International Nuclear Information System (INIS)
Akhiezer, A.I.
1983-01-01
Basic ideas of quantum electrodynamics history of its origination and its importance are outlined. It is shown low the notion of the field for each kind of particles and the notion of vacuum for such field had originated and been affirmed how a new language of the Feynman diagrams had appeared without which it is quite impossible to described complex processes of particle scattering and mutual transformation. The main problem of the quantum electrodynamics is to find a scattering matrix, which solution comes to the determination of the Green electrodynamic functions. A review is given of papers on clarifying the asymptotic behaviour of the Green electrodynamic functions in the range of high pulses, on studying the Compton effect, bremsstrahlung irradiation Raman light scattering elastic scattering during channeling of charged particles in a crystal
Greiner, Walter
2009-01-01
This textbook on Quantum Electrodynamics is a thorough introductory text providing all necessary mathematical tools together with many examples and worked problems. In their presentation of the subject the authors adopt a heuristic approach based on the propagator formalism. The latter is introduced in the first two chapters in both its nonrelativistic and relativistic versions. Subsequently, a large number of scattering and radiation processes involving electrons, positrons, and photons are introduced and their theoretical treatment is presented in great detail. Higher order processes and renormalization are also included. The book concludes with a discussion of two-particle states and the interaction of spinless bosons. This completely revised and corrected new edition provides several additions to enable deeper insight in formalism and application of quantum electrodynamics.
1990-01-01
Quantum electrodynamics is an essential building block and an integral part of the gauge theory of unified electromagnetic, weak, and strong interactions, the so-called standard model. Its failure or breakdown at some level would have a most profound impact on the theoretical foundations of elementary particle physics as a whole. Thus the validity of QED has been the subject of intense experimental tests over more than 40 years of its history. This volume presents an up-to-date review of high precision experimental tests of QED together with comprehensive discussion of required theoretical wor
Impact of quantum electrodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1975-12-01
A review is given of recent developments in quantum electrodynamics, particularly those involving tests of muon dynamics as well as quantum electrodynamics tests. A new limit on possible muon composite structure is also given. The impact of quantum electrodynamics and its generalizations, the gauge theories, to other areas of physics, including the weak and strong interactions and the atomic spectrum of new particles. The consequences of scale invariance in hadron, atomic, and nuclear physics are reviewed. 119 references
Molecular quantum electrodynamics
Craig, D P
1998-01-01
This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It feat
No drama quantum electrodynamics?
International Nuclear Information System (INIS)
Akhmeteli, Andrey
2013-01-01
This article builds on recent work (Akhmeteli in Int. J. Quantum Inf. 9(Supp01):17, 2011; J. Math. Phys. 52:082303, 2011), providing a theory that is based on spinor electrodynamics, is described by a system of partial differential equations in 3+1 dimensions, but reproduces unitary evolution of a quantum field theory in the Fock space. To this end, after introduction of a complex four-potential of electromagnetic field, which generates the same electromagnetic fields as the initial real four-potential, the spinor field is algebraically eliminated from the equations of spinor electrodynamics. It is proven that the resulting equations for electromagnetic field describe independent evolution of the latter and can be embedded into a quantum field theory using a generalized Carleman linearization procedure. The theory provides a simple and at least reasonably realistic model, valuable for interpretation of quantum theory. The issues related to the Bell theorem are discussed. (orig.)
Quantum mechanics and electrodynamics
Zamastil, Jaroslav
2017-01-01
This book highlights the power and elegance of algebraic methods of solving problems in quantum mechanics. It shows that symmetries not only provide elegant solutions to problems that can be solved exactly, but also substantially simplify problems that must be solved approximately. Furthermore, the book provides an elementary exposition of quantum electrodynamics and its application to low-energy physics, along with a thorough analysis of the role of relativistic, magnetic, and quantum electrodynamic effects in atomic spectroscopy. Included are essential derivations made clear through detailed, transparent calculations. The book’s commitment to deriving advanced results with elementary techniques, as well as its inclusion of exercises will enamor it to advanced undergraduate and graduate students.
Cavity quantum electrodynamics
International Nuclear Information System (INIS)
Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas
2006-01-01
This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given
Experimental status of quantum electrodynamics
International Nuclear Information System (INIS)
Drell, S.D.
1978-10-01
This review of the experimental status of quantum electrodynamics covers the fine structure constant, the muon g-2 value, the Lamb shift in hydrogen, the finite proton radius, progress in muonium, and positronium. 37 references
Reassessment of Bohm's quantum electrodynamics
International Nuclear Information System (INIS)
Baumann, K.
1986-01-01
Bohm's interpretation of quantum theory is reexamined, with emphasis on quantum electrodynamics. Subjects of the discussion are the observability of 'hidden' variables, the applicability of Bohm's theory to spinor QED, the violation of Lorentz invariance, and variants of Bohm's theory. A formulation of causal quantum field theory in terms of distributions is also presented. (Author)
Quantum Hall effect in quantum electrodynamics
International Nuclear Information System (INIS)
Penin, Alexander A.
2009-01-01
We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted
Scalar formalism for quantum electrodynamics
International Nuclear Information System (INIS)
Hostler, L.C.
1985-01-01
A set of Feynman rules, similar to the rules of scalar electrodynamics, is derived for a full quantum electrodynamics based on the relativistic Klein--Gordon--type wave equation ]Pi/sub μ/Pi/sub μ/+m 2 +ie sigma x (E +iB)]phi = 0, Pi/sub μ/ equivalent-i partial/sub μ/-eA/sub μ/, for spin- 1/2 particles [J. Math. Phys. 23, 1179 (1982); J. Math. Phys. 24, 2366 (1983)]. In this equation, phi is a 2 x 1 Pauli spinor and sigma/sub a/, a = 1,2,3, are the usual 2 x 2 Pauli spin matrices. The irreducible self-energy parts are compared to those of conventional quantum electrodynamics
The Relation between Classical and Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Mario Bacelar Valente
2011-01-01
Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.
Spectral ansatz in quantum electrodynamics
International Nuclear Information System (INIS)
Atkinson, D.; Slim, H.A.
1979-01-01
An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
Quantum electrodynamics with compensating current
Energy Technology Data Exchange (ETDEWEB)
Bechler, A [Warsaw Univ. (Poland). Instytut Fizyki Teoretycznej
1974-01-01
A formulation of quantum electrodynamics is proposed in which all the propagators and field operators are gauge invariant. It is based on an old idea of Heisenberg and Euler which consists in the introduction of the linear integrals of potentials as arguments of the exponential functions. This method is generalized by an introduction of the so-called ''compensating currents'', which ensure local, i.e. in every point of space-time, charge conservation. The linear integral method is a particular case of that proposed in this paper. As the starting point we use quantum electrodynamics with a non-zero, small photon mass (Proca theory). It is shown that, due to the presence of the compensating current, the theory is fully renormalizable in Hilbert space with positive definite scalar product. The problem of the definition of the current operator is also briefly discussed.
Compton Operator in Quantum Electrodynamics
International Nuclear Information System (INIS)
Garcia, Hector Luna; Garcia, Luz Maria
2015-01-01
In the frame in the quantum electrodynamics exist four basic operators; the electron self-energy, vacuum polarization, vertex correction, and the Compton operator. The first three operators are very important by its relation with renormalized and Ward identity. However, the Compton operator has equal importance, but without divergence, and little attention has been given it. We have calculated the Compton operator and obtained the closed expression for it in the frame of dimensionally continuous integration and hypergeometric functions
Quantum electrodynamics and light rays
International Nuclear Information System (INIS)
Sudarshan, E.C.G.
1978-11-01
Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references
Quantum electrodynamics with unstable vacuum
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E.S. (P.N. Lebedev Physical Inst., USSR Academy of Sciences, Moscow (USSR)); Gitman, D.M. (Moscow Inst. of Radio Engineering Electronics and Automation (USSR)); Shvartsman, Sh.M. (Tomsk State Pedagogical Inst. (USSR))
1991-01-01
Intense external fields destabilize vacuum inducing the creation of particle pairs. In this book the formalism of quantum electrodynamics (QED), using a special perturbation theory with matrix propagators, is systematically analyzed for such systems. The developed approach is, however, general for any quantum field with unstable vacuum. The authors propose solutions for real pair-creating fields. They discuss the general form for the causal function and many other Green's functions, as well as methods for finding them. Analogies to the optical theorem and rules for computing total probabilities are given, as are solutions for non-Abelian theories. (orig.).
Electrodynamics of quantum spin liquids
Dressel, Martin; Pustogow, Andrej
2018-05-01
Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.
Minimal theory of quantum electrodynamics
International Nuclear Information System (INIS)
Berrondo, M.; Jauregui, R.
1986-01-01
Within the general framework of the Lehmann-Symanzik-Zimmermann axiomatic field theory, we obtain a simple and coherent formulation of quantum electrodynamics. The definitions of the current densities fulfill the one-particle stability condition, and the commutation relations for the interacting fields are obtained rather than being postulated a priori, thus avoiding the inconsistencies which appear in the canonical formalism. This is possible due to the fact that we use the integral form of the equations of motion in order to compute the propagators and the S matrix. The resulting spectral representations automatically fulfill the correct boundary conditions thus fixing the ubiquitous quasilocal operators in a unique fashion
Quantum quincunx in cavity quantum electrodynamics
International Nuclear Information System (INIS)
Sanders, Barry C.; Bartlett, Stephen D.; Tregenna, Ben; Knight, Peter L.
2003-01-01
We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to Galton's quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical studies of quantum walks over orthogonal lattice states, we introduce quantum walks over nonorthogonal lattice states (specifically, coherent states on a circle) to demonstrate that the key features of a quantum walk are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a remarkable decrease in the position noise, or spread, with increasing decoherence
Experimental status of quantum electrodynamics
International Nuclear Information System (INIS)
Drell, S.D.
1980-01-01
The speech of Drell S. on the symposium dedicated to 60th anniversary of Schwinger J. is presented. The fundamental status of the hero of the day in quantum field theory, which turned into quantum electrodynamics, are stated. The theory has been perfectly experimentally confirmed and now is the main model permitting to explain weak and strong interactions. The attention is paid on the difference between theoretical and experimental values of the electron anomalous magnetic moment (asub(e)) obtained in the sixth order of perturbation theory. It is necessary to carry out calculations in the octic order of the perturbation theory in order to obtain more precise value of asub(e). The theory and the experimental difference is demonstrated on the example of estimation of fine and hyperfine structure of hydrogen, muonium, and positronium
Potentialities of Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2013-10-01
Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.
Triumphs and failures of quantum electrodynamics
International Nuclear Information System (INIS)
Bialynicki-Birula, I.
1996-01-01
Quantum electrodynamics, after more than sixty years since its discovery, still presents challenges and offers rewards to inquiring minds. This presentation describes some theoretical intricacies of this beautiful theory. (author)
REDUCE in elementary particle physics. Quantum electrodynamics
International Nuclear Information System (INIS)
Grozin, A.G.
1990-01-01
This preprint is the second part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains examples of calculations in quantum electrodynamics. 5 refs
Mathematical aspects of field quantization. Quantum electrodynamics
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1983-01-01
Fundamental mathematical aspects of quantum field theory are discussed. A brief review of various approaches to mathematical problems of quantum electrodynamics is given, preceded by a more extensive account of the development of ideas on the mathematical nature of quantum fields in general, providing an appropriate historical context. (author)
Thermodynamic potential in quantum electrodynamics
International Nuclear Information System (INIS)
Morley, P.D.
1978-01-01
The thermodynamic potential, Ω, in quantum electrodynamics (QED) is derived using the path-integral formalism. Renormalization of Ω is shown by proving the following theorem: Ω/sub B/(e/sub B/,m/sub B/,T,μ) - Ω/sub B/(e/sub B/,m/sub B/,T = 0,μ = 0) = Ω/sub R/(e/sub R/,m/sub R/,T,μ,S), where B and R refer to bare and renormalized quantities, respectively, and S is the Euclidean subtraction momentum squared. This theorem is proved explicitly to e/sub R/ 4 order and could be analogously extended to any higher order. Renormalization-group equations are derived for Ω/sub R/, and it is shown that perturbation theory in a medium is governed by effective coupling constants which are functions of the density. The behavior of the theory at high densities is governed by the Euclidean ultraviolet behavior of the theory in the vacuum
Quantum classical correspondence in nonrelativistic electrodynamics
International Nuclear Information System (INIS)
Ritchie, B.; Weatherford, C.A.
1999-01-01
A form of classical electrodynamic field exists which gives exact agreement with the operator field of quantum electrodynamics (QED) for the Lamb shift of a harmonically bound point electron. Here it is pointed out that this form of classical theory, with its physically acceptable interpretation, is the result of an unconventional resolution of a mathematically ambiguous term in classical field theory. Finally, a quantum classical correspondence principle is shown to exist in the sense that the classical field and expectation value of the QED operator field are identical, if retardation is neglected in the latter
Dyson-Schwinger equations in quantum electrodynamics
International Nuclear Information System (INIS)
Slim, H.A.
1981-01-01
A quantum field theory is completely determined by the knowledge of its Green functions and this thesis is concerned with the Salam and Delbourgo approximation method for the determination of the Green functions. In chapter 2 a Lorentz covariant, canonical formulation for quantum electrodynamics is described. In chapter 3 the definition of the Green functions in quantum electrodynamics is given with a derivation of the Dyson-Schwinger equations. The Ward-Takahashi identities, which are a consequence of current conservation, are derived and finally renormalization is briefly mentioned and the equations for the renormalized quantities are given. The gauge transformations, changing the gauge-parameter, a, discussed in Chapter 2 for the field operators, also have implications for the Green functions, and these are worked out in Chapter 4 for the electron propagator, which is not gauge-invariant. Before developing the main approximation, a simple, non-relativistic model is studied in Chapter 5. It has the feature of being exactly solvable in a way which closely resembles the approximation method of Chapter 6 for relativistic quantum electrodynamics. There the Dyson-Schwinger equations for the electron and photon propagator are studied. In chapter 7, the Johnson-Baker-Willey program of finite quantum electrodynamics is considered, in connection with the Ansatz of Salam and Delbourgo, and the question of a possible fixed point of the coupling constant is considered. In the last chapter, some remarks are made about how the results of the approximation scheme can be improved. (Auth.)
Massless quantum electrodynamics: a variational study
International Nuclear Information System (INIS)
Piquini, P.C.
1990-01-01
The variational method was used to study the probable existence of a compound vacuum in quantum electrodynamics. An Ansatz containing a condensate of electron-positron pairs was investigated and an optimization equation for the condensate wave function found. (L.C.J.A.)
Quantum-electrodynamics corrections in pionic hydrogen
Schlesser, S.; Le Bigot, E. -O.; Indelicato, P.; Pachucki, K.
2011-01-01
We investigate all pure quantum-electrodynamics corrections to the np --> 1s, n = 2-4 transition energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order alpha 5. These values are needed to extract an accurate strong interaction
Minimal resonator loss for circuit quantum electrodynamics
Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.J.; Zijlstra, T.; Klapwijk, T.M.; Diener, P.; Yates, S.J.C.; Baselmans, J.J.A.
2010-01-01
We report quality factors of up to 500x10³ in superconducting resonators at the single photon levels needed for circuit quantum electrodynamics. This result is achieved by using NbTiN and removing the dielectric from regions with high electric fields. As demonstrated by a comparison with Ta, the
Lamb Shift in Nonrelativistic Quantum Electrodynamics.
Grotch, Howard
1981-01-01
The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)
Atomic physics tests of quantum electrodynamics
International Nuclear Information System (INIS)
Mohr, P.J.
1976-08-01
The tests of quantum electrodynamics derived from bound systems and the free electron and muon magnetic moments are reviewed. The emphasis is on the areas in which recent developments in theory or experiment have taken place. Also determinations of the fine structure constant from the Josephson effect and the fine structure of helium are discussed
Bogolyubov axiomatic method in quantum electrodynamics
International Nuclear Information System (INIS)
Bazhanov, V.V.; Pron'ko, G.P.; Solov'ev, L.D.
1979-01-01
A number of problems of quantum electrodynamics are reviewed which permit an exact solution for both strong and electromagnetic interactions. The solutions have been obtained in the framework of the S-matrix method based on the Bogolyubov axiomatic approach supplemented with some axioms which make it possible to extended the field of application of the Bogolyubov approach for quantum electrodynamics. Infrared ''renormalization'' of axioms and fundamental equations of the S-matrix electrodynamics is discussed. Low-energy theorems for matrix elements of radiative operators have been obtained as solutions of fundamental equations. The low-energy theorems are used for describing the electrodynamic phenomena of soft photons. The bremsstrahlung amplitude is found. A generalized threshold theorem is formulated for the Compton scattering amplitude. The results of examining the infrared asymptotics of the charged particle Green functions, the small-angle scattering of charged particles and electromagnetic effects on heavy narrow resonance production are presented. The problems discussed show that the consequences of general principles of the relativistic quantum theory supplemented with requirements on gauge invariance are essentially nontrivial
Foundations of classical and quantum electrodynamics
Toptygin, Igor N
2014-01-01
This advanced textbook covers many fundamental, traditional and new branches of electrodynamics, as well as the related fields of special relativity, quantum mechanics and quantum electrodynamics. The book introduces the material at different levels, oriented towards 3rd–4th year bachelor, master, and PhD students. This is so as to describe the whole complexity of physical phenomena. The required mathematical background is collated in Chapter 1, while the necessary physical background is included in the main text of the corresponding chapters and also given in appendices. It contains approximately 800 examples and problems, many of which are described in detail. Some of these problems are designed for students to work on their own with only the answers and descriptions of results, and may be solved selectively. Equally suitable as a reference for researchers specialized in science and engineering.
Recent advances in bound state quantum electrodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1977-06-01
Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented
Ward-Takahashi identities in quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Nishijima, K; Sasaki, R [Tokyo Univ. (Japan). Dept. of Physics
1975-03-01
The Ward-Takahashi identities are derived for connected Green's functions in quantum electrodynamics without recourse to equal-time commutation relations, field equations and the Feynman-Dyson perturbation expansions. The argument is based on the dispersion formulation of field theories and only finite expressions are used throughout this derivation. These identities are shown to be consequences of the subtraction conditions imposed upon the 2-, 3- and 4-point Green's functions.
Some basic problems of quantum electrodynamics
International Nuclear Information System (INIS)
Steinmann, O.
1981-01-01
QED (= quantum electrodynamics) is often said to be one of the most successful theories, if not 'the' most successful one, that we possess in physics. That it is a theory is, however, not yet established beyond possible doubt. In this talk I report on the present state of this problem. The question is whether the computational rules of QED, which stand up so well to all practical tests, can be founded logically in a consistent, exactly formulizable, theory. (orig./HSI)
Self-energy quantum electrodynamics: Multipole radiation
International Nuclear Information System (INIS)
Salamin, Y.I.
1993-01-01
Within the context of Barut's self-field approach to quantum electrodynamics, it is shown that the exact relativistic expression for the Einstein A-coefficient of atomic spontaneous emission reduces, in the long wavelength approximation, to a form containing electric- and magnetic-like multipole contributions related to the transition charge and current distributions of the relativistic electron. A number of interesting features of the expressions involved are discussed, and their generalization to interacting composite systems is also pointed out. 10 refs
Quantum Electrodynamics in Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Nielsen, Henri Thyrrestrup
In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...... is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β...
Solid-state cavity quantum electrodynamics using quantum dots
International Nuclear Information System (INIS)
Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.
2001-01-01
We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)
Quantum electrodynamics in strong external fields
International Nuclear Information System (INIS)
Mueller, B.; Rafelski, J.; Kirsch, J.
1981-05-01
We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)
Investigation on regulators in quantum electrodynamics
Stora, Raymond Félix
We present in this work three models which are able to suppress the divergences of approximate versions of Quantum Electrodynamics.It is indeed argued that, in view of the smallness of the fine structure constant, not only the first terms of a perturbation expansion, or of an expansion according to the number of particles involved in intermediate states, gives a fair approximattonbut furthermore, that it is in these terms that a breakdown of electrodynamics should be sought. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. The first model assumes the existence of a photon cut off, whose observable consequences are clearly stated, and of a fermion out off which, although unable to give a satisfactory ...
Quantum electrodynamics of particles with arbitrary spin
International Nuclear Information System (INIS)
Green, H.S.
1978-01-01
A generalization of quantum electrodynamics is developed for particles of higher spin, with careful attention to the requirements of consistency, causality, unitarity and renormalizability. It is shown that field equations studied previously by the author are expressible in arbitrarily many different forms, which are equivalent in the absence of electromagnetic interactions, but not when electromagnetic coupling is introduced in a gauge-invariant way. A form is chosen which satisfies the requirements of casuality. It is shown how to define a particle density, which is positive-definite in the subspace spanned by solutions of the field equation, and satisifies a Lorentz-invariant conservation law. The quantization and renormalization of the resulting electrodynamics is studied, and is found to require only minor modifications of the existing theory for particles of spin 1/2
Clothed Particles in Quantum Electrodynamics and Quantum Chromodynamics
Directory of Open Access Journals (Sweden)
Shebeko Alexander
2016-01-01
Full Text Available The notion of clothing in quantum field theory (QFT, put forward by Greenberg and Schweber and developed by M. Shirokov, is applied in quantum electrodynamics (QED and quantum chromodynamics (QCD. Along the guideline we have derived a novel analytic expression for the QED Hamiltonian in the clothed particle representation (CPR. In addition, we are trying to realize this notion in QCD (to be definite for the gauge group SU(3 when drawing parallels between QCD and QED.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Maxwell electrodynamics subjected to quantum vacuum fluctuations
International Nuclear Information System (INIS)
Gevorkyan, A. S.; Gevorkyan, A. A.
2011-01-01
The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of “white noise” fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the “ground state” energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.
Quantum electrodynamics in curved space-time
International Nuclear Information System (INIS)
Buchbinder, I.L.; Gitman, D.M.; Fradkin, E.S.
1981-01-01
The lagrangian of quantum electrodynamics in curved space-time is constructed and the interaction picture taking into account the external gravitational field exactly is introduced. The transform from the Heisenberg picture to the interaction picture is carried out in a manifestly covariant way. The properties of free spinor and electromagnetic quantum fields are discussed and conditions under which initial and final creation and annihilation operators are connected by unitarity transformation are indicated. The derivation of Feynman's rules for quantum processes are calculated on the base of generalized normal product of operators. The way of reduction formula derivations is indicated and the suitable Green's functions are introduced. A generating functional for this Green's function is defined and the system of functional equations for them is obtained. The representation of different generating funcationals by means of functional integrals is introduced. Some consequences of S-matrix unitary condition are considered which leads to the generalization of the optic theorem
A Process Algebra Approach to Quantum Electrodynamics
Sulis, William
2017-12-01
The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.
Quantum Electrodynamical Shifts in Multivalent Heavy Ions.
Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A
2016-12-16
The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.
Quantum electrodynamics with arbitrary charge on a noncommutative space
International Nuclear Information System (INIS)
Zhou Wanping; Long Zhengwen; Cai Shaohong
2009-01-01
Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics. (authors)
Fundamental tests in Cavity Quantum Electrodynamics
CERN. Geneva
2010-01-01
At the dawn of quantum physics, Einstein and Bohr had the dream to confine a photon in a box and to use this contraption in order to illustrate the strange laws of the quantum world. Cavity Quantum Electrodynamics has now made this dream real, allowing us to actually achieve in the laboratory variants of the thought experiments of the founding fathers of quantum theory. In our work at Ecole Normale Supérieure, we use a beam of Rydberg atoms to manipulate and probe non-destructively microwave photons trapped in a very high Q superconducting cavity. We realize ideal quantum non-demolition (QND) measurements of photon numbers, observe the radiation quantum jumps due to cavity relaxation and prepare non-classical fields such as Fock and Schrödinger cat states. Combining QND photon counting with a homodyne mixing method, we reconstruct the Wigner functions of these non-classical states and, by taking snapshots of these functions at increasing times, obtain movies of the decoherence process. These experiments ope...
Radiation damping and decoherence in quantum electrodynamics
International Nuclear Information System (INIS)
Breuer, H.P.
2000-01-01
The processes of radiation damping and decoherence in quantum electrodynamics are studied from an open system's point of view. Employing functional techniques of field theory, the degrees of freedom of the radiation field are eliminated to obtain the influence phase functional which describes the reduced dynamics of the matter variables. The general theory is applied to the dynamics of a single electron in the radiation field. From a study of the wave packet dynamics a quantitative measure for the degree of decoherence, the decoherence function, is deduced. The latter is shown to describe the emergence of decoherence through the emission of bremsstrahlung caused by the relative motion of interfering wave packets. It is argued that this mechanism is the most fundamental process in quantum electrodynamics leading to the destruction of coherence, since it dominates for short times and because it is at work even in the electromagnetic field vacuum at zero temperature. It turns out that decoherence trough bremsstrahlung is very small for single electrons but extremely large for superpositions of many-particle states. (orig.)
Parametric resonance in quantum electrodynamics vacuum birefringence
Arza, Ariel; Elias, Ricardo Gabriel
2018-05-01
Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L . In both cases we find also a rotation of the elliptical axis.
Pole-factorization theorem in quantum electrodynamics
International Nuclear Information System (INIS)
Stapp, H.P.
1996-01-01
In quantum electrodynamics a classical part of the S-matrix is normally factored out in order to obtain a quantum remainder that can be treated perturbatively without the occurrence of infrared divergences. However, this separation, as usually performed, introduces spurious large-distance effects that produce an apparent breakdown of the important correspondence between stable particles and poles of the S-matrix, and, consequently, lead to apparent violations of the correspondence principle and to incorrect results for computations in the mesoscopic domain lying between the atomic and classical regimes. An improved computational technique is described that allows valid results to be obtained in this domain, and that leads, for the quantum remainder, in the cases studied, to a physical-region singularity structure that, as regards the most singular parts, is the same as the normal physical-region analytic structure in theories in which all particles have non-zero mass. The key innovations here are to define the classical part in coordinate space, rather than in momentum space, and to define there a separation of the photon-electron coupling into its classical and quantum parts that has the following properties: (1) The contributions from the terms containing only classical couplings can be summed to all orders to give a unitary operator that generates the coherent state that corresponds to the appropriate classical process, and (2) The quantum remainder can be rigorously shown to exhibit, as regards its most singular parts, the normal analytic structure. 22 refs
δ expansion applied to quantum electrodynamics
International Nuclear Information System (INIS)
Bender, C.M.; Boettcher, S.; Milton, K.A.
1992-01-01
A recently proposed technique known as the δ expansion provides a nonperturbative treatment of a quantum field theory. The δ-expansion approach can be applied to electrodynamics in such a way that local gauge invariance is preserved. In this paper it is shown that for electrodynamic processes involving only external photon lines and no external electron lines the δ expansion is equivalent to a fermion loop expansion. That is, the coefficient of δ n in the δ expansion is precisely the sum of all n-electron-loop Feynman diagrams in a conventional weak-coupling approximation. This equivalence does not extend to processes having external electron lines. When external electron lines are present, the δ expansion is truly nonperturbative and does not have a simple interpretation as a resummation of conventional Feynman diagrams. To illustrate the nonperturbative character of the δ expansion we perform a speculative calculation of the fermion condensate in the massive Schwinger model in the limit of large coupling constant
Higher order corrections in quantum electrodynamics
International Nuclear Information System (INIS)
Rafael, E.
1977-01-01
Theoretical contributions to high-order corrections in purely leptonic systems, such as electrons and muons, muonium (μ + e - ) and positronium (e + e - ), are reviewed to establish the validity of quantum electrodynamics (QED). Two types of QED contributions to the anomalous magnetic moments are considered, from diagrams with one fermion type lines and those witn two fermion type lines. The contributions up to eighth order are compared to the data available with a different accuracy. Good agreement is stated within the experimental errors. The experimental accuracy of the muonium hyperfine structure and of the radiative corrections to the decay of positronium are compared to the one attainable in theoretical calculations. The need for a higher precision in both experimental data and theoretical calculations is stated
Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Y. Salathé
2015-06-01
Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.
Does quantum electrodynamics have an arrow of time?
Atkinson, David
Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial
Structure an dynamics in cavity quantum electrodynamics
International Nuclear Information System (INIS)
Kimble, H.J.
1994-01-01
Much of the theoretical background related to the radiative processes for atoms in the presence of boundaries comes from two often disjoint areas, namely cavity quantum electrodynamics and optical bistability with two-state atoms. While the former of these areas has been associated to a large degree with studies in a perturbative domain of altered associated to a large degree with studies in a perturbative domain of altered emission processes in the presence of boundaries other than those of free space, the latter is often viewed from the perspective of hysteresis cycles and device applications. With the exception of the laser, however, perhaps the most extensive investigations of quantum statistical processes in quantum optics are to be found in the literature on bistability with two-state atoms and on cavity QED. Unfortunately, the degree of overlap of these two areas has not always been fully appreciated. This circumstance is perhaps due in part to the fact that the investigation of dynamical processes in cavity QED has had as its cornerstone the Jaynes-Cummings problem, with extensions to include, for example, small amounts of dissipation. On the other hand, a principle aspect of the bistability literature has been the study of quantum fluctuations in open systems for which dissipation plays a central role, but for which the coherent quantum dynamics of the Haynes-Cummings model are to a large measure lost due to the usual assumption of large system size and weak coupling (as in the standard theory of the laser). 132 refs., 26 figs., 1 tab
Mixed fermion-photon condensate in strongly coupled quantum electrodynamics
International Nuclear Information System (INIS)
Gusynin, V.P.; Kushnir, V.A.
1989-01-01
The existence of a new mixed fermion-photon condensate breaking chiral symmetry in strongly coupled phase of quantum electrodynamics is shown. An analytical expression for the renormalized condensate is obtained. 20 refs.; 2 figs
Quantum electrodynamic effects for light and heavy nuclei
International Nuclear Information System (INIS)
Anon.
1973-01-01
The autoionization of positrons and the problem of vacuum polarization are discussed within the framework of quantum field theory. Various possible heavy ion experiments to check on the nonlinearity of electrodynamics are described. (8 figures) (U.S.)
Dimensional renormalization and comparison of renormalization schemes in quantum electrodynamics
International Nuclear Information System (INIS)
Coquereaux, R.
1979-02-01
The method of dimensional renormalization as applied to quantum electrodynamics is discussed. A general method is given which allows one to compare the various quantities like coupling constants and masses that appear in different renormalization schemes
Three-dimensional quantum electrodynamics as an effective interaction
International Nuclear Information System (INIS)
Abdalla, E.; Carvalho Filho, F.M. de
1995-10-01
We obtain a Quantum Electrodynamics in 2 + 1 dimensions by applying a Kaluza-Klein type method of dimensional reduction to Quantum Electrodynamics in 3 + 1 dimensions rendering the model more realistic to application in solid-state systems, invariant under translations in one direction. We show that the model obtained leads to an effective action exhibiting an interesting phase structure and that the generated Chern-Simons term survives only in the broken phase. (author). 20 refs
A Way to Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2012-04-01
Full Text Available In conventional theoretical physics and its Standard Model the guiding principle is that the equations are symmetrical. This limitation leads to a number of difficulties, because it does not permit masses for leptons and quarks, the electron tends to “explode” un- der the action of its self-charge, a corresponding photon model has no spin, and such a model cannot account for the “needle radiation” proposed by Einstein and observed in the photoelectric e ff ect and in two-slit experiments. This paper summarizes a revised Lorentz and gauge invariant quantum electrodynamic theory based on a nonzero electric field divergence in the vacuum and characterized by linear intrinsic broken symmetry. It thus provides an alternative to the Higgs concept of nonlinear spontaneous broken sym- metry, for solving the difficulties of the Standard Model. New results are obtained, such as nonzero and finite lepton rest masses, a point-charge-like behavior of the electron due to a revised renormalization procedure, a magnetic volume force which counteracts the electrostatic eigen-force of the electron, a nonzero spin of the photon and of light beams, needle radiation, and an improved understanding of the photoelectric effect, two-slit ex- periments, electron-positron pair formation, and cork-screw-shaped light beams.
Quantum electrodynamics with the spear magnetic detector
International Nuclear Information System (INIS)
Zipse, J.E.
1975-09-01
One makes a study of quantum electrodynamic processes which are present at the SPEAR colliding beam magnetic detector. We begin by describing the experiment performed by the SLAC-LBL collaboration and the results concerning the strong interaction. Then the interactions e + e - → e + e - and e + e - → μ + μ - are considered along with their third-order radiative corrections. These events, previously used to determine new limits for cutoff parameters in QED breakdown models, are further studied to show that the full distribution in coplanarity angle fits the theoretical prediction well. The major focus is on the fourth order two-photon process, e + e - → e + e - A + A - , which only recently has been realized to be significant in such experiments. Cross sections are derived and calculated exactly for this process and the results compared to a Weizacker-Williams equivalent photon calculation. The two-photon data are then isolated and fit to the calculation. A special experiment was done where the small-angle scattered electron or positron is ''tagged'' along with particles in the main detector. Cross sections and coplanarity distributions are measured and compared to calculation. Through these studies, one feels confident that one understand the nature of the two-photon process in the detector. One further explores the hadronic physics of the two-photon process, e + e - → e + e - hadrons, measuring pion cross sections, searching for resonances, and discussing future experiments
Quantum electrodynamics with 1D arti cial atoms
DEFF Research Database (Denmark)
Javadi, Alisa
A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum electrodynamic (QED) e_ects and is thought to be the key ingredient for many applications in quantuminformation processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute a robust...... as expected from the theory. The value of g(2)(0) is around 1.08. The results con_rm the observation of an on-chip giant optical nonlinearity and the 1D atom behavior. Another direction in this thesis has been to investigate the e_ect of Anderson localization on the electrodynamics of QDs in PCWs. A large...
Causal approach to (2+1)-dimensional Quantum Electrodynamics
International Nuclear Information System (INIS)
Scharf, G.; Wreszinski, W.F.; Pimentel, B.M.; Tomazelli, J.L.
1993-05-01
It is shown that the causal approach to (2+1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (author). 12 refs
Relativization of phases in quantum electrodynamics
International Nuclear Information System (INIS)
Lesche, B.
1981-01-01
The idea of relativism is applied to gauge theories in order to eliminate nonphysical degrees of freedom. Spinor electrodynamics is taken as an example to show how this program might be put into practice. (author)
Resonator quantum electrodynamics on a microtrap chip
International Nuclear Information System (INIS)
Steinmetz, Tilo
2008-01-01
In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to ∼37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g 0 =2π.300 MHz respectively C 0 =210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [de
Nonrelativistic quantum electrodynamic approach to photoemission theory
International Nuclear Information System (INIS)
Fujikawa, Takashi; Arai, Hiroko
2005-01-01
A new nonrelativistic many-body theory to analyze X-ray photoelectron spectroscopy (XPS) spectra has been developed on the basis of quantum electrodynamic (QED) Keldysh Green's function approach. To obtain XPS current density we calculate electron Green's function g which partly includes electron-photon interactions. We first separate longitudinal and transverse parts of these Green's functions in the Coulomb gauge. The transverse electron selfenergy describes the electron-photon interaction, whereas the longitudinal electron selfenergy describes the electron-electron interaction. We derive the QED Hedin's equation from which we obtain systematic skeleton expansion in the power series of the screened Coulomb interaction W and the photon Green's function D kl . We show the present theory provides a sound theoretical tool to study complicated many-body processes such as the electron propagation damping, intrinsic, extrinsic losses and their interference, and furthermore, resonant photoemission processes. We have also found the importance of the mixed photon Green's functions D 0k and D k0 which have been supposed to be unimportant for the XPS analyses. They, however, directly describe the radiation field screening. In this work, photon field screening effects are discussed in one-step theory, where the electron-photon interaction operator Δ is proved to be replaced by ε -1 Δ beyond linear approximation. Beyond free photon Green's function approximation, photon scatterings from the electron density are incorporated within the present QED theory. These photon field effects can directly describe the microscopic photon field spatial variation specific to near the surface region and nanoparticle systems
On foundational and geometric critical aspects of quantum electrodynamics
International Nuclear Information System (INIS)
Prugovecki, E.
1994-01-01
The foundational difficulties encountered by the conventional formulation of quantum electrodynamics, and the criticism by Dirac Schwinger, Rohrlich, and others, aimed at some of the physical and mathematical premises underlying that formulation, are reviewed and discussed. The basic failings of the conventional methods of quantization of the electromagnetic field are pointed out, especially with regard to the issue of local (anti) commutativity of quantum fields as an embodiment of relativistic microcausality. A brief description is given of a recently advanced new type of approach to quantum electrodynamics, and to quantum field theory in general, which is epistemically based on intrinsically quantum ideas about the physical nature of spacetime, and is mathematically based on a fiber theoretical formulation of quantum geometries, aimed in part at removing the aforementioned difficulties and inconsistencies. It is shown that these ideas can be traced to a conceptualization of spacetime outlined by Einstein in the last edition of his well-known semipopular exposition of relativity theory. 57 refs
On the Emergence of the Coulomb Forces in Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Jan Naudts
2017-01-01
Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.
Optical-lattice Hamiltonians for relativistic quantum electrodynamics
International Nuclear Information System (INIS)
Kapit, Eliot; Mueller, Erich
2011-01-01
We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in 1+1, 2+1, and 3+1 dimensions whose low-energy effective action reduces to that of photons coupled to Dirac fermions of the corresponding dimensionality. We give special attention to (2+1)-dimensional quantum electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and Chern-Simons physics, could be observed experimentally.
Time-dependent Kohn-Sham approach to quantum electrodynamics
International Nuclear Information System (INIS)
Ruggenthaler, M.; Mackenroth, F.; Bauer, D.
2011-01-01
We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.
Engineering squeezed states of microwave radiation with circuit quantum electrodynamics
International Nuclear Information System (INIS)
Li Pengbo; Li Fuli
2011-01-01
We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.
Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering
Haeringen, W. van
The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between
Free-space quantum electrodynamics with a single Rydberg superatom
DEFF Research Database (Denmark)
Paris-Mandoki, Asaf; Braun, Christoph; Kumlin, Jan
2017-01-01
The interaction of a single photon with an individual two-level system is the textbook example of quantum electrodynamics. Achieving strong coupling in this system has so far required confinement of the light field inside resonators or waveguides. Here, we demonstrate strong coherent coupling...
Dimensional regularization and infrared divergences in quantum electrodynamics
International Nuclear Information System (INIS)
Marculescu, S.
1979-01-01
Dimensional continuation was devised as a powerful regularization method for ultraviolet divergences in quantum field theories. Recently it was clear, at least for quantum electrodynamics, that such a method could be employed for factorizing out infrared divergences from the on-shell S-matrix elements. This provides a renormalization scheme on the electron mass-shell without using a gauge violating ''photon mass''. (author)
Charge-field formulation of quantum electrodynamics (QEMED)
International Nuclear Information System (INIS)
Leiter, D.
1980-01-01
By expressing classical electron theory in terms of 'charge-field' functional structures, it is shown that a finite formulation of the classical electrodynamics of point charges emerges in a simple and elegant fashion. This is used to construct a 'charge-field' quantum electrodynamic theory. It is found that interacting photon states are generated as a secondary manifestation of electron-positron quantization, and do not require the usual 'free' canonical quantization scheme. The possibility is discussed that this approach may lead to a better formulation of quantum electrodynamics in the Heisenberg picture and suggests a crucial experimental test to distinguish this new 'charge-field' quantum electrodynamics 'QEMED' from the standard QED formulation. Specifically QEMED predicts that the 'Einstein principle of separability' should be found to be valid for correlated photon polarization measurements, in which the polarizers are changed more rapidly than a characteristic photon travel time. Such an experiment (Aspect 1976) can distinguish between QEMED and QED in a complete and clear-cut fashion. (U.K.)
Cavity quantum electrodynamics with Anderson-localized modes
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren
2010-01-01
by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...
Massive lepton pair production in massive quantum electrodynamics
International Nuclear Information System (INIS)
Raychaudhuri, P.
1976-01-01
The pp → l + +l - +x inclusive interaction has been studied at high energies in terms of the massive quantum electrodynamics. The differential cross-section (dsigma/dQ 2 ) is derived and proves to be proportional to Q -4 , where Q-mass of the lepton pair. Basic features of the cross-section are demonstrated to be consistent with the Drell-Yan model
Logarithmic of mass singularities theorem in non massive quantum electrodynamics
International Nuclear Information System (INIS)
Mares G, R.; Luna, H.
1997-01-01
We give an explicit example of the use of dimensional regularization to calculate in a unified approach, all the ultraviolet, infrared and mass singularities, by considering the LMS (logarithms of mass singularities) theorem in the frame of massless QED (Quantum electrodynamics). In the calculation of the divergent part of the cross section, all singularities are found to cancel provided soft and hard photon emission are both taken into account. (Author)
Quantum electrodynamics and light rays. [Two-point correlation functions
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E.C.G.
1978-11-01
Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references.
Fixed point structure of quenched, planar quantum electrodynamics
International Nuclear Information System (INIS)
Love, S.T.
1986-07-01
Gauge theories exhibiting a hierarchy of fermion mass scales may contain a pseudo-Nambu-Boldstone boson of spontaneously broken scale invariance. The relation between scale and chiral symmetry breaking is studied analytically in quenched, planar quantum electrodynamics in four dimensions. The model possesses a novel nonperturbative ultraviolet fixed point governing its strong coupling phase which requires the mixing of four fermion operators. 12 refs
Progress in quantum electrodynamics theory of highly charged ions
Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.
2013-01-01
Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...
On the renormalization group equations of quantum electrodynamics
International Nuclear Information System (INIS)
Hirayama, Minoru
1980-01-01
The renormalization group equations of quantum electrodynamics are discussed. The solution of the Gell-Mann-Low equation is presented in a convenient form. The interrelation between the Nishijima-Tomozawa equation and the Gell-Mann-Low equation is clarified. The reciprocal effective charge, so to speak, turns out to play an important role to discuss renormalization group equations. Arguments are given that the reciprocal effective charge vanishes as the renormalization momentum tends to infinity. (author)
Problems of quantum electrodynamics with external field creating pairs
International Nuclear Information System (INIS)
Fradkin, E.S.; Gitman, D.M.
1979-11-01
This paper is a preliminary version of a review of the results obtained by the authors and their collaborators which mainly concern problems of quantum electrodynamics with the pair-creating external field. In this paper the Furry picture is constructed for quantum electrodynamics with the pair-creating external field. It is shown, that various Green functions in the external field arise in the theory in a natural way. Special features of usage of the unitarity conditions for calculating the total probabilities of transitions are discussed. Perturbation theory for determining the mean electromagnetic field is constructed. Effective Lagrangians for pair-creating fields are built. One of the possible ways to introduce external field in quantum electrodynamics is considered. All the Green functions arising in the theory suggested are calculated for a constant field and a plane wave field. For the case of the electric field the total probability of creation of pairs from the vacuum accompanied by the photon irradiation and the total probability of transition from a single-electron state accompanied by the photon irradiation and creation of pairs are obtained by using the formulated rules for calculating the total probabilities of transitions. (author)
Multi-qubit circuit quantum electrodynamics
International Nuclear Information System (INIS)
Viehmann, Oliver
2013-01-01
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
Multi-qubit circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Viehmann, Oliver
2013-09-03
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
Methods for accurate calculations in high-energy quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Ericsson, K. E. [Institute of Theoretical Physics, Uppsala (Sweden)
1963-01-15
In this paper ''quantum electrodynamics'' (QED) will be used in the sense of a closed theory of point-like photons and electrons. Muons could then easily be included. We make the usual assumption that the perturbation expansion of renormalized QED gives at least an asymptotic expression of the exact theory, i.e. that the sum over a few terms in the beginning of the perturbation series is a good approximation of the exact theory. We expect QED in this sense to break down at small distances, i. e. at large momentum transfers, because of structure effects resulting from other kinds of interaction, primarily the interactions of the electromagnetic field with the current of strongly interacting particles. This will first show up as vacuum polarization through mesons. On the other hand we have no reason to believe that the fundamental theory of electrodynamics, i.e. the theory of a massless vector field interacting with a.conserved current, will break down.
Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics
González-Tudela, A.; Paulisch, V.; Kimble, H. J.; Cirac, J. I.
2017-05-01
Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.
Modified Maxwell equations in quantum electrodynamics
Harmuth, Henning F; Meffert, Beate
2001-01-01
Divergencies in quantum field theory referred to as "infinite zero-point energy" have been a problem for 70 years. Renormalization has always been considered an unsatisfactory remedy. In 1985 it was found that Maxwell's equations generally do not have solutions that satisfy the causality law. An additional term for magnetic dipole currents corrected this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just as rotating electric dipoles in a material like barium titanate produce electric dipole currents. Electric dipole currents were always part of Maxwell's equations. T
Cavity quantum electrodynamics in application to plasmonics and metamaterials
Directory of Open Access Journals (Sweden)
Pavel Ginzburg
2016-11-01
Full Text Available Frontier quantum engineering tasks require reliable control over light-matter interaction dynamics, which could be obtained by introducing electromagnetic structuring. Initiated by the Purcell's discovery of spontaneous emission acceleration in a cavity, the concept of electromagnetic modes' design have gained a considerable amount of attention due to development of photonic crystals, micro-resonators, plasmonic nanostructures and metamaterials. Those approaches, however, offer qualitatively different strategies for tailoring light-matter interactions and are based on either high quality factor modes shaping, near field control, or both. Remarkably, rigorous quantum mechanical description might address those processes in a different fashion. While traditional cavity quantum electrodynamics tools are commonly based on mode decomposition approach, few challenges rise once dispersive and lossy nanostructures, such as noble metals (plasmonic antennas or metamaterials, are involved. The primary objective of this review is to introduce key methods and techniques while aiming to obtain comprehensive quantum mechanical description of spontaneous, stimulated and higher order emission and interaction processes, tailored by nanostructured material environment. The main challenge and the complexity here are set by the level of rigorousity, up to which materials should be treated. While relatively big nanostructured features (10nm and larger could be addressed by applying fluctuation–dissipation theorem and corresponding Green functions' analysis, smaller objects will require individual approach. Effects of material granularity, spatial dispersion, tunneling over small gaps, material memory and others will be reviewed. Quantum phenomena, inspired and tailored by nanostructured environment, plays a key role in development of quantum information devices and related technologies. Rigorous analysis is required for both examination of experimental observations
Entangling distant resonant exchange qubits via circuit quantum electrodynamics
Srinivasa, V.; Taylor, J. M.; Tahan, Charles
2016-11-01
We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
On conformal invariance in gauge theories. Quantum electrodynamics
International Nuclear Information System (INIS)
Zaikov, R.P.
1983-01-01
In the present paper another nontrivial model of the conformal quantum electrodynamics is proposed. The main hypothesis is that the electromagnetic potential together with an additional zero scale, dimensional scalar field is transformed by a nonbasic and, consequently, nondecomposable representation of the conformal group. There are found nontrivial conformal covariant two-point functions and an invariant action from which equations of motion are derived. There is considered the covariant procedure of quantization and it is shown that the norm of one-particle physical states is positive definite
On a gauge invariant subtraction scheme for massive quantum electrodynamics
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Koeberle, R.
A momentum-space subtraction scheme for massive quantum electrodynamics is proposed which respects gauge invariance, in contrast to ordinary normal product techniques. As a consequence the dependence of Green functions on the ghost mass becomes very simple and formally gauge invariant normal products of degree up to four, when subtracted according to the proposed scheme, are automatically gauge invariant. As an aplication we discuss the proof of the Adler-Bardeen theorem. Zero mass limits can be taken for Green function after the integration over intermediate states has been carried out [pt
Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics
International Nuclear Information System (INIS)
Heckathorn, D.
1979-01-01
Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)
Lamb shift in quantum electrodynamics (semiclassical theory)
International Nuclear Information System (INIS)
Blaive, B.; Boudet, R.
1989-01-01
This paper aims to bring some arguments to the proof of the Barut and Van Huele formula, which gives the Lamb shift in the semi-classical theory model: by shortening the calculation owing to the use of a decomposition of the self-potential of the electron; by eliminating the appeal to a divergent series; by bringing justifications and clarifications on some important points of the proof. The effective calculation of the coefficients of the formula is achieved for some of them, and the general analytical form of these coefficients is explicited. It is also proved that the B. and V.H. formula must give results at least as close to the experiment as those of the Bethe formula, which is obtained in Quantum Theory of Fields. Finally one shows that the B. and V.H. formula provides a justification de facto for the cut-off which is used for associating finite numbers to the divergent integrals of the Bethe formula [fr
Structure of the vertex function in finite quantum electrodynamics
International Nuclear Information System (INIS)
Mannheim, P.D.
1975-01-01
We study the structure of the renormalized electromagnetic current vertes, GAMMA-tilde/sub μ/(p,p+q,q), in finite quantum electrodynamics. Using conformal invariance we find that GAMMA-tilde/sub μ/(p,p,0) takes the simple form of Z 1 γ/sub μ/ when the external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the vertex function due to Gell--Mann and Zachariasen. We give the general structure of the vertex for arbitrary momentum transfer parametrically, and discuss how the Bethe--Salpeter equation and the Federbush--Johnson theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning understood in the parton model. We discuss to what extent the condition Z 1 = 0, which may hold in conformal theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show that the vanishing of Z 1 prevents their being bound states in the Migdal--Polyakov bootstrap
Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Zahn, J.W.
2006-12-15
We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)
Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space
International Nuclear Information System (INIS)
Zahn, J.W.
2006-12-01
We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the Φ 3 and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)
Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics
Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.
2018-05-01
We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.
Towards measuring quantum electrodynamic torque with a levitated nanorod
Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang
2017-04-01
According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.
Infra-red finiteness in quantum electro-dynamics
International Nuclear Information System (INIS)
Kawai, Takahiro
1984-01-01
The authors report some mathematical aspects of a recent solution of the infra-red catastrophe in quantum electro-dynamics. A principal result is that the coordinate space Feynman function can be separated into two factors the first of which is a unitary operator in photon space representing the classical electro-magnetic contribution to the amplitude, and the second of which is a residual factor representing the quantum fluctuation about the classical contribution. The main objectives were to verify: (i) the residual factor is free of infra-red divergences, and (ii) the dominant part of the singularity of the residual factor on the positive-α Landau surface has the same analytic form as it would have if the photons were massive. (Auth.)
Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.
2015-01-01
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...
Macroscopic quantum electrodynamics of high-Q cavities
International Nuclear Information System (INIS)
Khanbekyan, Mikayel
2009-01-01
In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the possible
Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory
International Nuclear Information System (INIS)
Ito, K.R.
1976-01-01
We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)
The new topological sectors associated with quantum electrodynamics
International Nuclear Information System (INIS)
Marino, E.C.
1994-01-01
A formulation of Quantum Electrodynamics in terms of an antisymmetric-tensor gauge field is presented. In this formulation the topological current of this field appears as a source for the electromagnetic field and the topological charge therefore acts physically as an electric charge. These nontrivial, electrically charged, sectors contain massless states orthogonal to the vacuum which are created by a gauge invariant operator can be interpreted as coherent states of photons. The new states do interact with the charged states of QCD in the usual way. It is argued that if these new sectors are in fact realized in nature then a very intense background electromagnetic field is necessary for the experimental observation of them. The order of magnitude of the intensity threshold is presented. (author). 2 refs
Axiomatic field theory and quantum electrodynamics: the massive case
International Nuclear Information System (INIS)
Steinmann, O.
1975-01-01
Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(μν) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(μ); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(μν) with the current Jsub(μ). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(μ) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely
Higgs-Like Particle due to Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2013-07-01
Full Text Available A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass can be deduced from an earlier elaborated revised quantum electrodynamical theory which is based on linear symmetry breaking through a nonzero electric ﬁeld divergence in the vacuum state. This special particle is obtained from a composite longitudinal solution based on a zero magnetic ﬁeld strength and on a nonzero divergence but a vanishing curl of the electric ﬁeld strength. The present theory further diﬀers from that of the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles obtain their masses through an interaction with the Higgs ﬁeld. An experimental proof of the basic features of a Higgs-like particle thus supports the present theory, but does not for certain conﬁrm the process which would generate massive particles through a Higgs ﬁeld
Fundamental length, bubble electrons and non-local quantum electrodynamics
International Nuclear Information System (INIS)
Hsu, J.P.; Mac, E.
1977-06-01
Based on the concept of a bubble electron and the approach of Pais and Uhlenbeck, one constructs a finite quantum electrodynamics which is relativistically invariant, macro-causal and unitary. In this model, fields and their interaction are local, but the action function of free fields is nonlocal. The propagators are modified so that a fundamental length L is naturally introduced to physics. The modified static potential is given by V(r) = e/r for r greater than L and V(r) = 0 for r less than L, which is produced by the bubble source r -1 ddelta(r-L)/dr rather than a point source. It is found that L less than 4 x 10 -15 cm. Experimental consequences and modifications of strict causality at short distances, vertical bars 2 vertical bar approximately L 2 , are discussed
Applications of the infinite momentum method to quantum electrodynamics and bound state problem
International Nuclear Information System (INIS)
Brodsky, S.J.
1973-01-01
It is shown that the infinite momentum method is a valid and useful calculational alternative to standard perturbation theory methods. The most exciting future applications may be in bound state problems in quantum electrodynamics
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren
2011-01-01
of the spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum......We demonstrate that the spontaneous emission decay rate of semiconductor quantum dots can be strongly modified by the coupling to disorder-induced Anderson-localized photonic modes. We experimentally measure, by means of time-resolved photoluminescence spectroscopy, the enhancement...
Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Nielsen, Per Kær; Kreiner-Møller, Asger
2013-01-01
We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from...... longitudinal acoustic phonons, and the analysis explains the difference between nonresonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot in the nanocavity. This quantity determines...
Implementing phase-covariant cloning in circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Zhu, Meng-Zheng [School of Physics and Material Science, Anhui University, Hefei 230039 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230039 (China)
2016-10-15
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.
Use of the classical approximation in quantum electrodynamics
International Nuclear Information System (INIS)
Brezin, Edouard
1970-01-01
Approximations commonly used in the study of the classical limit of quantum mechanics are applied, with justification, to quantum electrodynamics. First, the infrared divergence in the scattering of two charged particles is examined with the help of a remarkable series of Feynman diagrams, which in particular preserves gauge invariance and a correct static limit. Looking for the poles in energy of the scattering amplitude, a formula for the binding energies of two charged particles, which generalizes the Balmer formula and takes into account the correct relativistic kinematics, has been derived. A second type of applications concerns phenomena due to the interaction of the electromagnetic field with the vacuum current and charge fluctuations. For instance, when the intensities become very high, the theory predicts the creation of electron-positron pairs by the field. The creation rate is known in the limit of static fields, and the aim of these calculations was to demonstrate the role of frequency in the domain starting from the lowest frequencies up to X-rays. The pair production rate was found to be entirely negligible, even for the most intense laser beams. An increase in frequency, even up to several tens of keV, did not have any effect on the pair production. (author) [fr
Scale covariant physics: a 'quantum deformation' of classical electrodynamics
International Nuclear Information System (INIS)
Knoll, Yehonatan; Yavneh, Irad
2010-01-01
We present a deformation of classical electrodynamics, continuously depending on a 'quantum parameter', featuring manifest gauge, Poincare and scale covariance. The theory, dubbed extended charge dynamics (ECD), associates a certain length scale with each charge which, due to scale covariance, is an attribute of a solution, not a parameter of the theory. When the EM field experienced by an ECD charge is slowly varying over that length scale, the dynamics of the charge reduces to classical dynamics, its emitted radiation reduces to the familiar Lienard-Wiechert potential and the above length scale is identified as the charge's Compton length. It is conjectured that quantum mechanics describes statistical aspects of ensembles of ECD solutions, much like classical thermodynamics describes statistical aspects of ensembles of classical solutions. A unique 'remote sensing' feature of ECD, supporting that conjecture, is presented, along with an explanation for the illusion of a photon within a classical treatment of the EM field. Finally, a novel conservation law associated with the scale covariance of ECD is derived, indicating that the scale of a solution may 'drift' with time at a constant rate, much like translation covariance implies a uniform drift of the (average) position.
Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics
Wei, Yang-hua; Gu, Wen-ju; Yang, Guoqing; Zhu, Yifu; Li, Gao-xiang
2018-05-01
Coherent perfect absorption (CPA) is investigated in the quantum nonlinear regime of cavity quantum electrodynamics (CQED), in which a single two-level atom couples to a single-mode cavity weakly driven by two identical laser fields. In the strong-coupling regime and due to the photon blockade effect, the weakly driven CQED system can be described as a quantum system with three polariton states. CPA is achieved at a critical input field strength when the frequency of the input fields matches the polariton transition frequency. In the quantum nonlinear regime, the incoherent dissipation processes such as atomic and photon decays place a lower bound for the purity of the intracavity quantum field. Our results show that under the CPA condition, the intracavity field always exhibits the quadrature squeezing property manifested by the quantum nonlinearity, and the outgoing photon flux displays the super-Poissonian distribution.
Quantum gravitational contributions to the beta function of quantum electrodynamics
International Nuclear Information System (INIS)
Felipe, Jean Carlos Coelho; Brito, Luis Cleber Tavares de; Nemes, Maria Carolina; Sampaio, Marcos
2011-01-01
Full text: Because of the negative mass dimension of the coupling constant perturbative Einstein quantum gravity (EQG) is nonrenormalizable. However, one can still make sense of EQG if it's interpreted as an effective field theory within a low energy expansion of a more fundamental theory. In an effective field theory all interactions compatible with its essential symmetry content are in principle allowed into the Lagrangian and thus it establishes a systematic framework to calculate quantum gravitational effects. This approach has been used to study the asymptotic behavior at high energies of quantum field theories that incorporate the gravitational field. Some studies analyze the asymptotic freedom for the coupling constants of some theories including gravitation near the Planck scale. For example, Robinson and Wilczek suggest that the gravitational field improve the asymptotic freedom of pure Yang-Mills near the Planck scale. Already , a similar calculation in the Maxwell-Einstein theory suggest that such conclusion is gauge dependence. This result was obtained by Pietrykowski. D. Toms say what the effective action is calculated in a gauge-condition independent version of the background field method using dimensional regularization it's argued that the gravitational field plays no role in the beta function of the Yang-Mills coupling. Another calculation done by Ebert, Plefka and Rodigast using conventional diagrammatic methods confirms the result obtained by Toms. In a recent publication, again published by Toms in 2010, claimed that quadratic divergent contributions were responsible to improve asymptotic freedom of fine structure constant by quantum gravity effects by using proper time cutoff regularization and effective action methods. However, the physical reality of the result in Tom's was questioned in recent work. This purpose of this work is to shed light on the origin of such controversies using only a diagrammatic analysis. As an effective model EQG is
The quantum Hall's effect: A quantum electrodynamic phenomenon
International Nuclear Information System (INIS)
Arbab, A. I.
2012-01-01
We have applied Maxwell's equations to study the physics of quantum Hall's effect. The electromagnetic properties of this system are obtained. The Hall's voltage, V H = 2πħ 2 n s /em, where n s is the electron number density, for a 2-dimensional system, and h = 2πħ is the Planck's constant, is found to coincide with the voltage drop across the quantum capacitor. Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance. Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached. At a fundamental level, the Hall's effect is found to be equivalent to a resonant LCR circuit with L H = 2π m/e 2 n s and C H = me 2 /2πħ 2 n s satisfying the resonance condition with resonant frequency equal to the inverse of the scattering (relaxation) time, τ s . The Hall's resistance is found to be R H = √L H /C H . The Hall's resistance may be connected with the impedance that the electron wave experiences when it propagates in the 2-dimensional gas. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Nonlinear quantum electrodynamic and electroweak processes in strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian
2015-06-24
Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.
Macroscopic quantum electrodynamics of high-Q cavities
Energy Technology Data Exchange (ETDEWEB)
Khanbekyan, Mikayel
2009-10-27
In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the
Run-away electrons in relativistic spin (1) /(2) quantum electrodynamics
International Nuclear Information System (INIS)
Low, F.E.
1998-01-01
The existence of run-away solutions in classical and non-relativistic quantum electrodynamics is reviewed. It is shown that the less singular high energy behavior of relativistic spin (1) /(2) quantum electrodynamics precludes an analogous behavior in that theory. However, a Landau-like anomalous pole in the photon propagation function or in the electron-massive photon forward scattering amplitude would generate a new run-away, characterized by an energy scale ω∼m e thinspexp(1/α). This contrasts with the energy scale ω∼m e /α associated with the classical and non-relativistic quantum run-aways. copyright 1998 Academic Press, Inc
Generating functional of the mean field in quantum electrodynamics with non-stable vacuum
International Nuclear Information System (INIS)
Gitman, D.M.; Kuchin, V.A.
1981-01-01
Generating functional for calculating a mean field, in the case of unstable vacuum, in quantum field theory has been suggested. Continual representation for the generating functional of the mean field has been found in the case of quantum electrodynamics with an external field. Generating electron-positron pairs from vacuum [ru
Quantum-electrodynamic influences on the lifetime of metastable states
International Nuclear Information System (INIS)
Brenner, G.
2007-01-01
High-precision lifetime measurements of the metastable 1s 2 2s 2 2p 2 P 0 3/2 level in boronlike Ar XIV and the 3s 2 2p 2 P 0 3/2 level in aluminumlike Fe XIV were performed at the Heidelberg electron beam ion trap (HD-EBIT). The lifetimes were inferred by monitoring their optical decay curves resulting from the magnetic dipole (M1) transition 1s 2 2s 2 2p 2 P 0 3/2 - 2 P 0 1/2 and 3s 2 3p 2 P 0 3/2 - 2 P 0 1/2 to the ground state configuration with transition wavelengths of 441.256 nm and 530.29 nm, respectively. Possible systematic error sources were investigated by studying the dependence of the decay times of the curves on various trapping conditions with high statistical significance. A new trapping scheme for lifetime measurements at an EBIT has been applied and allowed to reach an unprecedented precision in the realm of lifetime determinations on highly charged ions. The results of 9.573(4)( +12 -5 ) ms (stat)(syst) for Ar XIV and 16.726(10)(+17) ms (stat)(syst) for Fe XIV with a relative accuracy of 0.14% and 0.13%, respectively, make these measurements for the first time sensitive to quantum electrodynamic effects like the electron anomalous magnetic moment (EAMM). The results, improving the accuracy of previous measurements by factors of 10 and 6, respectively, show a clear discrepancy of about 3σ and 4σ to the trend of existing theoretical models, which in almost all cases predict a shorter lifetime, when adjusted for the EAMM. The obvious disagreement between experimental results and the predictions points at the incompleteness of the theoretical models used. (orig.)
Higher order energy transfer. Quantum electrodynamical calculations and graphical representation
International Nuclear Information System (INIS)
Jenkins, R.D.
2000-01-01
In Chapter 1, a novel method of calculating quantum electrodynamic amplitudes is formulated using combinatorial theory. This technique is used throughout instead of conventional time-ordered methods. A variety of hyperspaces are discussed to highlight isomorphism between a number of A generalisation of Pascal's triangle is shown to be beneficial in determining the form of hyperspace graphs. Chapter 2 describes laser assisted resonance energy transfer (LARET), a higher order perturbative contribution to the well-known process resonance energy transfer, accommodating an off resonance auxiliary laser field to stimulate the migration. Interest focuses on energy exchanges between two uncorrelated molecular species, as in a system where molecules are randomly oriented. Both phase-weighted and standard isotropic averaging are required for the calculations. Results are discussed in terms of a laser intensity-dependent mechanism. Identifying the applied field regime where LARET should prove experimentally significant, transfer rate increases of up to 30% are predicted. General results for three-center energy transfer are elucidated in chapter 3. Cooperative and accretive mechanistic pathways are identified with theory formulated to elicit their role in a variety of energy transfer phenomena and their relative dominance. In multichromophoric the interplay of such factors is analysed with regard to molecular architectures. The alignments and magnitudes of donor and acceptor transition moments and polarisabilities prove to have profound effects on achievable pooling efficiency for linear configurations. Also optimum configurations are offered. In ionic lattices, although both mechanisms play significant roles in pooling and cutting processes, only the accretive is responsible for sensitisation. The local, microscopic level results are used to gauge the lattice response, encompassing concentration and structural effects. (author)
Phenomenology of the vacuum in quantum electrodynamics and beyond
Energy Technology Data Exchange (ETDEWEB)
Doebrich, Babette
2011-09-30
Determining forces that arise by the restriction of the fluctuation modes of the vacuum by the insertion of boundaries or the observation of altered light propagation in external fields is a versatile means to investigate the vacuum structure of quantum electrodynamics. For these quantum vacuum probes, the vacuum can be understood and effectively modeled as a medium. Investigating the properties of this medium cannot only test and broaden our understanding of known interactions but can also be a valuable tool in the search for particles at low energy scales which arise in extensions of the standard model. In this thesis, we first study the geometry dependence of fluctuation modes in the Dirichlet-scalar analog of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. To this end we employ a technique which is fully nonperturbative in the height profile. We parameterize the differences to the distance dependencies in the planar limit in terms of an anomalous dimension quantifying the power-law deviation from the planar case. In numerical studies of experimentally relevant corrugations, we identify a universal regime of the anomalous dimension at larger distances. We argue that this universality arises as the relevant fluctuations average over corrugation structures smaller than the atom-wall distance. Turning to modified light propagation as a probe of the quantum vacuum, we show that a combination of strong, pulsed magnets and gravitational-wave interferometers can not only facilitate the detection of strong-field QED phenomena, but also significantly enlarges the accessible parameter space of hypothetical hidden-sector particles. We identify pulsed magnets as a suitable strong-field source to induce quantum nonlinearities, since their pulse frequency can be perfectly matched with the domain of highest sensitivity of modern gravitational-wave interferometers. Pushing current laboratory field-strengths to their limits, we suggest a
Phenomenology of the vacuum in quantum electrodynamics and beyond
International Nuclear Information System (INIS)
Doebrich, Babette
2011-01-01
Determining forces that arise by the restriction of the fluctuation modes of the vacuum by the insertion of boundaries or the observation of altered light propagation in external fields is a versatile means to investigate the vacuum structure of quantum electrodynamics. For these quantum vacuum probes, the vacuum can be understood and effectively modeled as a medium. Investigating the properties of this medium cannot only test and broaden our understanding of known interactions but can also be a valuable tool in the search for particles at low energy scales which arise in extensions of the standard model. In this thesis, we first study the geometry dependence of fluctuation modes in the Dirichlet-scalar analog of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. To this end we employ a technique which is fully nonperturbative in the height profile. We parameterize the differences to the distance dependencies in the planar limit in terms of an anomalous dimension quantifying the power-law deviation from the planar case. In numerical studies of experimentally relevant corrugations, we identify a universal regime of the anomalous dimension at larger distances. We argue that this universality arises as the relevant fluctuations average over corrugation structures smaller than the atom-wall distance. Turning to modified light propagation as a probe of the quantum vacuum, we show that a combination of strong, pulsed magnets and gravitational-wave interferometers can not only facilitate the detection of strong-field QED phenomena, but also significantly enlarges the accessible parameter space of hypothetical hidden-sector particles. We identify pulsed magnets as a suitable strong-field source to induce quantum nonlinearities, since their pulse frequency can be perfectly matched with the domain of highest sensitivity of modern gravitational-wave interferometers. Pushing current laboratory field-strengths to their limits, we suggest a
A derivation of the classical limit of quantum mechanics and quantum electrodynamics
International Nuclear Information System (INIS)
Ajanapon, P.
1985-01-01
Instead of regarding the classical limit as the h → 0, an alternative view based on the physical interpretation of the elements of the density matrix is proposed. According to this alternative view, taking the classical limit corresponds to taking the diagonal elements and ignoring the off-diagonal elements of the density matrix. As illustrations of this alternative approach, the classical limits of quantum mechanics and quantum electrodynamics are derived. The derivation is carried out in two stages. First, the statistical classical limit is derived. Then with an appropriate initial condition, the deterministic classical limit is obtained. In the case of quantum mechanics, it is found that the classical limit of Schroedinger's wave mechanics is at best statistical, i.e., Schroedinger's wave mechanics does not reduce to deterministic (Hamilton's or Newton's) classical mechanics. In order to obtain the latter, it is necessary to start out initially with a mixture at the level of statistical quantum mechanics. The derivation hinges on the use of the Feynman path integral rigorously defined with the aid of nonstandard analysis. Nonstandard analysis is also applied to extend the method to the case of quantum electrodynamics. The fundamental decoupling problem arising form the use of Grassmann variables is circumvented by the use of c-number electron fields, but antisymmetrically tagged. The basic classical (deterministic) field equations are obtained in the classical limit with appropriate initial conditions. The result raises the question as to what the corresponding classical field equations obtained in the classical limit from the renormalized Lagrangian containing infinite counterterms really mean
On the New Symmetries in Electrodynamics and Quantum Theory
Kotel'nikov, G. A.
2004-01-01
The generalized definition of symmetry is formulated. Application of this definition for symmetric analysis of theoretical physics equations is considered. The version of electrodynamics is constructed permitting the faster-than-light motions of particles with real masses. Some elements of physical interpretation of the proposed theory are presented.
Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems
Energy Technology Data Exchange (ETDEWEB)
Alidoosty Shahraki, Moslem; Khorasani, Sina; Aram, Mohammad Hasan [Sharif University of Technology, School of Electrical Engineering, Tehran (Iran, Islamic Republic of)
2014-05-15
The cavity quantum electrodynamics of various complex systems is here analyzed using a general versatile code developed in this research. Such quantum multi-partite systems normally consist of an arbitrary number of quantum dots in interaction with an arbitrary number of cavity modes. As an example, a nine-partition system is simulated under different coupling regimes, consisting of eight emitters interacting with one cavity mode. Two-level emitters (e.g. quantum dots) are assumed to have an arrangement in the form of a linear chain, defining the mutual dipole-dipole interactions. It was observed that plotting the system trajectory in the phase space reveals a chaotic behavior in the so-called ultrastrong-coupling regime. This result is mathematically confirmed by detailed calculation of the Kolmogorov entropy, as a measure of chaotic behavior. In order to study the computational complexity of our code, various multi-partite systems consisting of one to eight quantum dots in interaction with one cavity mode were solved individually. Computation run times and the allocated memory for each system were measured. (orig.)
Yang--Mills gauge theories and Baker--Johnson quantum electrodynamics
International Nuclear Information System (INIS)
Lemmon, J.; Mahanthappa, K.T.
1976-01-01
We show that the physical mass of a fermion in a symmetric asymptotically free non-Abelian vector gauge theory is dynamical in origin. We comment on the close analogy that exists between such a theory and the Baker--Johnson finite quantum electrodynamics. Comments are also made when there is spontaneous symmetry breaking
The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics
DEFF Research Database (Denmark)
Sok, Jérémy Vithya
2016-01-01
The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence...
Quasi-potential approach to the problem of bound states in quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Rizov, V A; Todorov, I T [Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika
1975-07-01
The paper reviews two types of quasipotential equations. An equation with a non-local potential is derived from the equations of motion of quantum electrodynamics. It is also related to a Bethe-Salpeter type of equation for the retarded Green function. Most of the paper is devoted to a systematic study of a local version of the Logunov-Tavkhelidze quasipotential approach.
Haeringen, W. van
In view of remaining obscurities and difficulties in existing treatments of the infrared divergences in quantum electrodynamics this problem has been considered anew. The approximate model introduced in 1937 by Bloch and Nordsieck is rediscussed. It is explicitly shown to be a good substitute for
International Nuclear Information System (INIS)
Gorskij, A.S.; Ioffe, B.L.; Khodzhamiryan, A.Yu.
1989-01-01
It is shown that in massless electrodynamics (when the electron mass is strictly zero) the cross section of longitudinal photon interaction on mass shell is nonvanishing. The reasons of appearance of this effects and its possible consequences as well as analogous effects in other quantum field theories (especially non-Abelian gauge theories) are discussed. 7 refs.; 2 figs
International Nuclear Information System (INIS)
Galvao, C.A.P.; Mignaco, J.A.
1994-01-01
The classical electromagnetic theory is analysed which corresponds to the two-dimensional quantum electrodynamics with massless spinor fields (Schwinger model). The chiral anomaly is introduced as a currents property, which in the two-dimensional spinor fields are duality related. It is also shown that the resulting classical theory is consistent. (author). 5 refs
Processes of arbitrary order in quantum electrodynamics with a pair-creating external field
International Nuclear Information System (INIS)
Gitman, D.M.
1977-01-01
Dyson's perturbation theory analogue for quantum electrodynamical processes with arbitrary initial and final states in an external field creating pairs is discussed. The interaction with the field is taken into account exactly. The possibility of using Feynman diagrams, together with modified correspondence rules, for the representation of the above mentioned processes is demonstrated. (author)
Mode expansions in the quantum electrodynamics of photonic media with disorder
DEFF Research Database (Denmark)
Wubs, Martijn; Mortensen, N. Asger
2012-01-01
We address two issues in the quantum electrodynamical description of photonic media with some disorder, neglecting material dispersion. When choosing a gauge in which the static potential vanishes, the normal modes of the medium with disorder satisfy another transversality condition than the modes......, we find the gauge transformation that makes the static potential zero, thereby generalizing work by Glauber and Lewenstein [Phys. Rev. A 43, 467 (1991)]. Our results are relevant for the quantum optics of disordered photonic crystals....
Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Myrzakulov, R. [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Odintsov, S.D. [Consejo Superior de Investigaciones Científicas, ICE/CSIC-IEEC, Campus UAB, Facultat de Ciències, Torre C5-Parell-2a pl, E-08193 Bellaterra, Barcelona (Spain); Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Valles, Barcelona (Spain); Tomsk State Pedagogical University, 634050 Tomsk (Russian Federation); Tomsk State University of Control Systems and Radioelectronics (TUSUR) 634050 Tomsk (Russian Federation); Sebastiani, L., E-mail: lorenzo.sebastiani@unitn.it [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2016-06-15
We study inflation for a quantum scalar electrodynamics model in curved space–time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters, the spectral index and the tensor-to-scalar ratio and how they influence the bound of the Hubble parameter at the beginning of the primordial acceleration. We demonstrate that the viable inflation maybe successfully realized, so that it turns out to be consistent with last Planck and BICEP2/Keck Array data.
Classical and quantum electrodynamics and the B(3) field
Evans, Myron W
2001-01-01
It is well known that classical electrodynamics is riddled with internal inconsistencies springing from the fact that it is a linear, Abelian theory in which the potentials are unphysical. This volume offers a self-consistent hypothesis which removes some of these problems, as well as builds a framework on which linear and nonlinear optics are treated as a non-Abelian gauge field theory based on the emergence of the fundamental magnetizing field of radiation, the B(3) field. Contents: Interaction of Electromagnetic Radiation with One Fermion; The Field Equations of Classical O (3) b Electrodyn
Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch
Energy Technology Data Exchange (ETDEWEB)
Hoffmann, Elisabeth Christiane Maria
2013-05-29
The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work
Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch
International Nuclear Information System (INIS)
Hoffmann, Elisabeth Christiane Maria
2013-01-01
The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work presents the theoretical background, the fabrication techniques and
Baumann, Gerd
2005-01-01
Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...
Tunable coupling and ultrastrong interaction in circuit quantum electrodynamics
International Nuclear Information System (INIS)
Baust, Alexander Theodor
2015-01-01
For future quantum information and quantum simulation architectures with superconducting circuits, a profound understanding of the coupling mechanisms between the individual building blocks is essential. In our work, we investigate galvanically coupled qubit-resonator systems, demonstrate the phenomenon of ultrastrong coupling and realize qubit mediated tunable and switchable coupling between two frequency-degenerate coplanar microwave resonators.
Energy Technology Data Exchange (ETDEWEB)
Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik
1975-01-01
Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.
Bound states in the two-dimension massive quantum electrodynamics (Qed2)
International Nuclear Information System (INIS)
Alves, V.S.; Gomes, M.
1994-01-01
This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated
Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics
International Nuclear Information System (INIS)
Sanchez Madrigal, S; Raya, A; Hofmann, C P
2011-01-01
We study the non-perturbative phenomena of Dynamical Mass Generation and Confinement by truncating at the non-perturbative level the Schwinger-Dyson equations in Maxwell-Chern-Simons planar quantum electrodynamics. We obtain numerical solutions for the fermion propagator in Landau gauge within the so-called rainbow approximation. A comparison with the ordinary theory without the Chern-Simons term is presented.
Quantum electrodynamics within the framework of a new 4-dimensional symmetry
International Nuclear Information System (INIS)
Hsu, J.P.
1977-06-01
Quantum electrodynamics is discussed within the framework of a new 4-dimensional symmetry in which the concept of time, the propagation of light and the transformation property of many physical quantities are drastically different from those in special relativity. However, they are consistent with experiments. The new framework allows for natural developments of additional concepts. A possible and crucial experimental test of the new 4-dimensional symmetry is discussed
Cavity quantum electrodynamics in the Anderson-localized regime
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren
2010-01-01
We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%.......We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%....
International Nuclear Information System (INIS)
Krasnikov, N.V.
1991-01-01
Study of the ultraviolet behavior of asymptotically nonfree theories is one of the most important problems of quantum field theory. Unfortunately, not too much is known about the ultraviolet properties in asymptotically nonfree theories; the main obstacle is the growth of the effective coupling constant in the ultraviolet region, which renders perturbation theory inapplicable. It is shown that in quantum electrodynamics in n = 4 + 2 var-epsilon space-time (var-epsilon > 0) the photon propagator has the ultraviolet asymptotic behavior D(k 2 ) ∼ (k 2 ) -1-var-epsilon . In the case var-epsilon R ≤ -3π var-epsilon + O(var-epsilon 2 )
Instantaneous action-at-a-distance formulation of quantum electrodynamics
International Nuclear Information System (INIS)
Vora-Singha, P.
1977-01-01
Classical conserved quantities, namely energy, linear momentum, angular momentum and the center of mass constant, which are computed from Kerner's symmetric joint Lagrangian, are interpreted quantum mechanically in Heisenberg representation. The energy, when expanded and truncated after the 1/c 2 term, has interaction terms with the sign opposite to the interaction term in the Darwin Hamiltonian. When interpreted quantum mechanically, the energy (up to the 1/c 2 term) and the Darwin Hamiltonian are called the Modified-Breit ad Breit operators, respectively. The total energy, when interpreted quantum mechanically, is called the energy operator. The three operators, namely, the Breit, Modified-Breit, and energy operators are applied to plane wave scattering, He2P fine structure splitting and positronium. In He2P fine structure splitting, when the calculation is compared to available experimental results, the Modified-Breit and the energy operators seem to give wrong predictions
Random electrodynamics : a classical foundation for key quantum concepts
International Nuclear Information System (INIS)
Sachidanandam, S.
1981-01-01
The model of random electrodynamics, in which electromagnetic particles are subjected, in a classical manner, to the forces of radiation damping and the fluctuating zero-point fields provides the framework in which the following results are obtained: (1) The precession dynamics of a long-lived, non-relativistic particle with a magnetic moment proportional to its spin, leads to a self-consistent determination of the spin value as one-half. (2) The internal dynamic underlying the intrinsic magnetic moment of a Dirac particle yields a classically visualizable picture of the spin-magnetic moment. (3) The Bose correlation among indistinguishable, non-interacting, spin-zero Particles arises from the coupling through the common- zero point fields and the radiation reaction fields when the particles are close together in both the r vector and the energy spaces. (4) The (exclusion principle-induced) correlation among identical, non-interacting magnetic particles with spin 1/2 is brought about by the coupling, (through the common fields of radiation reaction and the vacuum fluctuations), of the spins as well as the translational motions when the particles are close together in r vector and the energy spaces. (5) A dilute gas of free electrons has a Maxwellian distribution of velocities and the correct value of the djamagnetic moment in the presence of a magnetic field. Considerations on the centre of mass motion of a composite neutral particle lead to a simple resolution of the foundational paradoxes of statistical mechanics. (6) An approximate treatment of the hydrogen atom leads to a description of the evolution to the ground state at absolute zero and an estimation of the mass frequency and the line-width of the radiation emitted when an excited atom decays. (author)
Quantum electrodynamical torques in the presence of Brownian motion
Munday, J. N.; Iannuzzi, D.; Capasso, F.
2006-01-01
Quantum fluctuations of the electromagnetic field give rise to a zero-point energy that persists even in the absence of electromagnetic sources. One striking consequence of the zero-point energy is manifested in the Casimir force, which causes two electrically neutral metallic plates to attract in
Epitaxial lift-off for solid-state cavity quantum electrodynamics
International Nuclear Information System (INIS)
Greuter, Lukas; Najer, Daniel; Kuhlmann, Andreas V.; Starosielec, Sebastian; Warburton, Richard J.; Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.
2015-01-01
We demonstrate an approach to incorporate self-assembled quantum dots into a Fabry-Pérot-like microcavity. Thereby, a 3λ/4 GaAs layer containing quantum dots is epitaxially removed and attached by van der Waals bonding to one of the microcavity mirrors. We reach a finesse as high as 4100 with this configuration limited by the reflectivity of the dielectric mirrors and not by scattering at the semiconductor-mirror interface, demonstrating that the epitaxial lift-off procedure is a promising procedure for cavity quantum electrodynamics in the solid state. As a first step in this direction, we demonstrate a clear cavity-quantum dot interaction in the weak coupling regime with a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell factor suggest that we are close to the strong coupling regime
Quantum electrodynamics in the light-front Weyl gauge
International Nuclear Information System (INIS)
Przeszowski, J.; Naus, H.W.; Kalloniatis, A.C.
1996-01-01
We examine (3+1)-dimensional QED quantized in the open-quote open-quote front form close-quote close-quote with finite open-quote open-quote volume close-quote close-quote regularization, namely, in discretized light-cone quantization. Instead of the light-cone or Coulomb gauges, we impose the light-front Weyl gauge A - =0. The Dirac method is used to arrive at the quantum commutation relations for the independent variables. We apply open-quote open-quote quantum-mechanical gauge fixing close-quote close-quote to implement Gauss close-quote law, and derive the physical Hamiltonian in terms of unconstrained variables. As in the instant form, this Hamiltonian is invariant under global residual gauge transformations, namely, displacements. On the light cone the symmetry manifests itself quite differently. copyright 1996 The American Physical Society
Electrodynamically trapped Yb+ ions for quantum information processing
International Nuclear Information System (INIS)
Balzer, Chr.; Braun, A.; Hannemann, T.; Wunderlich, Chr.; Paape, Chr.; Ettler, M.; Neuhauser, W.
2006-01-01
Highly efficient, nearly deterministic, and isotope selective generation of Yb + ions by one- and two-color photoionization is demonstrated. State preparation and state selective detection of hyperfine states in 171 Yb + is investigated in order to optimize the purity of the prepared state and to time-optimize the detection process. Linear laser-cooled Yb + ion crystals confined in a Paul trap are demonstrated. Advantageous features of different previous ion trap experiments are combined, while at the same time the number of possible error sources is reduced by using a comparatively simple experimental apparatus. This opens a new path toward quantum state manipulation of individual trapped ions, and in particular, to scalable quantum computing
Multi-qubit parity measurement in circuit quantum electrodynamics
International Nuclear Information System (INIS)
DiVincenzo, David P; Solgun, Firat
2013-01-01
We present a concept for performing direct parity measurements on three or more qubits in microwave structures with superconducting resonators coupled to Josephson-junction qubits. We write the quantum-eraser conditions that must be fulfilled for the parity measurements as requirements for the scattering phase shift of our microwave structure. We show that these conditions can be fulfilled with present-day devices. We present one particular scheme, implemented with two-dimensional cavity techniques, in which each qubit should be coupled equally to two different microwave cavities. The magnitudes of the couplings that are needed are in the range that has been achieved in current experiments. A quantum calculation indicates that the measurement is optimal if the scattering signal can be measured with near single-photon sensitivity. A comparison with an extension of a related proposal from cavity optics is presented. We present a second scheme, for which a scalable implementation of the four-qubit parities of the surface quantum error correction code can be envisioned. It uses three-dimensional cavity structures, using cavity symmetries to achieve the necessary multiple resonant modes within a single resonant structure. (paper)
DEFF Research Database (Denmark)
Reitzenstein, S.; Schneider, C.; Albert, F.
2011-01-01
Semiconductor quantum dots (QDs) are fascinating nanoscopic structures for photonics and future quantum information technology. However, the random position of self-organized QDs inhibits a deterministic coupling in devices relying on cavity quantum electrodynamics (cQED) effects which complicates......, e.g., the large scale fabrication of quantum light sources. As a result, large efforts focus on the growth and the device integration of site-controlled QDs. We present the growth of low density arrays of site-controlled In(Ga)As QDs where shallow etched nanoholes act as nucleation sites...... linewidth, the oscillator strength and the quantum efficiency. A stacked growth of strain coupled SCQDs forming on wet chemically etched nanoholes provide the smallest linewidth with an average value of 210 μeV. Using time resolved photoluminescence studies on samples with a varying thickness of the capping...
International Nuclear Information System (INIS)
Becher, P.; Joos, H.
1977-07-01
It is the aim of the main part of these lectures to show how most of the expected dynamical properties of quantum chromodynamics are realised in 1+1 dimensional quantum electrodynamics. Asymptotic freedom, the infrared limit, quark confinement and bag approximation are discussed in detail. (BJ) [de
International Nuclear Information System (INIS)
Brevik, I.
1983-01-01
The canonical quantum theory for an electromagnetic field within an isotropic nondispersive medium, whose permittivity, epsilon, and permeability μ satisfy the condition epsilonμ=1, is developed. This condition is found to simplify the electromagnetic formalism considerably and is of interest not only to quantum electrodynamics (QED) but also to quantum chromodynamics (QDC) in view of the formal analogy existing between these two theories to the zero-order in the gauge coupling constant. After giving a survey of the general formalism, this paper discusses appropriate modifications of known experiments in optics: the Ashkin-Dziedzic pressure experiment (1973), the Barlow experiment (1912), and the levitation experiment of Ashkin (1970) and others. Finally, a calculation is given of Casimir (i.e., zero-point) surface force acting on one of two spherical interfaces separating three media from each other, under certain simplifying conditions
Energy Technology Data Exchange (ETDEWEB)
Nakanishi, N [Kyoto Univ. (Japan). Research Inst. for Mathematical Sciences
1974-12-01
The Lehmann--Symanzik--Zimmermann formalism is presented for manifestly covariant quantum electrodynamics involving a gauge parameter ..cap alpha... Contrary to Kaellen's assertion, it is shown that one can consistently formulate the asymptotic condition for the electromagnetic field and construct the Fock space of asymptotic states. Except for the case of Feynman gauge (..cap alpha..=1), the formalism is somewhat complicated because of the presence of dipole ghosts, but emphasis is laid on the very existence of a consistent formalism. The completeness relation for the asymptotic states is presented so that the generalized unitarity relation can be written down. Indefinite-metric theory of a massive vector field is briefly discussed.
International Nuclear Information System (INIS)
Zhukovskii, K.V.; Eminov, P.A.
1995-01-01
The one-loop approximation is used to calculate the effects of finite temperature and nonzero chemical potential on the electron energy shift in a (2 + 1)-quantum electrodynamic system containing a Churn-Simon term. The induced electron mass is derived with a massless (2 + 1)-quantum electrodynamic system together with the exchange correction to the thermodynamic potential for a completely degenerate electron gas. It is shown that in the last case, incorporating the Churn-Simon term leads to loss of the gap in the direction law
Stopping single photons in one-dimensional circuit quantum electrodynamics systems
International Nuclear Information System (INIS)
Shen, J.-T.; Povinelli, M. L.; Sandhu, Sunil; Fan Shanhui
2007-01-01
We propose a mechanism to stop and time reverse single photons in one-dimensional circuit quantum electrodynamics systems. As a concrete example, we exploit the large tunability of the superconducting charge quantum bit (charge qubit) to predict one-photon transport properties in multiple-qubit systems with dynamically controlled transition frequencies. In particular, two qubits coupled to a waveguide give rise to a single-photon transmission line shape that is analogous to electromagnetically induced transparency in atomic systems. Furthermore, by cascading double-qubit structures to form an array and dynamically controlling the qubit transition frequencies, a single photon can be stopped, stored, and time reversed. With a properly designed array, two photons can be stopped and stored in the system at the same time. Moreover, the unit cell of the array can be designed to be of deep subwavelength scale, miniaturizing the circuit
Berestetskii, Vladimir B; Pitaevskii, L P
1982-01-01
Several significant additions have been made to the second edition, including the operator method of calculating the bremsstrahlung cross-section, the calcualtion of the probabilities of photon-induced pair production and photon decay in a magneticfield, the asymptotic form of the scattering amplitudes at high energies, inelastic scattering of electrons by hadrons, and the transformation of electron-positron pairs into hadrons.
Bookshelf (Early Quantum Electrodynamics - A Source Book, by Arthur I. Miller)
International Nuclear Information System (INIS)
Anon.
1994-01-01
Many people these days would say that quantum electrodynamics, the quantum picture of electromagnetic radiation, dates from 1947-8 with the work of Sin-itoro Tomonaga, Julian Schwinger and Richard Feynman. However this was the modern reformulation of a theory whose genesis was Paul Dirac's 1927 work on the quantization of radiation and was subsequently, and painfully, pieced together in the 1930s. Until the Second World War, the science of quantum electrodynamics advanced steadily, driven for the most part by the intellects which had produced modern quantum mechanics - notably Dirac, Heisenberg and Pauli. After Dirac's 1928 relativistic theory of the electron, Heisenberg and Pauli went on to cast an initial quantum formalism for the interaction between radiation and electrons. During this time many intellectual hurdles had to be crossed - the negative energy states predicted by Dirac's equation and their final identification as antimatter electrons (positrons), the whole problem of explaining quantum force mechanisms as particle exchanges, Fermi's explanation of beta decay, and Yukawa's explanation of the nuclear force. Heisenberg's invention of the S-matrix and his ideas on the transmission of nuclear forces through exchange mechanisms revolutionized both our picture of the quantum world. These problems were not easy - several times during the 1920s even these intellects almost despaired. A shadow across the subject was the continual problem of troublesome infinities in mass terms and elsewhere. It was not until the ordered renormalization recipes of the immediate post-war period that these infinities were finally hidden from sight. Science historian Arthur Miller traces these developments in the first half of the book, and signals how these early developments were eventually to dovetail with the exciting new developments of the late 1940s. Supplementing the survey are eleven fascinating landmark papers by Heisenberg, Dirac, Weisskopf
International Nuclear Information System (INIS)
Zalialiutdinov, T; Baukina, Yu; Solovyev, D; Labzowsky, L
2014-01-01
The theory of multiphoton cascade transitions with two-photon links is considered within two different approaches: quantum electrodynamical (QED) and phenomenological quantum mechanical (QM). A problem of regularization of the cascade contributions is investigated in detail. It is argued that the correct regularization should include both initial and intermediate level widths in the singular energy denominators. This result follows both from the QED and from the QM approach. Particular transitions nl → 1s + 2γ with nl = 3s, 4s, 3d, 4d and nl → 1s + 3γ with nl = 3p, 4p are considered as examples. The importance of the proper cascade regularization is also demonstrated. (paper)
Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics
Arai, A
2006-01-01
A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.
Correlation of Dirac potentials and atomic inversion in cavity quantum electrodynamics
International Nuclear Information System (INIS)
Trisetyarso, Agung
2010-01-01
Controlling the time evolution of the population of two states in cavity quantum electrodynamics is necessary by tuning the modified Rabi frequency in which the extra classical effect of electromagnetic field is taken into account. The theoretical explanation underlying the perturbation of potential on spatial regime of bloch sphere is by the use of Bagrov-Baldiotti-Gitman-Shamshutdinova-Darboux transformations [Bagrov et al., 'Darboux transformation for two-level system', Ann. Phys. 14, 390 (2005)] on the electromagnetic field potential in one-dimensional stationary Dirac model in which the Pauli matrices are the central parameters for controlling the collapse and revival of the Rabi oscillations. It is shown that by choosing σ 1 in the transformation generates the parabolic potential causing the total collapse of oscillations, while (σ 2 ,σ 3 ) yield the harmonic oscillator potentials ensuring the coherence of qubits.
The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics
Sok, Jérémy
2016-02-01
The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence of the para-positronium, the bound state of an electron and a positron with antiparallel spins, in the BDF model represented by a critical point of the energy functional in the absence of an external field. We also prove the existence of the dipositronium, a molecule made of two electrons and two positrons that also appears as a critical point. More generally, for any half integer j ∈ 1/2 + Z + , we prove the existence of a critical point of the energy functional made of 2j + 1 electrons and 2j + 1 positrons.
Energy Technology Data Exchange (ETDEWEB)
Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik
1975-01-01
Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.
A comprehensive coordinate space renormalization of quantum electrodynamics to two-loop order
International Nuclear Information System (INIS)
Haagensen, P.E.; Latorre, J.I.
1993-01-01
We develop a coordinate space renormalization of massless quantum electrodynamics using the powerful method of differential renormalization. Bare one-loop amplitudes are finite at non-coincident external points, but do not accept a Fourier transform into momentum space. The method provides a systematic procedure to obtain one-loop renormalized amplitudes with finite Fourier transforms in strictly four dimensions without the appearance of integrals or the use of a regulator. Higher loops are solved similarly by renormalizing from the inner singularities outwards to the global one. We compute all one- and two-loop 1PI diagrams, run renormalization group equations on them. and check Ward identities. The method furthermore allows us to discern a particular pattern of renormalization under which certain amplitudes are seen not to contain higher-loop leading logarithms. We finally present the computation of the chiral triangle showing that differential renormalization emerges as a natural scheme to tackle γ 5 problems
Confinement in Maxwell-Chern-Simons planar quantum electrodynamics and the 1/N approximation
International Nuclear Information System (INIS)
Hofmann, Christoph P.; Raya, Alfredo; Madrigal, Saul Sanchez
2010-01-01
We study the analytical structure of the fermion propagator in planar quantum electrodynamics coupled to a Chern-Simons term within a four-component spinor formalism. The dynamical generation of parity-preserving and parity-violating fermion mass terms is considered, through the solution of the corresponding Schwinger-Dyson equation for the fermion propagator at leading order of the 1/N approximation in Landau gauge. The theory undergoes a first-order phase transition toward chiral symmetry restoration when the Chern-Simons coefficient θ reaches a critical value which depends upon the number of fermion families considered. Parity-violating masses, however, are generated for arbitrarily large values of the said coefficient. On the confinement scenario, complete charge screening - characteristic of the 1/N approximation - is observed in the entire (N,θ)-plane through the local and global properties of the vector part of the fermion propagator.
Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics
International Nuclear Information System (INIS)
Ni Guang-Jiong; Xu Jian-Jun; Lou Sen-Yue
2011-01-01
Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S—2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state—-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity. (general)
Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Yang Zhen-Biao
2007-01-01
An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.
International Nuclear Information System (INIS)
Ito, K.R.
1975-01-01
The Schwinger model is considered in the Landau-gauge formalism of quantum electrodynamics. This model can be solved exactly on the assumption of no radiative corrections to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson which is constructed from a pair of two-component massless fermions. This would-be Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge invariance of the first kind, and it becomes unphysical through the Higgs mechanism. However, as all the fermions themselves decouple from photons, they cannot appear as real particles in our world. (author)
Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms
International Nuclear Information System (INIS)
Thierfelder, C.; Schwerdtfeger, P.
2010-01-01
We present quantum electrodynamic (QED) calculations within the picture of bound-state QED for the frequency-dependent Breit interaction between electrons, the vacuum polarization, and the electron self-energy correction starting from the Dirac-Coulomb Hamiltonian for the ionization potentials of the group 1, 2, 11, 12, 13, and 18 elements of the periodic table, and down to the superheavy elements up to nuclear charge Z=120. The results for the s-block elements are in very good agreement with earlier studies by Labzowsky et al. [Phys. Rev. A 59, 2707 (1999)]. We discuss the influence of the variational versus perturbative treatment of the Breit interaction for valence-space ionization potentials. We argue that the lowest-order QED contributions become as important as the Breit interaction for ionization potentials out of the valence s shell.
The eigenfunction method and the mass operator in intense-field quantum electrodynamics
International Nuclear Information System (INIS)
Ritus, V.I.
1987-01-01
A method is given for calculating radiation effects in constant intense-field quantum electrodynamics; this method is based on the use of the eigenfunctions of the mass operator and diagonalization of the latter. A compact expression is found for the eigenvalue of the mass operator of the electron in a random constant field together with the corresponding elastic scattering amplitude. The anomalous electric moment that arises in the field with a pseudoscalar EH not equal to O is found and investigated in detail together with the anomalous magnetic moment in the electrical field that approaches the double Schwinger value with an increase in the field together with the mass shift and the rate of decay of the ground state of the electron in the electrical field
Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse
2016-12-13
Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.
Oscillating dipole with fractional quantum source in Aharonov-Bohm electrodynamics
Directory of Open Access Journals (Sweden)
Giovanni Modanese
Full Text Available We show, in the case of a special dipolar source, that electromagnetic fields in fractional quantum mechanics have an unexpected space dependence: propagating fields may have non-transverse components, and the distinction between near-field zone and wave zone is blurred. We employ an extension of Maxwell theory, Aharonov-Bohm electrodynamics, which is compatible with currents jν conserved globally but not locally; we have derived in another work the field equation ∂μFμν=jν+iν, where iν is a non-local function of jν, called “secondary current”. Y. Wei has recently proved that the probability current in fractional quantum mechanics is in general not locally conserved. We compute this current for a Gaussian wave packet with fractional parameter a=3/2 and find that in a suitable limit it can be approximated by our simplified dipolar source. Currents which are not locally conserved may be present also in other quantum systems whose wave functions satisfy non-local equations. The combined electromagnetic effects of such sources and their secondary currents are very interesting both theoretically and for potential applications. Keywords: Generalized Maxwell theory, Fractional Schrödinger equation, Local current conservation
Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics
International Nuclear Information System (INIS)
Vuckovic, Jelena; Pelton, Matthew; Scherer, Axel; Yamamoto, Yoshihisa
2002-01-01
This paper presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE 11 ) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive-index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high- and low-refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10 4 , together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity-quantum-electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing
Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane
Energy Technology Data Exchange (ETDEWEB)
Bart, G.R.; Fenster, S.
1976-06-01
The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance.
Quantum electrodynamic theory of recombination of an electron with a highly charged ion
International Nuclear Information System (INIS)
Shabaev, V.M.
1994-01-01
The consequent quantum electrodynamic theory of the process of the recombination of an electron with a multicharged ion is considered. The reduction technique for the calculation of this process by perturbation theory is formulated. The process of the recombination of an electron with a very highly charged one-electron ion for the case of resonance with the doubly excited (2s,2s) 0 , (2p 1/2 ,2p 1/2 ) 0 , (2s,2p 1/2 ) 0,1 states is studied. The formulas for the cross section of the process are derived for two possible versions of the experiment. The interference between the radiative-recombination process and the dielectronic-recombination (DR) process, and the interference between the DR amplitudes for the levels with the identical quantum numbers [(2s,2s) 0 , (2p 1/2 ) 0 ] are taken into account. The deviation of the shape of the resonances from the Lorentz one, due to the interference terms, is discussed
Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane
International Nuclear Information System (INIS)
Bart, G.R.; Fenster, S.
1976-06-01
The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance
Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Lodahl, Peter
2013-01-01
-resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multi...
International Nuclear Information System (INIS)
Ding, X.; Sun, R.; Dong, C.; Koike, F.; Kato, D.; Murakami, I.; Sakaue, H.A.
2017-01-01
The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The study of W 54+ ion provide necessary reference data for the fusion plasma physics as tungsten was chosen to be used as the armour material of the divertor of the ITER project. The ground states [Ne]3s 2 3p 6 3d 2 and first excited states [Ne]3s 2 3p 5 3d 3 of W 54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3s and 3p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W 54+ ion. (authors)
Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation
Directory of Open Access Journals (Sweden)
Ilya D. Feranchuk
2007-12-01
Full Text Available The self-localized quasi-particle excitation of the electron-positron field (EPF is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron and it allows one to solve the following problems: i to express the ''primary'' charge $e_0$ and the mass $m_0$ of the ''bare'' electron in terms of the observed values of $e$ and $m$ of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii to consider $mu$-meson as another self-localized EPF state and to estimate the ratio $m_mu/m$; iii to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv to show that the expansion in a power of the observed charge $e ll 1$ corresponds to the strong coupling expansion in a power of the ''primary'' charge $e^{-1}_0 sim e$ when the interaction between the ''physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.
Eigenfunction method and mass operator in the quantum electrodynamics of a constant field
International Nuclear Information System (INIS)
Ritus, V.I.
1978-01-01
A method is presented for the calculation of radiative effects in the quantum electrodynamics of an intense constant field. It is based on the application of the mass operator eigenfunctions and on diagonalization of the operator. A compact expression for the proper value of the electron mass operator in an arbitrary constant field and the corresponding elastic scattering amplitude are found. The imaginary part of the amplitude determines the decay rate of various states of the electron in the field; the real part contains the mass shift and the anomalous magnetic and electric moments as functions of the field and electron momentum. THe anomalous electric moment which arises in a field with a pseudoscalar EH not equal to 0 and the anomalous magnetic moment in an electric field which tends to the double Schwinger value with increase of the field strength are found and investigated in detail as are the mass shift and decay rate of the ground state of an electron in an electric field. In a weak field the mass shift contains the linear with respect to the field modulus classical term which characterizes the effect of acceleration on the structure of electron
Magnetic monopole plasma phase in (2+1)d compact quantum electrodynamics with fermionic matter
International Nuclear Information System (INIS)
Armour, Wesley; Hands, Simon; Lucini, Biagio; Kogut, John B.; Strouthos, Costas; Vranas, Pavlos
2011-01-01
We present the first evidence from lattice simulations that the magnetic monopoles in three-dimensional compact quantum electrodynamics (cQED 3 ) with N f =2 and N f =4 four-component fermion flavors are in a plasma phase. The evidence is based mainly on the divergence of the monopole susceptibility (polarizability) with the lattice size at weak gauge couplings. A weak four-Fermi term added to the cQED 3 action enabled simulations with massless fermions. The exact chiral symmetry of the interaction terms forbids symmetry breaking lattice discretization counterterms to appear in the theory's effective action. It is also shown that the scenario of a monopole plasma does not depend on the strength of the four-Fermi coupling. Other observables such as the densities of isolated dipoles and monopoles and the so-called specific heat show that a crossover from a dense monopole plasma to a dilute monopole gas occurs at strong couplings. The implications of our results on the stability of U(1) spin liquids in two spatial dimensions are also discussed.
Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions
International Nuclear Information System (INIS)
Martino, Trassinelli
2005-12-01
The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π - ) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV
Permanent dipole moments and damping in nonlinear optics. A quantum electrodynamic description
International Nuclear Information System (INIS)
Davila-Smith, L.C.
1999-01-01
Based on the well-known transformation of the electric-dipole interaction, different nonlinear optical processes are analysed. The transformation provides a convenient means for ascertaining the effects of permanent dipoles on the optical behaviour of systems with a response dominated by two energy levels. By establishing the general validity of the procedure for parametric and non-parametric processes, it is shown how the detailed structure of the optical nonlinearity can be ascertained, based on a novel interpretation of the relevant quantum electrodynamical Feynman diagrams. This transformation is used to analysed a novel five-wave mixing process, which is also developed in this thesis. This process is of considerable interest for its involvement in the generation of even harmonics in isotropic media. Also, the flexibility in the beam geometry affords considerable scope for the study of the polarisation and angular dependence. Finally, a general study of the effects of resonance in matter-radiation interactions is given, justifying the phenomenological incorporation of the damping addenda. The two alternative convention used when the damping is introduced are discussed, showing that both conventions lead to different physical results. Based on these studies the resonance effects are considered in relation to different multiphoton processes. (author)
Energy Technology Data Exchange (ETDEWEB)
Gumberidze, A.; Stoehlker, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Banas, D. [Pedagogical Univ., Kielce (PL). Inst. of Phys.] [and others
2005-05-01
X-ray spectra following radiative recombination of free electrons with bare uranium ions (U{sup 92+}) were measured at the electron cooler of the ESR storage ring. The most intense lines observed in the spectra can be attributed to the characteristic Lyman ground-state transitions and to the recombination of free electrons into the K-shell of the ions. Our experiment was carried out by utilizing the deceleration technique which leads to a considerable reduction of the uncertainties associated with Doppler corrections. This, in combination with the 0 observation geometry, allowed us to determine the ground-state Lamb shift in hydrogen-like uranium (U{sup 91+}) from the observed X-ray lines with an accuracy of 1%. The present result is about 3 times more precise than the most accurate value available up to now and provides the most stringent test of bound-state quantum electrodynamics for one-electron systems in the strong-field regime. (orig.)
Quantum Simulation of the Ultrastrong-Coupling Dynamics in Circuit Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
D. Ballester
2012-05-01
Full Text Available We propose a method to get experimental access to the physics of the ultrastrong- and deep-strong-coupling regimes of light-matter interaction through the quantum simulation of their dynamics in standard circuit QED. The method makes use of a two-tone driving scheme, using state-of-the-art circuit-QED technology, and can be easily extended to general cavity-QED setups. We provide examples of ultrastrong- and deep-strong-coupling quantum effects that would be otherwise inaccessible.
Quantum field theory II: quantum electrodynamics. A bridge between mathematicians and physicists
International Nuclear Information System (INIS)
Zeidler, Eberhard
2009-01-01
This is the second volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. This book seeks to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to discover interesting interrelationships between quite diverse mathematical topics. For students of physics fairly advanced mathematics, beyond that included in the usual curriculum in physics, is presented. The present volume concerns a detailed study of the mathematical and physical aspects of the quantum theory of light. (orig.)
Quantum field theory II: quantum electrodynamics. A bridge between mathematicians and physicists
Energy Technology Data Exchange (ETDEWEB)
Zeidler, Eberhard [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany)
2009-07-01
This is the second volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. This book seeks to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to discover interesting interrelationships between quite diverse mathematical topics. For students of physics fairly advanced mathematics, beyond that included in the usual curriculum in physics, is presented. The present volume concerns a detailed study of the mathematical and physical aspects of the quantum theory of light. (orig.)
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Ates, Serkan; Reitzenstein, S.
2010-01-01
The coupling between a quantum dot (QD) and a micropillar cavity is experimentally investigated by performing time-resolved, correlation, and two-photon interference measurements. The Jaynes-Cummings model including dissipative Lindblad terms and dephasing is analyzed, and all the parameters...
Bloch-wave engineering of quantum dot-micropillars for cavity quantum electrodynamics experiments
DEFF Research Database (Denmark)
Lermer, Matthias; Gregersen, Niels; Dunzer, Florian
2012-01-01
scattering loss leads to record-high visibility of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13,600 and a Rabi splitting of 85 \\mueV with an estimated visibility v of 0.38 are observed for a small mode volume MP with a diameter dc of 850 nm....
Pakniat, R.; Soltani, M.; Tavassoly, M. K.
2018-03-01
Recently we studied the effect of photon addition in the initial coherent field on the entanglement swapping which causes some improvements in the process [Soltani et al., Int. J. Mod. Phys. B 31, 1750198 (2017)]. In this paper, we investigate the influence of multiphoton transitions in the atom-field interaction based on the cavity quantum electrodynamics on the entanglement swapping and show its considerable constructive effect on this process. The presented model consists of two two-level atoms namely A1 and A2 and two distinct cavity fields F1 and F2. Initially, the atoms are prepared in a maximally entangled state and the fields in the cavities are prepared in hybrid entangled state of number and coherent states, separately. Making the atom A2 to interact with the field F1 (via the generalized Jaynes-Cummings model which allows m-photon transitions between atomic levels in the emission and absorption processes) followed by their detection allows us to arrive at the entanglement swapping from the two atoms A1, A2 and the two fields F1, F2 to the atom-field A1-F2 system. Then, we pay our attention to the time evolution of success probability of detecting processes and fidelity. Also, to determine the amount of entanglement of the generated entangled state in the swapping process, the linear entropy is evaluated and the effect of parameter m concerning the multiphoton transitions on these quantities is investigated, numerically. It is observed that, by increasing the number of photons in the transition process, one may obtain considerable improvement in the relevant quantities of the entanglement swapping. In detail, the satisfactorily acceptable values 1 and 0.5 corresponding to success probability and fidelity are obtained for most of the times during observing of the above-mentioned procedure. We concluded that the presented formalism in this paper is much more advantageous than our presentation model in our earlier work mentioned above.
International Nuclear Information System (INIS)
Hiroshima, Fumio
2002-01-01
Scaling limits of the Hamiltonian H of a system of N charged particles coupled to a quantized radiation field are considered. Ultraviolet cutoffs, λ 1 ,...,λ N , are imposed on the radiation field and the Coulomb gauge is taken. It is the so-called Pauli-Fierz model in nonrelativistic quantum electrodynamics. We mainly consider two cases: (i) all the ultraviolet cutoffs are identical, λ 1 =···=λ N , (ii) supports of ultraviolet cutoffs have no intersection, supp λ i intersection supp λ j = null-set , i≠j. The Hamiltonian acts on L 2 (R dN )(multiply-in-circle sign)F, where F is a symmetric Fock space, and has the form H=H el (multiply-in-circle sign)1+B+1(multiply-in-circle sign)H quad . Here H el denotes a particle Hamiltonian, H quad a quadratic field operator, and B an interaction term. The scaling is introduced as H(κ)=H el (multiply-in-circle sign)1+κ l B+κ 2 1(multiply-in-circle sign)H quad , where κ is a scaling parameter and l≤2 a parameter of the scaling. Performing a mass renormalization we consider the scaling limit of H(κ) as κ→∞ in the strong resolvent sense. Then effective Hamiltonians H eff in L 2 (R dN ) infected with reaction of effect of the radiation field is derived. In particular (1) effective Hamiltonians with an effective potential for l=2, and (2) effective Hamiltonians with an observed mass for l=1, are obtained
International Nuclear Information System (INIS)
Heusler, Stefan
2006-01-01
The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the book is just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry. The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length. For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions. The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages-these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would
Propagator of stochastic electrodynamics
International Nuclear Information System (INIS)
Cavalleri, G.
1981-01-01
The ''elementary propagator'' for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density proportionalω 3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to psipsi* where psi is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics
Directory of Open Access Journals (Sweden)
Guilherme Tosi
2014-08-01
Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.
Precision spectroscopy on hydrogen and deuterium. Test of the bound-state quantum electrodynamics
International Nuclear Information System (INIS)
Fendel, P.
2005-06-01
An optical measurement of the hyperfine splitting of the 2s state in deuterium performed for the first time and the description of the arrangement for the measurement of the 1s-3s frequency in hydrogen by excitation with a frequency combexpect the reader of this thesis. Both experiments have the goal to test the bound-state quantum electrodynamics (QED) with high precision. The measurement of the hyperfine splitting serves thereby for the improvement of the accuracy of the so called D 21 =8E HFS (2s)-E HFS (1s) difference. Because D 21 is far-reachingly independent on the nuclear structure in spite of not accurately known proton charge radii QED can be tested on a level of 10 -7 . In the framework of the thesis present here the error of this quantity was reduced by a factor of three. The result for the 2s hyperfine splitting is: f D HFS =40924454(7) Hz. By a new kind of the data acquisition furthermore many systematic errors, especially the nonlinear drift of the reference resonator, could be reduced in comparison to a similar measurement on hydrogen. The second part of the thesis describes the efforts which were and will be taken in order to test QED by means of their perdiction of the 1s Lamb shift. For this the frequency of the 1s-3s transition in hydrogen shall be measured absolutely for the first time. A further novum is that for this a frequency-quadrupled mode-coupled laser shall be come into operation. Especially the construction and the stabilization of a ps laser, the construction of two frequency-doubling stages, the arrangement for the measurement of the absolute frequency of the spectroscopy laser, the alteration of the existing 1s-2s vacuum system, and the development of the measurement software is described. Additionally in this thesis the theory of the two-photon frequency-comb spectroscopy is further developed. Concrete expressions for the expected line shape and the influence of the chirp on the excitation rate are presented
International Nuclear Information System (INIS)
Lalanne, D.
1970-01-01
The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10 -14 cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e + e - → e + e - γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10 -31 cm 2 . The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV
Energy Technology Data Exchange (ETDEWEB)
Steinmetz, Tilo
2008-04-29
In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to {approx}37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g{sub 0}=2{pi}.300 MHz respectively C{sub 0}=210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [German] In der vorliegenden Dissertation werden Experimente zur Resonator-Quantenelektrodynamik auf einem Mikrofallenchip beschrieben. Dabei konnte u. a. erstmals einzelne, in einer Chipfalle gefangene Atome detektiert werden. Hier fuer wurde im Rahmen dieser Arbeit ein neuartiger optischer Mikroresonator entwickelt, der sich dank seiner Miniaturisierung mit der in unserer Arbeitsgruppe
Paston, S A; Prokhvatilov, E V
2002-01-01
The Hamiltonian, reproducing the results of the two-dimensional quantum electrodynamics in the Lorentz coordinates, is constructed on the light front. The procedure of bosonization and analysis of the boson perturbation theory in all the orders by the fermions mass are applied for this purpose. Besides the common terms, originating by the naive quantization on the light front, the obtained Hamiltonian contains an additional counterterm. It is proportional to the linear combination of the fermion zero modes (multiplied by a certain factor compensating the charge and fermion number). The coefficient before this counterterm has no ultraviolet divergence, depends on the value of the fermion condensate in the theta-vacuum and by the small fermion mass is linear by it
Energy Technology Data Exchange (ETDEWEB)
Ito, K R [Kyoto Univ. (Japan). Research Inst. for Mathematical Sciences
1975-03-01
The Schwinger model is considered in the Landau-gauge formalism of quantum electrodynamics. This model can be solved exactly on the assumption of no radiative corrections to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson which is constructed from a pair of two-component massless fermions. This would-be Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge invariance of the first kind, and it becomes unphysical through the Higgs mechanism. However, as all the fermions themselves decouple from photons, they cannot appear as real particles in our world.
International Nuclear Information System (INIS)
Miller, G.A.; Sorensen, L.B.
1997-01-01
Quantum electrodynamics (QED) is used to derive the differential cross sections measured in the three new experimental internal source ensemble x-ray holographies: bremsstrahlung (BXH), fluorescence (XFH), and multiple-energy (MEXH) x-ray holography. The polarization dependence of the BXH cross section is also obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and electrons which enter QED calculations in summing over the intermediate states. For the low photon and electron energies used in the current experiments, we show that the virtual intermediate states produce only very small effects. This is because the uncertainty principle limits the distance that the virtual particles can propagate to be much shorter than the separation between the regions of high electron density in the adjacent atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5 10% error for near forward scattering. copyright 1997 The American Physical Society
Teber, S.; Kotikov, A. V.
2018-04-01
The field theoretic renormalization study of reduced quantum electrodynamics (QED) is performed up to two loops. In the condensed matter context, reduced QED constitutes a very natural effective relativistic field theory describing (planar) Dirac liquids, e.g., graphene and graphenelike materials, the surface states of some topological insulators, and possibly half-filled fractional quantum Hall systems. From the field theory point of view, the model involves an effective (reduced) gauge field propagating with a fractional power of the d'Alembertian in marked contrast with usual QEDs. The use of the Bogoliubov-Parasiuk-Hepp-Zimmermann prescription allows for a simple and clear understanding of the structure of the model. In particular, in relation with the ultrarelativistic limit of graphene, we straightforwardly recover the results for both the interaction correction to the optical conductivity C*=(92 -9 π2)/(18 π ) and the anomalous dimension of the fermion field γψ(α ¯ ,ξ )=2 α ¯ (1 -3 ξ )/3 -16 (ζ2NF+4 /27 ) α¯ 2+O (α¯ 3) , where α ¯=e2/(4 π )2 and ξ is the gauge-fixing parameter.
Problem of summing up ladder diagrams in quantum electrodynamics. [Cross sections
Energy Technology Data Exchange (ETDEWEB)
Gadzhiev, S A; Livashvili, A I [Azerbajdzhanskij Gosudarstvennyj Univ., Baku (USSR)
1975-03-01
A class of ladder diagrams in an asymptotic mode is considered, and a series of the perturbation theory for the given class of diagrams reduces to an integral equation obtained without approximations whatsoever. As applications of the method proposed, two electrodynamic processes are considered: the two-photon annihilation of an e/sup +/e/sup -/-pair and scattering of electons in Coulomb field. Matrix elements are provided. To derive the equations, Dirac equations and commutation relations are used. A conclusion is drawn that for the process, the log-log asymptotics and polar approximation lead to the fact that as the energy grows the cross-section of the process drops and the solution obtained indicates that such a drop occurs up to an energy of 10/sup 5/ GeV. For the second process, the region of large pulses transmitted by an electron to the external field does not lead to an increase in amplitude and cross-section.
Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism
Chernodub, M. N.; Zubkov, M. A.
2017-09-01
The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .
International Nuclear Information System (INIS)
Whittingham, I.B.
1977-12-01
The bound electron propagator in quantum electrodynamics is reviewed and the Brown and Schaefer angular momentum representation of the propagator discussed. Regular and irregular solutions of the radial Dirac equations for both /E/ 2 and /E/ >or= mc 2 are required for the computation of the propagator. Analytical expressions for these solutions, and their corresponding Wronskians, are obtained for a point Coulomb potential. Some computational aspects are discussed in an appendix
Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics.
Cimmarusti, A D; Yan, Z; Patterson, B D; Corcos, L P; Orozco, L A; Deffner, S
2015-06-12
We measure the quantum speed of the state evolution of the field in a weakly driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment-assisted speed-up is realized: the quantum speed of the state repopulation in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).
Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics
International Nuclear Information System (INIS)
Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; Corcos, L. P.; Orozco, L. A.; Deffner, S.
2015-01-01
We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms)
The propagator of stochastic electrodynamics
Cavalleri, G.
1981-01-01
The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.
International Nuclear Information System (INIS)
Barut, A.O.; Dowling, J.P.
1986-12-01
Using a previously formulated theory of quantum electrodynamics based on self-energy, we give a general method for computing the Lamb shift and related Casimir-Polder energies for a quantum system in the vicinity of perfectly conducting boundaries. Our results are exact and easily extendable to a full covariant relativistic form. As a particular example we apply the method to an atom near an infinite conducting plane, and we recover the standard QED results (which are known only in the dipole approximation) in a simple and straightforward manner. This is accomplished in the context of the new theory which is not second quantized and contains no vacuum fluctuations. (author)
Long, Junling; Ku, H. S.; Wu, Xian; Gu, Xiu; Lake, Russell E.; Bal, Mustafa; Liu, Yu-xi; Pappas, David P.
2018-02-01
Quantum networks will enable extraordinary capabilities for communicating and processing quantum information. These networks require a reliable means of storage, retrieval, and manipulation of quantum states at the network nodes. A node receives one or more coherent inputs and sends a conditional output to the next cascaded node in the network through a quantum channel. Here, we demonstrate this basic functionality by using the quantum interference mechanism of electromagnetically induced transparency in a transmon qubit coupled to a superconducting resonator. First, we apply a microwave bias, i.e., drive, to the qubit-cavity system to prepare a Λ -type three-level system of polariton states. Second, we input two interchangeable microwave signals, i.e., a probe tone and a control tone, and observe that transmission of the probe tone is conditional upon the presence of the control tone that switches the state of the device with up to 99.73% transmission extinction. Importantly, our electromagnetically induced transparency scheme uses all dipole allowed transitions. We infer high dark state preparation fidelities of >99.39 % and negative group velocities of up to -0.52 ±0.09 km /s based on our data.
Energy Technology Data Exchange (ETDEWEB)
Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)
2015-04-27
Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.
International Nuclear Information System (INIS)
Power, E.A.; Thirunamachandran, T.
1993-01-01
Spatial correlations between electromagnetic fields arising from neutral sources with electric-dipole transition moments are calculated using nonrelativistic quantum electrodynamics in the multipolar formalism. Expressions for electric-electric, magnetic-magnetic, and electric-magnetic correlation functions at two points r and r' are given for a source molecule in either a ground or an excited state. In contrast to the electric-electric and magnetic-magnetic cases there are no electric-magnetic correlations for a ground-state molecule. For an excited molecule the downward transitions contribute additional terms which have modulating factors depending on (r-r')/λ. From these correlation functions electric and magnetic energy densities are found by setting r=r'. These energy densities are then used in a response formalism to calculate intermolecular energy shifts. In the case of two ground-state molecules this leads to the Casimir-Polder potential. However, for a pair of molecules, one or both excited, there are additional terms arising from downward transitions. An important feature of these energies is that they exhibit an R -2 dependence for large intermolecular separations R. This dependence is interpreted in terms of the Poynting vector, which itself can be obtained by setting r=r' in the electric-magnetic correlation function
International Nuclear Information System (INIS)
Bencivinni, Daniele
2011-01-01
The chapters about the propagation of the electromagnetic field, its properties in view of the propagation in space, the accompanying momentum, its kinetic energy and its mass-equivalent distribution of the total energy coupled to the relativistic mass represent today known and scientifically for a long time acknowledged as well as proved description of each phenomena. They are successively in a mathematically simple way formally listed and explained. The fundamental results of quantum mechanics, the quantum-mechanical momentum, Planck's action quantum etc. are also presented in a simplified way. Also the essential forms of special relativity theory concerning the propagation of energy and momentum are presented. In a last setpit is checked, whether a possible common entity between the listed scientific experiences can be established. Possible explanation approaches on the described connections and the subsequent results are presented. If the gravitational waves are interpreted as quantized electromagnetic quantum waves, as matter waves, which can be assigned to a mass in the sense of Louis de Broglie and are for instance detectable as electron waves, by means of the relativistic quantum-mechanical spatial radiation gravitation could be described. So the ''quantum-mechanical wave'' could be responsible for the generation of mass via the interaction of elementary quantum fields. The propagation of one of these as mass appearing interaction of bound quantum fields can carry a conventional momentum because of its kinetic energy. The interaction in the Bose-Einstein condensate shows that the cooled rest mass exhibits the picture of a standing wave, the wave front of which propagates into the space. Because of the massive superposition of interference pattern warns the gravitational respectively matter wave can no more be isolated. A spatial radiation is however possible. Matter can generate a radiation in front of the inertial mass (quantum waves). If it succeeds to
International Nuclear Information System (INIS)
Xiao, Y-F; Gao, J; McMillan, J F; Yang, X; Wong, C W; Zou, X-B; Chen, Y-L; Han, Z-F; Guo, G-C
2008-01-01
In this paper, a scalable photonic crystal cavity array, in which single embedded quantum dots (QDs) are coherently interacting, is studied theoretically. Firstly, we examine the spectral character and optical delay brought about by the coupled cavities interacting with single QDs, in an optical analogue to electromagnetically induced transparency. Secondly, we then examine the usability of this coupled QD-cavity system for quantum phase gate operation and our numerical examples suggest that a two-qubit system with fidelity above 0.99 and photon loss below 0.04 is possible.
Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Bronn, Nicholas T., E-mail: ntbronn@us.ibm.com; Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Liu, Yanbing; Houck, Andrew A. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)
2015-10-26
The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.
Energy Technology Data Exchange (ETDEWEB)
Chen, Hanning; McMahon, J. M.; Ratner, Mark A.; Schatz, George C.
2010-09-02
A new multiscale computational methodology was developed to effectively incorporate the scattered electric field of a plasmonic nanoparticle into a quantum mechanical (QM) optical property calculation for a nearby dye molecule. For a given location of the dye molecule with respect to the nanoparticle, a frequency-dependent scattering response function was first determined by the classical electrodynamics (ED) finite-difference time-domain (FDTD) approach. Subsequently, the time-dependent scattered electric field at the dye molecule was calculated using the FDTD scattering response function through a multidimensional Fourier transform to reflect the effect of polarization of the nanoparticle on the local field at the molecule. Finally, a real-time time-dependent density function theory (RT-TDDFT) approach was employed to obtain a desired optical property (such as absorption cross section) of the dye molecule in the presence of the nanoparticle’s scattered electric field. Our hybrid QM/ED methodology was demonstrated by investigating the absorption spectrum of the N3 dye molecule and the Raman spectrum of pyridine, both of which were shown to be significantly enhanced by a 20 nm diameter silver sphere. In contrast to traditional quantum mechanical optical calculations in which the field at the molecule is entirely determined by intensity and polarization direction of the incident light, in this work we show that the light propagation direction as well as polarization and intensity are important to nanoparticle-bound dye molecule response. At no additional computation cost compared to conventional ED and QM calculations, this method provides a reliable way to couple the response of the dye molecule’s individual electrons to the collective dielectric response of the nanoparticle.
3. International Conference on Quantum Electrodynamics and Statistical Physics. Book of abstracts
International Nuclear Information System (INIS)
2011-01-01
The conference deals with the up-to-data problems of quantum field theory and elementary particle theory, QED processes at high energy, cosmology, theory of irreversible processes, nonlinear dynamics and chaos, phase transition and diffusion processes in condensed matter and gases.
Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.
Kockum, Anton Frisk; Johansson, Göran; Nori, Franco
2018-04-06
In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.
Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics
Kockum, Anton Frisk; Johansson, Göran; Nori, Franco
2018-04-01
In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.
International Nuclear Information System (INIS)
Abyaneh, Morteza; Fleischmann, Martin; Del Giudice, Emilio; Vitiello, Giuseppe
2006-01-01
A question we are asked repeatedly is: 'what are the causes of the opposition to your belief in the reality of 'Cold Fusion?'. This question is normally asked in the context of the statement that Quantum Mechanics shows that this phenomenon is impossible (a view that we share). Our answer is always based on the statement 'but what about the modelling of such systems in terms of QED?' which is always met by the insistence that Quantum Mechanics shows that Cold Fusion is impossible. We conclude that scientists do not understand QED or, if they have some understanding of this subject, then this must be subject to some major misconceptions. This pointless dialogue (perhaps more correctly described as two monologues conducted in parallel) and the insistence on the primacy of Quantum Mechanics in the modelling of systems in the Natural Sciences is unfortunate because it obscures the outcome of the investigations in the more normal fields of the Natural Sciences (more normal than Cold Fusion). A brief outline of the work which has led to the formulation of the concept of coherence will therefore be given under the aegis of the revolutions in our understanding of the Natural Sciences which has taken place since the latter part of the 19. Century. The main illustration of the way we can demonstrate the applicability of these concepts will be based on the study of nucleation and phase growth. The development of micro-electrode substrates allows us to study the statistics of the formation of the first nucleus; it will be shown that these statistics are strictly in line with concepts developed from QED coherence. We conclude that QED coherence is not just a concept to be confined to sub-atomic physics, cosmology etc. but that it pervades the modelling of the whole of the Natural Sciences including that of 'Cold Fusion'. Some of the major steps which have taken place in the development of this subject area will be illustrated
Mirza, Imran M.; Schotland, John C.
2018-05-01
We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.
BRST Quantisation of Histories Electrodynamics
Noltingk, D.
2001-01-01
This paper is a continuation of earlier work where a classical history theory of pure electrodynamics was developed in which the the history fields have \\emph{five} components. The extra component is associated with an extra constraint, thus enlarging the gauge group of histories electrodynamics. In this paper we quantise the classical theory developed previously by two methods. Firstly we quantise the reduced classical history space, to obtain a reduced quantum history theory. Secondly we qu...
Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
M. Pechal
2014-10-01
Full Text Available Large-scale quantum information processors or quantum communication networks will require reliable exchange of information between spatially separated nodes. The links connecting these nodes can be established using traveling photons that need to be absorbed at the receiving node with high efficiency. This is achievable by shaping the temporal profile of the photons and absorbing them at the receiver by time reversing the emission process. Here, we demonstrate a scheme for creating shaped microwave photons using a superconducting transmon-type three-level system coupled to a transmission line resonator. In a second-order process induced by a modulated microwave drive, we controllably transfer a single excitation from the third level of the transmon to the resonator and shape the emitted photon. We reconstruct the density matrices of the created single-photon states and show that the photons are antibunched. We also create multipeaked photons with a controlled amplitude and phase. In contrast to similar existing schemes, the one we present here is based solely on microwave drives, enabling operation with fixed frequency transmons.
Local effects of the quantum vacuum in Lorentz-violating electrodynamics
Martín-Ruiz, A.; Escobar, C. A.
2017-02-01
The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating the renormalized global energy density and by computing the normal-normal component of the renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as approaching the plates, and we demonstrate that it does not contribute to the observable force.
International Nuclear Information System (INIS)
Horton-Smith, G.A.
1998-07-01
An experiment is described which studied quantum electrodynamic interactions under conditions of extremely high fields, along with a review of the relevant theory. The high fields were created by an intense, tightly-focused pulse of laser light at green or infrared wavelengths, into which was sent an ultra-relativistic electron beam of 46.6-GeV energy. The relevant theory is that of an electron in an electromagnetic wave so intense that the electron's mass is effectively shifted by the transverse momentum imparted to it by the wave, and the electron encounters field strengths comparable to the Schwinger critical field strength of 511 kV per Compton wavelength. An electron in the intense wave may radiate a photon and balance 4-momentum by absorbing multiple photons from the laser, which can lead to real photons with energies above the kinematic limit for conventional Compton scattering. All particles have significant probability of scattering multiple times while in the focus of the laser, including the photons radiated by the electrons, which may convert into electron-positron pairs, again with absorption of multiple photons from the laser. This experiment was able to measure the rates and spectra of positrons, electrons, and photons emerging from the interaction region. Results from both experiment and theoretical simulations are presented and compared. The results from the electron and positron measurements are compatible with the accepted theory, within experimental uncertainties due mainly to the laser intensity measurement. The photon spectrum shows the correct shape, but the ratio of rates in the linear and two-absorbed-photon portions of the spectrum does not vary as expected with the laser intensity, suggesting a disagreement with the accepted theory, with a significance of roughly two standard deviations. A follow-up experiment would be in order
Energy Technology Data Exchange (ETDEWEB)
Horton-Smith, G.A.
1998-07-01
An experiment is described which studied quantum electrodynamic interactions under conditions of extremely high fields, along with a review of the relevant theory. The high fields were created by an intense, tightly-focused pulse of laser light at green or infrared wavelengths, into which was sent an ultra-relativistic electron beam of 46.6-GeV energy. The relevant theory is that of an electron in an electromagnetic wave so intense that the electron's mass is effectively shifted by the transverse momentum imparted to it by the wave, and the electron encounters field strengths comparable to the Schwinger critical field strength of 511 kV per Compton wavelength. An electron in the intense wave may radiate a photon and balance 4-momentum by absorbing multiple photons from the laser, which can lead to real photons with energies above the kinematic limit for conventional Compton scattering. All particles have significant probability of scattering multiple times while in the focus of the laser, including the photons radiated by the electrons, which may convert into electron-positron pairs, again with absorption of multiple photons from the laser. This experiment was able to measure the rates and spectra of positrons, electrons, and photons emerging from the interaction region. Results from both experiment and theoretical simulations are presented and compared. The results from the electron and positron measurements are compatible with the accepted theory, within experimental uncertainties due mainly to the laser intensity measurement. The photon spectrum shows the correct shape, but the ratio of rates in the linear and two-absorbed-photon portions of the spectrum does not vary as expected with the laser intensity, suggesting a disagreement with the accepted theory, with a significance of roughly two standard deviations. A follow-up experiment would be in order.
Rueda, A.
1985-01-01
That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.
International Nuclear Information System (INIS)
Rueda, A.
1985-01-01
That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The calssical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnetic ZPE
Energy Technology Data Exchange (ETDEWEB)
Brezin, Edouard
1970-06-22
Approximations commonly used in the study of the classical limit of quantum mechanics are applied, with justification, to quantum electrodynamics. First, the infrared divergence in the scattering of two charged particles is examined with the help of a remarkable series of Feynman diagrams, which in particular preserves gauge invariance and a correct static limit. Looking for the poles in energy of the scattering amplitude, a formula for the binding energies of two charged particles, which generalizes the Balmer formula and takes into account the correct relativistic kinematics, has been derived. A second type of applications concerns phenomena due to the interaction of the electromagnetic field with the vacuum current and charge fluctuations. For instance, when the intensities become very high, the theory predicts the creation of electron-positron pairs by the field. The creation rate is known in the limit of static fields, and the aim of these calculations was to demonstrate the role of frequency in the domain starting from the lowest frequencies up to X-rays. The pair production rate was found to be entirely negligible, even for the most intense laser beams. An increase in frequency, even up to several tens of keV, did not have any effect on the pair production. (author) [French] Des approximations habituellement reservees a l'etude de la limite classique de la mecanique quantique sont ici appliquees, apres justification, a l'electrodynamique quantique. En premier, l'etude de la divergence infrarouge dans la diffusion de deux particules chargees est conduite a l'aide d'une serie de diagrammes de Feynman possedant des proprietes remarquables, en particulier l'invariance de jauge et une limite statique correcte. De la est obtenue, en recherchant les poles dans la variable d'energie de l'amplitude de diffusion, une expression des energies de liaison de deux particules chargees tenant compte exactement de la cinematique relativiste et generalisant la formule de
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy
Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.
2018-03-01
The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.
International Nuclear Information System (INIS)
Volland, H.
1984-01-01
The book Atmospheric Electrodynamics, by Hans Voland is reviewed. The book describes a wide variety of electrical phenomena occurring in the upper and lower atmosphere and develops the mathematical models which simulate these processes. The reviewer finds that the book is of interest to researchers with a background in electromagnetic theory but is of only limited use as a reference work
International Nuclear Information System (INIS)
Hawkins, C.A.
1989-02-01
Tests of Quantum Electrodynamics to order /alpha//sup 4/ in e/sup +/e/sup /minus// collisions using the ASP detector at PEP (/radical/s = 29 GeV) are presented. Measurements are made of e/sup +/e/sup /minus// /yields/ /gamma//gamma//gamma//gamma/, e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus///gamma//gamma/ and e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus//e/sup +/e/sup /minus// where all four final state particles are separated from the beam line and each other. These are the most precise and highest statistics measurements yet reported for these processes. The ratios of measured to predicted cross sections are /gamma//gamma//gamma//gamma/: 0.97 /plus minus/ 0.04 /plus minus/ 0.14 e/sup /+/e/sup /minus///gamma/gamma/: 0.94 /plus minus/ 0.03 /plus minus/ 0.03 e/sup +/e/sup /minus//e/sup +/e/sup /minus//: 1.01 /plus minus/ 0.02 /plus minus/ 0.04 where the first uncertainty is the systematic uncertainty, and the second is the statistical uncertainty. All measurements show good agreement with theoretical predictions. A Monte Carlo method for simulating multi-pole processes is also presented, along with applications to the e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus///gamma//gamma/ and e/sup +/e/sup /minus// /yields/ /gamma//gamma//gamma//gamma/ processes. The first measurements of five-body /alpha//sup 5/ events (/sup 5//gamma/, e/sup +/e/sup /minus///gamma//gamma//gamma/ and e/sup +/e/sup /minus//e/sup +/ e/sup /minus///gamma/) and one candidate six-body /alpha//sup 6/event (e/sup +/e/sup /minus//4/gamma/) are reported. Both the /alpha//sup 5/ and /alpha//sup 6/ measurements agree with estimates of their cross sections. 20 refs., 34 figs., 14 tabs
Energy Technology Data Exchange (ETDEWEB)
Brenner, G.
2007-07-17
High-precision lifetime measurements of the metastable 1s{sup 2}2s{sup 2}2p{sup 2}P{sup 0}{sub 3/2} level in boronlike Ar XIV and the 3s{sup 2}2p {sup 2}P{sup 0}{sub 3/2} level in aluminumlike Fe XIV were performed at the Heidelberg electron beam ion trap (HD-EBIT). The lifetimes were inferred by monitoring their optical decay curves resulting from the magnetic dipole (M1) transition 1s{sup 2}2s{sup 2}2p{sup 2}P{sup 0}{sub 3/2}-{sup 2}P{sup 0}{sub 1/2} and 3s{sup 2}3p {sup 2}P{sup 0}{sub 3/2}-{sup 2}P{sup 0}{sub 1/2} to the ground state configuration with transition wavelengths of 441.256 nm and 530.29 nm, respectively. Possible systematic error sources were investigated by studying the dependence of the decay times of the curves on various trapping conditions with high statistical significance. A new trapping scheme for lifetime measurements at an EBIT has been applied and allowed to reach an unprecedented precision in the realm of lifetime determinations on highly charged ions. The results of 9.573(4)({sup +12}{sub -5}) ms (stat)(syst) for Ar XIV and 16.726(10)(+17) ms (stat)(syst) for Fe XIV with a relative accuracy of 0.14% and 0.13%, respectively, make these measurements for the first time sensitive to quantum electrodynamic effects like the electron anomalous magnetic moment (EAMM). The results, improving the accuracy of previous measurements by factors of 10 and 6, respectively, show a clear discrepancy of about 3{sigma} and 4{sigma} to the trend of existing theoretical models, which in almost all cases predict a shorter lifetime, when adjusted for the EAMM. The obvious disagreement between experimental results and the predictions points at the incompleteness of the theoretical models used. (orig.)
Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof
2012-06-14
The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound
Zangwill, Andrew
2013-01-01
An engaging writing style and a strong focus on the physics make this comprehensive, graduate-level textbook unique among existing classical electromagnetism textbooks. Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes Modern Electrodynamics a must-have for every student of this subject. In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is availa...
International Nuclear Information System (INIS)
Bouchendira, Rym; Clade, Pierre; Nez, Francois; Biraben, Francois; Guellati-Khelifa, Saida
2013-01-01
The fine structure constant α has a particular status in physics. Its precise determination is required to test the quantum electrodynamics (QED) theory. The constant α is also a keystone for the determination of other fundamental physical constants, especially the ones involved in the framework of the future International System of units. This paper presents Paris experiment, where the fine structure constant is determined by measuring the recoil velocity of a rubidium atom when it absorbs a photon. The impact of the recent improvement of QED calculations of the electron moment anomaly and the recent measurement of the cesium atom recoil at Berkeley will be discussed. The opportunity to provide a precise value of the ratio h/m u between the Planck constant and the atomic mass constant will be investigated. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Tiwary, S.N.
1995-01-01
The present review briefly presents the growing experimental as well as theoretical interests in recent years in the effects of (1) correlation, (2) relativity, (3) quantum electrodynamic (QED), (4) finite nuclear size (FNS) and (5) parity non-conservation (PNC) on the high precision electronic structure of alkali atoms and alkali-like ions. Many high precision experiments have been performed which need very high accurate theoretical prediction for correct interpretation and identification of different physical effects involved. Some experiments separate these effects and some do not. Several sophisticated theoretical techniques have been developed for corrections of these effects which play an extremely important role in order to obtain results of high accuracy to well below 1% level and to understand experimental observations of high precision. Correlation, relativity and finite nuclear size effects have been treated on an equal footing in some theoretical methods but QED and PNC have been calculated separately. At present, there is no theory which accounts all five effects in a coherent and unified manner. Future challenges and directions, in reliable structure calculations in atoms and ions, have been discussed and suggested. (author). 83 refs, 3 figs, 9 tabs
International Nuclear Information System (INIS)
Shu Chang-Gan; Xin Xia; Liu Yu-Min; Yu Zhong-Yuan; Yao Wen-Jie; Wang Dong-Lin; Cao Gui
2012-01-01
We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in the strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of the system is analysed by employing the Born—Markov master equation, through which the spectra for the system are computed as a function of various parameters. By means of this analysis the photon-reabsorption process in the strong-coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
International Nuclear Information System (INIS)
Gabadadze, Gregory; Rosen, Rachel A.
2008-01-01
A relativistic system of electrically charged fermions and oppositely charged massive scalars with no self-interactions, is argued to have a long-lived collective state with a net charge. The charge is residing near the surface of the spherically-symmetric state, while the interior consists of the condensed scalars, that are neutralized by the fermions. The metastability is achieved by competition of the negative pressure of the scalar condensate, against the positive pressure, mainly due to the fermions. We consider such metanuclei made of helium-4 nuclei and electrons, below nuclear but above atomic densities. Typical metanuclei represent charged balls of the atomic size, colossal mass, electric charge and excess energy. Unlike an ordinary nucleus, the charge of a metanucleus scales proportionately to its radius. The quantum mechanical decay through tunneling, and vacuum instability via pair-creation, are both suppressed for large values of the electric charge. Similar states could also be composed of other charged (pseudo)scalars, such as the pions, scalar supersymmetric partners, or in general, spin-0 states of new physics
International Nuclear Information System (INIS)
Kist, Tarso B.L.; Orszag, M.; Davidovich, L.
1997-01-01
The dynamics of open system is frequently modeled in terms of a small system S coupled to a reservoir R, the last having an infinitely larger number of degree of freedom than S. Usually the dynamics of the S variables may be of interest, which can be studied using either Langevin equations, or master equations, or yet the path integral formulation. Useful alternatives for the master equation method are the Monte Carlo Wave-function method (MCWF), and Stochastic Schroedinger Equations (SSE's). The methods MCWF and SSE's recently experienced a fast development both in their theoretical background and applications to the study of the dissipative quantum systems dynamics in quantum optics. Even though these alternatives can be shown to be formally equivalent to the master equation approach, they are often regarded as mathematical tricks, with no relation to a concrete physical evolution of the system. The advantage of using them is that one has to deal with state vectors, instead of density matrices, thus reducing the total amount of matrix elements to be calculated. In this work, we consider the possibility of giving a physical interpretation to these methods, in terms of continuous measurements made on the evolving system. We show that physical realizations of the two methods are indeed possible, for a mode of the electromagnetic field in a cavity interacting with a continuum of modes corresponding to the field outside the cavity. Two schemes are proposed, consisting of a mode of the electromagnetic field interacting with a beam of Rydberg two-level atoms. In these schemes, the field mode plays the role of a small system and the atomic beam plays the role of a reservoir (infinitely larger number of degrees of freedom at finite temperature, the interaction between them being given by the Jaynes-Cummings model
International Nuclear Information System (INIS)
Phillips, S.
1985-01-01
An alternative formulation of path-integral quantization for gauge theories is proposed in which the gauge-fixing condition, normally imposed on just the gauge field itself, is imposed on the gauge-transformed gauge field, a continuous sum now being included over all configurations of the transformation field, Λ(x) that satisfy the gauge condition. It is shown, by explicit calculation, that when bilinear counterterms in the Lagrangian field density are included so as to render the two-point gauge- and fermion-field Green's functions finite, the fermion-fermion-gauge-field Green's function is divergence free. Unlike the more conventional approaches, there is no divergent vertex counterterm needed. Furthermore, the form of the fermion counterterm is a simple mass insertion only. There is no need for a divergent fermion wave-function renormalization. The cancellation of the divergences that are normally present is accomplished by the effect of, heretofor uncommon in perturbative quantum-field theory, infrared-divergent integrals. It is argued heuristically how these may be regulated by the same parameter, Λ, that is used for ultraviolet-divergent integrals, where now the cutoff is towards the lower limit of integration
Energy Technology Data Exchange (ETDEWEB)
Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2014-10-28
The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.
Introduction to Electrodynamics
Griffiths, David J.
2017-06-01
1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.
Energy Technology Data Exchange (ETDEWEB)
Lalanne, D.
1970-07-17
The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10{sup -14} cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e{sup +}e{sup -} → e{sup +}e{sup -}γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10{sup -31} cm{sup 2}. The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV.
Kumar, Vinay
2016-01-01
The present book entitled Concepts of Electrodynamics meets the demand of students of all engineering, graduate, honours and postgraduate courses in a single volume. This book covers all the topics on electrodynamics as per the new syllabus prescribed by UGC and AICTE and we do hope that this book will revive interest in the study of various topics on electrodynamics which will carries the reader to a high level of understanding. The text is enriched with a large number of solved examples apart from appropriate illustrations and examples in each chapter.
Foundations of electrodynamics
Moon, Parry
2013-01-01
Advanced undergraduate text presupposes some knowledge of electricity and magnetism, making substantial use of vector analysis. A serious development of electrodynamics on a postulational basis that clearly defines each concept. 1960 edition.
International Nuclear Information System (INIS)
Boyer, T.H.
1975-01-01
The theory of classical electrodynamics with classical electromagnetic zero-point radiation is outlined here under the title random electrodynamics. The work represents a reanalysis of the bounds of validity of classical electron theory which should sharpen the understanding of the connections and distinctions between classical and quantum theories. The new theory of random electrodynamics is a classical electron theory involving Newton's equations for particle motion due to the Lorentz force, and Maxwell's equations for the electromagnetic fields with point particles as sources. However, the theory departs from the classical electron theory of Lorentz in that it adopts a new boundary condition on Maxwell's equations. It is assumed that the homogeneous boundary condition involves random classical electromagnetic radiation with a Lorentz-invariant spectrum, classical electromagnetic zero-point radiation. The implications of random electrodynamics for atomic structure, atomic spectra, and particle-interference effects are discussed on an order-of-magnitude or heuristic level. Some detailed mathematical connections and some merely heuristic connections are noted between random electrodynamics and quantum theory. (U.S.)
Axiomatic electrodynamics and microscopic mechanics
International Nuclear Information System (INIS)
Yussouff, M.
1981-04-01
A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)
Radiative corrections in bumblebee electrodynamics
Directory of Open Access Journals (Sweden)
R.V. Maluf
2015-10-01
Full Text Available We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.
Electrodynamic thermogravimetric analyzer
International Nuclear Information System (INIS)
Spjut, R.E.; Bar-Ziv, E.; Sarofim, A.F.; Longwell, J.P.
1986-01-01
The design and operation of a new device for studying single-aerosol-particle kinetics at elevated temperatures, the electrodynamic thermogravimetric analyzer (EDTGA), was examined theoretically and experimentally. The completed device consists of an electrodynamic balance modified to permit particle heating by a CO 2 laser, temperature measurement by a three-color infrared-pyrometry system, and continuous weighing by a position-control system. In this paper, the position-control, particle-weight-measurement, heating, and temperature-measurement systems are described and their limitations examined
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Limits of electrodynamics: paraphotons
International Nuclear Information System (INIS)
Okun, L.B.
1982-01-01
The paper discusses the accuracy with which electromagnetic interaction is studied at large distances. Possible deviations from standard electrodynamics are investigated. The consideration is carried out the framework of a model which contains two (para) photons, the mass of one of them being non-negligible
Problems of hadron electrodynamics
International Nuclear Information System (INIS)
Rekalo, M.P.
1989-01-01
Certain directions of hadron electrodynamics referring to testing symmetry properties relatively to C-, P- and T-transformations; determination of fundamental electromagnetic characteristics of hadrons as well as to clarifying the dynamics of electromagnetic processes in which hadrons participate are analyzed briefly. 52 refs
Causality in Classical Electrodynamics
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Gauge equivalence of the electrodynamics of charged bosons
International Nuclear Information System (INIS)
Sohn, R.; Haller, K.
1977-01-01
The quantum electrodynamics of charged scalar and vector bosons is formulated in the Lorentz gauge, and the effect of the charged particle--photon interaction on the subsidiary condition is explicitly taken into account. The results are extensions of earlier work on spinor quantum electrodynamics, but the presence of seagull vertices and anomalous current commutators in the case of the charged bosons make the extensions nontrivial. An operator gauge transformation that encompasses equations of motion as well as the commutator algebra of the field operators is developed; it is used to transform the theory from the Lorentz gauge to the Coulomb gauge
Maxwell equations in conformal invariant electrodynamics
International Nuclear Information System (INIS)
Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.
1983-01-01
We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)
Theoretical physics 3 electrodynamics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...
Electrodynamics an intensive course
Chaichian, Masud; Radu, Daniel; Tureanu, Anca
2016-01-01
This book is devoted to the fundamentals of classical electrodynamics, one of the most beautiful and productive theories in physics. A general survey on the applicability of physical theories shows that only few theories can be compared to electrodynamics. Essentially, all electric and electronic devices used around the world are based on the theory of electromagnetism. It was Maxwell who created, for the first time, a unified description of the electric and magnetic phenomena in his electromagnetic field theory. Remarkably, Maxwell’s theory contained in itself also the relativistic invariance of the special relativity, a fact which was discovered only a few decades later. The present book is an outcome of the authors’ teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, astronomy, engineering, applied mathematics and for researchers working ...
Nonlinear electrodynamics and cosmology
International Nuclear Information System (INIS)
Breton, Nora
2010-01-01
Nonlinear electrodynamics (NLED) generalizes Maxwell's theory for strong fields. When coupled to general relativity NLED presents interesting features like the non-vanishing of the trace of the energy-momentum tensor that leads to the possibility of violation of some energy conditions and of acting as a repulsive contribution in the Raychaudhuri equation. This theory is worth to study in cosmological and astrophysical situations characterized by strong electromagnetic and gravitational fields.
Electrodynamics in Arbitrary Reference Frames and in Arbitrary Material Media
International Nuclear Information System (INIS)
Horzela, A.; Kapuscik, E.; Widomski, M.
1999-01-01
Full text: The investigation of electromagnetic phenomena in material media still belongs to the most difficult tasks of electrodynamics. Complexity and variability of material media practically exclude effective applications of methods and computational techniques elaborated in the framework of standard microscopic electrodynamics with classical vacuum as a ground state. In order to obtain satisfactorily exact descriptions of electromagnetic properties of complex material media one is enforced to use methods and approximations which are difficult to control. Moreover, they usually break covariance properties and the results obtained are valid in one reference frame which choice remains subjective and model dependent. Some time ago we have proposed a reformulation of Maxwell electrodynamics which opens new ways in study of electromagnetic processes in material media. The formalism gets rid of assumptions characteristic for vacuum electrodynamics only and it avoids the usage of constitutive relations as primary relations put on quantities needed for a complete description of an electromagnetic system. Fundamental properties of all electromagnetic quantities are their uniquely defined transformation rules and their analysis allows to determine the possible relations between them. Within such a scheme it is possible to introduce constitutive relations which do not have analogies in macroscopic classical electrodynamics. They may be used in description of microscopic electromagnetic processes in a different way than it is done in the framework of quantum electrodynamics. (author)
Generalized noise terms for the quantized fluctuational electrodynamics
DEFF Research Database (Denmark)
Partanen, Mikko; Hayrynen, Teppo; Tulkki, Jukka
2017-01-01
position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization...
Energy Technology Data Exchange (ETDEWEB)
Martino, Trassinelli
2005-12-15
The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.
Indefinite metric and regularization of electrodynamics
International Nuclear Information System (INIS)
Gaudin, M.
1984-06-01
The invariant regularization of Pauli and Villars in quantum electrodynamics can be considered as deriving from a local and causal lagrangian theory for spin 1/2 bosons, by introducing an indefinite metric and a condition on the allowed states similar to the Lorentz condition. The consequences are the asymptotic freedom of the photon's propagator. We present a calcultion of the effective charge to the fourth order in the coupling as a function of the auxiliary masses, the theory avoiding all mass divergencies to this order [fr
Implications of rail electrodynamics
International Nuclear Information System (INIS)
Rolader, G.E.; Jamison, K.A.
1990-01-01
A model is developed to investigate possible effects of rail electrodynamics on the performance of railguns. This model describes the oscillatory nature of the rail motion in response to the Lorentz force and the compressive restoration force of material which is behind the rails. In this simple model the rails are found to oscillate with a frequency of β. The rail dynamic behavior induces local electric fields. The authors investigate the significance of these electric fields on stationary particles (lab frame) and on particles moving at the velocity of the plasma/projectile system (projectile frame)
Wilson Fermions and Axion Electrodynamics in Optical Lattices
International Nuclear Information System (INIS)
Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.
2010-01-01
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
Eringen, A C
1990-01-01
The electrodynamics of continua is a branch ofthe physical sciences concerned with the interaction of electromagnetic fields with deformable bodies. De formable bodies are considered to be continua endowed with continuous distributions of mass and charge. The theory of electromagnetic continua is concerned with the determination of deformations, motions, stress, and elec tromagnetic fields developed in bodies upon the applications of external loads. External loads may be of mechanical origin (e.g., forces, couples, constraints placed on the surface of the body, and initial and boundary conditions arising from thermal and other changes) and/or electromagnetic origin (e.g., electric, magnetic, and current fields). Because bodies of different constitutions respond to external stimuli in a different way, it is imperative to characterize properly the response functions relevant to a given class of continua. This is done by means of the constitutive theory. For example, an elastic dielectric responds to electro...
International Nuclear Information System (INIS)
Waldron, R.A.
1979-01-01
An account is given of Ritz's electrodynamics. Ritz's paper is divided into two parts. In the first he criticises the Lorentz-Maxwell theory based on fields, and comments on alternative theories based on particle interactions. In the second he develops his own theory, also based on particle interactions. He starts from a force law which is analogous to a force law derived by Schwarzschild from the Lorentz theory. While the approach is interesting, it leads to results which do not agree with experimental results obtained several decades later, after Ritz's death. A similar approach is applied to gravitation and is shown to be capable of explaining the anomalous precession of the planet Mercury. (Auth.)
Born-Infeld Nonlinear Electrodynamics
International Nuclear Information System (INIS)
Bialynicki-Birula, I.
1999-01-01
This is only a summary of a lecture delivered at the Infeld Centennial Meeting. In the lecture the history of the Born-Infeld nonlinear electrodynamics was presented and some general features of the theory were discussed. (author)
Advanced action in classical electrodynamics
Boozer, A. D.
2008-01-01
The time evolution of a charged point particle is governed by a second-order integro-differential equation that exhibits advanced effects, in which the particle responds to an external force before the force is applied. In this paper we give a simple physical argument that clarifies the origin and physical meaning of these advanced effects, and we compare ordinary electrodynamics with a toy model of electrodynamics in which advanced effects do not occur.
A space-time lattice version of scalar electrodynamics
International Nuclear Information System (INIS)
Kijowski, J.; Thielmann, A.
1993-10-01
A Minkowski-lattice version of quantum scalar electrodynamics is constructed. Quantum field is consequently described in a gauge-independent way, i.e. the algebra of quantum observables of the theory is generated by gauge-invariant operators assigned to zero-, one-, and two-dimensional elements of the lattice. The operators satisfy canonical commutation relations. Field dynamics is formulated in terms of difference equations imposed on the field operators. The dynamics is obtained from a discrete version of the path-integral. (author). 19 refs
Electrodynamics of Magnetoactive Media
International Nuclear Information System (INIS)
Browning, P K
2004-01-01
'Electrodynamics of Magnetoactive Media' is an unusual book in that it cuts across conventional physics discipline boundaries. The unifying theme allowing this is, quite simply, the physics of magnetic fields in various media. I believe the authors are correct in stating that the book is unique in specifically covering electrodynamic phenomena associated with magnetic fields, though of course some of the more elementary aspects are covered in the classical textbooks on electromagnetism, which are duly acknowledged. This interdisciplinarity makes the book very interesting to people with a range of backgrounds. For example, as a plasma physicist, I was familiar with most of the material on plasmas, but liquid crystals and superconductors were entirely new territory for me. These chapters were indeed both accessible and interesting, and it was surprising for me to see how much commonality there is in the physics of these various media. The first part of the book covers some fundamentals of electrodynamics and magnetostatics, and of electromagnetic waves. Most of this material is covered in textbooks on electromagnetism, and some of it is very basic (for example, LRC circuit theory, surely covered in most first year physics courses, is included) but it is perhaps a useful prelude for what is to come. The generic topic of charged particle motion in electromagnetic fields is well covered. Three main magnetoactive media are then discussed: plasmas (focusing on waves), liquid crystals and superconductors. It is all too easy to criticise a book on the grounds of omitted material, but I do feel that a chapter on magnetostatics in plasmas would have been very helpful, covering force-free fields and so on. Some interesting analogies could then have been exploited. For example, I was intrigued to discover an equation for magnetic fields in superconductors (equation (9.36)) which, apart from a change of sign, is identical to the Helmholtz equation used to model linear force
Particles, fields and quantum theory
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1982-01-01
The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)
Energy Technology Data Exchange (ETDEWEB)
Munehiro, H
1980-05-29
When driving the carriage of a printer through a rotating motor, there are problems regarding the limited accuracy of the carriage position due to rotation or contraction and ageing of the cable. In order to solve the problem, a direct drive system was proposed, in which the printer carriage is driven by a linear motor. If one wants to keep the motor circuit of such a motor compact, then the magnetic flux density in the air gap must be reduced or the motor travel must be reduced. It is the purpose of this invention to create an electrodynamic linear motor, which on the one hand is compact and light and on the other hand has a relatively high constant force over a large travel. The invention is characterised by the fact that magnetic fields of alternating polarity are generated at equal intervals in the magnetic field, and that the coil arrangement has 2 adjacent coils, whose size corresponds to half the length of each magnetic pole. A logic circuit is provided to select one of the two coils and to determine the direction of the current depending on the signals of a magnetic field sensor on the coil arrangement.
Eringen, A C
1990-01-01
This is the second volume of a two-volume set presenting a unified approach to the electrodynamics of continua, based on the principles of contemporary continuum of physics. The first volume was devoted mainly to the development of the theory and applications to deformable solid media. This volume extends the developments of the first volume to richer and newer grounds. It contains discussions on fluid media, magnetohydrodynamics, eletrohydrodynamics and media with more complicated structures. With the discussion, in the last two chapters, of memory-dependent materials and non-local E-M theory, the authors account for the nonlocal effects arising from motions and fields of material points at past times and at spatially distant points. This discussion is included here to stimulate further research in these important fields, which are presently in development stages. The second volume is self-contained and can be studied without the help of volume I. A section summarizing the constitutive equations and the unde...
Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics
Fabbri, Luca; da Rocha, Roldão
2018-05-01
We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.
On the electrodynamics of spinning particles
International Nuclear Information System (INIS)
Holten, J.W. van
1990-01-01
The electrodynamics of spinning point particles is considered. A modification of the Lorentz force law is introduced which can be interpreted as a classical limit of the Dirac-Klein-Gordon equation. An improved version of the inhomogeneous Maxwell equations is constructed to describe the classical fields of spinning particles. Both classical and quantum electrodynamics are shown to predict relativistic time-dilatation effects for spinning particles in an electromagnetic field, even in the limit of zero velocity. The life-time of unstable charged particles moving in a Coulomb field is computed for both spin-zero and spin-half particles. Comparison shows spin effects to be present but relatively small. The magnitude of further spin-dependent correction from hyperfine interactions is computed. A measurement of the life-time of muons in atomic bound states separated by such spin-dependent hyperfine interactions would provide a clean test for the effect predicted. Similar effects are shown to arise in non-abelian gauge theories such as QCD. (author). 18 refs
Becchi-Rouet-Stora-Tyutin quantization of histories electrodynamics
International Nuclear Information System (INIS)
Noltingk, Duncan
2002-01-01
This article is a continuation of earlier work where a classical history theory of pure electrodynamics was developed in which the history fields have five components. The extra component is associated with an extra constraint, thus enlarging the gauge group of histories electrodynamics. In this article we quantize the classical theory developed previously by two methods. First we quantize the reduced classical history space to obtain a reduced quantum history theory. Second we quantize the classical BRST-extended history space, and use the Becchi-Rouet-Stora-Tyutin charge to define a 'cohomological' quantum history theory. Finally, we show that the reduced history theory is isomorphic (as a history theory) to the cohomological history theory
Quantized fluctuational electrodynamics for three-dimensional plasmonic structures
DEFF Research Database (Denmark)
Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka
2017-01-01
We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically insightful definition of an effective position-dependent photon-number operator and the associated ladder operators. However, this far the formalism has been applicable only for the normal...... formalism, we apply it to study the local steady-state photon numbers and field temperatures in a light-emitting near-surface InGaN quantum-well structure with a metallic coating supporting surface plasmons....
In-Depth Development of Classical Electrodynamics
Directory of Open Access Journals (Sweden)
Keilman Y. N.
2008-01-01
Full Text Available There is hope that a properly developed Classical Electrodynamics (CED will be able to play a role in a unified field theory explaining electromagnetism, quantum phenomena, and gravitation. There is much work that has to be done in this direction. In this article we propose a move towards this aim by refining the basic principles of an improved CED. Attention is focused on the reinterpretation of the E-M potential. We use these basic principles to obtain solutions that explain the interactions between a constant electromagnetic field and a thin layer of material continuum; between a constant electromagnetic field and a spherical configuration of material continuum (for a charged elementary particle; between a transverse electromagnetic wave and a material continuum; between a longitudinal aether wave (dummy wave and a material continuum.
Electrodynamic Dust Shield Demonstrator
Stankie, Charles G.
2013-01-01
The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid
Cosmological effects of nonlinear electrodynamics
International Nuclear Information System (INIS)
Novello, M; Goulart, E; Salim, J M; Bergliaffa, S E Perez
2007-01-01
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology
Noncommutative quantum electrodynamics in path integral framework
Energy Technology Data Exchange (ETDEWEB)
Bourouaine, S; Benslama, A [Departement de Physique, Faculte des Sciences, Universite Mentouri, Constantine (Algeria)
2005-08-19
In this paper, the dynamics of a relativistic particle of spin 1/2, interacting with an external electromagnetic field in noncommutative space, is studied in the path integral framework. By adopting the Fradkin-Gitman formulation, the exact Green's function in noncommutative space (NCGF) for the quadratic case of a constant electromagnetic field is computed, and it is shown that its form is similar to its counterpart given in commutative space. In addition, it is deduced that the effect of noncommutativity has the same effect as an additional constant field depending on a noncommutative {theta} matrix.
Noncommutative quantum electrodynamics in path integral framework
International Nuclear Information System (INIS)
Bourouaine, S; Benslama, A
2005-01-01
In this paper, the dynamics of a relativistic particle of spin 1/2, interacting with an external electromagnetic field in noncommutative space, is studied in the path integral framework. By adopting the Fradkin-Gitman formulation, the exact Green's function in noncommutative space (NCGF) for the quadratic case of a constant electromagnetic field is computed, and it is shown that its form is similar to its counterpart given in commutative space. In addition, it is deduced that the effect of noncommutativity has the same effect as an additional constant field depending on a noncommutative θ matrix
Nonperturbative quantum electrodynamics at T≠0
International Nuclear Information System (INIS)
Pevzner, M.Sh.
1990-01-01
On the base of Schwinger-Dyson equation for the electron temperature Green's function in the nonperturbative QED in the ladder approximation the ordinary differential equation for the function, connected with temperature one has been obtained. The relation, to which the temperature depending electron mass m(T) satisfies, has been found; its low-temperature behaviour has been studied. The phase transition has been shown to take place in the model, that is accompanied by the chiral symmetry restoration. 34 refs
Results in finite temperature quantum electrodynamics
International Nuclear Information System (INIS)
Down, D.M.
1985-01-01
First, three quantities of physical interest are calculated. The first two quantities are the self energy of the electron at order α and the self mass of the electron at order α 2 due to its interaction with a thermal bath of photons. The third quantity of physical interest is the thermal contribution to the self mass of the axion. Second, some formal developments are presented. First among these is the proof of an extension to the familiar optical theorem to cover processes taking place at finite temperature. Then an example of the application of the theorem is given for a simple field theory involving two types of scalar particles. The example illustrates that the relationship between the forward scattering amplitude and the total cross section is more complex at finite temperature than at zero temperature. Third, a method for calculating the wave function renormalization constant at finite temperature for an electron in a thermal bath of photons is presented. This method is compared with methods invented by other authors
Quantum electrodynamics at high temperature. 2
International Nuclear Information System (INIS)
Alvarez-Estrada, R.F.
1988-01-01
The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the improved perturbation theory), ii) are both ultraviolet and infrared finite. (author)
Scalar Quantum Electrodynamics: Perturbation Theory and Beyond
International Nuclear Information System (INIS)
Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.
2006-01-01
In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory
On exactly soluble model in quantum electrodynamics
International Nuclear Information System (INIS)
Bogolubov, N.N.; Shumovsky, A.S.; Fam Le Kien
1984-01-01
Equations of motion describing the dynamics of three-level atom of ladder type interacting with two modes of quantized radiation field are solved exactly. Evolution of level population and photon rumbers under different unitial conditions is irvestigated
Waveguide quantum electrodynamics in squeezed vacuum
You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail
2018-02-01
We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.
Chiral symmetry breaking in finite quantum electrodynamics
International Nuclear Information System (INIS)
Montero, J.C.; Pleitez, V.
1987-01-01
The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt
Advances in FDTD computational electrodynamics photonics and nanotechnology
Oskooi, Ardavan; Johnson, Steven G
2013-01-01
Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...
Electrodynamics and Spacetime Geometry: Foundations
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
Accelerator and Electrodynamics Capability Review
International Nuclear Information System (INIS)
Jones, Kevin W.
2010-01-01
Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.
Electrodynamics on extrasolar giant planets
Energy Technology Data Exchange (ETDEWEB)
Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2014-11-20
Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially
Accelerator and electrodynamics capability review
Energy Technology Data Exchange (ETDEWEB)
Jones, Kevin W [Los Alamos National Laboratory
2010-01-01
Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.
Handbook of relativistic quantum chemistry
International Nuclear Information System (INIS)
Liu, Wenjian
2017-01-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Handbook of relativistic quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Particle-like representation for the field of a moving point charge in nonlinear electrodynamics
International Nuclear Information System (INIS)
Gitman, D M; Shabad, A E; Shishmarev, A A
2017-01-01
In a simple nonlinear model stemming from quantum electrodynamics wherein the pointlike charge has finite field-self-energy, we demonstrate that the latter can be presented as a soliton with its energy–momentum vector satisfying the standard mechanical relation characteristic of a free moving massive relativistic particle. (paper)
Lectures on cosmology and action at a distance electrodynamics
Hoyle, Fred
1996-01-01
This book describes the subject of electrodynamics at classical as well as quantum level, developed as an interaction at a distance. Thus it has electric charges interacting with one another directly and not through the medium of a field. In general such an interaction travels forward and backward in time symmetrically, thus apparently violating the principle of causality. It turns out, however, that in such a description the cosmological boundary conditions become very important. The theory therefore works only in a cosmology with the right boundary conditions; but when it does work it is fre
Electrodynamics of the event horizon
International Nuclear Information System (INIS)
Punsly, B.; Coroniti, F.V.
1989-01-01
This paper is an investigation of the electrodynamics of the event horizon of a Kerr black hole. It is demonstrated that the event horizon behaves quite generally as an asymptotic vacuum infinity for axisymmetric, charge-neutral, accreting electromagnetic sources. This is in contrast with the general notion that the event horizon can be treated as an imperfect conductive membrane with a surface impedance of 4π/c. The conductive-membrane model has been incorporated into the more sophisticated membrane paradigm of Thorne, Price, and Macdonald by supplementing the model with the full equations of general relativity. In certain situations (in particular those of astrophysical interest), the conductive-membrane interpretation forms the appropriate set of pictures and images in the membrane paradigm. In this paper we reevaluate the specific gedanken experiments that were originally used to motivate the paradigm. We find that great care must be exercised if the detailed interaction of a black hole's external gravitational field with a magnetized plasma is modeled by the electrodynamics of the conductive horizon membrane. For ingoing flows of plasma or electromagnetic waves (when the hole is passively accepting information), the interpretation of the horizon as a vacuum infinity is equivalent to an imperfect conductor with a surface impedance of 4π/c (the impedance of the vacuum). In situations when an imperfect conductor should radiate information (such as a Faraday wheel) the event horizon cannot, since it is an infinity. The event horizon does not behave quite generally as an imperfect conductor, but has electrodynamic properties unique to itself
Electrodynamics at the highest energies
International Nuclear Information System (INIS)
Klein, Spencer R.
2002-01-01
At very high energies, the bremsstrahlung and pair production cross sections exhibit complex behavior due to the material in which the interactions occur. The cross sections in dense media can be dramatically different than for isolated atoms. This writeup discusses these in-medium effects, emphasizing how the cross section has different energy and target density dependencies in different regimes. Data from SLAC experiment E-146 will be presented to confirm the energy and density scaling. Finally, QCD analogs of the electrodynamics effects will be discussed
Excited states in stochastic electrodynamics
International Nuclear Information System (INIS)
Franca, H.M.; Marshall, T.W.
1987-12-01
It is shown that the set of Wigner functions associated with the excited states of the harmonic oscillator constitute a complete set of functions over the phase space. An arbitraty distribution can be expanded in terms of these Wigner functions. By studying the time evolution, according to Stochastic Electrodynamics, of the expansion coefficients, becomes feasible to separate explicity the contributionsof the radiative reaction and the vaccuum field to the Einsten. A coefficients for this system. A simple semiclassical explanation of the Weisskopf-Heitler phenomenon in resonance fluorescence is also supplied. (author) [pt
Some problems of relativistic electrodynamics
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1991-01-01
Some problems of electrodynamics are considered from the point of view of the radar formulation of relativity theory. This formulation is based on light or retarded distances, the increasing of longitudinal sizes of moving objects is its consequence ( e longation formula ) . Based of Lienard-Wiechert potentials it is shown that in terms of retarded distances equipotential surfaces take the form of rotation ellipsoids, stretched in the direction of electric charge motion. The difficulty connected with the appearance of charge in a moving (neutral) current-carrying conductor is overcome. 23 refs.; 4 figs
The potential in general linear electrodynamics. Causal structure, propagators and quantization
Energy Technology Data Exchange (ETDEWEB)
Siemssen, Daniel [Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw (Poland); Pfeifer, Christian [Institute for Theoretical Physics, Leibniz Universitaet Hannover (Germany); Center of Applied Space Technology and Microgravity (ZARM), Universitaet Bremen (Germany)
2016-07-01
From an axiomatic point of view, the fundamental input for a theory of electrodynamics are Maxwell's equations dF=0 (or F=dA) and dH=J, and a constitutive law H=F, which relates the field strength 2-form F and the excitation 2-form H. In this talk we consider general linear electrodynamics, the theory of electrodynamics defined by a linear constitutive law. The best known application of this theory is the effective description of electrodynamics inside (linear) media (e.g. birefringence). We analyze the classical theory of the electromagnetic potential A before we use methods familiar from mathematical quantum field theory in curved spacetimes to quantize it. Our analysis of the classical theory contains the derivation of retarded and advanced propagators, the analysis of the causal structure on the basis of the constitutive law (instead of a metric) and a discussion of the classical phase space. This classical analysis sets the stage for the construction of the quantum field algebra and quantum states, including a (generalized) microlocal spectrum condition.
Discrete geometry: speculations on a new framework for classical electrodynamics
International Nuclear Information System (INIS)
Hemion, G.
1988-01-01
An attempt is made to describe the basic principles of physics in terms of discrete partially ordered sets. Geometric ideas are introduced by means of an action at a distance formulation of classical electrodynamics. The speculations are in two main directions: (i) Gravity, one of the four elementary forces of nature, seems to be fundamentally different from the other three forces. Could it be that gravity can be explained as a natural consequence of the discrete structure? (ii) The problem of the observer in quantum mechanics continues to cause conceptual problems. Can quantum statistics be explained in terms of finite ensembles of possible partially ordered sets? The development is guided at all stages by reference to the simplest, and most well-established principles of physics
On causal nonrelativistic classical electrodynamics
International Nuclear Information System (INIS)
Goedecke, G.H.
1984-01-01
The differential-difference (DD) motion equations of the causal nonrelativistic classical electrodynamics developed by the author in 1975 are shown to possess only nonrunaway, causal solutions with no discontinuities in particle velocity or position. As an example, the DD equation solution for the problem of an electromagnetic shock incident on an initially stationary charged particle is contrasted with the standard Abraham-Lorentz equation solution. The general Cauchy problem for these DD motion equations is discussed. In general, in order to uniquely determine a solution, the initial data must be more detailed than the standard Cauchy data of initial position and velocity. Conditions are given under which the standard Cauchy data will determine the DD equation solutions to sufficient practical accuracy
Notes on Born-Infeld-type electrodynamics
Kruglov, S. I.
2017-11-01
We propose a new model of nonlinear electrodynamics (NLED) with three parameters. Born-Infeld (BI) electrodynamics and exponential electrodynamics are particular cases of this model. The phenomenon of vacuum birefringence in the external magnetic field is studied. We show that there is no singularity of the electric field at the origin of point-like charged particles. The corrections to Coulomb’s law at r →∞ are obtained. We calculate the total electrostatic energy of charges, for different parameters of the model, which is finite.
Remarks on Heisenberg-Euler-type electrodynamics
Kruglov, S. I.
2017-05-01
We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.
The PROPEL Electrodynamic Tether Demonstration Mission
Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael
2012-01-01
The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.
Electrodynamic energy harvester for electrical transformer's ...
Indian Academy of Sciences (India)
Electrical transformer; electrodynamic; energy harvester; self-powered ...... Kennedy S P and Gordner T 2013 Hot spot studies for sheet wound transformer wind- ... and Lambert F 2011 Powering low-cost utility sensors using energy harvesting.
Bound states in the (2+1)D scalar electrodynamics with Chern-Simons term
International Nuclear Information System (INIS)
Gomes, M.O.C.; Malacarne, L.C.
1994-01-01
This work studies the existence of bound states for the 3-dimensions scalar electrodynamics, with the Chern-Simons. Quantum field theory is used for calculation of the M fi scattering matrices, in the non-relativistic approximation. The field propagators responsible for the interaction in the scattering processes have been calculated, and scattering matrices have been constructed. After obtaining the scattering matrix, the cross section in the quantum field theory has been compared with the quantum mechanic cross section in the Born approximation, allowing to obtain the form of the potential responsible for the interactions in the scattering processes. The possibility of bound states are analyzed by using the Schroedinger equation
Nonlinear electrodynamics and CMB polarization
Energy Technology Data Exchange (ETDEWEB)
Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)
2011-03-01
Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.
Nanoplasmonics: Exploring nonlocal and quantum effects
DEFF Research Database (Denmark)
Mortensen, N. Asger
2016-01-01
Plasmonics is commonly understood within classical electrodynamics with local-response constitutive relations. However, possibilities for nonlocal dynamics and quantum effects emerge with strong spatial confinement in plasmonic nanostructures. This talks reviews recent theory and experiments...
A new perspective on relativistic transformation for Maxwell's equations of electrodynamics
International Nuclear Information System (INIS)
Huang, Y.-S.
2009-01-01
A new scheme for relativistic transformation of the electromagnetic fields is formulated through relativistic transformation in the wavevector space, instead of the space-time space. Maxwell's equations of electrodynamics are shown to be form-invariant among inertial frames in accordance with this new scheme of relativistic transformation. This new perspective on relativistic transformation not only fulfills the principle of relativity, but is also compatible with quantum theory.
International Nuclear Information System (INIS)
Serva, M.
1986-01-01
In this paper we give probabilistic solutions to the equations describing non-relativistic quantum electrodynamical systems. These solutions involve, besides the usual diffusion processes, also birth and death processes corresponding to the 'photons number' variables. We state some inequalities and in particular we establish bounds to the ground state energy of systems composed by a non relativistic particle interacting with a field. The result is general and it is applied as an example to the polaron problem. (orig.)
Hydrodynamic view of electrodynamics: energy rays and electromagnetic effective stress
International Nuclear Information System (INIS)
Chou, Chia-Chun; Wyatt, Robert E
2011-01-01
Energy rays ('photon trajectories') based upon the hydrodynamic formulation of electrodynamics are presented for time-dependent electromagnetic wave propagation. We derive Cauchy's equation of motion for the electromagnetic effective force governing the dynamics of energy rays. The effective force generated by the electromagnetic effective stress provides a surface force acting on the energy fluid element. For the head-on collision of two electromagnetic Gaussian pulses, the electromagnetic effective force, analogous to the role played by the quantum force in Bohmian mechanics, guides these non-crossing energy rays. For an electromagnetic pulse traveling from free space to a dielectric medium, the energy rays guided by the electromagnetic effective stress display reflection and refraction at the interface.
Ampere-Neumann electrodynamics of metals
International Nuclear Information System (INIS)
Graneau, P.
1985-01-01
Maxwell described Ampere's force law as the cardinal formula of electrodynamics. This law predicts longitudinal mechanical forces along current streamlines in metallic conductors. The Ampere forces set up tension in wires and busbars and compression in liquid metal. At normal current densities they are negligible but, increasing with the square of current, they become dominant in pulse power circuits. Ampere tension and compression have been revealed by exploding wire experiments, in liquid metal jets at solid - liquid interfaces, and with an electrodynamic pendulum. Ampere stresses are already playing an important role in the development of railguns, fuses, current limiters, opening switches, pulse magnets, and a host of other pulse-power devices. This book outlines the electrodynamic action-at-a-distance theory developed by Ampere, Neumann, Weber and, to some extent, by Maxwell. One chapter describes the 20th century extensions of the theory by Graneau and others
Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II
Salam, Abdus; Delbourgo, Robert
1964-01-01
The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Atmosphere-Ionosphere Electrodynamic Coupling
Sorokin, V. M.; Chmyrev, V. M.
observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.
Fundamentals of quantum optics 3. Proceedings
International Nuclear Information System (INIS)
Ehlotzky, F.
1993-01-01
The present Seminar offered the opportunity to discuss at leisure problems of mutual interest to theoreticians and experimentalists who are working on various aspects of the field of quantum optics. The intention was to bring together people who are doing research on atomic interferometry, physics of cooled and trapped particles, cavity quantum electrodynamics, quantum statistics of light and other fundamentals. (orig.)
On low-energy effective action in three-dimensional = 2 and = 4 supersymmetric electrodynamics
Buchbinder, I. L.; Merzlikin, B. S.; Samsonov, I. B.
2013-11-01
We discuss general structure of low-energy effective actions in = 2 and = 4 three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There are specific terms in the effective action having no four-dimensional analogs. Some of these terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find two-loop quantum corrections to the moduli space metric in the = 2 SQED and show that in the = 4 SQED the moduli space does not receive two-loop quantum corrections.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Electrodynamics of the semiconductor band edge
International Nuclear Information System (INIS)
Stahl, A.; Balslev, I.
1987-01-01
The book is a presentation of an approach to electrodynamics in semiconductors. It describes in detail the coherence phenomena appearing when the electromagnetic wavelength, the electron-hole coherence length and the single-particle wavelength are of the same order of magnitude
Composed particle model in stochastic electrodynamics
International Nuclear Information System (INIS)
Brunini, S.A.
1985-01-01
We analyse the statistical properties of the non-relativistic motion of a particle that has two constituents having finite nasses and charges. The main interaction is in contact with thermal and zero point radiation of Stochastic Electrodynamics. (M.W.O.) [pt
Testing Born-Infeld Electrodynamics in Waveguides
International Nuclear Information System (INIS)
Ferraro, Rafael
2007-01-01
Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
Hilbert space; Koopman–von Neumann theory; classical electrodynamics. PACS No. 03.50. ... The paper is divided into four sections. Section 2 .... construction of Sudarshan is to be contrasted with that of Koopman and von Neumann. ..... ture from KvN and [16] in this formulation is to define new momentum and coordinate.
Students' Difficulties with Vector Calculus in Electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…
Directory of Open Access Journals (Sweden)
Giuseppe Vitiello
2014-05-01
Full Text Available In electrodynamics there is a mutual exchange of energy and momentum between the matter field and the electromagnetic field and the total energy and momentum are conserved. For a constant magnetic field and harmonic scalar potential, electrodynamics is shown to be isomorph to a system of damped/amplified harmonic oscillators. These can be described by squeezed coherent states which in turn are isomorph to self-similar fractal structures. Under the said conditions of constant magnetic field and harmonic scalar potential, electrodynamics is thus isomorph to fractal self-similar structures and squeezed coherent states. At a quantum level, dissipation induces noncommutative geometry with the squeezing parameter playing a relevant role. Ubiquity of fractals in Nature and relevance of coherent states and electromagnetic interaction point to a unified, integrated vision of Nature.
Cosmic electrodynamics electrodynamics and magnetic hydrodynamics of cosmic plasmas
Fleishman, Gregory D
2013-01-01
This volume offers a deep and detailed overview of plasma behavior in diverse astrophysical conditions. The presentation is based on a solid science foundation that includes well established physical laws of electromagnetism, hydrodynamics, classical and quantum mechanics and other relevant fields of science. Qualitative ideas and descriptions are followed by quantitative derivations and estimates of key physical quantities, and the results of theories and models are confronted with modern observational data obtained from numerous international science programs. Fundamental astrophysical phenomena, such as charged particle acceleration and magnetic field generation, are presented along with spectacular phenomena, such as stellar winds (including ultra-relativistic pulsar wind), supernova explosions and evolution of its remnants, and solar flares.
The problem of infinite self-energy in electrodynamics and gravitation
Energy Technology Data Exchange (ETDEWEB)
Sinha, K P; Sivaram, C [Indian Inst. of Science, Bangalore. Div. of Physics and Mathematical Sciences
1975-02-01
The appearance of infinities in the self-energies of point particles in both classical and quantum electrodynamics has been a persistent problem for the last several decades. This problem is discussed at length in relation to the Newtonian theory of gravitation and the modern (relativity) theory on gravitation. Gravitational contraction and the mass and radius of the electron are treated in detail. The spacetime properties around the Schwarzchild radius of the electron are modified to explain the divergences. The quantum gravitational mass and the quantum gravitational length are mentioned. It is pointed out that the out-off at the Schwarzchild radius applies not only to photon but also to the virtual quanta of all fields with which the particle interacts. Arguments are extended to explain the gravitational interactions of the proton. The interactions of the hadrons through f-gravity are explained. Recent work on renormalisibility (i.e. removal of divergences) of quantum gravitation are mentioned.
The chronicle of the classical electrodynamics
International Nuclear Information System (INIS)
Bassalo, J.M.F.
1984-01-01
In this Chronicle of the classical electrodynamics it is shown how this important branch of classical physics was developed since the mathematical formulation of the electromagnetism empiric laws carried by Maxwell, mainly the laws of Coulomb, Oersted, Ampere, Biot-Savart, Faraday, Henry and Lenz, up to the settlement of the radiation theory, scientific background for the technological development of the wireless telegraphy. Through this chronicle, it is also seen how Maxwell got one of the main results of the past century classical physics - the electromagnetic theory of light -, and how the experimental production of an electromagnetic wave by Hertz, unchained a collection of theoretical papers which explained many experimental results such as dispersion of light, thermical radiation, X-rays and its scattering through the matter. At last, it is still seen that the study of electrodynamics of moving bodies led to the relativity theory, presented by Einstein's famous paper about such subject. (Author) [pt
On generalized Born-Infeld electrodynamics
International Nuclear Information System (INIS)
Kruglov, S I
2010-01-01
The generalized Born-Infeld electrodynamics with two parameters is investigated. In this model the propagation of a linearly polarized laser beam in the external transverse magnetic field is considered. It was shown that there is the effect of vacuum birefringence, and we evaluate induced ellipticity. The upper bounds on the combination of parameters introduced from the experimental data of BRST and PVLAS Collaborations were obtained. When two parameters are equal to each other, we arrive at Born-Infeld electrodynamics and the effect of vacuum birefringence vanishes. We find the canonical and symmetrical Belinfante energy-momentum tensors. The trace of the energy-momentum tensor is not zero and the dilatation symmetry is broken. The four-divergence of the dilatation current is equal to the trace of the Belinfante energy-momentum tensor and is proportional to the parameter (with the dimension of the field strength) of the model. The dual symmetry is also broken in the model considered.
Conceptual assessment tool for advanced undergraduate electrodynamics
Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.
2017-12-01
As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.
Conceptual assessment tool for advanced undergraduate electrodynamics
Directory of Open Access Journals (Sweden)
Charles Baily
2017-09-01
Full Text Available As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II: the Colorado UppeR-division ElectrodyNamics Test (CURrENT. This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument’s development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.
Meystre, Pierre
2007-01-01
Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to rese...
Problems of Technical Electrodynamics (Selected Articles),
1984-04-11
copy available. ii DC 83143001 PAGE 1 PROBLEMS OF TECHNICAL ELECTRODYNAMICS. DOC - 83143001 PAGE 2 In the collector /collection are connected the...composite/ compound reliable in mechanical sense forgings of rotors with a weight of 250 t and it is more and rotor binding bands. These K forgings must be...go - calculated coefficient, which considers the character of temperature field. With a linear change in temperature .=1, with parabolic =3
Topological solitons in 8-spinor mie electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Rybakov, Yu. P., E-mail: soliton4@mail.ru [Peoples' Friendship University of Russia, Department of Theoretical Physics (Russian Federation)
2013-10-15
We investigate the effective 8-spinor field model suggested earlier as the generalization of nonlinear Mie electrodynamics. We first study in pure spinorial model the existence of topological solitons endowed with the nontrivial Hopf invariant Q{sub H}, which can be interpreted as the lepton number. Electromagnetic field being included as the perturbation, we estimate the energy and the spin of the localized charged configuration.
On the equation of motion in electrodynamics
International Nuclear Information System (INIS)
Papas, C.H.
1975-01-01
A new vector equation of motion in electrodynamics is proposed by replacing the Schott term in the Lorentz-Dirac equation by an expression depending on the electro-magnetic field vectors E and B and the velocity vector V. It is argued that several conceptual difficulties in the Lorentz-Dirac equation disappear while the results remain the same except for extreme high fields and velocities as could be encountered in astrophysics
Electrodynamics of a Cosmic Dark Fluid
Directory of Open Access Journals (Sweden)
Alexander B. Balakin
2016-06-01
Full Text Available Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium-type representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent and Dark Energy (a scalar element; respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.
Experiments and Numerical Simulations of Electrodynamic Tether
Iki, Kentaro; Kawamoto, Satomi; Takahashi, Ayaka; Ishimoto, Tomori; Yanagida, Atsushi; Toda, Susumu
As an effective means of suppressing space debris growth, the Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) has been investigating an active space debris removal system that employs highly efficient electrodynamic tether (EDT) technology for orbital transfer. This study investigates tether deployment dynamics by means of on-ground experiments and numerical simulations of an electrodynamic tether system. Some key parameters used in the numerical simulations, such as the elastic modulus and damping ratio of the tether, the spring constant of the coiling of the tether, and deployment friction, must be estimated, and various experiments are conducted to determine these values. As a result, the following values were obtained: The elastic modulus of the tether was 40 GPa, and the damping ratio of the tether was 0.02. The spring constant and the damping ratio of the tether coiling were 10-4 N/m and 0.025 respectively. The deployment friction was 0.038ν + 0.005 N. In numerical simulations using a multiple mass tether model, tethers with lengths of several kilometers are deployed and the attitude dynamics of satellites attached to the end of the tether and tether libration are calculated. As a result, the simulations confirmed successful deployment of the tether with a length of 500 m using the electrodynamic tether system.
Relativistic electrodynamics of dissipative elastic media
International Nuclear Information System (INIS)
Kranys, M.
1980-01-01
A phenomenological general relativistic electrodynamics is proposed for a dissipative elastic solid which is polarizable and magnetizable and whose governing equations form a hyperbolic system. Non-stationary transport equations are proposed for dissipative fluxes (and constitutive equations of electrodynamics) containing new cross-effect terms, as required for compatibility with an entropy principle expressed by a new balance equation (including a new Gibbs equation). The dynamic equations are deduced from the unified Minkowski-Abraham-Eckart energy-momentum tensor. The theory, formed by a set of 29 (reducible to 23) partial differential equations (in special relativity) governing the material behaviour of the system characterized by generalizing the constitutive equations of quasineutral media, together with Maxwell's equations, may be referred to as the electrodynamics of dissipative elastic media (or fluid). The proposed transport laws for polarization and magnetization generalize the well-known Debye law for relaxation and show the influence of shear and bulk viscosity on polarization and magentization. Besides the form of the entropy function, the free energy function in the non-stationary regime is also formulated. (auth)
Energy Technology Data Exchange (ETDEWEB)
Ecker, Gerhard [Wien Univ. (Austria). Fakultaet fuer Physik
2017-07-01
The following topics are dealt with: Physics around 1900, the way to quantum mechanics, quantum field theory with quantum electrodynamics as prototype, the crisis of quantum field theory, from the beta decay to the electroweak gauge theory, quantum chromodynamics as quantum field theory of the strong nuclear force, the standard model of the fundamental interactions, physics beyond the standard model. (HSI)
Prytz, Kjell
2015-01-01
This book is intended as an undergraduate textbook in electrodynamics at basic or advanced level. The objective is to attain a general understanding of the electrodynamic theory and its basic experiments and phenomena in order to form a foundation for further studies in the engineering sciences as well as in modern quantum physics. The outline of the book is obtained from the following principles: • Base the theory on the concept of force and mutual interaction • Connect the theory to experiments and observations accessible to the student • Treat the electric, magnetic and inductive phenomena cohesively with respect to force, energy, dipoles and material • Present electrodynamics using the same principles as in the preceding mechanics course • Aim at explaining that theory of relativity is based on the magnetic effect • Introduce field theory after the basic phenomena have been explored in terms of forc...
Electron-positron annihilation: unitarity, scaling and electrodynamics at high energies
Energy Technology Data Exchange (ETDEWEB)
Karl, G [Guelph Univ., Ontario (Canada); European Organization for Nuclear Research, Geneva (Switzerland))
1974-01-01
The work on e/sup +/e/sup -/ annihilation by Cabibbo, Wolfenstein and the author is reviewed. The restrictions of unitarity are analyzed and the connection between the cross sections sigmasub(h) (into hadrons) and sigmasub(..mu..) (into muons) is derived. The possibility of non-scaling in e/sup +/e/sup -/ annihilation is studied and it is pointed out that it leads to no contradiction with presently available information. It is further pointed out that non-scaling could provide a cut-off mechanism for quantum electrodynamics.
Quantum revolution. [Vol.] 2: QED: the jewel of physics
International Nuclear Information System (INIS)
Venkataraman, G.
1994-01-01
Events leading to the plague or crisis of infinities in the field of quantum mechanics are surveyed in brief. How that crisis was contained by formulation of quantum electrodynamics (QED) theory is narrated in this volume. Contributions of Tomanoga, Schwinger and Feynman to the QED theory are discussed. The story of quantum mechanics is brought up to fifties. (M.G.B.)
Electrodynamics in scale-covariant gravity theory
International Nuclear Information System (INIS)
Mansfield, V.N.; Malin, S.
1980-01-01
Utilizing the inherent scale-invariance of Maxwell's Equations, classical electrodynamics is incorporated into the theory of scale-invariant gravity. In this incorporation the gravitational constant G is shown to transform like β -2 (β is the gauge function), the generalized Lorentz Force Law is derived, the electric charge is shown to be invariant under gauge transformation, and matter creation is shown to be a necessity. In all nontrivial gauges a modified version of QED is obtained. The deviation from standard QED, however, is shown to be beyond the range of experimental detection when G α β -2 . (orig.)
DEFF Research Database (Denmark)
Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka
2013-01-01
We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods...
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1993-01-01
The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs
Electrodynamical Model of Quasi-Efficient Financial Markets
Ilinski, Kirill N.; Stepanenko, Alexander S.
The modelling of financial markets presents a problem which is both theoretically challenging and practically important. The theoretical aspects concern the issue of market efficiency which may even have political implications [1], whilst the practical side of the problem has clear relevance to portfolio management [2] and derivative pricing [3]. Up till now all market models contain "smart money" traders and "noise" traders whose joint activity constitutes the market [4, 5]. On a short time scale this traditional separation does not seem to be realistic, and is hardly acceptable since all high-frequency market participants are professional traders and cannot be separated into "smart" and "noisy." In this paper we present a "microscopic" model with homogenuous quasi-rational behaviour of traders, aiming to describe short time market behaviour. To construct the model we use an analogy between "screening" in quantum electrodynamics and an equilibration process in a market with temporal mispricing [6, 7]. As a result, we obtain the time-dependent distribution function of the returns which is in quantitative agreement with real market data and obeys the anomalous scaling relations recently reported for both high-frequency exchange rates [8], S&P500 [9] and other stock market indices [10, 11].
Density matrix in quantum electrodynamics, equivalence principle and Hawking effect
International Nuclear Information System (INIS)
Frolov, V.P.; Gitman, D.M.
1978-01-01
The expression for the density matrix describing particles of one sort (electrons or positrons) created by an external electromagnetic field from the vacuum is obtained. The explicit form of the density matrix is found for the case of constant and uniform electric field. Arguments are given for the presence of a connection between the thermal nature of the density matrix describing particles created by the gravitational field of a black hole and the equivalence principle. (author)
Nonperturbative quantum electrodynamics in a photon-condensate background field
International Nuclear Information System (INIS)
Kikuchi, Y.; Ng, Y.J.
1988-01-01
Analyses of the Schwinger-Dyson (SD) equation for the fermion self-energy have revealed the existence of a QED ultraviolet nonperturbative fixed point which separates a strong-coupling regime from a weak-coupling regime. Here we study the SD equation in the presence of a weak constant photon-condensate background field. This background field does not seem to affect the fixed point. Better approximations or some more realistic background fields may change the result. The investigation is partly motivated by recent heavy-ion experiments
Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory
International Nuclear Information System (INIS)
Milonni, P.W.
1976-01-01
Theoretical aspects of the interaction of atoms with the radiation field are reviewed with emphasis on those features of the interaction requiring field quantization. The approach is nonrelativistic, with special attention given to the theory of spontaneous emission. (Auth.)
The confined hydrogenoid ion in non-relativistic quantum electrodynamics
Amour, L
2006-01-01
We consider a system of a nucleus with an electron together with the quantized electromagnetic field. Instead of fixing the nucleus, the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke and the M\\"ossbauer effects (see [CTDRG]). When an ultraviolet cut-off is imposed we initiate the spectral analysis of the Hamiltonian describing the system and we derive the existence of a ground state. This is achieved without conditions on the fine structure constant. [CTDRG] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg. Processus d'interaction entre photons et atomes. Edition du CNRS, 2001.
Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals
Vos, Willem L.; Woldering, L.A.; Ghulinyan, M.; Pavesi, L.
2015-01-01
This paper is Chapter 8 of the book "Light Localisation and Lasing: Random and Pseudorandom Photonic Structures", edited by Mher Ghulinyan and Lorenzo Pavesi (Cambridge University Press, Cambridge, 2015). It provides an overview of much recent work on 3D photonic crystals with a complete photonic
Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble
DEFF Research Database (Denmark)
Guerlin, Christine; Brion, Etienne; Esslinger, Tilman
2010-01-01
The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly cou...
An algebraic description of perturbation theory in quantum electrodynamics
International Nuclear Information System (INIS)
Wright, J.D.
1982-01-01
An algebraic formulation of the electromagnetic field, in which various quantization procedures can be described, is used to discuss perturbation calculations. The Feynman rules and the second order calculation of the self-energy of the electron can be developed on the basis of the Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum and other states, which are associated with calculations in terms of field algebra operators. The vacuum state defined on the field algebra by Schwinger leads to incorrect results in the self-energy calculation
Raby chaotic vacuum oscillations in resonator quantum electrodynamics
International Nuclear Information System (INIS)
Kon'kov, L.E.; Prants, S.V.
1997-01-01
It is shown in numerical experiments with two-level atoms, moving through a single-mode high-quality resonator, that a new type of spontaneous radiation - the Raby chaotic vacuum oscillation - originates in the mode of strong atom-field bonds
Quantum electrodynamical effects in heavy highly-charged ions
International Nuclear Information System (INIS)
Yerokhin, V.A.; Artemyev, A.N.; Indelicato, P.; Shabaev, V.M.
2003-01-01
The present status of theoretical calculations of QED effects in highly charged ions is reviewed for several important cases: the Lamb shift in heavy H-like ions, the 2p 1/2 -2s transition energy in heavy Li-like ions, and the bound-electron g factor in H-like ions. Theoretical predictions are compared with experimental results. Special attention is paid to the discussion of uncertainties of theoretical predictions
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
adiabatic transfer process through the 'dark state' by a slow variation of the control laser intensity. ... control field of Rabi frequency C(t) transfers one photon in the cavity mode to a long- .... It gives an approximate statistical description of the.
Josephson Parametric Amplification for Circuit Quantum Electrodynamics: Theory and Implementation
2013-05-01
especially Will McFaul and Anasua Chatterjee. I (and all other lab members) also thank Mr. Bean , our coffee /espresso machine, for always being there. Next, I...a chain of amplifiers [15,16], an initial amplification with a low noise figure and high gain will lead to an effective SNR at later stages of...product of such a state is the minimum possible for the harmonic oscillator. The expectation value rotates clockwise about the origin of the Re[a], Im[a
Test of quantum-electrodynamical corrections in muonic atoms
Walter, H K; Böhm, F; Engfer, R; Link, R; Michaelsen, R; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Von Gunten, A H; Vuilleumier, J H; Zehnder, A
1972-01-01
Energies of the 5f-4f muonic X-rays have been measured in /sup nat/Hg and /sup 203/Tl with an accuracy of about 25 eV. They are found to be smaller than theoretical energies including recently revised calculations of higher-order vacuum polarization, by about two standard deviations. (10 refs).
Test of quantum electrodynamics by muonic atoms: An experimental contribution
International Nuclear Information System (INIS)
Tauscher, L.; Backenstoss, G.; Fransson, K.; Koch, H.; Nilsson, A.; De Raedt, J.
1975-01-01
The large unexplained deviations of the experimental muonic 4-3 transitions in Ba and 5-4 transitions in Pb from calculations were found not to be existent. The absolute energies of these transitions agree, on the average, with theory to within 10 eV: The differences between experimental and calculated energies E)-E) are +2plus-or-minus13 and -2plus-or-minus12 eV for the μ - -Ba 4f 5 / 2 -3d 3 / 2 and 4f 7 / 2 -3d 5 / 2 transitions, respectively, and 10plus-or-minus16 and -13plus-or-minus14 eV for the μ - -Pb 5g 7 / 2 -4f 5 / 2 and 5g 9 / 2 -4f 7 / 2 transitions, respectively
Many-body physics with circuit quantum electrodynamics
International Nuclear Information System (INIS)
Leib, Martin H.
2015-01-01
We present proposals to simulate many-body physics with superconducting circuits. The ''body'' to work with for superconducting circuits is the microwave photon and interaction is induced by the nonlinearity of the Josephson effect. We present two different approaches to simulate Bose-Hubbard physics, one based on a polariton scheme and another with nonlinear resonators. We also present a Dicke-model like simulator for ultrastrongly coupled Josephson junctions to a resonator and show a scheme for implementing long range interactions.
Vacuum polarization and dynamical chiral symmetry breaking in quantum electrodynamics
International Nuclear Information System (INIS)
Gusynin, V.P.
1989-01-01
The Schwinger-Dyson equation in the ladder approximation is considered for the fermion mass function taking into account the vacuum polarization effects. It is shown that even in the 'zero-charge' situation there exists, at rather large coupling constant (α>α c >0), a solution with spontaneously broken chiral symmetry. The existence of the local limit in the model concerned is discussed. 30 refs.; 1 fig
Quantum electrodynamics of resonant energy transfer in condensed matter
International Nuclear Information System (INIS)
Juzeliunas, G.; Andrews, D.L.
1994-01-01
A microscopic many-body QED theory for dipole-dipole resonance energy transfer has been developed from first principles. A distinctive feature of the theory is full incorporation of the dielectric effects of the supporting medium. The approach employs the concept of bath polaritons mediating the energy transfer. The transfer rate is derived in terms of the Green's operator corresponding to the polariton matrix Hamiltonian. In contrast to the more common lossless polariton models, the present theory accommodates an arbitrary number of energy levels for each molecule of the medium. This includes, a case of special interest, where the excitation energy spectrum of the bath molecules is sufficiently dense that it can be treated as a quasicontinuum in the energy region in question, as in the condensed phase normally results from homogeneous and inhomogeneous line broadening. In such a situation, the photon ''dressed'' by the medium polarization (the polariton) acquires a finite lifetime, the role of the dissipative subsystem being played by bath molecules. It is this which leads to the appearance of the exponential decay factor in the microscopically derived pair transfer rates. Accordingly, the problem associated with potentially infinite total ensemble rates, due to the divergent R -2 contribution, is solved from first principles. In addition, the medium modifies the distance dependence of the energy transfer function A(R) and also produces extra modifications due to screening contributions and local field effects. The formalism addresses cases where the surrounding medium is either absorbing or lossless over the range of energies transferred. In the latter case the exponential factor does not appear and the dielectric medium effect in the near zone reduces to that which is familiar from the theory of radiationless (Foerster) energy transfer
Electrodynamics of spin currents in superconductors
International Nuclear Information System (INIS)
Hirsch, J.E.
2008-01-01
In recent work we formulated a new set of electrodynamic equations for superconductors as an alternative to the conventional London equations, compatible with the prediction of the theory of hole superconductivity that superconductors expel negative charge from the interior towards the surface. Charge expulsion results in a macroscopically inhomogeneous charge distribution and an electric field in the interior, and because of this a spin current is expected to exist. Furthermore, we have recently shown that a dynamical explanation of the Meissner effect in superconductors leads to the prediction that a spontaneous spin current exists near the surface of superconductors (spin Meissner effect). In this paper we extend the electrodynamic equations proposed earlier for the charge density and charge current to describe also the space and time dependence of the spin density and spin current. This allows us to determine the magnitude of the expelled negative charge and interior electric field as well as of the spin current in terms of other measurable properties of superconductors. We also provide a 'geometric' interpretation of the difference between type I and type II superconductors, discuss how superconductors manage to conserve angular momentum, discuss the relationship between our model and Slater's seminal work on superconductivity, and discuss the magnitude of the expected novel effects for elemental and other superconductors. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
A reformulation of mechanics and electrodynamics.
Pinheiro, Mario J
2017-07-01
Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.
Rail electrodynamics in a plasma armature railgun
International Nuclear Information System (INIS)
Rolader, G.E.; Jamison, K.A.; Villecco, R.A.; Graham, F.R.
1991-01-01
A model is developed to investigate rail electrodynamics in a plasma armature railgun. This model describes the rail motion in response to the transitory Lorentz force and the compressive restoration force from the material which is between the rails and the containment structure. In this model the distance between the rails is found to oscillate with a frequency of β. The magnetic field and the dynamic behavior of the rails induce local electric fields. We investigate the significance of these electric fields in the laboratory frame and in the projectile frame. In the lab frame, rail electrodynamics induces local electric fields which have maximums spaced behind the projectile at locations where βt p is an odd multiple of π, where t p is the time since the projectile has passed an axial location on the rails. When the projectile is accelerating, rail dynamics induce electric fields in the projectile frame which have maximums where βt p is an even multiple of π. As the projectile velocity increases, the locations of the peak voltages move farther behind the projectile. For the CHECMATE railgun, calculations indicate that the rail displacement is on the order of 2 mm, the rail velocity is on the order of 50 m/s, and the voltages induced in the projectile frame are on the order of 20--40 V
Electrodynamics with a Future Conformal Horizon
International Nuclear Information System (INIS)
Ibison, Michael
2010-01-01
We investigate the impact of singularities occurring at future times in the Friedmann equations expressed in conformal coordinates to determine the consequences of extending the time coordinate through the singularity for the physics of matter and radiation occupying just one side. Mostly this involves investigation of the relationship between the metric with line element ds 2 a 2 (t)(dt 2 -dx 2 ) and time reversal symmetry within electrodynamics. It turns out compatibility between these two is possible only if there is a singular physical event at the time of the singularity or if the topology is not trivial. In both cases the singularity takes on the appearance of a time-like mirror. We are able to demonstrate a relationship between the broken time symmetry in electrodynamics characterized by retarded radiation and radiation reaction and the absolute conformal time relative to the time of the singularity, i.e. between the Electromagnetic and Cosmological arrows of time. It is determined that the Wheeler-Feynman reasoning but with the future absorber replaced by the Cosmological mirror leads to a conflict with observation unless matter is strongly bound electromagnetically to the environment.
Covariant electrodynamics in linear media: Optical metric
Thompson, Robert T.
2018-03-01
While the postulate of covariance of Maxwell's equations for all inertial observers led Einstein to special relativity, it was the further demand of general covariance—form invariance under general coordinate transformations, including between accelerating frames—that led to general relativity. Several lines of inquiry over the past two decades, notably the development of metamaterial-based transformation optics, has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in general dielectric media residing in curved background space-times. In particular, I derive a relation for the spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation provides a basis for a unified approach to ray and congruence tracing through media in curved space-times that may smoothly vary among positively refracting, negatively refracting, and vacuum.
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
The Earth's ionosphere plasma physics and electrodynamics
Kelley, Michael C
2007-01-01
Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.
Plasma physics and fusion plasma electrodynamics
Bers, Abraham
2016-01-01
Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...
Magnetized black holes and nonlinear electrodynamics
Kruglov, S. I.
2017-08-01
A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.
Dual-keel electrodynamic maglev system
Energy Technology Data Exchange (ETDEWEB)
Jianlang, He [Argonne National Lab., IL (United States); Rote, D M [Argonne National Lab., IL (United States); Zian, Wang [Argonne National Lab., IL (United States); Coffey, H T [Argonne National Lab., IL (United States)
1996-12-31
This paper introduces a new concept for an electrodynamic-suspension maglev system that has a dual-keel arrangement. Each keel consists of a row of superconducting magnets aboard the vehicle. The keels move in troughs in the guideway that are each lined with pairs of figure-eight-shaped null-flux coils. Each pair of null-flux coils is cross-connected to produce null-flux suspension and guidance force. The cross-connected figure-eight null-flux coils in each trough are also energized by a three-phase power supply to produce propulsive force. Preliminary analysis shows that the new system has many advantages over other EDS systems in terms of system performance and dynamic stability. (orig.)
Electrodynamic Dust Shield for Space Applications
Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.
2016-01-01
Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.
Stochastic Electrodynamics and the Compton effect
International Nuclear Information System (INIS)
Franca, H.M.; Barranco, A.V.
1987-12-01
Some of the main qualitative features of the Compton effect are tried to be described within the realm of Classical Stochastic Electrodynamics (SED). It is found indications that the combined action of the incident wave (frequency ω), the radiation reaction force and the zero point fluctuating electromagnetic fields of SED, are able to given a high average recoil velocity v/c=α/(1+α) to the charged particle. The estimate of the parameter α gives α ∼ ℎω/mc 2 where 2Πℎ is the constant and mc 2 is the rest energy of the particle. It is verified that this recoil is just that necessary to explain the frequency shift, observed in the scattered radiation as due to a classical double Doppler shift. The differential cross section for the radiation scattered by the recoiling charge using classical electromagnetism also calculated. The same expression as obtained by Compton in his fundamental work of 1923 is found. (author) [pt
Flux Modulation in the Electrodynamic Loudspeaker
DEFF Research Database (Denmark)
Halvorsen, Morten; Tinggaard, Carsten; Agerkvist, Finn T.
2015-01-01
This paper discusses the effect of flux modulation in the electrodynamic loudspeaker with main focus on the effect on the force factor. A measurement setup to measure the AC flux modulation with static voice coil is explained and the measurements shows good consistency with FEA simulations....... Measurements of the generated AC flux modulation shows, that eddy currents are the main source to magnetic losses in form of phase lag and amplitude changes. Use of a copper cap shows a decrease in flux modulation amplitude at the expense of increased power losses. Finally, simulations show...... that there is a high dependency between the generated AC flux modulation from the voice coil and the AC force factor change....
Gravitational waves and electrodynamics: new perspectives.
Cabral, Francisco; Lobo, Francisco S N
2017-01-01
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.
Gravitational waves and electrodynamics: new perspectives
Energy Technology Data Exchange (ETDEWEB)
Cabral, Francisco; Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)
2017-04-15
Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics. (orig.)
Fluidic electrodynamics: Approach to electromagnetic propulsion
International Nuclear Information System (INIS)
Martins, Alexandre A.; Pinheiro, Mario J.
2009-01-01
We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.
Electrodynamics as a theory of interacting complex charges
International Nuclear Information System (INIS)
Akeyo Omolo, Joseph
2003-04-01
In this paper, we formulate a general theory of electrodynamics which incorporates both electric and magnetic charges. The mathematical origin of a second vector potential and magnetic charge is established. Electrodynamics is then reformulated in complex form as a theory of complex charges moving in a complex force field. This provides the framework for complex charged particle interactions as a generalization of Schwinger's theory of dyon-dyon interactions. The concept of duality transformation relating electric and magnetic charge spaces is developed within the general framework of electrodynamics in complex form. (author)
Viking investigations of auroral electrodynamical processes
International Nuclear Information System (INIS)
Marklund, G.
1993-01-01
Recent results from the Viking electric field experiment and their contribution to a better understanding of the aurora and of associated ionosphere-magnetosphere processes are briefly reviewed. The high-resolution electric field data have provided new and important results in a number of different areas, including auroral electrodynamics both on the arc scale size and on the global scale, the auroral acceleration process, the current-voltage relationship, substorms, and the dynamics of the polar cusp. After a short introduction presenting some of the characteristic features of the high-altitude electric field data the remainder of this paper focuses on the role of the electric field in auroral electrodynamics and in the auroral acceleration process. The relationships between the auroral emissions and the associated electric field, current, particle, and conductivity distributions are discussed for both small-scale and large-scale auroral distributions on the basis of results from Viking event studies and from numerical model studies. Particular attention is paid to ionospheric convection and field- aligned current signatures associated with northward interplanetary magnetic field (IMF) auroral distributions, such as the theta aurora or those characterized by extended auroral activity poleward of the classical auroral oval. The role of dc electric fields for the auroral acceleration process has been further investigated and clarified. Intense low-frequency electric field fluctuations (< l Hz) have been shown to play an important role in the auroral acceleration process. In this frequency range the electric field appears static for the electrons but not for the ions, giving rise to a selective acceleration. Estimates of the acceleration potential based on a number of different methods generally show good agreement, providing convincing evidence of the role of dc electric fields in the auroral acceleration process
Quantum Theory finally reconciled with Special Relativity
Tommasini, Daniele
2001-01-01
In 1935 Einstein, Podolsky and Rosen (EPR) pointed out that Quantum Mechanics apparently implied some mysterious, instantaneous action at a distance. This paradox is supposed to be related to the probabilistic nature of the theory, but since deterministic alternatives involving "Hidden Variables" hardly agree with the experiments, the scientific community is now accepting this ``quantum nonlocality" as if it were a reality. However, I have argued recently that Quantum Electrodynamics is free ...
Neutrix calculus and finite quantum field theory
International Nuclear Information System (INIS)
Ng, Y Jack; Dam, H van
2005-01-01
In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.
RF electrodynamics in small particles of oxides - a review
CSIR Research Space (South Africa)
Srinivasu, VV
2008-01-01
Full Text Available RF electrodynamics, particularly, the low field rf absorption in small superconducting and manganite particles is reviewed and compared with their respective bulk counterparts. Experimental and theoretical aspects of the small particle...
Lorentz-violating electrodynamics and the cosmic microwave background.
Kostelecký, V Alan; Mewes, Matthew
2007-07-06
Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.
Electric and Magnetic Interaction between Quantum Dots and Light
DEFF Research Database (Denmark)
Tighineanu, Petru
argue that there is ample room for improving the oscillator strength with prospects for approaching the ultra-strong-coupling regime of cavity quantum electrodynamics with optical photons. These outstanding gures of merit render interface-uctuation quantum dots excellent candidates for use in cavity...... quantum electrodynamics and quantum-information science. We investigate exciton localization in droplet-epitaxy quantum dots by conducting spectral and time-resolved measurements. We nd small excitons despite the large physical size of dropletepitaxy quantum dots, which is attributed to material inter......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...
Probing nonlinear electrodynamics in slowly rotating spacetimes through neutrino astrophysics
Cuesta, Herman J. Mosquera; Lambiase, Gaetano; Pereira, Jonas P.
2017-01-01
Huge electromagnetic fields are known to be present during the late stages of the dynamics of supernovae. Thus, when dealing with electrodynamics in this context, the possibility may arise to probe nonlinear theories (generalizations of the Maxwellian electromagnetism). We firstly solve Einstein field equations minimally coupled to an arbitrary (current-free) nonlinear Lagrangian of electrodynamics (NLED) in the slow rotation regime $a\\ll M$ (black hole's mass), up to first order in $a/M$. We...
Elements of quantum information
International Nuclear Information System (INIS)
Schleich, W.P.
2007-01-01
Elements of Quantum Information introduces the reader to the fascinating field of quantum information processing, which lives on the interface between computer science, physics, mathematics, and engineering. This interdisciplinary branch of science thrives on the use of quantum mechanics as a resource for high potential modern applications. With its wide coverage of experiments, applications, and specialized topics - all written by renowned experts - Elements of Quantum Information provides and indispensable, up-to-date account of the state of the art of this rapidly advancing field and takes the reader straight up to the frontiers of current research. The articles have first appeared as a special issue of the journal 'Fortschritte der Physik / Progress of Physics'. Since then, they have been carefully updated. The book will be an inspiring source of information and insight for anyone researching and specializing in experiments and theory of quantum information. Topics addressed in Elements of Quantum Information include - Cavity Quantum Electrodynamics - Segmented Paul Traps - Cold Atoms and Bose-Einstein Condensates in Microtraps, Optical Lattices, and on Atom Chips - Rydberg Gases - Factorization of Numbers with Physical Systems - Entanglement of Continuous Variables - NMR and Solid State Quantum Computation - Quantum Algorithms and Quantum Machines - Complexity Theory - Quantum Crytography. (orig.)
A relativistic theory for continuous measurement of quantum fields
International Nuclear Information System (INIS)
Diosi, L.
1990-04-01
A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs
Quantum correlations of light and matter through environmental transitions
DEFF Research Database (Denmark)
Iles-Smith, Jake; Nazir, Ahsan
2016-01-01
-state and atomic systems. Here we predict a striking and important example of such an effect. We show that in solid-state cavity quantum electrodynamics, interactions with the host vibrational environment can generate quantum cavity-emitter correlations in regimes that are semiclassical for atomic systems...
Pseudo-Hermitian Representation of Quantum Mechanics
International Nuclear Information System (INIS)
Mustafazade, A.
2008-01-01
I will outline a formulation of quantum mechanics in which the inner product on the Hilbert space of a quantum system is treated as a degree of freedom. I will outline some of the basic mathematical and conceptual features of the resulting theory and discuss some of its applications. In particular, I will present a quantum mechanical analogue of Einstein's field equations that links the inner product of the Hilbert space and the Hamiltonian of the system and discuss how the resulting theory can be used to address a variety of problems in classical electrodynamics, relativistic quantum mechanics, and quantum computation
International Nuclear Information System (INIS)
Efimov, G.V.
1976-01-01
The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version
Introduction to electrodynamics for microwave linear accelerators
International Nuclear Information System (INIS)
Whittum, D.H.
1998-04-01
This collection of notes and exercises is intended as a workbook to introduce the principles of microwave linear accelerators, starting with the underlying foundation in electrodynamics. The author reviewed Maxwell's equations, the Lorentz force law, and the behavior of fields near a conducting boundary. The author goes on to develop the principles of microwave electronics, including waveguide modes, circuit equivalence, shunt admittance of an iris, and voltage standing-wave ratio. The author constructed an elementary example of a waveguide coupled to a cavity, and examined its behavior during transient filling of the cavity, and in steady-state. He goes on to examine a periodic line. Then he examined the problem of acceleration in detail, studying first the properties of a single cavity-waveguide-beam system and developing the notions of wall Q, external Q, /Q shunt impedance, and transformer ratio. He then examined the behavior of such a system on and off resonance, on the bench, and under conditions of transient and steady-state beam-loading. This work provides the foundation for the commonly employed circuit equivalents and the basic scalings for such systems. Following this he examined the coupling of two cavities, powered by a single feed, and goes on to consider structures constructed from multiple coupled cavities. The basic scalings for constant impedance and constant gradient traveling-wave structures are set down, including features of steady-state beam-loading, and the coupled-circuit model. Effects of uniform and random detuning are derived. These notes conclude with a brief outline of some problems of current interest in accelerator research
Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields
Avetissian, Hamlet K
2016-01-01
This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...
Projected Dipole Model for Quantum Plasmonics
DEFF Research Database (Denmark)
Yan, Wei; Wubs, Martijn; Mortensen, N. Asger
2015-01-01
of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface...... as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects......Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features...
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
International Nuclear Information System (INIS)
Casana, R.; Hora, E. da; Rubiera-Garcia, D.; Santos, C. dos
2015-01-01
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely,G(vertical stroke φ vertical stroke), w(vertical stroke φ vertical stroke), and V (vertical stroke φ vertical stroke). A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory. (orig.)
Electrodynamic forces and plasma conductivity inside the current sheet
International Nuclear Information System (INIS)
Bogdanov, S.Yu.; Frank, A.G.; Markov, V.S.
1985-01-01
The process of accumulation and explosive release of magnetic energy was studied in a current sheet of plasma of a high-current linear discharge. The distribution of current density and of electrodynamic forces were measured and the time evolution of these quantities was determined. The evolution of the plasma conductivity was also obtained. The measured and calculated electrodynamic forces may explain the plasma acceleration up to the velocities about 3x10 4 m/s only near the sheet edges. (D.Gy.)
Passivity-Based Control of a Rigid Electrodynamic Tether
DEFF Research Database (Denmark)
Larsen, Martin Birkelund; Blanke, Mogens
2011-01-01
Electrodynamic tethers provide actuation for performing orbit correction of spacecrafts. When an electrodynamic tether system is orbiting the Earth in an inclined orbit, periodic changes in the magnetic field result in a family of unstable periodic solutions in the attitude motion. This paper shows...... how these periodic solutions can be stabilized by controlling only the current through the tether. A port-controlled Hamiltonian formulation is employed to describe the tethered satellite system and a passive input-output connection is utilized in the control design. The control law consists of two...
Refractive index in generalized superconductors with Born-Infeld electrodynamics
Cheng, Jun; Pan, Qiyuan; Yu, Hongwei; Jing, Jiliang
2018-03-01
We investigate, in the probe limit, the negative refraction in the generalized superconductors with the Born-Infeld electrodynamics. We observe that the system has a negative Depine-Lakhtakia index in the superconducting phase at small frequencies and the greater the Born-Infeld corrections the larger the range of frequencies or the range of temperatures for which the negative refraction occurs. Furthermore, we find that the tunable Born-Infeld parameter can be used to improve the propagation of light in the holographic setup. Our analysis indicates that the Born-Infeld electrodynamics plays an important role in determining the optical properties of the boundary theory.
Relativistic quantum mechanics of leptons and fields
International Nuclear Information System (INIS)
Grandy, W.T. Jr.
1991-01-01
This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory
DEFF Research Database (Denmark)
Unsleber, S.; McCutcheon, Dara; Dambach, M.
We demonstrate the emission of highly indistinguishable photons from a quasiresonantly pumped coupled quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the sample temperature allows us to vary the quantum dot–cavity detuning, and on spectral...
Wall thickness tests by means of rotating electrodynamic transducers
International Nuclear Information System (INIS)
Hueschelrath, G.
1986-01-01
For about three years, the EROT system has been employed for measuring wall thicknesses on pipes of ferritic steels. The experience gathered and the degree of reliability reached up to now are definitely encouraging, so that an increased use of electrodynamic transducers can be expected for measuring pipes with outside diameters of up to 22 inches. (orig.) [de
Development of superconducting magnets for the Canadian electrodynamic Maglev vehicle
International Nuclear Information System (INIS)
Fife, A.A.; Ensing, H.J.; Tillotson, M.; Westera, W.
1986-01-01
A review is presented on the current status of superconducting magnet developments for the Canadian electrodynamic Maglev transportation system. Various design aspects of the levitation and linear synchronous motor magnets, appropriate for the current vehicle concepts, are discussed. In addition, recent experimental work is outlined on the development of a suitable epoxy impregnation technology for the superconducting coils
Electrodynamics, Differential Forms and the Method of Images
Low, Robert J.
2011-01-01
This paper gives a brief description of how Maxwell's equations are expressed in the language of differential forms and use this to provide an elegant demonstration of how the method of images (well known in electrostatics) also works for electrodynamics in the presence of an infinite plane conducting boundary. The paper should be accessible to an…
Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Denisov, V.I.; Pimenov, A.B.; Sokolov, V.A. [Moscow State University, Physics Department, Moscow (Russian Federation); Denisova, I.P. [Moscow Aviation Institute (National Research University), Moscow (Russian Federation)
2016-11-15
In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed. (orig.)
International Nuclear Information System (INIS)
Scheck, Florian
2010-01-01
Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [de
New progress of fundamental aspects in quantum mechanics
International Nuclear Information System (INIS)
Sun Changpu
2001-01-01
The review recalls the conceptual origins of various interpretations of quantum mechanics. With the focus on quantum measurement problems, new developments of fundamental quantum theory are described in association with recent experiments such as the decoherence process in cavity quantum electrodynamics 'which-way' detection using the Bragg scattering of cold atoms, and quantum interference using the small quantum system of molecular C 60 . The fundamental problems include the quantum coherence of a macroscopic object, the von Neumann chain in quantum measurement, the Schroedinger cat paradox, et al. Many land math experiments have been accomplished with possible important applications in quantum information. The most recent research on the new quantum theory by G.'t Hooft is reviewed, as well as future prospects of quantum mechanics
Nonrelativistic quantum X-ray physics
Hau-Riege, Stefan P
2015-01-01
Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sou...
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
General principles of quantum mechanics
International Nuclear Information System (INIS)
Pauli, W.
1980-01-01
This book is a textbook for a course in quantum mechanics. Starting from the complementarity and the uncertainty principle Schroedingers equation is introduced together with the operator calculus. Then stationary states are treated as eigenvalue problems. Furthermore matrix mechanics are briefly discussed. Thereafter the theory of measurements is considered. Then as approximation methods perturbation theory and the WKB approximation are introduced. Then identical particles, spin, and the exclusion principle are discussed. There after the semiclassical theory of radiation and the relativistic one-particle problem are discussed. Finally an introduction is given into quantum electrodynamics. (HSI)
International Nuclear Information System (INIS)
Remler, E.A.
1977-01-01
A gauge-invariant version of the Wigner representation is used to relate relativistic mechanics, statistical mechanics, and quantum field theory in the context of the electrodynamics of scalar particles. A unified formulation of quantum field theory and statistical mechanics is developed which clarifies the physics interpretation of the single-particle Wigner function. A covariant form of Ehrenfest's theorem is derived. Classical electrodynamics is derived from quantum field theory after making a random-phase approximation. The validity of this approximation is discussed
Self field electromagnetism and quantum phenomena
Schatten, Kenneth H.
1994-07-01
Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2015-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Quantum Logic Network for Cloning a State Near a Given One Based on Cavity QED
International Nuclear Information System (INIS)
Da-Wei, Zhang; Xiao-Qiang, Shao; Ai-Dong, Zhu
2008-01-01
A quantum logic network is constructed to simulate a cloning machine which copies states near a given one. Meanwhile, a scheme for implementing this cloning network based on the technique of cavity quantum electrodynamics (QED) is presented. It is easy to implement this network of cloning machine in the framework of cavity QED and feasible in the experiment. (general)
Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.
Liu, Jingfeng; Zhou, Ming; Yu, Zongfu
2016-09-15
A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.
Naik, R K; Leung, N; Chakram, S; Groszkowski, Peter; Lu, Y; Earnest, N; McKay, D C; Koch, Jens; Schuster, D I
2018-01-09
In the original version of this Article, the affiliation details for Peter Groszkowski and Jens Koch were incorrectly given as 'Department of Physics, University of Chicago, Chicago, IL, 60637, USA', instead of the correct 'Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA'. This has now been corrected in both the PDF and HTML versions of the Article.
Quantum Zeno Effect in the Strong Measurement Regime of Circuit Quantum Electrodynamics
2016-05-17
exponential (linear in time at short times), whereas in the absence ofmeasurement the qubit would exhibit sinusoidal state evolution ( quadratic in time...decouple the dynamical equations of 2 New J. Phys. 18 (2016) 053031 DHSlichter et al the qubit and cavity and obtain a qubit-only reducedmaster equation ...Solving thismaster equation yields a qubit transition rate from the ground state to excited state in the presence of continuous circuitQEDmeasurement [19
Electrodynamic wireless power transmission to a torsional receiver
International Nuclear Information System (INIS)
McEachern, K M; Arnold, D P
2013-01-01
This paper presents a wireless power transmission (WPT) concept that uses electrodynamic coupling and torsional motion of a permanent magnet in the receiver. The system is shown to transfer an average power of 3.09 mW (power density equal to 143 μW/cm 3 ) over a distance of 1 cm, an average power of 1.98 mW over a distance of 2 cm, and an average power of 126 μW over a distance of 7 cm. We also demonstrate unaltered power transmission through conductive media, including a human hand and an aluminum plate, highlighting a key advantage of the electrodynamic wireless power transmission approach
Fractal electrodynamics via non-integer dimensional space approach
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Successive canonical transformation in model two-body electrodynamics
International Nuclear Information System (INIS)
Raha, S.
1978-10-01
The possibility is investigated of bypassing the no interaction theorum of Currie, Jordan and Sudarshan for direct action Lagrangians. Starting with the field theoretic description of a two-body electrodynamic problem, the field variable is solved for in terms of the particle variables, which paves the way to write an action-at-a-distance Hamiltonian for the problem. A suitable transformation is found which uncouples the field and the particle variables in the interaction up to order e 2 . It is shown that this transformation leaves the statement of Newton's 2nd law unchanged which also agrees with the standard results of electrodynamics. This allows for the identification of canonical variables for the proper action-at-a-distance problem. 19 references
Matsubara-Fradkin thermodynamical quantization of Podolsky electrodynamics
International Nuclear Information System (INIS)
Bonin, C. A.; Pimentel, B. M.
2011-01-01
In this work, we apply the Matsubara-Fradkin formalism and the Nakanishi's auxiliary field method to the quantization of the Podolsky electrodynamics in thermodynamic equilibrium. This approach allows us to write consistently the path integral representation for the partition function of gauge theories in a simple manner. Furthermore, we find the Dyson-Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities for the Podolsky theory. We also write the most general form for the polarization tensor in thermodynamic equilibrium.
Few Issues Related to an Electrodynamic Exciter Control
Čala, M.
2015-01-01
There are multiple problems to solve when controlling an electromagnetic exciter for vibrations generation. Main challenge is to straighten a frequency response of an exciter which is normally not uniform due to resonances resulting from the mechanical construction of an exciter, specimen to test, or mounting fixture. This paper describes number of aspects to consider, which arose during implementation of the control system for small electrodynamic exciter on the Department of Control and Ins...
GENERALIZED p-FORMS ELECTRODYNAMICS IN CLIFFORD SPACES
Castro, C
2003-01-01
Using Clifford algebraic methods we describe how to generalize Maxwell theory of Electrodynamics asociated with ordinary point-charges to a generalized Maxwell theory in Clifford spaces involving extended-charges and p-forms of arbitrary rank. Clifford algebras contain the appropriate algebraic-geometric features to implement the principle of polydimensional transformations (branes of different dimensionality are rotated into each other) that could possibly lead to a proper formulation of string and M theory.
Non-US electrodynamic launchers research and development
Energy Technology Data Exchange (ETDEWEB)
Parker, J.V.; Batteh, J.H.; Greig, J.R.; Keefer, D.; McNab, I.R.; Zabar, Z.
1994-11-01
Electrodynamic launcher research and development work of scientists outside the United States is analyzed and assessed by six internationally recognized US experts in the field of electromagnetic and electrothermal launchers. The assessment covers five broad technology areas: (1) Experimental railguns; (2) Railgun theory and design; (3) Induction launchers; (4) Electrothermal guns; (5) Energy storage and power supplies. The overall conclusion is that non-US work on electrodynamic launchers is maturing rapidly after a relatively late start in many countries. No foreign program challenges the US efforts in scope, but it is evident that the United States may be surpassed in some technologies within the next few years. Until recently, published Russian work focused on hypervelocity for research purposes. Within the last two years, large facilities have been described where military-oriented development has been underway since the mid-1980s. Financial support for these large facilities appears to have collapsed, leaving no effective effort to develop practical launchers for military or civilian applications. Electrodynamic launcher research in Europe is making rapid progress by focusing on a single application, tactical launchers for the military. Four major laboratories, in Britain, France, Germany, and the Netherlands, are working on this problem. Though narrower in scope than the US effort, the European work enjoys a continuity of support that has accelerated its progress. The next decade will see the deployment of electrodynamic launcher technology, probably in the form of an electrothermal-chemical upgrade for an existing gun system. The time scale for deployment of electromagnetic launchers is entirely dependent on the level of research-and-development effort. If resources remain limited, the advantage will lie with cooperative efforts that have reasonably stable funding such as the present French-German program.
Abrikosov vortices from electrodynamics with c-number Dirac spinors
International Nuclear Information System (INIS)
Cabo, A.; Perez-Martinez, A.M.
1986-01-01
We obtain the solutions of the classical equations of motion in electrodynamics with c-number fermion fields in the presence of a uniform charge background. Translationally invariant and cylindrically symmetric exact solutions are found. We also find an approximate cylindrically symmetric solution similar to the Abrikosov vortex in a type-II superconductor. The corresponding value of the magnetic flux is hc/2e
Scale solutions and coupling constant in electrodynamics of vector particles
International Nuclear Information System (INIS)
Arbuzov, B.A.; Boos, E.E.; Kurennoy, S.S.
1980-01-01
A new approach in nonrenormalizable gauge theories is studied, the electrodynamics of vector particles being taken as an example. One and two-loop approximations in Schwinger-Dyson set of equations are considered with account for conditions imposed by gauge invariance. It is shown, that solutions with scale asymptotics can occur in this case but only for a particular value of coupling constant. This value in solutions obtained is close to the value of the fine structure constant α=1/137
Split Octonion electrodynamics and unified fields of dyons
International Nuclear Information System (INIS)
Bisht, P.S.
2004-01-01
Split octonion electrodynamics has been developed in terms of Zorn's vector matrix realization by reformulating electromagnetic potential, current, field tensor and other dynamical quantities. Corresponding field equation (Unified Maxwell's equations) and equation of motion have been reformulated by means of split octonion and its Zorn vector realization in unique, simpler and consistent manner. It has been shown that this theory reproduces the dyon field equations in the absence of gravito-dyons and vice versa
International Nuclear Information System (INIS)
Mekhov, Igor B; Ritsch, Helmut
2012-01-01
Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles. (topical review)
Constraining Born-Infeld-like nonlinear electrodynamics using hydrogen's ionization energy
Energy Technology Data Exchange (ETDEWEB)
Akmansoy, P.N. [Universidade Federal do Rio Grande do Norte, Departamento de Fisica Teorica e Experimental, Natal (Brazil); Medeiros, L.G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Universidade Federal do Rio Grande do Norte, Escola de Ciencia e Tecnologia, Natal, RN (Brazil)
2018-02-15
In this work, the hydrogen's ionization energy was used to constrain the free parameter b of three Born-Infeld-like electrodynamics namely Born-Infeld itself, Logarithmic electrodynamics and Exponential electrodynamics. An analytical methodology capable of calculating the hydrogen ground state energy level correction for a generic nonlinear electrodynamics was developed. Using the experimental uncertainty in the ground state energy of the hydrogen atom, the bound b > 5.37 x 10{sup 20}K(V)/(m), where K = 2, 4√(2)/3 and √(π) for the Born-Infeld, Logarithmic and Exponential electrodynamics respectively, was established. In the particular case of Born-Infeld electrodynamics, the constraint found for b was compared with other constraints present in the literature. (orig.)
Stochastic theories of quantum mechanics
International Nuclear Information System (INIS)
De la Pena, L.; Cetto, A.M.
1991-01-01
The material of this article is organized into five sections. In Sect. I the basic characteristics of quantum systems are briefly discussed, with emphasis on their stochastic properties. In Sect. II a version of stochastic quantum mechanics is presented, to conclude that the quantum formalism admits an interpretation in terms of stochastic processes. In Sect. III the elements of stochastic electrodynamics are described, and its possibilities and limitations as a fundamental theory of quantum systems are discussed. Section IV contains a recent reformulation that overcomes the limitations of the theory discussed in the foregoing section. Finally, in Sect. V the theorems of EPR, Von Neumann and Bell are discussed briefly. The material is pedagogically presented and includes an ample list of references, but the details of the derivations are generally omitted. (Author)
ELECTRODYNAMIC STABILITY COMPUTATIONS FOR FLEXIBLE CONDUCTORS OF THE AERIAL LINES
Directory of Open Access Journals (Sweden)
I. I. Sergey
2015-01-01
Full Text Available In aerial transmission lines aluminium multiwire conductors are in use. Owing to their flexible design the electrodynamic effect of short circuit currents may lead to intolerable mutual rendezvous and even cross-whipping of the phase conductors. The increasing motion of the conductors caused by effect of the short-circuit electrodynamic force impulse is accompanied by the dynamic load impact affecting the conductors, insulating and supporting constructions of the aerial lines. Intensity of the short-circuit currents electrodynamic impact on the flexible conductors depends on the short circuit current magnitude. For research into electrodynamic endurance of the conductors of the aerial lines located at the vertices of arbitrary triangle with spans of a large length, the authors assume the conductor analytical model in the form of a flexible tensile thread whose mass is distributed evenly lengthwise the conductor. With this analytical model, by the action of the imposed forces the conductor assumes the form conditioned by the diagram of applied external forces, and resists neither bending nor torsion. The initial conditions calculation task reduces to solving the flexible thread statics equations. The law of motion of the conductor marginal points comes out of the conjoint solution of dynamic equations of the conductor and structural components of the areal electric power lines. Based on the proposed algorithm, the researchers of the Chair of the Electric Power Stations of BNTU developed a software program LINEDYS+, which in its characteristics yields to no foreign analogs, e. g. SAMSEF. To calculate the initial conditions they modified a software program computing the flexible conductor mechanics named MR 21. The conductor short-circuit electrodynamic interaction estimation considers structural elements of the areal lines, ice and wind loads, objective parameters of the short circuit. The software programs are accommodated with the simple and
Indefinite metric, quantum axiomatics, and the Markov property
International Nuclear Information System (INIS)
Brownell, F.H.
1978-01-01
In answer to a remark of Jauch, a set of axioms for an 'indefinite metric' formulation of quantum electro-dynamics is presented, and the connection with orthocomplementation noted. Here a strict version of the Markov property apparently fails, leading to a novel interpretation. (Auth.)
Local U(2,2) Symmetry in Relativistic Quantum Mechanics
Finster, Felix
1997-01-01
Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.
Local U(2,2) symmetry in relativistic quantum mechanics
Finster, Felix
1998-12-01
Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.
Kleinert, Hagen
2016-01-01
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordin...
Classical and quantum dynamics from classical paths to path integrals
Dittrich, Walter
2017-01-01
Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.
Infinite symmetry in the quantum Hall effect
Directory of Open Access Journals (Sweden)
Lütken C.A.
2014-04-01
Full Text Available The new states of matter and concomitant quantum critical phenomena revealed by the quantum Hall effect appear to be accompanied by an emergent modular symmetry. The extreme rigidity of this infinite symmetry makes it easy to falsify, but two decades of experiments have failed to do so, and the location of quantum critical points predicted by the symmetry is in increasingly accurate agreement with scaling experiments. The symmetry severely constrains the structure of the effective quantum field theory that encodes the low energy limit of quantum electrodynamics of 1010 charges in two dirty dimensions. If this is a non-linear σ-model the target space is a torus, rather than the more familiar sphere. One of the simplest toroidal models gives a critical (correlation length exponent that agrees with the value obtained from numerical simulations of the quantum Hall effect.
Mathematical concepts of quantum mechanics. 2. ed.
International Nuclear Information System (INIS)
Gustafson, Stephen J.; Sigal, Israel Michael
2011-01-01
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory. (orig.)
Zero field Quantum Hall Effect in QED3
International Nuclear Information System (INIS)
Raya, K; Sánchez-Madrigal, S; Raya, A
2013-01-01
We study analytic structure of the fermion propagator in the Quantum Electrodynamics in 2+1 dimensions (QED3) in the Landau gauge, both in perturbation theory and nonperturbatively, by solving the corresponding Schwinger-Dyson equation in rainbow approximation. In the chiral limit, we found many nodal solutions, which could be interpreted as vacuum excitations. Armed with these solutions, we use the Kubo formula and calculate the filling factor for the zero field Quantum Hall Effect
DEFF Research Database (Denmark)
Unsleber, Sebastian; McCutcheon, Dara; Dambach, Michael
2015-01-01
We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupledquantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing thesample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance...
Electromagnetic fields with vanishing quantum corrections
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2018-01-01
Roč. 779, 10 April (2018), s. 393-395 ISSN 0370-2693 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : nonlinear electrodynamics * quantum corrections Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.807, year: 2016 https://www. science direct.com/ science /article/pii/S0370269318300327?via%3Dihub
Electromagnetic fields with vanishing quantum corrections
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2018-01-01
Roč. 779, 10 April (2018), s. 393-395 ISSN 0370-2693 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : nonlinear electrodynamics * quantum corrections Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.807, year: 2016 https://www.sciencedirect.com/science/article/pii/S0370269318300327?via%3Dihub
Manifestations of quantum gravity in scalar QED phenomena
International Nuclear Information System (INIS)
Elizalde, E.; Odintsov, S.D.; Romeo, A.
1995-01-01
Quantum gravitational corrections to the effective potential, at the one-loop level and in the leading-log approximation, for scalar quantum electrodynamics with higher-derivative gravity, which is taken as an effective theory for quantum gravity (QG), are calculated. We point out the appearance of relevant phenomena caused by quantum gravity, such as dimensional transmutation, QG-driven instabilities of the potential, QG corrections to scalar-to-vector mass ratios, and curvature-induced phase transitions, whose existence is shown by means of analytical and numerical study
On the bosonization of the massless spinor electrodynamics
International Nuclear Information System (INIS)
Mikhov, S.G.; Stoyanov, D.Ts.
1979-01-01
A method for constructing a field transformed according to a linear representation of a Lie group out of fields transformed nonlinearly under the action of the same group is proposed. This procedure is used in order to construct spinor fields out of tensor ones. Such a ''bosonization'' of the spinor field is used to reformulate the massless spinor electrodynamics in terms of nonlinear tensor fields. It appears in this formulation that the Dirac equation is reduced to a definition of the electromagnetic vector potential in terms of the nonlinear tensor fields and to the current conservations playing the role of a consistency condition for this formulation
Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers
Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory
2013-01-01
Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.
Electrodynamic Wireless Power Transmission to Rotating Magnet Receivers
International Nuclear Information System (INIS)
Garraud, A; Jimenez, J D; Garraud, N; Arnold, D P
2014-01-01
This paper presents an approach for electrodynamic wireless power transmission (EWPT) using a synchronously rotating magnet located in a 3.2 cm 3 receiver. We demonstrate wireless power transmission up to 99 mW (power density equal to 31 mW/cm 3 ) over a 5-cm distance and 5 mW over a 20-cm distance. The maximum operational frequency, and hence maximal output power, is constrained by the magnetic field amplitude. A quadratic relationship is found between the maximal output power and the magnetic field. We also demonstrate simultaneous, power transmission to multiple receivers positioned at different locations
Proposed experimental test of an alternative electrodynamic theory of superconductors
Energy Technology Data Exchange (ETDEWEB)
Hirsch, J.E., E-mail: jhirsch@ucsd.edu
2015-01-15
Highlights: • A new experimental test of electric screening in superconductors is proposed. • The electric screening length is predicted to be much larger than in normal metals. • The reason this was not seen in earlier experiments is explained. • This is not predicted by the conventional BCS theory of superconductivity. - Abstract: An alternative form of London’s electrodynamic theory of superconductors predicts that the electrostatic screening length is the same as the magnetic penetration depth. We argue that experiments performed to date do not rule out this alternative formulation and propose an experiment to test it. Experimental evidence in its favor would have fundamental implications for the understanding of superconductivity.
Space Environmental Testing of the Electrodynamic Dust Shield Technology
Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.
2013-01-01
NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.
Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations
AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco
2016-01-01
As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.
Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.
Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M
2015-06-05
We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.
Engineering electrodynamics electric machine, transformer, and power equipment design
Turowski, Janusz
2013-01-01
Due to a huge concentration of electromagnetic fields and eddy currents, large power equipment and systems are prone to crushing forces, overheating, and overloading. Luckily, power failures due to disturbances like these can be predicted and/or prevented.Based on the success of internationally acclaimed computer programs, such as the authors' own RNM-3D, Engineering Electrodynamics: Electric Machine, Transformer, and Power Equipment Design explains how to implement industry-proven modeling and design techniques to solve complex electromagnetic phenomena. Considering recent progress in magneti
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers
Directory of Open Access Journals (Sweden)
Tobias J. R. Eriksson
2016-08-01
Full Text Available Three designs for electrodynamic flexural transducers (EDFT for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio ( SNR ≃ 15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart.
Studies of nonlinear electrodynamics of high-temperature superconductors
International Nuclear Information System (INIS)
Lam, Q.H.
1991-01-01
Nonlinear electrodynamics of high-Tc superconductors are studied theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an ac field, H 1 cos(ωt), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a super-posing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field, P nf (H dc ), is experimentally observed in powdered YBa 2 Cu 3 O 7 . For bulk sintered cylindrical samples, a generalized critical state model is presented. The nonlinear electrodynamics are due to flux-pinning. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa 2 Cu 3 O 7 yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability μ n = μ' n - iμ double-prime n . These data, together with P nf (H dc ), are explained quantitatively by the generalized critical state model, yielding a dependence on magnetic field of J c (H) ∼ H 02 local for the intergranular component, a steeper field dependence than for conventional type-II superconductors. Temperature-dependence measurements reveal that, while the intragranular supercurrents disappear at T c ≥ 91.2 K, the intergranular supercurrents disappear at T ≥ 86.6 K
Brain Electrodynamic and Hemodynamic Signatures Against Fatigue During Driving
Directory of Open Access Journals (Sweden)
Chun-Hsiang Chuang
2018-03-01
Full Text Available Fatigue is likely to be gradually cumulated in a prolonged and attention-demanding task that may adversely affect task performance. To address the brain dynamics during a driving task, this study recruited 16 subjects to participate in an event-related lane-departure driving experiment. Each subject was instructed to maintain attention and task performance throughout an hour-long driving experiment. The subjects' brain electrodynamics and hemodynamics were simultaneously recorded via 32-channel electroencephalography (EEG and 8-source/16-detector functional near-infrared spectroscopy (fNIRS. The behavior performance demonstrated that all subjects were able to promptly respond to lane-deviation events, even if the sign of fatigue arose in the brain, which suggests that the subjects were fighting fatigue during the driving experiment. The EEG event-related analysis showed strengthening alpha suppression in the occipital cortex, a common brain region of fatigue. Furthermore, we noted increasing oxygenated hemoglobin (HbO of the brain to fight driving fatigue in the frontal cortex, primary motor cortex, parieto-occipital cortex and supplementary motor area. In conclusion, the increasing neural activity and cortical activations were aimed at maintaining driving performance when fatigue emerged. The electrodynamic and hemodynamic signatures of fatigue fighting contribute to our understanding of the brain dynamics of driving fatigue and address driving safety issues through the maintenance of attention and behavioral performance.
Electrodynamic modeling applied to micro-strip gas chambers
International Nuclear Information System (INIS)
Fang, R.
1998-01-01
Gas gain variations as functions of time, counting rate and substrate resistivity have been observed with Micro-Strip Gas Chambers (MSGC). Such a chamber is here treated as a system of 2 dielectrics, gas and substrate, with finite resistivities. Electric charging between their interface results in variations of the electric field and the gas gain. The electrodynamic equations (including time dependence) for such a system are proposed. A Rule of Charge Accumulation (RCA) is then derived which allows to determine the quantity and sign of charges accumulated on the surface at equilibrium. In order to apply the equations and the rule to MSGCs, a model of gas conductance induced by ionizing radiation is proposed, and a differential equation and some formulae are derived to calculate the rms dispersion and the spatial distribution of electrons (ions) in inhomogeneous electric fields. RCA coupled with a precise simulation of the electric fields gives the first quantitative explanation of gas gain variations of MSGCs. Finally an electrodynamic simulation program is made to reproduce the dynamic process of gain variation due to surface charging with an uncertainty of at most 15% relative to experimental data. As a consequence, the methods for stabilizing operation of MSGCs are proposed. (author)
Observers' measurements in premetric electrodynamics: Time and radar length
Gürlebeck, Norman; Pfeifer, Christian
2018-04-01
The description of an observer's measurement in general relativity and the standard model of particle physics is closely related to the spacetime metric. In order to understand and interpret measurements, which test the metric structure of the spacetime, like the classical Michelson-Morley, Ives-Stilwell, Kennedy-Thorndike experiments or frequency comparison experiments in general, it is necessary to describe them in theories, which go beyond the Lorentzian metric structure. However, this requires a description of an observer's measurement without relying on a metric. We provide such a description of an observer's measurement of the fundamental quantities time and length derived from a premetric perturbation of Maxwell's electrodynamics and a discussion on how these measurements influence classical relativistic observables like time dilation and length contraction. Most importantly, we find that the modification of electrodynamics influences the measurements at two instances: the propagation of light is altered as well as the observer's proper time normalization. When interpreting the results of a specific experiment, both effects cannot be disentangled, in general, and have to be taken into account.
Minimal Length Scale Scenarios for Quantum Gravity.
Hossenfelder, Sabine
2013-01-01
We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.
Minimal Length Scale Scenarios for Quantum Gravity
Directory of Open Access Journals (Sweden)
Sabine Hossenfelder
2013-01-01
Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.
Quantum Field Theory at non zero temperature
International Nuclear Information System (INIS)
Alvarez-Estrada, R.
1989-01-01
The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)
Quantum treatment of neutrino in background matter
International Nuclear Information System (INIS)
Studenikin, A I
2006-01-01
Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SLν), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ('spin light of electron in matter' (SLe)) that can be emitted by the electron in this case
High energy approximations in quantum field theory
International Nuclear Information System (INIS)
Orzalesi, C.A.
1975-01-01
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt
Quantum quincunx for walk on circles in phase space with indirect coin flip
International Nuclear Information System (INIS)
Xue Peng; Sanders, Barry C
2008-01-01
The quincunx, or Galton board, has a long history as a tool for demonstrating and investigating random walk processes, but a quantum quincunx (QQ) for demonstrating a coined quantum walk (QW) is yet to be realized experimentally. We propose a variant of the QQ in cavity quantum electrodynamics, designed to eliminate the onerous requirement of directly flipping the coin. Instead, we propose driving the cavity in such a way that cavity field displacements are minimized and the coin is effectively flipped via this indirect process. An effect of this indirect flipping is that the walker's location is no longer confined to a single circle in the planar phase space, but we show that the phase distribution nonetheless shows quadratic enhancement of phase diffusion for the quantum versus classical walk despite this small complication. Thus our scheme leads to coined QW behaviour in cavity quantum electrodynamics without the need to flip the coin directly
Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission
Bilen, Sven G.; Johnson, C. Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael; Stone, Nobie
2014-01-01
The PROPEL ("Propulsion using Electrodynamics") flight demonstration mission concept will demonstrate the use of an electrodynamic tether (EDT) for generating thrust, which will allow the propulsion system to overcome the limitations of the rocket equation. The mission concept has been developed by a team of government, industry, and academia partners led by NASA Marshall Space Flight Center (MSFC). PROPEL is being designed for versatility of the EDT system with multiple end users in mind and to be flexible with respect to platform. Previously, we reported on a comprehensive mission design for PROPEL with a mission duration of six months or longer with multiple mission goals including demonstration of significant boost, deboost, inclination change, and drag make-up activities. To explore a range of possible configurations, primarily driven by cost considerations, other mission concept designs have been pursued. In partnership with the NASA's Office of Chief Technologist (OCT) Game Changing Program, NASA MSFC Leadership, and the MSFC Advanced Concepts Office, a mission concept design was developed for a near-term EDT propulsion flight validation mission. The Electrodynamic Tether Propulsion Study (ETPS) defined an EDT propulsion system capable of very large delta-V for use on future missions developed by NASA, DoD, and commercial customers. To demonstrate the feasibility of an ETPS, the study focused on a space demonstration mission concept design with configuration of a pair of tethered satellite busses, one of which is the Japanese H-II Transfer Vehicle (HTV). The HTV would fly its standard ISS resupply mission. When resupply mission is complete, the ISS reconfigures and releases the HTV to perform the EDT experiment at safe orbital altitudes below the ISS. Though the focus of this particular mission concept design addresses a scenario involving the HTV or a similar vehicle, the propulsion system's capability is relevant to a number of applications, as noted above
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Fundamental properties of devices for quantum information technology
DEFF Research Database (Denmark)
Nielsen, Per Kær
This thesis reports a theoretical investigation of the influence of the electronphonon interaction on semiconductor cavity quantum electrodynamical systems, specifically a quantum dot coupled to an optical microcavity. We develop a theoretical description of the decay dynamics of the quantum dot...... interacting with the cavity and the phonons. It is shown that the presence of the phonon interaction, fundamentally changes the spontaneous emission decay behavior of the quantum dot. Especially in the regime where the quantum dotcavity spectral detuning is significantly larger than any linewidth...... of the system, the effect of the phonon interaction is very pronounced. A simple approximate analytical expression for the quantum dot decay rate is derived, which predicts a strong asymmetry with respect to the quantum dot-cavity detuning at low temperatures, and allows for a clear interpretation...
Computational electrodynamics the finite-difference time-domain method
Taflove, Allen
2005-01-01
This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.
Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems
Directory of Open Access Journals (Sweden)
Y. Cai
1995-01-01
Full Text Available Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.
Measurement of wall thickness with electrodynamic test heads
International Nuclear Information System (INIS)
Koch, R.; Maurer, A.
1993-01-01
Starting from the boundary conditions fixed by the physical properties of the electromagnetic/acoustic conversion and the operating limits which result from these for the sensors used, the use of electro-dynamic ultrasonic transducers for measuring wall thickness and double checks in plants for automatic production inspection and production control is shown. The sensor itself is the heart of a test system, but only the equipment and plant concepts surrounding the sensor make economic solution of the test problem possible. The quality of the signals which are supplied by a sensor, determines the quality of a test system. This can only be achieved by optimising all parts of a complex automatic test rig, such as the test head, mechanics, electronics and evaluation for the test problem concerned. (orig./HP) [de
Review on Electrodynamic Energy Harvesters—A Classification Approach
Directory of Open Access Journals (Sweden)
Roland Lausecker
2013-04-01
Full Text Available Beginning with a short historical sketch, electrodynamic energy harvesters with focus on vibration generators and volumes below 1dm3 are reviewed. The current challenges to generate up to several milliwatts of power from practically relevant flows and vibrations are addressed, and the variety of available solutions is sketched. Sixty-seven different harvester concepts from more than 130 publications are classified with respect to excitation, additional boundary conditions, design and fabrication. A chronological list of the harvester concepts with corresponding references provides an impression about the developments. Besides resonant harvester concepts, the review includes broadband approaches and mechanisms to harvest from flow. Finally, a short overview of harvesters in applications and first market ready concepts is given.
A Uniﬁed Theory of Interaction: Gravitation and Electrodynamics
Directory of Open Access Journals (Sweden)
Wagener P.
2008-10-01
Full Text Available A theory is proposed from which the basic equations of gravitation and electromagnetism are derived from a single Lagrangian. The total energy of an atom can be expressed in a power series of the fine structure constant, $alpha$. Specific selections of these terms yield the relativistic correction to the Bohr values of the hydrogen spectrum and the Sommerfeld-Dirac equation for the fine structure spectrum of the hydrogen atom. Expressions for the classical electron radius and some of the Large Number Coincidences are derived. A Lorentz-type force equation is derived for both gravitation and electrodynamics. Electron spin is shown to be an effect of fourth order in $alpha$.
Black hole solution in the framework of arctan-electrodynamics
Kruglov, S. I.
An arctan-electrodynamics coupled with the gravitational field is investigated. We obtain the regular black hole solution that at r →∞ gives corrections to the Reissner-Nordström solution. The corrections to Coulomb’s law at r →∞ are found. We evaluate the mass of the black hole that is a function of the dimensional parameter β introduced in the model. The magnetically charged black hole was investigated and we have obtained the magnetic mass of the black hole and the metric function at r →∞. The regular black hole solution is obtained at r → 0 with the de Sitter core. We show that there is no singularity of the Ricci scalar for electrically and magnetically charged black holes. Restrictions on the electric and magnetic fields are found that follow from the requirement of the absence of superluminal sound speed and the requirement of a classical stability.
Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
Ahmad Sheykhi
2014-01-01
Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.
New technical solutions of using rolling stock electrodynamical braking
Directory of Open Access Journals (Sweden)
Leonas Povilas LINGAITIS
2009-01-01
Full Text Available The paper considers some theoretical and practical problems associated with the use of traction motor are operating in the generator mode (in braking. Mathematical and graphical relationships of electrodynamic braking, taking into account the requirements raised to braking systems in rail transport are presented. The latter include discontinuity of braking process, braking force regulation, depending on the locomotive speed, mass, type of railway and other parameters. Schematic diagrams of the locomotive braking and ways of controlling the braking force by varying electric circuit parameters are presented. The authors suggested contact-free regulation method of braking resistor for controlling braking force in rheostatic braking, and resistor parameters regulate with pulse regulation mode by semiconductor devices, such as new electrical components for rolling stock – IGBT transistors operating in the key mode. Presenting energy savings power systems, which are using regenerative braking-returning energy and diesel engine or any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.
Special relativity, electrodynamics, and general relativity from Newton to Einstein
Kogut, John B
2018-01-01
Special Relativity, Electrodynamics and General Relativity: From Newton to Einstein, Second Edition, is intended to teach (astro)physics, astronomy, and cosmology students how to think about special and general relativity in a fundamental, but accessible, way. Designed to render any reader a "master of relativity," everything on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. Fully revised, updated and expanded second edition Includes new chapters on magnetism as a consequence of relativity and electromagnetism Contains many improved and more engaging figures Uses less algebra resulting in more efficient derivations Enlarged discussion of dynamics and the relativistic version of Newton's second law
Fermion-fermion scattering in quantum field theory with superconducting circuits.
García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E
2015-02-20
We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.
A highly efficient single-photon source based on a quantum dot in a photonic nanowire
DEFF Research Database (Denmark)
Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh
2010-01-01
–4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire......The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...
Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field
International Nuclear Information System (INIS)
Qian Yi; Xu Jing-Bo
2012-01-01
We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined. (general)
DEFF Research Database (Denmark)
Johansen, Jeppe; Stobbe, Søren; Nikolaev, Ivan S.
2008-01-01
and a theoretical model, we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics......The radiative and nonradiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements, we extract the oscillator strength and the quantum efficiency and their dependence on emission energy. From our results...
Quantum optical effective-medium theory and transformation quantum optics for metamaterials
DEFF Research Database (Denmark)
Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing
2016-01-01
electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions transform under coordinate......While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial...... directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum...
Photon echo quantum random access memory integration in a quantum computer
International Nuclear Information System (INIS)
Moiseev, Sergey A; Andrianov, Sergey N
2012-01-01
We have analysed an efficient integration of multi-qubit echo quantum memory (QM) into the quantum computer scheme based on squids, quantum dots or atomic resonant ensembles in a quantum electrodynamics cavity. Here, one atomic ensemble with controllable inhomogeneous broadening is used for the QM node and other nodes characterized by the homogeneously broadened resonant line are used for processing. We have found the optimal conditions for the efficient integration of the multi-qubit QM modified for the analysed scheme, and we have determined the self-temporal modes providing a perfect reversible transfer of the photon qubits between the QM node and arbitrary processing nodes. The obtained results open the way for realization of a full-scale solid state quantum computing based on the efficient multi-qubit QM. (paper)
Probing a quantum field in a photon box
International Nuclear Information System (INIS)
Raimond, J M; Meunier, T; Bertet, P; Gleyzes, S; Maioli, P; Auffeves, A; Nogues, G; Brune, M; Haroche, S
2005-01-01
Einstein often performed thought experiments with 'photon boxes', storing fields for unlimited times. This is yet but a dream. We can nevertheless store quantum microwave fields in superconducting cavities for billions of periods. Using circular Rydberg atoms, it is possible to probe in a very detailed way the quantum state of these trapped fields. Cavity quantum electrodynamics tools can be used for a direct determination of the Husimi Q and Wigner quasi-probability distributions. They provide a very direct insight into the classical or non-classical nature of the field
Quantum Private Comparison via Cavity QED
International Nuclear Information System (INIS)
Ye Tian-Yu
2017-01-01
The first quantum private comparison (QPC) protocol via cavity quantum electrodynamics (QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party (TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack. Particularly, it can prevent TP from knowing two users’ secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%. (paper)