-state models of the fractional quantum Hall effect. (author)
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
Quantum mechanics and the particles of nature. An outline for mathematicians
Energy Technology Data Exchange (ETDEWEB)
Sudbery, Anthony
1986-01-01
The book gives the basic theoretical concepts of quantum mechanics and particle physics, and is aimed at the final year undergraduates in mathematics or physics. The contents contain seven chapters on:-particles and forces, quantum statics, quantum dynamics, quantum systems, quantum metaphysics, quantum numbers and quantum fields.
International Nuclear Information System (INIS)
Barut, A.O.; Dowling, J.P.
1986-12-01
Using a previously formulated theory of quantum electrodynamics based on self-energy, we give a general method for computing the Lamb shift and related Casimir-Polder energies for a quantum system in the vicinity of perfectly conducting boundaries. Our results are exact and easily extendable to a full covariant relativistic form. As a particular example we apply the method to an atom near an infinite conducting plane, and we recover the standard QED results (which are known only in the dipole approximation) in a simple and straightforward manner. This is accomplished in the context of the new theory which is not second quantized and contains no vacuum fluctuations. (author)
Hsu, Jong-Ping
2013-01-01
Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
There is no quantum ontology without classical ontology
Energy Technology Data Exchange (ETDEWEB)
Fink, Helmut [Institut fuer Theoretische Physik, Univ. Erlangen-Nuernberg (Germany)
2011-07-01
The relation between quantum physics and classical physics is still under debate. In his recent book ''Rational Reconstructions of Modern Physics'', Peter Mittelstaedt explores a route from classical to quantum mechanics by reduction and elimination of (some of) the ontological hypotheses underlying classical mechanics. While, according to Mittelstaedt, classical mechanics describes a fictitious world that does not exist in reality, he claims to achieve a universal quantum ontology that can be improved by incorporating unsharp properties and equipped with Planck's constant without any need to refer to classical concepts. In this talk, we argue that quantum ontology in Mittelstaedt's sense is not enough. Quantum ontology can never be universal as long as the difference between potential and real properties is not represented adequately. Quantum properties are potential, not (yet) real, be they sharp or unsharp. Hence, preparation and measurement presuppose classical concepts, even in quantum theory. We end up with a classical-quantum sandwich ontology, which is still less extravagant than Bohmian or many-worlds ontologies are.
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
Directory of Open Access Journals (Sweden)
Kimmo T Jokivarsi
Full Text Available Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI, were quantified together with conventional relaxation parameters (T1, T2 and T1ρ and MT ratios in acute cerebral ischemia in rat. The right middle cerebral artery was permanently occluded and quantitative MRI data was acquired sequentially for the above parameters for up to 6 hours. The following conclusions were drawn: 1 Time-dependent changes in RAFF and T1ρ relaxation are not coupled to those in MT. 2 RAFF relaxation evolves more like transverse, rather than longitudinal relaxation. 3 MT measured with ZAPI is less sensitive to ischemia than conventional MT. 4 ZAPI data suggest alterations in the T2 distribution of macromolecules in acute cerebral ischemia. It was shown that both RAFF and ZAPI provide complementary MRI information from acute ischemic brain tissue. The presented multiparametric MRI data may aid in the assessment of brain tissue status early in ischemic stroke.
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Classicality of quantum information processing
International Nuclear Information System (INIS)
Poulin, David
2002-01-01
The ultimate goal of the classicality program is to quantify the amount of quantumness of certain processes. Here, classicality is studied for a restricted type of process: quantum information processing (QIP). Under special conditions, one can force some qubits of a quantum computer into a classical state without affecting the outcome of the computation. The minimal set of conditions is described and its structure is studied. Some implications of this formalism are the increase of noise robustness, a proof of the quantumness of mixed state quantum computing, and a step forward in understanding the very foundation of QIP
Elementary quantum field theory
International Nuclear Information System (INIS)
Thirring, W.; Henley, E.M.
1975-01-01
The first section of the book deals with the mathematical and physical description of a quantum field with the Bose-Einstein statistics and discusses observables, invariants of the field, and inner symmetries. The second section develops further methods for solvable interactions of a quantum field with static source. Section 3 explains with the aid of the Chew-Low model especially pion-nucleon scattering, static properties of nucleons, electromagnetic phenomena, and nuclear forces. (BJ/LN) [de
Directory of Open Access Journals (Sweden)
Somsak Panyakeow
2010-10-01
Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
On Galilean covariant quantum mechanics
International Nuclear Information System (INIS)
Horzela, A.; Kapuscik, E.; Kempczynski, J.; Joint Inst. for Nuclear Research, Dubna
1991-08-01
Formalism exhibiting the Galilean covariance of wave mechanics is proposed. A new notion of quantum mechanical forces is introduced. The formalism is illustrated on the example of the harmonic oscillator. (author)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Magnus force and Aharonov-Bohm effect in superfluids
International Nuclear Information System (INIS)
Sonin, E.
2002-01-01
This chapter addresses the problem of the transverse force (Magnus force) on a vortex in a Galilean invariant quantum Bose liquid. Interaction of quasi-particles (phonons) with a vortex produces an additional transverse force (Iordanskii force). The Iordanskii force is related to the acoustic Aharonov-Bohm effect. The connection between the effective Magnus force and the Berry phase is also discussed. (orig.)
Magnus Force and Aharonov-Bohm Effect in Superfluids
Sonin, E. B.
2001-01-01
The paper addresses the problem of the transverse force (Magnus force) on a vortex in a Galilean invariant quantum Bose liquid. Interaction of quasiparticles (phonons) with a vortex produces an additional transverse force (Iordanskii force). The Iordanskii force is related to the acoustic Aharonov--Bohm effect.Connection of the effective Magnus force with the Berry phase is also discussed.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Energy balance for a dissipative quantum system
International Nuclear Information System (INIS)
Kumar, Jishad
2014-01-01
The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
International Nuclear Information System (INIS)
Calogeracos, A.; Barton, G.
1995-01-01
A covariant Action describing a mobile dispersive mirror in one dimension is presented. We construct the Hamiltonian in the comoving (noninertial) frame, with emphasis on the treatment of the boundary condition. The Hamiltonian in the nonrelativistic approximation is derived. We consider the case where the mirror moves along a prescribed trajectory, and we calculate the operator expression for the force applied to the mirror by the external agency to balance the radiative reaction. copyright 1995 Academic Press, Inc
Bonitz, M.; Pehlke, E.; Schoof, T.
2013-11-01
In a recent paper (Shukla et al 2013 Phys. Scr. 87 018202) the authors criticized our analysis of the screened proton potential in dense hydrogen that was based on ab initio density functional theory (DFT) simulations (Bonitz et al 2013 Phys. Rev. E 87 037102). In particular, they attributed the absence of the Shukla-Eliasson attractive force between protons in the DFT simulations to a failure of DFT. Here we discuss in detail their arguments and show that their conclusions are incorrect.
Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:
Directory of Open Access Journals (Sweden)
Somsak Panyakeow
2010-10-01
Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.
International Nuclear Information System (INIS)
Bonitz, M; Pehlke, E; Schoof, T
2013-01-01
In a recent paper (Shukla et al 2013 Phys. Scr. 87 018202) the authors criticized our analysis of the screened proton potential in dense hydrogen that was based on ab initio density functional theory (DFT) simulations (Bonitz et al 2013 Phys. Rev. E 87 037102). In particular, they attributed the absence of the Shukla–Eliasson attractive force between protons in the DFT simulations to a failure of DFT. Here we discuss in detail their arguments and show that their conclusions are incorrect. (comment)
Microtubules as mechanical force sensors.
Karafyllidis, Ioannis G; Lagoudas, Dimitris C
2007-03-01
Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.
Quantum physics; Physique quantique
Energy Technology Data Exchange (ETDEWEB)
Basdevant, J.L.; Dalibart, J. [Ecole Polytechnique, 75 - Paris (France)
1997-12-31
This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.) refs.
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
International Nuclear Information System (INIS)
Kilin, Sergei Ya
1999-01-01
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
1999-05-31
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Stochastic quantum mechanics and quantum spacetime
International Nuclear Information System (INIS)
Prugovecki, E.
1984-01-01
This monograph deals in part with the physical, mathematical and epistemological reasons behind the failure of past theoretical frameworks, including conventional relativistic quantum mechanics, to bring about a conssistent unification of relativity with quantum theory. The assessment of the past record is set in an historical perspective by citing from original sources, some of which might be partly forgotten or are not that well known, but forcefully illustrate the motivations and goals of the foudners of relativity and quantum theory as they set about developing their respetive disciplines. The proposed framework for unification, which constitutes the bulk of this book, embraces classical as well as quantum theories by implementing an epsitemic idea first put forth by M. Born, namely that all deterministic values for measurable quantitites. The framework gives rise to a whole range of yet unresearched problems, whose solutions are bound to shed some light on the relationship between relativity and quantum theories of the most fundamental physical and mathematical leves. (author). refs.; figs.; tabs
Dynamics in the quantum/classical limit based on selective use of the quantum potential
International Nuclear Information System (INIS)
Garashchuk, Sophya; Dell’Angelo, David; Rassolov, Vitaly A.
2014-01-01
A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction
Dynamics in the quantum/classical limit based on selective use of the quantum potential
Energy Technology Data Exchange (ETDEWEB)
Garashchuk, Sophya, E-mail: garashchuk@sc.edu; Dell’Angelo, David; Rassolov, Vitaly A. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208 (United States)
2014-12-21
A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction.
Multiple-state quantum Otto engine, 1D box system
Energy Technology Data Exchange (ETDEWEB)
Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Energy Technology Data Exchange (ETDEWEB)
Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department
1999-07-01
Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.
Six axis force feedback input device
Ohm, Timothy (Inventor)
1998-01-01
The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.
Lattice of quantum predictions
Drieschner, Michael
1993-10-01
What is the structure of reality? Physics is supposed to answer this question, but a purely empiristic view is not sufficient to explain its ability to do so. Quantum mechanics has forced us to think more deeply about what a physical theory is. There are preconditions every physical theory must fulfill. It has to contain, e.g., rules for empirically testable predictions. Those preconditions give physics a structure that is “a priori” in the Kantian sense. An example is given how the lattice structure of quantum mechanics can be understood along these lines.
Quantum entanglement and quantum teleportation
International Nuclear Information System (INIS)
Shih, Y.H.
2001-01-01
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)
International Nuclear Information System (INIS)
Sutton, C.
1989-01-01
Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)
International Nuclear Information System (INIS)
Mekhov, Igor B; Ritsch, Helmut
2012-01-01
Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles. (topical review)
Wu, Xiangyang
1999-07-01
The heterocyclic amine 2-amino-3-methylimidazo (4, 5-f) quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It induces tumors in mammals and is probably involved in human carcinogenesis, because of great exposure to such food carcinogens. IQ is biochemically activated to a derivative which reacts with DNA to form a covalent adduct. This adduct may deform the DNA and consequently cause a mutation. which may initiate carcinogenesis. To understand this cancer initiating event, it is necessary to obtain atomic resolution structures of the damaged DNA. No such structures are available experimentally due to synthesis difficulties. Therefore, we employ extensive molecular mechanics and dynamics calculations for this purpose. The major IQ-DNA adduct in the specific DNA sequence d(5'G1G2C G3CCA3') - d(5'TGGCGCC3') with IQ modified at G3 is studied. The d(5'G1G2C G3CC3') sequence has recently been shown to be a hot-spot for mutations when IQ modification is at G3. Although this sequence is prone to -2 deletions via a ``slippage mechanism'' even when unmodified, a key question is why IQ increases the mutation frequency of the unmodified DNA by about 104 fold. Is there a structural feature imposed by IQ that is responsible? The molecular mechanics and dynamics program AMBER for nucleic acids with the latest force field was chosen for this work. This force field has been demonstrated to reproduce well the B-DNA structure. However, some parameters, the partial charges, bond lengths and angles, dihedral parameters of the modified residue, are not available in the AMBER database. We parameterized the force field using high level ab initio quantum calculations. We created 800 starting conformations which uniformly sampled in combination at 18° intervals three torsion angles that govern the IQ-DNA orientations, and energy minimized them. The most important structures are abnormal; the IQ damaged guanine is rotated out of its standard B
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum computers and quantum computations
International Nuclear Information System (INIS)
Valiev, Kamil' A
2005-01-01
This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)
Chanda, Rajat
1997-01-01
The book discusses the laws of quantum mechanics, several amazing quantum phenomena and some recent progress in understanding the connection between the quantum and the classical worlds. We show how paradoxes arise and how to resolve them. The significance of Bell's theorem and the remarkable experimental results on particle correlations are described in some detail. Finally, the current status of our understanding of quantum theory is summerised.
Indian Academy of Sciences (India)
In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.
I, Quantum Robot: Quantum Mind control on a Quantum Computer
Zizzi, Paola
2008-01-01
The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.
Magnus forces and statistics in 2 + 1 dimensions
International Nuclear Information System (INIS)
Davis, R.L.
1990-01-01
Spinning vortex solutions to the abelian Higgs model, not Nielsen-Olesen solutions, are appropriate to a Ginzburg-Landau description of superconductivity. The main physical distinction is that spinning vortices experience the Magnus force while Nielsen-Olesen vortices do not. In 2 + 1 dimensional superconductivity without a Chern-Simons interaction, the effect of the Magnus force is equivalent to that of a background fictitious magnetic field. Moreover, the phase obtained an interchanging two quasi-particles is always path-dependent. When a Chern-Simons term is added there is an additional localized Magnus flux at the vortex. For point-like vortices, the Chern-Simons interaction can be seen as defining their intrinsic statistics, but in realistic cases of vortices with finite size in strong Magnus fields the quasi-particle statistics are not well-defined
Quantum Logic and Quantum Reconstruction
Stairs, Allen
2015-01-01
Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
Quantum dynamics of quantum bits
International Nuclear Information System (INIS)
Nguyen, Bich Ha
2011-01-01
The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)
Quantum Mechanics as Classical Physics
Sebens, CT
2015-01-01
Here I explore a novel no-collapse interpretation of quantum mechanics which combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Ehrenfest force in inhomogeneous magnetic field
International Nuclear Information System (INIS)
Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.
2000-01-01
The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit
International Nuclear Information System (INIS)
Kouwenhoven, L.; Marcus, C.
1998-01-01
Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)
Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman
2017-04-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.
Quantum information. Teleporation - cryptography - quantum computer
International Nuclear Information System (INIS)
Breuer, Reinhard
2010-01-01
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
Coupled Quantum Fluctuations and Quantum Annealing
Hormozi, Layla; Kerman, Jamie
We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Energy Technology Data Exchange (ETDEWEB)
Ecker, Gerhard [Wien Univ. (Austria). Fakultaet fuer Physik
2017-07-01
The following topics are dealt with: Physics around 1900, the way to quantum mechanics, quantum field theory with quantum electrodynamics as prototype, the crisis of quantum field theory, from the beta decay to the electroweak gauge theory, quantum chromodynamics as quantum field theory of the strong nuclear force, the standard model of the fundamental interactions, physics beyond the standard model. (HSI)
Logic circuits from zero forcing.
Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael
We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.
Nuclear Quantum Gravitation - The Correct Theory
Kotas, Ronald
2016-03-01
Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/
Classical and Quantum Chaos in Atom Optics
Saif, Farhan
2006-01-01
The interaction of an atom with an electromagnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electromagnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits ...
Quantum games as quantum types
Delbecque, Yannick
In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2005-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental
An efficient implicit direct forcing immersed boundary method for incompressible flows
International Nuclear Information System (INIS)
Cai, S-G; Ouahsine, A; Smaoui, H; Favier, J; Hoarau, Y
2015-01-01
A novel efficient implicit direct forcing immersed boundary method for incompressible flows with complex boundaries is presented. In the previous work [1], the calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious force evaluated on the Lagrangian points to mimic the presence of the physical boundaries. However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary condition on the immersed interface. In the present work, the calculation is based on the implicit treatment of the artificial force while in an effective way of system iteration. The accuracy is also improved by solving the Navier-Stokes equation with the rotational incremental pressure- correction projection method of Guermond and Shen [2]. Numerical simulations performed with the proposed method are in good agreement with those in the literature
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
Walls, D F
2007-01-01
Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Quantum levitation by left-handed metamaterials
Energy Technology Data Exchange (ETDEWEB)
Leonhardt, Ulf; Philbin, Thomas G [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)
2007-08-15
Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here, we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials, this repulsive force of the quantum vacuum may levitate ultra-thin mirrors.
Quantum levitation by left-handed metamaterials
International Nuclear Information System (INIS)
Leonhardt, Ulf; Philbin, Thomas G
2007-01-01
Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here, we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials, this repulsive force of the quantum vacuum may levitate ultra-thin mirrors
Stapp, Henry P.
2011-01-01
Robert Griffiths has recently addressed, within the framework of a 'consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. O...
Quantum space and quantum completeness
Jurić, Tajron
2018-05-01
Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
International Nuclear Information System (INIS)
Rodgers, P.
1998-01-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
International Nuclear Information System (INIS)
Khrennikov, Andrei; Klein, Moshe; Mor, Tal
2010-01-01
In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.
International Nuclear Information System (INIS)
Deutsch, D.
1992-01-01
As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
Occupational Outlook Quarterly, 2012
2012-01-01
The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…
Quantum group and quantum symmetry
International Nuclear Information System (INIS)
Chang Zhe.
1994-05-01
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs
Quantum information. Teleportation - cryptography - quantum computer
International Nuclear Information System (INIS)
Koenneker, Carsten
2012-01-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Quantum ensembles of quantum classifiers.
Schuld, Maria; Petruccione, Francesco
2018-02-09
Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.
Quantum computer games: quantum minesweeper
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Quantum measurement in quantum optics
International Nuclear Information System (INIS)
Kimble, H.J.
1993-01-01
Recent progress in the generation and application of manifestly quantum or nonclassical states of the electromagnetic field is reviewed with emphasis on the research of the Quantum Optics Group at Caltech. In particular, the possibilities for spectroscopy with non-classical light are discussed both in terms of improved quantitative measurement capabilities and for the fundamental alteration of atomic radiative processes. Quantum correlations for spatially extended systems are investigated in a variety of experiments which utilize nondegenerate parametric down conversion. Finally, the prospects for measurement of the position of a free mass with precision beyond the standard quantum limit are briefly considered. (author). 38 refs., 1 fig
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:
International Nuclear Information System (INIS)
Doplicher, S.
1996-01-01
We review some recent result and work in progress on the quantum structure of spacetime at scales comparable with the Planck length; the models discussed here are operationally motivated by the limitations in the accuracy of localization of events in spacetime imposed by the interplay between quantum mechanics and classical general relativity. (orig.)
Quantum ratchets for quantum communication with optical superlattices
International Nuclear Information System (INIS)
Romero-Isart, Oriol; Garcia-Ripoll, Juan Jose
2007-01-01
We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits us to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
International Nuclear Information System (INIS)
Hawking, S.W.
1984-01-01
The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Richter, Johannes; Farnell, Damian; Bishop, Raymod
2004-01-01
The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.
International Nuclear Information System (INIS)
Steane, Andrew
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Energy Technology Data Exchange (ETDEWEB)
Steane, Andrew [Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Oxford (United Kingdom)
1998-02-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Polarization effects in molecular mechanical force fields
Energy Technology Data Exchange (ETDEWEB)
Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)
2009-08-19
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)
Feedback control using only quantum back-action
International Nuclear Information System (INIS)
Jacobs, Kurt
2010-01-01
The traditional approach to feedback control is to apply deterministic forces to a system by modifying the Hamiltonian. Here we show that finite-dimensional quantum systems can be controlled purely by exploiting the random quantum back-action of a continuous weak measurement. We demonstrate that, quite remarkably, the quantum back-action of such an adaptive measurement is just as effective at controlling quantum systems as traditional feedback.
Quantum decoherence and interlevel relations
Crull, Elise M.
Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful
The quantum phase-transitions of water
Fillaux, François
2017-08-01
It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.
Classical and quantum chaos in atom optics
International Nuclear Information System (INIS)
Saif, Farhan
2005-01-01
The interaction of an atom with an electro-magnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electro-magnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits dynamical localization and quantum recurrences
Quantum mechanics with quantum time
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
Frictional lubricity enhanced by quantum mechanics.
Zanca, Tommaso; Pellegrini, Franco; Santoro, Giuseppe E; Tosatti, Erio
2018-04-03
The quantum motion of nuclei, generally ignored in the physics of sliding friction, can affect in an important manner the frictional dissipation of a light particle forced to slide in an optical lattice. The density matrix-calculated evolution of the quantum version of the basic Prandtl-Tomlinson model, describing the dragging by an external force of a point particle in a periodic potential, shows that purely classical friction predictions can be very wrong. The strongest quantum effect occurs not for weak but for strong periodic potentials, where barriers are high but energy levels in each well are discrete, and resonant Rabi or Landau-Zener tunneling to states in the nearest well can preempt classical stick-slip with nonnegligible efficiency, depending on the forcing speed. The resulting permeation of otherwise unsurmountable barriers is predicted to cause quantum lubricity, a phenomenon which we expect should be observable in the recently implemented sliding cold ion experiments.
Cariolaro, Gianfranco
2015-01-01
This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: · development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; · general formulation of a transmitter–receiver system · particular treatment of the most popular quantum co...
Drummond, P. D.; Chaturvedi, S.; Dechoum, K.; Comey, J.
2001-02-01
We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrödinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrödinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrödinger cat. -Pacs: 03.65.Bz
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
International Nuclear Information System (INIS)
Rae, A.I.M.
1981-01-01
This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)
International Nuclear Information System (INIS)
Steiner, F.
1994-01-01
A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formular is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found. (orig.)
International Nuclear Information System (INIS)
Beretta, G.P.; Gyftopoulos, E.P.; Park, J.L.
1985-01-01
A novel nonlinear equation of motion is proposed for a general quantum system consisting of more than one distinguishable elementary constituent of matter. In the domain of idempotent quantum-mechanical state operators, it is satisfied by all unitary evolutions generated by the Schroedinger equation. But in the broader domain of nonidempotent state operators not contemplated by conventional quantum mechanics, it generates a generally nonunitary evolution, it keeps the energy invariant and causes the entropy to increase with time until the system reaches a state of equilibrium or a limit cycle
Lowe, John P
1993-01-01
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,
Ferrier-Barbut, Igor; Pfau, Tilman
2018-01-01
A liquid exists when interactions that attract its constituent particles to each other are counterbalanced by a repulsion acting at higher densities. Other characteristics of liquids are short-range correlations and the existence of surface tension (1). Ultracold atom experiments provide a privileged platform with which to observe exotic states of matter, but the densities are far too low to obtain a conventional liquid because the atoms are too far apart to create repulsive forces arising from the Pauli exclusion principle of the atoms' internal electrons. The observation of quantum liquid droplets in an ultracold mixture of two quantum fluids is now reported on page 301 of this issue by Cabrera et al. (2) and a recent preprint by Semeghini et al. (3). Unlike conventional liquids, these liquids arise from a weak attraction and repulsive many-body correlations in the mixtures.
Practical quantum coin flipping
International Nuclear Information System (INIS)
Pappa, Anna; Diamanti, Eleni; Chailloux, Andre; Kerenidis, Iordanis
2011-01-01
We show that in the unconditional security model, a single quantum strong coin flip with security guarantees that are strictly better than in any classical protocol is possible to implement with current technology. Our protocol takes into account all aspects of an experimental implementation, including losses, multiphoton pulses emitted by practical photon sources, channel noise, detector dark counts, and finite quantum efficiency. We calculate the abort probability when both players are honest, as well as the probability of one player forcing his desired outcome. For a channel length up to 21 km and commonly used parameter values, we can achieve honest abort and cheating probabilities that are better than in any classical protocol. Our protocol is, in principle, implementable using attenuated laser pulses, with no need for entangled photons or any other specific resources.
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
A new exact quantum mechanical propagator
Wiegel, F.W.; van Andel, P.W.
1987-01-01
The authors derive a closed-form expression for the time-dependent propagator for a quantum mechanical particle which is subject to an external force which is the sum of (i) a reflecting half-plane barrier with a straight edge, and (ii) a harmonic force pointing towards a point of the edge. This new
Position-dependent friction in quantum mechanics
International Nuclear Information System (INIS)
Srokowski, T.
1985-01-01
The quantum description of motion of a particle subjected to position-dependent frictional forces is presented. The two cases are taken into account: a motion without external forces and in the harmonic oscillator field. As an example, a frictional barrier penetration is considered. 16 refs. (author)
Quantum bit string commitment protocol using polarization of mesoscopic coherent states
International Nuclear Information System (INIS)
Mendonca, Fabio Alencar; Ramos, Rubens Viana
2008-01-01
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed
Quantum bit string commitment protocol using polarization of mesoscopic coherent states
Mendonça, Fábio Alencar; Ramos, Rubens Viana
2008-02-01
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.
Fabrication of GaAs concentric multiple quantum rings by droplet epitaxy
International Nuclear Information System (INIS)
Somaschini, C; Bietti, S; Sanguinetti, S; Koguchi, N; Fedorov, A; Abbarchi, M; Gurioli, M
2009-01-01
We present the fabrication of a novel quantum nanostructure, constituted by three concentric quantum rings by droplet epitaxy. Atomic Force Microscopy and photoluminescence characterization of these nanostructures is reported.
Spin Entanglement Witness for Quantum Gravity.
Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A; Barker, Peter F; Kim, M S; Milburn, Gerard
2017-12-15
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.
Superconducting Qubits as Mechanical Quantum Engines.
Sachtleben, Kewin; Mazon, Kahio T; Rego, Luis G C
2017-09-01
We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.
Quantum physics on the edge of chaos
Energy Technology Data Exchange (ETDEWEB)
Berry, M
1987-11-19
The phenomena of quantum chaology lies in the largely unexplored border country between quantum and classical mechanics - they are part of semiclassical mechanics. Quantum chaology is an emerging science that is leading to the discovery of unfamiliar regimes of behavior in microscopic systems, and concerns whether quantum systems become chaotic as they approach the classical limit. The case of how electrons in highly excited states absorb energy from radiation shining on them is discussed. Quantum chaology of systems that are either isolated, or else are influenced by external forces that do not vary are also examined. Finally, the connection between the Rieman hypothesis of number theory and quantum chaology is described. (U.K.).
Neural-network quantum state tomography
Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe
2018-05-01
The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.
International Nuclear Information System (INIS)
Beenakker, C W J
2005-01-01
Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The
International Nuclear Information System (INIS)
Nguyen, Ba An
2006-01-01
Absolutely and asymptotically secure protocols for organizing an exam in a quantum way are proposed basing judiciously on multipartite entanglement. The protocols are shown to stand against common types of eavesdropping attack
International Nuclear Information System (INIS)
Tittel, W.; Brendel, J.; Gissin, N.; Ribordy, G.; Zbinden, H.
1999-01-01
The principles of quantum cryptography based on non-local correlations of entanglement photons are outlined. The method of coding and decoding of information and experiments is also described. The prospects of the technique are briefly discussed. (Z.J.)
International Nuclear Information System (INIS)
Cejnar, P.
2007-01-01
Chaos is a name given in physics to a branch which, within classical mechanics, studies the consequences of sensitive dependences of the behavior of physical systems on the starting conditions, i.e., the 'butterfly wing effect'. However, how to describe chaotic behavior in the world of quantum particles? It appears that quantum mechanics does not admit the sensitive dependence on the starting conditions, and moreover, predicts a substantial suppression of chaos also at the macroscopic level. Still, the quantum properties of systems that are chaotic in terms of classical mechanics differ basically from the properties of classically arranged systems. This topic is studied by a field of physics referred to as quantum chaos. (author)
International Nuclear Information System (INIS)
Faraggi, A.E.; Matone, M.
1998-01-01
We show that the quantum Hamilton-Jacobi equation can be written in the classical form with the spatial derivative ∂ q replaced by ∂ q with dq = dq/√1-β 2 (q), where β 2 (q) is strictly related to the quantum potential. This can be seen as the opposite of the problem of finding the wave function representation of classical mechanics as formulated by Schiller and Rosen. The structure of the above open-quotes quantum transformationclose quotes, related to the recently formulated equivalence principle, indicates that the potential deforms space geometry. In particular, a result by Flanders implies that both W(q) = V(q) - E and the quantum potential Q are proportional to the curvatures κ W and κ Q which arise as natural invariants in an equivalence problem for curves in the projective line. In this formulation the Schroedinger equation takes the geometrical form (∂ q 2 + κ W )ψ = 0
Casimir effect and the quantum vacuum
International Nuclear Information System (INIS)
Jaffe, R.L.
2005-01-01
In discussions of the cosmological constant, the Casimir effect is often invoked as decisive evidence that the zero-point energies of quantum fields are ''real.'' On the contrary, Casimir effects can be formulated and Casimir forces can be computed without reference to zero-point energies. They are relativistic, quantum forces between charges and currents. The Casimir force (per unit area) between parallel plates vanishes as α, the fine structure constant, goes to zero, and the standard result, which appears to be independent of α, corresponds to the α→∞ limit
Quantum Correlations Evolution Asymmetry in Quantum Channels
International Nuclear Information System (INIS)
Li Meng; Huang Yun-Feng; Guo Guang-Can
2017-01-01
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. (paper)
Duality Quantum Information and Duality Quantum Communication
International Nuclear Information System (INIS)
Li, C. Y.; Wang, W. Y.; Wang, C.; Song, S. Y.; Long, G. L.
2011-01-01
Quantum mechanical systems exhibit particle wave duality property. This duality property has been exploited for information processing. A duality quantum computer is a quantum computer on the move and passing through a multi-slits. It offers quantum wave divider and quantum wave combiner operations in addition to those allowed in an ordinary quantum computer. It has been shown that all linear bounded operators can be realized in a duality quantum computer, and a duality quantum computer with n qubits and d-slits can be realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality quantum computing mode. The quantum particle-wave duality can be used in providing secure communication. In this paper, we will review duality quantum computing and duality quantum key distribution.
1982-01-01
The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies or phenomena in which they have a dominant role.
Occupational Outlook Quarterly, 2010
2010-01-01
The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…
Quantum correlations and distinguishability of quantum states
Energy Technology Data Exchange (ETDEWEB)
Spehner, Dominique [Université Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France and Laboratoire de Physique et Modélisation des Milieux Condensés, F-38000 Grenoble (France)
2014-07-15
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Quantum correlations and distinguishability of quantum states
International Nuclear Information System (INIS)
Spehner, Dominique
2014-01-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature
Stapp, Henry P.
2012-05-01
Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows
CERN Bulletin
2013-01-01
On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail... Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Grunspan, C.
2003-01-01
This text gives some results about quantum torsors. Our starting point is an old reformulation of torsors recalled recently by Kontsevich. We propose an unification of the definitions of torsors in algebraic geometry and in Poisson geometry. Any quantum torsor is equipped with two comodule-algebra structures over Hopf algebras and these structures commute with each other. In the finite dimensional case, these two Hopf algebras share the same finite dimension. We show that any Galois extension...
Mazilu, Michael
2015-01-01
ICOAM 2015 The electromagnetic momentum transferred transferred to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ℏk does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the tran...
DeMartino, Salvatore; DeSiena, Silvio
1996-01-01
We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.
International Nuclear Information System (INIS)
Hadjiivanov, L.; Todorov, I.
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the 'philosophical discussions' between Bohr, Einstein and Schrödinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schrödinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminating with the work of Alain Aspect) it was Feynman who made public the idea of a quantum computer based on the observed effect
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
International Nuclear Information System (INIS)
Buescher, R.
2005-01-01
Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the
Classical and quantum investigations of four-dimensional maps with a mixed phase space
International Nuclear Information System (INIS)
Richter, Martin
2012-01-01
Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.
Quantum plug n’ play: modular computation in the quantum regime
Thompson, Jayne; Modi, Kavan; Vedral, Vlatko; Gu, Mile
2018-01-01
Classical computation is modular. It exploits plug n’ play architectures which allow us to use pre-fabricated circuits without knowing their construction. This bestows advantages such as allowing parts of the computational process to be outsourced, and permitting individual circuit components to be exchanged and upgraded. Here, we introduce a formal framework to describe modularity in the quantum regime. We demonstrate a ‘no-go’ theorem, stipulating that it is not always possible to make use of quantum circuits without knowing their construction. This has significant consequences for quantum algorithms, forcing the circuit implementation of certain quantum algorithms to be rebuilt almost entirely from scratch after incremental changes in the problem—such as changing the number being factored in Shor’s algorithm. We develop a workaround capable of restoring modularity, and apply it to design a modular version of Shor’s algorithm that exhibits increased versatility and reduced complexity. In doing so we pave the way to a realistic framework whereby ‘quantum chips’ and remote servers can be invoked (or assembled) to implement various parts of a more complex quantum computation.
Quantum computing: Quantum advantage deferred
Childs, Andrew M.
2017-12-01
A type of optics experiment called a boson sampler could be among the easiest routes to demonstrating the power of quantum computers. But recent work shows that super-classical boson sampling may be a long way off.
Phonon forces and cold denaturatio
DEFF Research Database (Denmark)
Bohr, Jakob
2003-01-01
Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing the molec......Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing...... the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...... denaturing. This is consistent with the empirical observation that cold denaturation is exothermic anti hot denaturation endothermic....
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Quantum Transmemetic Intelligence
Piotrowski, Edward W.; Sładkowski, Jan
The following sections are included: * Introduction * A Quantum Model of Free Will * Quantum Acquisition of Knowledge * Thinking as a Quantum Algorithm * Counterfactual Measurement as a Model of Intuition * Quantum Modification of Freud's Model of Consciousness * Conclusion * Acknowledgements * References
Quantum correlations in multipartite quantum systems
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
Long distance quantum teleportation
Xia, Xiu-Xiu; Sun, Qi-Chao; Zhang, Qiang; Pan, Jian-Wei
2018-01-01
Quantum teleportation is a core protocol in quantum information science. Besides revealing the fascinating feature of quantum entanglement, quantum teleportation provides an ultimate way to distribute quantum state over extremely long distance, which is crucial for global quantum communication and future quantum networks. In this review, we focus on the long distance quantum teleportation experiments, especially those employing photonic qubits. From the viewpoint of real-world application, both the technical advantages and disadvantages of these experiments are discussed.
Electron quantum optics as quantum signal processing
Roussel, B.; Cabart, C.; Fève, G.; Thibierge, E.; Degiovanni, P.
2016-01-01
The recent developments of electron quantum optics in quantum Hall edge channels have given us new ways to probe the behavior of electrons in quantum conductors. It has brought new quantities called electronic coherences under the spotlight. In this paper, we explore the relations between electron quantum optics and signal processing through a global review of the various methods for accessing single- and two-electron coherences in electron quantum optics. We interpret electron quantum optics...
Energy Technology Data Exchange (ETDEWEB)
Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)
1999-02-01
Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weakerand weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This
Le Bellac, Michel
2006-03-01
Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises
Energy Technology Data Exchange (ETDEWEB)
Reinhard, Friedemann [Universitaet Stuttgart (Germany). 3. Physikalisches Institut
2010-07-01
Quantum minigolf is a virtual-reality computer game visualizing quantum mechanics. The rules are the same as for the classical game minigolf, the goal being to kick a ball such that it crosses an obstacle course and runs into a hole. The ball, however, follows the laws of quantum mechanics: It can be at several places at once or tunnel through obstacles. To know whether the ball has reached the goal, the player has to perform a position measurement, which converts the ball into a classical object and fixes its position. But quantum mechanics is indeterministic: There is always a chance to lose, even for Tiger Woods. Technically, the obstacle course and the ball are projected onto the floor by a video projector. The position of the club is tracked by an infrared marker, similar as in Nintendo's Wii console. The whole setup is portable and the software has been published under the GPL license on www.quantum-minigolf.org.
Quantum Field Theoretic Derivation of the Einstein Weak Equivalence Principle Using Emqg Theory
Ostoma, Tom; Trushyk, Mike
1999-01-01
We provide a quantum field theoretic derivation of Einstein's Weak Equivalence Principle of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia). Quantum Inertia states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force ...
International Nuclear Information System (INIS)
Kendon, Viv
2014-01-01
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer
Quantum group gauge theory on quantum spaces
International Nuclear Information System (INIS)
Brzezinski, T.; Majid, S.
1993-01-01
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)
Efficient quantum circuit implementation of quantum walks
International Nuclear Information System (INIS)
Douglas, B. L.; Wang, J. B.
2009-01-01
Quantum walks, being the quantum analog of classical random walks, are expected to provide a fruitful source of quantum algorithms. A few such algorithms have already been developed, including the 'glued trees' algorithm, which provides an exponential speedup over classical methods, relative to a particular quantum oracle. Here, we discuss the possibility of a quantum walk algorithm yielding such an exponential speedup over possible classical algorithms, without the use of an oracle. We provide examples of some highly symmetric graphs on which efficient quantum circuits implementing quantum walks can be constructed and discuss potential applications to quantum search for marked vertices along these graphs.
Renormalisation in Quantum Mechanics, Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.
2001-01-01
We suggest how to construct non-perturbatively a renormalized action in quantum mechanics. We discuss similarties and differences with the standard effective action. We propose that the new quantum action is suitable to define and compute quantum instantons and quantum chaos.
Nonlinear aspects of quantum plasma physics
International Nuclear Information System (INIS)
Shukla, Padma K; Eliasson, B
2010-01-01
Dense quantum plasmas are ubiquitous in planetary interiors and in compact astrophysical objects (e.g., the interior of white dwarf stars, in magnetars, etc.), in semiconductors and micromechanical systems, as well as in the next-generation intense laser-solid density plasma interaction experiments and in quantum X-ray free-electron lasers. In contrast to classical plasmas, quantum plasmas have extremely high plasma number densities and low temperatures. Quantum plasmas are composed of electrons, positrons and holes, which are degenerate. Positrons (holes) have the same (slightly different) mass as electrons, but opposite charge. The degenerate charged particles (electrons, positrons, and holes) obey the Fermi-Dirac statistics. In quantum plasmas, there are new forces associated with (i) quantum statistical electron and positron pressures, (ii) electron and positron tunneling through the Bohm potential, and (iii) electron and positron angular momentum spin. Inclusion of these quantum forces allows the existence of very high-frequency dispersive electrostatic and electromagnetic waves (e.g., in the hard X-ray and gamma-ray regimes) with extremely short wavelengths. In this review paper, we present theoretical backgrounds for some important nonlinear aspects of wave-wave and wave-electron interactions in dense quantum plasmas. Specifically, we focus on nonlinear electrostatic electron and ion plasma waves, novel aspects of three-dimensional quantum electron fluid turbulence, as well as nonlinearly coupled intense electromagnetic waves and localized plasma wave structures. Also discussed are the phase-space kinetic structures and mechanisms that can generate quasistationary magnetic fields in dense quantum plasmas. The influence of the external magnetic field and the electron angular momentum spin on the electromagnetic wave dynamics is discussed. Finally, future perspectives of the nonlinear quantum plasma physics are highlighted. (reviews of topical problems)
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Directory of Open Access Journals (Sweden)
Jeffrey A. Barrett
2016-09-01
Full Text Available http://dx.doi.org/10.5007/1808-1711.2016v20n1p45 Because of the conceptual difficulties it faces, quantum mechanics provides a salient example of how alternative metaphysical commitments may clarify our understanding of a physical theory and the explanations it provides. Here we will consider how postulating alternative quantum worlds in the context of Hugh Everett III’s pure wave mechanics may serve to explain determinate measurement records and the standard quantum statistics. We will focus on the properties of such worlds, then briefly consider other metaphysical options available for interpreting pure wave mechanics. These reflections will serve to illustrate both the nature and the limits of naturalized metaphysics.
Mullin, William J
2017-01-01
Quantum mechanics allows a remarkably accurate description of nature and powerful predictive capabilities. The analyses of quantum systems and their interpretation lead to many surprises, for example, the ability to detect the characteristics of an object without ever touching it in any way, via "interaction-free measurement," or the teleportation of an atomic state over large distances. The results can become downright bizarre. Quantum mechanics is a subtle subject that usually involves complicated mathematics -- calculus, partial differential equations, etc., for complete understanding. Most texts for general audiences avoid all mathematics. The result is that the reader misses almost all deep understanding of the subject, much of which can be probed with just high-school level algebra and trigonometry. Thus, readers with that level of mathematics can learn so much more about this fundamental science. The book starts with a discussion of the basic physics of waves (an appendix reviews some necessary class...
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Exner, Pavel
2015-01-01
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Energy Technology Data Exchange (ETDEWEB)
Bohigas, Oriol [Laboratoire de Physique Theorique et Modeles Statistiques, Orsay (France)
2005-04-18
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's {zeta}-function, which has become a testing ground for RMT, QC, POT, and their relationship.
International Nuclear Information System (INIS)
Bohigas, Oriol
2005-01-01
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's ζ-function, which has become a testing ground for RMT, QC, POT, and their relationship
Page, Don N.
2006-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Quantum control limited by quantum decoherence
International Nuclear Information System (INIS)
Xue, Fei; Sun, C. P.; Yu, S. X.
2006-01-01
We describe quantum controllability under the influences of the quantum decoherence induced by the quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle with its controlled system and then cause quantum decoherence in the controlled system. In competition with this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed quantum control process. In association with the phase uncertainty and the standard quantum limit, a general model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite energy within a finite time. It is also shown that if the operations of quantum control are to be determined by the initial state of the controller, then due to the decoherence which results from the quantum control itself, there exists a low bound for quantum controllability
Quantum memory for images: A quantum hologram
International Nuclear Information System (INIS)
Vasilyev, Denis V.; Sokolov, Ivan V.; Polzik, Eugene S.
2008-01-01
Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. [P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)]. In this paper we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multiatom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multiatom nature of the ensemble and to the optical parallelism it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram with the fidelity exceeding that of classical hologram will be able to store quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve
Quantum machine learning for quantum anomaly detection
Liu, Nana; Rebentrost, Patrick
2018-04-01
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
Quantum Backaction Evading Measurement of Collective Mechanical Modes.
Ockeloen-Korppi, C F; Damskägg, E; Pirkkalainen, J-M; Clerk, A A; Woolley, M J; Sillanpää, M A
2016-09-30
The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.
How far are we from the quantum theory of gravity?
International Nuclear Information System (INIS)
Woodard, R P
2009-01-01
I give a pedagogical explanation of what it is about quantization that makes general relativity go from being a nearly perfect classical theory to a very problematic quantum one. I also explain why some quantization of gravity is unavoidable, why quantum field theories have divergences, why the divergences of quantum general relativity are worse than those of the other forces, what physicists think this means and what they might do with a consistent theory of quantum gravity if they had one. Finally, I discuss the quantum gravitational data that have recently become available from cosmology.
Quantum decision-maker theory and simulation
Zak, Michail; Meyers, Ronald E.; Deacon, Keith S.
2000-07-01
A quantum device simulating the human decision making process is introduced. It consists of quantum recurrent nets generating stochastic processes which represent the motor dynamics, and of classical neural nets describing the evolution of probabilities of these processes which represent the mental dynamics. The autonomy of the decision making process is achieved by a feedback from the mental to motor dynamics which changes the stochastic matrix based upon the probability distribution. This feedback replaces unavailable external information by an internal knowledge- base stored in the mental model in the form of probability distributions. As a result, the coupled motor-mental dynamics is described by a nonlinear version of Markov chains which can decrease entropy without an external source of information. Applications to common sense based decisions as well as to evolutionary games are discussed. An example exhibiting self-organization is computed using quantum computer simulation. Force on force and mutual aircraft engagements using the quantum decision maker dynamics are considered.
Home page of U.S. Air Forces in Europe
with industry to discuss utilizing artificial intelligence and quantum science throughout the Air Force rocks out with Senegalese music students African Partnership Flight Senegal kicks off RSS More Press
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Quantum theory of multiscale coarse-graining.
Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A
2018-03-14
Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.
Quantum theory of multiscale coarse-graining
Han, Yining; Jin, Jaehyeok; Wagner, Jacob W.; Voth, Gregory A.
2018-03-01
Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.
Quantum thermodynamics: a nonequilibrium Green's function approach.
Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael
2015-02-27
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.
International Nuclear Information System (INIS)
Holinde, K.
1990-01-01
In this paper the present status of the meson theory of nuclear forces is reviewed. After some introductory remarks about the relevance of the meson exchange concept in the era of QCD and the empirical features of the NN interaction, the exciting history of nuclear forces is briefly outlined. In the main part, the author gives the basic physical ideas and sketch the derivation of the one-boson-exchange model of the nuclear force, in the Feynman approach. Secondly we describe, in a qualitative way, various necessary extensions, leading to the Bonn model of the N interaction. Finally, points to some interesting pen questions connected with the extended quark structure of the hadrons, which are topics of current research activity
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
The forced harmonic oscillator with damping and thermal effects
International Nuclear Information System (INIS)
Menezes Franca, H. de; Thomaz, M.T.
1984-01-01
Nonperturbative quantum mechanical solutions of the forced harmonic oscillator with radiation reaction damping are obtained from previous analysis based on Stochastic Electrodynamics. The transition to excited states is shown to be to coherent states which follow the classical trajectory. The quantum Wigner distribution in phase space is constructed. All the results are extended to finite temperatures. (Author) [pt
On the role of coulomb forces in atomic radiative emission
International Nuclear Information System (INIS)
Yngstroem, S.
1988-10-01
It is shown how the generalized Coulomb interaction (electric and magnetic fields of force) competes with the radiative interaction causing overall inhibition of the radiative capability of atoms and ions in a gaseous sample of matter. Basic quantum mechanical aspects of the electromagnetic interaction are discussed in a heuristic introduction followed by a more precise treatment in the formalism of relativistic quantum electrodynamics. (author)
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 9. Quantum Computation - Particle and Wave Aspects of Algorithms. Apoorva Patel. General Article Volume 16 Issue 9 September 2011 pp 821-835. Fulltext. Click here to view fulltext PDF. Permanent link:
Indian Academy of Sciences (India)
performance driven optimization ofVLSI ... start-up company at lIT. Mumbai. ... 1 The best known algorithms for factorization ... make a measurement the quantum state continues to be ... cally in this way: if there is a source producing identical.
International Nuclear Information System (INIS)
Mittelstaedt, P.
1979-01-01
The subspaces of Hilbert space constitute an orthocomplemented quasimodular lattice Lsub(q) for which neither a two-valued function nor generalized truth function exist. A generalisation of the dialogic method can be used as an interpretation of a lattice Lsub(qi), which may be considered as the intuitionistic part of Lsub(q). Some obvious modifications of the dialogic method are introduced which come from the possible incommensurability of propositions about quantum mechanical systems. With the aid of this generalized dialogic method a propositional calculus Qsub(eff) is derived which is similar to the calculus of effective (intuitionistic) logic, but contains a few restrictions which are based on the incommensurability of quantum mechanical propositions. It can be shown within the framework of the calculus Qsub(eff) that the value-definiteness of the elementary propositions which are proved by quantum mechanical propositions is inherited by all finite compund propositions. In this way one arrives at the calculus Q of full quantum logic which incorporates the principle of excluded middle for all propositions and which is a model for the lattice Lsub(q). (Auth.)
Burba, M.; Lapitskaya, T.
2017-01-01
This article gives an elementary introduction to quantum computing. It is a draft for a book chapter of the "Handbook of Nature-Inspired and Innovative Computing", Eds. A. Zomaya, G.J. Milburn, J. Dongarra, D. Bader, R. Brent, M. Eshaghian-Wilner, F. Seredynski (Springer, Berlin Heidelberg New York, 2006).
Raedt, Hans De; Binder, K; Ciccotti, G
1996-01-01
The purpose of this set of lectures is to introduce the general concepts that are at the basis of the computer simulation algorithms that are used to study the behavior of condensed matter quantum systems. The emphasis is on the underlying concepts rather than on specific applications. Topics
International Nuclear Information System (INIS)
Mosher, A.
1980-01-01
The symposium included lectures covering both the elements and the experimental tests of the theory of quantum chromdynamics. A three day topical conference was included which included the first results from PETRA as well as the latest reports from CERN, Fermilab, and SPEAR experiments. Twenty-one items from the symposium were prepared separately for the data base
Energy Technology Data Exchange (ETDEWEB)
Ramiere, I
2006-09-15
This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain
Quantum Statistical Mechanics on a Quantum Computer
Raedt, H. De; Hams, A.H.; Michielsen, K.; Miyashita, S.; Saito, K.; Saito, E.
2000-01-01
We describe a simulation method for a quantum spin model of a generic, general purpose quantum computer. The use of this quantum computer simulator is illustrated through several implementations of Grover’s database search algorithm. Some preliminary results on the stability of quantum algorithms
Quantum arithmetic with the Quantum Fourier Transform
Ruiz-Perez, Lidia; Garcia-Escartin, Juan Carlos
2014-01-01
The Quantum Fourier Transform offers an interesting way to perform arithmetic operations on a quantum computer. We review existing Quantum Fourier Transform adders and multipliers and propose some modifications that extend their capabilities. Among the new circuits, we propose a quantum method to compute the weighted average of a series of inputs in the transform domain.
Quantum Chaos via the Quantum Action
Kröger, H.
2002-01-01
We discuss the concept of the quantum action with the purpose to characterize and quantitatively compute quantum chaos. As an example we consider in quantum mechanics a 2-D Hamiltonian system - harmonic oscillators with anharmonic coupling - which is classically a chaotic system. We compare Poincar\\'e sections obtained from the quantum action with those from the classical action.
Quantum optics and fundamentals of quantum theory
International Nuclear Information System (INIS)
Dusek, M.
1997-01-01
Quantum optics has opened up new opportunities for experimental verification of the basic principles of quantum mechanics, particularly in the field of quantum interference and so-called non-local phenomena. The results of the experiments described provide unambiguous support to quantum mechanics. (Z.J.)
Quantum cryptography beyond quantum key distribution
Broadbent, A.; Schaffner, C.
2016-01-01
Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation,
Quantum Computing: a Quantum Group Approach
Wang, Zhenghan
2013-01-01
There is compelling theoretical evidence that quantum physics will change the face of information science. Exciting progress has been made during the last two decades towards the building of a large scale quantum computer. A quantum group approach stands out as a promising route to this holy grail, and provides hope that we may have quantum computers in our future.
Josephson Circuits as Vector Quantum Spins
Samach, Gabriel; Kerman, Andrew J.
While superconducting circuits based on Josephson junction technology can be engineered to represent spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the vector quantum spin models of interest for next-generation quantum annealers and quantum simulators. Here, we present novel Josephson circuits which may provide these capabilities. We discuss our rigorous quantum-mechanical simulations of these circuits, as well as the larger architectures they may enable. This research was funded by the Office of the Director of National Intelligence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
International Nuclear Information System (INIS)
Finkelstein, D.
1989-01-01
The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics
International Nuclear Information System (INIS)
Giribet, G E
2005-01-01
Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)
Quantum optics with single quantum dot devices
International Nuclear Information System (INIS)
Zwiller, Valery; Aichele, Thomas; Benson, Oliver
2004-01-01
A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Quantum Secure Dialogue with Quantum Encryption
International Nuclear Information System (INIS)
Ye Tian-Yu
2014-01-01
How to solve the information leakage problem has become the research focus of quantum dialogue. In this paper, in order to overcome the information leakage problem in quantum dialogue, a novel approach for sharing the initial quantum state privately between communicators, i.e., quantum encryption sharing, is proposed by utilizing the idea of quantum encryption. The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons, which can be repeatedly used after rotation. Due to quantum encryption sharing, the public announcement on the state of the initial quantum state is omitted, thus the information leakage problem is overcome. The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols. Moreover, the proposed protocol only needs single-photon measurements and nearly uses single photons as quantum resource so that it is convenient to implement in practice. (general)
The macroscopic harmonic oscillator and quantum measurements
International Nuclear Information System (INIS)
Hayward, R.W.
1982-01-01
A quantum mechanical description of a one-dimensional macroscopic harmonic oscillator interacting with its environment is given. Quasi-coherent states are introduced to serve as convenient basis states for application of a density matrix formalism to characterize the system. Attention is given to the pertinent quantum limits to the precision of measurement of physical observables that may provide some information on the nature of a weak classical force interacting with the oscillator. A number of ''quantum nondemolition'' schemes proposed by various authors are discussed. (Auth.)
Quantum transport and electroweak baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Konstandin, Thomas
2013-02-15
We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.
Quantum transport and electroweak baryogenesis
International Nuclear Information System (INIS)
Konstandin, Thomas
2013-02-01
We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.
Macroscopic quantum mechanics: theory and experimental concepts of optomechanics
International Nuclear Information System (INIS)
Chen Yanbei
2013-01-01
Rapid experimental progress has recently allowed the use of light to prepare macroscopic mechanical objects into nearly pure quantum states. This research field of quantum optomechanics opens new doors towards testing quantum mechanics, and possibly other laws of physics, in new regimes. In the first part of this article, I will review a set of techniques of quantum measurement theory that are often used to analyse quantum optomechanical systems. Some of these techniques were originally designed to analyse how a classical driving force passes through a quantum system, and can eventually be detected with an optimal signal-to-noise ratio—while others focus more on the quantum-state evolution of a mechanical object under continuous monitoring. In the second part of this article, I will review a set of experimental concepts that will demonstrate quantum mechanical behaviour of macroscopic objects—quantum entanglement, quantum teleportation and the quantum Zeno effect. Taking the interplay between gravity and quantum mechanics as an example, I will review a set of speculations on how quantum mechanics can be modified for macroscopic objects, and how these speculations—and their generalizations—might be tested by optomechanics. (invited review)
On quantum chaos, stochastic webs and localization in a quantum mechanical kick system
International Nuclear Information System (INIS)
Engel, U.M.
2007-01-01
In this study quantum chaos is discussed using the kicked harmonic oscillator as a model system. The kicked harmonic oscillator is characterized by an exceptional scenario of weak chaos: In the case of resonance between the frequency of the harmonic oscillator and the frequency of the periodic forcing, stochastic webs in phase space are generated by the classical dynamics. For the quantum dynamics of this system it is shown that the resulting Husimi distributions in quantum phase space exhibit the same web-like structures as the classical webs. The quantum dynamics is characterized by diffusive energy growth - just as the classical dynamics in the channels of the webs. In the case of nonresonance, the classically diffusive dynamics is found to be quantum mechanically suppressed. This bounded energy growth, which corresponds to localization in quantum phase space, is explained analytically by mapping the system onto the Anderson model. In this way, within the context of quantum chaos, the kicked harmonic oscillator is characterized by exhibiting its noteworthy geometrical and dynamical properties both classically and quantum mechanically, while at the same time there are also very distinct quantum deviations from classical properties, the most prominent example being quantum localization. (orig.)
Quantum key distribution via quantum encryption
Yong Sheng Zhang; Guang Can Guo
2001-01-01
A quantum key distribution protocol based on quantum encryption is presented in this Brief Report. In this protocol, the previously shared Einstein-Podolsky-Rosen pairs act as the quantum key to encode and decode the classical cryptography key. The quantum key is reusable and the eavesdropper cannot elicit any information from the particle Alice sends to Bob. The concept of quantum encryption is also discussed. (21 refs).
Quantum random walks using quantum accelerator modes
International Nuclear Information System (INIS)
Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.
2006-01-01
We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes
Quantum chemistry on a superconducting quantum processor
Energy Technology Data Exchange (ETDEWEB)
Kaicher, Michael P.; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2016-07-01
Quantum chemistry is the most promising civilian application for quantum processors to date. We study its adaptation to superconducting (sc) quantum systems, computing the ground state energy of LiH through a variational hybrid quantum classical algorithm. We demonstrate how interactions native to sc qubits further reduce the amount of quantum resources needed, pushing sc architectures as a near-term candidate for simulations of more complex atoms/molecules.
Fictitious Crack Model of Concrete Fracture
DEFF Research Database (Denmark)
Brincker, Rune; Dahl, H.
1989-01-01
The substructure method introduced by Petersson is reformulated for the three-point bending specimen in order to obtain complete load-displacement relations without significant truncation. The problem of instability caused by the linearization of the softening in the fracture zone is discussed, a...
No quantum friction between uniformly moving plates
Energy Technology Data Exchange (ETDEWEB)
Philbin, T G; Leonhardt, U [School of Physics and Astronomy, University of St Andrews, North Haugh St Andrews, Fife KY16 9SS, Scotland (United Kingdom)], E-mail: tgp3@st-andrews.ac.uk
2009-03-15
The Casimir forces between two plates moving parallel to each other at arbitrary constant speed are found by calculating the vacuum electromagnetic stress tensor. The perpendicular force between the plates is modified by the motion but there is no lateral force on the plates. Electromagnetic vacuum fluctuations do not therefore give rise to 'quantum friction' in this case, contrary to previous assertions. The result shows that the Casimir-Polder force on a particle moving at constant speed parallel to a plate also has no lateral component.
No quantum friction between uniformly moving plates
International Nuclear Information System (INIS)
Philbin, T G; Leonhardt, U
2009-01-01
The Casimir forces between two plates moving parallel to each other at arbitrary constant speed are found by calculating the vacuum electromagnetic stress tensor. The perpendicular force between the plates is modified by the motion but there is no lateral force on the plates. Electromagnetic vacuum fluctuations do not therefore give rise to 'quantum friction' in this case, contrary to previous assertions. The result shows that the Casimir-Polder force on a particle moving at constant speed parallel to a plate also has no lateral component.
Unconventional Quantum Computing Devices
Lloyd, Seth
2000-01-01
This paper investigates a variety of unconventional quantum computation devices, including fermionic quantum computers and computers that exploit nonlinear quantum mechanics. It is shown that unconventional quantum computing devices can in principle compute some quantities more rapidly than `conventional' quantum computers.
Physics of quantum computation
International Nuclear Information System (INIS)
Belokurov, V.V.; Khrustalev, O.A.; Sadovnichij, V.A.; Timofeevskaya, O.D.
2003-01-01
In the paper, the modern status of the theory of quantum computation is considered. The fundamental principles of quantum computers and their basic notions such as quantum processors and computational basis states of the quantum Turing machine as well as the quantum Fourier transform are discussed. Some possible experimental realizations on the basis of NMR methods are given
International Nuclear Information System (INIS)
Borcherds, P
2003-01-01
This is an enjoyable book by a particle physicist of some distinction, who wrote several books on the theoretical aspects of his subject. He died soon after the book was finished. This book would seem a splendid tribute to his memory. The first five chapters are an excellent introduction to quantum mechanics from the viewpoint of a particle physicist. (A solid state physicist might include some other topics.) The next three chapters give some feeling for the excitement of particle physics and describe some of the zoo of curious creatures discovered in the depths of particle accelerators, and the forces between them: strong, electromagnetic and weak. The final chapter, 'Quantum Fields', is a tour de force. The author has a light touch and a pleasant sense of humour. He does not attempt to explain everything he mentions, but he makes it very clear when he does not. These points are beautifully illustrated by the following extract from the final chapter (p 245). 'It was said above that virtual particles come into play when the real collision ingredients are all close together. In fact, virtual particles are always in play. Even a single real particle, moving along in isolation, can emit and reabsorb virtual particles over and over again. This has the effect of shifting the physical mass of the particle away from the 'bare' value that entered into the Hamiltonian. That shift inevitably turns out to be slightly infinite, and there is a whole technology for isolating and redefining away this and a few other infinities that are characteristic of renormalisable quantum field theories. But we forebear to pursue these delicacies any further here.' I particularly like 'slightly infinite'. The publisher's blurb describes this book as being suitable for popular science readers. It is not. Its level of mathematics would make it very heavy going for anyone who had not taken at least one course in mathematics at university. This is a book which can be strongly recommended as a
International Nuclear Information System (INIS)
Akhiezer, A.I.
1983-01-01
Basic ideas of quantum electrodynamics history of its origination and its importance are outlined. It is shown low the notion of the field for each kind of particles and the notion of vacuum for such field had originated and been affirmed how a new language of the Feynman diagrams had appeared without which it is quite impossible to described complex processes of particle scattering and mutual transformation. The main problem of the quantum electrodynamics is to find a scattering matrix, which solution comes to the determination of the Green electrodynamic functions. A review is given of papers on clarifying the asymptotic behaviour of the Green electrodynamic functions in the range of high pulses, on studying the Compton effect, bremsstrahlung irradiation Raman light scattering elastic scattering during channeling of charged particles in a crystal
Greiner, Walter
2009-01-01
This textbook on Quantum Electrodynamics is a thorough introductory text providing all necessary mathematical tools together with many examples and worked problems. In their presentation of the subject the authors adopt a heuristic approach based on the propagator formalism. The latter is introduced in the first two chapters in both its nonrelativistic and relativistic versions. Subsequently, a large number of scattering and radiation processes involving electrons, positrons, and photons are introduced and their theoretical treatment is presented in great detail. Higher order processes and renormalization are also included. The book concludes with a discussion of two-particle states and the interaction of spinless bosons. This completely revised and corrected new edition provides several additions to enable deeper insight in formalism and application of quantum electrodynamics.
Baaquie, Belal E; Demongeot, J; Galli-Carminati, Giuliana; Martin, F; Teodorani, Massimo
2015-01-01
At the end of the 19th century Sigmund Freud discovered that our acts and choices are not only decisions of our consciousness, but that they are also deeply determined by our unconscious (the so-called "Freudian unconscious"). During a long correspondence between them (1932-1958) Wolfgang Pauli and Carl Gustav Jung speculated that the unconscious could be a quantum system. This book is addressed both to all those interested in the new developments of the age-old enquiry in the relations between mind and matter, and also to the experts in quantum physics that are interested in a formalisation of this new approach. The description of the "Bilbao experiment" adds a very interesting experimental inquiry into the synchronicity effect in a group situation, linking theory to a quantifiable verification of these subtle effects. Cover design: "Entangled Minds". Riccardo Carminati Galli, 2014.
International Nuclear Information System (INIS)
Zubairy, Suhail
2005-01-01
Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the
International Nuclear Information System (INIS)
Serot, B.D.
1992-01-01
It is therefore essential to develop reliable nuclear models that go beyond the traditional non-relativistic many-body framework. The arguments for renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. The Walecka model, which contains neutrons, protons, and neutral scalar and vector mesons, is considered first as a simple example. The development is based on the relativistic mean-field and Hartree approximations, and their application to infinite matter and atomic nuclei. Some successes of this model are discussed, such as the nuclear equation of state, the derivation of the shell model, the prediction of nuclear properties throughout the periodic table, and the inclusion of zero-point vacuum corrections. The important concepts of Lorentz covariance and self-consistency are emphasized and the new dynamical features that arise in a relativistic many-body framework are highlighted. The computation of isoscalar magnetic moments is presented as an illustrative example. Calculations beyond the relativistic mean-field and Hartree approximations (for example, Dirac-Hartree-Fock and Dirac-Brueckner) are considered next, as well as recent efforts to incorporate the full role of the quantum vacuum in a consistent fashion. An extended model containing isovector pi and rho mesons is then developed; the dynamics is based on the chirally invariant linear sigma model. The difficulties in constructing realistic chiral descriptions of nuclear matter and nuclei are analysed, and the connection between the sigma model and the Walecka model is established. Finally, the relationship between quantum hadrodynamics and quantum chromodynamics is briefly addressed. (Author)
Haroche, Serge
2013-01-01
From the infinitely small to the infinitely big, covering over 60 spatial orders of magnitude, quantum theory is used as much to describe the still largely mysterious vibrations of the microscopic strings that could be the basic constituents of the Universe, as to explain the fluctuations of the microwave radiation reaching us from the depths of outer space. Serge Haroche tells us about the scientific theory that revolutionised our understanding of nature and made an extraordinary contributio...
Martin Schaden
2002-01-01
Quantum theory is used to model secondary financial markets. Contrary to stochastic descriptions, the formalism emphasizes the importance of trading in determining the value of a security. All possible realizations of investors holding securities and cash is taken as the basis of the Hilbert space of market states. The temporal evolution of an isolated market is unitary in this space. Linear operators representing basic financial transactions such as cash transfer and the buying or selling of...
Directory of Open Access Journals (Sweden)
Shan Gao
2011-04-01
Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.
Cohesion: a scientific history of intermolecular forces
National Research Council Canada - National Science Library
Rowlinson, J. S
2002-01-01
.... The ﬁnal section gives an account of the successful use in the 20th century of quantum mechanics and statistical mechanics to resolve most of the remaining problems. Throughout the last 300 years there have been periods of tremendous growth in our understanding of intermolecular forces but such interest proved to be unsustainable, and long periods of...
Quantum Secure Direct Communication with Quantum Memory.
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-02
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Quantum self-organization and nuclear collectivities
Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.
2018-02-01
The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The outcome of the collective mode is determined basically by the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger gaps between relevant single particle states. Thus, the single-particle state and the collective mode are “enemies” each other. However, the nuclear forces are demonstrated to be rich enough so as to enhance relevant collective mode by reducing the resistance power by changing singleparticle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, when the quantum self-organization occurs, single-particle energies can be self-organized, being enhanced by (i) two quantum liquids, e.g., protons and neutrons, (ii) two major force components, e.g., quadrupole interaction (to drive collective mode) and monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger. The quantum self-organization is a general phenomenon, and is expected to be found in other quantum systems.
Energy Technology Data Exchange (ETDEWEB)
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the
Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing
Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias
2017-10-01
Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.
Mermin, N. David
2007-08-01
Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.
Indian Academy of Sciences (India)
Jyotishman Bhowmick
2015-11-07
Nov 7, 2015 ... Classical. Quantum. Background. Compact Hausdorff space. Unital C∗ algebra. Gelfand-Naimark. Compact Group. Compact Quantum Group. Woronowicz. Group Action. Coaction. Woronowicz. Riemannian manifold. Spectral triple. Connes. Isometry group. Quantum Isometry Group. To be discussed.
Pilar, Frank L
2003-01-01
Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.
On quantum statistical inference
Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.
2003-01-01
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have
Lvovsky, Alexander I.; Sanders, Barry C.; Tittel, Wolfgang
2009-12-01
Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that matches various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a mechanism to convert heralded photons to on-demand photons. In addition to quantum computing, quantum memory will be instrumental for implementing long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied, such as optical delay lines, cavities and electromagnetically induced transparency, as well as schemes that rely on photon echoes and the off-resonant Faraday interaction. Here, we report on state-of-the-art developments in the field of optical quantum memory, establish criteria for successful quantum memory and detail current performance levels.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Quantum conductance in silicon quantum wires
Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A
2002-01-01
The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)
Quantum probability and quantum decision-making.
Yukalov, V I; Sornette, D
2016-01-13
A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary. © 2015 The Author(s).
Interpreting quantum discord through quantum state merging
International Nuclear Information System (INIS)
Madhok, Vaibhav; Datta, Animesh
2011-01-01
We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single-copy scenario.
Characterization of quantum logics
International Nuclear Information System (INIS)
Lahti, P.J.
1980-01-01
The quantum logic approach to axiomatic quantum mechanics is used to analyze the conceptual foundations of the traditional quantum theory. The universal quantum of action h>0 is incorporated into the theory by introducing the uncertainty principle, the complementarity principle, and the superposition principle into the framework. A characterization of those quantum logics (L,S) which may provide quantum descriptions is then given. (author)
International Nuclear Information System (INIS)
Kiefer, C.
2004-01-01
The following topics are dealt with: Particles and waves, the superposition principle and probability interpretation, the uncertainty relation, spin, the Schroedinger equation, wave functions, symmetries, the hydrogen atom, atoms with many electrons, Schroedinger's cat and the Einstein-podolsky-Rosen problem, the Bell inequalities, the classical limit, quantum systems in the electromagnetic field, solids and quantum liquids, quantum information, quantum field theory, quantum theory and gravitation, the mathematical formalism of quantum theory. (HSI)
Ying, Mingsheng; Yu, Nengkun; Feng, Yuan
2012-01-01
A remarkable difference between quantum and classical programs is that the control flow of the former can be either classical or quantum. One of the key issues in the theory of quantum programming languages is defining and understanding quantum control flow. A functional language with quantum control flow was defined by Altenkirch and Grattage [\\textit{Proc. LICS'05}, pp. 249-258]. This paper extends their work, and we introduce a general quantum control structure by defining three new quantu...
Relativistic quantum cryptography
International Nuclear Information System (INIS)
Molotkov, S. N.
2011-01-01
A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.
From quantum coherence to quantum correlations
Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong
2017-06-01
In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.
Quantum signature scheme for known quantum messages
International Nuclear Information System (INIS)
Kim, Taewan; Lee, Hyang-Sook
2015-01-01
When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)
International Nuclear Information System (INIS)
Casati, G.; Chirikov, B.V.
1996-01-01
Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru
Schürmann, Michael
2008-01-01
This volume contains the revised and completed notes of lectures given at the school "Quantum Potential Theory: Structure and Applications to Physics," held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald from February 26 to March 10, 2007. Quantum potential theory studies noncommutative (or quantum) analogs of classical potential theory. These lectures provide an introduction to this theory, concentrating on probabilistic potential theory and it quantum analogs, i.e. quantum Markov processes and semigroups, quantum random walks, Dirichlet forms on C* and von Neumann algebras, and boundary theory. Applications to quantum physics, in particular the filtering problem in quantum optics, are also presented.
Neubert, Matthias
1996-01-01
Quantum chromodynamics (QCD) is the fundamental theory of the strong interactions. It is local, non-abelian gauge theory descripting the interactions between quarks and gluons, the constituents of hadrons. In these lectures, the basic concepts and ph will be introduced in a pedagogical way. Topics will include : asymptotically free partons, colour and confinement ; non-abelian gauge invariance and quantization ; the running coupling constant ; deep-inelastic scattering and scaling violations ; th chiral and heavy-quark symmetries. Some elementary knowledge of field theory, abelian gauge invariance and Feynman diagrams will be helpful in following the course.
1990-01-01
Quantum electrodynamics is an essential building block and an integral part of the gauge theory of unified electromagnetic, weak, and strong interactions, the so-called standard model. Its failure or breakdown at some level would have a most profound impact on the theoretical foundations of elementary particle physics as a whole. Thus the validity of QED has been the subject of intense experimental tests over more than 40 years of its history. This volume presents an up-to-date review of high precision experimental tests of QED together with comprehensive discussion of required theoretical wor
International Nuclear Information System (INIS)
Ratel, H.
1999-01-01
A new stage in non-destructive quantum measurements has been reached by a French team, it is now possible to measure photons without disturbing them. The photon beam goes through a non-linear transparent medium, this medium is modified by the passing of the beam, a second photon beam is sent through the same medium, this beam whose energy is weaker can read the modifications of the transparent crystal left by the first beam. The study of these modifications gives information on the photons of the first beam. (A.C.)
International Nuclear Information System (INIS)
Flytzanis, C.
1988-01-01
The 1988 progress report of the Quantum Optics laboratory (Polytechnic School, France) is presented. The research program is focused on the behavior of dense and dilute materials submitted to short and high-intensity light radiation fields. Nonlinear optics techniques, with time and spatial resolution, are developed. An important research activity concerns the investigations on the interactions between the photon beams and the inhomogeneous or composite materials, as well as the artificial microstructures. In the processes involving molecular beams and surfaces, the research works on the photophysics of surfaces and the molecule-surface interactions, are included [fr
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Long Range Forces between Atomic Impurities in Liquid Helium
International Nuclear Information System (INIS)
Dupont-Roc, J.
2002-01-01
Van der Waals or Casimir interaction between neutral quantum objects in their ground state is known to be universally attractive. This is not necessarily so when these objects are embedded in a polarizable medium. We show that atomic impurities in liquid helium may indeed realize repulsive forces, and even Van der Waals and Casimir forces with different signs. (author)
Quantum aspects of accelerator optics
International Nuclear Information System (INIS)
Khan, Sameen Ahmed
2003-01-01
Full text : Charged-particle optics, or the theory of transport of charged-particle beams through electromagnetic systems, is traditionally dealt with using classical mechanics. Though the classical treatment has been very successful, in designing and working of numerous charged-particle optical devices, it is natural to look for a prescription based on the quantum theory, since any system is quantum mechanical at the fundamental level. With this motivation the quantum theory of charged-particle beam optics, is being developed by Jagannathan et al. This formalism is specifically adapted to treat the problems of beam optics. It is found that the quantum theory gives rise to interesting additional contributions to the classical paraxial and aberrating behaviour. These contributions are directly proportional to the powers of the de Broglie wavelength. In the classical limit the quantum formalism reproduces the well-known Lie algebraic formalism of charged-particle beam optics. For spin-half particles, a treatment based on the Dirac equation is presented taking fully into account the spinor character of the wavefunction. The underlying powerful algebraic machinery of the formalism makes it possible to do computations to any degree of accuracy. This formalism is further applied to the study of the spin-dynamics of a Dirac particle with anomalous magnetic moment being transported through magnetic optical element. This naturally leads to a unified treatment of both the orbital (the Lorentz and Stem-Gerlach forces) and the spin (Thomas-Bargmann-Michel-Telegdi equation). This is illustrated, by computing the transfer maps for the phase-space and spin components in the cases of the normal and skew magnetic quadrupole lenses. The quantum mechanics of the concept of the spin-splitter devices, proposed recently for achieving polarized beams, is also understood using our formalisms
Manin's quantum spaces and standard quantum mechanics
International Nuclear Information System (INIS)
Floratos, E.G.
1990-01-01
Manin's non-commutative coordinate algebra of quantum groups is shown to be identical, for unitary coordinates, with the conventional operator algebras of quantum mechanics. The deformation parameter q is a pure phase for unitary coordinates. When q is a root of unity. Manin's algebra becomes the matrix algebra of quantum mechanics for a discretized and finite phase space. Implications for quantum groups and the associated non-commutative differential calculus of Wess and Zumino are discussed. (orig.)
Quantum groups and quantum homogeneous spaces
International Nuclear Information System (INIS)
Kulish, P.P.
1994-01-01
The usefulness of the R-matrix formalism and the reflection equations is demonstrated on examples of the quantum group covariant algebras (quantum homogeneous spaces): quantum Minkowski space-time, quantum sphere and super-sphere. The irreducible representations of some covariant algebras are constructed. The generalization of the reflection equation to super case is given and the existence of the quasiclassical limits is pointed out. (orig.)
Axion forces, gravity experiments and T violation
International Nuclear Information System (INIS)
Moody, J.E.
1984-01-01
A variety of light, weakly-coupled bosons have recently been suggested. Among them is the axion. This thesis considers the possibility of detecting axions or other light bosons via the macroscopic forces they mediate. The motivation for the axion is reviewed along with a detailed calculation of its mass and couplings. The microphysical basis of macroscopic forces is described and the three distinct axion force laws are thereby obtained. Of particular interest is the unique P and T violating monopole-dipole force. The magnitudes and ranges of axion forces are compared with the existing experimental limits. The possibilities for searching for (monopole) 2 , spin-spin and monopole-dipole forces are evaluated. Monopole-dipole experiments seem promising because the sensitive high-Q techniques of gravity wave research are applicable. Ultimate sensitivity, as limited by thermal noise, is evaluated for crystal oscillators and levitated systems. The very interesting problem of quantum uncertainty in weak force measurement is considered along with a way of getting around it called back action evasion. This is followed by a presentation of signal to noise analysis which folds together amplifier noise, quantum uncertainty, and Langevin noise
Quantum Hall effect in quantum electrodynamics
International Nuclear Information System (INIS)
Penin, Alexander A.
2009-01-01
We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted
Characterizing and quantifying quantum chaos with quantum ...
Indian Academy of Sciences (India)
We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under the application of the Floquet operator of a quantum map that possesses (or lacks) time-reversal ...
Quantum Statistical Mechanics on a Quantum Computer
De Raedt, H.; Hams, A. H.; Michielsen, K.; Miyashita, S.; Saito, K.
1999-01-01
We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.
Quantumness-generating capability of quantum dynamics
Li, Nan; Luo, Shunlong; Mao, Yuanyuan
2018-04-01
We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.
Quantum entanglement and quantum computational algorithms
Indian Academy of Sciences (India)
Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...
What is quantum in quantum randomness?
Grangier, P; Auffèves, A
2018-07-13
It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of 'What is quantum in quantum randomness?', i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to be answered. In a first part, we make explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programmes inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyse quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness that have opened up in the emerging field of quantum thermodynamics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Nanomechanical displacement sensing using a quantum point contact
International Nuclear Information System (INIS)
Cleland, A.N.; Aldridge, J.S.; Driscoll, D.C.; Gossard, A. C.
2002-01-01
We describe a radio frequency mechanical resonator that includes a quantum point contact, defined using electrostatic top gates. We can mechanically actuate the resonator using either electrostatic or magnetomotive forces. We demonstrate the use of the quantum point contact as a displacement sensor, operating as a radio frequency mixer at the mechanical resonance frequency of 1.5 MHz. We calculate a displacement sensitivity of about 3x10 -12 m/Hz 1/2 . This device will potentially permit quantum-limited displacement sensing of nanometer-scale resonators, allowing the quantum entanglement of the electronic and mechanical degrees of freedom of a nanoscale system
Measurement-only topological quantum computation via anyonic interferometry
International Nuclear Information System (INIS)
Bonderson, Parsa; Freedman, Michael; Nayak, Chetan
2009-01-01
We describe measurement-only topological quantum computation using both projective and interferometrical measurement of topological charge. We demonstrate how anyonic teleportation can be achieved using 'forced measurement' protocols for both types of measurement. Using this, it is shown how topological charge measurements can be used to generate the braiding transformations used in topological quantum computation, and hence that the physical transportation of computational anyons is unnecessary. We give a detailed discussion of the anyonics for implementation of topological quantum computation (particularly, using the measurement-only approach) in fractional quantum Hall systems
Quantum nondemolition squeezing of a nanomechanical resonator
Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander
2005-03-01
We discuss squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wavepacket center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.
Classical trajectories and quantum field theory
International Nuclear Information System (INIS)
Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno
2005-01-01
The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)
Engineering scalable fault-tolerant quantum computation
Kimchi-Schwartz, Mollie; Danna, Rosenberg; Kim, David; Yoder, Jonilyn; Kjaergaard, Morten; Das, Rabindra; Grover, Jeff; Gustavsson, Simon; Oliver, William
Recent demonstrations of quantum protocols comprising on the order of 5-10 superconducting qubits are foundational to the future development of quantum information processors. A next critical step in the development of resilient quantum processors will be the integration of coherent quantum circuits with a hardware platform that is amenable to extending the system size to hundreds of qubits and beyond. In this talk, we will discuss progress toward integrating coherent superconducting qubits with signal routing via the third dimension. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Leutwyler, Heinrich
1995-01-01
1: Hadrons as bound states of quarks.Flavour and colour. 2: Gauge fields and the forces they generate. 3: Perturbation theory,asymptotic freedom,stength of the strong interaction. 4: Lattice formulation,confinement,flavour symmetries,anomalies. 5: Spontaneous symmetry breakdown,quark masses.
Marciuc, Daly; Solschi, Viorel
2017-04-01
Understanding the Coriolis effect is essential for explaining the movement of air masses and ocean currents. The lesson we propose aims to familiarize students with the manifestation of the Coriolis effect. Students are guided to build, using the GeoGebra software, a simulation of the motion of a body, related to a rotating reference system. The mathematical expression of the Coriolis force is deduced, for particular cases, and the Foucault's pendulum is presented and explained. Students have the opportunity to deepen the subject, by developing materials related to topics such as: • Global Wind Pattern • Ocean Currents • Coriolis Effect in Long Range Shooting • Finding the latitude with a Foucault Pendulum
International Nuclear Information System (INIS)
Panek, Richard
2010-01-01
Astronomers have compiled evidence that what we always thought of as the actual universe- all the planets, stars, galaxies and matter in space -represents a mere 4% of what's out there. The rest is dark: 23% is called dark matter, 73% dark energy. Scientists have ideas about what dark matter is, but hardly any understanding about dark energy. This has led to rethinking traditional physics and cosmology. Assuming the existence of dark matter and that the law of gravitation is universal, two teams of astrophysicists, from Lawrence Berkeley National Laboratory and the Australian National University, analysed the universe's growth and to their surprise both concluded that the universe expansion is not slowing but speeding up. If the dominant force of evolution isn't gravity what is it?
Quantum gravity from noncommutative spacetime
International Nuclear Information System (INIS)
Lee, Jungjai; Yang, Hyunseok
2014-01-01
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Quantum gravity from noncommutative spacetime
Energy Technology Data Exchange (ETDEWEB)
Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)
2014-12-15
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Quantum photonic networks in diamond
Lončar, Marko
2013-02-01
Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond\\'s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments. Copyright © Materials Research Society 2013.
Haddout, Soufiane
2016-06-01
In Newtonian mechanics, the non-inertial reference frames is a generalization of Newton's laws to any reference frames. While this approach simplifies some problems, there is often little physical insight into the motion, in particular into the effects of the Coriolis force. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths. In this paper, a mathematical solution based on differential equations in non-inertial reference is used to study different types of motion in rotating system. In addition, the experimental data measured on a turntable device, using a video camera in a mechanics laboratory was conducted to compare with mathematical solution in case of parabolically curved, solving non-linear least-squares problems, based on Levenberg-Marquardt's and Gauss-Newton algorithms.
Directory of Open Access Journals (Sweden)
D. K. Lian
2017-12-01
Full Text Available In classical mechanics, a nonrelativistic particle constrained on an N − 1 curved hypersurface embedded in N flat space experiences the centripetal force only. In quantum mechanics, the situation is totally different for the presence of the geometric potential. We demonstrate that the motion of the quantum particle is ”driven” by not only the centripetal force, but also a curvature induced force proportional to the Laplacian of the mean curvature, which is fundamental in the interface physics, causing curvature driven interface evolution.
Quantum teleportation for continuous variables and related quantum information processing
International Nuclear Information System (INIS)
Furusawa, Akira; Takei, Nobuyuki
2007-01-01
Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view
Recent developments in quantum plasma physics
International Nuclear Information System (INIS)
Shukla, P K; Eliasson, B
2010-01-01
We present a review of recent developments in nonlinear quantum plasma physics involving quantum hydrodynamics and effective nonlinear Schroedinger equation formalisms, for describing collective phenomena in dense quantum plasmas with degenerate electrons. As examples, we discuss simulation studies of the formation and dynamics of dark solitons and quantum vortices, and of nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in dense quantum-electron plasmas with immobile ions. The electron dynamics of dark solitons and quantum vortices is governed by a pair of equations comprising the nonlinear Schroedinger and Poisson system of equations. Both dark solitons and singly charged electron vortices are robust, and the latter tend to form pairs of oppositely charged vortices. The two-dimensional quantum-electron vortex pairs survive during collisions under the change of partners. The dynamics of the CPEM waves is governed by a nonlinear Schroedinger equation, which is nonlinearly coupled with the Schroedinger equation of the EPOs via the relativistic ponderomotive force, the relativistic electron mass increase in the CPEM field, and the electron density fluctuations. The present governing equations in one-spatial dimension admit stationary solutions in the form of dark solitons. The nonlinear equations also depict trapping of localized CPEM wave envelopes in the electron density holes that are associated with a positive potential profile.
Quantum reference frames and quantum transformations
International Nuclear Information System (INIS)
Toller, M.
1997-01-01
A quantum frame is defined by a material object following the laws of quantum mechanics. The present paper studies the relations between quantum frames, which are described by some generalization of the Poincare' group. The possibility of using a suitable quantum group is examined, but some arguments are given which show that a different mathematical structure is necessary. Some simple examples in lower-dimensional space-times are treated. They indicate the necessity of taking into account some ''internal'' degrees of freedom of the quantum frames, that can be disregarded in a classical treatment
Equivariant quantum Schubert calculus
Mihalcea, Leonardo Constantin
2006-01-01
We study the T-equivariant quantum cohomology of the Grassmannian. We prove the vanishing of a certain class of equivariant quantum Littlewood-Richardson coefficients, which implies an equivariant quantum Pieri rule. As in the equivariant case, this implies an algorithm to compute the equivariant quantum Littlewood-Richardson coefficients.
Introduction to quantum groups
International Nuclear Information System (INIS)
Sudbery, A.
1996-01-01
These pedagogical lectures contain some motivation for the study of quantum groups; a definition of ''quasi triangular Hopf algebra'' with explanations of all the concepts required to build it up; descriptions of quantised universal enveloping algebras and the quantum double; and an account of quantised function algebras and the action of quantum groups on quantum spaces. (author)
Open quantum systems and error correction
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
International Nuclear Information System (INIS)
Mittelstaedt, P.
1983-01-01
on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)
Quaternionic quantum field theory
International Nuclear Information System (INIS)
Adler, S.L.
1986-01-01
In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics
International Nuclear Information System (INIS)
Finkelstein, D.
1987-01-01
The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex
Quantum Information Processing
Leuchs, Gerd
2005-01-01
Quantum processing and communication is emerging as a challenging technique at the beginning of the new millennium. This is an up-to-date insight into the current research of quantum superposition, entanglement, and the quantum measurement process - the key ingredients of quantum information processing. The authors further address quantum protocols and algorithms. Complementary to similar programmes in other countries and at the European level, the German Research Foundation (DFG) started a focused research program on quantum information in 1999. The contributions - written by leading experts - bring together the latest results in quantum information as well as addressing all the relevant questions
International Nuclear Information System (INIS)
Crutchfield, James P.; Wiesner, Karoline
2008-01-01
We introduce ways to measure information storage in quantum systems, using a recently introduced computation-theoretic model that accounts for measurement effects. The first, the quantum excess entropy, quantifies the shared information between a quantum process's past and its future. The second, the quantum transient information, determines the difficulty with which an observer comes to know the internal state of a quantum process through measurements. We contrast these with von Neumann entropy and quantum entropy rate and provide a closed-form expression for the latter for the class of deterministic quantum processes
Quantum Chess: Making Quantum Phenomena Accessible
Cantwell, Christopher
Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?
Efficient quantum circuits for Szegedy quantum walks
International Nuclear Information System (INIS)
Loke, T.; Wang, J.B.
2017-01-01
A major advantage in using Szegedy’s formalism over discrete-time and continuous-time quantum walks lies in its ability to define a unitary quantum walk by quantizing a Markov chain on a directed or weighted graph. In this paper, we present a general scheme to construct efficient quantum circuits for Szegedy quantum walks that correspond to classical Markov chains possessing transformational symmetry in the columns of the transition matrix. In particular, the transformational symmetry criteria do not necessarily depend on the sparsity of the transition matrix, so this scheme can be applied to non-sparse Markov chains. Two classes of Markov chains that are amenable to this construction are cyclic permutations and complete bipartite graphs, for which we provide explicit efficient quantum circuit implementations. We also prove that our scheme can be applied to Markov chains formed by a tensor product. We also briefly discuss the implementation of Markov chains based on weighted interdependent networks. In addition, we apply this scheme to construct efficient quantum circuits simulating the Szegedy walks used in the quantum Pagerank algorithm for some classes of non-trivial graphs, providing a necessary tool for experimental demonstration of the quantum Pagerank algorithm. - Highlights: • A general theoretical framework for implementing Szegedy walks using quantum circuits. • Explicit efficient quantum circuit implementation of the Szegedy walk for several classes of graphs. • Efficient implementation of Szegedy walks for quantum page-ranking of a certain class of graphs.
Introduction to topological quantum matter & quantum computation
Stanescu, Tudor D
2017-01-01
What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...
Universal quantum computation by discontinuous quantum walk
International Nuclear Information System (INIS)
Underwood, Michael S.; Feder, David L.
2010-01-01
Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.
Quantum quincunx in cavity quantum electrodynamics
International Nuclear Information System (INIS)
Sanders, Barry C.; Bartlett, Stephen D.; Tregenna, Ben; Knight, Peter L.
2003-01-01
We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to Galton's quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical studies of quantum walks over orthogonal lattice states, we introduce quantum walks over nonorthogonal lattice states (specifically, coherent states on a circle) to demonstrate that the key features of a quantum walk are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a remarkable decrease in the position noise, or spread, with increasing decoherence
Quantum engineering of continuous variable quantum states
International Nuclear Information System (INIS)
Sabuncu, Metin
2009-01-01
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Quantum signatures of chaos or quantum chaos?
Energy Technology Data Exchange (ETDEWEB)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-11-15
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Quantum signatures of chaos or quantum chaos?
International Nuclear Information System (INIS)
Bunakov, V. E.
2016-01-01
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Energy Technology Data Exchange (ETDEWEB)
Viennot, David, E-mail: david.viennot@utinam.cnrs.fr; Aubourg, Lucile
2016-02-15
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems. - Highlights: • We propose a spin chain model with long range couplings having purely quantum states similar to the classical chimera states. • The quantum chimera states are characterized by the coexistence of strongly entangled and non-entangled spins in the same chain. • The quantum chimera states present some characteristics of quantum chaos.
International Nuclear Information System (INIS)
Viennot, David; Aubourg, Lucile
2016-01-01
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems. - Highlights: • We propose a spin chain model with long range couplings having purely quantum states similar to the classical chimera states. • The quantum chimera states are characterized by the coexistence of strongly entangled and non-entangled spins in the same chain. • The quantum chimera states present some characteristics of quantum chaos.
Energy Technology Data Exchange (ETDEWEB)
Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth
2016-11-29
Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.
Photonic Quantum Information Processing
International Nuclear Information System (INIS)
Walther, P.
2012-01-01
The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)
Pseudo-Goldstone bosons and new macroscopic forces
International Nuclear Information System (INIS)
Hill, C.T.; Ross, G.G.
1988-01-01
Pseudoscalar Goldstone bosons may readily be associated with weakly, explicitly broken symmetries giving them mixed CP quantum numbers. In general this leads to scalar couplings to nucleons and leptons, which produces coherent long range forces. This can naturally accommodate detectable long range macroscopic forces mediated by bosons completely consistent with conventional cosmological limits, e.g., new interactions with the range of present 'fifth force' searches which probe a scale of new physics of f ≅ 10 14 GeV. (orig.)
International Nuclear Information System (INIS)
Ghatak, A.K.; Lokanathan, S.
1975-01-01
This textbook on quantum mechanics is intended for students at the graduate and post-graduate level. A balanced account of theory and applications is presented. Emphasis is laid on making results plausible and methods to be followed in solving problems. The various chapters in the book are devoted to the following: (1) Wave particle duality and uncertainty principle (2) Wave packets and time-dependent Schroedinger equation (3) Simple solutions of Schroedinger equation (4) Vector spaces and linear operators : Dirac notation (5) Angular momentum and spin (6) Addition of angular momenta (7) Time independent perturbation theory (8) The variational method (9) The WKB approximation (10) Elementary theory of scattering (11) Time-dependent perturbation theory (12) Motion in a magnetic field (13) Interaction of radiation with matter and (14) Relativistic theory. (A.K.)
Directory of Open Access Journals (Sweden)
Vukotić Veselin
2011-01-01
Full Text Available The globalization is breaking-down the idea of national state, which was the base for the development of economic theory which is dominant today. Global economic crisis puts emphasis on limited possibilities of national governments in solving economic problems and general problems of society. Does it also mean that globalization and global economic crisis points out the need to think about new economic theory and new understanding of economics? In this paper I will argue that globalization reveals the need to change dominant economic paradigm - from traditional economic theory (mainstream with macroeconomic stability as the goal of economic policy, to the “quantum economics“, which is based on “economic quantum” and immanent to the increase of wealth (material and non-material of every individual in society and promoting set of values immanent to the wealth increase as the goal of economic policy. Practically the question is how we can use global market for our development!
International Nuclear Information System (INIS)
Cook, R.J.
1988-01-01
This paper answers the title question by giving an operational definition of quantum jumps based on measurement theory. This definition forms the basis of a theory of quantum jumps which leads to a number of testable predictions. Experiments are proposed to test the theory. The suggested experiments also test the quantum Zeno paradox, i.e., they test the proposition that frequent observation of a quantum system inhibits quantum jumps in that system. (orig.)
Ficek, Zbigniew
2016-01-01
The textbook introduces students to the main ideas of quantum physics and the basic mathematical methods and techniques used in the fields of advanced quantum physics, atomic physics, laser physics, nanotechnology, quantum chemistry, and theoretical mathematics. The textbook explains how microscopic objects (particles) behave in unusual ways, giving rise to what's called quantum effects. It contains a wide range of tutorial problems from simple confidence-builders to fairly challenging exercises that provide adequate understanding of the basic concepts of quantum physics.
Energy Technology Data Exchange (ETDEWEB)
2016-11-18
There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.
Broadband Quantum Cryptography
Rogers, Daniel
2010-01-01
Quantum cryptography is a rapidly developing field that draws from a number of disciplines, from quantum optics to information theory to electrical engineering. By combining some fundamental quantum mechanical principles of single photons with various aspects of information theory, quantum cryptography represents a fundamental shift in the basis for security from numerical complexity to the fundamental physical nature of the communications channel. As such, it promises the holy grail of data security: theoretically unbreakable encryption. Of course, implementing quantum cryptography in real br
DEFF Research Database (Denmark)
Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro
2014-01-01
Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....
Quantum gate decomposition algorithms.
Energy Technology Data Exchange (ETDEWEB)
Slepoy, Alexander
2006-07-01
Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.
Search for New Quantum Algorithms
National Research Council Canada - National Science Library
Lomonaco, Samuel J; Kauffman, Louis H
2006-01-01
.... Additionally, methods and techniques of quantum topology have been used to obtain new results in quantum computing including discovery of a relationship between quantum entanglement and topological linking...
One-loop quantum gravity repulsion in the early Universe.
Broda, Bogusław
2011-03-11
Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.
Quantum Image Encryption Algorithm Based on Image Correlation Decomposition
Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun
2015-02-01
A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.
Introduction to quantum information science
Hayashi, Masahito; Kawachi, Akinori; Kimura, Gen; Ogawa, Tomohiro
2015-01-01
This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols,this book contains quantum teleport...
Quantum equivalence of a driven triple-well Van der Pol oscillator: A QTM study
International Nuclear Information System (INIS)
Chakraborty, Debdutta; Chattaraj, Pratim Kumar
2014-01-01
Highlights: • Quantum–classical correspondence is manifested at strong external coupling regime. • Suppression of classical chaos takes place in quantum domain. • Quantum chaos promotes quantum diffusion. • Quantum localisation is realised when interference effects are dominant. - Abstract: A quantum mechanical analogue of the classically chaotic triple-well oscillator under the influence of an external field and parametric excitation has been studied by using the quantum theory of motion. The on the fly calculations show the correspondence between some dynamical aspects of the classical and quantum oscillators along with a strictly quantum mechanical behaviour in case of diffusion and tunneling. Suitable external conditions have been obtained which can either assist or suppress the movement of quantum particles from one well to another. Quantum interference effects play a critical role in determining the nature of the quantum dynamics and in the presence of strong coupling to the external forces, quantum interference effects reduce drastically leading to decoherence of the quantum wave packet. In such situations, quantum dynamical features qualitatively resemble the corresponding classical dynamical behaviour and a correspondence between classical and quantum dynamics is obtained
Reliable quantum communication over a quantum relay channel
Energy Technology Data Exchange (ETDEWEB)
Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117, Hungary and Information Systems Research Group, Mathematics and Natural Sciences, Hungarian Ac (Hungary); Imre, Sandor [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117 (Hungary)
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
Expected number of quantum channels in quantum networks
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-07-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.
Connections among quantum logics
International Nuclear Information System (INIS)
Lock, P.F.; Hardegree, G.M.
1985-01-01
In this paper, a theory of quantum logics is proposed which is general enough to enable us to reexamine a previous work on quantum logics in the context of this theory. It is then easy to assess the differences between the different systems studied. The quantum logical systems which are incorporated are divided into two groups which we call ''quantum propositional logics'' and ''quantum event logics''. The work of Kochen and Specker (partial Boolean algebras) is included and so is that of Greechie and Gudder (orthomodular partially ordered sets), Domotar (quantum mechanical systems), and Foulis and Randall (operational logics) in quantum propositional logics; and Abbott (semi-Boolean algebras) and Foulis and Randall (manuals) in quantum event logics, In this part of the paper, an axiom system for quantum propositional logics is developed and the above structures in the context of this system examined. (author)
International Nuclear Information System (INIS)
Hund, F.
1980-01-01
History of quantum theory from quantum representations (1900) to the formation of quantum mechanics is systematically stated in the monograph. A special attention is paid to the development of ideas of quantum physics, given are schemes of this development. Quantum theory is abstractly presented as the teaching about a role, which value h characterizing elementary quantum of action, plays in the nature: in statistics - as a unit for calculating the number of possible states; in corpuscular-wave dualism for light - as a value determining the interaction of light and substance and as a component of atom dynamics; in corpuscular-wave dualism for substance. Accordingly, history of the quantum theory development is considered in the following sequence: h discovery; history of quantum statistics, history of light quanta and initial atom dynamics; crysis of this dynamics and its settlement; substance waves and in conclusion - the completion of quantum mechanics including applications and its further development
Quantum information and coherence
Öhberg, Patrik
2014-01-01
This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum cont...
International Nuclear Information System (INIS)
Lloyd, Seth; Landahl, Andrew J.; Slotine, Jean-Jacques E.
2004-01-01
To observe or control a quantum system, one must interact with it via an interface. This article exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored
Tang, Jiang
2012-09-12
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.
Quantum Uncertainty and Fundamental Interactions
Directory of Open Access Journals (Sweden)
Tosto S.
2013-04-01
Full Text Available The paper proposes a simplified theoretical approach to infer some essential concepts on the fundamental interactions between charged particles and their relative strengths at comparable energies by exploiting the quantum uncertainty only. The worth of the present approach relies on the way of obtaining the results, rather than on the results themselves: concepts today acknowledged as fingerprints of the electroweak and strong interactions appear indeed rooted in the same theoretical frame including also the basic principles of special and general relativity along with the gravity force.
A model of quantum communication device for quantum hashing
International Nuclear Information System (INIS)
Vasiliev, A
2016-01-01
In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols. (paper)
Interfacing external quantum devices to a universal quantum computer.
Directory of Open Access Journals (Sweden)
Antonio A Lagana
Full Text Available We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.