Quantum Dots-based Reverse Phase Protein Microarray
Energy Technology Data Exchange (ETDEWEB)
Shingyoji, Masato; Gerion, Daniele; Pinkel, Dan; Gray, Joe W.; Chen, Fanqing
2005-07-15
CdSe nanocrystals, also called quantum dots (Qdots) are a novel class of fluorophores, which have a diameter of a few nanometers and possess high quantum yield, tunable emission wavelength and photostability. They are an attractive alternative to conventional fluorescent dyes. Quantum dots can be silanized to be soluble in aqueous solution under biological conditions, and thus be used in bio-detection. In this study, we established a novel Qdot-based technology platform that can perform accurate and reproducible quantification of protein concentration in a crude cell lysate background. Protein lysates have been spiked with a target protein, and a dilution series of the cell lysate with a dynamic range of three orders of magnitude has been used for this proof-of-concept study. The dilution series has been spotted in microarray format, and protein detection has been achieved with a sensitivity that is at least comparable to standard commercial assays, which are based on horseradish peroxidase (HRP) catalyzed diaminobenzidine (DAB) chromogenesis. The data obtained through the Qdot method has shown a close linear correlation between relative fluorescence unit and relative protein concentration. The Qdot results are in almost complete agreement with data we obtained with the well-established HRP-DAB colorimetric array (R{sup 2} = 0.986). This suggests that Qdots can be used for protein quantification in microarray format, using the platform presented here.
Chiral quantum dot based materials
Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii
2014-05-01
Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.
Pump dependence of the dynamics of quantum dot based waveguide absorbers
Viktorov, Evgeny A.; Erneux, Thomas; Piwonski, Tomasz; Pulka, Jaroslaw; Huyet, Guillaume; Houlihan, John
2012-06-01
The nonlinear two stage recovery of quantum dot based reverse-biased waveguide absorbers is investigated experimentally and analytically as a function of the initial ground state occupation probability of the dot. The latter is controlled experimentally by the pump pulse power. The slow stage of the recovery is exponential and its basic timescale is independent of pump power. The fast stage of the recovery is a logistic function which we analyze in detail. The relative strength of slow to fast components is highlighted and the importance of higher order absorption processes at the highest pump level is demonstrated.
Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay
Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Felle, M.; Farrer, I.; Ritchie, D. A.; Penty, R. V.
2017-08-01
The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.
Influence of carrier dynamics on the modulation bandwidth of quantum-dot based nanocavity devices
DEFF Research Database (Denmark)
Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper
2010-01-01
We theoretically investigate the modulation response of quantum-dot based nanocavity light emitting devices. For high Purcell enhancement factors, our theory predicts the possibility of decreasing the modulation bandwidth with increasing scattering rate into the lasing quantum-dot state. This cou......We theoretically investigate the modulation response of quantum-dot based nanocavity light emitting devices. For high Purcell enhancement factors, our theory predicts the possibility of decreasing the modulation bandwidth with increasing scattering rate into the lasing quantum-dot state...
DEFF Research Database (Denmark)
Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper
2011-01-01
A microscopic theory is used to study the dynamical properties of semiconductor quantum dot based nanocavity laser systems. The carrier kinetics and photon populations are determined using a fully quantum mechanical treatment of the light‐matter coupling. In this work, we investigate the dependency...
Quantum dot based DNA nanosensors for amplification-free detection of human topoisomerase I
DEFF Research Database (Denmark)
Jepsen, Morten Leth; Ottaviani, Alessio; Knudsen, Birgitta R.;
2014-01-01
We develop a quantum dot based DNA nanosensor specifically targeting the cleavage–religation activity of an essential DNA-modifying enzyme, human topoisomerase I. The assay has shown great promise in biological crude samples and thus is expected to contribute to clinical diagnostics and anti...
Probing the kinetics of quantum dot-based proteolytic sensors.
Díaz, Sebastián A; Malonoski, Anthony P; Susumu, Kimihiro; Hofele, Romina V; Oh, Eunkeu; Medintz, Igor L
2015-09-01
As an enzyme superfamily, proteases are rivaled only by kinases in terms of their abundance within the human genome. Two ratiometric quantum dot (QD) Förster resonance energy transfer-based sensors designed to monitor the activity of the proteolytic enzymes collagenase and elastase are investigated here. Given the unique material constraints of these sensing constructs, assays are realized utilizing excess enzyme and fixed substrate in progress curve format to yield enzyme specificity or k cat/K m ratios. The range of k cat/Km values derived is 0.5-1.1 mM(-1) s(-1) for the collagenase sensor and 3.7-4.2 mM(-1) s(-1) for the elastase sensor. Of greater interest is the observation that the elastase sensor can be well represented by the Michaelis-Menten model while the collagenase sensor cannot. The latter demonstrates increased specificity at higher peptide substrate/QD loading values and an apparent QD-caused reversible inhibition as the reaction progresses. Understanding the detailed kinetic mechanisms that underpin these types of sensors will be important especially for their further quantitative utilization.
DEFF Research Database (Denmark)
Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper
2011-01-01
A microscopic theory is used to study the dynamical properties of semiconductor quantum dot based nanocavity laser systems. The carrier kinetics and photon populations are determined using a fully quantum mechanical treatment of the light‐matter coupling. In this work, we investigate the dependen...... of the modulation response in such devices on the number of emitters coupled to the cavity mode. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)...
A triple quantum dot based nano-electromechanical memory device
Energy Technology Data Exchange (ETDEWEB)
Pozner, R.; Lifshitz, E. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Peskin, U., E-mail: uri@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Lise Meitner Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)
2015-09-14
Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.
Quantum-dot based nanothermometry in optical plasmonic recording media
Energy Technology Data Exchange (ETDEWEB)
Maestro, Laura Martinez [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Zhang, Qiming; Li, Xiangping; Gu, Min [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Jaque, Daniel [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain)
2014-11-03
We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.
PbSe quantum dot based luminescent solar concentrators
Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.
2017-03-01
The results are presented for luminescent solar concentrators (LSCs) fabricated with poly(lauryl methacrylate-co-ethylene glycol dimethacrylate) (P(LMA-co-EGDMA)) and Angstrom Bond, Inc. AB9093 acrylic epoxy matrix, high quantum yield (> 70%) PbSe quantum dots (QDs) and silicon photovoltaic (Si PV) cells. LSCs were tested under a lamp with broadband illumination, photon flux-matched to a standard solar spectrum and verified under a calibrated solar lamp source. The P(LMA-co-EGDMA) sample demonstrated the highest power conversion efficiency of any known LSC fabricated with either QDs or Si PV cells, 4.74%. Additionally, increased temperature was shown to reduce efficiency.
PbSe quantum dot based luminescent solar concentrators.
Waldron, Dennis L; Preske, Amanda; Zawodny, Joseph M; Krauss, Todd D; Gupta, Mool C
2017-03-03
The results are presented for luminescent solar concentrators (LSCs) fabricated with poly(lauryl methacrylate-co-ethylene glycol dimethacrylate) (P(LMA-co-EGDMA)) and Angstrom Bond, Inc. AB9093 acrylic epoxy matrix, high quantum yield (> 70%) PbSe quantum dots (QDs) and silicon photovoltaic (Si PV) cells. LSCs were tested under a lamp with broadband illumination, photon flux-matched to a standard solar spectrum and verified under a calibrated solar lamp source. The P(LMA-co-EGDMA) sample demonstrated the highest power conversion efficiency of any known LSC fabricated with either QDs or Si PV cells, 4.74%. Additionally, increased temperature was shown to reduce efficiency.
Quantum Dots Based Rad-Hard Computing and Sensors
Fijany, A.; Klimeck, G.; Leon, R.; Qiu, Y.; Toomarian, N.
2001-01-01
Quantum Dots (QDs) are solid-state structures made of semiconductors or metals that confine a small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well-conducting region. Thus, they can be viewed as artificial atoms. They therefore represent the ultimate limit of the semiconductor device scaling. Additional information is contained in the original extended abstract.
Quantum Dot-based Immunohistochemistry for Pathological Applications
Directory of Open Access Journals (Sweden)
Li Zhou
2016-01-01
Full Text Available Quantum dots (QDs are novel light emitting semiconductor nanocrystals with diameter ranging from 2 to 20 nm. In comparison with traditional organic dyes and fluorescent proteins, QDs possess unique optical properties including extremely high fluorescence efficiency and minimal photobleaching which make them emerge as a new class of fluorescent labels for molecular imaging and biomedical analysis. Herein, recent advances in fundamental mechanisms and pathological applications of QD were reviewed.
Synthesis and application of quantum dots-based biosensor
Hai Nguyen, Ngoc; Giang Duong, Thi; Hoang, Van Nong; Thang Pham, Nam; Cao Dao, Tran; Nga Pham, Thu
2015-03-01
Trichlorfon (TF) is one of the organophosphorus pesticides used widely in agriculture. The content of this paper includes the exploitation of dominant optical properties of the quantum dots consisting of a core and multilayer shell CdSe/ZnSe/ZnS (QD). A biosensor was fabricated on the basis of this QD for rapidly detecting the residues of trichlofon pesticide with concentrations of 0.01 ppm to 5 ppm. The measurements were carried out to examine the morphology of the QD structure and fluorescent properties such as transmission electron microscopy, x-ray diffraction, absorption spectroscopy and fluorescence spectroscopy. The linking mechanism among biological agents and the specificity of the acetylcholinesterase enzymes in hydrolysis reaction of acetylthiolcholine was applied to create the changes in surroundings, affecting the fluorescence of the QD. In particular, the mechanism of bioluminescence resonance energy transfer (BRET) is discussed to clearly explain the recombination of electrons and holes in the QD.
Colloidal quantum dot based solar cells: from materials to devices
Song, Jung Hoon; Jeong, Sohee
2017-08-01
Colloidal quantum dots (CQDs) have attracted attention as a next-generation of photovoltaics (PVs) capable of a tunable band gap and low-cost solution process. Understanding and controlling the surface of CQDs lead to the significant development in the performance of CQD PVs. Here we review recent progress in the realization of low-cost, efficient lead chalcogenide CQD PVs based on the surface investigation of CQDs. We focus on improving the electrical properties and air stability of the CQD achieved by material approaches and growing the power conversion efficiency (PCE) of the CQD PV obtained by structural approaches. Finally, we summarize the manners to improve the PCE of CQD PVs through optical design. The various issues mentioned in this review may provide insight into the commercialization of CQD PVs in the near future.
Polarization Properties of Quantum-Dot-Based Single Photon Sources
Institute of Scientific and Technical Information of China (English)
HAN Shuo; HAO Zhi-Biao; LUO Yi
2007-01-01
Polarization properties of single photons emitted by optical pumping from a single quantum dot (QD) are studied by using a four-level system model. The model is capable of explaining the polarization uncertainty observed in single photon emission experiments. It is found that the dependence of photon emission efficiency and polarization visibility on pump power are opposite in general cases. By employing QDs with small size and strong carrier confinement, the photon polarization visibility under high pump power can be improved. In addition, embedding a QD into a well designed microcavity is also found to be favourable, whereas the trade-off between high polarization visibility and multi-photon emission is noted.
Quantum dot-based microfluidic biosensor for cancer detection
Energy Technology Data Exchange (ETDEWEB)
Ghrera, Aditya Sharma [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi-110012 (India); School of Engineering and Technology, ITM University, Gurgaon-122017 (India); Pandey, Chandra Mouli; Ali, Md. Azahar [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi-110012 (India); Malhotra, Bansi Dhar, E-mail: bansi.malhotra@gmail.com [Department of Biotechnology, Delhi Technological University, Delhi-110042 (India)
2015-05-11
We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.
Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.
Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani
2016-07-01
Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.
Quantum-dot based ultrafast photoconductive antennae for efficient THz radiation
Gorodetsky, Andrei; Bazieva, Natalia; Rafailov, Edik U.
2016-03-01
Here we overview our work on quantum dot based THz photoconductive antennae, capable of being pumped at very high optical intensities of higher than 1W optical mean power, i.e. about 50 times higher than the conventional LT-GaAs based antennae. Apart from high thermal tolerance, defect-free GaAs crystal layers in an InAs:GaAs quantum dot structure allow high carrier mobility and ultra-short photo carrier lifetimes simultaneously. Thus, they combine the advantages and lacking the disadvantages of GaAs and LT-GaAs, which are the most popular materials so far, and thus can be used for both CW and pulsed THz generation. By changing quantum dot size, composition, density of dots and number of quantum dot layers, the optoelectronic properties of the overall structure can be set over a reasonable range-compact semiconductor pump lasers that operate at wavelengths in the region of 1.0 μm to 1.3 μm can be used. InAs:GaAs quantum dot-based antennae samples show no saturation in pulsed THz generation for all average pump powers up to 1W focused into 30 μm spot. Generated THz power is super-linearly proportional to laser pump power. The generated THz spectrum depends on antenna design and can cover from 150 GHz up to 1.5 THz.
A Novel Quantum Dots-Based Point of Care Test for Syphilis
Yang, Hao; Li, Ding; He, Rong; Guo, Qin; Wang, Kan; Zhang, Xueqing; Huang, Peng; Cui, Daxiang
2010-05-01
One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots-based method reached up to 100% (95% confidence interval [CI], 91-100%), while those of the colloidal gold-based method were 82% (95% CI, 68-91%) and 100% (95% CI, 91-100%), respectively. In addition, the naked-eye detection limit of quantum dot-based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold-based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening.
Quantum dot based detections of propagating plasmonic modes excited by bowtie antennas
Wen, Jing; Wang, Kang; Feng, Hui; Lv, Yating; Chen, Jiannong; Zhang, Dawei
2017-03-01
Propagating plasmonic modes excited by bowtie apertures based on emissions from a layer of CdSe/ZnS quantum dots are experimentally detected. The mode distributions with a cladding of 20 nm thick Al2O3 film in between the silver and the quantum dot layers are more homogenous compared to the uncoated structure. The variation discipline of the effective indexes and the decay lengths of the plasmonic modes are discussed for various refractive indexes and thicknesses of the cladding. The three dimensional field distributions of the structure are simulated and the plasmonic fields are only excited in and around the cladding layer on top of the silver film. Such quantum dots based detection methods are promising tools for simultaneous imaging of near field optical distributions in integrated plasmonic nano-circuits.
Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.
Halim, Mohammad A
2012-12-27
Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.
Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell
Halim, Mohammad A.
2012-01-01
Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%. PMID:28348320
Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell
Directory of Open Access Journals (Sweden)
Mohammad A. Halim
2012-12-01
Full Text Available Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.
Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping
2015-12-01
We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d
Ultrafast photoinduced dynamics in quantum dot-based systems for light harvesting
Institute of Scientific and Technical Information of China (English)
Kaibo Zheng; Khadga Karki; Karel Zidek; Tonu Pullerits
2015-01-01
Colloidal semiconductor nanocrystals, referred to as quantum dots, offer simple low-temperature solution-based methods for constructing optoelectronic devices such as light emitting diodes and solar cells. We review recent progress in the understanding of photoinduced processes in key components of a certain type of quantum dot solar cells where the dots sensitize a suitable metal oxide, such as ZnO or TiO2, for electron injection, and NiO for hole injection. The electron and hole injection dynamics are discussed in detail as a function of the quantum dot size and core-shell structure, the linker molecule type, and the morphology of the accepting metal oxide. Hole trapping is identified as a major factor limiting the performance of quantum dot-based devices. We review possible strategies for improvement that use core-shell structures and directed excitation energy transfer between quantum dots. Finally, the generation and injection of multiple excitons are revisited. We show that the assumption of a linear relationship between the intensity of transient absorption signal and the number of excitons does not generally hold, and this observation can partially explain highly disparate results for the effidency of generating multiple exdtons. A consistent calculation procedure for studies of multiple exciton generation is provided. Finally we offer a brief personal outlook on the topic.
Quantum reverse hypercontractivity
Energy Technology Data Exchange (ETDEWEB)
Cubitt, Toby [Department of Computer Science, University College London, London, United Kingdom and Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge (United Kingdom); Kastoryano, Michael [NBIA, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Montanaro, Ashley [School of Mathematics, University of Bristol, Bristol (United Kingdom); Temme, Kristan [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States)
2015-10-15
We develop reverse versions of hypercontractive inequalities for quantum channels. By generalizing classical techniques, we prove a reverse hypercontractive inequality for tensor products of qubit depolarizing channels. We apply this to obtain a rapid mixing result for depolarizing noise applied to large subspaces and to prove bounds on a quantum generalization of non-interactive correlation distillation.
Reversible quantum cellular automata
Schumacher, B
2004-01-01
We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...
Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method
Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju
2015-10-01
DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR
Quantum dot-based molecular beacon to monitor intracellular microRNAs.
Lee, Jonghwan; Moon, Sung Ung; Lee, Yong Seung; Ali, Bahy A; Al-Khedhairy, Abdulaziz A; Ali, Daoud; Ahmed, Javed; Al Salem, Abdullah M; Kim, Soonhag
2015-06-02
Fluorescence monitoring of endogenous microRNA (miRNA or miR) activity related to neuronal development using nano-sized materials provides crucial information on miRNA expression patterns in a noninvasive manner. In this study, we report a new method to monitor intracellular miRNA124a using quantum dot-based molecular beacon (R9-QD-miR124a beacon). The R9-QD-miR124a beacon was constructed using QDs and two probes, miR124a-targeting oligomer and arginine rich cell-penetrating peptide (R9 peptide). The miR124a-targeting oligomer contains a miR124a binging sequence and a black hole quencher 1 (BHQ1). In the absence of target miR124a, the R9-QD-miR124a beacon forms a partial duplex beacon and remained in quenched state because the BHQ1 quenches the fluorescence signal of the R9-QD-miR124a beacon. The binding of miR124a to the miR124a binding sequence of the miR124a-targeting oligomer triggered the separation of the BHQ1 quencher and subsequent signal-on of a red fluorescence signal. Moreover, enhanced cellular uptake was achieved by conjugation with the R9 peptide, which resulted in increased fluorescent signal of the R9-QD-miR124a beacons in P19 cells during neurogenesis due to the endogenous expression of miR124a.
Quantum-Dot-Based Photon Emission and Media Conversion for Quantum Information Applications
Directory of Open Access Journals (Sweden)
H. Kumano
2010-01-01
Full Text Available Single-photon as well as polarization-correlated photon pair emission from a single semiconductor quantum dots is demonstrated. Single photon generation and single photon-pair generation with little uncorrelated multiphoton emission and the feasibility of media conversion of the quantum states between photon polarization and electron spin are fundamental functions for quantum information applications. Mutual media conversion for the angular momentum between photon polarization and electron spin is also achieved with high fidelity via positively charged exciton state without external magnetic field. This is a clear indication that the coupling of photon polarizations and electron spins keeps secured during whole processes before photon emission. Possibility of a metal-embedded structure is demonstrated with the observation of drastic enhancement of excitation and/or collection efficiency of luminescence as well as clear antibunching of photons generated from a quantum dot.
Directory of Open Access Journals (Sweden)
Yang XQ
2011-10-01
Full Text Available Xue-Qin Yang1,2, Chuang Chen1, Chun-Wei Peng1, Jin-Xuan Hou1, Shao-Ping Liu1, Chu-Bo Qi3, Yi-Ping Gong4, Xiao-Bo Zhu5, Dai-Wen Pang6, Yan Li1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory on Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan; 2Medical School of Jingchu University of Technology, Jingmen; 3Department of Pathology; 4Department of Breast Surgery, Hubei Cancer Hospital, Wuhan; 5Wuhan Jiayuan Quantum Dots Co Ltd and Wuhan Tumor Nanometer Diagnosis Engineering Research Center, Wuhan; 6Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan, People's Republic of China Background: The epidermal growth factor receptor (EGFR is a promising therapeutic target in cancer, but its clinical value in breast cancer remains controversial. Our previous studies have found that quantitative analysis of biomarkers with quantum dot-based nanotechnology had better detection performance than conventional immunohistochemistry. The present study was undertaken to investigate the prognostic value of EGFR in breast cancer using quantum dot-based quantitative spectral analysis. Methods: EGFR expression in 65 breast cancer specimens was detected by immunohistochemistry and quantum dot-immunohistochemistry, and comparisons were made between the two methods. EGFR expression in tissue microarrays of 240 breast cancer patients was then detected by quantum dot-immunohistochemistry and spectral analysis. The prognostic value of EGFR immunofluorescence area (EGFR area for five-year recurrence-free survival was investigated. Results: The same antigen localization, high correlation of staining rates (r = 0.914, and high agreement of measurement (κ= 0.848 of EGFR expression in breast cancer were found by quantum dot-immunohistochemistry and immunohistochemistry. The EGFR area showed significant
Coropceanu, Igor; Bawendi, Moungi G
2014-07-09
CdSe/CdS core/shell quantum dots (QDs) have been optimized toward luminescent solar concentration (LSC) applications. Systematically increasing the shell thickness continuously reduced reabsorption up to a factor of 45 for the thickest QDs studied (with ca. 14 monolayers of CdS) compared to the initial CdSe cores. Moreover, an improved synthetic method was developed that retains a high-fluorescence quantum yield, even for particles with the thickest shell volume, for which a quantum yield of 86% was measured in solution. These high quantum yield thick shell quantum dots were embedded in a polymer matrix, yielding highly transparent composites to serve as prototype LSCs, which exhibited an optical efficiency as high as 48%. A Monte Carlo simulation was developed to model LSC performance and to identify the major loss channels for LSCs incorporating the materials developed. The results of the simulation are in excellent agreement with the experimental data.
Chen, Fei; Lin, Qingli; Wang, Hongzhe; Wang, Lei; Zhang, Fengjuan; Du, Zuliang; Shen, Huaibin; Li, Lin Song
2016-08-01
In this paper, the performance of quantum dot-based light-emitting diodes (QLEDs) comprising ZnCdSe/ZnS core-shell QDs as an emitting layer were enhanced by employing Au-doped poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) hole injection layer (HIL). By varying the concentration and dimension of Au nanoparticle (NP) dopants in PEDOT:PSS, the optimal devices were obtained with ~22-nm-sized Au NP dopant at the concentration with an optical density (OD) of 0.21. Highly bright green QLEDs with a maximum external quantum efficiency (EQE) of 8.2 % and a current efficiency of 29.1 cd/A exhibit 80 % improvement compared with devices without Au NP dopants. The improved performance may be attributed to the significant increase in the hole injection rate as a result of the introduction of Au NPs and the good matching between the resonance frequency of the localized surface plasmon resonance (LSPR) generated by the Au NPs and the emission band of QD layer, as well as the suppressed Auger recombination of QD layer due to the LSPR-induced near-field enhanced radiative recombination rate of excitons. These results are helpful for fabricating high-performance QD-based applications, such as full-color displays and solid-state lighting.
Chen, Hui; Wang, Zhuyuan; Zong, Shenfei; Chen, Peng; Zhu, Dan; Wu, Lei; Cui, Yiping
2015-10-07
A graphene quantum dot-based FRET system is demonstrated for nuclear-targeted drug delivery, which allows for real-time monitoring of the drug release process through FRET signals. In such a system, graphene quantum dots (GQDs) simultaneously serve as the carriers of drugs and donors of FRET pairs. Additionally, a peptide TAT as the nuclear localization signal is conjugated to GQDs, which facilitates the transportation of the delivery system to the nucleus. We have demonstrated that: (a) both the conjugated TAT and small size of GQDs contribute to targeting the nucleus, which results in a significantly enhanced intranuclear accumulation of drugs; (b) FRET signals being extremely sensitive to the distance between donors and acceptors are capable of real-time monitoring of the separation process of drugs and GQDs, which is more versatile in tracking the drug release dynamics. Our strategy for the assembly of a FRET-based drug delivery system may be unique and universal for monitoring the dynamic release process. This study may give more exciting new opportunities for improving the therapeutic efficacy and tracking precision.
Directory of Open Access Journals (Sweden)
Sofia Paulo
2016-08-01
Full Text Available Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV. Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance.
Effect of confinement potential geometry on entanglement in quantum dot-based nanostructures
Abdullah, S; D'Amico, I
2009-01-01
We calculate the spatial entanglement between two electrons trapped in a nanostructure for a broad class of confinement potentials, including single and double quantum dots, and core-shell quantum dot structures. By using a parametrized confinement potential, we are able to switch from one structure to the others with continuity and to analyze how the entanglement is influenced by the changes in the confinement geometry. We calculate the many-body wave function by `exact' diagonalization of the time independent Schr\\"odinger equation. We discuss the relationship between the entanglement and specific cuts of the wave function, and show that the wave function at a single highly symmetric point could be a good indicator for the entanglement content of the system. We analyze the counterintuitive relationship between spatial entanglement and Coulomb interaction, which connects maxima (minima) of the first to minima (maxima) of the latter. We introduce a potential quantum phase transition which relates quantum stat...
Yeh, Te-Fu; Huang, Wei-Lun; Chung, Chung-Jen; Chiang, I-Ting; Chen, Liang-Che; Chang, Hsin-Yu; Su, Wu-Chou; Cheng, Ching; Chen, Shean-Jen; Teng, Hsisheng
2016-06-02
Investigating quantum confinement in graphene under ambient conditions remains a challenge. In this study, we present graphene oxide quantum dots (GOQDs) that show excitation-wavelength-independent photoluminescence. The luminescence color varies from orange-red to blue as the GOQD size is reduced from 8 to 1 nm. The photoluminescence of each GOQD specimen is associated with electron transitions from the antibonding π (π*) to oxygen nonbonding (n-state) orbitals. The observed quantum confinement is ascribed to a size change in the sp(2) domains, which leads to a change in the π*-π gap; the n-state levels remain unaffected by the size change. The electronic properties and mechanisms involved in quantum-confined photoluminescence can serve as the foundation for the application of oxygenated graphene in electronics, photonics, and biology.
Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate
Energy Technology Data Exchange (ETDEWEB)
Horibe, Kosuke; Oda, Shunri [Department of Physical Electronics and Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552 (Japan); Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp [Department of Physical Electronics and Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552 (Japan); Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)
2015-02-23
Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. The lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.
Calculation Model for Current-voltage Relation of Silicon Quantum-dots-based Nano-memory
Institute of Scientific and Technical Information of China (English)
YANG Hong-guan; DAI Da-kang; YU Biao; SHANG Lin-lin; GUO You-hong
2007-01-01
Based on the capacitive coupling formalism, an analytic model for calculating the drain currents of the quantum-dots floating-gate memory cell is proposed. Using this model, one can calculate numerically the drain currents of linear, saturation and subthreshold regions of the device with/without charges stored on the floating dots. The read operation process of an n-channel Si quantum-dots floating-gate nano-memory cell is discussed after calculating the drain currents versus the drain to source voltages and control gate voltages in both high and low threshold states respectively.
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Mørk, Jesper
2009-01-01
Slow light based on electromagnetically induced transparency in an inhomogeneously broadened quantum dot medium is investigated theoretically. Three schemes, , V, and Λ, are compared and it is shown that the V-scheme gives a group velocity that is more than three orders of magnitude smaller...
Cişmileanu, Ana; Sima, Cornelia; Grigoriu, Constantin
2007-08-01
A quantum dot - immunoglobulin conjugate specific for pig IgG, was obtained by carbodiimide chemistry. We used a Western blot technique for detecting specific antibodies against Actinobacillus pleuropneumoniae (A. pp), which cause porcine pleuropneumonia. The antigen used in this technique was Apx haemolysin which is an important virulence factor of A. pp and it induces protective immunity in vaccined pigs. The detection on Western blot membrane was possible at 1/50 dilution of quantum dot conjugate at a dilution of pig serum till 1/6400. The results for pig serum demonstrated a higher sensitivity of QD-based Western blot technique for the presence of antibodies specific for Apx haemolysin in comparison with similar classical techniques (with coloured substrate for enzyme present in secondary antibody conjugate).
Physics and engineering of compact quantum dot-based lasers for biophotonics
Rafailov, Edik U
2013-01-01
Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.
Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array
Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing
2016-03-01
Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.
Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.
Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan
2016-10-01
This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.
Size dependent photoresponse characteristics of crystalline Ge quantum dots based photodetectors
Bar, Rajshekhar; Manna, Santanu; Ray, Samit K.
2016-10-01
We report on the size dependent photoresponse behaviour of crystalline Ge quantum dots (QDs) dispersed within the silica matrix. Our findings demonstrate an increasing nature of EQE with increase in QDs size, which could be attributed to the combined effect of Coulomb interaction of photogenerated carriers, QD/silica interface defects and electric field driven carrier separation and tunneling through the oxide barriers. In this regard, the bias dependent nonlinear response of the photocurrent has been explained on the basis of cold field emission (CFE) model. Besides, the EQE is extended (>100%) for larger sized QDs, suggesting the trapping of slower holes in Ge QDs creating a charge neutrality issue.
Li, Jingzhou; Dong, Hongxing; Zhang, Saifeng; Ma, Yunfei; Wang, Jun; Zhang, Long
2016-09-28
Two-photon (TP) three-dimensional solid matrices have potential applications in high density optical data reading and storage, infrared-pumped visible displays, lasers, etc. Such technologies will benefit greatly from the advantageous properties of TP materials including tunable emission wavelength, photostability, and simple chemical processing. Here, this ideal TP solid is made possible by using a facile sol-gel process to engineer colloid quantum dots into silica gel glass. Characterization using an open-aperture Z-scan technique shows that the solid matrices exhibited significant TP optical properties with a TP absorption coefficient of (9.41 ± 0.39) × 10(-2) cm GW(-1) and a third-order nonlinear figure of merit of (7.30 ± 0.30) × 10(-14) esu cm. In addition, the dependence of the TP properties on high-temperature thermal treatment is studied in detail to obtain a clear insight for practical applications. The results illustrate that the sample can maintain stable TP performance below the synthesis temperature of the CdTe/CdS colloidal quantum dots. Furthermore, the mechanisms for thermal quenching of photoluminescence under different temperature regimes are clarified as a function of the composition.
Zor, Erhan; Morales-Narváez, Eden; Zamora-Gálvez, Alejandro; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben
2015-09-16
Due to their size and difficulty to obtain, cost/effective biological or synthetic receptors (e.g., antibodies or aptamers, respectively), organic toxic compounds (e.g., less than 1 kDa) are generally challenging to detect using simple platforms such as biosensors. This study reports on the synthesis and characterization of a novel multifunctional composite material, magnetic silica beads/graphene quantum dots/molecularly imprinted polypyrrole (mSGP). mSGP is engineered to specifically and effectively capture and signal small molecules due to the synergy among chemical, magnetic, and optical properties combined with molecular imprinting of tributyltin (291 Da), a hazardous compound, selected as a model analyte. Magnetic and selective properties of the mSGP composite can be exploited to capture and preconcentrate the analyte onto its surface, and its photoluminescent graphene quantum dots, which are quenched upon analyte recognition, are used to interrogate the presence of the contaminant. This multifunctional material enables a rapid, simple and sensitive platform for small molecule detection, even in complex mediums such as seawater, without any sample treatment.
Lee, Kwang-Sup
2016-10-01
Our recent research involves the design, characterization and testing of devices constituting low bandgap conjugated polymers, surface-engineered quantum dots (QDs), carbon nanotube (CNT)-QDs, QDs decorated nanowires, and QD coupled conjugated polymers. The resulting hybrid materials can be used for facilitating the charge/energy transfer and enhancing the charge carrier mobility in highly efficient optoelectronic and photonic devices. Exploiting the full potential of quantum dots (QDs) in optoelectronic devices require efficient mechanisms for transfer of energy or electrons produced in the optically excited QDs. We propose semiconducting π-conjugated molecules as ligands to achieve energy or charge transfer. The hybridization of p-type π-conjugated molecules to the surface of n-type QDs can induce distinct luminescence and charge transport characteristics due to energy and/or charge transfer effects. QDs and π-conjugated molecule hybrids with controlled luminescent properties can be used for new active materials for light-emitting diodes and flexible displays. In addition, such hybrid systems with enhanced charge transfer efficiency can be used for nanoscale photovoltaic devices. We have also explored single nanoparticle based electronics using QDs and π-conjugated molecule hybrids with molecular-scale n-p or n-insulating (ins)-p-heterojunction structures.
Directory of Open Access Journals (Sweden)
Lam Minh Long
2016-01-01
Full Text Available Graphene quantum dots (GQDs were synthesized and incorporated with polyethylenedioxythiophene:poly(4-styrenesulfonate (PEDOT:PSS and carbon nanotube (CNT to form a composite that can be used for humidity sensors. The 600 nm thick composite films contained bulk heterojunctions of CNT/GQD and CNT/PEDOT:PSS. The sensors made from the composites responded well to humidity in a range from 60 to 80% at room temperature and atmospheric pressure. With a CNT content of 0.4 wt.% (GPC-1 to 0.8 wt.% (GPC-2 and 1.2 wt.% (GPC-3, the sensitivity of the humidity sensing devices based on CNT-doped graphene quantum dot-PEDOT:PSS composites was increased from 4.5% (GPC-1 to 9.0% (GPC-1 and 11.0% (GPC-2, respectively. The fast response time of the GPC sensors was about 20 s and it was much improved due to CNTs doping in the composites. The best value of the recovery time was found to be of 40 s, for the GPC composite film doped with 1.2 wt.% CNT content.
A quantum dot-based immunoassay for screening of tylosin and tilmicosin in edible animal tissues.
Le, Tao; Zhu, Liqian; Yang, Xian
2015-01-01
A rapid, indirect competitive fluorescence-linked immunosorbent assay (ic-FLISA) based on quantum dots (QDs) as the fluorescent marker was developed for the detection of tylosin and tilmicosin in edible animal tissues. The end point fluorescent detection system was carried out using QDs conjugated with goat anti-mouse secondary antibody. The limits of detection (LODs) for the determination of tylosin and tilmicosin were 0.02 and 0.04 μg kg(-1), respectively. This detection method was used to analyse spiked samples and the recoveries ranged from 83.5% to 98.7% for tylosin and from 81.8% to 98.2% for tilmicosin. In real porcine tissue sample analysis, the results of ic-FLISA were similar to those obtained from an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) to an HPLC method indicating its potential for tylosin and tilmicosin screening in edible animal tissues.
Optical detection of lead and potassium ions using a quantum-dot-based aptamer nanosensor.
Meshik, Xenia; Xu, Ke; Dutta, Mitra; Stroscio, Michael A
2014-06-01
Quantum-dot (QD) based nanosensors can be used to detect a wide range of molecules. This study examined a nanosensor comprised of thrombin binding aptamer (TBA) with 700NC InGaP QD on the 5 (') terminus and an Au nanoparticle quencher on the 3 (') terminus. Both K(+) and Pb(2+) bind to TBA, resulting in a conformational change that brings the Au quencher closer to the QD. Photoluminescence measurements indicated a decrease in fluorescence corresponding to an increase in either K(+) or Pb(2+) concentration. For healthy blood serum K(+) concentrations (3.5-5 mM), the beacon exhibited 15-17% quenching efficiency. Pb(2+) concentration of 0.48 μM, the threshold for toxicity in serum, yielded 14% quenching. The beacon's ability to detect changes in ion levels in a critical range of concentrations can make it an effective diagnostic tool.
RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION
Directory of Open Access Journals (Sweden)
Dhiyauddin Ahmad Fauzi
2017-05-01
Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.
Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.
Kim, Mee Rahn; Ma, Dongling
2015-01-02
Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.
Directory of Open Access Journals (Sweden)
Chun-Wei Peng
2010-01-01
Full Text Available The semiconductor nanocrystal quantum dots (QDs have excellent photo-physical properties, and the QDs-based probes have achieved encouraging developments in cellular and in vivo molecular imaging. More and more researches showed that QDs-based technology may become a promising approach in cancer research. In this review, we focus on recent application of QDs in cancer diagnosis and treatment, including early detection of primary tumor such as ovarian cancer, breast cancer, prostate cancer and pancreatic cancer, as well as regional lymph nodes and distant metastases. With the development of QDs synthesis and modification, the effect of QDs on tumor metastasis investigation will become more and more important in the future.
Visualizing the endocytosis of phenylephrine in living cells by quantum dot-based tracking.
Ma, Jing; Wu, Lina; Hou, Zhun; Song, Yao; Wang, Lei; Jiang, Wei
2014-08-01
To study the intracellular receptor-drug transportation, a fluorescent probe consisting of phenylephrine-polyethylene glycol-quantum dots conjugate was employed to track endocytosis process of phenylephrine in living cells. This type of movement was studied by continuously filming fluorescent images in the same cell. We also calculated the movement parameters, and divided the endocytosis process into 6 stages. Furthermore, the movement parameters of this probe in different organelles were determined by co-localization of the probe fluorescent images and different cellular organelles. After comparing the parameters in cellular organelles with these in 6 stages, the whole endocytosis pathway was demonstrated. These results verified that this probe successfully tracked the whole intracellular dynamic endocytosis process of phenylephrine. Our method realized the visual tracking the whole receptor-mediated endocytosis, which is a new approach on investigating the molecular mechanisms and kinetic properties of intracellular receptor-drug transportation.
Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu
2015-12-01
A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.
A quantum dot-based immunoassay for screening of tetracyclines in bovine muscle.
García-Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo
2014-02-19
A reliable and robust direct screening methodology based on a quantum dot (QD) fluorescent immunoassay has been developed to detect trace levels of different antibiotic species from the family of the tetracyclines (e.g., oxytetracycline, tetracycline, chlortetracycline, and doxycycline) in contaminated bovine muscle tissues. First, the synthesis and characterization of a new immunoprobe (oxytetracycline-bovine serum albumin-QD) has been carried out for its further application in the development of a competitive fluorescent QD-immunoassay. The developed fluoroimmunoassay provides sensitive and binary "yes/no" responses being appropriate for the screening of this family of antibiotics above or below a preset concentration threshold. The detection limit achieved with this strategy, 1 μg/L in aqueous media and 10 μg/kg in bovine muscle samples, is 10-fold lower than the maximum level concentration allowed by International Legislation in muscle tissue, enabling suitable and efficient screening of the antibiotics.
Lin, C C Y; Wu, Y Z; Zhang, W M; Lin, Cyrus C.Y.; Soo, Chopin; Wu, Yin-Zhong; Zhang, Wei-Min
2004-01-01
Using electrostatic gates to control the electron positions, we present a new controlled-NOT gate based on quantum dots. The qubit states are chosen to be the spin states of an excess conductor electron in the quantum dot; and the main ingredients of our scheme are the superpositions of space-time paths of electrons and the effect of Coulomb blockade. All operations are performed only on individual quantum dots and are based on fundamental interactions. Without resorting to spin-spin terms or other assumed interactions, the scheme can be realized with a dedicated circuit and a necessary number of quantum dots. Gate fidelity of the quantum computation is also presented.
Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode
Directory of Open Access Journals (Sweden)
Rivera-Gil Pilar
2011-10-01
Full Text Available Abstract An electrochemical sensor for p-aminophenyl phosphate (pAPP is reported. It is based on the electrochemical conversion of 4-aminophenol (4AP at a quantum dot (QD modified electrode under illumination. Without illumination no electron transfer and thus no oxidation of 4AP can occur. pAPP as substrate is converted by the enzyme alkaline phosphatase (ALP to generate 4AP as a product. The QDs are coupled via 1,4-benzenedithiol (BDT linkage to the surface of a gold electrode and thus allow potential-controlled photocurrent generation. The photocurrent is modified by the enzyme reaction providing access to the substrate detection. In order to develop a photobioelectrochemical sensor the enzyme is immobilized on top of the photo-switchable layer of the QDs. Immobilization of ALP is required for the potential possibility of spatially resolved measurements. Geometries with immobilized ALP are compared versus having the ALP in solution. Data indicate that functional immobilization with layer-by-layer assembly is possible. Enzymatic activity of ALP and thus the photocurrent can be described by Michaelis- Menten kinetics. pAPP is detected as proof of principle investigation within the range of 25 μM - 1 mM.
Theory of plasmonic quantum-dot-based intermediate band solar cells.
Foroutan, Sina; Baghban, Hamed
2016-05-01
High scattering cross section of plasmonic nanoparticles in intermediate band solar cells (IBSCs) based on quantum dots (QDs) can obviate the low photon absorption in QD layers. In this report, we present a modeling procedure to extract the optical and electrical characteristics of a GaAs-based plasmonic intermediate band solar cell (PIBSC). It is shown that metal nanoparticles (MNPs) that are responsible for scattering of incident photons in the absorber layer can lead to photocurrent enhancement, provided that an optimum size and density is calculated. Proper design of QD layers that control the intermediate energy band location, as well as the loss-scattering trade-off of MNPs, can result in an efficiency increase of ∼4.2% in the PIBSC compared to a similar IBSC, and an increase of ∼5.9% compared to a reference GaAs PIN cell. A comprehensive discussion on the effect of intermediate band region width and current-voltage characteristics of the designed cell is presented.
Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
Lim, Sungoh; Kim, Yohan; Lee, Jeongno; Han, Chul Jong; Kang, Jungwon; Kim, Jiwan
2014-12-01
Colloidal quantum dots (QD)-based solar cells with near infrared (NIR) emission have been investigated. Lead sulfide (PbS) QDs, which have narrow band-gap and maximize the absorption of NIR spectrum, were chosen as active materials for efficient solar cells. The inverted structure of indium tin oxide/titanium dioxide/PbS QDs/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/silver (ITO/TiO2/PbS QDs/ PSS/Ag) was applied for favorable electron and hole seperation from the PbS QD. Through the ligand exchange by 1,2-Ethanedithiol (EDT), the interparticle distance of the PbS QDs in thin film became closer and the performance of the PbS QD-based solar cells was improved. Our PbS QD-based inverted solar cells showed open circuit voltages (V(oc)) of 0.33 V, short circuit current density (J(sc)) of 10.89 mA/cm2, fill factor (FF) of 30%, and power conversion efficiency (PCE) of 1.11%. In our PbS QD-based multifunctional solar cell, the NIR light emission intensity was simply detected with photodiode system, which implies the potential of multi-functional diode device for various applications.
Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip
Zheng, Xiannuo; Tian, Jing; Weng, Lixing; Wu, Lei; Jin, Qinghui; Zhao, Jianlong; Wang, Lianhui
2012-02-01
There is a lack of reliable nanotoxicity assays available for monitoring and quantifying multiple cellular events in cultured cells. In this study, we used a microfluidic chip to systematically investigate the cytotoxicity of three kinds of well-characterized cadmium-containing quantum dots (QDs) with the same core but different shell structures, including CdTe core QDs, CdTe/CdS core-shell QDs, and CdTe/CdS/ZnS core-shell-shell QDs, in HEK293 cells. Using the microfluidic chip combined with fluorescence microscopy, multiple QD-induced cellular events including cell morphology, viability, proliferation, and QD uptake were simultaneously analysed. The three kinds of QDs showed significantly different cytotoxicities. The CdTe QDs, which are highly toxic to HEK293 cells, resulted in remarkable cellular and nuclear morphological changes, a dose-dependent decrease in cell viability, and strong inhibition of cell proliferation; the CdTe/CdS QDs were moderately toxic but did not significantly affect the proliferation of HEK293 cells; while the CdTe/CdS/ZnS QDs had no detectable influence on cytotoxicity with respect to cell morphology, viability, and proliferation. Our data indicated that QD cytotoxicity was closely related to their surface structures and specific physicochemical properties. This study also demonstrated that the microfluidic chip could serve as a powerful tool to systematically evaluate the cytotoxicity of nanoparticles in multiple cellular events.
Quantum dots-based double-color imaging of HER2 positive breast cancer invasion
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiu-Li, E-mail: usually.158@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Peng, Chun-Wei, E-mail: pqc278@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Chen, Chuang, E-mail: chenc2469@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Yang, Xue-Qin, E-mail: yxqjenny@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hu, Ming-Bai, E-mail: humingbai@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Xia, He-Shun, E-mail: xiaheshun@yahoo.com.cn [Department of Pathology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Liu, Shao-Ping, E-mail: lsp_77@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); and others
2011-06-10
Highlights: {yields} HER2 level is closely related to the biologic behaviors of breast cancer cells. {yields} A new method to simultaneously image HER2 and type IV collagen was established. {yields} HER2 status and type IV collagen degradation predict breast cancer invasion. {yields} The complex interactions between tumor and its environment were revealed. -- Abstract: It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support such notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.
Chen, Hongjun; Wang, Qin; Shen, Qinpeng; Liu, Xin; Li, Wang; Nie, Zhou; Yao, Shouzhuo
2017-05-15
High photo-intensity and sluggish flight attenuation are important to highly sensitive chemluminescence imaging. Herein, we present a copper ion catalyzed long-persistent chemiluminescent imaging system of nitrogen-doped graphene quantum dots (NGQDs) for ascorbic acid detection in fruit. NGQDs as luminescent probe are fabricated, emitting out chemluminescence with the direct oxidation by H2O2. In addition, Cu(2+) ion enlarges over two order magnitudes of NGQDs CL intensity (214 times) due to its catalyzed Fenton-like reaction for H2O2 decomposition, and displaying unique specificity against other metal ions. As a result, the twinkling luminescence of NGQDs is boosted and changes to hold persistent with small decay in the presence of copper ion exhibiting potential for CL imaging. As an imaging model, a visual sensor based on Cu(2+)/NGQDs/H2O2 is developed for AA quantitative monitoring with a limit of detection (LOD) of 0.5μM (S/N=3) and applied in real AA detection in fruit. The CL imaging method demonstrated with high stability and proper sensitivity would provide a convenient and visual tool for AA determination, displaying promising candidates for imaging sensing. Copyright © 2017 Elsevier B.V. All rights reserved.
A quantum-dot-based fluoroassay for detection of food-borne pathogens.
Mohamadi, Elaheh; Moghaddasi, Mohammadali; Farahbakhsh, Afshin; Kazemi, Abbass
2017-09-01
Evaluation of the distribution capability of food-borne pathogens existing in food products by taking the advantage of quantum dots (QDs) for their photoluminescence properties was carried out. Bacteria namely Escherichia coli (E. coli) labelled with CdSe-QDs were examined both on an Agar nutrient and ground fish substrates in order to observe their growth rate in different environments in the Lab. A sample with an appropriate concentration ratio 10(7)CFU/mL of bacteria/CdSe-QDs was empirically selected from the samples which were grown on the Agar containing plates. The selected sample was also tested on a ground fish substrate as a real food sample. The bacterial growth was observed under the irradiation of UV light and the growth patterns were investigated for 3 successive days. The growth patterns indicated that E. coli can stay alive and can be distributed on food products so that the growth can be easily monitored. This approach makes bacterial growth on food products detectable so that it can be used as a bacteria-QD assay for an easy detection of food borne pathogens grown on a food sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules
Energy Technology Data Exchange (ETDEWEB)
Zhang Haixia [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Jiang Bingying [School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400040 (China); Xiang Yun, E-mail: yunatswu@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Yuyong; Chai Yaqin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)
2011-03-04
A novel strategy for 'signal on' and sensitive one-spot simultaneous detection of multiple small molecular analytes based on electrochemically encoded barcode quantum dot (QD) tags is described. The target analytes, adenosine triphosphate (ATP) and cocaine, respectively, are sandwiched between the corresponding set of surface-immobilized primary binding aptamers and the secondary binding aptamer/QD bioconjugates. The captured QDs yield distinct electrochemical signatures after acid dissolution, whose position and size reflect the identity and level, respectively, of the corresponding target analytes. Due to the inherent amplification feature of the QD labels and the 'signal on' detection scheme, as well as the sensitive monitoring of the metal ions released upon acid dissolution of the QD labels, low detection limits of 30 nM and 50 nM were obtained for ATP and cocaine, respectively, in our assays. Our multi-analyte sensing system also shows high specificity to target analytes and promising applicability to complex sample matrix, which makes the proposed assay protocol an attractive route for screening of small molecules in clinical diagnosis.
Directory of Open Access Journals (Sweden)
C Shi
2008-06-01
Full Text Available Semiconductor quantum dots (QDs are bright fluorescent nanoparticles that have been successfully used for the detection of biomarker expression in cells. The objective of the present study is to use this technology in a multiplexing manner to determine at a single cell level the expression of a cell-specific bio-marker, prostate-specific antigen (PSA expressed by human prostate cancer LNCaP and ARCaP cell lines. Here we compared the sensitivity of immunohistochemistry (IHC and QD-based detection of AR and PSA expression in these cell lines. Further, we conducted multiplexing QD-based detection of PSA and androgen receptor (AR expression in LNCaP cells subjecting to androgen (R1881 stimulation. The involvement of AR in PSA regulation in LNCaP cells, at a single cell level, was confirmed by the co-incubation of LNCaP cells in the presence of both R1881 and its receptor antagonist, bicalutamide (Casodex. We showed here the superior quality of QDs, in comparison to IHC, for the detection of AR and PSA in cultured LNCaP and ARCaP cells. Multiplexing QDs technique can be used to detect simultaneously AR and PSA expression induced by R1881 which promoted AR translocation from its cytosolic to the nuclear compartment.We observed AR antagonist, bicalutamide, inhibited AR nuclear translocation and PSA, but not AR expression in LNCaP cells.
ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhi [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Chen, Jiayi; Liang, Qiaowen [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Wu, Dudu [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); Zeng, Yuaner, E-mail: zengyuaner@126.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Jiang, Bin, E-mail: gzjiangbin@hotmail.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China)
2014-01-15
Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10{sup −7} mol L{sup −1}. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K{sub q} (1.02×10{sup 13} L mol{sup −1} s{sup −1}). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure.
Quantum dot-based screening system for discovery of g protein-coupled receptor agonists.
Lee, Junghan; Kwon, Yong-Jun; Choi, Youngseon; Kim, Hi Chul; Kim, Keumhyun; Kim, JinYeop; Park, Sun; Song, Rita
2012-07-09
Cellular imaging has emerged as an important tool to unravel biological complexity and to accelerate the drug-discovery process, including cell-based screening, target identification, and mechanism of action studies. Recently, semiconductor nanoparticles known as quantum dots (QDs) have attracted great interest in cellular imaging applications due to their unique photophysical properties such as size, tunable optical property, multiplexing capability, and photostability. Herein, we show that QDs can also be applied to assay development and eventually to high-throughput/content screening (HTS/HCS) for drug discovery. We have synthesized QDs modified with PEG and primary antibodies to be used as fluorescent probes for a cell-based HTS system. The G protein-coupled receptor (GPCR) family is known to be involved in most major diseases. We therefore constructed human osteosarcoma (U2OS) cells that specifically overexpress two types of differently tagged GPCRs: influenza hemagglutinin (HA) peptide-tagged κ-opioid receptors (κ-ORs) and GFP-tagged A3 adenosine receptors (A3AR). In this study, we have demonstrated that 1) anti-HA antibody-conjugated QDs could specifically label HA-tagged κ-ORs, 2) subsequent treatment of QD-tagged GPCR agonists allowed agonist-induced translocation to be monitored in real time, 3) excellent emission spectral properties of QD permitted the simultaneous detection of two GPCRs in one cell, and 4) the robust imaging capabilities of the QD-antibody conjugates could lead to reproducible quantitative data from high-content cellular images. These results suggest that the present QD-based GPCR inhibitor screening system can be a promising platform for further drug screening applications.
Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system.
Thakur, Mukeshchand; Mewada, Ashmi; Pandey, Sunil; Bhori, Mustansir; Singh, Kanchanlata; Sharon, Maheshwar; Sharon, Madhuri
2016-10-01
An economical green-chemistry approach was used for the synthesis of aqueous soluble graphene quantum dots (GQDs) from cow milk for simultaneous imaging and drug delivery in cancer. The GQDs synthesized using one-pot microwave-assisted heating were multi-fluorescent, spherical in shape having a lateral size of ca. 5nm. The role of processing parameters such as heating time and ionic strength showed a profound effect on photoluminescence properties of GQDs. The GQDs were N-doped and oxygen-rich as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Cysteamine hydrochloride (Cys) was used to attach an anti-cancer drug berberine hydrochloride (BHC) on GQDs forming GQDs@Cys-BHC complex with c.a. 88% drug loading efficiency. In vitro drug release was studied at the acidic-basic environment and drug kinetics was studied using pharmacokinetic statistical models. The GQDs were biocompatible on L929 cells whereas theranostic GQDs@Cys-BHC complex showed a potent cytotoxic effect on different cancerous cell line models: cervical cancer cell lines such as HeLa cells and breast cancer cells such as MDA-MB-231 confirmed by Trypan blue and MTT-based cytotoxic assays. Furthermore, multi-excitation based cellular bioimaging was demonstrated using confocal laser scanning microscopy (CLSM) and fluorescence microscopy using GQDs as well as GQDs@Cys-BHC complex. Thus, drug delivery (therapeutic) and bioimaging (diagnostic) properties of GQDs@Cys-BHC complex are thought to have a potential in vitro theranostic application in cancer therapy.
Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein
Energy Technology Data Exchange (ETDEWEB)
Chen Meijun; Wu Yingsong; Lin Guanfeng; Hou Jingyuan; Li Ming [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China); Liu Tiancai, E-mail: liutc@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China)
2012-09-05
Highlights: Black-Right-Pointing-Pointer QDs-based homogeneous time-resolved fluoroimmunoassay was developed to detect AFP. Black-Right-Pointing-Pointer The conjugates were prepared with QDs-doped microspheres and anti-AFP McAb. Black-Right-Pointing-Pointer The conjugates were prepared with LTCs and another anti-AFP McAb. Black-Right-Pointing-Pointer Excess amounts of conjugates were used for detecting AFP without rinsing. Black-Right-Pointing-Pointer The wedding of QPs and LTCs was suitable for HTRFIA to detect AFP. - Abstract: Quantum dots (QDs) with novel photoproperties are not widely used in clinic diagnosis, and homogeneous time-resolved fluorescence assays possess many advantages over current methods for alpha-fetoprotein (AFP) detection. A novel QD-based homogeneous time-resolved fluorescence assay was developed and used for detection of AFP, a primary marker for many cancers and diseases. QD-doped carboxyl-modified polystyrene microparticles (QPs) were prepared by doping oil-soluble QDs possessing a 605 nm emission peak. The antibody conjugates (QPs-E014) were prepared from QPs and an anti-AFP monoclonal antibody, and luminescent terbium chelates (LTCs) were prepared and conjugated to a second anti-AFP monoclonal antibody (LTCs-E010). In a double-antibodies sandwich structure, QPs-E014 and LTCs-E010 were used for detection of AFP, serving as energy acceptor and donor, respectively, with an AFP bridge. The results demonstrated that the luminescence lifetime of these QPs was sufficiently long for use in a time-resolved fluoroassay, with the efficiency of time-resolved Foerster resonance transfer (TR-FRET) at 67.3% and the spatial distance of the donor to acceptor calculated to be 66.1 Angstrom-Sign . Signals from TR-FRET were found to be proportional to AFP concentrations. The resulting standard curve was log Y = 3.65786 + 0.43863{center_dot}log X (R = 0.996) with Y the QPs fluorescence intensity and X the AFP concentration; the calculated sensitivity was 0
Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system
Energy Technology Data Exchange (ETDEWEB)
Thakur, Mukeshchand, E-mail: mukeshchandthakur@yahoo.com [School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector 15, CBD Belapur, Navi Mumbai 400 614, Maharashtra (India); N.S.N. Research Centre for Nanotechnology and Bio-nanotechnology, Jambhul Phata, Ambernath (W) 421 504, Maharashtra (India); Mewada, Ashmi [N.S.N. Research Centre for Nanotechnology and Bio-nanotechnology, Jambhul Phata, Ambernath (W) 421 504, Maharashtra (India); Walchand Centre for Research in Nanotechnology and Bio-nanotechnology (wcRnb), Walchand College of Arts and Science, Walchand-Hirachand Marg, Ashok Chowk, Solapur 413006, Maharashtra (India); Pandey, Sunil, E-mail: gurus.spandey@gmail.com [N.S.N. Research Centre for Nanotechnology and Bio-nanotechnology, Jambhul Phata, Ambernath (W) 421 504, Maharashtra (India); Bhori, Mustansir, E-mail: mustansyrr@gmail.com [School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector 15, CBD Belapur, Navi Mumbai 400 614, Maharashtra (India); Singh, Kanchanlata [School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector 15, CBD Belapur, Navi Mumbai 400 614, Maharashtra (India); Sharon, Maheshwar [N.S.N. Research Centre for Nanotechnology and Bio-nanotechnology, Jambhul Phata, Ambernath (W) 421 504, Maharashtra (India); Walchand Centre for Research in Nanotechnology and Bio-nanotechnology (wcRnb), Walchand College of Arts and Science, Walchand-Hirachand Marg, Ashok Chowk, Solapur 413006, Maharashtra (India); Sharon, Madhuri, E-mail: sharonmadhuri@gmail.com [N.S.N. Research Centre for Nanotechnology and Bio-nanotechnology, Jambhul Phata, Ambernath (W) 421 504, Maharashtra (India); Walchand Centre for Research in Nanotechnology and Bio-nanotechnology (wcRnb), Walchand College of Arts and Science, Walchand-Hirachand Marg, Ashok Chowk, Solapur 413006, Maharashtra (India)
2016-10-01
An economical green-chemistry approach was used for the synthesis of aqueous soluble graphene quantum dots (GQDs) from cow milk for simultaneous imaging and drug delivery in cancer. The GQDs synthesized using one-pot microwave-assisted heating were multi-fluorescent, spherical in shape having a lateral size of ca. 5 nm. The role of processing parameters such as heating time and ionic strength showed a profound effect on photoluminescence properties of GQDs. The GQDs were N-doped and oxygen-rich as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Cysteamine hydrochloride (Cys) was used to attach an anti-cancer drug berberine hydrochloride (BHC) on GQDs forming GQDs@Cys-BHC complex with c.a. 88% drug loading efficiency. In vitro drug release was studied at the acidic-basic environment and drug kinetics was studied using pharmacokinetic statistical models. The GQDs were biocompatible on L929 cells whereas theranostic GQDs@Cys-BHC complex showed a potent cytotoxic effect on different cancerous cell line models: cervical cancer cell lines such as HeLa cells and breast cancer cells such as MDA-MB-231 confirmed by Trypan blue and MTT-based cytotoxic assays. Furthermore, multi-excitation based cellular bioimaging was demonstrated using confocal laser scanning microscopy (CLSM) and fluorescence microscopy using GQDs as well as GQDs@Cys-BHC complex. Thus, drug delivery (therapeutic) and bioimaging (diagnostic) properties of GQDs@Cys-BHC complex are thought to have a potential in vitro theranostic application in cancer therapy. - Highlights: • Facile green synthesis of bright dual-florescent GQDs using cow milk as a precursor • Microwave irradiation time and pH have profound effects on fluorescent properties of GQDs. • Decoration of anti-cancer drug BHC onto GQDs via Cys-linker as theranostic platform • A pH responsive in vitro anti-cancer drug release and drug release kinetic study • Multi-photon bioimaging, cell cycle analysis, and apoptosis study
Energy Technology Data Exchange (ETDEWEB)
Yao, Xun; Yan, Panpan; Tang, Qinghui [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Suzhou 215123 (China); Deng, Anping, E-mail: denganping@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Suzhou 215123 (China); Li, Jianguo, E-mail: lijgsd@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Suzhou 215123 (China)
2013-10-10
Graphical abstract: -- Highlights: •An ultrasensitive ECL immunosensor of CdSe QDs for clenbuterol determination is developed. •The CdSe QDs showed great biocompatibility and could be easier to make direct use of such QDs in the region of biological system. •Enzymatic amplification strategy was proposed by combining the coreactant and pAb/GaRIgG-HRP. •Enzymatic amplification increased ECL emission and extended the analyte in presence of substrate. •It provided a method for detecting clenbuterol and enlarged the usage of QDs in ECL biosensing. -- Abstract: An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H{sub 2}O{sub 2} product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL{sup −1} to 1000 ng mL{sup −1}, and a low detection limit was 0.02 ng mL{sup −1}. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.
Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO interlayer
Chen, Cheng; Liang, Renli; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhao, Chong; Zhang, Wei; Dai, Jiangnan; Chen, Changqing
2017-07-01
We demonstrate the fabrication and characterization of ZnO/GaN-based heterojunction light-emitting diodes (LEDs) by using air-stable and solution-processable ZnO quantum dots (QDs) with a thin MgO interlayer acting as an electron blocking layer (EBL). The ZnO QDs/MgO/ p-GaN heterojunction can only display electroluminescence (EL) characteristic in reverse bias regime. Under sufficient reverse bias, a fairly pure ultraviolet EL emission located at 370 nm deriving from near band edge of ZnO with a full width at half maximum (FWHM) of 8.3 nm had been obtained, while the deep-level emission had been almost totally suppressed. The EL origination and corresponding carrier transport mechanisms were investigated qualitatively in terms of photoluminescence (PL) results and energy band diagram.[Figure not available: see fulltext.
Malgras, Victor; Zhang, Guanran; Nattestad, Andrew; Clarke, Tracey M; Mozer, Attila J; Yamauchi, Yusuke; Kim, Jung Ho
2015-12-09
This study reports evidence of dispersive transport in planar PbS colloidal quantum dot heterojunction-based devices as well as the effect of incorporating a MoO3 hole selective layer on the charge extraction behavior. Steady state and transient characterization techniques are employed to determine the complex recombination processes involved in such devices. The addition of a selective contact drastically improves the device efficiency up to 3.15% (especially due to increased photocurrent and decreased series resistance) and extends the overall charge lifetime by suppressing the main first-order recombination pathway observed in device without MoO3. The lifetime and mobility calculated for our sulfur-rich PbS-based devices are similar to previously reported values in lead-rich quantum dots-based solar cells. Nevertheless, strong Shockley-Read-Hall mechanisms appear to keep restricting charge transport, as the equilibrium voltage takes more than 1 ms to be established.
Szilard engine reversibility as quantum gate function
Mihelic, F. Matthew
2012-06-01
A quantum gate is a logically and thermodynamically reversible situation that effects a unitary transformation of qubits of superimposed information, and essentially constitutes a situation for a reversible quantum decision. A quantum decision is a symmetry break, and the effect of the function of a Szilard engine is a symmetry break. A quantum gate is a situation in which a reversible quantum decision can be made, and so if a logically and thermodynamically reversible Szilard engine can be theoretically constructed then it would function as a quantum gate. While the traditionally theorized Szilard engine is not thermodynamically reversible, if one of the bounding walls of a Szilard engine were to be constructed out of the physical information by which it functions in such a manner as to make that information available to both sides of the wall simultaneously, then such a Szilard engine would be both logically and thermodynamically reversible, and thus capable of function as a quantum gate. A theoretical model of the special case of a reversible Szilard engine functioning as a quantum gate is presented and discussed, and since a quantum decision is made when the shutter of a Szilard engine closes, the coherence of linked reversible Szilard engines should be considered as a state during which all of the shutters of linked Szilard engines are open simultaneously.
Xu, Qinfeng; Zhang, Yihong; Tang, Bo; Zhang, Chun-yang
2016-02-16
Nanomaterial-based differential sensors (e.g., chemical nose) have shown great potential for identification of multiple proteins because of their modulatable recognition and transduction capability but with the limitation of array separation, single-channel read-out, and long incubation time. Here, we develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins in an array-free format within 1 min. A protein-binding dye of bromophenol blue (BPB) is explored as an efficient reversible quencher of QDs, and the mixture of BPB with multicolor QDs may generate the quenched QD-BPB complexes. The addition of proteins will disrupt the QD-BPB complexes as a result of the competitive protein-BPB binding, inducing the separation of BPB from the QDs and the generation of distinct fluorescence patterns. The multicolor patterns may be collected at a single-wavelength excitation and differentiated by a linear discriminant analysis (LDA). This multichannel sensing platform allows for the discrimination of ten proteins and seven cell lines with the fastest response rate reported to date, holding great promise for rapid and high-throughput medical diagnostics.
Quantum reversibility and a new model of quantum automaton
Ciamarra, M P
2001-01-01
This article is an attempt to generalize the classical theory of reversible computing, principally developed by Bennet [IBM J. Res. Develop., 17(1973)] and by Fredkin and Toffoli [Internat. J. Theoret. Phys., 21(1982)], to the quantum case. This is a fundamental step towards the construction of a quantum computer because a time efficient quantum computation is a reversible physical process. The paper is organized as follows. The first section reviews the classical theory of reversible computing. In the second section it is showed that the designs used in the classical framework to decrease the consumption of space cannot be generalized to the quantum case; it is also suggested that quantum computing is generally more demanding of space than classical computing. In the last section a new model of fully quantum and reversible automaton is proposed. The computational power of this automaton is at least equal to that of classical automata. Some conclusion are drawn in the last section.
Importance of reversibility in the quantum formalism.
David, François
2011-10-28
In this Letter I stress the role of causal reversibility (time symmetry), together with causality and locality, in the justification of the quantum formalism. First, in the algebraic quantum formalism, I show that the assumption of reversibility implies that the observables of a quantum theory form an abstract real C^{⋆} algebra, and can be represented as an algebra of operators on a real Hilbert space. Second, in the quantum logic formalism, I emphasize which axioms for the lattice of propositions (the existence of an orthocomplementation and the covering property) derive from reversibility. A new argument based on locality and Soler's theorem is used to derive the representation as projectors on a regular Hilbert space from the general quantum logic formalism. In both cases it is recalled that the restriction to complex algebras and Hilbert spaces comes from the constraints of locality and separability.
Time reversibility in the quantum frame
Energy Technology Data Exchange (ETDEWEB)
Masot-Conde, Fátima [Escuela Superior Ingenieros, Dpt. Física Aplicada III, Universidad de Sevilla Isla Mágica, 41092- Sevilla (Spain)
2014-12-04
Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.
Reversible and quantum circuits optimization and complexity analysis
Abdessaied, Nabila
2016-01-01
This book presents a new optimization flow for quantum circuits realization. At the reversible level, optimization algorithms are presented to reduce the quantum cost. Then, new mapping approaches to decompose reversible circuits to quantum circuits using different quantum libraries are described. Finally, optimization techniques to reduce the quantum cost or the delay are applied to the resulting quantum circuits. Furthermore, this book studies the complexity of reversible circuits and quantum circuits from a theoretical perspective.
ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect
Directory of Open Access Journals (Sweden)
Wenyan Liu
2015-01-01
Full Text Available The quantum dot-based light-emitting diodes (QD-LEDs were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM, and power efficiency (PE. The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to the low emission temperature coefficients of 0.022, 0.050, and 0.068 nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.
Stéphane Larré; Yuan Ruan; Weimin Yu; Fan Cheng; Xiaobin Zhang
2012-01-01
Quantum dots (QDs) are a new class of fluorescent labeling for biological and biomedical applications. In this study, we detected prostate stem cell antigen (PSCA) expression correlated with tumor grade and stage in human prostate cancer by QDs-based immunolabeling and conventional immunohistochemistry (IHC), and evaluated the sensitivity and stability of QDs-based immunolabeling in comparison with IHC. Our data revealed that increasing levels of PSCA expression accompanied advanced tumor gra...
Tang, Zhijiao; Lin, Zhenhua; Li, Gongke; Hu, Yuling
2017-03-20
Fluorescent amino nitrogen quantum dots (aN-dots) were synthesized by microwave-assisted method using 2-azidoimidazole and aqueous ammonia. The aN-dots have a nitrogen component up to 40%, which exhibit high fluorescence quantum yield, good photostability, and excellent biocompatibility. We further explored the use of the aN-dots combined with AuNPs as a nanoprobe for detecting fluorescently and imaging of cysteine (Cys) in complex biological samples. In this sensing system, the fluorescence of aN-dots was quenched significantly by gold nanoparticles (AuNPs), while the addition of Cys can lead to the fluorescence signal recovery. Furthermore, we have demonstrated that this strategy can offer a rapid and selective detection of Cys with a good linear relationship in the range of 0.3-3.0 μmol/L. As expected, this assay was successfully applied to the detection of Cys in human serum and plasma samples with recoveries ranging from 90.0% to 106.7%. Especially, the nanoprobe exhibits good cell membrane permeability and excellent biocompatibility by CCK-8 assay, which is favorable for bioimaging applications. Therefore, this fluorescent probe ensemble was further used for imaging of Cys in living cells, which suggests our proposed method has strong potential for clinical diagnosis. As a novel member of the quantum-dot family, the aN-dots hold great promise to broaden applications in biological systems.
Song, Taojian; Cheng, Haijuan; Fu, Chunjie; He, Bo; Li, Weile; Xu, Junfeng; Tang, Yi; Yang, Shengyi; Zou, Bingsuo
2016-04-22
In this paper, the influence of the active layer nanomorphology on device performance for ternary PbS(x)Se(1-x) quantum dot-based solution-processed infrared photodetector is presented. Firstly, ternary PbS(x)Se(1-x) quantum dots (QDs) in various chemical composition were synthesized and the bandgap of the ternary PbS(x)Se(1-x) QDs can be controlled by the component ratio of S/(S + Se), and then field-effect transistor (FET) based photodetectors Au/PbS0.4Se0.6:P3HT/PMMA/Al, in which ternary PbS0.4Se0.6 QDs doped with poly(3-hexylthiophene) (P3HT) act as the active layer and poly(methyl methacrylate) (PMMA) as the dielectric layer, were presented. By changing the weight ratio of P3HT to PbS0.4Se0.6 QDs (K = M(P3HT):M(QDs)) in dichlorobenzene solution, we found that the device with K = 2:1 shows optimal electrical property in dark; however, the device with K = 1:2 demonstrated optimal performance under illumination, showing a maximum responsivity and specific detectivity of 55.98 mA W(-1) and 1.02 × 10(10) Jones, respectively, at low V(DS) = -10 V and V(G) = 3 V under 980 nm laser with an illumination intensity of 0.1 mW cm(-2). By measuring the atomic force microscopy phase images of PbS0.4Se0.6:P3HT films in different weight ratio K, our experimental data show that the active layer nanomorphology has a great influence on the device performance. Also, it provides an easy way to fabricate high performance solution-processed infrared photodetector.
胶体量子点电致发光器件的研究进展%Development of Colloidal Quantum Dots based Light-Emitting Diodes
Institute of Scientific and Technical Information of China (English)
何少剑; 林俊; 谭占鳌
2013-01-01
胶体量子点因其性质稳定、可溶液加工、发光颜色易于调节、色彩饱和度高等优点在固体照明、平板显示、红外通讯等领域引起人们高度关注.本文详细介绍了最近胶体量子点电致发光领域取得的重要进展,包括基于Ⅱ-Ⅵ族(CdSe、CdTe、PbS、PbSe),Ⅲ-Ⅴ族(InAs、InP),和Ⅰ-Ⅲ-Ⅵ族(CuInS、CuInSe)的量子点电致发光二极管.%Colloidal semiconductor quantum dots based light-emitting diodes (QD-LEDs) have the advantages of high stability,solution processability,tunable emission wavelength and high color saturation,which have attracted great attention for applications in solid state lighting,flat panel display,and infrared communication.In this review,we first describe the advantages of using colloidal quantum dots (QDs)in LEDs and the light generation principle in QD-LEDs.Then we proceed to review the recent technological advances of colloidal QD-LEDs based on three main groups of QDs:Group Ⅱ-Ⅵ QDs (CdSe,CdTe,PbS,and PbSe),heavy metal-free Group Ⅲ-Ⅴ (InAs,InP) and Group Ⅰ-Ⅲ-Ⅵ QDs (CuInS,CuInSe),especially focusing on CdSe/CdS based QD-LEDs with various types of device components,structures and fabrication techniques.We conclude by addressing the key challenges and perspectives for the colloidal QD-LED technologies.
Meng, Zhongji; Song, Ruihua; Chen, Yue; Zhu, Yang; Tian, Yanhui; Li, Ding; Cui, Daxiang
2013-03-01
A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.
Reversible Projective Measurement in Quantum Ensembles
Khitrin, Anatoly; Lee, Jae-Seung
2010-01-01
We present experimental NMR demonstration of a scheme of reversible projective measurement, which allows extracting information on outcomes and probabilities of a projective measurement in a non-destructive way, with a minimal net effect on the quantum state of an ensemble. The scheme uses reversible dynamics and weak measurement of the intermediate state. The experimental system is an ensemble of 133Cs (S = 7/2) nuclei in a liquid-crystalline matrix.
Chen, Chuang; Peng, Jun; Xia, Heshun; Wu, Qiongshui; Zeng, Libo; Xu, Hao; Tang, Hongwu; Zhang, Zhiling; Zhu, Xiaobo; Pang, Daiwen; Li, Yan
2010-03-01
Breast cancer (BC) is a heterogeneous tumor, and better understanding of its heterogeneity is essential to improving treatment effect. Quantum dot (QD)-based immunofluorescent nanotechnology (QD-IHC) for molecular pathology has potential advantages in delineating tumor heterogeneity. This potential is explored in this paper by QD-IHC imaging of HER2 and ER. BC heterogeneity can be displayed more clearly and sensitively by QD-IHC than conventional IHC in BC tissue microarrays. Furthermore, the simultaneous imaging of ER and HER2 might help understand their interactions during the process of evolution of heterogeneous BC.
Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes
Barettin, Daniele; Auf der Maur, Matthias; di Carlo, Aldo; Pecchia, Alessandro; Tsatsulnikov, Andrei F.; Lundin, Wsevolod V.; Sakharov, Alexei V.; Nikolaev, Andrei E.; Korytov, Maxim; Cherkashin, Nikolay; Hÿtch, Martin J.; Karpov, Sergey Yu
2017-07-01
We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures. Multi-scale 2D simulations of the carrier transport inside the multiple QD AR have revealed a non-trivial pathway for carrier injection into the dots. Electrons and holes are found to penetrate deep into the multi-layer AR through the gaps between individual QDs and get into the dots via their side edges rather than via top and bottom interfaces. This enables a more homogeneous carrier distribution among the dots situated in different layers than among the laterally uniform quantum well (QWs) in the MQW AR. As a result, a lower turn-on voltage is predicted for QD-based LEDs, as compared to MQW ones. Simulations did not show any remarkable difference in the efficiencies of the MQW and QD-based LEDs, if the same recombination coefficients are utilized, i.e. a similar crystal quality of both types of LED structures is assumed. Measurements of the current-voltage characteristics of LEDs with both kinds of the AR have shown their close similarity, in contrast to theoretical predictions. This implies the conventional assumption of laterally uniform QWs not to be likely an adequate approximation for the carrier transport in MQW LED structures. Optical characterization of MQW and QD-based LEDs has demonstrated that the later ones exhibit a higher efficiency, which could be attributed to better crystal quality of the grown QD-based structures. The difference in the crystal quality explains the recently observed correlation between the growth pressure of
High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W
Schwarzbäck, T.; Bek, R.; Hargart, F.; Kessler, C. A.; Kahle, H.; Koroknay, E.; Jetter, M.; Michler, P.
2013-03-01
We demonstrate an optically pumped semiconductor disk laser (OP-SDL) using InP quantum dots (QDs) as active material fabricated by metal-organic vapor-phase epitaxy. The QDs are grown within [(Al0.1Ga0.9)0.52In0.48]0.5P0.5 (abbr. Al0.1GaInP) barriers in order to achieve an emission wavelength around 655 nm. We present optical investigations of the active region showing typical QD behavior like blue shift with increasing excitation power and single emission lines, which show anti-bunching in an intensity auto-correlation measurement. We report maximum output powers of the OP-SDL of 1.39 W at low emission wavelength of ˜654 nm with a slope efficiency of ηdiff=25.4 %.
Strong mode coupling in InP quantum dot-based GaInP microdisk cavity dimers
Witzany, M.; Liu, T.-L.; Shim, J.-B.; Hargart, F.; Koroknay, E.; Schulz, W.-M.; Jetter, M.; Hu, E.; Wiersig, J.; Michler, P.
2013-01-01
We report on strong mode coupling in closely spaced GaInP microdisk dimer structures including InP quantum dots as the active medium. Using electron beam lithography and a combination of dry- and wet-etch processes, dimers with inter-disk separations down to d < 100 nm have been fabricated. Applying a photo-thermal heating scheme, we overcome the spectral mode detuning due to the size mismatch between the two disks forming the dimer. We observe signatures of mode coupling in the corresponding photoluminescence spectra with coupling energies of up to 0.66 MeV. With the aid of a numerical analysis, we specify the geometrical and physical factors of the microdisk dimer precisely, and reproduce its spectrum with good agreement.
Energy Technology Data Exchange (ETDEWEB)
Bian, Wei [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wang, Fang [School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wei, Yanli; Wang, Li; Liu, Qiaoling; Dong, Wenjuan [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Shuang, Shaomin, E-mail: smshuang@sxu.edu.cn [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Choi, Martin M.F., E-mail: mmfchoi@gmail.com [Partner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR (China)
2015-01-26
Highlights: • A turn-on phosphorescence quantum dots probe for histidine is fabricated. • High sensitivity, good selectivity and low interference are achieved. • Histidine in urine samples can be easily detected by the phosphorescence probe. - Abstract: We report a turn-on phosphorescence probe for detection of histidine based on Co{sup 2+}-adsorbed N-acetyl-L-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co{sup 2+} attributing to the adsorption of Co{sup 2+} onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co{sup 2+} with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25–30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5–103%.
Energy Technology Data Exchange (ETDEWEB)
Pooja, D., E-mail: poojaiitr@csio.res.in [Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, New Delhi (India); Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India); Saini, Sonia; Thakur, Anupma; Kumar, Baban; Tyagi, Sachin [Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India); Nayak, Manoj K. [Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, New Delhi (India); Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India)
2017-04-15
Highlights: • Environmental friendly carbon quantum dots grafted with thiol moieties. • The functionalized CQDs demonstrated for optical detection of arsenite in water. • High analytical performance in terms of sensitivity, selectivity and detection limit (0.086 ppb). - Abstract: Carbon quantum dots (CQDs) have emerged out as promising fluorescent probes for hazardous heavy metals detection in recent past. In this study, water soluble CQDs were synthesized by facile microwave pyrolysis of citric acid & cysteamine, and functionalized with ditheritheritol to impart thiol functionalities at surface for selective detection of toxic arsenite in water. Microscopic analysis reveals that the synthesized CQDs are of uniform size (diameter ∼5 nm) and confirmed to have surface −SH groups by FT-IR. The functionalized probe is then demonstrated for arsenite detection in water by “Turn-On” read out mechanism, which reduces the possibility of false positive signals associated with “turn off’ probes reported earlier. The blue luminescent functionalized CQDs exhibit increase in fluorescence intensity on arsenite addition in 5–100 ppb wide detection range. The probe can be used for sensitive detection of arsenite in environmental water to a theoretical detection limit (3s) of 0.086 ppb (R{sup 2} = 0.9547) with good reproducibility at 2.6% relative standard deviation. The presented reliable, sensitive, rapid fCQDs probe demonstrated to exhibit high selectivity towards arsenite and exemplified for real water samples as well. The analytical performance of the presented probe is comparable to existing organic & semiconductor based optical probes.
CdSe white quantum dots-based white light-emitting diodes with high color rendering index
Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru
2016-09-01
A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.
Reversible arithmetic logic unit for quantum arithmetic
DEFF Research Database (Denmark)
Thomsen, Michael Kirkedal; Glück, Robert; Axelsen, Holger Bock
2010-01-01
-bit operands and does not use ancillae. This remarkable low resource consumption was achieved by generalizing the V-shape design first introduced for quantum ripple-carry adders and nesting multiple V-shapes in a novel integrated design. This communication shows that the realization of an efficient reversible...
Novel Designs of Quantum Reversible Counters
Qi, Xuemei; Zhu, Haihong; Chen, Fulong; Zhu, Junru; Zhang, Ziyang
2016-11-01
Reversible logic, as an interesting and important issue, has been widely used in designing combinational and sequential circuits for low-power and high-speed computation. Though a significant number of works have been done on reversible combinational logic, the realization of reversible sequential circuit is still at premature stage. Reversible counter is not only an important part of the sequential circuit but also an essential part of the quantum circuit system. In this paper, we designed two kinds of novel reversible counters. In order to construct counter, the innovative reversible T Flip-flop Gate (TFG), T Flip-flop block (T_FF) and JK flip-flop block (JK_FF) are proposed. Based on the above blocks and some existing reversible gates, the 4-bit binary-coded decimal (BCD) counter and controlled Up/Down synchronous counter are designed. With the help of Verilog hardware description language (Verilog HDL), these counters above have been modeled and confirmed. According to the simulation results, our circuits' logic structures are validated. Compared to the existing ones in terms of quantum cost (QC), delay (DL) and garbage outputs (GBO), it can be concluded that our designs perform better than the others. There is no doubt that they can be used as a kind of important storage components to be applied in future low-power computing systems.
Quantum Reversibility: Is there an Echo?
Hiller, M; Cohen, D; Geisel, T; Hiller, Moritz; Kottos, Tsampikos; Cohen, Doron; Geisel, Theo
2004-01-01
We study the possibility to undo the quantum mechanical evolution in a time reversal experiment. The naive expectation, as reflected in the common terminology ("Loschmidt echo"), is that maximum compensation results if the reversed dynamics extends to the same time as the forward evolution. We challenge this belief, and demonstrate that the time $t_r$ for maximum return probability is in general shorter. We find that $t_r$ depends on $lambda = eps_evol/eps_prep$, being the ratio of the error in setting the parameters (fields) for the time reversed evolution to the perturbation which is involved in the preparation process. Our results should be observable in spin-echo experiments where the dynamical irreversibility of quantum phases is measured.
Wang, Lixi; Yang, Xiaojuan; Yang, Weimin; Zhang, Jing; Zhang, Qitu; Song, Bo; Wong, Chingping
2017-03-01
The surface defect modification has an important effect on the application of ZnO quantum dots, and it has gained much progress in recently years, propelled by the development of additives. Our research efforts are directed toward developing a new surface modification additive RE(AcAc)3 (RE = Ce, Dy, Tb) to achieve fine ZnO QDs and adjust their surface properties. RE(AcAc)3/ZnO QDs nanostructured materials have been designed and prepared, and particular emphasis has been given to the relation between the surface modification and optical properties. The effects of RE(III) acetylacetonate modification on the FT-IR, TEM images and photoluminescence (PL) spectra were investigated, and the surface defect modification principle and effect were discussed in details. The band gap (Eg) was also calculated to prove the surface modification effect. For the RE(AcAc)3/ZnO QDs complex materials, stable linkage occurs because of the affinity of sbnd COOH from acetylacetonate anionic ligand to zinc oxide surfaces, with attachment to the zinc oxide by hydrogen bonding between the protons of the hydroxyl groups on the surface of ZnO QDs and the π-system of acetylacetone.
Energy Technology Data Exchange (ETDEWEB)
Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f
2011-07-01
Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)
Quantum dots based molecular beacons for in vitro and in vivo detection of MMP-2 on tumor.
Li, Xin; Deng, Dawei; Xue, Jianpeng; Qu, Lingzhi; Achilefu, Samuel; Gu, Yueqing
2014-11-15
Matrix metalloproteinase-2 (MMP-2) is a protease related to tumor invasion and metastasis. It is heavily secreted by malignant tumor cells, allowing the protease to serve as an imaging biomarker of cancer. In this study, a novel sensing system based on fluorescence resonance energy transfer (FRET) from quantum dot (QD, the donor) to organic dye (the acceptor) was constructed for the in vitro and in vivo detection of matrix metalloproteinases-2 via a MMP-2-specific peptide substrate (GPLGVRGKGG). Specifically, 535 nm-emitting CdTe QD were bound to Rhodamine B (RB) through the peptide for in vitro detection of MMP-2, while 720 nm-emitting CdTeS QDs was linked to near infrared dye ICG-Der-02 (MPA) by the peptide for measurement in vivo. When these probes were exposed to MMP-2, the selective cleavage of the peptide resulted in the recovery of fluorescence from QDs. By using the produced 540QD-peptide-RB and 720QD-peptide-MPA probes, we successfully examined MMP-2 in live cells and tumor on nude mouse, respectively. Due to the tunable fluorescence of Qds, this nanosensor can be fine-tuned for a wide range of applications such as the detection of different biomarkers and early diagnosis of disease.
Bian, Wei; Wang, Fang; Wei, Yanli; Wang, Li; Liu, Qiaoling; Dong, Wenjuan; Shuang, Shaomin; Choi, Martin M F
2015-01-26
We report a turn-on phosphorescence probe for detection of histidine based on Co(2+)-adsorbed N-acetyl-L-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co(2+) attributing to the adsorption of Co(2+) onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co(2+)-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co(2+) with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25-30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co(2+)-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5-103%.
Energy Technology Data Exchange (ETDEWEB)
Agusdinata, Datu Buyung, E-mail: bagusdinata@niu.edu; Amouie, Mahbod [Northern Illinois University, Department of Industrial & Systems Engineering and Environment, Sustainability, & Energy Institute (United States); Xu, Tao [Northern Illinois University, Department of Chemistry and Biochemistry (United States)
2015-01-15
Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd{sup 2+} ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd{sup 2+} ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd{sup 2+} ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd{sup 2+} ions and complexity of tracking of individual atoms of Cd at the same time.
Yu, Weili
2015-01-01
Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.
Conroy, Erin M.; Algar, W. Russ
2014-03-01
Semiconductor quantum dots (QDs) continue to emerge as a highly advantageous platform for bioanalysis. Their unique physical and optical properties are especially well suited for Förster resonance energy transfer (FRET)-based bioprobes. Concentric FRET configurations are a recent development in this area of research and are best described as QD bioconjugates where multiple energy transfer pathways have been assembled around the central QD. Concentric FRET configurations permit multiplexed bioanalysis using one type of QD vector, but require more sophisticated analyses than conventional FRET pairs. In this paper, we describe the design and characterization of a new concentric FRET configuration that assembles both a fluorescent dye, Alexa Fluor 555 or Alexa Fluor 647, and a dark quencher, QSY9, at different ratios around a central CdSeS/ZnS QD. It was found that the magnitudes of the total photoluminescence (PL) intensity and either the A555/QD or A647/QD PL ratio can be related to the number of QSY9 and A555 or A647 per QD. The trends in these parameters with changes in the number of each dye molecule per QD have both similarities and differences between configurations with A555 and A647. In each case, a system of equations can be defined to permit calculation of the number of each dye molecule per QD from PL measurements. Both of these dark quencher-based concentric FRET configurations are therefore good candidates for quantitative, multiplexed bioanalysis.
Kwon, Woosung; Do, Sungan; Won, Dong Chan; Rhee, Shi-Woo
2013-02-01
We report electrical measurements of films of carbon quantum dots (CQDs) that serve as the channels of field-effects transistors (FETs). To investigate the dependence of the field-effect mobility on ligand length, colloidal CQDs are synthesized and ligand-exchanged with several primary amines of different ligand lengths. We measure current as a function of gate voltage and find that the devices show ambipolar conductivity, with electron and hole mobilities as high as 8.49 × 10(-5) and 3.88 × 10(-5) cm(2) V(-1) s(-1), respectively. The electron mobilities are consistently 2-4 times larger than the hole mobilities. Furthermore, the mobilities decrease exponentially with the increase of the ligand length, which is well-described by the Miller-Abrahams model for nearest-neighbor hopping. Our results provide a theoretical basis to examine charge transport in CQD films and offer new prospects for the fabrication of high-mobility CQD-based optoelectronic devices, including solar cells, light-emitting devices, and optical sensors.
Roy, Mathieu; Wilson, Brian C.
2008-02-01
We are investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). The present studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. These contrast optimization studies require optical phantoms that simulate tissue autofluorescence, absorption and scattering over the entire visible spectrum, while allowing us to control the optical thickness. We present an optical phantom made of fresh homogenized tissue diluted in water. The homogenized tissue is poured into a clear polymer tank designed to hold a QD-loaded silica capillary in its center. Because of the non-linear effects of absorption and scattering on measured autofluorescence, direct comparison between results obtained using tissue phantoms of different concentration is not possible. We introduce mathematical models that make it possible to perform measurements on diluted tissue homogenates and subsequently extrapolate the results to intact (non-diluted) tissue. Finally, we present preliminary QD contrast data showing that the 380-420 nm spectral window is optimal for surface QD imaging.
Energy Technology Data Exchange (ETDEWEB)
Pinwattana, Kulwadee; Wang, Jun; Lin, Chiann Tso; Wu, Hong; Du, Dan; Lin, Yuehe; Chailapakul, Orawon
2010-11-15
A CdSe/ZnS quantum dot (QD) based electrochemical immunoassay of phosphorylated bovine serum albumin as a protein biomarker is presented. The QDs were used as labels and were conjugated with the secondary anti-phosphoserine antibody in a heterogeneous sandwich immunoassay. First, the primary BSA antibody was immobilized on polystyrene microwells, followed by the addition of BSA-OP. After that, the QD-labeled anti-phosphoserine antibody was added into microwells for immunorecognition. Finally, the bound QD was dissolved in an acid-dissolution step and was detected by electrochemical stripping analysis. The measured current responses were proportional to the concentration of BSA-OP. Under optimal conditions, the voltammetric response was linear over the range of 0.5 - 500 ng mL-1 of BSA-OP, with a detection limit of 0.5 ng mL-1 at a deposition potential of -1.2 V for 120 s. It also shows good reproducibility with a relative standard deviation of 8.6% of six times determination of 25 ng mL-1 of BSA-OP. This QD-based electrochemical immunoassay offers great promise for simple and cost-effective analysis of protein biomarkers.
Directory of Open Access Journals (Sweden)
Stéphane Larré
2012-04-01
Full Text Available Quantum dots (QDs are a new class of fluorescent labeling for biological and biomedical applications. In this study, we detected prostate stem cell antigen (PSCA expression correlated with tumor grade and stage in human prostate cancer by QDs-based immunolabeling and conventional immunohistochemistry (IHC, and evaluated the sensitivity and stability of QDs-based immunolabeling in comparison with IHC. Our data revealed that increasing levels of PSCA expression accompanied advanced tumor grade (QDs labeling, r = 0.732, p < 0.001; IHC, r = 0.683, p < 0.001 and stage (QDs labeling, r = 0.514, p = 0.001; IHC, r = 0.432, p = 0.005, and the similar tendency was detected by the two methods. In addition, by comparison between the two methods, QDs labeling was consistent with IHC in detecting the expression of PSCA in human prostate tissue correlated with different pathological types (K = 0.845, p < 0.001. During the observation time, QDs exhibited superior stability. The intensity of QDs fluorescence remained stable for two weeks (p = 0.083 after conjugation to the PSCA protein, and nearly 93% of positive expression with their fluorescence still could be seen after four weeks.
Near-infrared quantum-dot-based non-invasive in vivo imaging of squamous cell carcinoma U14
Energy Technology Data Exchange (ETDEWEB)
Cao Yu' an; Yang Kai; Li Zhigang; Zhao Cheng; Yang Jia [Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016 (China); Shi Chunmeng, E-mail: cqfyyk@yahoo.com.cn [Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038 (China)
2010-11-26
Near-infrared (near-ir) quantum dots (QDs) are well known for their excellent optical characteristics. They hold great potential for applications in non-invasive long term observation and tracing of cells in vivo. Here, near-ir QDs with an emission wavelength of 800 nm (QD800) were used to label squamous cell carcinoma cell line U14 (U14/QD800). The effect of tissue depth and animal fur on the imaging sensitivity and stability was evaluated following subcutaneous and intramuscular injection into Kunming mice, employing an in vivo imaging system. We have demonstrated that QD800-based visual in vivo imaging increased the sensitivity of cancer early detection by a factor of 100 compared with traditional detection methods. More importantly, this study proved for the first time that animal fur has a serious impact on the detection sensitivity and duration of QD-based in vivo imaging. In general, the duration and sensitivity of QD800 for in vivo imaging were not greatly affected by a depth less than 1.8 {+-} 0.21 mm (subcutaneous or intramuscular). This study provides critical reference data for further research on near-ir QD-based early detection and in vivo visual observation of cancer.
Ray-trace simulation of CuInS(Se)₂ quantum dot based luminescent solar concentrators.
Hu, Xiangmin; Kang, Ruidan; Zhang, Yongyou; Deng, Luogen; Zhong, Haizheng; Zou, Bingsuo; Shi, Li-Jie
2015-07-27
To enhance the performance of luminescent solar concentrator (LSC), there is an increased need to search novel emissive materials with broad absorption and large Stokes shifts. I-III-VI colloidal CuInS2 and CuInSe2 based nanocrystals, which exhibit strong photoluminescence emissions in the visible to near infrared region with large Stokes shifts, are expected to improve performance in luminescent solar concentrator applications. In this work, the performance of CuInS(Se)2 quantum dots in simple planar LSC is evaluated by applying Monte-Carlo ray-trace simulation. A systematic parameters study was conducted to optimize the performance. An optimized photon concentration ratio of 0.34 for CuInS2 nanocrystals and 1.25 for CuInSe2 nanocrystals doping LSC are obtained from the simulation. The results demonstrated that CuInSe2 based nanocrystals are particularly interesting for luminescent solar concentrator applications, especially to combine with low price Si solar cells.
A reversible optical to microwave quantum interface
Barzanjeh, Sh; Milburn, G J; Tombesi, P; Vitali, D
2011-01-01
Quantum technology, like many mature classical technologies, will ultimately integrate distinct modules to achieve a function that transcends the capability of any one of them. We describe a reversible quantum interface between an optical and a microwave photon using a hybrid device based on the common interaction of microwave and optical fields with a nano-mechanical resonator in a superconducting circuit, which is one of the major challenges in the field. The scheme provides a path for generating a traveling microwave field strongly entangled with an optical mode, thus bridging the gap between quantum optical and solid state implementations of quantum information. This is an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal (idler) and as such enables a continuous variable teleportation protocol.
Wang, Chunying; Hou, Fei; Ma, Yicai
2015-06-15
A novel multicolor quantum dots (QDs) based immunochromatographic test strip (ICTS) was developed for simultaneous quantitative detection of multiple tumor markers, by utilizing alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) as models. The immunosensor could realize simultaneous quantitative detection of tumor markers with only one test line and one control line on the nitrocellulose membrane (NC membrane) due to the introduction of multicolor QDs. In this method, a mixture of mouse anti-AFP McAb and mouse anti-CEA McAb was coated on NC membrane as test line and goat anti-mouse IgG antibody was coated as control line. Anti-AFP McAb-QDs546 conjugates and anti-CEA McAb-QDs620 conjugates were mixed and applied to the conjugate pad. Simultaneous quantitative detection of multiple tumor markers was achieved by detecting the fluorescence intensity of captured QDs labels on test line and control line using a test strip reader. Under the optimum conditions, AFP and CEA could be detected as low as 3 ng/mL and 2 ng/mL in 15 min with a sample volume of 80 μL, and no obvious cross-reactivity was observed. The immunosensor was validated with 130 clinical samples and in which it exhibited high sensitivity (93% for AFP and 87% for CEA) and specificity (94% for AFP and 97% for CEA). The immunosensor also demonstrated high recoveries (87.5-113% for AFP and 90-97.3% for CEA) and low relative standard deviations (RSDs) (2.8-6.2% for AFP and 4.9-9.6% for CEA) when testing spiked human serum. This novel multicolor QDs based ICTS provides an easy and rapid, simultaneous quantitative detecting strategy for point-of-care testing of tumor markers. Copyright © 2014 Elsevier B.V. All rights reserved.
Kang, Won Jun; Ko, Mee Hyang; Lee, Dong Soo; Kim, Soonhag
2009-12-01
Thousands of proteins are simultaneously involved in the maintenance of a single cancer cell. Fluorescent resonance energy transfer (FRET) is one of the most general techniques for imaging biologically interacting molecules in a cell. Here, we applied FRET to image the co-localization of two proteins that do not interact biologically (nucleolin and integrin α(v) β(3),) both of which are highly expressed in the plasma membrane of cancer cells. AS1411 aptamer, which targets nucleolin, was labeled by Cy3 (Cy3-AS1411) and arginine-glycine-aspartic acid (RGD) peptide, which targets integrin α(v) β(3) , was conjugated with quantum dot (525 nm, Qd) Qd arginine-glycine-aspartic acid (Qd-RGD). FRET activities between Cy3-AS1411 and Qd-RGD were measured in HeLa cells, a human cervical cancer cell line. FRET phenomena between Qd and Cy3 showed good compatibility according to proximity. The fluorescence signature using Qd-RGD and Cy3-AS1411 showed that nucleolin and integrin α(v) β(3) proteins were highly expressed in HeLa cells. Co-incubation of Qd-RGD and Cy3-AS1411 in a single HeLa cell demonstrated that the fluorescence overlay by FRET was quantitatively and geographically quite different from that of individual confocal images. These results suggest that Qd-based FRET analysis can provide information on geographical co-localization of proteins in naïve cells, which is very important for determining the molecular and cellular functions of genes involved in cancers and other clinical diseases.
Barettin, Daniele; Auf der Maur, Matthias; di Carlo, Aldo; Pecchia, Alessandro; Tsatsulnikov, Andrei F.; Sakharov, Alexei V.; Lundin, Wsevolod V.; Nikolaev, Andrei E.; Usov, Sergey O.; Cherkashin, Nikolay; Hÿtch, Martin J.; Karpov, Sergey Yu
2017-01-01
The impact of electromechanical coupling on optical properties of light-emitting diodes (LEDs) with InGaN/GaN quantum-dot (QD) active regions is studied by numerical simulations. The structure, i.e. the shape and the average In content of the QDs, has been directly derived from experimental data on out-of-plane strain distribution obtained from the geometric-phase analysis of a high-resolution transmission electron microscopy image of an LED structure grown by metalorganic vapor-phase epitaxy. Using continuum k\\cdot p calculations, we have studied first the lateral and full electromechanical coupling between the QDs in the active region and its impact on the emission spectrum of a single QD located in the center of the region. Our simulations demonstrate the spectrum to be weakly affected by the coupling despite the strong common strain field induced in the QD active region. Then we analyzed the effect of vertical coupling between vertically stacked QDs as a function of the interdot distance. We have found that QCSE gives rise to a blue-shift of the overall emission spectrum when the interdot distance becomes small enough. Finally, we compared the theoretical spectrum obtained from simulation of the entire active region with an experimental electroluminescence (EL) spectrum. While the theoretical peak emission wavelength of the selected central QD corresponded well to that of the EL spectrum, the width of the latter one was determined by the scatter in the structures of various QDs located in the active region. Good agreement between the simulations and experiment achieved as a whole validates our model based on realistic structure of the QD active region and demonstrates advantages of the applied approach.
Design of a novel quantum reversible ternary up-counter
Houshmand, Pouran; Haghparast, Majid
2015-08-01
Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.
Reversible part of a quantum dynamical system
2016-01-01
In this work a quantum dynamical system $(\\mathfrak M,\\Phi, \\varphi)$ is constituted by a von Neumann algebra $\\mathfrak M$, by a unital Schwartz map $\\Phi:\\mathfrak{M\\rightarrow M}$ and by a $\\Phi$-invariant normal faithful state $\\varphi$ on $\\mathfrak M$. The ergodic properties of a quantum dynamical system, depends on its reversible part $(\\mathfrak{D}_\\infty,\\Phi_\\infty, \\varphi_\\infty)$. It is constituted by a von Neumann sub-algebra $\\mathfrak{D}_\\infty$ of $\\mathfrak M$ by an automorp...
Reversible logic synthesis methodologies with application to quantum computing
Taha, Saleem Mohammed Ridha
2016-01-01
This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Rese...
Reversible computing fundamentals, quantum computing, and applications
De Vos, Alexis
2010-01-01
Written by one of the few top internationally recognized experts in the field, this book concentrates on those topics that will remain fundamental, such as low power computing, reversible programming languages, and applications in thermodynamics. It describes reversible computing from various points of view: Boolean algebra, group theory, logic circuits, low-power electronics, communication, software, quantum computing. It is this multidisciplinary approach that makes it unique.Backed by numerous examples, this is useful for all levels of the scientific and academic community, from undergr
Preference reversal in quantum decision theory
Yukalov, V I
2015-01-01
We consider the psychological effect of preference reversal and show that it finds a natural explanation in the frame of quantum decision theory. When people choose between lotteries with non-negative payoffs, they prefer a more certain lottery because of uncertainty aversion. But when people evaluate lottery prices, e.g. for selling to others the right to play them, they do this more rationally, being less subject to behavioral biases. This difference can be explained by the presence of the attraction factors entering the expression of quantum probabilities. Only the existence of attraction factors can explain why, considering two lotteries with close utility factors, a decision maker prefers one of them when choosing, but evaluates higher the other one when pricing. We derive a general quantitative criterion for the preference reversal to occur that relates the utilities of the two lotteries to the attraction factors under choosing versus pricing and test successfully its application on experiments by Tvers...
Quantum Dot Based Photovoltaics Project
National Aeronautics and Space Administration — Hybrid photovoltaic cells that combine nanostructured inorganic semiconductors with organic conductors such as the cell proposed, show promise for energy generation...
Preference reversal in quantum decision theory.
Yukalov, Vyacheslav I; Sornette, Didier
2015-01-01
We consider the psychological effect of preference reversal and show that it finds a natural explanation in the frame of quantum decision theory. When people choose between lotteries with non-negative payoffs, they prefer a more certain lottery because of uncertainty aversion. But when people evaluate lottery prices, e.g., for selling to others the right to play them, they do this more rationally, being less subject to behavioral biases. This difference can be explained by the presence of the attraction factors entering the expression of quantum probabilities. Only the existence of attraction factors can explain why, considering two lotteries with close utility factors, a decision maker prefers one of them when choosing, but evaluates higher the other one when pricing. We derive a general quantitative criterion for the preference reversal to occur that relates the utilities of the two lotteries to the attraction factors under choosing vs. pricing and test successfully its application on experiments by Tversky et al. We also show that the planning paradox can be treated as a kind of preference reversal.
Phase-selective reversible quantum decoherence in cavity QED experiment
Filip, R
2001-01-01
New feasible cavity QED experiment is proposed to analyse reversible quantum decoherence in consequence of quantum complementarity and entanglement. Utilizing the phase selective manipulations with enviroment, it is demonstrated how the complementarity particularly induces a preservation of visibility, whereas quantum decoherence is more progressive due to pronounced entanglement between system and enviroment. This effect can be directly observed using the proposed cavity QED measurements.
Quantum Cost Efficient Reversible BCD Adder for Nanotechnology Based Systems
Islam, Md Saiful; Begum, Zerina
2011-01-01
Reversible logic allows low power dissipating circuit design and founds its application in cryptography, digital signal processing, quantum and optical information processing. This paper presents a novel quantum cost efficient reversible BCD adder for nanotechnology based systems using PFAG gate. It has been demonstrated that the proposed design offers less hardware complexity and requires minimum number of garbage outputs than the existing counterparts. The remarkable property of the proposed designs is that its quantum realization is given in NMR technology.
Synthesis of Reversible Functions Beyond Gate Count and Quantum Cost
Wille, Robert; Drechsler, Rolf
2010-01-01
Many synthesis approaches for reversible and quantum logic have been proposed so far. However, most of them generate circuits with respect to simple metrics, i.e. gate count or quantum cost. On the other hand, to physically realize reversible and quantum hardware, additional constraints exist. In this paper, we describe cost metrics beyond gate count and quantum cost that should be considered while synthesizing reversible and quantum logic for the respective target technologies. We show that the evaluation of a synthesis approach may differ if additional costs are applied. In addition, a new cost metric, namely Nearest Neighbor Cost (NNC) which is imposed by realistic physical quantum architectures, is considered in detail. We discuss how existing synthesis flows can be extended to generate optimal circuits with respect to NNC while still keeping the quantum cost small.
Deriving quantum theory from its local structure and reversibility.
de la Torre, Gonzalo; Masanes, Lluís; Short, Anthony J; Müller, Markus P
2012-08-31
We investigate the class of physical theories with the same local structure as quantum theory but potentially different global structure. It has previously been shown that any bipartite correlations generated by such a theory can be simulated in quantum theory but that this does not hold for tripartite correlations. Here we explore whether imposing an additional constraint on this space of theories-that of dynamical reversibility-will allow us to recover the global quantum structure. In the particular case in which the local systems are identical qubits, we show that any theory admitting at least one continuous reversible interaction must be identical to quantum theory.
Optimized 4-bit Quantum Reversible Arithmetic Logic Unit
Ayyoub, Slimani; Achour, Benslama
2017-08-01
Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.
Three myths about time reversal in quantum theory
Roberts, Bryan W
2016-01-01
Many have suggested that the transformation standardly referred to as 'time reversal' in quantum theory is not deserving of the name. I argue on the contrary that the standard definition is perfectly appropriate, and is indeed forced by basic considerations about the nature of time in the quantum formalism.
Institute of Scientific and Technical Information of China (English)
方敏; 彭春伟; 陈创; 庞代文; 李雁
2014-01-01
Malignant tumors are highly heterogeneous in terms of molecular phenotypes such that personalized therapy will be-come the standard for tumor therapy. Molecular classifications of cancer based on differences in biological behavior are important for selecting treatment strategies and prognostication. The unique optical and chemical properties of quantum dots have been widely used in biomedical applications such as tumor diagnosis, monitoring, pathogenesis, treatment, molecular pathology, and heterogeneity based on biological markers. In this study, we discuss the application of quantum dot-based nanotechnology and the molecular classification of cancer in personalized oncology.%恶性肿瘤在分子水平上具有高度异质性，是个体化治疗的依据。发展同时显示肿瘤原位多分子指标的技术对研究肿瘤生物学行为至关重要。量子点标记探针技术因其具有独特的光学和化学特性，在肿瘤诊断、监测、治疗、发病机制、分子分型及异质性研究中均有广阔应用前景。本文总结该技术在肿瘤分子分型方面的应用进展。
Quantum transport enhancement by time-reversal symmetry breaking.
Zimborás, Zoltán; Faccin, Mauro; Kádár, Zoltán; Whitfield, James D; Lanyon, Ben P; Biamonte, Jacob
2013-01-01
Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.
Parallel Optimization of a Reversible (Quantum) Ripple-Carry Adder
DEFF Research Database (Denmark)
Thomsen, Michael Kirkedal; Axelsen, Holger Bock
2008-01-01
The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of garbage. The CDKM-adder is a recent garbage-less reversible (quantum......(mk). We also show designs for garbage-less reversible set-less-than circuits. We compare the circuit costs of the CDKM and parallel adder in measures of circuit delay, width, gate and transistor count, and find that the parallelized adder offers significant speedups at realistic word sizes with modest...
D. Shao; J. Li; Y. Pan; X. Zhang; X. Zheng; Z. Wang; M. Zhang; H. Zhang; L. Chen
2015-01-01
Theranostics is emerging as a popular strategy for cancer therapy; thanks to the development of nano-technology. In this work, we have combined an HSV-TK/GCV suicide gene system and near-infrared quantum dots, as the former is quite effective in liver cancer treatment and the latter facilitates tumo
Optimization Approaches for Designing Quantum Reversible Arithmetic Logic Unit
Haghparast, Majid; Bolhassani, Ali
2016-03-01
Reversible logic is emerging as a promising alternative for applications in low-power design and quantum computation in recent years due to its ability to reduce power dissipation, which is an important research area in low power VLSI and ULSI designs. Many important contributions have been made in the literatures towards the reversible implementations of arithmetic and logical structures; however, there have not been many efforts directed towards efficient approaches for designing reversible Arithmetic Logic Unit (ALU). In this study, three efficient approaches are presented and their implementations in the design of reversible ALUs are demonstrated. Three new designs of reversible one-digit arithmetic logic unit for quantum arithmetic has been presented in this article. This paper provides explicit construction of reversible ALU effecting basic arithmetic operations with respect to the minimization of cost metrics. The architectures of the designs have been proposed in which each block is realized using elementary quantum logic gates. Then, reversible implementations of the proposed designs are analyzed and evaluated. The results demonstrate that the proposed designs are cost-effective compared with the existing counterparts. All the scales are in the NANO-metric area.
Miralaie, M.; Leilaeioun, M.; Abbasian, K.
2013-01-01
In this work, we have modeled silicon quantum dot (QD)-based single-electron transistors (SETs) operating at room temperature and investigated the effect of the QD's energy-level broadening on the performance of the SET. First we obtained the energy levels and corresponding wave functions for spherical Si QDs by solving the coupled Schrödinger-Poisson equations in three dimensions. Then, we demonstrated different tunneling current rates for separated energy levels by considering nonequal energy-level broadenings. Accordingly, an expression for the corresponding tunneling rates in the quantum Coulomb blockade regime was derived. In the next step, the transconductance characteristics of the Si QD SET device with Coulomb oscillations were simulated, and their differences from previously investigated metal-based SETs were demonstrated. Finally, by applying different bias voltages, we determined the effect of temperature variations on the transconductance characteristics.
Scalable time reversal of Raman echo quantum memory and quantum waveform conversion of light pulse
Moiseev, E S
2013-01-01
We have found the new hidden symmetry of time reversal light-atom interaction in the photon echo quantum memory with Raman atomic transition. The time-reversed quantum memory provides generalized condition for ideal compression/decompression of time duration and wavelength conversion of the input light pulse. Based on a general analytical approach to this scheme, we have studied the optimal conditions of the light field compression/decompression in resonant atomic systems characterized by realistic spectral properties. The demonstrated effective quantum conversion of the light waveform and wavelength are also discussed for various possible realizations of the quantum memory scheme. The performed study promises new capabilities for fundamental study of the light-atom interaction and for deterministic quantum manipulation of the light field interested for quantum communication and quantum computing.
Shao, Wenyi; Lu, Peng; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji
2016-12-01
Surface-textured structure is currently an interesting topic since it can efficiently reduce the optical losses in advanced optoelectronic devices via light management. In this work, we built a model in finite-difference time-domain (FDTD) solutions by setting the simulation parameters based on the morphology of the Si nanostructures and compared with the experimental results in order to study the anti-reflection behaviors of the present nano-patterned structures. It is found that the reflectance is gradually reduced by increasing the depth of Si nanostructures which is in well agreement with the experimental observations. The reflectance can be lower than 10 % in the light range from 400 to 850 nm for Si nano-patterned structures with a depth of 150 nm despite the quite low aspect ratio, which can be understood as the formation of gradually changed index layer and the scattering effect of Si nano-patterned structures. By depositing the Si quantum dots/SiO2 multilayers on nano-patterned Si substrate, the reflectance can be further suppressed and the luminescence intensity centered at 820 nm from Si quantum dots is enhanced by 6.6-fold compared with that of flat one, which can be attributed to the improved light extraction efficiency. However, the further etch time causes the reduction of luminescence intensity from Si quantum dots which may ascribe to the serious surface recombination of carriers.
Optimized parity preserving quantum reversible full adder/subtractor
Haghparast, Majid; Bolhassani, Ali
2016-07-01
Reversible logic is one of the indispensable aspects of emerging technologies for reducing physical entropy gain, since reversible circuits do not lose information in the form of internal heat during computation. This paper aimed to initiate constructing parity preserving reversible circuits. A novel parity preserving reversible block, HB is presented. Then a new design of a cost-effective parity preserving reversible full adder/subtractor (PPFA/S) is proposed. Next, we suggested a new parity preserving binary to BCD converter. Finally, we proposed new realization of parity preserving reversible BCD adder. The proposed designs are cost-effective in terms of quantum cost and delay. All the scales are in the NANO-metric area.
Energy Technology Data Exchange (ETDEWEB)
Utrilla, A. D.; Ulloa, J. M., E-mail: jmulloa@isom.upm.es; Guzman, A.; Hierro, A. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM) and Departamento de Ingeniería Electrónica, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Reyes, D. F.; González, D.; Ben, T. [Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cádiz, 11510 Puerto Real (Cádiz) (Spain)
2014-07-28
The application of a GaAsSb/GaAsN short-period superlattice capping layer (CL) on InAs/GaAs quantum dots (QDs) is shown to be an option for providing improved luminescence properties to this system. Separating both GaAsSb and GaAsN ternaries during the growth in 2 monolayer-thick phases solves the GaAsSbN immiscibility-related problems. Strong fluctuations in the CL composition and strain field as well as in the QD size distribution are significantly reduced, and a more regular CL interface is also obtained. Room-temperature (RT) photoluminescence (PL) is obtained for overall N contents as high as 3%, yielding PL peak wavelengths beyond 1.4 μm in samples with a type-II band alignment. High external quantum efficiency electroluminescence and photocurrent from the QD ground state are also demonstrated at RT in a single QD-layer p-i-n device. Thus, it becomes possible to combine and transfer the complementary benefits of Sb- and N-containing GaAs alloys to InAs QD-based optoelectronics.
Hechster, Elad; Shapiro, Arthur; Lifshitz, Efrat; Sarusi, Gabby
2016-07-01
Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer's surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film's thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas' dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.
Energy Technology Data Exchange (ETDEWEB)
Hechster, Elad, E-mail: elad.hechster@gmail.com; Sarusi, Gabby [Electro-Optics Engineering Unit and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84100 Israel (Israel); Shapiro, Arthur; Lifshitz, Efrat [Schulich Faculty of Chemistry, Solid State Institute, Russel Berrie Nanotechnology Institute, Technion – Israel Institute of technology, 32000 Haifa (Israel)
2016-07-15
Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer’s surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film’s thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas’ dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.
Upadhyay, S.; Mandal, A.; Ghadi, H.; Pal, D.; Subrahmanyam, N. B. V.; Singh, P.; Chakrabarti, S.
2015-05-01
Self-assembled In(Ga)As/GaAs quantum dot infrared photodetectors (QDIPs) have promising applications in the midwavelength infrared and long-wavelength infrared regions for various defense and space application purposes. It has been demonstrated that the performance of QDIPs has improved significantly by using architectures such as dots-in-awell, different combinational capping or post growth treatment with high energy hydrogen ions. In this work, we enhanced the electrical properties InGaAs/GaAs using high energy proton implantation. Irradiation with proton resulted suppression in field assisted tunnelling of dark current by three orders for implanted devices. Photoluminescence (PL) enhancement was observed up to certain dose of protons due to eradication of as-grown defects and non radiative recombination centers. In addition, peak detectivity (D*) increased up to two orders of magnitude from 6.1 x108 to 1.0 × 1010 cm-Hz1/2/W for all implanted devices.
Mintairov, S. A.; Kalyuzhnyy, N. A.; Maximov, M. V.; Nadtochiy, A. M.; Zhukov, A. E.
2017-01-01
MOCVD-grown GaAs single-junction solar cells (SC) with quantum well-dots (QWD) were fabricated and tested. The QWD were formed by the deposition of In0.4Ga0.6As layers separated with GaAs spacers. A remarkable improvement of photocurrent was achieved and the reduction of open-circuit voltage was partly suppressed by decreasing the spacers’ growth rate as well as increasing their thickness up to 40 nm. Based on the experimentally obtained characteristics of these single-junction SCs we estimated that using QWD media in the middle (GaAs-based) subcell can provide 1 abs. %, increasing the efficiency of the triple-junction GaInP/GaAs/Ge SCs.
Surface Modification and Application of Quantum Dots Based on Polymers%量子点的聚合物表面修饰及其应用
Institute of Scientific and Technical Information of China (English)
来守军; 关晓琳
2011-01-01
Quantum dots (QDs) are nanometer-sized structures with the remarkable optical characteration,which have widely used in biology, chemistry and physics.Polymeric materials are not only employed as matrices for QDs for optical applications, but also provide mechanical and chemical stability to QDs as well as preventing nanocrystal agglomeration, and offering processability into technologically relevant structures.Using polymers as the modifier of QDs, surface modifications are especially required to permit monodispersion of materials, and further functionalization is necessary to facilitate specific biological and chemical interactions.The present review summarizes recent research in the development of polymer-modified QDs materials, their synthesis and fabrication methods, as well as resulting optical properties and applications.It is briefly described on surface coating of QDs with amphiphilic polymers, multivalent polymerization of QDs surface, synthesis of end-functionalized polymers on the QDs surface and preparation of the dendrimer-quantum dots materials.Surface coating of QDs with amphiphilicpolymers would improve water solubility and chemical functionality of the materials.Multidentate polymeric ligands have the ability to retain the luminescence quantum yields, and to simultaneously provide the necessary colloidal stability with chemical functionality.Attachment of end-functionalized polymers to the QDs surface lead to many new applications for such advanced materials.In addition, dendrimer-encapsulated approaches have been used for the controlled synthesis of QDs.Moreover, the perspective and application about the modification are also reviewed.%量子点作为新型纳米发光材料备受关注,但由于光学稳定性和生物相容性的问题而在实际应用上受限.聚合物对量子点的修饰能够提供量子点合成的有效支撑基质,而且还可以改善量子点的稳定性和单分散性,进而可以拓展量子点应用于化学、物
Wang, Lin-Wei; Qu, Ai-Ping; Liu, Wen-Lou; Chen, Jia-Mei; Yuan, Jing-Ping; Wu, Han; Li, Yan; Liu, Juan
2016-02-01
As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, and organic dye imaging of cell nucleus as blue signal by 4‧,6-diamidino-2-phenylindole (DAPI), and to develop a computer-aided automatic method for Ki67 index measurement. The newly developed automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% dye imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting method to measure Ki67 index.
Hua, Xin; Zhou, Zhenxian; Yuan, Liang; Liu, Songqin
2013-07-25
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer-cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL(-1) by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.
Bilan, Regina; Ametzazurra, Amagoia; Brazhnik, Kristina; Escorza, Sergio; Fernández, David; Uríbarri, María; Nabiev, Igor; Sukhanova, Alyona
2017-01-01
A novel suspension multiplex immunoassay for the simultaneous specific detection of lung cancer markers in bronchoalveolar lavage fluid (BALF) clinical samples based on fluorescent microspheres having different size and spectrally encoded with quantum dots (QDEM) was developed. The designed suspension immunoassay was validated for the quantitative detection of three lung cancer markers in BALF samples from 42 lung cancer patients and 10 control subjects. Tumor markers were detected through simultaneous formation of specific immune complexes consisting of a capture molecule, the target antigen, and biotinylated recognition molecule on the surface of the different QDEM in a mixture. The immune complexes were visualized by fluorescently labeled streptavidin and simultaneously analyzed using a flow cytometer. Preclinical validation of the immunoassay was performed and results were compared with those obtained using an alternative 3-plex immunoassay based on Luminex xMAP® technology, developed on classical organic fluorophores. The comparison showed that the QDEM and xMAP® assays yielded almost identical results, with clear discrimination between control and clinical samples. Thus, developed QDEM technology can become a good alternative to xMAP® assays permitting analysis of multiple protein biomarkers using conventional flow cytometers. PMID:28300171
Bilan, Regina; Ametzazurra, Amagoia; Brazhnik, Kristina; Escorza, Sergio; Fernández, David; Uríbarri, María; Nabiev, Igor; Sukhanova, Alyona
2017-03-01
A novel suspension multiplex immunoassay for the simultaneous specific detection of lung cancer markers in bronchoalveolar lavage fluid (BALF) clinical samples based on fluorescent microspheres having different size and spectrally encoded with quantum dots (QDEM) was developed. The designed suspension immunoassay was validated for the quantitative detection of three lung cancer markers in BALF samples from 42 lung cancer patients and 10 control subjects. Tumor markers were detected through simultaneous formation of specific immune complexes consisting of a capture molecule, the target antigen, and biotinylated recognition molecule on the surface of the different QDEM in a mixture. The immune complexes were visualized by fluorescently labeled streptavidin and simultaneously analyzed using a flow cytometer. Preclinical validation of the immunoassay was performed and results were compared with those obtained using an alternative 3-plex immunoassay based on Luminex xMAP® technology, developed on classical organic fluorophores. The comparison showed that the QDEM and xMAP® assays yielded almost identical results, with clear discrimination between control and clinical samples. Thus, developed QDEM technology can become a good alternative to xMAP® assays permitting analysis of multiple protein biomarkers using conventional flow cytometers.
Qian, Jing; Hua, Mengjuan; Wang, Chengquan; Wang, Kan; Liu, Qian; Hao, Nan; Wang, Kun
2016-11-23
New strategies for onsite determination of trace 2,4,6-trinitrotoluene (TNT) explosives have become a research hotspot for homeland security needs against terrorism and environmental concerns. Herein, we designed a ratiometric fluorescence nanohybrid comprising 3-mercaptopropionic acid-capped green-emitting CdTe quantum dots (gQDs) encapsulated into SiO2 sphere and l-cysteine (Lcys)-capped red-emitting CdTe QDs (rQDs) conjugated onto SiO2 surface. The surface Lcys can be used as not only the stabilizer of the rQDs but also the primary amine provider which can react with TNT to form Meisenheimer complexes. Without any additional surface modification procedure, the fluorescence of rQDs equipped with Lcys was selectively quenched by TNT because electrons of the rQDs transferred to TNT molecules due to the formation of Meisenheimer complexes. Meanwhile, the embedded gQDs always remained constant. Upon exposure to increasing amounts of TNT, the fluorescence of rQDs could be gradually quenched and consequently the logarithm of the dual emission intensity ratios exhibited a good linear negative correlation with TNT concentration over a range of 10 nM-8 μM with a low detection limit of 3.3 nM. One can perform onsite visual determination of TNT with high resolution because the ratiometric fluorescence nanosensing system exhibited obvious fluorescence color changes. This sensing strategy has been successfully applied in real samples and already integrated in a filter paper-based assay, which enables potential fields use application featuring easy handling and cost-effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong; Shi, Hanchang; Long, Feng
2016-01-28
A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples.
Energy Technology Data Exchange (ETDEWEB)
Hua, Xin [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Zhou, Zhenxian [Nanjing Second Hospital, Nanjing 210083 (China); Yuan, Liang [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Liu, Songqin, E-mail: liusq@seu.edu.cn [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)
2013-07-25
Graphical abstract: -- Highlights: •Aptamer–cell affinity interaction was employed for selective collection and detection of MCF-7. •CdTe QDs and aptamer were coated on SiO{sub 2} NPs for bio-labeling. •Good sensitivity was achieved due to the signal amplification of SiO{sub 2} NPs. -- Abstract: A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer–cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO{sub 2} NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO{sub 2}), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL{sup −1} by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.
Lu, Shuaimin; Li, Guoliang; Lv, Zhengxian; Qiu, Nannan; Kong, Weiheng; Gong, Peiwei; Chen, Guang; Xia, Lian; Guo, Xiaoxi; You, Jinmao; Wu, Yongning
2016-11-15
Early detection and diagnosis have great practical significances for the effective prevention and treatment of cancer. In this study, we developed a novel, facile and ultra-sensitive fluorescence assay for the determination of tumor invasive biomarker β-glucuronidase (GLU) based on the inner-filter effect (IFE). The nitrogen-doped carbon quantum dots (N-CQDs) with green photoluminescence were employed as the fluorophore in IFE, and 4-nitrophenyl-β-D-glucuronide (PNPG) was used to act as GLU substrate, and GLU catalytic product (p-nitrophenol (PNP)) was capable of acting as the robust absorber in IFE to turn off the fluorescence of N-CQDs due to the complementary overlap between the absorption of PNP and the excitation of N-CQDs. Thus, signal of GLU activity could be recorded by the fluorescence intensity of N-CQDs. Unlike other fluorescence sensing mechanism such as fluorescence resonance energy transfer (FRET) or photoinduced electron transfer (PET), IFE has no requirement for electron or energy transfer process or any chemical modification of fluorophore, which makes our assay more flexible and simple. The proposed method exhibited a good linear relationship from 1UL(-1) to 60UL(-1) (R(2)=0.9967) with a low detection limit of 0.3UL(-1). This method was also successfully applied to the analysis of serum samples and the inhibitor screening from natural product. The developed sensor platform was proven to be reliable, facile, sensitive, and selective, making it promising as a candidate for GLU activity detection in clinic tumor diagnose and anti-tumor drug screening.
He, Shengfa; Li, Xin; Gao, Jinyan; Tong, Ping; Chen, Hongbing
2017-06-16
Bovine β-lactoglobulin (BLG) is the major allergen in cows' milk, and the specific epitope plays a key role in food allergy. Developing a method specifically bind to the IgE epitope is necessary for testing BLG and its allergenic residues. The monoclonal antibody (1G9) specific to the IgE linear epitope for BLG was identified as high affinity and specificity. Based on 1G9, a sensitive fluorescent sandwich enzyme-linked immunosorbent assay (sELISA) was successfully developed using catalase-mediated fluorescence quenching of thiolated CdTe quantum dots in the presence of hydrogen peroxide as fluorescent signal output. The fluorescent sELISA showed high sensitivity and specificity, the limit of detection was 0.49 ng mL(-1) , which was 16-fold lower than horseradish peroxidase (HRP)-based sELISA. The linear range for BLG detection were 125-4000 ng mL(-1) (r = 0.9939) and 0.48-62.5 ng mL(-1) (r = 0.9919). The recoveries and coefficients of variation were 94.25-109.83% and 4.38-20.29%, respectively. Allergenic residues were also detected in hydrolysed infant formulas. The results of fluorescent sELISA showed good performance as HRP-based sELISA and commercial sELISA kit. This proposed fluorescent sELISA could be employed to detect BLG and its allergenic residues in food with highly sensitivity, reliability, and recovery. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Energy Technology Data Exchange (ETDEWEB)
Huang Donghai; Su Ling; Peng Xianghong; Zhang Hongzheng; Khuri, Fadlo R; Shin, Dong M; Chen Zhuo [Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA (United States)], E-mail: gzchen@emory.edu
2009-06-03
Nanoparticle quantum dots (QDs) provide sharper and more photostable fluorescent signals than organic dyes, allowing quantification of multiple biomarkers simultaneously. In this study, we quantified the expression of epidermal growth factor receptor (EGFR) and E-cadherin (E-cad) in the same cells simultaneously by using secondary antibody-conjugated QDs with two different emission wavelengths (QD605 and QD565) and compared the cellular distribution of EGFR and E-cad between EGFR-tyrosine kinase inhibitor (TKI)-insensitive and -sensitive lung and head and neck cancer cell lines. Relocalization of EGFR and E-cad upon treatment with the EGFR-TKI erlotinib in the presence of EGF was visualized and analyzed quantitatively. Our results showed that QD-immunocytochemistry (ICC)-based technology can not only quantify basal levels of multiple biomarkers but also track the localization of the biomarkers upon biostimulation. With this new technology we found that in EGFR-TKI-insensitive cells, EGFR and E-cad were located mainly in the cytoplasm; while in sensitive cells, they were found mainly on the cell membrane. After induction with EGF, both EGFR and E-cad internalized to the cytoplasm, but the internalization capability in sensitive cells was greater than that in insensitive cells. Quantification also showed that inhibition of EGF-induced EGFR and E-cad internalization by erlotinib in the sensitive cells was stronger than that in the insensitive cells. These studies demonstrate substantial differences between EGFR-TKI-insensitive and -sensitive cancer cells in EGFR and E-cad expression and localization both at the basal level and in response to EGF and erlotinib. QD-based analysis facilitates the understanding of the features of EGFR-TKI-insensitive versus -sensitive cancer cells and may be used in the prediction of patient response to EGFR-targeted therapy.
Genetic Synthesis of New Reversible/Quantum Ternary Comparator
Directory of Open Access Journals (Sweden)
DEIBUK, V.
2015-08-01
Full Text Available Methods of quantum/reversible logic synthesis are based on the use of the binary nature of quantum computing. However, multiple-valued logic is a promising choice for future quantum computer technology due to a number of advantages over binary circuits. In this paper we have developed a synthesis of ternary reversible circuits based on Muthukrishnan-Stroud gates using a genetic algorithm. The method of coding chromosome is presented, and well-grounded choice of algorithm parameters allowed obtaining better circuit schemes of one- and n-qutrit ternary comparators compared with other methods. These parameters are quantum cost of received reversible devices, delay time and number of constant input (ancilla lines. Proposed implementation of the genetic algorithm has led to reducing of the device delay time and the number of ancilla qutrits to 1 and 2n-1 for one- and n-qutrits full comparators, respectively. For designing of n-qutrit comparator we have introduced a complementary device which compares output functions of 1-qutrit comparators.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong [School of Environment and Natural Resources, Renmin University of China, Beijing (China); Shi, Hanchang [School of Environment, Tsinghua University, Beijing (China); Long, Feng, E-mail: longf04@ruc.edu.cn [School of Environment and Natural Resources, Renmin University of China, Beijing (China)
2016-01-28
A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples
Directory of Open Access Journals (Sweden)
Jing Ping Yuan
Full Text Available As a marker for tumor cell proliferation, Ki67 has important impacts on breast cancer (BC prognosis. Although immunohistochemical staining is the current standard method, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study was to develop a fluorescent spectrum-based quantitative analysis of Ki67 expression by quantum-dots (QDs multiple imaging technique.A QDs-based in situ multiple fluorescent imaging method was developed, which stained nuclear Ki67 as red signal and cytoplasmic cytokeratin (CK as green signal. Both Ki67 and CK signals were automatically separated and quantified by professional spectrum analysis software. This technique was applied to tissue microarrays from 240 BC patients. Both Ki67 and CK values, and Ki67/CK ratio were obtained for each patient, and their prognostic value on 5-year disease free survival was assessed.This method simultaneously stains nuclear Ki67 and cytoplasmic CK with clear signal contrast, making it easy for signal separation and quantification. The total fluorescent signal intensities of both Ki67 sum and CK sum were obtained, and Ki67/CK ratio calculated. Ki67 sum and Ki67/CK ratio were each attributed into two grades by X-tile software based on the best P value principle. Multivariate analysis showed Ki67 grade (P = 0.047 and Ki67/CK grade (P = 0.004 were independent prognostic factors. Furthermore, area under curve (AUC of ROC analysis for Ki67/CK grade (AUC: 0.683, 95%CI: 0.613-0.752 was higher than Ki67 grade (AUC: 0.665, 95%CI: 0.596-0.734 and HER-2 gene (AUC: 0.586, 95%CI: 0.510-0.661, but lower than N stage (AUC: 0.760, 95%CI: 0.696-0.823 and histological grade (AUC: 0.756, 95%CI: 0.692-0.820 on predicting the risk for recurrence.A QDs-based quantitative and in situ multiple imaging on Ki67 and CK was developed to improve Ki67 assessment in BC, and Ki67/CK grade had better performance than Ki67 grade in predicting prognosis.
Energy Technology Data Exchange (ETDEWEB)
Hua, Mengjuan [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Chengquan [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Qian, Jing, E-mail: qianj@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)
2015-08-12
We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg{sup 2+}. The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg{sup 2+}, the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg{sup 2+} in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg{sup 2+} contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg{sup 2+} quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg{sup 2+} detection. • The Hg{sup 2+} content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg{sup 2+} detection. • The ratiometric probe is of good simplicity, low toxicity, and
Exploring Quantum Dot Cellular Automata Based Reversible Circuit
Directory of Open Access Journals (Sweden)
Saroj Kumar Chandra
2012-03-01
Full Text Available Quantum-dot Cellular Automata (QCA is a new technology for development of logic circuits based on nanotechnology, and it is an one of the alternative for designing high performance computing over existing CMOS technology. The basic logic in QCA does not use voltage level for logic representation rather it represent binary state by polarization of electrons on the Quantum Cell which is basic building block of QCA. Extensive work is going on QCA for circuit design due to low power consumption and regularity in the circuit.. Clocking is used in QCA circuit to synchronize and control the information flow and to provide the power to run the circuit. Reversible logic design is a well-known paradigm in digital computation, and if circuit developed is reversible then it consumes very low power . Here, in this paper we are presenting a Reversible Universal Gate (RUG based on Quantum-dot Cellular Automata (QCA. The RUG implemented by QCA Designer tool and also its behavior is simulated by it.
Exploring Quantum Dot Cellular Automata Based Reversible Circuit
Directory of Open Access Journals (Sweden)
Saroj Kumar Chandra
2012-03-01
Full Text Available Quantum-dot Cellular Automata (QCA is a new technology for development of logic circuits based on nanotechnology, and it is an one of the alternative for designing high performance computing over existing CMOS technology. The basic logic in QCA does not use voltage level for logic representation rather it represent binary state by polarization of electrons on the Quantum Cell which is basic building block of QCA. Extensive work is going on QCA for circuit design due to low power consumption and regularity in the circuit.. Clocking is used in QCA circuit to synchronize and control the information flow and to provide the power to run the circuit. Reversible logic design is a well-known paradigm in digital computation, and if circuit developed is reversible then it consumes very low power. Here, in this paper we are presenting a Reversible Universal Gate (RUG based on Quantum-dot Cellular Automata (QCA. The RUG implemented by QCA Designer tool and also its behavior is simulated by it.
nLukac, Maarti; Kameyama, Michitaka
2011-01-01
It has been experimentally proven that realizing universal quantum gates using higher-radices logic is practically and technologically possible. We developed a Parallel Genetic Algorithm that synthesizes Boolean reversible circuits realized with a variety of quantum gates on qudits with various radices. In order to allow synthesizing circuits of medium sizes in the higher radix quantum space we performed the experiments using a GPU accelerated Genetic Algorithm. Using the accelerated GA we compare heuristic improvements to the mutation process based on cost minimization, on the adaptive cost of the primitives and improvements due to Baldwinian vs. Lamarckian GA. We also describe various fitness function formulations that allowed for various realizations of well known universal Boolean reversible or quantum-probabilistic circuits.
Baianu,I C
2004-01-01
The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In previous publications (Baianu,1971a, b) the formal concept of quantum automaton and quantum computation, respectively, were introduced and their possible implications for genetic processes and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b; 1977; 1987; 2004; Baianu et al, 2004). The notions of topological semigroup, quantum automaton, or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebra...
Information-theoretic approach to quantum error correction and reversible measurement
Nielsen, M A; Schumacher, B; Barnum, H N; Caves, Carlton M.; Schumacher, Benjamin; Barnum, Howard
1997-01-01
Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive information-theoretic conditions and equivalent algebraic conditions that are necessary and sufficient for a general quantum operation to be reversible. We analyze the thermodynamic cost of error correction and show that error correction can be regarded as a kind of ``Maxwell demon,'' for which there is an entropy cost associated with information obtained from measurements performed during error correction. A prescription for thermodynamically efficient error correction is given.
Radix-independent, efficient arrays for multi-level n-qudit quantum and reversible computation
Mohammadi, Majid
2015-08-01
Multiple-valued quantum logic allows the designers to reduce the number of cells while obtaining more functionality in the quantum circuits. Large r-valued reversible or quantum gates ( r stands for radix and is more than 2) cannot be directly realized in the current quantum technology. Therefore, we are interested in designing the large reversible and quantum controlled gates using the arrays of one-quantum digit (qudit) or two-qudit gates. In our previous work, we proposed quantum arrays to implement the r-valued quantum circuits. In this paper, we propose novel efficient structures and arrays, for r-valued quantum logic gates. The quantum costs of the developed quantum arrays are independent of the radix of calculations in the quantum circuit.
Reverse reconciliation for continuous variable quantum key distribution
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
An efficient and practical post-processing technique based on reverse reconciliation for continuous variable quantum key distribution is proposed and simulated with low-density parity check (LDPC) codes. MultiLevel Coding/ MultiStage Decoding, which fully utilizes optimization technique such as vector quantization and iterative decoding and the optimal channel coding most close to the Shannon limit, was used to realize efficient reverse reconciliation algorithm. Simulation results showed that the proposed method can improve the secure key distribution rate to 2.2 kb/s and the coding efficiency to 0.89 over 20 km in single-mode optical fiber. Moreover, there still is room for much improvement.
Discrimination of mixed quantum states. Reversible maps and unambiguous strategies
Energy Technology Data Exchange (ETDEWEB)
Kleinmann, Matthias
2008-06-30
The discrimination of two mixed quantum states is a fundamental task in quantum state estimation and quantum information theory. In quantum state discrimination a quantum system is assumed to be in one of two possible - in general mixed - non-orthogonal quantum states. The discrimination then consists of a measurement strategy that allows to decide in which state the system was before the measurement. In unambiguous state discrimination the aim is to make this decision without errors, but it is allowed to give an inconclusive answer. Especially interesting are measurement strategies that minimize the probability of an inconclusive answer. A starting point for the analysis of this optimization problem was a result by Eldar et al. [Phys. Rev. A 69, 062318 (2004)], which provides non-operational necessary and sufficient conditions for a given measurement strategy to be optimal. These conditions are reconsidered and simplified in such a way that they become operational. The simplified conditions are the basis for further central results: It is shown that the optimal measurement strategy is unique, a statement that is e.g. of importance for the complexity analysis of optimal measurement devices. The optimal measurement strategy is derived for the case, where one of the possible input states has at most rank two, which was an open problem for many years. Furthermore, using the optimality criterion it is shown that there always exists a threshold probability for each state, such that below this probability it is optimal to exclude this state from the discrimination strategy. If the two states subject to discrimination can be brought to a diagonal structure with (2 x 2)-dimensional blocks, then the unambiguous discrimination of these states can be reduced to the unambiguous discrimination of pure states. A criterion is presented that allows to identify the presence of such a structure for two self-adjoint operators. This criterion consists of the evaluation of three
Time-reversal-breaking induced quantum spin Hall effect
Luo, Wei; Shao, D. X.; Deng, Ming-Xun; Deng, W. Y.; Sheng, L.
2017-01-01
We show that quantum spin Hall (QSH) effect does not occur in a square lattice model due to cancellation of the intrinsic spin-orbit coupling coming from different hopping paths. However, we show that QSH effect can be induced by the presence of staggered magnetic fluxes alternating directions square by square. When the resulting Peierls phase takes a special value , the system has a composite symmetry ΘΡ− with Θ the time-reversal operator and Ρ− transforming the Peierls phase from γ to γ − , which protects the gapless edge states. Once the phase deviates from , the edge states open a gap, as the composite symmetry is broken. We further investigate the effect of a Zeeman field on the QSH state, and find that the edge states remain gapless for . This indicates that the QSH effect is immune to the magnetic perturbation. PMID:28220858
Efficient Design of Reversible Multiplexers with Low Quantum Cost
Directory of Open Access Journals (Sweden)
Ashima Malhotra
2014-07-01
Full Text Available Multiplexing is the generic term used to designate the operation of sending one or more analogue or digital signals over a common transmission line at dissimilar times or speeds and as such, the scheme we use to do just that is called a Multiplexer. In digital electronics, multiplexers are similarly known as data selectors as they can “select” each input line, are made from individual Analogue Switches encased in a single IC package as conflicting to the “mechanical” type selectors such as standard conservative switches and relays. In today era, reversibility has become essential part of digital world to make digital circuits more efficient. In this paper, we have proposed a new method to reduce quantum cost and power for various multiplexers. The results are simulated in Xilinx by using VHDL language.
Castagnoli, G C
1999-01-01
In former work, quantum computation has been shown to be a problem solving process essentially affected by both the reversible dynamics leading to the state before measurement, and the logical-mathematical constraints introduced by quantum measurement (in particular, the constraint that there is only one measurement outcome). This dual influence, originated by independent initial and final conditions, justifies the quantum computation speed-up and is not representable inside dynamics, namely as a one-way propagation. In this work, we reformulate von Neumann's model of quantum measurement at the light of above findings. We embed it in a broader representation based on the quantum logic gate formalism and capable of describing the interplay between dynamical and non-dynamical constraints. The two steps of the original model, namely (1) dynamically reaching a complete entanglement between pointer and quantum object and (2) enforcing the one-outcome-constraint, are unified and reversed. By representing step (2) r...
Designing reversible arithmetic, logic circuit to implement micro-operation in quantum computation
Kalita, Gunajit; Saikia, Navajit
2016-10-01
The futuristic computing is desired to be more power full with low-power consumption. That is why quantum computing has been a key area of research for quite some time and is getting more and more attention. Quantum logic being reversible, a significant amount of contributions has been reported on reversible logic in recent times. Reversible circuits are essential parts of quantum computers, and hence their designs are of great importance. In this paper, designs of reversible circuits are proposed using a recently proposed reversible gate for arithmetic and logic operations to implement various micro-operations (simple add and subtract, add with carry, subtract with borrow, transfer, incrementing, decrementing etc., and logic operations like XOR, XNOR, complementing etc.) in a reversible computer like quantum computer. The two new reversible designs proposed here for half adder and full adders are also used in the presented reversible circuits to implement various microoperations. The quantum costs of these designs are comparable. Many of the implemented micro-operations are not seen in previous literatures. The performances of the proposed circuits are compared with existing designs wherever available.
Energy Technology Data Exchange (ETDEWEB)
Goderis, D.; Maes, C. (Liege Univ. (BE))
1991-01-01
The relation between certain quantum systems and classical stochastic processes - e.g. in the method of functional integration - is formulated on the level of the dynamics for both quantum and classical dissipative time evolutions. An essentially unique quantum dissipation is constructed from a classical interacting spin system, preserving the notion of detailed balance. Translation invariant and reversible infinite volume quantum dynamics are found in this way and the Hamiltonian is recovered from the action of the generator in the GNS-representation of the corresponding groundstate for which a Feynmann-Kac formula holds. Local reversibility of quantum dissipations is shown to give rise to an almost classical characterization of the corresponding quantum states.
Ham, Byoung S
2008-09-01
A method of reversible quantum optical data storage is presented using resonant Raman field excited spin coherence, where the spin coherence is stored in an inhomogeneously broadened spin ensemble. Unlike the photon echo method, in the present technique, a 2pi Raman optical rephasing pulse area is used and multimode (parallel) optical channels are available in which the multimode access gives a great benefit to quantum information processors such as quantum repeaters.
Reverse reconciliation protocols for quantum cryptography with continuous variables
Grosshans, F; Grosshans, Fr\\'ed\\'eric; Grangier, Philippe
2002-01-01
We introduce new quantum key distribution protocols using quantum continuous variables, that are secure against individual attacks for any transmission of the optical line between Alice and Bob. In particular, it is not required that this transmission is larger than 50 %. Though squeezing or entanglement may be helpful, they are not required, and there is no need for quantum memories or entanglement purification. These protocols can thus be implemented using coherent states and homodyne detection, and they may be more efficient than usual protocols using quantum discrete variables.
The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics
Holster, A. T.
2003-10-01
Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe.
Magnetic reversal dynamics of a quantum system on a picosecond timescale.
Klenov, Nikolay V; Kuznetsov, Alexey V; Soloviev, Igor I; Bakurskiy, Sergey V; Tikhonova, Olga V
2015-01-01
We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior.
Time-reversal symmetry breaking in quantum billiards
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Florian
2009-01-26
The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally
Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E
2012-06-18
In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.
Schulz, Wolfgang-Michael; Thomay, Tim; Eichfelder, Marcus; Bommer, Moritz; Wiesner, Michael; Rossbach, Robert; Jetter, Michael; Bratschitsch, Rudolf; Leitenstorfer, Alfred; Michler, Peter
2010-06-07
Using focused ion beam etching techniques, micropillar cavities were fabricated from a high reflective AlAs/AlGaAs distributed Bragg reflector planar cavity containing self-assembled InP quantum dots in (Al(0.20)Ga(0.80))(0.51)In(0.49)P barrier layers. The mode spectra of pillars with different diameters were investigated using micro-photoluminescence, showing excellent agreement with theory. Quality factors of the pillar cavities up to 3650 were observed. Furthermore, for a microcavity pillar with 1.26 mum diameter, single-photon emission is demonstrated by performing photon correlation measurements under pulsed excitation.
Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata.
Bahar, Ali Newaz; Rahman, Mohammad Maksudur; Nahid, Nur Mohammad; Hassan, Md Kamrul
2017-02-01
This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.
Uzdin, Raam
2016-08-01
Collective behavior, where a set of elements interact and generate effects that are beyond the reach of the individual noninteracting elements, is always of great interest in physics. Quantum collective effects that have no classical analog are even more intriguing. In this work, we show how to construct collective quantum heat machines and explore their performance boosts with respect to regular machines. Without interactions between the machines, the individual units operate in a stochastic, nonquantum manner. The construction of the collective machine becomes possible by introducing two simple quantum operations: coherence extraction and coherence injection. Together, these operations can harvest coherence from one engine and use it to boost the performance of a slightly different engine. For weakly driven engines, we show that the collective work output scales quadratically with the number of engines rather than linearly. Eventually, the boost saturates and then becomes linear. Nevertheless, even in saturation, work is still significantly boosted compared to individual operation. To study the reversibility of the collective machine, we introduce the "entropy-pollution" measure. It is shown that there is a regime where the collective machine is N times more reversible while producing N times more work, compared to the individual operation of N units. Moreover, the collective machine can even be more reversible than the most reversible unit in the collective. This high level of reversibility becomes possible due to a special symbiotic mechanism between engine pairs.
Orlova, A O; Gromova, Yu A; Maslov, V G; Andreeva, O V; Baranov, A V; Fedorov, A V; Prudnikau, A V; Artemyev, M V; Berwick, K
2013-08-23
The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.
Orlova, A. O.; Gromova, Yu A.; Maslov, V. G.; Andreeva, O. V.; Baranov, A. V.; Fedorov, A. V.; Prudnikau, A. V.; Artemyev, M. V.; Berwick, K.
2013-08-01
The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A.
2016-08-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.
A Novel Design of Half Subtractor using Reversible Feynman Gate in Quantum Dot cellular Automata
Directory of Open Access Journals (Sweden)
Rubina Akter
2014-12-01
Full Text Available Quantum Dot cellular Automata (QCA is an emerging, promising alternative to CMOS technology that performs its task by encoding binary information on electronic charge configuration of a cell. All circuit based on QCA has an advantages of high speed, high parallel processing, high integrityand low power consumption. Reversible logic gates are the leading part in Quantum Dot cellular Automata. Reversible logic gates have an extensive feature that does not lose information. In this paper, we present a novel architecture of half subtractor gate design by reversible Feynman gate. This circuit is designedbased on QCA logic gates such as QCA majority voter gate, majority AND gate, majority OR gate and inverter gate. This circuit will provide an effective working efficiency on computational units of the digital circuit system.
Institute of Scientific and Technical Information of China (English)
Bai Xu-Fang; Chi Feng; Zheng Jun; Li Yi-Nan
2012-01-01
We propose to generate and reverse the spin accumulation in a quantum dot (QD) by using the temperature difference between the two ferromagnetic leads connected to the dot.The electrons are driven purely by the temperature gradient in the absence of an electric bias and a magnetic field.In the Coulomb blockade regime,we find two ways to reverse the spin accumulation.One is by adjusting the QD energy level with a fixed temperature gradient,and the other is by reversing the temperature gradient direction for a fixed value of the dot level.The spin accumulation in the QD can be enhanced by the magnitudes of both the leads' spin polarization and the asymmetry of the dot-lead coupling strengths.The present device is quite simple,and the obtained results may have practical usage in spintronics or quantum information processing.
Reversible Carriers Tunnelling in Asymmetric Coupled InGaN/GaN Quantum Wells
Institute of Scientific and Technical Information of China (English)
PEI Xiao-Jiang; GUO Li-Wei; WANG Yang; WANG Xiao-Hui; JIA Hai-Qiang; CHEN Hong; ZHOU Jun-Ming; WANG Li; Tamai N
2008-01-01
Temperature-dependent photoluminescence (PL) and time resolved photoluminescence (TRPL) are performed to study the PL characteristics and carrier transfer mechanism in asymmetric coupled InGaN/GaN multiple quantum wells (AS-QWs). Our results reveal that abnormal carrier tunnelling from the wide quantum well (WQW) to the narrow quantum well (NQW) is observed at temperature higher than about lOOK, while a normal carrier tunnelling from the NQW to the WQW is observed at temperature lower than 100 K. The reversible carrier tunnelling between the two QWs makes it possible to explore new types of temperature sensitive emission devices.It is shown that PL internal quantum efficiency (IQE) of the NQW is enhanced to about 46% due to the assistant of the abnormal carrier tunnelling.
Zheng, Hong-Mei; Chen, Chuang; Wu, Xin-Hong; Chen, Jian; Sun, Si; Sun, Jin-Zhong; Wang, Ming-Wei; Sun, Sheng-Rong
2016-02-01
Triple-negative breast cancer (TNBC) is a unique breast cancer subtype with high heterogeneity and poor prognosis. Currently, the treatment effect of TNBC has reached a bottleneck, rendering new breakthroughs difficult. Cancer invasion is not an entirely cell-autonomous process, requiring the cells to transmigrate across the surrounding extracellular matrix (ECM) barriers. Developing a new system that integrates key constituents in the tumor microenvironment with pivotal cancer cell molecules is essential for the in-depth investigation of the mechanism of invasion in TNBC. We describe a computer-aided algorithm developed using quantum dot (QD)-based multiplex molecular imaging of TNBC tissues. We performed in situ simultaneous imaging and quantitative detection of epidermal growth factor receptor (EGFR), expressed in the TNBC cell membrane, and collagen IV, the major ECM constituent; calculated the EGFR/collagen IV ratio; and investigated the prognostic value of the EGFR/collagen IV ratio in TNBC. We simultaneously imaged and quantitatively detected EGFR and collagen IV in the TNBC samples. In all patients, quantitative determination showed a statistically significant negative correlation between EGFR and collagen IV. The 5-year disease-free survival (5-DFS) of the high and low EGFR/collagen IV ratio subgroups was significantly different. The EGFR/collagen IV ratio was predictive and was an independent prognostic indicator in TNBC. Compared with EGFR expression, the EGFR/collagen IV ratio had a greater prognostic value for 5-DFS. Our findings open up a new avenue for predicting the clinical outcome in TNBC from the perspective of integrating molecules expressed in both cancer cells and the ECM.
Institute of Scientific and Technical Information of China (English)
刘星; 罗阳
2014-01-01
Quantum dots( QDs) as a new type of nanostructured luminescent materials have been widely used in biology, materials science, and physical optics. QD-based biosensors can rapidly and accurately detect biological macromolecules or inorganic molecules both in vivo and in vitro. The surface of QDs, prior to their biological detection applications, needed to be modified to enhance their fluorescence properties and lower their biological toxicity. Currently, the surface modification technologies mainly include polymer modification, thiol compounds modification, mercapto propionic acid compounds modification and organic groups modification. Various biosensors can be developed by adopting different modification techniques, which have been adopted to locate and track a variety of biological molecules in vivo. Although a large number of literatures have reported the biological applications of QD-based biosensors, rare systematic reviews of surface modification technologies on QDs have been witnessed. In this paper, we reviewed the surface modification technologies of QDs in biosensors and their medical applications.%量子点作为一种新型的纳米发光材料已被广泛应用于生物学、材料学以及物理光学领域。基于量子点的荧光标记技术可以用于构建生物传感器，从而实现生物大分子或者是生物体内无机分子的快速、准确检测。量子点的表面修饰对于提高其荧光特性和降低生物毒性具有重要作用。现有的表面修饰技术主要分为多基配体表面修饰技术、双亲性分子表面修饰技术、树枝状分子表面修饰技术、巯基偶联表面修饰技术以及空穴-链式表面修饰技术等几大类。上述修饰技术各具优缺点，可用于组建不同类型的生物传感器，实现各种生物分子的离体检测与在体示踪但各具优缺点。本文就量子点生物传感器中的最新表面修饰技术及其医学应用进展作一综述。
A Novel Quantum Cost Efficient Reversible Full Adder Gate in Nanotechnology
Islam, Md Saiful
2010-01-01
Reversible logic has become one of the promising research directions in low power dissipating circuit design in the past few years and has found its applications in low power CMOS design, cryptography, optical information processing and nanotechnology. This paper presents a novel and quantum cost efficient reversible full adder gate in nanotechnology. This gate can work singly as a reversible full adder unit and requires only one clock cycle. The proposed gate is a universal gate in the sense that it can be used to synthesize any arbitrary Boolean functions. It has been demonstrated that the hardware complexity offered by the proposed gate is less than the existing counterparts. The proposed reversible full adder gate also adheres to the theoretical minimum established by the researchers.
Xiao, Xing; Yao, Yao; Xie, Ying-Mao; Wang, Xing-Hua; Li, Yan-Ling
2016-09-01
Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.
Reverse the force direction at long distance by quantum corrections with a mass
Chen, X S
2005-01-01
We demonstrate that quantum corrections can possibly reverse the sign of the one-particle-exchange potential (OPEP) at long distance if (and under general assumptions, only if) the exchanged particle has a mass $m$, either intrinsic or effective. Such phenomenon requires a running coupling constant $\\alpha(q^2)$ satisfying $\\alpha (-m^2)<0$ in the off-shell renormalization scheme. Reversal of the OPEP sign at long distance (and hence attraction transits to repulsion, or vice versa) may have important implications for gravity and cosmic acceleration, particle and nuclear physics, and also condensed matter properties such as superconductivity.
Design of a Ternary Reversible/Quantum Adder using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Vitaly G. Deibuk
2015-08-01
Full Text Available —Typical methods of quantum/reversible synthesis are based on using the binary character of quantum computing. However, multi-valued logic is a promising choice for future computer technologies, given a set of advantages when comparing to binary circuits. In this work, we have developed a genetic algorithm-based synthesis of ternary reversible circuits using Muthukrishnan-Stroud gates. The method for chromosomes coding that we present, as well as a judicious choice of algorithm parameters, allowed obtaining circuits for half-adder and full adder which are better than other published methods in terms of cost, delay times and amount of input ancillary bits. A structure of the circuits is analyzed in details, based on their decomposition.
Directory of Open Access Journals (Sweden)
Alexis De Vos
2011-06-01
Full Text Available Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e., the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e., a circuit transforming only one (qubit, the transformation being controlled by the other w−1 (qubits. We explain why the former circuit can be decomposed into 2w − 1 control gates, whereas the latter circuit needs 2w − 1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w − 1 or into 2w − 1 control gates.
Experimental Test of the State Estimation-Reversal Tradeoff Relation in General Quantum Measurements
Directory of Open Access Journals (Sweden)
Geng Chen
2014-06-01
Full Text Available When a measurement has limited strength, only partial information, regarding the initial state, is extracted, and, correspondingly, there is a probability to reverse its effect on the system and retrieve the original state. Recently, a clear and direct quantitative description of this complementary relationship, in terms of a tradeoff relation, was developed by Y. K. Cheong and S. W. Lee. [Phys. Rev. Lett. 109, 150402 (2012]. Here, this tradeoff relation is experimentally verified using polarization-encoded single photons from a quantum dot. Measurement operators representing a complete range, from not affecting the system to a projection to a single polarization state, are realized. In addition, for each measurement operator, an optimal reversal operator is also implemented. The upper bound of the tradeoff relation is mapped to experimental parameters representing the measurement strength. Our results complement the theoretical work and provide a hands-on characterization of general quantum measurements.
Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata
Directory of Open Access Journals (Sweden)
Ali Newaz Bahar
2017-02-01
Full Text Available This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.
Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry
Energy Technology Data Exchange (ETDEWEB)
Novaes, Marcel, E-mail: marcel.novaes@gmail.com
2015-10-15
We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.
Zhang, Yanliang; Fang, Maofa; Kang, Guodong; Zhou, Qingping
2015-08-01
We have investigated the dynamic features of the quantum-memory-assisted entropic uncertainty relation (QMA EUR) in the amplitude damping (AD) channel. The initial state of qubit system and quantum memory system shared between Alice and Bob is assumed as extended by Werner-like (EWL) state. To reduce the amount of entropic uncertainty of Pauli observables in this noisy channel, we presented a reduction scheme by means of weak measurements (WMs) and weak measurement reversals (WMRs) before and after the entangled system subjecting to the noisy channel. It is shown that the prior WM and poster WMR can effectively reduce quantity of entropic uncertainty, but the poster WM operation cannot played a positive role on reduction of quantity of entropic uncertainty. We hope that our proposal could be verified experimentally and might possibly have future applications in quantum information processing.
Quantum-dot-based integrated non-linear sources
DEFF Research Database (Denmark)
Bernard, Alice; Mariani, Silvia; Andronico, Alessio
2015-01-01
The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is gra...
Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts
Hauptmann, J. R.; Paaske, J.; Lindelof, P. E.
2008-05-01
Manipulation of the spin states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin filters, spin transistors and single spin memories as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the quantum dot becomes spin polarized by the local exchange field. Here, we report on the experimental realization of this tunnelling-induced spin splitting in a carbon-nanotube quantum dot coupled to ferromagnetic nickel electrodes with a strong tunnel coupling ensuring a sizeable exchange field. As charge transport in this regime is dominated by the Kondo effect, we can use this sharp many-body resonance to read off the local spin polarization from the measured bias spectroscopy. We demonstrate that the exchange field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo resonance, and we demonstrate that the exchange field itself, and hence the local spin polarization, can be tuned and reversed merely by tuning the gate voltage.
Polycation-Capped CdS Quantum Dots Synthesized in Reverse Microemulsions
Directory of Open Access Journals (Sweden)
Karina Lemke
2012-01-01
Full Text Available This paper is focused on the formation and recovery of cadmium sulfide (CdS nanoparticles in two different types of polycation-modified reverse microemulsions using low molecular weight poly(diallyldimethylammonium chloride (PDADMAC and poly(ethyleneimine (PEI. Both polymers were incorporated in a quaternary w/o microemulsion consisting of water, toluene-pentanol (1 : 1, and sodium dodecyl sulfate (SDS, as well as in a ternary w/o microemulsion consisting of water, heptanol, and 3-(N,N-dimethyl-dodecylammonio-propanesulfonate (SB. UV-vis and fluorescence measurements in the microemulsion illustrate the capping effect of the polycations on the formation of the CdS quantum dots. The nanoparticles are redispersed in water and characterized by using UV-vis and fluorescence spectroscopy, in combination with dynamic light scattering. From the quaternary microemulsion, only nanoparticle aggregates of about 100 nm can be redispersed, but, from the ternary microemulsion, well-stabilized polycation-capped CdS quantum dots can be obtained. The results show that the electrostatic interactions between the polycation and the surfactant are of high relevance especially in the solvent evaporation and redispersion process. That means only that in the case of moderate polycation-surfactant interactions a redispersion of the polymer-capped CdS quantum dots without problems of aggregation is possible.
Directory of Open Access Journals (Sweden)
Ahmed Moustafa
2015-01-01
Full Text Available Quantum-dot cellular automata (QCA are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs.
Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F
2015-01-01
Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs.
Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators.
Chang, Cui-Zu; Li, Mingda
2016-03-31
The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity σ(yx) = e2/h without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.
Modulation Response of Semiconductor Quantum Dot Nanocavity Lasers
DEFF Research Database (Denmark)
Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper
2011-01-01
The modulation response of quantum-dot based nanocavity devices is investigated using a semiconductor theory. We show that high modulation bandwidth is achieved even in the presence of inhomogeneous broadening of the quantum dot ensemble.......The modulation response of quantum-dot based nanocavity devices is investigated using a semiconductor theory. We show that high modulation bandwidth is achieved even in the presence of inhomogeneous broadening of the quantum dot ensemble....
Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield
Chaturvedi, Sumit K.; Zhao, Huaying; Schuck, Peter
2017-04-01
Sedimentation velocity analytical ultracentrifugation with fluorescence detection has emerged as a powerful method for the study of interacting systems of macromolecules. It combines picomolar sensitivity with high hydrodynamic resolution, and can be carried out with photoswitchable fluorophores for multi-component discrimination, to determine the stoichiometry, affinity, and shape of macromolecular complexes with dissociation equilibrium constants from picomolar to micromolar. A popular approach for data interpretation is the determination of the binding affinity by isotherms of weight-average sedimentation coefficients, sw. A prevailing dogma in sedimentation analysis is that the weight-average sedimentation coefficient from the transport method corresponds to the signal- and population-weighted average of all species. We show that this does not always hold true for systems that exhibit significant signal changes with complex formation - properties that may be readily encountered in practice, e.g., from a change in fluorescence quantum yield. Coupled transport in the reaction boundary of rapidly reversible systems can make significant contributions to the observed migration in a way that cannot be accounted for in the standard population-based average. Effective particle theory provides a simple physical picture for the reaction-coupled migration process. On this basis we develop a more general binding model that converges to the well-known form of sw with constant signals, but can account simultaneously for hydrodynamic co-transport in the presence of changes in fluorescence quantum yield. We believe this will be useful when studying interacting systems exhibiting fluorescence quenching, enhancement or Forster resonance energy transfer with transport methods.
Institute of Scientific and Technical Information of China (English)
Jadav Chandra DAS; Debashis DE
2016-01-01
Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is pro-posed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility of QCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless nanocommunication architecture such as nano-transmitters and nano-receivers.
Ge Quantum Dot Infrared Imaging Camera Project
National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...
Carbon Dot Based Sensing of Dopamine and Ascorbic Acid
Directory of Open Access Journals (Sweden)
Upama Baruah
2014-01-01
Full Text Available We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascorbic acid, respectively. The quenching constants determined from Stern-Volmer plot were determined to be 5 × 10−4 and 1 × 10−4 for dopamine and ascorbic acid, respectively. A probable mechanism of quenching has been discussed in the paper.
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics.
Veshtort, Mikhail; Griffin, Robert G
2011-10-07
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R(2)). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two (13)C nuclei and about ten (1)H nuclei from their nearest environment. Spin diffusion constants computed by this
Wu, Qi-Cheng; Huang, Bi-Hua; Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2017-10-01
We propose a method to design shortcuts to adiabaticity for implementing perfect quantum state engineering by the combination of the counterdiabatic driving and the reverse engineering technique. Based on the method, we can design simple schemes to realize the intended dynamics. For the sake of clearness, we apply this method to several examples including two-level, three-level and four-level system. We show that fast quantum state engineering can be realized by utilizing simply-designed auxiliary Hamiltonian. Furthermore, a suitable choice of the control parameters can eliminate the additional couplings in the introduced auxiliary Hamiltonian. Numerical simulation reveals that the constructed scheme is reliable and robust against various dissipation effects and the fluctuations of control parameters in current technology.
Ulanov, Alexander E; Fedorov, Ilya A; Sychev, Demid; Grangier, Philippe; Lvovsky, A I
2016-06-21
Highly entangled quantum states, shared by remote parties, are vital for quantum communications and metrology. Particularly promising are the N00N states-entangled N-photon wavepackets delocalized between two different locations-which outperform coherent states in measurement sensitivity. However, these states are notoriously vulnerable to losses, making them difficult to both share them between remote locations and recombine in order to exploit interference effects. Here we address this challenge by utilizing the reverse Hong-Ou-Mandel effect to prepare a high-fidelity two-photon N00N state shared between two parties connected by a lossy optical medium. We measure the prepared state by two-mode homodyne tomography, thereby demonstrating that the enhanced phase sensitivity can be exploited without recombining the two parts of the N00N state. Finally, we demonstrate the application of our method to remotely prepare superpositions of coherent states, known as Schrödinger's cat states.
Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong–Ou–Mandel effect
Ulanov, Alexander E.; Fedorov, Ilya A.; Sychev, Demid; Grangier, Philippe; Lvovsky, A. I.
2016-01-01
Highly entangled quantum states, shared by remote parties, are vital for quantum communications and metrology. Particularly promising are the N00N states—entangled N-photon wavepackets delocalized between two different locations—which outperform coherent states in measurement sensitivity. However, these states are notoriously vulnerable to losses, making them difficult to both share them between remote locations and recombine in order to exploit interference effects. Here we address this challenge by utilizing the reverse Hong–Ou–Mandel effect to prepare a high-fidelity two-photon N00N state shared between two parties connected by a lossy optical medium. We measure the prepared state by two-mode homodyne tomography, thereby demonstrating that the enhanced phase sensitivity can be exploited without recombining the two parts of the N00N state. Finally, we demonstrate the application of our method to remotely prepare superpositions of coherent states, known as Schrödinger's cat states. PMID:27324115
Optimal width of quantum well for reversed polarization blue InGaN light-emitting diodes
Directory of Open Access Journals (Sweden)
Junjie Kang
2013-07-01
Full Text Available The optical properties of reversed polarization (RP blue InGaN light-emitting diodes (LEDs under different quantum wells (QWs width are numerically studied. We compared the band diagram, electron and hole concentration, emission wavelength, radiation recombination, internal quantum efficiency (IQE, turn on voltage and light output power (LOP of these structures by numerical simulation. It found that QW width has a remarkable influence on the properties of RP blue InGaN LEDs. With the increase of QW width, the turn on voltage and radiation recombination rate decreases. It finds that the optimal width of QWs is about 3 nm at the current injection density of 15 A/cm2.
Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong-Ou-Mandel effect
Ulanov, Alexander E.; Fedorov, Ilya A.; Sychev, Demid; Grangier, Philippe; Lvovsky, A. I.
2016-06-01
Highly entangled quantum states, shared by remote parties, are vital for quantum communications and metrology. Particularly promising are the N00N states--entangled N-photon wavepackets delocalized between two different locations--which outperform coherent states in measurement sensitivity. However, these states are notoriously vulnerable to losses, making them difficult to both share them between remote locations and recombine in order to exploit interference effects. Here we address this challenge by utilizing the reverse Hong-Ou-Mandel effect to prepare a high-fidelity two-photon N00N state shared between two parties connected by a lossy optical medium. We measure the prepared state by two-mode homodyne tomography, thereby demonstrating that the enhanced phase sensitivity can be exploited without recombining the two parts of the N00N state. Finally, we demonstrate the application of our method to remotely prepare superpositions of coherent states, known as Schrödinger's cat states.
Li, Yan-Ling; Huang, Jinsong; Xu, Zhonghui; Xiao, Xing
2017-10-01
Taking the advantage of weak measurement and quantum measurement reversal, we propose a scheme to enhance the fidelity of transferring quantum state from one atom trapped in cavity to another distant one trapped in another cavity which is coupled by an optical fiber. It is turned out that the fidelity can be greatly improved even when the system is under serious dissipation. Moreover, the scheme works in both the strong-coupling and weak-coupling regimes. It is also robust to the ratio of the coupling constant between the atoms and the cavity modes to the coupling constant between the fiber and cavity modes. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.
Carbon dots based fluorescent sensor for sensitive determination of hydroquinone.
Ni, Pengjuan; Dai, Haichao; Li, Zhen; Sun, Yujing; Hu, Jingting; Jiang, Shu; Wang, Yilin; Li, Zhuang
2015-11-01
In this paper, a novel biosensor based on Carbon dots (C-dots) for sensitive detection of hydroquinone (H2Q) is reported. It is interesting to find that the fluorescence of the C-dots could be quenched by H2Q directly. The possible quenching mechanism is proposed, which shows that the quenching effect may be caused by the electron transfer from C-dots to oxidized H2Q-quinone. Based on the above principle, a novel C-dots based fluorescent probe has been successfully applied to detect H2Q. Under the optimal condition, detection limit down to 0.1 μM is obtained, which is far below U.S. Environmental Protection Agency estimated wastewater discharge limit of 0.5 mg/L. Moreover, the proposed method shows high selectivity for H2Q over a number of potential interfering species. Finally, several water samples spiked with H2Q are analyzed utilizing the sensing method with satisfactory recovery. The proposed method is simple with high sensitivity and excellent selectivity, which provides a new approach for the detection of various analytes that can be transformed into quinone.
García-Pablos, D.; García, N.; Serena, P.A.; Raedt, H. De
1996-01-01
We investigate the reversal of magnetization and the coherence of tunneling when an external magnetic field is rotated instantaneously in systems of a few (N) spin 1/2 particles described by an anisotropic Heisenberg Hamiltonian at T=0. The temporal evolution is calculated by a numerically exact sol
García-Pablos, D.; García, N.; Serena, P.A.; Raedt, H. De
1996-01-01
We investigate the reversal of magnetization and the coherence of tunneling when an external magnetic field is rotated instantaneously in systems of a few (N) spin 1/2 particles described by an anisotropic Heisenberg Hamiltonian at T=0. The temporal evolution is calculated by a numerically exact sol
Synthesis of Bi2S3 quantum dots for sensitized solar cells by reverse SILAR
Singh, Navjot; Sharma, J.; Tripathi, S. K.
2016-05-01
Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi2S3) (group V - Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7eV.
Quantum reverse-engineering and reference frame alignment without non-local correlations
Bagán, E; Muñoz-Tàpia, R
2004-01-01
Estimation of unknown qubit elementary gates and alignment of reference frames are formally the same problem. Using quantum states made out of $N$ qubits, we show that the theoretical precision limit for both problems, which behaves as $1/N^{2}$, can be asymptotically attained with a covariant protocol that exploits the quantum correlation of internal degrees of freedom instead of the more fragile entanglement between distant parties. This cuts by half the number of qubits needed to achieve the precision of the dense covariant coding protocol.
Investigation of Landau level spin reversal in (110) oriented p-type GaAs quantum wells
Energy Technology Data Exchange (ETDEWEB)
Isik, Nebile
2009-09-01
In this thesis, the Landau level crossing or anticrossing of hole levels has been investigated in p-type GaAs 400 Aa wide quantum wells. In magneto-transport measurements, this is evidenced with the presence of an anomalous peak in the longitudinal resistance measurements at {nu}=1. In the transversal resistance measurements, no signature of this anomalous peak is observed. By increasing the hole density in the quantum well by applying a top gate voltage, the position of the anomalous peak shifts to higher magnetic fields. At very high densities, anomalous peak disappears. By applying a back gate voltage, the electric field in the quantum well is tuned. A consequence is that the geometry of the quantum well is tuned from square to triangular. The anomalous peak position is shown to depend also on the back gate voltage applied. Temperature dependence of the peak height is consistent with thermal activation energy gap ({delta}/2= 135 {mu}eV). The activation energy gap as a function of the magnetic field has a parabolic like dependence, with the minimum of 135 {mu}eV at 4 T. The peak magnitude is observed to decrease with increasing temperature. An additional peak is observed at {nu}=2 minimum. This additional peak at {nu}=2 might be due to the higher Landau level crossing. The p-type quantum wells have been investigated by photoluminescence spectroscopy, as a function of the magnetic field. The polarization of the emitted light has been analyzed in order to distinguish between the transitions related to spin of electron {+-} 1/2 and spin of hole -+ 3/2. The transition energies of the lowest electron Landau levels with spin {+-} 1/2 and hole Landau levels with spin -+ 3/2 versus magnetic field show crossing at 4 T. The heavy hole Landau levels with spins {+-} 3/2 are obtained by the substraction of transition energies from the sum of lowest electron Landau level energy and the energy gap of GaAs. The heavy hole Landau levels show a crossing at 4 T. However, due to the
Comparison of the Cost Metrics for Reversible and Quantum Logic Synthesis
Miller, D M; Maslov, Dmitri
2005-01-01
A breadth-first search method for determining optimal 3-line circuits composed of quantum NOT, CNOT, controlled-V and controlled-V+ (NCV) gates is introduced. Results are presented for simple gate count and for technology motivated cost metrics. The optimal NCV circuits are also compared to NCV circuits derived from optimal NOT, CNOT and Toffoli (NCT) gate circuits. The work presented here provides basic results and motivation for continued study of the direct synthesis of NCV circuits, and establishes relations between function realizations in different circuit cost metrics.
Wu, Yu-Nien; Wu, Ming-Fan; Ou, Ya-Wen; Chou, Ying-Lin; Cheng, Shun-Jen
2017-08-01
We present a theoretical investigation of anisotropic g -factor tensors of single holes confined in droplet epitaxial GaAs/AlGaAs quantum dots under electrical and mechanical controls using the gauge-invariant discretization method within the framework of four-band Luttinger-Kohn k ⃗.p ⃗ theory. We reveal an intrinsic obstacle to realize the electrical sign reversal of the hole g -factors, being a key condition required for a full spin control in the scheme of g -tensor modulation, for the quantum dots solely with electrical bias control. Constructively, our studies show that, besides electrical gating, slightly stressing an inherently unstrained droplet epitaxial GaAs/AlGaAs quantum dot can offset the transverse hole g -factor to be nearly zero and make the electrical sign reversal of the hole g -factors feasible.
Rational quantum integrable systems of DN type with polarized spin reversal operators
Directory of Open Access Journals (Sweden)
B. Basu-Mallick
2015-09-01
Full Text Available We study the spin Calogero model of DN type with polarized spin reversal operators, as well as its associated spin chain of Haldane–Shastry type, both in the antiferromagnetic and ferromagnetic cases. We compute the spectrum and the partition function of the former model in closed form, from which we derive an exact formula for the chain's partition function in terms of products of partition functions of Polychronakos–Frahm spin chains of type A. Using a recursion relation for the latter partition functions that we derive in the paper, we are able to numerically evaluate the partition function, and thus the spectrum, of the DN-type spin chain for relatively high values of the number of spins N. We analyze several global properties of the chain's spectrum, such as the asymptotic level density, the distribution of consecutive spacings of the unfolded spectrum, and the average degeneracy. In particular, our results suggest that this chain is invariant under a suitable Yangian group, and that its spectrum coincides with that of a Yangian-invariant vertex model with linear energy function and dispersion relation.
Novel Highly Parallel and Systolic Architectures Using Quantum Dot-Based Hardware
Fijany, Amir; Toomarian, Benny N.; Spotnitz, Matthew
1997-01-01
VLSI technology has made possible the integration of massive number of components (processors, memory, etc.) into a single chip. In VLSI design, memory and processing power are relatively cheap and the main emphasis of the design is on reducing the overall interconnection complexity since data routing costs dominate the power, time, and area required to implement a computation. Communication is costly because wires occupy the most space on a circuit and it can also degrade clock time. In fact, much of the complexity (and hence the cost) of VLSI design results from minimization of data routing. The main difficulty in VLSI routing is due to the fact that crossing of the lines carrying data, instruction, control, etc. is not possible in a plane. Thus, in order to meet this constraint, the VLSI design aims at keeping the architecture highly regular with local and short interconnection. As a result, while the high level of integration has opened the way for massively parallel computation, practical and full exploitation of such a capability in many applications of interest has been hindered by the constraints on interconnection pattern. More precisely. the use of only localized communication significantly simplifies the design of interconnection architecture but at the expense of somewhat restricted class of applications. For example, there are currently commercially available products integrating; hundreds of simple processor elements within a single chip. However, the lack of adequate interconnection pattern among these processing elements make them inefficient for exploiting a large degree of parallelism in many applications.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment
Rice, Charles V.; Giffin, Guinevere A.
2008-01-01
Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…
Segnorile, H H
2013-01-01
An experimental study of NMR spin decoherence in nematic liquid crystals is presented. The outcome of the experiments are analyzed in the framework of a theory that considers the spins as an open quantum system coupled to a quantum molecular environment, presented by the authors recently. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments and the presence of non-reverted spin interaction terms are analysed in detail and their effects on the observed signal decay are estimated. It is found that, though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results ...
Reversible Logic Circuit Synthesis
Shende, V V; Markov, I L; Prasad, A K; Hayes, John P.; Markov, Igor L.; Prasad, Aditya K.; Shende, Vivek V.
2002-01-01
Reversible, or information-lossless, circuits have applications in digital signal processing, communication, computer graphics and cryptography. They are also a fundamental requirement for quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input-output line-pairs (temporary storage channels). We propose new constructions for reversible circuits composed of NOT, Controlled-NOT, and TOFFOLI gates (the CNT gate library) based on permutation theory. A new algorithm is given to synthesize optimal reversible circuits using an arbitrary gate library. We also describe much faster heuristic algorithms. We also pursue applications of the proposed techniques to the synthesis of quantum circuits.
Quantum Computing with Electron Spins in Quantum Dots
Vandersypen, L M K; Van Beveren, L H W; Elzerman, J M; Greidanus, J S; De Franceschi, S; Kouwenhoven, Leo P
2002-01-01
We present a set of concrete and realistic ideas for the implementation of a small-scale quantum computer using electron spins in lateral GaAs/AlGaAs quantum dots. Initialization is based on leads in the quantum Hall regime with tunable spin-polarization. Read-out hinges on spin-to-charge conversion via spin-selective tunneling to or from the leads, followed by measurement of the number of electron charges on the dot via a charge detector. Single-qubit manipulation relies on a microfabricated wire located close to the quantum dot, and two-qubit interactions are controlled via the tunnel barrier connecting the respective quantum dots. Based on these ideas, we have begun a series of experiments in order to demonstrate unitary control and to measure the coherence time of individual electron spins in quantum dots.
Energy Technology Data Exchange (ETDEWEB)
Hosseini, Mohammad Saeid, E-mail: mshosseini1336@yahoo.com; Kamali, Mohsen
2015-11-15
In this work, CdS/ZnS quantum dots (QDs) coated with aspartic acid (AsA) were synthesized in reverse micelles. The synthesized QDs were characterized by XRD, TEM, IR and photoluminescence (PL) spectroscopy. It was found that the intensity of CdS/ZnS QDs coated with AsA is much greater than CdS, and CdS/ZnS QDs. The interaction of some heavy metal ions with CdS/ZnS/AsA QDs was investigated at different buffering pH media. Based on the PL quenching of the QDs in the presence of each one of the metal ions, the feasibility of their determinations was examined according to the Stern–Volmer equation. The investigations showed that Hg(II) ions can be easily determined in contaminated atmospheric environments with the detection limit of 0.05 mg m{sup −3}. The results were satisfactorily confirmed by cold vapor atomic absorption spectrometric method. - Highlights: • A new CdS/ZnS quantum dot capped with aspartic acid (DDBA) was prepared. • The prepared QDs benefit from a favorable fluorescence. • Interaction of some metal ions with the QDs was examined according to the Stern–Volmer equation. • The determination of Hg(II) is feasible in the present of many co-existence metal ions. • The method benefits from a high-speed and considerable simplicity for Hg(II) determination.
Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong
2017-02-01
We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.
Quantum reversible logic circuits synthesis based on genetic algorithm%基于遗传算法的量子可逆逻辑电路综合方法研究
Institute of Scientific and Technical Information of China (English)
吕洪君; 乐亮; 韩良顺; 解光军
2011-01-01
量子可逆逻辑电路综合主要是研究在给定的量子门和量子电路的约束条件及限制下,找到最小或较小的量子代价实现所需量子逻辑功能的电路.把量子逻辑门的功能用矩阵的数学模型表示,用遗传算法作全局搜索工具,将遗传算法应用于量子可逆逻辑电路综合,是一种全新的可逆逻辑电路综合方法,实现了合成、优化同步进行.四阶量子电路实验已取得了很好的效果,并进一步分析了此方法在高阶量子电路综合问题上的应用前景.%Reversible quantum logic synthesis is to study given quantum gates and quantum circuits of the constraints and limitations and find the smallest or smaller quantum cost to achieve the desired quantum logic circuits. The quantum logic gate functions of the matrix is indicated by the mathematical model. The synthesis and optimization are achieved simultaneously by the genetic algorithm as global search tool. Genetic algorithm is applied to quantum reversible logic synthesis. The fourth-order quantum circuit experiment has achieved good results, and further analysis of this method in high-level synthesis of quantum circuits and its application is completed.
Institute of Scientific and Technical Information of China (English)
陈晓罡; 张振; 费烨; 陈向东
2013-01-01
Objective To prepare arginine-glycine-aspartic acid (RGD)-and ribonuclease A (RNase A)-conjugated CdTe quantum dot (QD) nanoprobes,and to observe their capability to target human A375 malignant melanoma cells.Methods RNase A-modified CdTe quantum dots (CdTe RQDs) were obtained by using a microwave-based heating method,and then chemically conjugated to the RGD peptide to prepare RGD-CdTe RQD nanoprobes,which were then physically and chemically characterized by transmission electron microscopy,powder crystal diffraction,fluorescence spectrophotometry,and ultraviolet absorption spectrophotometry.A375 cells were cultured in vitro and incubated with various concentrations (20,40,80 nmol/L) of RGD-CdTe RQD nanoprobes for different durations (12,24,36,72 hours).Then,methyl thiazolyl tetrazolium (MTT) assay was conducted to estimate the proliferative activity of A375 cells.To observe the targeting capability of RGD-CdTe RQD nanoprobes,A375 cells were treated with RGD-CdTe RQD nanoprobes at the concentration determined by MTT assay for one hour followed by laser confocal microscopy.Results CdTe RQDs with good dispersion and biocompatibility were obtained by using a microwave-based heating method,and then successfully conjugated to the RGD peptide to form RGD-CdTe RQD nanoprobes.The treatment with RGD-CdTe RQDs of 20 nmol/L for 12 hours exhibited the weakest effect on the proliferative activity of A375 cells,and hence,20 nmol/L was selected for the fluorescence imaging assay.Laser confocal microscopy revealed that RGD-CdTe RQD nanoprobes were able to actively target A375 cells.Conclusion RGD-CdTe RQD nanoprobes with a favorable capability to actively target A375 cells are successfully prepared in this study.%目的 制备精氨酸-甘氨酸-天冬氨酸(RGD)与核糖核酸酶(RNase A)修饰的碲化镉(CdTe)量子点(quantum dot,QDs)的纳米探针,观察其对恶性黑素瘤A375细胞的靶向效果.方法 利用微波加热方法得到核糖核酸酶修
Observation of Quantum Spin Hall States in InAs/GaSb Bilayers under Broken Time-Reversal Symmetry
Du, Lingjie; Knez, Ivan; Sullivan, Gerard; Du, Rui-Rui
2014-03-01
Topological insulators (TIs) are a novel class of materials with nontrivial surface or edge states. Time-reversal symmetry (TRS) protected TIs are characterized by the Z2 topological invariant. The fate of the Z2 TIs under broken TRS is a fundamental question in understanding the physics of topological matter but remains largely unanswered. Here we show, a two-dimensional TI is realized in an inverted electron-hole bilayer engineered from InAs/GaSb semiconductors which retains robust helical liquid (HL) edge states under a strong magnetic field. Wide conductance plateaus of 2e2/h value are observed; they persist to 10T applied in-plane field before transitioning to a trivial semimetal. In a perpendicular field up to 35T, broken TRS leads to a spatial separation of the movers in Kramers pair and consequently the intra-pair backscattering phase space vanishes, i.e., the conductance increases from 2e2/h in strong fields manifesting chiral edge transport. We propose a phenomenological phases diagram, where inside the topological gap the HL transfers into a ``canned helical state'' driven by perpendicular fields. Our findings suggest that once established, the HL is remarkably resilient and only undergoes adiabatic deformation under TRS breaking. The work at Rice was supported by DOE, NSF, and Welch Foundation.
Wu, Xiaoxue; Sun, Shan; Wang, Yuhui; Zhu, Jiali; Jiang, Kai; Leng, Yumin; Shu, Qinghai; Lin, Hengwei
2017-04-15
Mitochondria, the power generators in cell, are a primary organelle of oxygen consumption and a main source of reactive oxygen/nitrogen species (ROS/RNS). Peroxynitrite (ONOO(-)), known as a kind of RNS, has been considered to be a significant factor in many cell-related biological processes, and there is great desire to develop fluorescent probes that can sensitively and selectively detect peroxynitrite in living cells. Herein, we developed a fluorescent carbon-dots (C-dots) based mitochondria-targetable nanoprobe with high sensitivity and selectivity for peroxynitrite sensing in living cells. The C-dots with its surface rich in amino groups was synthesized using o-phenylenediamine as carbon precursor, and it could be covalently conjugated with a mitochondria-targeting moiety, i.e. triphenylphosphonium (TPP). In the presence of peroxynitrite, the fluorescence of the constructed nanoprobe (C-dots-TPP) was efficiently quenched via a mechanism of photoinduced electron transfer (PET). The nanoprobe exhibited relatively high sensitivity (limit of detection: 13.5nM) and selectivity towards peroxynitrite in aqueous buffer. The performance of the nanoprobe for fluorescence imaging of peroxynitrite in mitochondria was investigated. The results demonstrated that the nanoprobe showed fine mitochondria-targeting ability and imaging contrast towards peroxynitrite in living cells. We anticipate that the proposed nanoprobe will provide a facile tool to explore the role played by peroxynitrite in cytobiology. Copyright © 2016 Elsevier B.V. All rights reserved.
Di Vincenzo, D P
1997-01-01
A historical review is given of the emergence of the idea of the quantum logic gate from the theory of reversible Boolean gates. I highlight the quantum XOR or controlled NOT as the fundamental two-bit gate for quantum computation. This gate plays a central role in networks for quantum error correction.
Design of Reversible Sequential Circuit Using Reversible Logic Synthesis
Directory of Open Access Journals (Sweden)
Md. Belayet Ali
2011-12-01
Full Text Available Reversible logic is one of the most vital issue at present time and it has different areas for its application,those are low power CMOS, quantum computing, nanotechnology, cryptography, optical computing, DNA computing, digital signal processing (DSP, quantum dot cellular auto meta, communication, computer graphics. It is not possible to realize quantum computing without implementation of reversible logic. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. In this paper, we have proposed a new reversible gate. And we have designed RS flip flop and D flip flop by using our proposed gate and Peres gate. The proposed designs are better than the existing proposed ones in terms of number of reversible gates and garbage outputs. So, this realization is more efficient and less costly than other realizations.
Design of Reversible Sequential Circuit Using Reversible Logic Synthesis
Directory of Open Access Journals (Sweden)
Md. Mosharof Hossin
2012-01-01
Full Text Available Reversible logic is one of the most vital issue at present time and it has different areas for its application, those are low power CMOS, quantum computing, nanotechnology, cryptography, optical computing, DNA computing, digital signal processing (DSP, quantum dot cellular automata, communication, computer graphics. It is not possible to realize quantum computing without implementation of reversible logic. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. In this paper, we have proposed a new reversible gate. And we have designedRS flip flop and D flip flop by using our proposed gate and Peres gate. The proposed designs are better than the existing proposed ones in terms of number of reversible gates and garbage outputs. So, this realization is more efficient and less costly than other realizations.
Gaur, Girija; Koktysh, Dmitry S; Fleetwood, Daniel M; Weller, Robert A; Reed, Robert A; Rogers, Bridget R; Weiss, Sharon M
2016-03-01
We investigate the influence of high energy photons and thiol ligands on the photophysical properties of sub-monolayer CdTe/CdS quantum dots (QDs) immobilized in porous silica (PSiO2) scaffolds. The highly disperse, uniform distributions of QDs in a three-dimensional PSiO2 framework ensure uniform interaction of not only radiation but also subsequent surface repassivation solutions to all immobilized QDs. The high optical densities of QDs achieved using PSiO2 enable straightforward monitoring of the QD photoluminescence intensities and carrier lifetimes. Irradiation of QDs in PSiO2 by high energy photons, X-rays, and γ-rays leads to dose-dependent QD photodarkening, which is accompanied by accelerated photooxidative effects in ambient environments that give rise to blue-shifts in the peak QD emission wavelength. Irradiation in an oxygen-free environment also leads to QD photodarkening but with no accompanying blue-shift of the QD emission. Significant reversal of QD photodarkening is demonstrated following QD surface repassivation with a solution containing free-thiols, suggesting reformation of a CdS shell, etching of surface oxidized species, and possible reduction of photoionized dark QDs to a neutral, bright state. Permanent lattice displacement damage effects may contribute toward some irreversible γ radiation damage. This work contributes to an improved understanding of the influence of surface ligands on the optical properties of QDs and opens up the possibilities of engineering large area, low-cost, reuseable, and flexible QD-based optical radiation sensors.
Ultrasmall colloidal PbS quantum dots
Energy Technology Data Exchange (ETDEWEB)
Reilly, Nick; Wehrung, Michael; O' Dell, Ryan Andrew [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Sun, Liangfeng, E-mail: lsun@bgsu.edu [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403 (United States)
2014-09-15
Ultrasmall colloidal lead sulfide quantum dots can increase the open circuit voltages of quantum-dot-based solar cells because of their large energy gap. Their small size and visible or near infrared light-emitting property make them attractive to the applications of biological fluorescence labeling. Through a modified organometallic route, we can synthesize lead sulfide quantum dots as small as 1.6 nm in diameter. The low reaction temperature and the addition of a chloroalkane cosolvent decrease the reaction rate, making it possible to obtain the ultrasmall quantum dots. - Highlights: • Ultrasmall colloidal PbS quantum dots as small as 1.6 nm in diameter are synthesized. • The quantum dots emit red light with photoluminescence peak at 760 nm. • The growth temperature is as low as 50 °C. • Addition of cosolvent 1,2-dichloroethane in the reaction decreases the reaction rate.
What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers?
Hasanzadeh, Mohammad; Shadjou, Nasrin
2017-02-01
Graphene quantum dots-based immunosensors have recently gained importance for detecting antigens and biomarkers responsible for cancer diagnosis. This paper reports a literature survey of the applications of graphene quantum dots for sensing cancer biomarkers. The survey sought to explore three questions: (1) Do graphene quantum dots improve immunosensing technology? (2) If so, can graphene quantum dots have a critical, positive impact on construction of immuno-devices? And (3) What is the reason for some troubles in the application of this technology? The number of published papers in the field seems positively answer the first two questions. However additional efforts must be made to move from the bench to the real diagnosis. Some approaches to improve the analytical performance of graphene quantum dots-based immunosensors through their figures of merit have been also discussed.
Quantum mechanical Carnot engine
Bender, C M; Meister, B K
2000-01-01
A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.
Optimized reversible BCD adder using new reversible logic gates
Bhagyalakshmi, H R
2010-01-01
Reversible logic has received great attention in the recent years due to their ability to reduce the power dissipation which is the main requirement in low power digital design. It has wide applications advanced computing, low power CMOS design, Optical information processing, DNA computing, bio information, quantum computation and nanotechnology. This paper presents an optimized reversible BCD adder using a new reversible gate. A comparative result is presented which shows that the proposed design is more optimized in terms of number of gates, number of garbage outputs and quantum cost than the existing designs.
Reversible logic gates on Physarum Polycephalum
Energy Technology Data Exchange (ETDEWEB)
Schumann, Andrew [University of Information Technology and Management, Sucharskiego 2, Rzeszow, 35-225 (Poland)
2015-03-10
In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum.
Partial Reversible Gates(PRG) for Reversible BCD Arithmetic
Thapliyal, Himanshu; Bajpai, Rajnish; Sharma, Kamal K
2007-01-01
IEEE 754r is the ongoing revision to the IEEE 754 floating point standard and a major enhancement to the standard is the addition of decimal format. Furthermore, in the recent years reversible logic has emerged as a promising computing paradigm having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. The major goal in reversible logic is to minimize the number of reversible gates and garbage outputs. Thus, this paper proposes the novel concept of partial reversible gates that will satisfy the reversibility criteria for specific cases in BCD arithmetic. The partial reversible gate is proposed to minimize the number of reversible gates and garbage outputs, while designing the reversible BCD arithmetic circuits.
Semiconductor Quantum Dots in Chemical Sensors and Biosensors
Directory of Open Access Journals (Sweden)
Nikos Chaniotakis
2009-09-01
Full Text Available Quantum dots are nanometre-scale semiconductor crystals with unique optical properties that are advantageous for the development of novel chemical sensors and biosensors. The surface chemistry of luminescent quantum dots has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids or small-molecule ligands. This review overviews the design of sensitive and selective nanoprobes, ranging from the type of target molecules to the optical transduction scheme. Representative examples of quantum dot-based optical sensors from this fast-moving field have been selected and are discussed towards the most promising directions for future research.
Basic Reversible Logic Gates and It’s Qca Implementation
Directory of Open Access Journals (Sweden)
Papiya Biswas,
2014-06-01
Full Text Available Reversible logic has various applications in various field like in Nanotechnology, quantum computing, Low power CMOS, Optical computing and DNA computing, etc. Quantum computation is One of the most important applications of the reversible logic.Basically reversible circuits do not lose information & reversible computation is performed only when system comprises of reversible gates. The reversible logic is design,main purposes are - decrease quantum cost, depth of the circuits & the number of garbage output. This paper provides the basic‘s of reversible logic gates & its implementation in qca.
Fast Optically Driven Spin Qubit Gates in an InAs Quantum Dot
2010-01-01
epitaxy. The sample is placed in a magneto cryostat to enable operating temperatures of approximately 5 K. Optical excitation through 1μm diameter...Reinecke and D. Gammon, “ Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule ”, Phys. Rev. Lett., 101, 236804 (2008) 12...Theory of Fast Optical Spin Rotation in a Quantum Dot Based on Geometric Phases and Trapped States”, Phys. Rev. Lett., 99, 217401 (2007) 16. Y
Kulikova, Olga
2016-01-01
This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...
Optimization of reversible sequential circuits
Sayem, Abu Sadat Md
2010-01-01
In recent years reversible logic has been considered as an important issue for designing low power digital circuits. It has voluminous applications in the present rising nanotechnology such as DNA computing, Quantum Computing, low power VLSI and quantum dot automata. In this paper we have proposed optimized design of reversible sequential circuits in terms of number of gates, delay and hardware complexity. We have designed the latches with a new reversible gate and reduced the required number of gates, garbage outputs, and delay and hardware complexity. As the number of gates and garbage outputs increase the complexity of reversible circuits, this design will significantly enhance the performance. We have proposed reversible D-latch and JK latch which are better than the existing designs available in literature.
Quantum information theory mathematical foundation
Hayashi, Masahito
2017-01-01
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an impro...
AOT/异辛烷反胶束体系制备CdTe量子点的研究%Synthesis of CdTe Quantum Dots in AOT/isooctane Reversed Micelle System
Institute of Scientific and Technical Information of China (English)
林谦; 王小燕; 罗志敏
2012-01-01
采用反胶束法制备CdTe量子点。反胶束体系由CdTe前驱体、AOT（丁二酸二异辛酯磺酸钠）、异辛烷组成;CdTe前驱体在水相中以巯基丙酸为稳定剂、按nCd2＋：nHTe-：nMPA=3：1：6、pH=9.8的条件合成。考察了反胶束体系中ω（ω=[水]/[表面活性剂]）、表面活性剂浓度对合成CdTe量子点的光学性质的影响。试验表明：当AOT的浓度为0.06g.mL-1时,改变ω能合成不同粒径的CdTe量子点,ω从7增加到13荧光发射光谱位移117.2nm。%Quantum Dots were prepared by using reversed micelle.CdTe precursors was formed in aqueous solution with MPA as stabilizer under the following condition: nCd2+: nHTe-: nMPA=3:1:6,ph=9.8.Reversed Micelle System was formed with AOT,isooctane and CdTe precursors.The impact of ω(ω=/[ surfactant]) and concentration of surfactant on the optical properties of synthesized CdTe quantum dots has been examined.The experiment has found that when the concentration of AOT was 0.06g.mL-1,changing ω can synthesize CdTe quantum dots of different particle diameters;when ω was increased from 7 to 13,fluorescent emission spectra shifted for 117.2nm.
Bose, Ranojoy
In this thesis, we study solution-processed lead sulfide quantum dots for near-infrared quantum information and communication applications. Quantum dots processed through synthetic routes and colloidally suspended in solution offer far-reaching device application possibilities that are unparalelled in traditional self-assembled quantum dots. Lead sulfide quantum dots are especially promising for near-infrared quantum optics due to their optical emission at the wavelengths of fiber-optic communications (1.3--1.5 microm). The broad absorption spectrum of these quantum dots can be used for solar light-harvesting applications, to which end the results of Chapter 2---where we study Forster resonance energy transfer in quantum dot solids---provide remarkable insights into photon emission from quantum-dot based solar cells. In subsequent chapters, we explore quantum-dot photonic crystal applications, where exciton-photon interactions in the cavity environment remarkably allow for the emission of indistinguishable single photons that are important for distribution of high-security quantum keys---being highly sensitive to 'eavesdropping'. Particularly, the suggestion of the solution-processed QED system is novel compared to traditional self-assembled systems, and as we will discuss, offer integration and processing capabilities that are unprecedented, and perform well at wavelength ranges where standard QED systems scale poorly. The results of chapters 3--6 are therefore significant in the general field of cavity quantum electrodynamics.
Study on Wide-gap Gallium-nitride Based Films and Their Quantum-dots Devices
2006-09-05
propose that the size controlled GaN based quantum dot LED for the prospective white light source cold be used to simulate the sun light for higher Lumen...compositions, the quantum dots of InGaN or InN could emit light to cover the whole visible spectrum. The quantum dot based white light device could...wavelength could be shifted from red to the blue region. The high efficiency, quantum dot size-controlled, white light LED could thus be produced
Design of Digital Adder Using Reversible Logic
Directory of Open Access Journals (Sweden)
Gowthami P
2016-02-01
Full Text Available Reversible logic circuits have promising applications in Quantum computing, Low power VLSI design, Nanotechnology, optical computing, DNA computing and Quantum dot cellular automata. In spite of them another main prominent application of reversible logic is Quantum computers where the quantum devices are essential which are ideally operated at ultra high speed with less power dissipation must be built from reversible logic components. This makes the reversible logic as a one of the most promising research areas in the past few decades. In VLSI design the delay is the one of the major issue along with area and power. This paper presents the implementation of Ripple Carry Adder (RCA circuits using reversible logic gates are discussed.
Lu, Dawei; Biamonte, Jacob D.; Li, Jun; Li, Hang; Johnson, Tomi H.; Bergholm, Ville; Faccin, Mauro; Zimborás, Zoltán; Laflamme, Raymond; Baugh, Jonathan; Lloyd, Seth
2016-04-01
Given its importance to many other areas of physics, from condensed-matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time asymmetry. Moreover, we show that time asymmetry in circuits can be controlled using local gates only and can simulate time asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport and imply that time asymmetry represents an omnipresent yet poorly understood effect in quantum information science.
Lu, DaWei; Li, Jun; Li, Hang; Johnson, Tomi H; Bergholm, Ville; Faccin, Mauro; Zimborás, Zoltán; Laflamme, Raymond; Baugh, Jonathan; Lloyd, Seth
2016-01-01
Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time-symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time-asymmetry. Moreover, we show that time-asymmetry in circuits can be controlled using local gates only, and can simulate time-asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport, and imply that time-asymmetry represents an omnipresent yet poorly understood effect in quantum information science.
Institute of Scientific and Technical Information of China (English)
KhanQasim; ChenJing; LeiWei; ZhangXiaobing
2012-01-01
We reviewed the key advantages and development of the QD-display and other light applications based on their color purity,stability,and solution processisibility.Analysis of quantum dot based LEDs and the main challenges facing in this field,such as QD luminescence quenching,QD charging in thin films,and the external quantum efficiency was presented in detail.The description about how different optical down-conversion and structures enabled researchers to overcome these challenges and to commercialize the products to achieve the desirable CRI and color temperature was presented.The recent developments about how to overcome these difficulties have also been discussed in this article.
Colloidal-quantum-dot spasers and plasmonic amplifiers
Kress, Stephan J P; Rohner, Patrik; Kim, David K; Antolinez, Felipe V; Zaininger, Karl-Augustin; Jayanti, Sriharsha V; Richner, Patrizia; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J
2016-01-01
Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser, a laser-like source of surface plasmons, was first proposed, quantum dots were specified as the ideal plasmonic gain medium. Subsequent spaser designs, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, an approach ill-suited to quantum dots and other colloidal nanomaterials. Here we develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum-dot-based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create high-quality-factor, aberration-corrected, Ag plasmonic cavities. We then incorporate quantum dots via electrohydrodynamic printing18,19 or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons above threshold. This signal is extracted, directed through an integrated amplifier,...
M.P. de Brito (Marisa); S.D.P. Flapper; R. Dekker (Rommert)
2002-01-01
textabstractThis paper gives an overview of scientific literature that describes and discusses cases of reverse logistics activities in practice. Over sixty case studies are considered. Based on these studies we are able to indicate critical factors for the practice of reverse logistics. In addi
Scan Quantum Mechanics: Quantum Inertia Stops Superposition
Gato-Rivera, Beatriz
2015-01-01
A novel interpretation of the quantum mechanical superposition is put forward. Quantum systems scan all possible available states and switch randomly and very rapidly among them. The longer they remain in a given state, the larger the probability of the system to be found in that state during a measurement. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia $I_q$ reaches a critical value $I_{cr}$ for an observable, the switching among the different eigenvalues of that observable stops and the corresponding superposition comes to an end. Consequently, increasing the mass, temperature, gravitational force, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. The process could be reversible decreasing the size, temperature, gravitational force, etc. leading to...
Reverse Reconciliation of Quantum Gaussian Distributed Key%量子高斯密钥分发的逆向数据协调
Institute of Scientific and Technical Information of China (English)
郭大波; 刘纲; 张宁; 蔡虹
2013-01-01
The party Alice in a cryptograph system transmits coherent quantum signals to the party Bob,obtaining a series of correlated continuous Gaussian variables.The process to distill a binary key out of the correlated Gaussian variables that they share is called continuous-variable quantum key distribution (CVQKD).Reconciliation in CVQKD,i.e.,to correct differences between the correlated variables,is the key issue discussed in the paper.Based on both sliced error correction (SEC) protocol and multilevel coding/multistage decoding (MLC/MSD),reconciliation is implemented by LDPC code-based Slepian-Wolf CODEC.According to the proposed multilevel Tanner graph which depicts message transition of information,multistage iterative intrinsic and extrinsic information belief-propagation (LLR-BP) update formulae are derived.Three decoding modes of MSD are compared experimentally in convergence and performance.Simulation results show that the proposed algorithm can reconcile reliably 10000 continuous quantum variables with efficiency of 92.3 ％ when SNR of the channel is above 2.5 dB.%加密系统中Alice端通过光纤传送相干态量子信号给Bob端,得到的一系列相关的高斯连续变量,然后从中提取出二进制密钥,这一过程称作高斯连续变量量子密钥分发.其中的数据协调步骤,即对相关连续变量的错误校正,是本文的研究问题.本文在分层错误校正协议(SEC)和多电平编码/多级解码(MLC/MSD)协议的基础上,用基于LDPC码的Slepian-Wolf编译码器实现协调.根据连续变量的多级Tanner信息传输流图,本文推导了多级迭代的内信息和外信息置信传播(LLR-BP)更新公式,并用实验比较了MSD三种译码模式的收敛性质及性能.仿真结果表明该算法可在信道信噪比2.5 dB以上实现10000个连续变量序列的可靠协调,协调效率可达92.3％.
Experimental investigation of quantum Simpson's paradox
Li, Yu-Long; Tang, Jian-Shun; Wang, Yi-Tao; Wu, Yu-Chun; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan
2013-07-01
The well-known Simpson's paradox, or Yule-Simpson (YS) effect, is often encountered in social-science and medical-science statistics. It occurs when the correlations present in different groups are reversed if the groups are combined. Simpson's paradox also exists in quantum measurements. In this Brief Report, we experimentally realized two analogous effects: the quantum-classical YS effect and the quantum-quantum YS effect in the quantum-dot system. We also compared the probability of obtaining those two effects under identical quantum measurements and found that the quantum-quantum YS effect is more likely to occur than the quantum-classical YS effect.
Coherent manipulation of single quantum systems in the solid state
Childress, Lilian Isabel
2007-12-01
The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.
Luo, Jianheng; Wei, Huiyun; Li, Fan; Huang, Qingli; Li, Dongmei; Luo, Yanhong; Meng, Qingbo
2014-04-04
A facile microwave assisted aqueous method has been developed to rapidly prepare stable CdSe(x)Te(1-x)-CdS quantum dots. Based on this material, core-shell type II CdSe(x)Te(1-x)-CdS quantum dot sensitized solar cells have been assembled and a power conversion efficiency as high as 5.04% has been obtained.
Efficient fiber-coupled single-photon sources based on quantum dots
DEFF Research Database (Denmark)
Daveau, Raphaël Sura
refrigeration with coupled quantum wells. Many photonic quantum information processing applications would benet from a highbrightness, ber-coupled source of triggered single photons. This thesis presents a study of such sources based on quantum dots coupled to unidirectional photonic-crystal waveguide devices......This thesis presents the study of solid-state quantum emitters in two dierent forms. The rst part of the thesis deals with quantum dot based single-photon sources with an emphasis on ecient photon extraction into an optical ber. The second part of the thesis covers a theoretical study of optical...... the characterization of single quantum dots. The second method, evanescent coupling from a tapered waveguide to a microber, demonstrates a chip-to-ber coupling eciency exceeding 80 % in passive re- ection measurements. The characterization of quantum dots from this device establishes a ber-coupled source eciency of 15...
Undoing a quantum measurement.
Schindler, Philipp; Monz, Thomas; Nigg, Daniel; Barreiro, Julio T; Martinez, Esteban A; Brandl, Matthias F; Chwalla, Michael; Hennrich, Markus; Blatt, Rainer
2013-02-15
In general, a quantum measurement yields an undetermined answer and alters the system to be consistent with the measurement result. This process maps multiple initial states into a single state and thus cannot be reversed. This has important implications in quantum information processing, where errors can be interpreted as measurements. Therefore, it seems that it is impossible to correct errors in a quantum information processor, but protocols exist that are capable of eliminating them if they affect only part of the system. In this work we present the deterministic reversal of a fully projective measurement on a single particle, enabled by a quantum error-correction protocol in a trapped ion quantum information processor. We further introduce an in-sequence, single-species recooling procedure to counteract the motional heating of the ion string due to the measurement.
A functional quantum programming language
Altenkirch, T; Altenkirch, Thorsten; Grattage, Jonathan
2004-01-01
We introduce the language QML, a functional language for quantum computations on finite types. Its design is guided by its categorical semantics: QML programs are interpreted by morphisms in the category FQC of finite quantum computations, which provides a constructive semantics of irreversible quantum computations realizable as quantum gates. QML integrates reversible and irreversible quantum computations in one language, using first order strict linear logic to make weakenings explicit. Strict programs are free of decoherence and hence preserve entanglement which is essential for quantum parallelism.
Design of a High Performance Reversible Multiplier
Directory of Open Access Journals (Sweden)
Md.Belayet Ali
2011-11-01
Full Text Available Reversible logic circuits are increasingly used in power minimization having applications such as low power CMOS design, optical information processing, DNA computing, bioinformatics, quantum computing and nanotechnology. The problem of minimizing the number of garbage outputs is an important issue in reversible logic design. In this paper we propose a new 44 universal reversible logic gate. The proposed reversible gate can be used to synthesize any given Boolean functions. The proposed reversible gate also can be used as a full adder circuit. In this paper we have used Peres gate and the proposed Modified HNG (MHNG gate to construct the reversible fault tolerant multiplier circuit. We show that the proposed 44 reversible multiplier circuit has lower hardware complexity and it is much better and optimized in terms of number of reversible gates and number of garbage outputs with compared to the existing counterparts.
Charged-Exciton Complexes in Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang
2001-01-01
It is known experimentally that stable charged-exciton complexes can exist in low-dimensional semiconductor nanostructures. Much less is known about the properties of such charged-exciton complexes since three-body problems are very difficult to be solved, even numerically. Here we introduce the correlated hyperspherical harmonics as basis functions to solve the hyperangular equation for negatively and positively charged excitons (trions) in a harmonic quantum dot. By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton as a function of the radius of quantum dot. Based on symmetry analysis, the level crossover as the dot radius increases can be fully explained as the results of symmetry constraint.``
Two quantum Simpson's paradoxes
Paris, Matteo G A
2012-01-01
The so-called Simpson's "paradox", or Yule-Simpson (YS) effect, occurs in classical statistics when the correlations that are present among different sets of samples are reversed if the sets are combined together, thus ignoring one or more lurking variables. Here we illustrate the occurrence of two analogue effects in quantum measurements. The first, which we term quantum-classical YS effect, may occur with quantum limited measurements and with lurking variables coming from the mixing of states, whereas the second, here referred to as quantum-quantum YS effect, may take place when coherent superpositions of quantum states are allowed. By analyzing quantum measurements on low dimensional systems (qubits and qutrits), we show that the two effects may occur independently, and that the quantum-quantum YS effect is more likely to occur than the corresponding quantum-classical one. We also found that there exist classes of superposition states for which the quantum-classical YS effect cannot occur for any measureme...
1980-02-01
will have been introduced. 9. Reversible celular autemata We shall assume the reader to have some familiarity with the concept of cel- lular...10003 Mr. Kin B. Thcmpson 1 copy Technical Director Information Systems Divisia.i Naval Research Laboratory (OP-91T) Technical Information Division
Robinett, R W
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (`minipackets' or `clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum w...
Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device
Energy Technology Data Exchange (ETDEWEB)
Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)
2016-07-25
The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.
Are all reversible computations tidy?
Maroney, O J E
2004-01-01
It has long been known that to minimise the heat emitted by a deterministic computer during it's operation it is necessary to make the computation act in a logically reversible manner\\cite{Lan61}. Such logically reversible operations require a number of auxiliary bits to be stored, maintaining a history of the computation, and which allows the initial state to be reconstructed by running the computation in reverse. These auxiliary bits are wasteful of resources and may require a dissipation of energy for them to be reused. A simple procedure due to Bennett\\cite{Ben73} allows these auxiliary bits to be "tidied", without dissipating energy, on a classical computer. All reversible classical computations can be made tidy in this way. However, this procedure depends upon a classical operation ("cloning") that cannot be generalised to quantum computers\\cite{WZ82}. Quantum computations must be logically reversible, and therefore produce auxiliary qbits during their operation. We show that there are classes of quantu...
Low Cost Reversible Signed Comparator
Directory of Open Access Journals (Sweden)
Farah Sharmin
2013-10-01
Full Text Available Nowadays exponential advancement in reversible comp utation has lead to better fabrication and integration process. It has become very popular ove r the last few years since reversible logic circuit s dramatically reduce energy loss. It consumes less p ower by recovering bit loss from its unique input-o utput mapping. This paper presents two new gates called RC-I and RC-II to design an n-bit signed binary comparator where simulation results show that the p roposed circuit works correctly and gives significa ntly better performance than the existing counterparts. An algorithm has been presented in this paper for constructing an optimized reversible n-bit signed c omparator circuit. Moreover some lower bounds have been proposed on the quantum cost, the numbers of g ates used and the number of garbage outputs generated for designing a low cost reversible sign ed comparator. The comparative study shows that the proposed design exhibits superior performance consi dering all the efficiency parameters of reversible logic design which includes number of gates used, quantum cost, garbage output and constant inputs. This proposed design has certainly outperformed all the other existing approaches.
AN IMPROVED DESIGN OF A MULTIPLIER USING REVERSIBLE LOGIC GATES
Directory of Open Access Journals (Sweden)
H.R.BHAGYALAKSHMI
2010-08-01
Full Text Available Reversible logic gates are very much in demand for the future computing technologies as they are known to produce zero power dissipation under ideal conditions. This paper proposes an improved design of a multiplier using reversible logic gates. Multipliers are very essential for the construction of various computational units of a quantum computer. The quantum cost of a reversible logic circuit can be minimized by reducing the number of reversible logic gates. For this two 4*4 reversible logic gates called a DPG gate and a BVF gate are used.
Designing novel reversible BCD adder and parallel adder/subtraction using new reversible logic gates
Zhou, Rigui; Zhang, Manqun; Wu, Qian; Shi, Yang
2012-10-01
Reversible logic has received much attention in recent years when calculation with minimum energy consumption is considered. Especially, interest is sparked in reversible logic by its applications in some technologies, such as quantum computing, low-power CMOS design, optical information processing and nanotechnology. This article proposes two new reversible logic gates, ZRQ and NC. The first gate ZRQ not only implements all Boolean functions but also can be used to design optimised adder/subtraction architectures. One of the prominent functionalities of the proposed ZRQ gate is that it can work by itself as a reversible full adder/subtraction unit. The second gate NC can complete overflow detection logic of Binary Coded Decimal (BCD) adder. This article proposes two approaches to design novel reversible BCD adder using new reversible gates. A comparative result which is presented shows that the proposed designs are more optimised in terms of number of gates, garbage outputs, quantum costs and unit delays than the existing designs.
Photoluminescence under high-electric field of PbS quantum dots
Directory of Open Access Journals (Sweden)
B. Ullrich
2012-12-01
Full Text Available The effect of a laterally applied electric field (≤10 kV/cm on the photoluminescence of colloidal PbS quantum dots (diameter of 2.7 nm on glass was studied. The field provoked a blueshift of the emission peak, a reduction of the luminescent intensity, and caused an increase in the full width at half maximum of the emission spectrum. Upon comparison with the photoluminescence of p-type GaAs exhibits the uniqueness of quantum dot based electric emission control with respect to bulk materials.
Broadband waveguide quantum memory for entangled photons
Saglamyurek, Erhan; Jin, Jeongwan; Slater, Joshua A; Oblak, Daniel; Bussieres, Felix; George, Mathew; Ricken, Raimund; Sohler, Wolfgang; Tittel, Wolfgang
2010-01-01
The reversible transfer of quantum states of light in and out of matter constitutes an important building block for future applications of quantum communication: it allows synchronizing quantum information, and enables one to build quantum repeaters and quantum networks. Much effort has been devoted worldwide over the past years to develop memories suitable for the storage of quantum states. Of central importance to this task is the preservation of entanglement, a quantum mechanical phenomenon whose counter intuitive properties have occupied philosophers, physicists and computer scientists since the early days of quantum physics. Here we report, for the first time, the reversible transfer of photon-photon entanglement into entanglement between a photon and collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 MHz t...
Recoverability in quantum information theory
Wilde, Mark M
2015-01-01
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information...
Geometric diffusion of quantum trajectories.
Yang, Fan; Liu, Ren-Bao
2015-07-16
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.
Quantum Computing over Finite Fields
James, Roshan P; Sabry, Amr
2011-01-01
In recent work, Benjamin Schumacher and Michael~D. Westmoreland investigate a version of quantum mechanics which they call "modal quantum theory" but which we prefer to call "discrete quantum theory". This theory is obtained by instantiating the mathematical framework of Hilbert spaces with a finite field instead of the field of complex numbers. This instantiation collapses much the structure of actual quantum mechanics but retains several of its distinguishing characteristics including the notions of superposition, interference, and entanglement. Furthermore, discrete quantum theory excludes local hidden variable models, has a no-cloning theorem, and can express natural counterparts of quantum information protocols such as superdense coding and teleportation. Our first result is to distill a model of discrete quantum computing from this quantum theory. The model is expressed using a monadic metalanguage built on top of a universal reversible language for finite computations, and hence is directly implementab...
Energy Technology Data Exchange (ETDEWEB)
Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.
Quantum networks based on cavity QED
Energy Technology Data Exchange (ETDEWEB)
Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)
2014-07-01
Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.
Enhancing robustness of multiparty quantum correlations using weak measurement
Energy Technology Data Exchange (ETDEWEB)
Singh, Uttam, E-mail: uttamsingh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Mishra, Utkarsh, E-mail: utkarsh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)
2014-11-15
Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.
2015-07-16
disperse the graphene by physical adsorption on its surface. The dispersions are mixed with poly vinyl alcohol (PVA) in a polymer mixer. The...is a more bring color . The bottom structure shows the image of the structure after the incorporation of the GSAM in the VECSEL cavity. The single
Arias-Hernández, L. A.; Morales-Serrano, A. F.
2002-11-01
In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.
Energy Technology Data Exchange (ETDEWEB)
Quinn, H; /SLAC
2009-01-27
This talk briefly reviews three types of time-asymmetry in physics, which I classify as universal, macroscopic and microscopic. Most of the talk is focused on the latter, namely the violation of T-reversal invariance in particle physics theories. In sum tests of microscopic T-invariance, or observations of its violation, are limited by the fact that, while we can measure many processes, only in very few cases can we construct a matched pair of process and inverse process and observe it with sufficient sensitivity to make a test. In both the cases discussed here we can achieve an observable T violation making use of flavor tagging, and in the second case also using the quantum properties of an antisymmetric coherent state of two B mesons to construct a CP-tag. Both these tagging properties depend only on very general properties of the flavor and/or CP quantum numbers and so provide model independent tests for T-invariance violations. The microscopic laws of physics are very close to T-symmetric. There are small effects that give CP- and T-violating processes in three-generation-probing weak decays. Where a T-violating observable can be constructed we see the relationships between T-violation and CP-violation expected in a CPT conserving theory. These microscopic effects are unrelated to the 'arrow of time' that is defined by increasing entropy, or in the time direction defined by the expansion of our Universe.
DEFF Research Database (Denmark)
Tryggestad, Kjell
2004-01-01
The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...
A Nanowire-Based Plasmonic Quantum Dot Laser.
Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko
2016-04-13
Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.
Fault Model for Testable Reversible Toffoli Gates
Directory of Open Access Journals (Sweden)
Yu Pang
2012-09-01
Full Text Available Techniques of reversible circuits can be used in low-power microchips and quantum communications. Current most works focuses on synthesis of reversible circuits but seldom for fault testing which is sure to be an important step in any robust implementation. In this study, we propose a Universal Toffoli Gate (UTG with four inputs which can realize all basic Boolean functions. The all single stuck-at faults are analyzed and a test-set with minimum test vectors is given. Using the proposed UTG, it is easy to implement a complex reversible circuit and test all stuck-at faults of the circuit. The experiments show that reversible circuits constructed by the UTGs have less quantum cost and test vectors compared to other works.
Li, Shu-Shen; Long, Gui-lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Energy Technology Data Exchange (ETDEWEB)
D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)]. E-mail: darchivi@univaq.it; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Mazzeo, Pietro [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Tettamanti, Enzo [Dipartimento di Scienze Biomediche Comparate, Universita di Teramo, P.zzale A. Moro 45, 64100 Teramo (Italy)
2007-06-19
A quantitative structure-retention relationship (QSRR) analysis based on multilinear regression (MLR) and artificial neural networks (ANNs) is carried out to model the combined effect of solute structure and eluent composition on the retention behaviour of pesticides in isocratic reversed-phase high-performance liquid chromatography (RP-HPLC). The octanol-water partition coefficient and four quantum chemical descriptors (the total dipole moment, the mean polarizability, the anisotropy of the polarizability and a descriptor of hydrogen-bonding based on the atomic charges on acidic and basic chemical functionalities) are considered as solute descriptors. In order to identify suitable mobile phase descriptors, encoding composition-dependent properties of both methanol- and acetonitrile-containing mobile phases, the Kamlet-Taft solvatochromic parameters (polarity-dipolarity, hydrogen-bond acidity and hydrogen-bond basicity, {pi} {sup *}, {alpha} and {beta}, respectively) and the {sup 14}N hyperfine-splitting constant (a {sub N}) of a spin-probe dissolved in the eluent are examined. A satisfactory description of mobile phase properties influencing the solute retention is provided by a {sub N} and {beta} or alternatively {pi} {sup *} and {beta}. The two seven-parameter models resulting from combination of a {sub N} and {beta}, or {pi} {sup *} and {beta}, with the solute descriptors were tested on a set of 26 pesticides representative of 10 different chemical classes in a wide range of mobile phase composition (30-60% (v/v) water-methanol and 30-70% (v/v) water-acetonitrile). Within the explored experimental range, the acidity of the eluent, as quantified by {alpha}, is almost constant, and this parameter is in fact irrelevant. The results reveal that a {sub N} and {pi} {sup *}, that can be considered as interchangeable mobile phase descriptors, are the most influent variables in the respective models. The predictive ability of the proposed models, as tested on an
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Novel designs for fault tolerant reversible binary coded decimal adders
Zhou, Ri-Gui; Li, Yan-Cheng; Zhang, Man-Qun
2014-10-01
Reversible logic circuits have received emerging attentions in recent years. Reversible logic is widely applied in some new technical fields, such as quantum computing, nanocomputing and optical computing and so on. In this paper, three fault tolerant gates are proposed, ZPL gate, ZQC gate and ZC gate. By using the proposed gates, fault tolerant quantum and reversible BCD adder and skip carry BCD adder are designed, which overcome the limitations of the existing methods. The proposed reversible BCD adders have also parity-preserving property. They are better than the existing counterparts, especially in the quantum cost. Proposed designs have been compared with existing designs with respect to the number of gates, number of garbage outputs and quantum cost.
Design of the Efficient Nanometric Reversible Subtractor Circuit
Directory of Open Access Journals (Sweden)
Mozhgan Shiri
2012-11-01
Full Text Available Reversible logic has comprehensive applications in communications, quantum computing, low power VLSI design, computer graphics, cryptography, nanotechnology, and optical computing. It has received significant attention in low power dissipating circuit design in the past few years. While several researchers have inspected the design of reversible logic units, there is not much reported works on reversible subtractors. In this paper we proposed the quantum equivalent circuit for SRK gate and we have computed the quantum cost of SRK gate. We also showed that how SRK gate can work singly as a half-subtractor circuit. It is being tried to design the circuit optimal in terms of number of reversible gates, number of garbage outputs, number of constant inputs, and quantum cost with compared to the existing circuits. At last we proposed an implementation of the new full-subtractor circuit based on SRK gate. All the designs have nanometric scales.
A novel reversible carry-selected adder with low latency
Li, Ming-Cui; Zhou, Ri-Gui
2016-07-01
Reversible logic is getting more and more attention in quantum computing, optical computing, nanotechnology and low-power complementary metal oxide semiconductor designs since reversible circuits do not loose information during computation and have only small energy dissipation. In this paper, a novel carry-selected reversible adder is proposed primarily optimised for low latency. A 4-bit reversible full adder with two kinds of outputs, minimum delay and optimal quantum cost is presented as the building block for ?-bit reversible adder. Three new reversible gates NPG (new Peres gate), TEPG (triple extension of Peres gate) and RMUX21 (reversible 2-to-1 multiplexer) are proposed and utilised to design efficient adder units. The secondary carry propagation chain is carefully designed to reduce the time consumption. The novelty of the proposed design is the consideration of low latency. The comparative study shows that the proposed adder achieves the improvement from 61.46% to 95.29% in delay over the existing designs.
Enhancing teleportation fidelity by means of weak measurements or reversal
Energy Technology Data Exchange (ETDEWEB)
Qiu, Liang, E-mail: lqiu@cumt.edu.cn [College of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Tang, Gang; Yang, Xianqing [College of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Wang, Anmin [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)
2014-11-15
The enhancement of teleportation fidelity by weak measurement or quantum measurement reversal is investigated. One qubit of a maximally entangled state undergoes the amplitude damping, and the subsequent application of weak measurement or quantum measurement reversal could improve the teleportation fidelity beyond the classical region. The improvement could not be attributed to the increasing of entanglement, quantum discord, classical correlation or total correlation. We declare that it should be owed to the probabilistic nature of the method. - Highlights: • The method’s probabilistic nature should be responsible for the improvement. • Quantum or classical correlation cannot explain the improvement. • The receiver cannot apply weak measurements. • The sender’s quantum measurement reversal is only useful for |Ψ{sup ±}〉.
Optimization Approaches for Designing a Novel 4-Bit Reversible Comparator
Zhou, Ri-gui; Zhang, Man-qun; Wu, Qian; Li, Yan-cheng
2013-02-01
Reversible logic is a new rapidly developed research field in recent years, which has been receiving much attention for calculating with minimizing the energy consumption. This paper constructs a 4×4 new reversible gate called ZRQ gate to build quantum adder and subtraction. Meanwhile, a novel 1-bit reversible comparator by using the proposed ZRQC module on the basis of ZRQ gate is proposed as the minimum number of reversible gates and quantum costs. In addition, this paper presents a novel 4-bit reversible comparator based on the 1-bit reversible comparator. One of the vital important for optimizing reversible logic is to design reversible logic circuits with the minimum number of parameters. The proposed reversible comparators in this paper can obtain superiority in terms of the number of reversible gates, input constants, garbage outputs, unit delays and quantum costs compared with the existed circuits. Finally, MATLAB simulation software is used to test and verify the correctness of the proposed 4-bit reversible comparator.
Directory of Open Access Journals (Sweden)
Cahill R. T.
2015-10-01
Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.
Concurrent Quantum Computation
Yamaguchi, F; Yamamoto, Y
2000-01-01
A quantum computer is a multi-particle interferometer that comprises beam splitters at both ends and arms, where the n two-level particles undergo the interactions among them. The arms are designed so that relevant functions required to produce a computational result is stored in the phase shifts of the 2^n arms. They can be detected by interferometry that allows us to utilize quantum parallelism. Quantum algorithms are accountable for what interferometers to be constructed to compute particular problems. A standard formalism for constructing the arms has been developed by the extension of classical reversible gate arrays. By its nature of sequential applications of logic operations, the required number of gates increases exponentially as the problem size grows. This may cause a crucial obstacle to perform a quantum computation within a limited decoherence time. We propose a direct and concurrent construction of the interferometer arms by one-time evolution of a physical system with arbitrary multi-particle i...
Parallelization of Reversible Ripple-carry Adders
DEFF Research Database (Denmark)
Thomsen, Michael Kirkedal; Axelsen, Holger Bock
2009-01-01
The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of \\emph{garbage}. Here, we present a novel parallelization scheme...... wherein $m$ parallel $k$-bit reversible ripple-carry adders are combined to form a reversible $mk$-bit \\emph{ripple-block carry adder} with logic depth $\\mathcal{O}(m+k)$ for a \\emph{minimal} logic depth $\\mathcal{O}(\\sqrt{mk})$, thus improving on the $mk$-bit ripple-carry adder logic depth $\\mathcal......{O}(m\\cdot k)$. The underlying mechanisms of the parallelization scheme are formally proven correct. We also show designs for garbage-less reversible comparison circuits. We compare the circuit costs of the resulting ripple-block carry adder with known optimized reversible ripple-carry adders in measures...
Synthesis of Fault Tolerant Reversible Logic Circuits
Islam, Md Saiful; Begum, Zerina; Hafiz, Mohd Zulfiquar; Mahmud, Abdullah Al; 10.1109/CAS-ICTD.2009.4960883
2010-01-01
Reversible logic is emerging as an important research area having its application in diverse fields such as low power CMOS design, digital signal processing, cryptography, quantum computing and optical information processing. This paper presents a new 4*4 universal reversible logic gate, IG. It is a parity preserving reversible logic gate, that is, the parity of the inputs matches the parity of the outputs. The proposed parity preserving reversible gate can be used to synthesize any arbitrary Boolean function. It allows any fault that affects no more than a single signal readily detectable at the circuit's primary outputs. Finally, it is shown how a fault tolerant reversible full adder circuit can be realized using only two IGs. It has also been demonstrated that the proposed design offers less hardware complexity and is efficient in terms of gate count, garbage outputs and constant inputs than the existing counterparts.
Quantum inertia stops superposition: Scan Quantum Mechanics
Gato-Rivera, Beatriz
2017-08-01
Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.
Review: Characterizing and quantifying quantum chaos with quantum tomography
Madhok, Vaibhav; Riofrío, Carlos A.; Deutsch, Ivan H.
2016-11-01
We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under application of the Floquet operator of a quantum map that possesses (or lacks) time reversal symmetry. We find that the rate of information gain, and hence the fidelity of quantum state reconstruction, depends on the symmetry class of the quantum map involved. Moreover, we find an increase in information gain and hence higher reconstruction fidelities when the Floquet maps employed increase in chaoticity. We make predictions for the information gain and show that these results are well described by random matrix theory in the fully chaotic regime. We derive analytical expressions for bounds on information gain using random matrix theory for different class of maps and show that these bounds are realized by fully chaotic quantum systems.
Multiparty Quantum Secret Sharing Using Quantum Fourier Transform
Institute of Scientific and Technical Information of China (English)
HUANG Da-Zu; CHEN Zhi-Gang; GUO Ying
2009-01-01
A (n, n )-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform.In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert.Furthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant.Security analysis shows that our scheme is secure.Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.
Review: Characterizing and quantifying quantum chaos with quantum tomography
Indian Academy of Sciences (India)
VAIBHAV MADHOK; CARLOS A RIOFRÍO; IVAN H DEUTSCH
2016-11-01
We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under the application of the Floquet operator of a quantum map that possesses (or lacks) time-reversal symmetry. We find that the rate of information gain, and hence the fidelity of quantum state reconstruction, depends on the symmetry class of the quantum map involved. Moreover, we find an increase in informationgain and hence higher reconstruction fidelities when the Floquet maps employed increase in chaoticity. We make predictions for the information gain and show that these results are well described by random matrix theory inthe fully chaotic regime. We derive analytical expressions for bounds on information gain using random matrix theory for different classes of maps and show that these bounds are realized by fully chaotic quantum systems.
Arrighi, Pablo
2016-01-01
Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs---in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. Keywords: Quantum Lattice Gas Automata, Block-representation, Curtis-Hedlund-Lyndon, No-signalling, Localizability, Quantum Gravity, Quantum Graphity, Causal Dynamical Triangula...
Delay Reduction in Optimized Reversible Multiplier Circuit
Directory of Open Access Journals (Sweden)
Mohammad Assarian
2012-01-01
Full Text Available In this study a novel reversible multiplier is presented. Reversible logic can play a significant role in computer domain. This logic can be applied in quantum computing, optical computing processing, DNA computing, and nanotechnology. One condition for reversibility of a computable model is that the number of input equate with the output. Reversible multiplier circuits are the circuits used frequently in computer system. For this reason, optimization in one reversible multiplier circuit can reduce its volume of hardware on one hand and increases the speed in a reversible system on the other hand. One of the important parameters that optimize a reversible circuit is reduction of delays in performance of the circuit. This paper investigates the performance characteristics of the gates, the circuits and methods of optimizing the performance of reversible multiplier circuits. Results showed that reduction of the reversible circuit layers has lead to improved performance due to the reduction of the propagation delay between input and output period. All the designs are in the nanometric scales.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Steane, A M
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of quantum information theory. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, the review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory, and, arguably, quantum from classical physics. Basic quantum information ideas are described, including key distribution, teleportation, data compression, quantum error correction, the universal quantum computer and qua...
Quantum optics and cavity QED Quantum network with individual atoms and photons
Directory of Open Access Journals (Sweden)
Rempe G.
2013-08-01
Full Text Available Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality.
Design of Asynchronous Sequential Circuits using Reversible Logic Gates
Directory of Open Access Journals (Sweden)
Bahram Dehghan
2012-09-01
Full Text Available In recent literature, Reversible logic has become one of the promising arena in low power dissipating circuit design in the past few years and has found its applications in low power CMOS circuits ,optical information processing and nanotechnology. The reversible circuits form the basic building block of quantum computers as all quantum operations are reversible. This paper presents asynchronoussequential circuits and circuits without hazard effect using reversible logic gates. I illustrate that we can produce AND, OR, NAND, NOR, EXOR and EXNOR outputs in one design using reversible logic gates. Also, I will evaluate the proposed circuits. The results show that reversible logic can be used to design these circuits. In this paper, the number of gates and garbage outputs is considered.
A Novel Nanometric Fault Tolerant Reversible Subtractor Circuit
Directory of Open Access Journals (Sweden)
Mozhgan Shiri
2012-11-01
Full Text Available Reversibility plays an important role when energy efficient computations are considered. Reversible logic circuits have received significant attention in quantum computing, low power CMOS design, optical information processing and nanotechnology in the recent years. This study proposes a new fault tolerant reversible half-subtractor and a new fault tolerant reversible full-subtractor circuit with nanometric scales. Also in this paper we demonstrate how the well-known and important, PERES gate and TR gate can be synthesized from parity preserving reversible gates. All the designs have nanometric scales.
Gosson, Maurice A. de
2012-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level set...
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Novel Low Power Comparator Design using Reversible Logic Gates
Directory of Open Access Journals (Sweden)
Nagamani A N
2011-09-01
Full Text Available Reversible logic has received great attention in the recent years due to its ability to reduce the power dissipation which is the main requirement in low power digital design. It has wide applications inadvanced computing, low power CMOS design, Optical information processing, DNA computing, bio information, quantum computation and nanotechnology. This paper presents a novel design of reversiblecomparator using the existing reversible gates and proposed new Reversible BJN gate. All the comparators have been modeled and verified using VHDL and ModelSim. A comparative result is presented in terms of number of gates, number of garbage outputs, number of constant inputs and Quantum cost.
Hou, Xianfeng; Zeng, Fang; Du, Fangkai; Wu, Shuizhu
2013-08-01
Sulfide anions are generated not only as a byproduct from industrial processes but also in biosystems. Hence, robust fluorescent sensors for detecting sulfide anions which are fast-responding, water soluble and biocompatible are highly desirable. Herein, we report a carbon-dot-based fluorescent sensor, which features excellent water solubility, low cytotoxicity and a short response time. This sensor is based on the ligand/Cu(II) approach so as to achieve fast sensing of sulfide anions. The carbon dot (CD) serves as the fluorophore as well as the anchoring site for the ligands which bind with copper ions. For this CD-based system, as copper ions bind with the ligands which reside on the surface of the CD, the paramagnetic copper ions efficiently quench the fluorescence of the CD, affording the system a turn-off sensor for copper ions. More importantly, the subsequently added sulfide anions can extract Cu2+ from the system and form very stable CuS with Cu2+, resulting in fluorescence enhancement and affording the system a turn-on sensor for sulfide anions. This fast-responding and selective sensor can operate in totally aqueous solution or in physiological milieu with a low detection limit of 0.78 μM. It displays good biocompatibility, and excellent cell membrane permeability, and can be used to monitor S2- levels in running water and living cells.
Energy Technology Data Exchange (ETDEWEB)
Robinett, R.W
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Robinett, R. W.
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Solution-processed, high-performance light-emitting diodes based on quantum dots
Dai, Xingliang; Zhang, Zhenxing; Jin, Yizheng; Niu, Yuan; Cao, Hujia; Liang, Xiaoyong; Chen, Liwei; Wang, Jianpu; Peng, Xiaogang
2014-11-01
Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions--remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm-2), and a long operational lifetime of more than 100,000 hours at 100 cd m-2, making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.
National Research Council Canada - National Science Library
Shefali Mamataj; Biswajit Das
2016-01-01
.... Reversible Logic is gaining significant consideration as the potential logic design style for implementation in modern nanotechnology and quantum computing with minimal impact on physical entropy...
Managing Reverse Logistics or Reversing Logistics Management?
Brito, Marisa
2004-01-01
textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical principles for reverse logistics as a research field.In particular it puts together a framework ...
TRANSISTOR IMPLEMENTATION OF REVERSIBLE PRT GATES
Directory of Open Access Journals (Sweden)
RASHMI S.B,
2011-03-01
Full Text Available Reversible logic has emerged as one of the most important approaches for power optimization with its application in low power VLSI design. Reversible or information lossless circuits have applications in nanotechnology, digital signal processing, communication, computer graphics and cryptography. They are also a fundamental requirement in the emerging field of quantum computing. In this paper, two newoptimized universal gates are proposed. One of them has an ability to operate as a reversible half adder and half subtractor imultaneously. Another one acts only as half adder with minimum transistor count. The reversible gates are evaluated in terms of number of transistor count, critical path, garbage outputs and one to one mapping. Here transistor implementation of the proposed gates is done by using Virtuoso tool of cadence. Based on the results of the analysis, some of the trade-offs are made in the design to improve the efficiency.
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
de Gosson, Maurice A
2011-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level sets defined by Fermi for the purpose of representing geometrically quantum states.
Wu, L A; Wu, Lian-Ao; Lidar, Daniel
2005-01-01
Quantum computation and communication offer unprecedented advantages compared to classical information processing. Currently, quantum communication is moving from laboratory prototypes into real-life applications. When quantum communication networks become more widespread it is likely that they will be subject to attacks by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware.
The operational meaning of quantum conditional information
Devetak, I; Devetak, Igor; Yard, Jon
2006-01-01
With a statistical view towards information and noise, information theory derives ultimate limitations on information processing tasks. These limits are generally expressed in terms of entropic measures of information and correlations. Here we answer the quantum information-theoretic question: ``How correlated are two quantum systems from the perspective of a third?" by solving the following `quantum state redistribution' problem. Given an arbitrary quantum state of three systems, where Alice holds two and Bob holds one, what is the cost, in terms of quantum communication and entanglement, for Alice to give one of her parts to Bob? The communication cost gives the first operational interpretation to quantum conditional mutual information. The optimal procedure is self-dual under time reversal and is perfectly composable. This generalizes known protocols such as the state merging and fully quantum Slepian-Wolf protocols, from which almost every known protocol in quantum Shannon theory can be derived.
Time-reversal symmetry and random polynomials
Braun, D; Zyczkowski, K
1996-01-01
We analyze the density of roots of random polynomials where each complex coefficient is constructed of a random modulus and a fixed, deterministic phase. The density of roots is shown to possess a singular component only in the case for which the phases increase linearly with the index of coefficients. This means that, contrary to earlier belief, eigenvectors of a typical quantum chaotic system with some antiunitary symmetry will not display a clustering curve in the stellar representation. Moreover, a class of time-reverse invariant quantum systems is shown, for which spectra display fluctuations characteristic of orthogonal ensemble, while eigenvectors confer to predictions of unitary ensemble.
Efficient carry skip Adder design using full adder and carry skip block based on reversible Logic
Varun Pratap Singh; Shiv Dayal; Manish Rai
2015-01-01
In recent years, Reversible Logic is becoming more and more prominent technology having its applications in Quantum Computing, Nanotechnology, and Optical Computing. Reversibility plays an important role when energy efficient computations are considered. In this paper, binary full Adder with Design I and Design II are proposed. The performance analysis is verified using number of reversible gates, Garbage input/outputs, delay, number of logical calculations and Quantum Cost. According t...
Scarani, Valerio; Iblisdir, Sofyan; Gisin, Nicolas; Acin, Antonio
2005-01-01
The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional an...
A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor
DEFF Research Database (Denmark)
Hu, Yongjie; Churchill, Hugh; Reilly, David
2007-01-01
: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots......Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation...... and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin...
Bright single photon source based on self-aligned quantum dot–cavity systems
DEFF Research Database (Denmark)
Maier, Sebastian; Gold, Peter; Forchel, Alfred
2014-01-01
We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...... avenue for efficient (up to 42% demonstrated) and pure (g2(0) value of 0.023) single-photon emission....... dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new...
Quantum CPU and Quantum Algorithm
Wang, An Min
1999-01-01
Making use of an universal quantum network -- QCPU proposed by me\\upcite{My1}, it is obtained that the whole quantum network which can implement some the known quantum algorithms including Deutsch algorithm, quantum Fourier transformation, Shor's algorithm and Grover's algorithm.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Managing Reverse Logistics or Reversing Logistics Management?
M.P. de Brito (Marisa)
2004-01-01
textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse
Managing Reverse Logistics or Reversing Logistics Management?
M.P. de Brito (Marisa)
2004-01-01
textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse log
High-Capacity Quantum Associative Memories
Diamantini, M. Cristina; Trugenberger, Carlo A.
2015-01-01
We review our models of quantum associative memories that represent the "quantization" of fully coupled neural networks like the Hopfield model. The idea is to replace the classical irreversible attractor dynamics driven by an Ising model with pattern-dependent weights by the reversible rotation of an input quantum state onto an output quantum state consisting of a linear superposition with probability amplitudes peaked on the stored pattern closest to the input in Hamming distance, resulting...
Low Power Reversible Parallel Binary Adder/Subtractor
Directory of Open Access Journals (Sweden)
Rangaraju H G
2010-09-01
Full Text Available In recent years, Reversible Logic is becoming more and more prominent technology having its applications in Low Power CMOS, Quantum Computing, Nanotechnology, and Optical Computing. Reversibility plays an important role when energy efficient computations are considered. In this paper, Reversible eight-bit Parallel Binary Adder/Subtractor with Design I, Design II and Design III are proposed. In all the three design approaches, the full Adder and Subtractors are realized in a single unit as compared to only full Subtractor in the existing design. The performance analysis is verified using number reversible gates, Garbage input/outputs and Quantum Cost. It is observed that Reversible eight-bit Parallel Binary Adder/Subtractor with Design III is efficient compared to Design I, Design II and existing design
Low Power Reversible Parallel Binary Adder/Subtractor
Rangaraju, H G; Muralidhara, K N; Raja, K B; 10.5121/vlsic.2010.1303
2010-01-01
In recent years, Reversible Logic is becoming more and more prominent technology having its applications in Low Power CMOS, Quantum Computing, Nanotechnology, and Optical Computing. Reversibility plays an important role when energy efficient computations are considered. In this paper, Reversible eight-bit Parallel Binary Adder/Subtractor with Design I, Design II and Design III are proposed. In all the three design approaches, the full Adder and Subtractors are realized in a single unit as compared to only full Subtractor in the existing design. The performance analysis is verified using number reversible gates, Garbage input/outputs and Quantum Cost. It is observed that Reversible eight-bit Parallel Binary Adder/Subtractor with Design III is efficient compared to Design I, Design II and existing design.
Novel Parity-Preserving Designs of Reversible 4-Bit Comparator
Qi, Xue-mei; Chen, Fu-long; Wang, Hong-tao; Sun, Yun-xiang; Guo, Liang-min
2014-04-01
Reversible logic has attracted much attention in recent years especially when the calculation with minimum energy consumption is considered. This paper presents two novel approaches for designing reversible 4-bit comparator based on parity-preserving gates, which can detect any fault that affects no more than a single logic signal. In order to construct the comparator, three variable EX-OR gate (TVG), comparator gate (CPG), four variable EX-OR gate block (FVGB) and comparator gate block (CPGB) are designed, and they are parity-preserving and reversible. Their quantum equivalent implementations are also proposed. The design of two comparator circuits is completed by using existing reversible gates and the above new reversible circuits. All these comparators have been modeled and verified in Verilog hardware description language (Verilog HDL). The Quartus II simulation results indicate that their circuits' logic structures are correct. The comparative results are presented in terms of quantum cost, delay and garbage outputs.
Low Power Reversible Parallel Binary Adder/Subtractor
Directory of Open Access Journals (Sweden)
Muralidhara K N
2010-09-01
Full Text Available In recent years, Reversible Logic is becoming more and more prominent technology having its applications inLow Power CMOS, Quantum Computing, Nanotechnology, and Optical Computing. Reversibility plays animportant role when energy efficient computations are considered. In this paper, Reversible eight-bit ParallelBinary Adder/Subtractor with Design I, Design II and Design III are proposed. In all the three designapproaches, the full Adder and Subtractors are realized in a single unit as compared to only full Subtractorin the existing design. The performance analysis is verified using number reversible gates, Garbageinput/outputs and Quantum Cost. It is observed that Reversible eight-bit Parallel Binary Adder/Subtractorwith Design III is efficient compared to Design I, Design II and existing design
Heuristic Synthesis of Reversible Logic – A Comparative Study
Directory of Open Access Journals (Sweden)
Chua Shin Cheng
2014-01-01
Full Text Available Reversible logic circuits have been historically motivated by theoretical research in low-power, and recently attracted interest as components of the quantum algorithm, optical computing and nanotechnology. However due to the intrinsic property of reversible logic, traditional irreversible logic design and synthesis methods cannot be carried out. Thus a new set of algorithms are developed correctly to synthesize reversible logic circuit. This paper presents a comprehensive literature review with comparative study on heuristic based reversible logic synthesis. It reviews a range of heuristic based reversible logic synthesis techniques reported by researchers (BDD-based, cycle-based, search-based, non-search-based, rule-based, transformation-based, and ESOP-based. All techniques are described in detail and summarized in a table based on their features, limitation, library used and their consideration metric. Benchmark comparison of gate count and quantum cost are analysed for each synthesis technique. Comparing the synthesis algorithm outputs over the years, it can be observed that different approach has been used for the synthesis of reversible circuit. However, the improvements are not significant. Quantum cost and gate count has improved over the years, but arguments and debates are still on certain issues such as the issue of garbage outputs that remain the same. This paper provides the information of all heuristic based synthesis of reversible logic method proposed over the years. All techniques are explained in detail and thus informative for new reversible logic researchers and bridging the knowledge gap in this area.
Novel designs of nanometric parity preserving reversible compressor
Shoaei, Soghra; Haghparast, Majid
2014-08-01
Reversible logic is a new field of study that has applications in optical information processing, low power CMOS design, DNA computing, bioinformatics, and nanotechnology. Low power consumption is a basic issue in VLSI circuits today. To prevent the distribution of errors in the quantum circuit, the reversible logic gates must be converted into fault-tolerant quantum operations. Parity preserving is used to realize fault tolerant in this circuits. This paper proposes a new parity preserving reversible gate. We named it NPPG gate. The most significant aspect of the NPPG gate is that it can be used to produce parity preserving reversible full adder circuit. The proposed parity preserving reversible full adder using NPPG gate is more efficient than the existing designs in term of quantum cost and it is optimized in terms of number of constant inputs and garbage outputs. Compressors are of importance in VLSI and digital signal processing applications. Effective VLSI compressors reduce the impact of carry propagation of arithmetic operations. They are built from the full adder blocks. We also proposed three new approaches of parity preservation reversible 4:2 compressor circuits. The third design is better than the previous two in terms of evaluation parameters. The important contributions have been made in the literature toward the design of reversible 4:2 compressor circuits; however, there are not efforts toward the design of parity preservation reversible 4:2 compressor circuits. All the scales are in the nanometric criteria.
Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots
El Afandy, Rami
2011-07-07
Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique. In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy. The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical
Rule-Based Optimization of Reversible Circuits
Arabzadeh, Mona; Zamani, Morteza Saheb
2010-01-01
Reversible logic has applications in various research areas including low-power design and quantum computation. In this paper, a rule-based optimization approach for reversible circuits is proposed which uses both negative and positive control Toffoli gates during the optimization. To this end, a set of rules for removing NOT gates and optimizing sub-circuits with common-target gates are proposed. To evaluate the proposed approach, the best-reported synthesized circuits and the results of a recent synthesis algorithm which uses both negative and positive controls are used. Our experiments reveal the potential of the proposed approach in optimizing synthesized circuits.
Reversible Thermoset Adhesives
Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)
2016-01-01
Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.
Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.
2016-07-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Excitonic fine structure of elongated InAs/InP quantum dots
Zieliński, M.
2013-10-01
The bright exciton splitting in nanosystems and its origins are of primary importance for quantum-dot-based entangled-photon-pair generation. In this paper, I investigate excitonic energies and fine structure for million-atom InAs/InP quantum dots using many-body theory in conjunction with the empirical tight-binding method. Whereas the phenomenological theories relate the fine-structure splitting to quantum-dot-shape asymmetry, using an atomistic approach I demonstrate that for certain elongated quantum-dot shapes the bright exciton splitting can be significantly reduced. I demonstrate that strain effects play an essential role as the main contribution to the bright exciton splitting in InAs/InP quantum dots and observe highly reduced fine-structure splitting for high-symmetry quantum dots without wetting layer. I report the “intrinsic” fine-structure splitting, due to the underlying crystal lattice, to be generally significantly larger than the values predicted by the empirical pseudopotential calculations. Finally, I study excitonic properties of alloyed InAsP quantum dots and demonstrate that alloying effects can significantly reduce fine-structure splitting even in significantly elongated quantum dots.
Chattaraj, Pratim Kumar
2010-01-01
The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan
Optimized Multiplier Using Reversible Multicontrol Input Toffoli Gates
Directory of Open Access Journals (Sweden)
H R Bhagyalakshmi
2013-01-01
Full Text Available Reversible logic is an important area to carry the computation into the world of quantum computing. In thispaper a 4-bit multiplier using a new reversible logic gate called BVPPG gate is presented. BVPPG gate isa 5 x 5 reversible gate which is designed to generate partial products required to perform multiplicationand also duplication of operand bits is obtained. This reduces the total cost of the circuit. Toffoli gate isthe universal and also most flexible reversible logic gate. So we have used the Toffoli gates to construct thedesigned multiplier.
Reverse logistics - a framework
Brito, Marisa; Dekker, Rommert
2002-01-01
textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of products, processes and actors. In addition we provide a decision framework for Reverse Logistics and we present it according to long, medium and short term decisions, i.e. strategic-tactic-operational decis...
Reverse cholesterol transport revisited
Institute of Scientific and Technical Information of China (English)
Astrid; E; van; der; Velde
2010-01-01
Reverse cholesterol transport was originally described as the high-density lipoprotein-mediated cholesterol flux from the periphery via the hepatobiliary tract to the intestinal lumen, leading to fecal excretion. Since the introduction of reverse cholesterol transport in the 1970s, this pathway has been intensively investigated. In this topic highlight, the classical reverse cholesterol transport concepts are discussed and the subject reverse cholesterol transport is revisited.
Reverse logistics - a framework
M.P. de Brito (Marisa); R. Dekker (Rommert)
2002-01-01
textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of product
Nonlocal Measurements in the Time-Symmetric Quantum Mechanics
Vaidman, L; Vaidman, Lev; Nevo, Izhar
2005-01-01
Although nondemolition, reliable, and instantaneous quantum measurements of some nonlocal variables are impossible, demolition reliable instantaneous measurements are possible for all variables. It is shown that this is correct also in the framework of the time-symmetric quantum formalism, i.e. nonlocal variables of composite quantum systems with quantum states evolving both forward and backward in time are measurable in a demolition way. The result follows from the possibility to reverse with certainty the time direction of a backward evolving quantum state. Demolition measurements of nonlocal backward evolving quantum states require remarkably small resources. This is so because the combined operation of time reversal and teleportation of a local backward evolving quantum state requires only a single quantum channel and no transmission of classical information.
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Energy Technology Data Exchange (ETDEWEB)
Zurek, Wojciech H [Los Alamos National Laboratory
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
Putz, Volkmar
2015-01-01
We consider ways of conceptualizing, rendering and perceiving quantum music, and quantum art in general. Thereby we give particular emphasis to its non-classical aspects, such as coherent superposition and entanglement.
Photophysical properties of pyronin dyes in reverse micelles of AOT
Energy Technology Data Exchange (ETDEWEB)
Bayraktutan, Tuğba; Meral, Kadem; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr
2014-01-15
The photophysical properties of pyronin B (PyB) and pyronin Y (PyY) in reverse micelles formed with water/sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n-heptane were investigated by UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. This study was carried out a wide range of reverse micelle sizes, with hydrodynamic radii ranging from 1.85 to 9.38 nm. Significant photophysical parameters as band shifts, fluorescence quantum yields and fluorescence lifetimes were determined to understand how photophysical and spectroscopic features of the dye compounds were affected by the variation of reverse micelle sizes. In this regard, control of reverse micelle size by changing W{sub 0}, the molar ratio of water to surfactant, allowed tuning the photophysical properties of the dyes in organic solvent via reverse micelle. Non-fluorescent H-aggregates of pyronin dyes were observed for the smaller reverse micelles whereas an increase in the reverse micelle size induced an increment in the amount of dye monomers instead of dye aggregates. Thus, the fluorescence intensities of the dyes were improved by increasing W{sub 0} due to the predomination of the fluorescent dye monomers. As a result, the fluorescence quantum yields also increased. The fluorescence lifetimes of the dyes in the reverse micelles were determined by the time-resolved fluorescence decay studies. Evaluation of the fluorescence lifetimes calculated for pyronin dyes in the reverse micelles showed that the size of reverse micelle affected the fluorescence lifetimes of pyronin dyes. -- Highlights: • The photophysical properties of pyronin dyes were examined by spectroscopic techniques. • Optical properties of the dyes were tuned by changing of W{sub 0} values. • The fluorescence lifetime and quantum yield values of the dyes in reverse micelles were discussed.
Cheon, T
2004-01-01
We show that the U(2) family of point interactions on a line can be utilized to provide the U(2) family of qubit operations for quantum information processing. Qubits are realized as localized states in either side of the point interaction which represents a controllable gate. The manipulation of qubits proceeds in a manner analogous to the operation of an abacus. Keywords: quantum computation, quantum contact interaction, quantum wire
Esteban Guevara
2006-01-01
The relationships between game theory and quantum mechanics let us propose certain quantization relationships through which we could describe and understand not only quantum but also classical, evolutionary and the biological systems that were described before through the replicator dynamics. Quantum mechanics could be used to explain more correctly biological and economical processes and even it could encloses theories like games and evolutionary dynamics. This could make quantum mechanics a...
2008-01-01
Quantum Nanomechanics is the emerging field which pertains to the mechanical behavior of nanoscale systems in the quantum domain. Unlike the conventional studies of vibration of molecules and phonons in solids, quantum nanomechanics is defined as the quantum behavior of the entire mechanical structure, including all of its constituents--the atoms, the molecules, the ions, the electrons as well as other excitations. The relevant degrees of freedom of the system are described by macroscopic var...
The one-way quantum computer - a non-network model of quantum computation
Raussendorf, R; Briegel, H J; Raussendorf, Robert; Browne, Daniel E.; Briegel, Hans J.
2001-01-01
A one-way quantum computer works by only performing a sequence of one-qubit measurements on a particular entangled multi-qubit state, the cluster state. No non-local operations are required in the process of computation. Any quantum logic network can be simulated on the one-way quantum computer. On the other hand, the network model of quantum computation cannot explain all ways of processing quantum information possible with the one-way quantum computer. In this paper, two examples of the non-network character of the one-way quantum computer are given. First, circuits in the Clifford group can be performed in a single time step. Second, the realisation of a particular circuit --the bit-reversal gate-- on the one-way quantum computer has no network interpretation. (Submitted to J. Mod. Opt, Gdansk ESF QIT conference issue.)
Fluctuation theorems for quantum processes
Albash, Tameem; Marvian, Milad; Zanardi, Paolo
2013-01-01
We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving (CPTP) maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that unitality replaces micro-reversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.
An Improved Structure Of Reversible Adder And Subtractor
Directory of Open Access Journals (Sweden)
Aakash Gupta
2013-03-01
Full Text Available In today’s world everyday a new technology which is faster, smaller and more complex than its predecessor is being developed. The increased number of transistors packed onto a chip of a conventional system results in increased power consumption that is why Reversible logic has drawn attention of Researchers due to its less heat dissipating characteristics. Reversible logic can be imposed over applications such as quantum computing, optical computing, quantum dot cellular automata, low power VLSI circuits, DNA computing. This paper presents the reversible combinational circuit of adder, subtractor and parity preserving subtractor. The suggested circuit in this paper are designed using Feynman, Double Feynman and MUX gates which are better than the existing one in literature in terms of Quantum cost, Garbage output and Total logical calculations.
Fehr, S.
2010-01-01
Quantum cryptography makes use of the quantum-mechanical behavior of nature for the design and analysis of cryptographic schemes. Optimally (but not always), quantum cryptography allows for the design of cryptographic schemes whose security is guaranteed solely by the laws of nature. This is in shar
Institute of Scientific and Technical Information of China (English)
Ji Ying-Hua; Hu Ju-Ju; Hu Yan
2012-01-01
We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation.We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state,and also their relationship with quantum discord.The results show that the decrease of the purity of an initial quantum state can induce the attenuation of concurrence or quantum discord,but the attenuation of quantum discord is obviously slower than the concurrence's,correspondingly the survival time of quantum discord is longer.Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of the initial quantum state.The higher the degree of entanglement,the more robust the quantum discord is than concurrence.And the reverse is equally true.Birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition,so does the concurrence.
Local Quantum Dot Tuning on Photonic Crystal Chips
Faraon, Andrei; Fushman, Ilya; Stoltz, Nick; Petroff, Pierre; Vuckovic, Jelena
2007-01-01
Quantum networks based on InGaAs quantum dots embedded in photonic crystal devices rely on QDs being in resonance with each other and with the cavities they are embedded in. We developed a new technique based on temperature tuning to spectrally align different quantum dots located on the same chip. The technique allows for up to 1.8nm reversible on-chip quantum dot tuning.
Reversible and efficient conversion between microwave and optical light
Andrews, R W; Purdy, T P; Cicak, K; Simmonds, R W; Regal, C A; Lehnert, K W
2013-01-01
Converting low-frequency electrical signals into much higher frequency optical signals has enabled modern communications networks to leverage both the strengths of microfabricated electrical circuits and optical fiber transmission, allowing information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors via low-loss optical fibers and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. For this demanding application, a converter must provide a near-unitary transformation between different frequencies; that is, the ideal transformation is reversible, coherent, and lossless. Here we demonstrate a converter that reversibly, coherently, and efficiently links the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer cl...
Recoverability in quantum information theory
Wilde, Mark
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.
A Spatial Domain Quantum Watermarking Scheme
Wei, Zhan-Hong; Chen, Xiu-Bo; Xu, Shu-Jiang; Niu, Xin-Xin; Yang, Yi-Xian
2016-07-01
This paper presents a spatial domain quantum watermarking scheme. For a quantum watermarking scheme, a feasible quantum circuit is a key to achieve it. This paper gives a feasible quantum circuit for the presented scheme. In order to give the quantum circuit, a new quantum multi-control rotation gate, which can be achieved with quantum basic gates, is designed. With this quantum circuit, our scheme can arbitrarily control the embedding position of watermark images on carrier images with the aid of auxiliary qubits. Besides reversely acting the given quantum circuit, the paper gives another watermark extracting algorithm based on quantum measurements. Moreover, this paper also gives a new quantum image scrambling method and its quantum circuit. Differ from other quantum watermarking schemes, all given quantum circuits can be implemented with basic quantum gates. Moreover, the scheme is a spatial domain watermarking scheme, and is not based on any transform algorithm on quantum images. Meanwhile, it can make sure the watermark be secure even though the watermark has been found. With the given quantum circuit, this paper implements simulation experiments for the presented scheme. The experimental result shows that the scheme does well in the visual quality and the embedding capacity. Supported by the National Natural Science Foundation of China under Grant Nos. 61272514, 61170272, 61373131, 61121061, 61411146001, the program for New Century Excellent Talents under Grant No. NCET-13-0681, the National Development Foundation for Cryptological Research (Grant No. MMJJ201401012) and the Fok Ying Tung Education Foundation under Grant No. 131067, and the Shandong Provincial Natural Science Foundation of China under Grant No. ZR2013FM025
Directory of Open Access Journals (Sweden)
Wang S
2016-01-01
Full Text Available Shuo Wang, Wanming Li, Dezheng Yuan, Jindan Song, Jin Fang Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, People’s Republic of China Abstract: The large external antigen (LEA is a cell surface glycoprotein that has been proven to be highly expressed in colorectal cancer (CRC as a tumor-associated antigen. To evaluate and validate the relationship between LEA expression and clinical characteristics of CRC with high efficiency, LEA expression levels were detected in 85 tissue blocks from CRC patients by quantum dot-based immunohistochemistry (QD-IHC combined with imaging quantitative analysis using quantum dots with a 605 nm emission wavelength (QD605 conjugated to an ND-1 monoclonal antibody against LEA as a probe. Conventional IHC was performed in parallel for comparison. Both QD-IHC and conventional IHC showed that LEA was specifically expressed in CRC, but not in non-CRC tissues, and high LEA expression was significantly associated with a more advanced T-stage (P<0.05, indicating that LEA is likely to serve as a CRC prognostic marker. Compared with conventional IHC, receiver operating characteristic analysis revealed that QD-IHC possessed higher sensitivity, resulting in an increased positive detection rate of CRC, from 70.1% to 89.6%. In addition, a simpler operation, objective analysis of results, and excellent repeatability make QD-IHC an attractive alternative to conventional IHC in clinical practice. Furthermore, to explore whether the QD probes can be utilized to quantitatively detect living cells or single cells, quantum dot-based immunocytochemistry (QD-ICC combined with imaging quantitative analysis was developed to evaluate LEA expression in several CRC cell lines. It was demonstrated that QD-ICC could also predict the correlation between LEA expression and the T-stage characteristics of
1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser
Energy Technology Data Exchange (ETDEWEB)
Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Orchard, J. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Clarke, E. [EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street, S1 3JD Sheffield (United Kingdom)
2015-10-12
We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.
Quantum Computing for Quantum Chemistry
2010-09-01
This three-year project consisted on the development and application of quantum computer algorithms for chemical applications. In particular, we developed algorithms for chemical reaction dynamics, electronic structure and protein folding. The first quantum computing for
Quantum Operations as Quantum States
Arrighi, P; Arrighi, Pablo; Patricot, Christophe
2004-01-01
In this article we formalize the correspondence between quantum states and quantum operations, and harness its consequences. This correspondence was already implicit in Choi's proof of the operator sum representation of Completely Positive-preserving linear maps; we go further and show that all of the important theorems concerning quantum operations can be derived as simple corollaries of those concerning quantum states. As we do so the discussion first provides an elegant and original review of the main features of quantum operations. Next (in the second half of the paper) we search for more results to arise from the correspondence. Thus we propose a factorizability condition and an extremal trace-preservedness condition for quantum operations, give two novel Schmidt-type decompositions of bipartite pure states and two interesting composition laws for which the set of quantum operations and quantum states remain stable. The latter enables us to define a group structure upon the set of totally entangled state...
Quantum memory in quantum cryptography
Mor, T
1999-01-01
[Shortened abstract:] This thesis investigates the importance of quantum memory in quantum cryptography, concentrating on quantum key distribution schemes. In the hands of an eavesdropper -- a quantum memory is a powerful tool, putting in question the security of quantum cryptography; Classical privacy amplification techniques, used to prove security against less powerful eavesdroppers, might not be effective when the eavesdropper can keep quantum states for a long time. In this work we suggest a possible direction for approaching this problem. We define strong attacks of this type, and show security against them, suggesting that quantum cryptography is secure. We start with a complete analysis regarding the information about a parity bit (since parity bits are used for privacy amplification). We use the results regarding the information on parity bits to prove security against very strong eavesdropping attacks, which uses quantum memories and all classical data (including error correction codes) to attack th...
Transistor Level Implementation of Digital Reversible Circuits
Directory of Open Access Journals (Sweden)
K.Prudhvi Raj
2015-12-01
Full Text Available Now a days each and every electronic gadget is desi gning smartly and provides number of applications, so these designs dissipate high amount of power. Rever sible logic is becoming one of the best emerging de sign technologies having its applications in low power C MOS, Quantum computing and Nanotechnology. Reversible logic plays an important role in the des ign of energy efficient circuits. Adders and subtra ctors are the essential blocks of the computing systems. In this paper, reversible gates and circuits are de signed and implemented in CMOS and pass transistor logic u sing Mentor graphics backend tools. A four-bit ripp le carry adder/subtractor and an eight-bit reversible Carry Skip Adder are implemented and compared with the conventional circuits
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Quantum entanglement and quantum operation
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.
Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots
Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.
2016-01-01
Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms. PMID:26813326
Energy Technology Data Exchange (ETDEWEB)
Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita; Carrillo-Carrion, Carolina; Niebling, Tobias; Parak, Wofgang J.; Heimbrodt, Wolfram, E-mail: Wolfram.Heimbrodt@physik.uni-marburg.de [Department of Physics and Material Sciences Center, Philipps-University Marburg, Renthof 5, D-35032 Marburg (Germany)
2015-01-14
Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.
Quantum biology on the edge of quantum chaos.
Directory of Open Access Journals (Sweden)
Gabor Vattay
Full Text Available We give a new explanation for why some biological systems can stay quantum coherent for a long time at room temperature, one of the fundamental puzzles of quantum biology. We show that systems with the right level of complexity between chaos and regularity can increase their coherence time by orders of magnitude. Systems near Critical Quantum Chaos or Metal-Insulator Transition (MIT can have long coherence times and coherent transport at the same time. The new theory tested in a realistic light harvesting system model can reproduce the scaling of critical fluctuations reported in recent experiments. Scaling of return probability in the FMO light harvesting complex shows the signs of universal return probability decay observed at critical MIT. The results may open up new possibilities to design low loss energy and information transport systems in this Poised Realm hovering reversibly between quantum coherence and classicality.
Quantum biology on the edge of quantum chaos.
Vattay, Gabor; Kauffman, Stuart; Niiranen, Samuli
2014-01-01
We give a new explanation for why some biological systems can stay quantum coherent for a long time at room temperature, one of the fundamental puzzles of quantum biology. We show that systems with the right level of complexity between chaos and regularity can increase their coherence time by orders of magnitude. Systems near Critical Quantum Chaos or Metal-Insulator Transition (MIT) can have long coherence times and coherent transport at the same time. The new theory tested in a realistic light harvesting system model can reproduce the scaling of critical fluctuations reported in recent experiments. Scaling of return probability in the FMO light harvesting complex shows the signs of universal return probability decay observed at critical MIT. The results may open up new possibilities to design low loss energy and information transport systems in this Poised Realm hovering reversibly between quantum coherence and classicality.
All-Optical Reversible Hybrid New Gate using TOAD
Directory of Open Access Journals (Sweden)
Goutam Kumar Maity
2014-03-01
Full Text Available Reversible logic is emerged as a promising computing paradigm with applications in low-power CMOS, quantum computing, optical computing and nanotechnology. Optical logic gates become potential component to work at macroscopic (light pulses carry information, or quantum (single photon carries information levels with high efficiency. In this paper, we propose a novel scheme of Hybrid new gate realization in all-optical domain. Simulation results verify the functionality of the gate as well as reversibility. Approximate insertion power loss in dB is also reported for the Gaussian incident and control pulse.
Horodecki, R; Horodecki, M; Horodecki, K; Horodecki, Ryszard; Horodecki, Pawel; Horodecki, Michal; Horodecki, Karol
2007-01-01
All our former experience with application of quantum theory seems to say: {\\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via ...
Weaver, Nik
2010-01-01
We define a "quantum relation" on a von Neumann algebra M \\subset B(H) to be a weak* closed operator bimodule over its commutant M'. Although this definition is framed in terms of a particular representation of M, it is effectively representation independent. Quantum relations on l^\\infty(X) exactly correspond to subsets of X^2, i.e., relations on X. There is also a good definition of a "measurable relation" on a measure space, to which quantum relations partially reduce in the general abelian case. By analogy with the classical setting, we can identify structures such as quantum equivalence relations, quantum partial orders, and quantum graphs, and we can generalize Arveson's fundamental work on weak* closed operator algebras containing a masa to these cases. We are also able to intrinsically characterize the quantum relations on M in terms of families of projections in M \\otimes B(l^2).
A Cost- Effective Design of Reversible Programmable Logic Array
Singla, Pradeep; 10.5120/5619-7911
2012-01-01
In the recent era, Reversible computing is a growing field having applications in nanotechnology, optical information processing, quantum networks etc. In this paper, the authors show the design of a cost effective reversible programmable logic array using VHDL. It is simulated on xilinx ISE 8.2i and results are shown. The proposed reversible Programming logic array called RPLA is designed by MUX gate [10] & Feynman gate for 3- inputs, which is able to perform any reversible 3- input logic function or Boolean function. Furthermore the quantized analysis with camparitive finding is shown for the realized RPLA against the existing one. The result shows improvement in the quantum cost and total logical caculation in proposed RPLA.
Reversibility and Adiabatic Computation Trading Time and Space for Energy
Li, Maozhen; Li, Ming; Vitanyi, Paul
1996-01-01
Future miniaturization and mobilization of computing devices requires energy parsimonious `adiabatic' computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of `reversible' pebble games. We show that Bennett's pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a trade-off for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A time-irreversibility tra...
Quantum Games and Quantum Discord
Nawaz, Ahmad
2010-01-01
We quantize prisoners dilemma and chicken game by our generalized quantization scheme to explore the role of quantum discord in quantum games. In order to establish this connection we use Werner-like state as an initial state of the game. In this quantization scheme measurement can be performed in entangled as well as in product basis. For the measurement in entangled basis the dilemma in both the games can be resolved by separable states with non-zero quantum discord. Similarly for product basis measurement the payoffs are quantum mechanical only for nonzero values of quantum discord.
Reversible cortical blindness: posterior reversible encephalopathy syndrome.
Bandyopadhyay, Sabyasachi; Mondal, Kanchan Kumar; Das, Somnath; Gupta, Anindya; Biswas, Jaya; Bhattacharyya, Subir Kumar; Biswas, Gautam
2010-11-01
Cortical blindness is defined as visual failure with preserved pupillary reflexes in structurally intact eyes due to bilateral lesions affecting occipital cortex. Bilateral oedema and infarction of the posterior and middle cerebral arterial territory, trauma, glioma and meningioma of the occipital cortex are the main causes of cortical blindness. Posterior reversible encephalopathy syndrome (PRES) refers to the reversible subtype of cortical blindness and is usually associated with hypertension, diabetes, immunosuppression, puerperium with or without eclampsia. Here, 3 cases of PRES with complete or partial visual recovery following treatment in 6-month follow-up are reported.
Introduction to reversible computing
Perumalla, Kalyan S
2013-01-01
Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever
Elizalde, E
2000-01-01
A deleting operation is introduced which differs from the commonly used {\\it controlled-not} (C-not) conditional logical operation $-$to flip the (classical or quantum) state of the last copy in a chain in a deletion process. It is completely reversible, in the classical case, possessing a most natural cloning operation counterpart. We call this deleting procedure R-deletion since, in a way, it can be viewed as a `randomization' of the standard C-not operator. It is a nonlinear operation and has the remarkable property of avoiding in a simple manner the `impossibility of deletion of a quantum state' principle, put forward by Pati and Braunstein recently \\cite{pbn1}.
Reverse Core Engine with Thrust Reverser
Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)
2017-01-01
An engine system has a gas generator, a bi-fi wall surrounding at least a portion of the gas generator, a casing surrounding a fan, and the casing having first and second thrust reverser doors which in a deployed position abut each other and the bi-fi wall.
Indian Academy of Sciences (India)
Dipika Barbadikar; Rashmi Gautam; Sanjay Sahare; Rajendra Patrikar; Jatin Bhatt
2013-06-01
Si quantum dots-based structures are studied recently for performance enhancement in electronic devices. This paper presents an attempt to get high density quantum dots (QDs) by low pressure chemical vapour deposition (LPCVD) on SiO2 substrate. Surface treatment, annealing and rapid thermal processing (RTP) are performed to study their effect on size and density of QDs. The samples are also studied using Fourier transformation infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence study (PL). The influence of Si–OH bonds formed due to surface treatment on the density of QDs is discussed. Present study also discusses the influence of surface treatment and annealing on QD formation.
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
Gilbert, Gerald; Hamrick, Michael
2013-01-01
This book provides a detailed account of the theory and practice of quantum cryptography. Suitable as the basis for a course in the subject at the graduate level, it crosses the disciplines of physics, mathematics, computer science and engineering. The theoretical and experimental aspects of the subject are derived from first principles, and attention is devoted to the practical development of realistic quantum communications systems. The book also includes a comprehensive analysis of practical quantum cryptography systems implemented in actual physical environments via either free-space or fiber-optic cable quantum channels. This book will be a valuable resource for graduate students, as well as professional scientists and engineers, who desire an introduction to the field that will enable them to undertake research in quantum cryptography. It will also be a useful reference for researchers who are already active in the field, and for academic faculty members who are teaching courses in quantum information s...
Arrighi, P
2003-01-01
Alice communicates with words drawn uniformly amongst $\\{\\ket{j}\\}_{j=1..n}$, the canonical orthonormal basis. Sometimes however Alice interleaves quantum decoys $\\{\\frac{\\ket{j}+i\\ket{k}}{\\sqrt{2}}\\}$ between her messages. Such pairwise superpositions of possible words cannot be distinguished from the message words. Thus as malevolent Eve observes the quantum channel, she runs the risk of damaging the superpositions (by causing a collapse). At the receiving end honest Bob, whom we assume is warned of the quantum decoys' distribution, checks upon their integrity with a measurement. The present work establishes, in the case of individual attacks, the tradeoff between Eve's information gain (her chances, if a message word was sent, of guessing which) and the disturbance she induces (Bob's chances, if a quantum decoy was sent, to detect tampering). Besides secure channel protocols, quantum decoys seem a powerful primitive for constructing n-dimensional quantum cryptographic applications. Moreover the methods emp...
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
Hadjam, Fatima; Moraga, Claudio
2014-01-01
Quantum computers are considered as a future alternative to circumvent the heat dissipation problem of VLSI circuits. The synthesis of reversible circuits is a very promising area of study considering the expected further technological advances towards quantum computing. In this report, we propose a linear genetic programming system to design reversible circuits -RIMEP2-. The system has evolved reversible circuits starting from scratch without resorting to a pre-existing library. The results ...
2010-03-04
efficient or less costly than their classical counterparts. A large-scale quantum computer is certainly an extremely ambi- tious goal, appearing to us...outperform the largest classical supercomputers in solving some specific problems important for data encryption. In the long term, another application...which the quantum computer depends, causing the quantum mechanically destructive process known as decoherence . Decoherence comes in several forms
Hughes, R J; Dyer, P L; Luther, G G; Morgan, G L; Schauer, M M; Hughes, Richard J; Dyer, P; Luther, G G; Morgan, G L; Schauer, M
1995-01-01
Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.
Zhang, Jiaxiang; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G
2016-01-01
The scalability of quantum dot based non-classical light sources relies on the control over their dissimilar emission energies. Electric fields offer a promising route to tune the quantum dot emission energy through the quantum-confined Stark effect. However, electric fields have been mostly used for tuning the energy of single-photon emission from quantum dots, while electrical control over the energy of entangled-photon emission, which is crucial for building a solid-state quantum repeater using indistinguishable entangled photons, has not been realized yet. Here, we present a method to achieve electrical control over the energy of entangled-photon emission from quantum dots. The device consists of an electrically-tunable quantum diode integrated onto a piezoactuator. We find that, through application of a vertical electric field, the critical uniaxial stress used to eliminate the fine-structure-splitting of quantum dots can be linearly tuned. This allows realization of a triggered source of energy-tunable ...
Quantum levitation using metamaterials
Pappakrishnan, Venkatesh K.
The emergence of an attractive vacuum force (Casimir force) between two purely dielectric materials can lead to an increase in the friction and the stiction effects in nanoscale devices, resulting in degradation or decreased performance. Thus, it is of high practical importance that the conditions for the reversal of the Casimir force from attractive to repulsive are identified. Although the repulsive Casimir force has been considered for high dielectric materials as an intermediate (between the plates) medium, so far no realistic system has been proposed that can demonstrate quantum levitation with air/vacuum as a host medium. Since air is the natural environment for almost all nano- and microscopic devices, it is therefore imperative to seek a better understanding of the nature of the Casimir force under such ambient conditions. In this thesis, the conditions for achieving quantum levitation at an arbitrary temperature are investigated by considering a simple configuration consisting of two parallel plates separated by air. The proposed parallel-plate designs are based on artificial nano-engineered electromagnetic materials commonly referred to as the electromagnetic metamaterials. In the case of an ideal system consisting of non-dispersive plates, we have uncovered the existence of six universal Casimir force types. We have also derived an explicit necessary condition for Casimir force reversal as a function of the non-retarded specular functions of the plates. By introducing a modification of the Lifshitz theory, we have performed an extensive investigation of the Casimir force for general dispersive magneto-dielectric plates. Simple necessary and sufficient conditions for force reversal have been derived that can serve as a useful tool in designing quantum levitation systems. Based on the sufficient condition, the complete parametric domain for the Casimir force repulsion has been identified. A strongly magnetic response for at least one of the plates is
Quantum computer of wire circuit architecture
Moiseev, S A; Andrianov, S N
2010-01-01
First solid state quantum computer was built using transmons (cooper pair boxes). The operation of the computer is limited because of using a number of the rigit cooper boxes working with fixed frequency at temperatures of superconducting material. Here, we propose a novel architecture of quantum computer based on a flexible wire circuit of many coupled quantum nodes containing controlled atomic (molecular) ensembles. We demonstrate wide opportunities of the proposed computer. Firstly, we reveal a perfect storage of external photon qubits to multi-mode quantum memory node and demonstrate a reversible exchange of the qubits between any arbitrary nodes. We found optimal parameters of atoms in the circuit and self quantum modes for quantum processing. The predicted perfect storage has been observed experimentally for microwave radiation on the lithium phthalocyaninate molecule ensemble. Then also, for the first time we show a realization of the efficient basic two-qubit gate with direct coupling of two arbitrary...
Tailoring superradiance to design artificial quantum systems
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-03-24
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)
2017-01-01
An aircraft includes a fuselage including a propulsion system supported within an aft portion. A thrust reverser is mounted proximate to the propulsion system for directing thrust in a direction to slow the aircraft. The thrust reverser directs thrust at an angle relative to a vertical plane to reduce interference on control surfaces and reduce generation of underbody lift.
Atrioventricular Pacemaker Lead Reversal
Directory of Open Access Journals (Sweden)
Mehmet K Aktas, MD
2007-01-01
Full Text Available During cardiac surgery temporary epicardial atrial and ventricular leads are placed in case cardiac pacing is required postoperatively. We present the first reported series of patients with reversal of atrioventricular electrodes in the temporary pacemaker without any consequent deleterious hemodynamic effect. We review the electrocardiographic findings and discuss the findings that lead to the discovery of atrioventricular lead reversal.
Reversible cerebral vasoconstriction syndrome
Directory of Open Access Journals (Sweden)
Saini Monica
2009-01-01
Full Text Available Reversible cerebral vasoconstriction syndromes (RCVS are a group of disorders that have in common an acute presentation with headache, reversible vasoconstriction of cerebral arteries, with or without neurological signs and symptoms. In contrast to primary central nervous system vasculitis, they have a relatively benign course. We describe here a patient who was diagnosed with RCVS.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Directory of Open Access Journals (Sweden)
Francesco Tiezzi
2014-06-01
Full Text Available In this work, we incorporate reversibility into structured communication-based programming, to allow parties of a session to automatically undo, in a rollback fashion, the effect of previously executed interactions. This permits taking different computation paths along the same session, as well as reverting the whole session and starting a new one. Our aim is to define a theoretical basis for examining the interplay in concurrent systems between reversible computation and session-based interaction. We thus enrich a session-based variant of pi-calculus with memory devices, dedicated to keep track of the computation history of sessions in order to reverse it. We discuss our initial investigation concerning the definition of a session type discipline for the proposed reversible calculus, and its practical advantages for static verification of safe composition in communication-centric distributed software performing reversible computations.
Quantum Networks for Generating Arbitrary Quantum States
Kaye, Phillip; Mosca, Michele
2004-01-01
Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.
Unice cogito, ergo quantum sum (I think uniquely, therefore I am quantum mechanical)
Svozil, Karl
2011-01-01
If the unitary quantum mechanical state evolution is universally valid, quantized systems evolve uniformly, deterministically, and reversible; that is, one-to-one. Hence, what is considered an irreversible measurement might be a purely subjective, conventional, and convenient abstraction of the situation that, although in principal totally reversible, for all practical purposes (fapp), measurements cannot be undone. If this is granted, then Schroedinger's "quantum jellification" arises because of the inevitability of the physical co-existence of classically mutually exclusive states through quantum coherence. It is suggested to take the rather unique human cognitive and perceptive experience as evidence that, at least at the level of apperception, quantum jellification does not exist at all. Otherwise the problems of how to characterize the ambivalence of perception and cognition induced by quantum coherence on a fundamental level of cognition, and why this ambivalence appears to be rather weak and can be ign...
Variable Block Carry Skip Logic using Reversible Gates
Islam, Md. Rafiqul; Islam, Md. Saiful; Karim, Muhammad Rezaul; Mahmud, Abdullah Al; Babu, Hafiz Md. Hasan
2010-01-01
Reversible circuits have applications in digital signal processing, computer graphics, quantum computation and cryptography. In this paper, a generalized k*k reversible gate family is proposed and a 3*3 gate of the family is discussed. Inverter, AND, OR, NAND, NOR, and EXOR gates can be realized by this gate. Implementation of a full-adder circuit using two such 3*3 gates is given. This full-adder circuit contains only two reversible gates and produces no extra garbage outputs. The proposed f...
DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.
Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui
2014-10-15
An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility.
Optimized design of BCD adder and Carry skip BCD adder using reversible logic gates
H.R.Bhagyalakshmi,; M K Venkatesha
2011-01-01
Reversible logic is very essential for the construction of low power, low loss computational structures which are very essential for the construction of arithmetic circuits used in quantum computation, nano technology and other low power digital circuits. In the present paper an optimized and low quantum cost one digit BCD adder and an optimized one digit carry skip BCD adder using new reversible logic gates are proposed. The proposed work is best compared to the other existing circuits.
DESIGN OF OPTIMAL CARRY SKIP ADDER AND CARRY SKIP BCD ADDER USING REVERSIBLE LOGIC GATES
Praveena Murugesan; Thanushkodi Keppanagounder
2014-01-01
Reversible logic circuits have the ability to produce zero power dissipation which has found its importance in quantum computing, optical computing and low power digital circuits. The study presents improved and efficient reversible logic circuits for carry skip adder and carry skip BCD adder. The performance of the proposed architecture is better than the existing works in terms of gate count, garbage outputs and constant inputs. This design forms the basis for different quantum ALU and embe...
Optimized design of Carry Skip BCD adder using new FHNG reversible logic gates
Directory of Open Access Journals (Sweden)
Md.Belayet Ali
2012-07-01
Full Text Available Reversible logic is very essential for the construction of low power, low loss computational structures which are very essential for the construction of arithmetic circuits used in quantum computation, nanotechnology and other low power digital circuits. In the present paper an optimized and low quantum cost one digit carry skip BCD adder using new reversible logic gates are proposed. The proposed work is best compared to the other existing circuits.
Optimized design of BCD adder and Carry skip BCD adder using reversible logic gates
Directory of Open Access Journals (Sweden)
H.R.Bhagyalakshmi,
2011-04-01
Full Text Available Reversible logic is very essential for the construction of low power, low loss computational structures which are very essential for the construction of arithmetic circuits used in quantum computation, nano technology and other low power digital circuits. In the present paper an optimized and low quantum cost one digit BCD adder and an optimized one digit carry skip BCD adder using new reversible logic gates are proposed. The proposed work is best compared to the other existing circuits.
Quantum physics without quantum philosophy
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Mathematisches Inst.; Goldstein, Sheldon [Rutgers State Univ., Piscataway, NJ (United States). Dept. of Mathematics; Zanghi, Nino [Genova Univ. (Italy); Istituto Nazionale Fisica Nucleare, Genova (Italy)
2013-02-01
Integrates and comments on the authors' seminal papers in the field. Emphasizes the natural way in which quantum phenomena emerge from the Bohmian picture. Helps to answer many of the objections raised to Bohmian quantum mechanics. Useful overview and summary for newcomers and students. It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schroedinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Magnetically driven quantum heat engine
Muñoz, Enrique; Peña, Francisco J.
2014-05-01
We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the "working substance" a single nonrelativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity. The second scheme is a variant of the former, where the isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle.
Design of a reversible single precision floating point subtractor.
Anantha Lakshmi, Av; Sudha, Gf
2014-01-04
In recent years, Reversible logic has emerged as a major area of research due to its ability to reduce the power dissipation which is the main requirement in the low power digital circuit design. It has wide applications like low power CMOS design, Nano-technology, Digital signal processing, Communication, DNA computing and Optical computing. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition/subtraction to be the most used floating-point operation. However, few designs exist on efficient reversible BCD subtractors but no work on reversible floating point subtractor. In this paper, it is proposed to present an efficient reversible single precision floating-point subtractor. The proposed design requires reversible designs of an 8-bit and a 24-bit comparator unit, an 8-bit and a 24-bit subtractor, and a normalization unit. For normalization, a 24-bit Reversible Leading Zero Detector and a 24-bit reversible shift register is implemented to shift the mantissas. To realize a reversible 1-bit comparator, in this paper, two new 3x3 reversible gates are proposed The proposed reversible 1-bit comparator is better and optimized in terms of the number of reversible gates used, the number of transistor count and the number of garbage outputs. The proposed work is analysed in terms of number of reversible gates, garbage outputs, constant inputs and quantum costs. Using these modules, an efficient design of a reversible single precision floating point subtractor is proposed. Proposed circuits have been simulated using Modelsim and synthesized using Xilinx Virtex5vlx30tff665-3. The total on-chip power consumed by the proposed 32-bit reversible floating point subtractor is 0.410 W.
Quantum entanglement and quantum operation
Institute of Scientific and Technical Information of China (English)
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations.The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations.It includes remote state preparation by using any pure entangled states,nonlocal operation implementation using entangled states,entanglement capacity of two-qubit gates and two-qubit gates construction.
Relating the quantum mechanics of discrete systems to standard canonical quantum mechanics
Hooft, Gerard t
2012-01-01
Discrete quantum mechanics is here defined to be a quantum theory of wave functions defined on integers P_i and Q_i, while canonical quantum mechanics is assumed to be based on wave functions on the real numbers, R^n. We study reversible mappings from the position operators q_i and their quantum canonical operators p_i of a canonical theory, onto the discrete, commuting operators Q_i and P_i. In this paper we are particularly interested in harmonic oscillators. In the discrete system, these t...
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Photovoltaic and thermophotovoltaic devices with quantum barriers
Wernsman, Bernard R.
2007-04-10
A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.
Reversible Logic Based Concurrent Error Detection Methodology For Emerging Nanocircuits
Thapliyal, Himanshu
2011-01-01
Reversible logic has promising applications in emerging nanotechnologies, such as quantum computing, quantum dot cellular automata and optical computing, etc. Faults in reversible logic circuits that result in multi-bit error at the outputs are very tough to detect, and thus in literature, researchers have only addressed the problem of online testing of faults that result single-bit error at the outputs based on parity preserving logic. In this work, we propose a methodology for the concurrent error detection in reversible logic circuits to detect faults that can result in multi-bit error at the outputs. The methodology is based on the inverse property of reversible logic and is termed as 'inverse and compare' method. By using the inverse property of reversible logic, all the inputs can be regenerated at the outputs. Thus, by comparing the original inputs with the regenerated inputs, the faults in reversible circuits can be detected. Minimizing the garbage outputs is one of the main goals in reversible logic ...
Quantum dot mode locked lasers for coherent frequency comb generation
Martinez, A.; Calò, C.; Rosales, R.; Watts, R. T.; Merghem, K.; Accard, A.; Lelarge, F.; Barry, L. P.; Ramdane, A.
2013-12-01
Monolithic semiconductor passively mode locked lasers (MLL) are very attractive components for many applications including high bit rate telecommunications, microwave photonics and instrumentation. Owing to the three dimensional confinement of the charge carriers, quantum dot based mode-locked lasers have been the subject of intense investigations because of their improved performance compared to conventional material systems. Indeed, the inhomogeneous gain broadening and the ultrafast absorption recovery dynamics are an asset for short pulse generation. Moreover, the weak coupling of amplified spontaneous emission with the guided modes plus low loss waveguide leads to low timing jitter. Our work concentrates on InAs quantum dash nanostructures grown on InP substrate, intended for applications in the 1.55 μm telecom window. InAs/InP quantum dash based lasers, in particular, have demonstrated efficient mode locking in single section Fabry-Perot configurations. The flat optical spectrum of about 12 nm, combined with the narrow RF beat note linewidth of about 10 kHz make them a promising technology for optical frequency comb generation. Coherence between spectral modes was assessed by means of spectral phase measurements. The parabolic spectral phase profile indicates that short pulses can be obtained provided the intracavity dispersion can be compensated by inserting a single mode fiber.
Abrams, D.; Williams, C.
1999-01-01
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.
Manning, Phillip
2011-01-01
The study of quantum theory allowed twentieth-century scientists to examine the world in a new way, one that was filled with uncertainties and probabilities. Further study also led to the development of lasers, the atomic bomb, and the computer. This exciting new book clearly explains quantum theory and its everyday uses in our world.
Sastry, R R
1999-01-01
The infinite dimensional generalization of the quantum mechanics of extended objects, namely, the quantum field theory of extended objects is employed to address the hitherto nonrenormalizable gravitational interaction following which the cosmological constant problem is addressed. The response of an electron to a weak gravitational field (linear approximation) is studied and the order $\\alpha$ correction to the magnetic gravitational moment is computed.
Grifoni, Milena; Paladino, Elisabetta
2008-11-01
Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different
Retrocausality in Quantum Phenomena and Chemical Evolution
Directory of Open Access Journals (Sweden)
Koichiro Matsuno
2016-10-01
Full Text Available The interplay between retrocausality and the time-reversal symmetry of the dynamical law of quantum mechanics underscores the significance of the measurement dynamics with the use of indivisible and discrete quantum particles to be mediated. One example of empirical evidence demonstrating the significance of retrocausality going along with time-reversal symmetry is seen in the operation of a reaction cycle to be expected in chemical evolution. A reaction cycle can hold itself when the causative operation of the cycle remains robust, even when facing frequent retrocausal interventions of a quantum-mechanical origin. Quantum mechanics in and of itself has potential in raising a reaction cycle in the prebiotic phase of chemical evolution, even without any help of artefactual scaffoldings of an external origin.
Ultracompact quantum splitter of degenerate photon pairs
He, Jiakun; Casas-Bedoya, Alvaro; Zhang, Yanbing; Xiong, Chunle; Eggleton, Benjamin J
2015-01-01
Integrated sources of indistinguishable photons have attracted a lot of attention because of their applications in quantum communication and optical quantum computing. Here, we demonstrate an ultra-compact quantum splitter for degenerate single photons based on a monolithic chip incorporating Sagnac loop and a micro-ring resonator with a footprint of 0.011 mm2, generating and deterministically splitting indistinguishable photon pairs using time-reversed Hong-Ou-Mandel interference. The ring resonator provides enhanced photon generation rate, and the Sagnac loop ensures the photons travel through equal path lengths and interfere with the correct phase to enable the reversed HOM effect to take place. In the experiment, we observed a HOM dip visibility of 94.5 +- 3.3 %, indicating the photons generated by the degenerate single photon source are in a suitable state for further integration with other components for quantum applications, such as controlled-NOT gates.
Generated dynamics of Markov and quantum processes
Janßen, Martin
2016-01-01
This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...
Hadjiivanov, Ludmil
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the "philosophical discussions" between Bohr, Einstein and Schr\\"odinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schr\\"odinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminati...
Richter, Johannes; Farnell, Damian; Bishop, Raymod
2004-01-01
The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
Kiefer, Claus
2012-01-01
The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Quantum relay schemes for continuous-variable quantum key distribution
Guo, Ying; Liao, Qin; Huang, Duan; Zeng, Guihua
2017-04-01
We propose several concatenated quantum relay continuous-variable quantum key distribution schemes based on the parametric amplifier (PA) and the beam splitter (BS). Instead of using only one BS in the traditional relay scheme, the proposed schemes provide two operations that involve both PA and BS, activating the beam splitting and recombining operations in turn. These schemes would benefit the system performance improvement by providing signal amplification and establishing quantum correlations. We show that the different effects of the relay schemes will cause different system performances because of the varied signal-to-noise ratio (SNR) of output fields. The system's secret key rate will be increased when equipping with the PA-BS relay scheme, because the output fields of the PA are entangled with the correlated quantum noises while input fields of the BS are superimposed, subsequently leading to the quantum noise reduction of the total output fields of relay station, while the reversed BS-PA relay scheme has little advantage over the traditional counterpart that contains only one BS in relay data postprocessing because it will not cause any SNR improvement. Moreover, the reinforced PA-PA relay scheme results in a slight improvement due to the increased SNR. These quantum relay schemes can be performed through the beam splitting, the recombining operations, and the relay data postprocessing, such that it would be suitable for secret information exchange in complex networks with intermediate stations.
Time reversal and exchange symmetries of unitary gate capacities
Harrow, A W; Harrow, Aram W.; Shor, Peter W.
2005-01-01
Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.
Quantum Computation Toward Quantum Gravity
Zizzi, P. A.
2001-08-01
The aim of this paper is to enlighten the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. From the above arguments, as they stand in the literature, it follows that the edges of spin networks pierce the black hole horizon and excite curvature degrees of freedom on the surface. These excitations are micro-states of Chern-Simons theory and account of the black hole entropy which turns out to be a quarter of the area of the horizon, (in units of Planck area), in accordance with the holographic principle. Moreover, the states which dominate the counting correspond to punctures of spin j = 1/2 and one can in fact visualize each micro-state as a bit of information. The obvious generalization of this result is to consider open spin networks with edges labeled by the spin -1/ 2 representation of SU(2) in a superposed state of spin "on" and spin "down." The micro-state corresponding to such a puncture will be a pixel of area which is "on" and "off" at the same time, and it will encode a qubit of information. This picture, when applied to quantum cosmology, describes an early inflationary universe which is a discrete version of the de Sitter universe.
Wire recycling for quantum circuit optimization
Paler, Alexandru; Wille, Robert; Devitt, Simon J.
2016-10-01
Quantum information processing is expressed using quantum bits (qubits) and quantum gates which are arranged in terms of quantum circuits. Here, each qubit is associated with a quantum circuit wire which is used to conduct the desired operations. Most of the existing quantum circuits allocate a single quantum circuit wire for each qubit and hence introduce significant overhead. In fact, qubits are usually not needed during the entire computation, only between their initialization and measurement. Before and after that, corresponding wires may be used by other qubits. In this work, we propose a solution which exploits this fact in order to optimize the design of quantum circuits with respect to the required wires. To this end, we introduce a representation of the lifetimes of all qubits which is used to analyze the respective need for wires. Based on this analysis, a method is proposed which "recycles" the available wires and, as a result, reduces the size of the resulting circuit. Numerical tests based on established reversible and fault-tolerant quantum circuits confirm that the proposed solution reduces the number of wires by more than 90% compared to unoptimized quantum circuits.
An algebra of reversible computation
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
An Algebra of Reversible Computation
Yong WANG
2014-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Realizing Controllable Quantum States
Takayanagi, Hideaki; Nitta, Junsaku
-T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin
Observing Quantum Tunneling in Perturbation Series
Suzuki, H; Suzuki, Hiroshi; Yasuta, Hirofumi
1997-01-01
It is well-known that the quantum tunneling makes conventional perturbation series non-Borel summable. We use this fact reversely and attempt to extract the decay width of the false-vacuum from the actual perturbation series of the vacuum energy density (vacuum bubble diagrams). It is confirmed that, at least in quantum mechanical examples, our proposal provides a complimentary approach to the the conventional instanton calculus in the strong coupling region.
Extraction of information from a single quantum
Paraoanu, G. S.
2011-01-01
We investigate the possibility of performing quantum tomography on a single qubit with generalized partial measurements and the technique of measurement reversal. Using concepts from statistical decision theory, we prove that, somewhat surprisingly, no information can be obtained using this scheme. It is shown that, irrespective of the measurement technique used, extraction of information from single quanta is at odds with other general principles of quantum physics.
Reversible Data Hiding Techniques
Directory of Open Access Journals (Sweden)
Dhananjay Yadav
2012-03-01
Full Text Available Reversible data hiding is a technique that is used to hide data inside an image. The data is hidden in such a way that the exact or original data is not visible. The hidden data can be retrieved as and when required. There are several methods that are used in reversible data hiding techniques like Watermarking, Lossless embedding and encryption. In this paper we present a review of reversible watermarking techniques and show different methods that are used to get reversible data hiding technique with higher embedding capacity and invisible objects. Watermark need not be hidden. Watermarking can be applied to 1. Images, 2. Text, 3. Audio/video, 4. Software.
Reversible flowchart languages and the structured reversible program theorem
DEFF Research Database (Denmark)
Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert
2008-01-01
Many irreversible computation models have reversible counterparts, but these are poorly understood at present. We introduce reversible flowcharts with an assertion operator and show that any reversible flowchart can be simulated by a structured reversible flowchart using only three control flow o...... justification for low-level machine code for reversible microprocessors as well as high-level block-structured reversible languages. We give examples for both such languages and illustrate them with a lossless encoder for permutations given by Dijkstra....
Topology-driven magnetic quantum phase transition in topological insulators.
Zhang, Jinsong; Chang, Cui-Zu; Tang, Peizhe; Zhang, Zuocheng; Feng, Xiao; Li, Kang; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Xue, Qi-Kun; Ma, Xucun; Wang, Yayu
2013-03-29
The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 topological insulator films grown by means of molecular beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.
Variable Block Carry Skip Logic using Reversible Gates
Islam, Md Rafiqul; Karim, Muhammad Rezaul; Mahmud, Abdullah Al; Babu, Hafiz Md Hasan
2010-01-01
Reversible circuits have applications in digital signal processing, computer graphics, quantum computation and cryptography. In this paper, a generalized k*k reversible gate family is proposed and a 3*3 gate of the family is discussed. Inverter, AND, OR, NAND, NOR, and EXOR gates can be realized by this gate. Implementation of a full-adder circuit using two such 3*3 gates is given. This full-adder circuit contains only two reversible gates and produces no extra garbage outputs. The proposed full-adder circuit is efficient in terms of gate count, garbage outputs and quantum cost. A 4-bit carry skip adder is designed using this full-adder circuit and a variable block carry skip adder is discussed. Necessary equations required to evaluate these adder are presented.
Adaptive Pairing Reversible Watermarking.
Dragoi, Ioan-Catalin; Coltuc, Dinu
2016-05-01
This letter revisits the pairwise reversible watermarking scheme of Ou et al., 2013. An adaptive pixel pairing that considers only pixels with similar prediction errors is introduced. This adaptive approach provides an increased number of pixel pairs where both pixels are embedded and decreases the number of shifted pixels. The adaptive pairwise reversible watermarking outperforms the state-of-the-art low embedding bit-rate schemes proposed so far.
Depth-optimized reversible circuit synthesis
Arabzadeh, Mona; Saheb Zamani, Morteza; Sedighi, Mehdi; Saeedi, Mehdi
2013-04-01
In this paper, simultaneous reduction of circuit depth and synthesis cost of reversible circuits in quantum technologies with limited interaction is addressed. We developed a cycle-based synthesis algorithm which uses negative controls and limited distance between gate lines. To improve circuit depth, a new parallel structure is introduced in which before synthesis a set of disjoint cycles are extracted from the input specification and distributed into some subsets. The cycles of each subset are synthesized independently on different sets of ancillae. Accordingly, each disjoint set can be synthesized by different synthesis methods. Our analysis shows that the best worst-case synthesis cost of reversible circuits in the linear nearest neighbor architecture is improved by the proposed approach. Our experimental results reveal the effectiveness of the proposed approach to reduce cost and circuit depth for several benchmarks.
Casimir-Polder Force Reversal with Metamaterials
Pappakrishnan, Venkatesh; Genov, Dentcho
2010-10-01
A promising system design aiming to demonstrate Casimir-Polder force (CPF) reversal is proposed. The constraints when using naturally available materials in designing the system with air as an intermediate medium is resolved by using artificial electromagnetic materials. The parametric space in terms of the plate's magnetic and dielectric plasma frequencies, gap thickness and temperature is investigated. The parametric domain for achieving CPF reversal is obtained. Furthermore, a simple analytical expression for the CPF is derived. The analytical expression accurately describes the large and short distance asymptotics and allows extraction of important parameters such as lower and upper cutoff gap distances that define the repulsive force window. This study could possibly lead us to design of quantum levitation system, frictionless bio-fluid transport devices, etc.
Efficient Reversible Montgomery Multiplier and Its Application to Hardware Cryptography
Directory of Open Access Journals (Sweden)
Noor M. Nayeem
2009-01-01
Full Text Available Problem Statement: Arithmetic Logic Unit (ALU of a crypto-processor and microchips leak information through power consumption. Although the cryptographic protocols are secured against mathematical attacks, the attackers can break the encryption by measuring the energy consumption. Approach: To thwart attacks, this study proposed the use of reversible logic for designing the ALU of a crypto-processor. Ideally, reversible circuits do not dissipate any energy. If reversible circuits are used, then the attacker would not be able to analyze the power consumption. In order to design the reversible ALU of a crypto-processor, reversible Carry Save Adder (CSA using Modified TSG (MTSG gates and architecture of Montgomery multiplier were proposed. For reversible implementation of Montgomery multiplier, efficient reversible multiplexers and sequential circuits such as reversible registers and shift registers were presented. Results: This study showed that modified designs perform better than the existing ones in terms of number of gates, number of garbage outputs and quantum cost. Lower bounds of the proposed designs were established by providing relevant theorems and lemmas. Conclusion: The application of reversible circuit is suitable to the field of hardware cryptography.
Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J
2015-05-13
Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.
Cariolaro, Gianfranco
2015-01-01
This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: · development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; · general formulation of a transmitter–receiver system · particular treatment of the most popular quantum co...
Quantum realization of the bilinear interpolation method for NEQR.
Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Ian, Hou
2017-05-31
In recent years, quantum image processing is one of the most active fields in quantum computation and quantum information. Image scaling as a kind of image geometric transformation has been widely studied and applied in the classical image processing, however, the quantum version of which does not exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel enhanced quantum image representation (NEQR). Firstly, the feasibility of the bilinear interpolation for NEQR is proven. Then the concrete quantum circuits of the bilinear interpolation including scaling up and scaling down for NEQR are given by using the multiply Control-Not operation, special adding one operation, the reverse parallel adder, parallel subtractor, multiplier and division operations. Finally, the complexity analysis of the quantum network circuit based on the basic quantum gates is deduced. Simulation result shows that the scaled-up image using bilinear interpolation is clearer and less distorted than nearest interpolation.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Gudder, Stanley P
2014-01-01
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism.Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles.The first two chapters survey the ne
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Garrison, J C
2008-01-01
Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor
Lowe, John P
1993-01-01
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,
On thermodynamic and microscopic reversibility
Energy Technology Data Exchange (ETDEWEB)
Crooks, Gavin E.
2011-07-12
The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.
A New Class of non-Hermitian Quantum Hamiltonians with PT Symmetry
Jones-Smith, Katherine
2009-01-01
In a remarkable development Bender and coworkers have shown that it is possible to formulate quantum mechanics consistently even if the Hamiltonian and other observables are not Hermitian. Their formulation, dubbed PT quantum mechanics, replaces hermiticity by another set of requirements, notably that the Hamiltonian should be invariant under the discrete symmetry PT, where P denotes parity and T denotes time reversal. All prior work has focused on the case that time reversal is even (T^2 = 1). We generalize the formalism to the case of odd time reversal (T^2 = -1). We discover an analogue of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism. Odd time reversal symmetry applies to fermionic systems including quarks and leptons and a plethora of models in nuclear, atomic and condensed matter physics. PT quantum mechanics makes it possible to enlarge the set of possible Hamiltonians that phy...
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
Quantum Capacitance in Topological Insulators
Xiu, Faxian; Meyer, Nicholas; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Yong; Yu, Xinxin; Fedorov, Alexei V.; Zou, Jin; Wang, Kang L.
2012-01-01
Topological insulators show unique properties resulting from massless, Dirac-like surface states that are protected by time-reversal symmetry. Theory predicts that the surface states exhibit a quantum spin Hall effect with counter-propagating electrons carrying opposite spins in the absence of an external magnetic field. However, to date, the revelation of these states through conventional transport measurements remains a significant challenge owing to the predominance of bulk carriers. Here, we report on an experimental observation of Shubnikov-de Haas oscillations in quantum capacitance measurements, which originate from topological helical states. Unlike the traditional transport approach, the quantum capacitance measurements are remarkably alleviated from bulk interference at high excitation frequencies, thus enabling a distinction between the surface and bulk. We also demonstrate easy access to the surface states at relatively high temperatures up to 60 K. Our approach may eventually facilitate an exciting exploration of exotic topological properties at room temperature. PMID:22993694
Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao
2016-02-07
The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.
Fijany, Amir; Toomarian, Benny N.
2000-01-01
There has been significant improvement in the performance of VLSI devices, in terms of size, power consumption, and speed, in recent years and this trend may also continue for some near future. However, it is a well known fact that there are major obstacles, i.e., physical limitation of feature size reduction and ever increasing cost of foundry, that would prevent the long term continuation of this trend. This has motivated the exploration of some fundamentally new technologies that are not dependent on the conventional feature size approach. Such technologies are expected to enable scaling to continue to the ultimate level, i.e., molecular and atomistic size. Quantum computing, quantum dot-based computing, DNA based computing, biologically inspired computing, etc., are examples of such new technologies. In particular, quantum-dots based computing by using Quantum-dot Cellular Automata (QCA) has recently been intensely investigated as a promising new technology capable of offering significant improvement over conventional VLSI in terms of reduction of feature size (and hence increase in integration level), reduction of power consumption, and increase of switching speed. Quantum dot-based computing and memory in general and QCA specifically, are intriguing to NASA due to their high packing density (10(exp 11) - 10(exp 12) per square cm ) and low power consumption (no transfer of current) and potentially higher radiation tolerant. Under Revolutionary Computing Technology (RTC) Program at the NASA/JPL Center for Integrated Space Microelectronics (CISM), we have been investigating the potential applications of QCA for the space program. To this end, exploiting the intrinsic features of QCA, we have designed novel QCA-based circuits for co-planner (i.e., single layer) and compact implementation of a class of data permutation matrices, a class of interconnection networks, and a bit-serial processor. Building upon these circuits, we have developed novel algorithms and QCA
Fijany, Amir; Toomarian, Benny N.
2000-01-01
There has been significant improvement in the performance of VLSI devices, in terms of size, power consumption, and speed, in recent years and this trend may also continue for some near future. However, it is a well known fact that there are major obstacles, i.e., physical limitation of feature size reduction and ever increasing cost of foundry, that would prevent the long term continuation of this trend. This has motivated the exploration of some fundamentally new technologies that are not dependent on the conventional feature size approach. Such technologies are expected to enable scaling to continue to the ultimate level, i.e., molecular and atomistic size. Quantum computing, quantum dot-based computing, DNA based computing, biologically inspired computing, etc., are examples of such new technologies. In particular, quantum-dots based computing by using Quantum-dot Cellular Automata (QCA) has recently been intensely investigated as a promising new technology capable of offering significant improvement over conventional VLSI in terms of reduction of feature size (and hence increase in integration level), reduction of power consumption, and increase of switching speed. Quantum dot-based computing and memory in general and QCA specifically, are intriguing to NASA due to their high packing density (10(exp 11) - 10(exp 12) per square cm ) and low power consumption (no transfer of current) and potentially higher radiation tolerant. Under Revolutionary Computing Technology (RTC) Program at the NASA/JPL Center for Integrated Space Microelectronics (CISM), we have been investigating the potential applications of QCA for the space program. To this end, exploiting the intrinsic features of QCA, we have designed novel QCA-based circuits for co-planner (i.e., single layer) and compact implementation of a class of data permutation matrices, a class of interconnection networks, and a bit-serial processor. Building upon these circuits, we have developed novel algorithms and QCA
Measuring the scrambling of quantum information
Swingle, Brian; Schleier-Smith, Monika; Hayden, Patrick
2016-01-01
We provide a protocol to measure out-of-time-order correlation functions. These correlation functions are of theoretical interest for diagnosing the scrambling of quantum information in black holes and strongly interacting quantum systems generally. Measuring them requires an echo-type sequence in which the sign of a many-body Hamiltonian is reversed. We detail an implementation employing cold atoms and cavity quantum electrodynamics to realize the chaotic kicked top model, and we analyze effects of dissipation to verify its feasibility with current technology. Finally, we propose in broad strokes a number of other experimental platforms where similar out-of-time-order correlation functions can be measured.
Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots
Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Tieqiang; Zhang, Yu
2016-08-01
High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.
A fault-tolerant addressable spin qubit in a natural silicon quantum dot.
Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo
2016-08-01
Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.
Buhrman, H; Watrous, J; De Wolf, R; Buhrman, Harry; Cleve, Richard; Watrous, John; Wolf, Ronald de
2001-01-01
Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources. In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability. Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity. We optimize several aspects of our scheme.
Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L
2010-03-04
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
Curran, Stephen
2009-01-01
In arXiv:0807.0677, K\\"ostler and Speicher observed that de Finetti's theorem on exchangeable sequences has a free analogue if one replaces exchangeability by the stronger condition of invariance under quantum permutations. In this paper we study sequences of noncommutative random variables whose joint distribution is invariant under quantum orthogonal transformations. We prove a free analogue of Freedman's characterization of conditionally independent Gaussian families, namely an infinite sequence of self-adjoint random variables is quantum orthogonally invariant if and only if they form an operator-valued free centered equivariant semicircular family. Similarly, we show that an infinite sequence of noncommutative random variables is quantum unitarily invariant if and only if they form an operator-valued free centered equivariant circular family. We provide an example to show that, as in the classical case, these results fail for finite sequences. We then give an approximation to how far the distribution of ...
Mershin, A; Skoulakis, E M C
2000-01-01
In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.
On Design of Parity Preserving Reversible Adder Circuits
Haghparast, Majid; Bolhassani, Ali
2016-12-01
In this paper novel parity preserving reversible logic blocks are presented and verified. Then, we present cost-effective parity preserving reversible implementations of Full Adder, 4:2 Compressor, Binary to BCD converter, and BCD adder using these blocks. The proposed parity preserving reversible BCD adder is designed by cascading the presented 4-digit parity preserving reversible Full Adder and a parity preserving reversible Binary to BCD Converter. In this design, instead of realizing the detection and correction unit, we design a Binary to BCD converter that its inputs are the output of parity preserving binary adder, and its output is a parity preserving BCD digit. In addition, several theorems on the numbers of garbage outputs, constant inputs, quantum cost and delay of the designs have been presented to show its optimality. In the presented circuits, the delay and the quantum cost are reduced by deriving designs based on the proposed parity preserving reversible blocks. The advantages of the proposed designs over the existing ones are quantitatively described and analysed. All the scales are in the Nano-metric area.
CERN Bulletin
2013-01-01
On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail... Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".
Haroche, Serge
2013-01-01
Mr Administrator,Dear colleagues,Ladies and gentlemen, “I think I can safely say that nobody understands quantum mechanics”. This statement, made by physicist Richard Feynman, expresses a paradoxical truth about the scientific theory that revolutionised our understanding of Nature and made an extraordinary contribution to our means of acting on and gaining information about the world. In this lecture, I will discuss quantum physics with you by attempting to resolve this paradox. And if I don’...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Diego Martin-Cano, Paloma A. Huidobro, Esteban Moreno; Diego Martin-Cano; Huidobro, Paloma A.; Esteban Moreno; Garcia-Vidal, F.J.
2014-01-01
Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical inve...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Space searches with a quantum robot
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
2000-02-15
Quantum robots are described as mobile quantum computers and ancillary systems that move in and interact with arbitrary environments. Their dynamics is given as tasks which consist of sequences of alternating computation and action phases. A task example is considered in which a quantum robot searches a space region to find the location of a system. The possibility that the search can be more efficient than a classical search is examined by considering use of Grover's Algorithm to process the search results. This is problematic for two reasons. One is the removal of entanglements generated by the (reversible) search process. The other is that (ignoring the entanglement problem), the search process in 2 dimensional space regions is no more efficient than a classical search. However quantum searches of higher dimensional space regions are more efficient than classical searches. Reasons why quantum robots are interesting independent of these results are briefly summarized.
Reversible Communicating Processes
Directory of Open Access Journals (Sweden)
Geoffrey Brown
2016-02-01
Full Text Available Reversible distributed programs have the ability to abort unproductive computation paths and backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols, an interesting alternative is to separate backtracking from local state recovery. For example, such a model could be used to create complex transactions out of nested compensable transactions where a programmer-supplied compensation defines the work required to "unwind" a transaction. Reversible distributed computing has received considerable theoretical attention, but little reduction to practice; the few published implementations of languages supporting reversibility depend upon a high degree of central control. The objective of this paper is to demonstrate that a practical reversible distributed language can be efficiently implemented in a fully distributed manner. We discuss such a language, supporting CSP-style synchronous communication, embedded in Scala. While this language provided the motivation for the work described in this paper, our focus is upon the distributed implementation. In particular, we demonstrate that a "high-level" semantic model can be implemented using a simple point-to-point protocol.
Quantum correlations and distinguishability of quantum states
Spehner, Dominique
2014-07-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Fuchs, Christopher A
2009-01-01
This pseudo-paper consists of excerpts drawn from two of my quantum-email samizdats. Section 1 draws a picture of a physical world whose essence is ``Darwinism all the way down.'' Section 2 outlines how quantum theory should be viewed in light of this, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of ``identical'' quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a Jamesian style ``radical pluralism.'' Sections 4 and 5 further detail how quantum theory should not be viewed so much as a ``theory of the world,'' but rather as a theory of decision-making for agents immersed within a world of a particular character--the quantum world. Finally, Sections 6 and 7 attempt to sketch the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I...