WorldWideScience

Sample records for quantum dots lasers

  1. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    We have produced GaAs-based quantum-dot edge-emitting lasers operating at 1.16 mu m with record-low transparency current, high output power, and high internal quantum efficiencies. We have also realized GaAs-based quantum-dot lasers emitting at 1.3 mu m, both high-power edge emitters and low...

  2. Design of tunneling injection quantum dot lasers

    Institute of Scientific and Technical Information of China (English)

    JIA Guo-zhi; YAO Jiang-hong; SHU Yong-chun; WANG Zhan-guo

    2007-01-01

    To implement high quality tunneling injection quantum dot lasers,effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probability,tunneling time and carriers thermal escape time from the quantum well. The calculation results show that with increasing of the ground-state energy level in quantum well,the tunneling probability increases and the tunneling time decreases,while the thermal escape time decreases because the ground-state energy levelis shallower. Longitudinal optical phonon-assisted tunneling can be an effective method to solve the problem that both the tunneling time and the thermal escape time decrease simultaneously with the ground-state energy level increasing in quantum well.

  3. Nano-laser on silicon quantum dots

    Science.gov (United States)

    Huang, Wei-Qi; Liu, Shi-Rong; Qin, Chao-Jian; Lü, Quan; Xu, Li

    2011-04-01

    A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.

  4. Nanobeam photonic crystal cavity quantum dot laser

    CERN Document Server

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  5. Sensitivity of quantum-dot semiconductor lasers to optical feedback.

    Science.gov (United States)

    O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V

    2004-05-15

    The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

  6. Investigation of Quantum Dot Lasers

    Science.gov (United States)

    2007-11-02

    Lett. 79, 722 (2001). 8. Report of Inventions None. 9. List of Scientific Personnel Supported, Degrees, Awards and Honors Siddhartha ...Ghosh, GSRA Sameer Pradhan, GSRA Sasan Fathpour, GSRA Zetian Mi, GSRA Siddhartha Ghosh, Ph.D., “Growth of In(Ga)As/GaAs self-organized quantum

  7. A Nanowire-Based Plasmonic Quantum Dot Laser.

    Science.gov (United States)

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  8. Intraband Relaxation and Its Influences on Quantum Dot Lasers

    Institute of Scientific and Technical Information of China (English)

    DENG Sheng-Ling; HUANG Yong-Zhen; YU Li-Juan

    2005-01-01

    @@ A comprehensive two-level numerical model is developed to describe carrier distribution in a quantum-dot laser. Light-emission spectra with different intraband relaxation rates (2ps, 7.5ps and 20ps) are calculated and analysed to investigate the influence of relaxation rates on performance of the quantum-dot laser. The results indicate that fast intraband relaxation favours not only the ground state single mode operation but also the higher injection efficiency.

  9. Quantum dot lasers and integrated guided wave devices on Si

    Science.gov (United States)

    Yang, Jun; Mi, Zetian; Bhattacharya, Pallab

    2007-02-01

    We have studied the growth and characteristics of self-organized InGaAs/GaAs quantum dot lasers and their monolithic integration with waveguides and quantum well electroabsorption modulators on Si. Utilizing multiple layers of InAs quantum dots as effective dislocation filters near the GaAs-Si interface, we have demonstrated high performance quantum dot lasers grown directly on Si that exhibit, for the first time, relatively low threshold current (J th = 900 A/cm2), large characteristic temperature (T 0 = 278 K), and output slope efficiency ( >=0.3 W/A). Focused-ion-beam milling has been used to form high-quality facets for the cavity mirror and coupling groove of an integrated laser/waveguide system on Si. We have also achieved a groove-coupled laser/modulator system on Si that exhibits a coupling coefficient greater than 20% and a modulation depth of ~ 100% at 5 V reverse bias.

  10. Nonlinear laser dynamics from quantum dots to cryptography

    CERN Document Server

    Lüdge, Kathy

    2012-01-01

    A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research.By presenting both experimental and theoretical results, the distinguished authors consider solitary lase

  11. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    Directory of Open Access Journals (Sweden)

    Stephan Michael

    2016-05-01

    Full Text Available In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. Here, we study the influence of two important quantum-dot material parameters, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. However, by minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.

  12. Modelling of GaN quantum dot terahertz cascade laser

    Science.gov (United States)

    Asgari, A.; Khorrami, A. A.

    2013-03-01

    In this paper GaN based spherical quantum dot cascade lasers has been modelled, where the generation of the terahertz waves are obtained. The Schrödinger, Poisson, and the laser rate equations have been solved self-consistently including all dominant physical effects such as piezoelectric and spontaneous polarization in nitride-based QDs and the effects of the temperature. The exact value of the energy levels, the wavefunctions, the lifetimes of electron levels, and the lasing frequency are calculated. Also the laser parameters such as the optical gain, the output power and the threshold current density have been calculated at different temperatures and applied electric fields.

  13. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    Science.gov (United States)

    2015-04-27

    SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS ...growth using metalorganic chemical vapor deposition (MOCVD). These methods allowed us to realize quantum dot active regions in which the injected carriers...temperature sensitivity , commonly observed in self-assembled QD lasers2. An alternate approach to SK QD formation is the use of nanopatterning with

  14. Excitability in a quantum dot semiconductor laser with optical injection.

    Science.gov (United States)

    Goulding, D; Hegarty, S P; Rasskazov, O; Melnik, S; Hartnett, M; Greene, G; McInerney, J G; Rachinskii, D; Huyet, G

    2007-04-13

    We experimentally analyze the dynamics of a quantum dot semiconductor laser operating under optical injection. We observe the appearance of single- and double-pulse excitability at one boundary of the locking region. Theoretical considerations show that these pulses are related to a saddle-node bifurcation on a limit cycle as in the Adler equation. The double pulses are related to a period-doubling bifurcation and occur on the same homoclinic curve as the single pulses.

  15. Modulation Response of Semiconductor Quantum Dot Nanocavity Lasers

    DEFF Research Database (Denmark)

    Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    The modulation response of quantum-dot based nanocavity devices is investigated using a semiconductor theory. We show that high modulation bandwidth is achieved even in the presence of inhomogeneous broadening of the quantum dot ensemble.......The modulation response of quantum-dot based nanocavity devices is investigated using a semiconductor theory. We show that high modulation bandwidth is achieved even in the presence of inhomogeneous broadening of the quantum dot ensemble....

  16. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  17. Laser driven impurity states in two-dimensional quantum dots and quantum rings

    Science.gov (United States)

    Laroze, D.; Barseghyan, M.; Radu, A.; Kirakosyan, A. A.

    2016-11-01

    The hydrogenic donor impurity states in two-dimensional GaAs/Ga0.7Al0.3As quantum dot and quantum ring have been investigated under the action of intense laser field. A laser dressed effect on both electron confining and electron-impurity Coulomb interaction potentials has been considered. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. The accidental degeneracy of the impurity states have been observed for different positions of the impurity and versus values of the laser field parameter. The obtained theoretical results indicate a novel opportunity to tune the performance of quantum dots and quantum rings and to control their specific properties by means of laser field.

  18. Quantum dot mode locked lasers for coherent frequency comb generation

    Science.gov (United States)

    Martinez, A.; Calò, C.; Rosales, R.; Watts, R. T.; Merghem, K.; Accard, A.; Lelarge, F.; Barry, L. P.; Ramdane, A.

    2013-12-01

    Monolithic semiconductor passively mode locked lasers (MLL) are very attractive components for many applications including high bit rate telecommunications, microwave photonics and instrumentation. Owing to the three dimensional confinement of the charge carriers, quantum dot based mode-locked lasers have been the subject of intense investigations because of their improved performance compared to conventional material systems. Indeed, the inhomogeneous gain broadening and the ultrafast absorption recovery dynamics are an asset for short pulse generation. Moreover, the weak coupling of amplified spontaneous emission with the guided modes plus low loss waveguide leads to low timing jitter. Our work concentrates on InAs quantum dash nanostructures grown on InP substrate, intended for applications in the 1.55 μm telecom window. InAs/InP quantum dash based lasers, in particular, have demonstrated efficient mode locking in single section Fabry-Perot configurations. The flat optical spectrum of about 12 nm, combined with the narrow RF beat note linewidth of about 10 kHz make them a promising technology for optical frequency comb generation. Coherence between spectral modes was assessed by means of spectral phase measurements. The parabolic spectral phase profile indicates that short pulses can be obtained provided the intracavity dispersion can be compensated by inserting a single mode fiber.

  19. PbTe quantum dots grown by femtosecond laser ablation

    Science.gov (United States)

    Rodriguez, E.; Biggemann, D.; Moya, L.; Pippo, W. A.; Moreira, R. S.; Silva, D.; Cesar, C. L.; Barbosa, L. C.; Schrank, A.; Souza Filho, C. R.; de Oliveira, E. P.

    2008-02-01

    Laser ablation (LA) is a thin film fabrication technique which has generated a lot of interest in the past few years as one of the simplest and most versatile methods for the deposition of a wide variety of materials. With the rapid development experienced in the generation of ultra short laser pulses, new possibilities were opened for the laser ablation technique, using femtosecond lasers as ablation source. It is commonly believed that when the temporal length of the laser pulse became shorter than the several picoseconds required to couple the electronic energy to the lattice of the material, thermal effects could not play a significant role. Since the pulse width is too short for thermal effects to take place, with each laser pulse a few atom layers of material are direct vaporized away from the target surface and a better control in the quantum dots (QDs) fabrication could be achieved. In this work we report the fabrication of PbTe QDs by femtosecond laser ablation of a PbTe target in argon atmosphere. Experiments were carried out using a typical LA configuration comprising a deposition chamber and an ultra short pulsed laser (100 fs; 30 mJ) at a central wavelength of 800 nm. PbTe was chosen because its QDs absorption band can be controlled by its size to fall in the spectral window of interest for optical communications (1.3-1.5 μm). This, together with the QD high optical nonlinearity, makes this material an excellent candidate for development of photonic devices. It was investigated the influence of the number of laser pulses in the formation of the nanoparticles. The structural parameters and the surface density of the nanoparticles were studied by high resolution transmission electron microscopy (HRTEM).

  20. Three-photon excitation of quantum dots with a telecom band ultrafast fiber laser

    CERN Document Server

    Petrasiunas, M J; Kielpinski, D; Streed, E W

    2014-01-01

    We demonstrate three-photon excitation in quantum dots with a mode-locked fiber laser operating in the telecommunications band. We compare spectra and intensity dependence of fluorescence from one- and three-photon excitation of commercially available 640 nm quantum dots, using a 372 nm diode laser for one-photon excitation and 116 fs pulses from a mode-locked fiber laser with a center wavelength of 1575 nm for three-photon excitation.

  1. Laser location and manipulation of a single quantum tunneling channel in an InAs quantum dot.

    Science.gov (United States)

    Makarovsky, O; Vdovin, E E; Patané, A; Eaves, L; Makhonin, M N; Tartakovskii, A I; Hopkinson, M

    2012-03-16

    We use a femtowatt focused laser beam to locate and manipulate a single quantum tunneling channel associated with an individual InAs quantum dot within an ensemble of dots. The intensity of the directed laser beam tunes the tunneling current through the targeted dot with an effective optical gain of 10(7) and modifies the curvature of the dot's confining potential and the spatial extent of its ground state electron eigenfunction. These observations are explained by the effect of photocreated hole charges which become bound close to the targeted dot, thus acting as an optically induced gate electrode.

  2. On-chip interference of single photons from an embedded quantum dot and an external laser

    Energy Technology Data Exchange (ETDEWEB)

    Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O' Hara, J.; Royall, B.; Wilson, L. R.; Skolnick, M. S.; Fox, A. M. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Clarke, E. [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2016-06-20

    In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler. This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.

  3. Free Carrier Distribution Criterion in Quantum Dot Lasers

    Directory of Open Access Journals (Sweden)

    HIFSA SHAHID

    2016-07-01

    Full Text Available The spontaneous emission spectra of a 1.28?m InAs/GaAs QD (Quantum Dot Fabry-Perot laser device has been measured under continuous wave operation at a fixed junction temperature of 300K. At low carrier densities, empirically observed static peak wavelength position and a fixed spectral shape of the spontaneous emission spectra are indicative of the random-like population distribution rather than a global Fermi level in the system. A theoretical model based on the Monte-Carlo method has been shown to have good agreement with the empirical results. In addition the evolutions of spontaneous emission spectral shapes are also explained in terms of many body effects.

  4. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  5. Manipulative Properties of Asymmetric Double Quantum Dots via Laser and Gate Voltage

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shun-Cai; LIU Zheng-Dong

    2009-01-01

    We present a density matrix approach for the theoretical description of an asymmetric double quantum dot (QD) system. The results show that the properties of gain, absorption and dispersion of the double QD system, the population of the state with one hole in one dot and an electron in another dot transferred by tunneling can be manipulated by a laser pulse or gate voltage. Our scheme may demonstrate the possibility of electro-optical manipulation of quantum systems.

  6. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  7. Laser driven intraband optical transitions in two-dimensional quantum dots and quantum rings

    Science.gov (United States)

    Barseghyan, M. G.; Kirakosyan, A. A.; Laroze, D.

    2017-01-01

    The intraband optical absorption have been investigated in the presence of hydrogenic donor impurity in GaAs/GaAlAs quantum dot and quantum ring in the intense laser field. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. Different selection rules are obtained for intraband transitions depending on the direction of incident light polarization. Due to the accidental degeneracy of the laser dressed impurity states the crossings of the curves of the threshold energies and the dipole matrix elements on laser field parameter have been observed. The intraband absorption coefficient is calculated for different locations of hydrogenic donor impurity and different values of intense laser field parameter. The obtained results show that the absorption spectrum can exhibit either a blue- or redshift depending on the impurity location, values of the laser field parameter and direction of incident light polarization. The obtained theoretical results indicate a novel opportunity to tune the performance of new devices, based on the quantum dots and quantum rings and to control their specific properties by means of intense laser and hydrogenic donor impurity.

  8. Encapsulating Quantum Dots into ZnO Nanorods for Advanced photonics and Laser Applications

    Science.gov (United States)

    2016-10-12

    AFRL-AFOSR-JP-TR-2016-0077 Encapsulating Quantum Dots into ZnO Nanorods for Advanced photonics and Laser Applications Nunzio Motta QUEENSLAND... Quantum Dots into ZnO Nanorods for Advanced photonics and Laser Applications 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4014 5c.  PROGRAM...NOTES 14.  ABSTRACT What significant findings came from this project: We demonstrated the encapsulation of luminescent quantum dots (QDs) in ZnO nanorods

  9. A Rapid and Cost-Effective Laser Based Synthesis of High Purity Cadmium Selenide Quantum Dots.

    Science.gov (United States)

    Gondall, M A; Qahtan, Talal F; Dastageer, M A; Yamani, Z H; Anjum, D H

    2016-01-01

    A rapid and cost effective method is developed to synthesize high purity cadmium Selenide (CdSe) quantum dots in acetone medium using second harmonic of Nd:YAG nanosecond pulsed laser of 532 nm wavelength. The thermal agglomeration due the nanosecond pulse duration of the laser was successfully eliminated by using unfocussed laser beam and thereby providing a favorable conditions for the synthesis of quantum dots having the grain size of 3 nm. The morphological and optical characterizations like XRD, HRTEM, optical absorption of the synthesized CdSe quantum dots, reveal that the material possesses the similar characteristics of the one synthesized through cumbersome wet chemical methods. Relative to the CdSe bulk material, the synthesized CdSe quantum dots showed a blue shift in the measured band gap energy from near infrared spectral region to visible region, making this material very attractive for many solar energy harvesting applications like photo-catalysis and solar cells.

  10. Self-assembled InAs/GaAs quantum dots and quantum dot laser

    Institute of Scientific and Technical Information of China (English)

    王占国; 刘峰奇; 梁基本; 徐波

    2000-01-01

    Systematic study of molecular beam epitaxy-grown self-assembled ln(Ga)As/GaAs, In-AlAs/AlGaAs/GaAs, and InAs/InAIAs/lnP quantum dots (QDs) is demonstrated. By adjusting growth conditions, surprising alignment, preferential elongation, and pronounced sequential coalescence of dots under the specific condition are realized. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 1 W is achieved from vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm2. An RT CW output power of 0.53 W ensures at least 3 000 h lasing (only drops 0.83 db). This is one of the best results ever reported.

  11. Self-assembled InAs/GaAs quantum dots and quantum dot laser

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Systematic study of molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs, InAlAs/AlGaAs/GaAs, and InAs/InAlAs/InP quantum dots (QDs) is demonstrated. By adjusting growth conditions, surprising alignment, preferential elongation, and pronounced sequential coalescence of dots under the specific condition are realized. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 1 W is achieved from vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm2. An RT CW output power of 0.53 W ensures at least 3 000 h lasing (only drops 0.83 db). This is one of the best results ever reported.

  12. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  13. Low-threshold indium gallium nitride quantum dot microcavity lasers

    Science.gov (United States)

    Woolf, Alexander J.

    Gallium nitride (GaN) microcavities with embedded optical emitters have long been sought after as visible light sources as well as platforms for cavity quantum electrodynamics (cavity QED) experiments. Specifically, materials containing indium gallium nitride (InGaN) quantum dots (QDs) offer an outstanding platform to study light matter interactions and realize practical devices, such as on-chip light emitting diodes and nanolasers. Inherent advantages of nitride-based microcavities include low surface recombination velocities, enhanced room-temperature performance (due to their high exciton binding energy, as high as 67 meV for InGaN QDs), and emission wavelengths in the blue region of the visible spectrum. In spite of these advantages, several challenges must be overcome in order to capitalize on the potential of this material system. Such diffculties include the processing of GaN into high-quality devices due to the chemical inertness of the material, low material quality as a result of strain-induced defects, reduced carrier recombination effciencies due to internal fields, and a lack of characterization of the InGaN QDs themselves due to the diffculty of their growth and therefore lack of development relative to other semiconductor QDs. In this thesis we seek to understand and address such issues by investigating the interaction of light coupled to InGaN QDs via a GaN microcavity resonator. Such coupling led us to the demonstration of the first InGaN QD microcavity laser, whose performance offers insights into the properties and current limitations of the nitride materials and their emitters. This work is organized into three main sections. Part I outlines the key advantages and challenges regarding indium gallium nitride (InGaN) emitters embedded within gallium nitride (GaN) optical microcavities. Previous work is also discussed which establishes context for the work presented here. Part II includes the fundamentals related to laser operation, including the

  14. Proposed Rabi-Kondo correlated state in a laser-driven semiconductor quantum dot.

    Science.gov (United States)

    Sbierski, B; Hanl, M; Weichselbaum, A; Türeci, H E; Goldstein, M; Glazman, L I; von Delft, J; Imamoğlu, A

    2013-10-11

    Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations between the single-spin and optically excited states. Here, we show that the interplay between strong exchange and nonperturbative laser coupling leads to the formation of a new nonequilibrium quantum-correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and examine the implications for the emission spectrum.

  15. Analytic Characterization of the Dynamic Regimes of Quantum-Dot Lasers

    Directory of Open Access Journals (Sweden)

    Benjamin Lingnau

    2015-04-01

    Full Text Available We present analytic treatment of the three different dynamic regimes found in quantum-dot laser turn-on and modulation dynamics. A dynamic coupling, and thus density-dependent scattering lifetimes between dots and reservoir, are identified to be crucial for a realistic modeling. We derive a minimal model for the quantum-dot laser dynamics that can be seeded with experimentally accessible parameters, and give explicit analytic equations that are able to predict relaxation-oscillation frequency and damping rate.

  16. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers

    Science.gov (United States)

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.

    2017-01-01

    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies. PMID:28211471

  17. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers

    Science.gov (United States)

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.

    2017-02-01

    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies.

  18. Pulsed-laser micropatterned quantum-dot array for white light source

    Science.gov (United States)

    Wang, Sheng-Wen; Lin, Huang-Yu; Lin, Chien-Chung; Kao, Tsung Sheng; Chen, Kuo-Ju; Han, Hau-Vei; Li, Jie-Ru; Lee, Po-Tsung; Chen, Huang-Ming; Hong, Ming-Hui; Kuo, Hao-Chung

    2016-03-01

    In this study, a novel photoluminescent quantum dots device with laser-processed microscale patterns has been demonstrated to be used as a white light emitting source. The pulsed laser ablation technique was employed to directly fabricate microscale square holes with nano-ripple structures onto the sapphire substrate of a flip-chip blue light-emitting diode, confining sprayed quantum dots into well-defined areas and eliminating the coffee ring effect. The electroluminescence characterizations showed that the white light emission from the developed photoluminescent quantum-dot light-emitting diode exhibits stable emission at different driving currents. With a flexibility of controlling the quantum dots proportions in the patterned square holes, our developed white-light emitting source not only can be employed in the display applications with color triangle enlarged by 47% compared with the NTSC standard, but also provide the great potential in future lighting industry with the correlated color temperature continuously changed in a wide range.

  19. Evolution of Ge and SiGe Quantum Dots under Excimer Laser Annealing

    Institute of Scientific and Technical Information of China (English)

    HAN Gen-Quan; ZENG Yu-Gang; YU Jin-Zhong; CHENG Bu-Wen; YANG Hai-Tao

    2008-01-01

    We present different relaxation mechanisms of Ge and SiGe quantum dots under excimer laser annealing.Inyestigation of the coarsening and relaxation of the dots showS that the strain in Ge dots on Ge films is relaxed by dislocation since there is no interface between the Ge dots and the Ge layer,while the SiGe dots on Si0.77 Ge0.23film relax by lattice distortion to coherent dots which results from the obvious interface between the SiGe dots and the Si0.77Ge0.23 film.The results are suggested and sustained by Vanderbilt and Wickham's theory,and also demonstrate that no bulk diffusion Occurs during the excimer laser annealing.

  20. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  1. 1310 nm quantum dot DFB lasers with high dot density and ultra-low linewidth-power product

    Science.gov (United States)

    Qiu, Y.; Lester, L. F.; Gray, A. L.; Newell, T. C.; Hains, C.; Gogna, P.; Muller, R.; Maker, P.; Su, H.; Stintz, A.

    2002-01-01

    Laterally coupled distributed feedback lasers using high-density InAs quantum dots-in-a-well (DWELL) active region demonstrate a nominal wavelength of 1310 nm, a linewidth as small as 68 kHz, and a linewidth-power product of 100 kHz-mW.

  2. Monolithic Hybrid and Passive Mode-Locked 40GHz Quantum Dot Laser Diodes

    DEFF Research Database (Denmark)

    Thompson, M. G.; Larsson, David; Rae, A. R.

    2006-01-01

    For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs.......For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs....

  3. Monolithic Hybrid and Passive Mode-Locked 40GHz Quantum Dot Laser Diodes

    DEFF Research Database (Denmark)

    Thompson, M. G.; Larsson, David; Rae, A. R.;

    2006-01-01

    For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs.......For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs....

  4. High performance red-emitting multiple layer InGaN/GaN quantum dot lasers

    Science.gov (United States)

    Frost, Thomas; Hazari, Arnab; Aiello, Anthony; Zunaid Baten, Md; Yan, Lifan; Mirecki-Millunchick, Joanna; Bhattacharya, Pallab

    2016-03-01

    InGaN/GaN self-organized quantum dots can provide useful advantages over quantum wells for the realization of long-wavelength visible light sources because the dots are formed by strain relaxation. A III-nitride based laser emitting in the red (λ ˜ 630 nm), which has not been demonstrated with quantum wells, would be useful for a host of applications. We have investigated the epitaxy and characteristics of self-organized InGaN/GaN multiple layer quantum dots grown by plasma-assisted molecular beam epitaxy and have optimized their properties by tuning the growth parameters. Red-emitting (λ ˜ 630 nm) quantum dots have radiative lifetime ˜2.5 ns and internal quantum efficiency greater than 50%. Edge-emitting red-lasers with multi-dot layers in the active region exhibit an extremely low threshold current density of 1.6 kA/cm2, a high temperature coefficient T0 = 240 K, and a large differential gain dg/dn = 9 × 10-17 cm2.

  5. A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser

    Science.gov (United States)

    Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel

    2017-01-01

    Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.

  6. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    Energy Technology Data Exchange (ETDEWEB)

    Biebersdorf, A [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Lingk, C [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); De Giorgi, M [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Feldmann, J [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Sacher, J [Sacher Lasertechnik GmbH, Hannah Arendt Strasse 3-7, D-35037 Marburg (Germany); Arzberger, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Ulbrich, C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Boehm, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Amann, M-C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Abstreiter, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2003-08-21

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments.

  7. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    Science.gov (United States)

    Yang, Chao; Feng, Guoying; Dai, Shenyu; Wang, Shutong; Li, Guang; Zhang, Hua; Zhou, Shouhuan

    2017-08-01

    A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4-6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  8. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Felle, M. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Penty, R. V. [Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2015-09-28

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.

  9. Contribution of off-resonant states to the phase noise of quantum dot lasers.

    Science.gov (United States)

    Wang, Cheng; Zhuang, Jun-Ping; Grillot, Frédéric; Chan, Sze-Chun

    2016-12-26

    The phase noise of quantum dot lasers is investigated theoretically by coupling the Langevin noise sources into the rate equations. The off-resonant populations in the excited state and in the carrier reservoir contribute to the phase noise of ground-state emission lasers through the phase-amplitude coupling effect. This effect arises from the optical-noise induced carrier fluctuations in the off-resonant states. In addition, the phase noise has low sensitivity to the carrier scattering rates.

  10. Physics and engineering of compact quantum dot-based lasers for biophotonics

    CERN Document Server

    Rafailov, Edik U

    2013-01-01

    Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.

  11. Impact of gain compression factor on modulation characteristics of InGaAs/GaAs self-assembled quantum dot lasers

    Science.gov (United States)

    Kariminezhad, Farzaneh; Rajaei, Esfandiar; Fali, Alireza; Mirzaei, Reyhaneh

    2016-12-01

    This paper investigates the influence of gain compression factor on the modulation response of InGaAs/GaAs self-assembled quantum dot laser based on rate equations. For different gain compression factors the output power-current characteristics, light emissions of quantum dot laser have been simulated and effect of gain compression factor changes on quantum dot laser is illustrated. Also, small and large-signal response of quantum dot lasers is studied and the impact of the gain compression factor is presented. It explains that increase of gain compression factor, decreases small-signal modulation characteristics, nevertheless, improves large-signal response of quantum dot lasers. It helps to generate better laser signal quality, higher eye and smaller jitter. The large-signal behavior of a laser diode determines its capability for digital data transfer. The modulation speed of quantum dot lasers is of specific importance if such lasers are considered for optical communication systems.

  12. Effect of tunneling injection on the modulation response of quantum dot lasers

    Directory of Open Access Journals (Sweden)

    Y. Yekta kiya

    2014-03-01

    Full Text Available In this paper, modulation bandwidth characteristics of InGaAs/GaAs quantum dot (QD laser were theoretically investigated. Simulation was done by using the fourth order Runge-Kutta method. Effect of carrier relaxation life time, temperature and current density on characteristics of tunneling injection QD laser (TIL and conventional QD laser (CL were analyzed. Results showed that tunneling injection in QD laser increases the modulation bandwidth indicating that it is very useful for using in the fiber optic communication systems.

  13. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  14. Single-sideband photonic microwave generation with an optically injected quantum-dot semiconductor laser.

    Science.gov (United States)

    Chen, Chih-Ying; Cheng, Chih-Hao; Lin, Fan-Yi

    2016-12-26

    We studied single-sideband (SSB) photonic microwave generation with a high sideband rejection ratio (SRR) based on the period-one dynamical states of an optically injected quantum-dot (QD) semiconductor laser and demonstrated that the SSB signals have SRRs of approximately 15 dB higher than those generated with a conventional quantum-well semiconductor laser under conditions of optimal microwave power. The enhancement of SRR in the QD laser, which is important in mitigating the power penalty effect in applications such as radio-over-fiber optical communications, could be primarily attributed to a lower carrier decay rate in the dots, smaller linewidth enhancement factor, and reduced photon decay rate.

  15. Terahertz Generation Using Implanted InGaAs Photomixers and Multi-wavelength Quantum Dot Lasers

    Institute of Scientific and Technical Information of China (English)

    Y Hou; J R Liu; M Buchanan; A J Spring Thorpe; P J Poole; H C Liu; Ke Wu; Sjoerd Roorda; X P Zhang

    2012-01-01

    We report on a study of terahertz (THz) generation using implanted InGaAs photomixers and multi-wavelength quantum dot lasers. We carry out InGaAs materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched InGaAs grown on InP. Under a 1.55 µm multi-mode InGaAs/InGaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source.

  16. Single semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Michler, Peter (ed.) [Stuttgart Univ. (Germany). Inst. fuer Halbleiteroptik und Funktionelle Grenzflaechen

    2009-07-01

    This book reviews recent advances in the exciting and rapidly growing field of semiconductor quantum dots via contributions from some of the most prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots due to their potential applications in devices operating with single electron spins and/or single photons. This includes single and coupled quantum dots in external fields, cavity-quantum electrodynamics, and single and entangled photon pair generation. Single Semiconductor Quantum Dots also addresses growth techniques to allow for a positioned nucleation of dots as well as applications of quantum dots in quantum information technologies. (orig.)

  17. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  18. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  19. Modeling and Direct Electric-Field Measurements of Passively Mode-Locked Quantum-Dot Lasers (Postprint)

    Science.gov (United States)

    2010-07-01

    H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0 .15Ga0 .85As...Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes ,” IEEE Photon. Tech. Lett., vol. 11, no...device physics, and fabrication and characterization of semiconduc- tor quantum-dot light emitters that include mode- locked laser and superluminescent

  20. Optical gain and laser properties of semiconductor quantum-dot systems

    Energy Technology Data Exchange (ETDEWEB)

    Lorke, Michael

    2008-12-17

    For practical applications of quantum dots in light emitters as well as for fundamental studies of their emission properties, the understanding of many-body processes plays a central role. We employ a microscopic theory to study the optical properties of semiconductor quantum dots. The excitation-induced polarization dephasing due to carrier-phonon and carrier-carrier Coulomb interaction as well as the corresponding lineshifts of the optical interband transitions are determined on the basis of a quantum-kinetic treatment of correlation processes. Our theoretical model includes non-Markovian effects as well as renormalized single-particle states. Thus we achieve an accurate description of the partial compensation between different dephasing contributions and are able to systematically study their temperature and density dependencies. Applications of this theoretical model include optical gain spectra for quantum-dot systems that reveal a novel effect, not present in other gain materials. For large carrier densities, the maximum gain can decrease with increasing carrier density. This behavior arises from a delicate balancing of state filling and dephasing, and implies the necessity of an accurate treatment of the carrier-density dependence of correlations. Measurements of the coherence properties of the light emitted from semiconductor quantum-dot lasers have raised considerable attention in recent years. We study the correlations between individual emission events on the basis of a microscopic semiconductor laser theory. This allows for a study of effects like Pauli blocking, modifications to the source term of spontaneous emission, and the absence of complete inversion, that strongly influence the emission characteristics of quantum dot based devices. A new and challenging material system for applications in the visible spectral range are nitride semiconductors. As crystal symmetry and bandmixing effects strongly influence the optical selection rules, the single

  1. Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers.

    Science.gov (United States)

    Chusseau, Laurent; Philippe, Fabrice; Disanto, Filippo

    2014-03-10

    Monte Carlo markovian models of a dual-mode semiconductor laser with quantum well (QW) or quantum dot (QD) active regions are proposed. Accounting for carriers and photons as particles that may exchange energy in the course of time allows an ab initio description of laser dynamics such as the mode competition and intrinsic laser noise. We used these models to evaluate the stability of the dual-mode regime when laser characteristics are varied: mode gains and losses, non-radiative recombination rates, intraband relaxation time, capture time in QD, transfer of excitation between QD via the wetting layer... As a major result, a possible steady-state dual-mode regime is predicted for specially designed QD semiconductor lasers thereby acting as a CW microwave or terahertz-beating source whereas it does not occur for QW lasers.

  2. Direct growth of CdSe semiconductor quantum dots in glass matrix by femtosecond laser beam

    Science.gov (United States)

    Bell, G.; Filin, A. I.; Romanov, D. A.; Levis, R. J.

    2016-02-01

    Controllable, spatially inhomogeneous distributions of CdSe nanocrystals smaller than the exciton Bohr radius are grown in a glass matrix under combined action of sample heating (below the transformation temperature) and focused high-repetition femtosecond (fs) laser beam. Selective quantum dot precipitation is evidenced by position-dependent absorption and Raman spectra. The particle size is estimated as r = 2.1 ± 0.3 nm by comparing the measured absorption and Raman spectra with those obtained from the samples grown in glass by traditional heat-treatment procedure. Direct growth of CdSe quantum dots in glass is enabled by nonlinear excitation using a focused fs duration laser beam (as differentiated from other methods), and this opens an avenue for adjustable selective growth patterns.

  3. Low-frequency fluctuations in two-state quantum dot lasers

    OpenAIRE

    Viktorov, Evgeny A.; Houlihan, J.

    2006-01-01

    We study the feedback-induced instabilities in a quantum dot semiconductor laser emitting in both ground and excited states. Without optical feedback the device exhibits dynamics corresponding to antiphase fluctuations between ground and excited states, while the total output power remains constant. The introduction of feedback leads to power dropouts in the ground state and intensity bursts in the excited state, resulting in a practically constant total output power.

  4. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging

    OpenAIRE

    2016-01-01

    Crystalline silicon (Si) nanoparticles present an extremely promising object for bioimaging based on photoluminescence (PL) in the visible and near-infrared spectral regions, but their efficient PL emission in aqueous suspension is typically observed after wet chemistry procedures leading to residual toxicity issues. Here, we introduce ultrapure laser-synthesized Si-based quantum dots (QDs), which are water-dispersible and exhibit bright exciton PL in the window of relative tissue transparenc...

  5. Delay signatures in the chaotic intensity output of a quantum dot laser with optical feedback

    Indian Academy of Sciences (India)

    VARGHESE BEJOY; JOHN MANU P; NANDAKUMARAN V M

    2016-05-01

    Delay identification from the chaotic intensity output of a quantum dot laser with optical feedback is done using numerical and information theoretic techniques. Four quantifiers, namely autocorrelation function, delayed mutual information, permutation entropy and permutation statistical complexity, are employed in delay estimation. A detailed comparison of these quantifiers with different feedback rates and delay is undertaken. Permutation entropy and permutation statistical complexity are calculated with different dimensions of symbolic reconstruction to obtain the best results.

  6. Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction.

    Science.gov (United States)

    Lin, Chih-Hao; Lin, Hung-Hsin; Lin, Fan-Yi

    2012-01-02

    We apply a four-wave mixing analysis on a quantum dot laser to simultaneously obtain the linewidth enhancement factor α and other intrinsic laser parameters. By fitting the experimentally obtained regenerative signals and power spectra at different detuning frequencies with the respective curves analytically calculated from the rate equations, parameters including the linewidth enhancement factor, the carrier decay rate in the dots, the differential gain, and the photon decay rate can be determined all at once under the same operating conditions. In this paper, a theoretical model for the four-wave mixing analysis of the QD lasers is derived and verified. The sensitivity and accuracy of the parameter extraction using the four-wave mixing method are presented. Moreover, how each each parameters alter the shapes of the regenerative signals and the power spectra are also discussed.

  7. Quantum dot semiconductor disk laser at 1.3  μm.

    Science.gov (United States)

    Rantamäki, Antti; Sokolovskii, Grigorii S; Blokhin, Sergey A; Dudelev, Vladislav V; Soboleva, Ksenia K; Bobrov, Mikhail A; Kuzmenkov, Alexander G; Vasil'ev, Alexey P; Gladyshev, Andrey G; Maleev, Nikolai A; Ustinov, Victor M; Okhotnikov, Oleg

    2015-07-15

    We present a semiconductor disk laser (SDL) emitting at the wavelength of 1.3 μm. The active region of the SDL comprises InAs quantum dots (QDs) that are embedded into InGaAs quantum wells (QWs). An output power over 200 mW is obtained at 15°C, which represents the highest output power reported from QD-based SDLs in this wavelength range. The results demonstrate the feasibility of QD-based gain media for fabricating SDLs emitting at 1.3 μm.

  8. The spectral analysis and threshold limits of quasi-supercontinuum self-assembled quantum dot interband lasers

    KAUST Repository

    Tan, Cheeloon

    2009-09-01

    This paper presents a theoretical model to explain the quasi-supercontinuum interband emission from InGaAs/GaAs self-assembled semiconductor quantum dot lasers by accounting for both inhomogeneous and homogeneous optical gain broadening. The experimental and theoretical agreement of a room temperature (293 K) broadband laser emission confirms the presence of multiple-state lasing actions in highly inhomogeneous dot ensembles. The corresponding full-width half-maximum of the photoluminescence is 76 meV as opposed to those wideband lasing coverage at only low temperature (∼60 K) from typical quantum dot lasers. A newly proposed change of homogeneous broadening with injection that occurs only in highly inhomogeneous quantum dot system is critical to account for the continuous wideband lasing but not the conventional ideas of carrier dynamics in semiconductor lasers. In addition, the analysis of threshold conditions reveals that broadband lasing only occurs when the energy spacing between quantized energy states is comparable to the inhomogeneous broadening of quantum-dot nanostructures. The study is important in providing a picture of this novel device and realization of broad lasing coverage for diverse applications, especially in the research field of short-pulse generation and ultra-fast phenomena in semiconductor quantum-dot laser. © 2009 IEEE.

  9. Characterization and Dynamic Analysis of Long-Cavity Multi-Section Gain- Levered Quantum-Dot Lasers

    Science.gov (United States)

    2013-03-01

    linewidth-enhancement factor to values greater than one [19]. This is combined with the original quantum-dot emission wavelength being blueshifted ...16]. Figure 12: Blueshift of the quantum-dot emission due to state filling. Each spectrum is marked with the corresponding laser cavity length...distinct second peak near 1222 nm. This spectral feature continues to blueshift as biasing is increased to 500 mA. The fundamental spectral feature widens

  10. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    Science.gov (United States)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  11. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses

    KAUST Repository

    Chiang, Weiyi

    2014-12-11

    The development in optical trapping and manipulation has been showing rapid progress, most of it is in the small particle sizes in nanometer scales, substituting the conventional continuous-wave lasers with high-repetition-rate ultrashort laser pulse train and nonlinear optical effects. Here, we evaluate two-photon absorption in optical trapping of 2.7 nm-sized CdTe quantum dots (QDs) with high-repetition-rate femtosecond pulse train by probing laser intensity dependence of both Rayleigh scattering image and the two-photon-induced luminescence spectrum of the optically trapped QDs. The Rayleigh scattering imaging indicates that the two-photon absorption (TPA) process enhances trapping ability of the QDs. Similarly, a nonlinear increase of the two-photon-induced luminescence with the incident laser intensity fairly indicates the existence of the TPA process.

  12. Modeling and simulation of InAs/GaAs quantum dot lasers

    Institute of Scientific and Technical Information of China (English)

    LV Shao-feng; Ivo Montrosset; Mariangela Gioannini; SONG Shu-zhong; MA Jian-wei

    2011-01-01

    Based on the analysis of carrier dynamics in quantum dots (QDs), the numerical model of InAs/GaAs QD laser is developed by means of complete rate equations. The model includes four energy levels and among them three energy levels join in lasing. A simulation is conducted by MATLAB according to the rate equation model we obtain. The simulation results of PI characteristic, gain characteristic and intensity modulation response are reasonable. Also, the relations between the left facet reflectivity of laser cavity and threshold current as well as modulation bandwidth are studied. It is indicated that the left facet reflectivity increasing can result in reduced threshold current and improved modulation bandwidth, which is in accordance with experimental results. The internal mechanism of QD lasers is fully described with the rate equation model,which is helpful for QD lasers research.

  13. Model microcavity laser with CdSe/CdS quantum dots as lasing media

    Science.gov (United States)

    Naveed, H. B.; Popov, S.; Shafique, M.

    2016-02-01

    A model is established for a microcavity laser with cadmium selenium/cadmium sulfide (CdSe/CdS) core/shell quantum dots (QDs) as a lasing medium. The research was organised to develop and solve the rate equations for the above mentioned microcavity laser to calculate the output parameters during lasing. Using time-resolved fluorescence spectroscopy, the radiative life time of the lasing medium was measured along with its fluorescence and absorption spectra. A model is also established on the basis of the segment contact method (SCM) to demonstrate the threshold gain profile using the absorption spectrum of CdSe/CdS core/shell type-II QDs residing in the cavity. A laser cavity of size 1 μm was pumped with an optical source (532 nm) to achieve an optimised laser peak at 470 nm.

  14. Manipulating coherence resonance in a quantum dot semiconductor laser via electrical pumping.

    Science.gov (United States)

    Otto, Christian; Lingnau, Benjamin; Schöll, Eckehard; Lüdge, Kathy

    2014-06-02

    Excitability and coherence resonance are studied in a semiconductor quantum dot laser under short optical self-feedback. For low pump levels, these are observed close to a homoclinic bifurcation, which is in correspondence with earlier observations in quantum well lasers. However, for high pump levels, we find excitability close to a boundary crisis of a chaotic attractor. We demonstrate that in contrast to the homoclinic bifurcation the crisis and thus the excitable regime is highly sensitive to the pump current. The excitability threshold increases with the pump current, which permits to adjust the sensitivity of the excitable unit to noise as well as to shift the optimal noise strength, at which maximum coherence is observed. The shift adds up to more than one order of magnitude, which strongly facilitates experimental realizations.

  15. Low-temperature characteristics of two-color InAs/InP quantum dots laser

    Institute of Scientific and Technical Information of China (English)

    Shiguo Li; Qian Gong; Xinzhong Wang; Li Yue; Oingbo Liu; Hailong Wang

    2012-01-01

    We report on the lasing characteristics of a two-color InAs/InP quantum dots (QDs) laser at a low temperature.Two lasing peaks with a tunable gap are simultaneously observed.At a low temperature of 80 K,a tunable range greater than a 20-nm wavelength is demonstrated by varying the injection current from 30 to 500 mA.Under a special condition,we even observe three lasing peaks,which are in contrast to those observed at room temperature.The temperature coefficient of the lasing wavelength was obtained for the two colors in the 80-280 K temperature range,which is lower than that of the reference quantum well (QW) laser working in the same wavelength region.

  16. Thiol capped colloidal CdTe quantum dots synthesized using laser ablation

    Science.gov (United States)

    Almeida, D. B.; Rodriguez, E.; Moreira, R. S.; Agouram, S.; Barbosa, L. C.; Jimenez, E.; Cesar, C. L.

    2009-08-01

    Semiconductor quantum dots [QD] have shown a great number of applications from fluorescent markers to solar cell devices. Colloidal systems have been usually obtained through chemical synthesis, that have to be devoleped for each material. The best quality QDs have been obtained with non-aqueous solution and non-physiological pH, requiring a posterior processing to be used in biology, for example. In contrast, the same physical synthetic method, such as laser ablation, would be applied to any semiconductor, metallic or dielectric material. Colloidal QD can be obtained by laser ablation of a target inside any solvent, given this method a very large flexibility. The fluorescence efficiency, however, depend on the surface traps and stability of colloids. The usual method to avoid surface traps is to grow a cap layer to passivate its surface and, at the same time, stabilize the colloid, sterically or electrostatically. In this work we report a novel technique for obtain thiol capped CdTe colloidal quantum dots in one step. A target immerse in a solution of ethanol and 3-mercaptopropyltrimethoxysilane (MPS), or thiol, was hit by a nanosecond 532 nm laser. With this assembly CdTe luminescent QDs were obtained. The colloid photoluminescence and other optical and structural properties are studied.

  17. Transient behaviors of current-injection quantum-dot microdisk lasers.

    Science.gov (United States)

    Mao, Ming-Hua; Chien, Hao-Che

    2012-01-30

    We studied the transient behaviors of current-injection quantum-dot microdisk lasers at room temperature. Unique optical responses were observed, including the suppression of relaxation oscillations and fast turn-on. With the help of rate-equation modeling, the suppressed relaxation oscillations are attributed to the enhanced spontaneous emission factor in microdisk lasers. Short turn-on time, around 1 ns without pre-bias, results from the reduced carrier lifetime caused by the Purcell effect and increased nonradiative recombination rate due to higher surface/volume ratio. With short turn-on time, a large-signal direct modulation experiment at 1 Gbps is demonstrated. Modal transient behavior was also investigated under various temperatures from 100 to 300 K. Both of the transient lasing and steady-state lasing from side modes are suppressed at temperatures higher than 250K. Therefore, the quantum-dot microdisk lasers show the potential of single-mode operation under high-speed modulation at room temperature.

  18. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used......Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... to probe coherence times of exciton states and relaxation processes, both of which are important for future applications....

  19. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used......Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... to probe coherence times of exciton states and relaxation processes, both of which are important for future applications....

  20. A InGaN/GaN quantum dot green (λ=524 nm) laser

    KAUST Repository

    Zhang, Meng

    2011-01-01

    The characteristics of self-organized InGaN/GaN quantum dot lasers are reported. The laser heterostructures were grown on c-plane GaN substrates by plasma-assisted molecular beam epitaxy and the laser facets were formed by focused ion beam etching with gallium. Emission above threshold is characterized by a peak at 524 nm (green) and linewidth of 0.7 nm. The lowest measured threshold current density is 1.2 kA/ cm2 at 278 K. The slope and wall plug efficiencies are 0.74 W/A and ∼1.1%, respectively, at 1.3 kA/ cm 2. The value of T0 =233 K in the temperature range of 260-300 K. © 2011 American Institute of Physics.

  1. A grating-coupled external cavity InAs/InP quantum dot laser with 85-nm tuning range

    Science.gov (United States)

    Wei, Heng; Jin, Peng; Luo, Shuai; Ji, Hai-Ming; Yang, Tao; Li, Xin-Kun; Wu, Jian; An, Qi; Wu, Yan-Hua; Chen, Hong-Mei; Wang, Fei-Fei; Wu, Ju; Wang, Zhan-Guo

    2013-09-01

    The optical performance of a grating-coupled external cavity laser based on InAs/InP quantum dots is investigated. Continuous tuning from 1391 nm to 1468 nm is realized at an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.

  2. 1125-nm quantum dot laser for tonsil thermal therapy

    Science.gov (United States)

    McMillan, Kathleen

    2011-03-01

    Thermal therapy has the potential to provide a nonexcisional alternative to tonsillectomy. Clinical implementation requires that the lymphoid tissue of tonsils is heated homogeneously to produce an amount of primary thermal injury that corresponds to gradual postoperative tonsil shrinkage, with minimal risk of damage to underlying critical blood vessels. Optical constants are derived for tonsils from tissue components and used to calculate the depth of 1/e of irradiance. The 1125 nm wavelength is shown to correspond to both deep penetration and minimal absorption by blood. A probe for tonsil thermal therapy that comprises two opposing light emitting, temperature controlled surfaces is described. For ex vivo characterization of tonsil heating, a prototype 1125 nm diode laser is used in an experimental apparatus that splits the laser output into two components, and delivers the radiation to sapphire contact window surfaces of two temperature controlled cells arranged to irradiate human tonsil specimens from opposing directions. Temperatures are measured with thermocouple microprobes at located points within the tissue during and after irradiation. Primary thermal damage corresponding to the recorded thermal histories are calculated from Arrhenius parameters for human tonsils. Results indicate homogeneous heating to temperatures corresponding to the threshold of thermal injury and above can be achieved in advantageously short irradiation times.

  3. Sub-1100 nm lasing from post-growth intermixed InAs/GaAs quantum-dot lasers

    KAUST Repository

    Alhashim, H.H.

    2015-08-15

    Impurity free vacancy disordering induced highly intermixed InAs/GaAs quantum-dot lasers are reported with high internal quantum efficiency (>89%). The lasers are shown to retain the device characteristics after intermixing and emitting in the important wavelength of ∼1070–1190 nm. The non-coated facet Fabry-Pērot post-growth wavelength tuned lasers exhibits high-power (>1.4W) and high-gain (∼50 cm −1), suitable for applications in frequency doubled green–yellow–orange laser realisation, gas sensing, metrology etc.

  4. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    Directory of Open Access Journals (Sweden)

    Hamza Qayyum

    2016-05-01

    Full Text Available The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×1010 cm−2 could be formed over an area larger than 4 mm2. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.

  5. Recurrent state-switching of a two-state quantum dot laser by optical feedback

    Science.gov (United States)

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2016-04-01

    In this contribution, we experimentally report recurrent switching between ground and excited state emission in a quantum dot laser controlled by optical feedback. We demonstrate that changing the phase of the optical feedback can efficiently induce switching between the two emission processes of the laser. Experimentally, by using an external mirror placed on a piezo-actuator, we were able to achieve incomplete switching between ground and excited state emission, i.e. without complete extinction of the modes. The switching takes place for variations of the external cavity length at the wavelength scale, i.e. around 1.2 um. Theoretically, we successfully link this switching behaviour with the evolution of the modal gain difference between the two modes induced by the variations of the optical feedback phase.

  6. Phase-amplitude coupling characteristics in directly modulated quantum dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 75634 Paris Cedex 13 (France); Institut National des Sciences Appliquées, Université Européenne de Bretagne, 35708 Rennes Cedex 7 (France); Osiński, M. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 75634 Paris Cedex 13 (France); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106-4343 (United States); Even, J. [Institut National des Sciences Appliquées, Université Européenne de Bretagne, 35708 Rennes Cedex 7 (France); Grillot, F. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 75634 Paris Cedex 13 (France)

    2014-12-01

    We present a semi-analytical model for studying the phase-amplitude coupling (α-factor) in quantum dot (QD) semiconductor lasers, which takes into account the influence of carrier populations in the excited state and in the two-dimensional carrier reservoir on the refractive index change. Calculations of the α-factor based on the amplified spontaneous emission method and on the “FM/AM” technique are both investigated. It is shown that the α-factor of a QD laser strongly depends on the energy separation between the ground state and the off-resonant states. Through band structure engineering, the α-factor can be reduced by enlarging this energy separation.

  7. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Viktorov, E. A. [National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg (Russian Federation); Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium); Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Abusaa, M. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Arab American University, Jenin, Palestine (Country Unknown); Danckaert, J. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Kolykhalova, E. D. [St. Petersburg State Electrotechnical University “LETI,” St. Petersburg (Russian Federation); Soboleva, K. K. [St. Petersburg State Polytechnical University, St. Petersburg (Russian Federation); Zhukov, A. E. [Academic University, St. Petersburg (Russian Federation); Sibbett, W. [University of St. Andrews, St. Andrews (United Kingdom); Rafailov, E. U. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Erneux, T. [Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium)

    2015-06-29

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

  8. Laser-induced fluorescence measurements on CdSe quantum dots

    Directory of Open Access Journals (Sweden)

    Zoltan Győri

    2010-03-01

    Full Text Available In this paper, we report on photoluminescence decay measurements on CdSe quantum dots (QDs as a function of size in the diameter range of 2.1 to 3.5 nm. The nanoparticles were synthesized by the kinetic growth method from CdO and elemental Se precursors. We studied the effects of growth time on the diameter, emission spectrum and the fluorescence lifetime of the synthesized QDs. The decay time measurements were performed using single shot time-resolved laser-induced fluorescence techniques using a Nd:YAG laser system. Two different decay times were measured on each CdSe sample, a fast one and a relatively slow one. The slow decay was found to be size dependent whereas the fast one was independent of the QD diameter.

  9. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  10. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konecna, Marie [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Novotny, Karel [Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Krizkova, Sona [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Blazkova, Iva [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kopel, Pavel [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kaiser, Jozef [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Hodek, Petr [Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 00 Prague,Czech Republic (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); and others

    2014-11-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA.

  11. Ultrahigh-Speed Electrically Injected 1.55 micrometer Quantum Dot Microtube and Nanowire Lasers on Si

    Science.gov (United States)

    2015-08-30

    lasers with conventional AlGaN multiple quantum well structures are limited to the UV -AI band (~ 340-400 nm) [21]. In this work, we demonstrate the use ...injected AlGaN nanowire lasers that can operate in the UV -AII (315-340 nm), UV -B (280-315nm), and UV -C (200-280 nm). The views, opinions and/or findings...recently demonstrated electrically injected rolled-up InAs quantum well (or dot) tube lasers using a lateral injection scheme. In parallel, we have

  12. Wavelength-tunable photoluminescence of ZnSe quantum dot micelles synthesized by femtosecond laser ablation in microfluidics

    Science.gov (United States)

    Yang, Chao; Feng, Guoying; Wang, Shutong; Dai, Jiangyun; Zhang, Yuqin; Zhou, Shouhuan

    2017-09-01

    Aqueous ZnSe quantum dots were synthesized by femtosecond laser ablation in microfluidics (FLAM). Hyperbranched polyethylenimine (PEI) was used to form quantum dot micelles which exhibited wavelength-tunable photoluminescence of bright visible light with the variation of pH values. The emission was attributed to the radiative deep levels introduced by the defect states. The emission peak center exhibited a blue shift as much as 25 nm to the shorter band. A possible band gap expansion mechanism for the photoluminescence wavelength tunability was discussed.

  13. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  14. On-chip integration of InGaAs/GaAs quantum dot lasers with waveguides and modulators on silicon

    Science.gov (United States)

    Yang, Jun; Bhattacharya, Pallab; Qin, Guoxuan; Ma, Zhenqiang

    2008-02-01

    Compound-semiconductor-based photonic devices, including lasers and modulators, directly grown and on-chip integrated on Si substrates provide a promising approach for the realization of optical interconnects with CMOS compatibility. Utilizing quantum dots as efficient dislocation filters near the GaAs-Si interface, for the first time, we demonstrated high-performance InGaAs/GaAs quantum dot (QD) lasers on silicon with a relatively low threshold current (J th = 900 A/cm2), large small-signal modulation bandwidth of 5.5 GHz, and a high characteristic temperature (T 0 = 278 K). The integrated InGaAs QD lasers with quantum well (QW) electroabsorption modulators, achieved through molecular beam epitaxy (MBE) growth and regrowth, exhibit a coupling coefficient greater than 20% and a modulation depth ~100% at 5 V reverse bias. We achieved the monolithic integration of amorphous and crystalline silicon waveguides with quantum dot lasers by using plasma-enhanced-chemical-vapor-deposition (PECVD) and membrane transfer, respectively. Finally, preliminary results on the integration of QD lasers with Si CMOS transistors are presented.

  15. Characteristics of highly stacked InAs quantum-dot laser grown on vicinal (001)InP substrate

    Science.gov (United States)

    Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2016-04-01

    We fabricate broad-area laser diodes consisting of 30-layer stacks of InAs quantum dots by using a strain-compensation technique on a vicinal (001)InP substrate. These laser diodes exhibit ground-state lasing at 1576 nm in the pulsed mode with a high characteristic temperature of 111 K at around room temperature (20-80 °C).

  16. Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots.

    Science.gov (United States)

    Wang, Yue; Ta, Van Duong; Leck, Kheng Swee; Tan, Beng Hau Ian; Wang, Zeng; He, Tingchao; Ohl, Claus-Dieter; Demir, Hilmi Volkan; Sun, Handong

    2017-03-21

    Microlasers hold great promise for the development of photonics and optoelectronics. Among the discovered optical gain materials, colloidal quantum dots (CQDs) have been recognized as the most appealing candidate due to the facile emission tunability and solution processability. However, to date, it is still challenging to develop CQD-based microlasers with low cost yet high performance. Moreover, the poor long-term stability of CQDs remains to be the most critical issue, which may block their laser aspirations. Herein, we developed a unique but generic approach to forming a novel type of a whispering-gallery-mode (WGM) microbubble laser from the hybrid CQD/poly(methyl methacrylate) (PMMA) nanocomposites. The formation mechanism of the microbubbles was unraveled by recording the drying process of the nanocomposite droplets. Interestingly, these microbubbles naturally serve as the high-quality WGM laser resonators. By simply changing the CQDs, the lasing emission can be tuned across the whole visible spectral range. Importantly, these microbubble lasers exhibit unprecedented long-term stability (over one year), sufficient for practical applications. As a proof-of-concept, the potential of water vapor sensing was demonstrated. Our results represent a significant advance in microlasers based on the advantageous CQDs and may offer new possibilities for photonics and optoelectronics.

  17. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    Science.gov (United States)

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples.

  18. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Zun-Ren; Ji, Hai-Ming, E-mail: jhm@semi.ac.cn; Luo, Shuai; Gao, Feng; Xu, Feng; Yang, Tao, E-mail: tyang@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Xiao, De-Hang, E-mail: xiaodehang@hlju.edu.cn [College of Physical Science and Technology, Heilongjiang University, Harbin 150080 (China)

    2015-10-15

    Large signal modulation characteristics of the simultaneous ground-state (GS) and excited-state (ES) lasing quantum dot lasers are theoretically investigated. Relaxation oscillations of ‘0 → 1’ and ‘1 → 0’ in the GS lasing region (Region I), the transition region from GS lasing to two-state lasing (Region II) and the two-state lasing region (Region III) are compared and analyzed. It is found that the overshooting power and settling time in both Regions I and III decrease as the bias current increases. However, there exist abnormal behaviors of the overshooting power and settling time in Region II owing to the occurrence of ES lasing, which lead to fuzzy eye diagrams of the GS and ES lasing. Moreover, the ES lasing in Region III possesses much better eye diagrams because of its shorter settling time and smaller overshooting power over the GS lasing in Region I.

  19. Nonlinear Absorptions of CdSeTe Quantum Dots under Ultrafast Laser Radiation

    Directory of Open Access Journals (Sweden)

    Zhijun Chai

    2016-01-01

    Full Text Available The oil-soluble alloyed CdSeTe quantum dots (QDs are prepared by the electrostatic method. The basic properties of synthesized CdSeTe QDs are characterized by UV-Vis absorption spectroscopy, photoluminescence spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscope. The off-resonant nonlinear optical properties of CdSeTe QDs are studied by femtosecond Z-scan at 1 kHz (low-repetition rate and 84 MHz (high-repetition rate. Nonlinear absorption coefficients are calculated under different femtosecond laser excitations. Due to the long luminescent lifetime of CdSeTe QDs, under the conditions of high-repetition rate, for open-aperture curve, heat accumulation and bleaching of ground state are responsible for the decrease of two-photon absorption (TPA coefficient.

  20. Laser ablation synthesis route of CdTe colloidal quantum dots for biological applications

    Science.gov (United States)

    Almeida, D. B.; Rodriguez, E.; Moreira, R. S.; Agouram, S.; Barbosa, L. C.; Jimenez, E.; Cesar, C. L.

    2009-07-01

    In this work we report a novel technique for obtain thiol capped CdTe colloidal quantum dots in one step. These nanoparticles are compatible for silica capping indicating their possible use as fluorescent markers.

  1. Semiconductor double quantum dot micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. Copyright © 2015, American Association for the Advancement of Science.

  2. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states

    Science.gov (United States)

    Huang, H.; Arsenijević, D.; Schires, K.; Sadeev, T.; Bimberg, D.; Grillot, F.

    2016-12-01

    Quantum dot lasers are envisioned to be the next generation of optical transmitters used for short-reach communication links, owing to their low threshold current and high temperature operation. However, in a context of steady increase in both speed and reach, quantum dot lasers emitting on their upper energy levels have been recently of greater interest as they are touted for their faster modulation dynamics. This work aims at further evaluating the potential impact of such lasers in communication links by characterizing their long-delay optical feedback responses as well as the role of the lasing states on the multimode dynamics of InAs/GaAs quantum-dot Fabry-Perot devices sharing the same design. Results unveil that the excited-state laser shows a much larger sensitivity to optical feedback, with a more complex route to chaos, and a first destabilization point occurring at lower feedback strengths than for a comparable ground-state laser, which remains almost unaffected.

  3. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    . The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...

  4. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging

    Science.gov (United States)

    Gongalsky, M. B.; Osminkina, L. A.; Pereira, A.; Manankov, A. A.; Fedorenko, A. A.; Vasiliev, A. N.; Solovyev, V. V.; Kudryavtsev, A. A.; Sentis, M.; Kabashin, A. V.; Timoshenko, V. Yu.

    2016-04-01

    Crystalline silicon (Si) nanoparticles present an extremely promising object for bioimaging based on photoluminescence (PL) in the visible and near-infrared spectral regions, but their efficient PL emission in aqueous suspension is typically observed after wet chemistry procedures leading to residual toxicity issues. Here, we introduce ultrapure laser-synthesized Si-based quantum dots (QDs), which are water-dispersible and exhibit bright exciton PL in the window of relative tissue transparency near 800 nm. Based on the laser ablation of crystalline Si targets in gaseous helium, followed by ultrasound-assisted dispersion of the deposited films in physiological saline, the proposed method avoids any toxic by-products during the synthesis. We demonstrate efficient contrast of the Si QDs in living cells by following the exciton PL. We also show that the prepared QDs do not provoke any cytoxicity effects while penetrating into the cells and efficiently accumulating near the cell membrane and in the cytoplasm. Combined with the possibility of enabling parallel therapeutic channels, ultrapure laser-synthesized Si nanostructures present unique object for cancer theranostic applications.

  5. Three-dimensional dynamic photonic crystal creation by four laser beams interference in colloidal quantum dots

    Science.gov (United States)

    Smirnov, A. M.; Mantsevich, V. N.; Ezhova, K. V.; Tikhonov, I. V.; Dneprovskii, V. S.

    2016-04-01

    We investigate a simple way to create dynamic photonic crystals with different lattice symmetry by interference of four non-coplanar laser beams in colloidal solution of CdSe/ZnS quantum dots (QDs). The formation of dynamic photonic crystal was confirmed by the observed diffraction of the beams that have excited photonic crystal at the angles equal to that calculated for the corresponding three-dimensional lattice (self-diffraction regime). Self-diffraction from an induced 3D transient photonic crystal has been discovered in the case of resonant excitation of the excitons (electron - hole transitions) in CdSe/ZnS QDs (highly absorbing colloidal solution) by powerful beams of mode-locked laser with picosecond pulse duration. Self-diffraction arises for four laser beams intersecting in the cell with colloidal CdSe/ZnS QDs due to the induced 3D dynamic photonic crystal. The physical processes that arise in CdSe/ZnS QDs and are responsible for the observed self-action effects are discussed.

  6. Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers.

    Science.gov (United States)

    Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris

    2016-12-19

    Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.

  7. Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers

    Science.gov (United States)

    Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris

    2016-12-01

    Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.

  8. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging.

    Science.gov (United States)

    Gongalsky, M B; Osminkina, L A; Pereira, A; Manankov, A A; Fedorenko, A A; Vasiliev, A N; Solovyev, V V; Kudryavtsev, A A; Sentis, M; Kabashin, A V; Timoshenko, V Yu

    2016-04-22

    Crystalline silicon (Si) nanoparticles present an extremely promising object for bioimaging based on photoluminescence (PL) in the visible and near-infrared spectral regions, but their efficient PL emission in aqueous suspension is typically observed after wet chemistry procedures leading to residual toxicity issues. Here, we introduce ultrapure laser-synthesized Si-based quantum dots (QDs), which are water-dispersible and exhibit bright exciton PL in the window of relative tissue transparency near 800 nm. Based on the laser ablation of crystalline Si targets in gaseous helium, followed by ultrasound-assisted dispersion of the deposited films in physiological saline, the proposed method avoids any toxic by-products during the synthesis. We demonstrate efficient contrast of the Si QDs in living cells by following the exciton PL. We also show that the prepared QDs do not provoke any cytoxicity effects while penetrating into the cells and efficiently accumulating near the cell membrane and in the cytoplasm. Combined with the possibility of enabling parallel therapeutic channels, ultrapure laser-synthesized Si nanostructures present unique object for cancer theranostic applications.

  9. The in vivo biodistribution and fate of CdSe quantum dots in the murine model: a laser ablation inductively coupled plasma mass spectrometry study.

    Science.gov (United States)

    Wang, TsingHai; Hsieh, HuiAn; Hsieh, YiKong; Chiang, ChiShiun; Sun, YuhChang; Wang, ChuFang

    2012-12-01

    Understanding the cytotoxicity of quantum dots strongly relies upon the development of new analytical techniques to gather information about various aspects of the system. In this study, we demonstrate the in vivo biodistribution and fate of CdSe quantum dots in the murine model by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). By comparing the hot zones of each element acquired from LA-ICP-MS with those in fluorescence images, together with hematoxylin and eosin-stained images, we are able to perceive the fate and in vivo interactions between quantum dots and rat tissues. One hour after intravenous injection, we found that all of the quantum dots had been concentrated inside the spleen, liver and kidneys, while no quantum dots were found in other tissues (i.e., muscle, brain, lung, etc.). In the spleen, cadmium-114 signals always appeared in conjunction with iron signals, indicating that the quantum dots had been filtered from main vessels and then accumulated inside splenic red pulp. In the liver, the overlapped hot zones of quantum dots and those of phosphorus, copper, and zinc showed that these quantum dots have been retained inside hepatic cells. Importantly, it was noted that in the kidneys, quantum dots went into the cortical areas of adrenal glands. At the same time, hot zones of copper appeared in proximal tubules of the cortex. This could be a sign that the uptake of quantum dots initiates certain immune responses. Interestingly, the intensity of the selenium signals was not proportional to that of cadmium in all tissues. This could be the result of the decomposition of the quantum dots or matrix interference. In conclusion, the advantage in spatial resolution of LA-ICP-MS is one of the most powerful tools to probe the fate, interactions and biodistribution of quantum dots in vivo.

  10. Nondestructive Encapsulation of CdSe/CdS Quantum Dots in an Inorganic Matrix by Pulsed Laser Deposition.

    Science.gov (United States)

    Aubret, Antoine; Houel, Julien; Pereira, Antonio; Baronnier, Justine; Lhuillier, Emmanuel; Dubertret, Benoit; Dujardin, Christophe; Kulzer, Florian; Pillonnet, Anne

    2016-08-31

    We report the successful encapsulation of colloidal quantum dots in an inorganic matrix by pulsed laser deposition. Our technique is nondestructive and thus permits the incorporation of CdSe/CdS core/shell colloidal quantum dots in an amorphous yttrium oxide matrix (Y2O3) under full preservation of the advantageous optical properties of the nanocrystals. We find that controlling the kinetic energy of the matrix precursors by means of the oxygen pressure in the deposition chamber facilitates the survival of the encapsulated species, whose well-conserved optical properties such as emission intensity, luminescence spectrum, fluorescence lifetime, and efficiency as single-photon emitters we document in detail. Our method can be extended to different types of nanoemitters (e.g., nanorods, dots-in-rods, nanoplatelets) as well as to other matrices (oxides, semiconductors, metals), opening up new vistas for the realization of fully inorganic multilayered active devices based on colloidal nano-objects.

  11. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  12. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  13. Optical properties of parabolic quantum dots with dressed impurity: Combined effects of pressure, temperature and laser intensity

    Energy Technology Data Exchange (ETDEWEB)

    Vaseghi, B., E-mail: vaseghi@mail.yu.ac.ir; Rezaei, G.; Sajadi, T.

    2015-01-01

    In this paper simultaneous effects of pressure, temperature and laser radiation on the optical absorption coefficient and refractive index of a spherical quantum dot with parabolic confinement and dressed impurity are studied. By means of matrix diagonalization technique, energy eigenvalues and functions are evaluated and used to find the optical properties of the system via density operator method. It is shown that linear and nonlinear optical properties strongly depend on pressure, temperature and dressing laser intensity. The interesting point is that the influence of laser radiation depends on pressure and temperature.

  14. Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

    Institute of Scientific and Technical Information of China (English)

    胡发杰; 金鹏; 吴艳华; 王飞飞; 魏恒; 王占国

    2015-01-01

    A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.

  15. Integrated InAs/InP quantum-dot coherence comb lasers (Conference Presentation)

    Science.gov (United States)

    Lu, Zhenguo; Liu, Jiaren; Poole, Philip J.; Song, Chun-Ying; Webber, John; Mao, Linda; Chang, Shoude; Ding, Heping; Barrios, Pedro J.; Poitras, Daniel; Janz, Siegfried

    2017-02-01

    Current communication networks needs to keep up with the exponential growth of today's internet traffic, and telecommunications industry is looking for radically new integrated photonics components for new generation optical networks. We at National Research Council (NRC) Canada have successfully developed nanostructure InAs/InP quantum dot (QD) coherence comb lasers (CCLs) around 1.55 μm. Unlike uniform semiconductor layers in most telecommunication lasers, in these QD CCLs light is emitted and amplified by millions of semiconductor QDs less than 60 nm in diameter. Each QD acts like an isolated light source acting independently of its neighbours, and each QD emits light at its own unique wavelength. The end result is a QD CCL is more stable and has ultra-low timing jitter. But most importantly, a single QD CCL can simultaneously produce 50 or more separate laser beams at distinct wavelengths over the telecommunications C-band. Utilizing those unique properties we have put considerable effort well to design, grow and fabricate InAs/InP QD gain materials. After our integrated packaging and using electrical feedback-loop control systems, we have successfully demonstrated ultra-low intensity and phase noise, frequency-stabilized integrated QD CCLs with the repetition rates from 10 GHz to 100 GHz and the total output power up to 60 mW at room temperature. We have investigated their relative intensity noises, phase noises, RF beating signals and other performance of both filtered individual channel and the whole CCLs. Those highly phase-coherence comb lasers are the promising candidates for flexible bandwidth terabit coherent optical networks and signal processing applications.

  16. Efficiency of four-wave mixing in injection-locked InAs/GaAs quantum-dot lasers

    Directory of Open Access Journals (Sweden)

    H. Huang

    2016-12-01

    Full Text Available Frequency conversion using highly non-degenerate four-wave mixing is investigated in optically injection-locked InAs/GaAs quantum-dot Fabry-Perot lasers with different ridge waveguide dimensions. Conversion efficiencies up to -16 dB with a large optical signal-to-noise ratios of 36 dB are unveiled. The conversion bandwidth is extended to 4 THz with a quasi-symmetrical response between up- and down-converted signals.

  17. Effects of pulsed laser radiation on epitaxial self-assembled Ge quantum dots grown on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Pino, A; Marcus, I C; Alonso, M I [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Cientificas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); Gyoergy, E; Roqueta, J, E-mail: aperez@icmab.es [Centro de Investigaciones en Nanociencia y Nanotecnologia, (CIN2-CSIC), Consejo Superior de Investigaciones Cientificas, Campus UAB, 08193 Bellaterra (Spain)

    2011-07-22

    Laser irradiation of Ge quantum dots (QDs) grown on Si(100) substrates by solid-source molecular beam epitaxy has been performed using a Nd:YAG laser (532 nm wavelength, 5 ns pulse duration) in a vacuum. The evolution of the Ge QD morphology, strain and composition with the number of laser pulses incident on the same part of the surface, have been studied using atomic force microscopy, scanning electron microscopy and Raman spectroscopy. The observed changes in the topographical and structural properties of the QDs are discussed in terms of Ge-Si diffusion processes. Numerical simulations have been developed for the investigation of the temperature evolution of the QDs during laser irradiation. The obtained results indicate that the thermal behaviour and structural variation of the nanostructures differ from conventional thermal annealing treatments and can be controlled by the laser parameters. Moreover, an unusual island motion has been observed under the action of subsequent laser pulses.

  18. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  19. Simple optical frequency comb generation using a passively mode-locked quantum dot laser

    Science.gov (United States)

    Liu, Li; Zhang, Xiupu; Xu, Tiefeng; Dai, Zhenxiang; Liu, Taijun

    2017-08-01

    A simple and quasi-tunable optical frequency comb (OFC) generator is proposed and experimentally demonstrated using a C-band passively Fabry-Pérot quantum dot mode-locked laser and a dual-driven LiNbO3 Mach-Zehnder modulator. A 16-nm bandwidth OFC with 81, 58 and 30 comb lines at frequency interval of 23.3 GHz, 35 GHz and 70 GHz respectively is obtained experimentally. Measured average optical signal to noise ratio of 10-dB bandwidth OFCs is 36.3 dB, 38.5 dB and 40.8 dB at frequency interval of 23.3 GHz, 35 GHz and 70 GHz, respectively. Besides, single-sideband phase noise of the 23.3 GHz and 35 GHz frequency comb is -110 dBc/Hz and -102 dBc/Hz at an offset of 1 kHz, respectively. RF linewidth of the 23.3 GHz and 35 GHz OFC is about from 275 Hz to 289 Hz. This is considered a very simple OFC generator with a broadband and seamless spectrum.

  20. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    Semiconductor quantum dots are often described as "artificial atoms": They are small nanometre-sized structures in which electrons only are allowed to exist at certain discrete levels due to size quantization, thus allowing the engineering of fundamental properties such as the coupling to light....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...

  1. The influence of gain compression factor on dynamical properties of single level InAs/GaAs quantum dot lasers

    CERN Document Server

    Qorbani, Mostafa; Hajizadeh, Omid; Borji, Mahdi Ahmadi

    2016-01-01

    In this paper, by representing a single level rate equation model for InAs/GaAs quantum dot lasers and computations by fourth order Runge-Kutta method some characteristics of the output laser are considered. The change of photon number in time and current and also the output power versus current with different gain compression factors are investigated for lasing from ground state (GS). Afterwards, the response function of small signal modulation for ground state in constant current but different gain compressions is surveyed. At last, we find an optimum value for gain compression factor in lasing from GS.

  2. Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission

    DEFF Research Database (Denmark)

    Gregersen, Niels; Skovgård, Troels Suhr; Lorke, Michael

    2012-01-01

    We present a rate equation model for quantum-dot light-emitting devices that take into account Purcell enhancement of both spontaneous emission and stimulated emission as well as the spectral profile of the optical and electronic density-of-states. We find that below threshold the b-factor in a q...

  3. Photomlxer for terahertz electromagnetic wave emission comprising quantum dots in a laser cavity

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photomixer for generating terahertz electromagnetic radiation in response to illumination by a time-modulated optical signal. The photomixer (300) comprises a carrier substrate (310) with a plurality of quantum dots arranged in an emission region (308) thereof...

  4. A confocal laser scanning microscopic study on thermoresponsive binary microgel dispersions incorporated with CdTe quantum dots

    Indian Academy of Sciences (India)

    J Brijitta; B V R Tata; K Saravanan; B K Panigrahi; T Kaliyappan

    2010-12-01

    Monodisperse poly(N -isopropylacrylamide) (PNIPAM) particles loaded with cadmium telluride (CdTe) quantum dots (QDs) of two different sizes (4.7 nm and 5.6 nm) were synthesized in aqueous medium by bonding the capping agent on the quantum dots to the amide groups of PNIPAM and incubating the samples at 45° C. A huge increase in the photoluminescence (PL) intensity (green and red regions) is observed for the PNIPAM–CdTe QDs composites compared to the parent CdTe QDs. We report here for the first time the imaging of binary dispersion of green and red luminescent PNIPAM–CdTe QDs composites using a fluorescence confocal laser scanning microscope. These composites have potential applications both in material science and biology.

  5. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    Science.gov (United States)

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  6. Quantum well lasers

    CERN Document Server

    Zory, Jr, Peter S; Kelley, Paul

    1993-01-01

    This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment

  7. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, S.

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  8. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  9. 1.5 μm InAs/InGaAsP/InP quantum dot laser with improved temperature stability

    DEFF Research Database (Denmark)

    Zubov, F. I.; Gladii, S. P.; Shernyakov, Yu M.

    2016-01-01

    Temperature characteristics of InAs/InGaAsP quantum dot (QD) lasers synthesized on InP (001) substrate are presented. The lasers demonstrate high temperature stability: a threshold current characteristic temperature as high as 205 K in the temperature range between 20 to 50°C was measured. Lasing...

  10. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small

  11. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  12. Ultrafast carrier dynamics of CdSe quantum dots prepared by pulse laser deposition for photovoltaic applications

    Science.gov (United States)

    Mahat, Meg; Yakami, Baichhabi; Qilin Dai, Qilin; Tang, Jinke; Pikal, Jon

    2013-03-01

    Quantum-dot sensitized solar cells are a promising alternative to existing photovoltaic technology. Over the last decade solution based colloidal quantum dots (QDs) have been extensively studied. Here we have carried out ultrafast transient absorption measurements on CdSe QDs fabricated using pulse laser deposition (PLD) in order to understand the carrier relaxation dynamics in these nanostructures. The differential transmission measurements show that the PLD QDs have a very fast decay process resulting in a recovery time of less than 10 picoseconds. This is in stark contrast to the colloidal QDs that show a decay process of more than 4 nanoseconds. We also find that the fast decay process observed in the PLD QDs is a function of the carriers density generated in CdSe QDs. To understand these carrier relaxation processes and improve the optical properties of the QDs we perform transient absorption measurements on PLD QDs prepared in different media (e.g. water, methanol, ethanol), under different growth conditions, and with and without ligand. We present a comparison study of the carrier relaxation dynamics in these PLD grown QDs to provide insight into the competing relaxation effects and guide their use in Quantum-dot sensitized solar cells. DOE

  13. High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihao; Preble, Stefan F. [Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623 (United States); Yao, Ruizhe; Lee, Chi-Sen; Guo, Wei, E-mail: wei-guo@uml.edu [Physics and Applied Physics Department, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lester, Luke F. [Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2015-12-28

    InAs quantum dot (QD) laser heterostructures have been grown by molecular beam epitaxy system on GaAs substrates, and then transferred to silicon substrates by a low temperature (250 °C) Pd-mediated wafer bonding process. A low interfacial resistivity of only 0.2 Ω cm{sup 2} formed during the bonding process is characterized by the current-voltage measurements. The InAs QD lasers on Si exhibit comparable characteristics to state-of-the-art QD lasers on silicon substrates, where the threshold current density J{sub th} and differential quantum efficiency η{sub d} of 240 A/cm{sup 2} and 23.9%, respectively, at room temperature are obtained with laser bars of cavity length and waveguide ridge of 1.5 mm and 5 μm, respectively. The InAs QD lasers also show operation up to 100 °C with a threshold current density J{sub th} and differential quantum efficiency η{sub d} of 950 A/cm{sup 2} and 9.3%, respectively. The temperature coefficient T{sub 0} of 69 K from 60 to 100 °C is characterized from the temperature dependent J{sub th} measurements.

  14. Dissipative tunneling in structures with quantum dots and quantum molecules

    OpenAIRE

    Dahnovsky, Yu. I.; Krevchik, V. D.; Semenov, M. B.; Yamamoto, K.; Zhukovsky, V. Ch.; Aringazin, A. K.; Kudryashov, E. I.; Mayorov, V. G.

    2005-01-01

    The problem of tunneling control in systems "quantum dot - quantum well" (as well as "quantum dot - quantum dot" or quantum molecule) and "quantum dot - bulk contact" is studied as a quantum tunneling with dissipation process in the semiclassical (instanton) approximation. For these systems temperature and correlation between a quantum dot radius and a quantum well width (or another quantum dot radius) are considered to be control parameters. The condition for a single electron blockade is fo...

  15. Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

    Directory of Open Access Journals (Sweden)

    Li-wei Liu

    2015-08-01

    Full Text Available This study investigates near-infrared region Ag2S quantum dots (QDs and their nonlinear optical response under 532 nm nanosecond laser pulses. Our experimental result shows that nonlinear transmission is reduced from 0.084 to 0.04. The observed narrowing behavior of the output pulse width shows superior optical limiting. We discuss the physical mechanisms responsible for the nonlinear optical response of the QDs. The average size of the nanocrystals was 5.5 nm. Our results suggest the possibility of using these Ag2S QDs for photoelectric, biosensor, optical ranging, and self-adaptive technologies.

  16. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Orchard, J. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Clarke, E. [EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street, S1 3JD Sheffield (United Kingdom)

    2015-10-12

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  17. Broadband tunable external cavity laser using a bent-waveguide quantum-dot superluminescent diode as gain device

    Institute of Scientific and Technical Information of China (English)

    Wu Jian; Lü Xue-Qin; Jin Peng; Meng Xian-Quan; Wang Zhan-Guo

    2011-01-01

    A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under 3-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.

  18. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    Science.gov (United States)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  19. Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

    Science.gov (United States)

    Hu, Fa-Jie; Jin, Peng; Wu, Yan-Hua; Wang, Fei-Fei; Wei, Heng; Wang, Zhan-Guo

    2015-10-01

    A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied. Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).

  20. Controllability of multi-partite quantum systems and selective excitation of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, S G [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Pullen, I C H [Department of Applied Mathematics and Computing, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Solomon, A I [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2005-10-01

    We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots.

  1. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  2. 35 GHz passive mode-locking of InGaAs/GaAs quantum dot lasers at 1.3 μm with Fourier-limited pulses

    DEFF Research Database (Denmark)

    Kuntz, M.; Fiol, G.; Laemmlin, M.;

    2004-01-01

    We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses.......We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses....

  3. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the line

  4. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the

  5. Quantum dot nanostructures

    Directory of Open Access Journals (Sweden)

    Mohamed Henini

    2002-06-01

    These sophisticated technologies for the growth of high quality epitaxial layers of compound semiconductor materials on single crystal semiconductor substrates are becoming increasingly important for the development of the semiconductor electronics industry. This article is intended to convey the flavor of the subject by focusing on the technology and applications of self-assembled quantum dots (QDs and to give an introduction to some of the essential characteristics.

  6. The dynamic characteristics and linewidth enhancement factor of quasi-supercontinuum self-assembled quantum dot lasers

    KAUST Repository

    Tan, Cheeloon

    2009-09-01

    The theoretical analysis of optical gain and chirp characteristics of a semiconductor quantum dot (Qdot) broadband laser is presented. The model based on population rate equations, has been developed to investigate the multiple states lasing or quasi-supercontinuum lasing in InGaAs/GaAs Qdot laser. The model takes into account factors such as Qdot size fluctuation, finite carrier lifetime in each confined energy states, wetting layer induced nonconfined states and the presence of continuum states. Hence, calculation of the linewidth enhancement factor together with the variation of optical gain and index change across the spectrum of interest becomes critical to yield a basic understanding on the limitation of this new class of lasers. Such findings are important for the design of a practical single broadband laser diode for applications in low coherence interferometry sensing and optical fiber communications. Calculation results show that the linewidth enhancement factor from the ground state of broadband Qdot lasers (α ∼ 3) is slightly larger but in the same order of magnitude as compared to that of conventional Qdot lasers. The gain spectrum of the quasi-supercontinuum lasing system exhibits almost twice the bandwidth than conventional lasers but with comparable material differential gain (∼ 10-16 cm2) and material differential refractive index (∼ 10sup>-20 cm3 ) near current threshold. © 2009 IEEE.

  7. Single quantum dots fundamentals, applications, and new concepts

    CERN Document Server

    2003-01-01

    This book reviews recent advances in the exciting and rapid growing field of semiconductor quantum dots by contributions from some of the most prominent researchers in the field. Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons. Single Quantum Dots also addresses various growth techniques as well as potential device applications such as quantum dot lasers, and new concepts like a single-photon source, and a single quantum dot laser.

  8. Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser

    CERN Document Server

    Chusseau, Laurent; Viktorovitch, P; Letartre, Xavier

    2013-01-01

    This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz generation by photomixing.

  9. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  10. Electron correlations in quantum dots

    CERN Document Server

    Tipton, D L J

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining p...

  11. Gain and Threshold Current in Type II In(AsSb Mid-Infrared Quantum Dot Lasers

    Directory of Open Access Journals (Sweden)

    Qi Lu

    2015-04-01

    Full Text Available In this work, we improved the performance of mid-infrared type II InSb/InAs quantum dot (QD laser diodes by incorporating a lattice-matched p-InAsSbP cladding layer. The resulting devices exhibited emission around 3.1 µm and operated up to 120 K in pulsed mode, which is the highest working temperature for this type of QD laser. The modal gain was estimated to be 2.9 cm−1 per QD layer. A large blue shift (~150 nm was observed in the spontaneous emission spectrum below threshold due to charging effects. Because of the QD size distribution, only a small fraction of QDs achieve threshold at the same injection level at 4 K. Carrier leakage from the waveguide into the cladding layers was found to be the main reason for the high threshold current at higher temperatures.

  12. Comparison of the noise performance of 10 GHz repetition rate quantum-dot and quantum well monolithic mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Carpintero, G.; Thompson, M. G.; Yvind, Kresten

    2011-01-01

    Mode-locked lasers are commonly used in carrier-wave signal generation systems because of their excellent phase noise performance. Owing to the importance of this key parameter, this study presents a like-for-like comparison of the noise performance of the passive mode-locked regime of two devices...... and the shape of the noise pedestals, both depending on the passive mode-locked bias conditions. Nevertheless, the dominant contribution of the RF linewidth to the phase noise, which is significantly narrower for the QD laser, makes this material more suitable for optical generation of low-noise millimetre...... fabricated with different material gain systems, one quantum well and the other quantum dot (QD), both with a monolithic all-active two-section mode-locked structure. Two important factors are identified as having a significant effect on the noise performance, the RF linewidth of the first harmonic...

  13. Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser

    Science.gov (United States)

    Lingnau, Benjamin; Lüdge, Kathy; Chow, Weng W.; Schöll, Eckehard

    2012-06-01

    Quantum-dot (QD) lasers exhibit unique properties when subjected to optical injection, e.g. lower sensitivity and less complex dynamics when compared to conventional quantum-well (QW) lasers. These features can be explained by a lower phase-amplitude coupling and a higher damping of relaxation oscillations in QD laser devices. In this work, we investigate an optically injected QD laser and clarify the role of many-body effects. We model the QD laser device using a semi-classical approach based on the semiconductor-Bloch and Maxwell's equations. The QD optical transition is modeled with a finite spectral width, accounting for inhomogeneous broadening due to QD imperfections. Furthermore, many-body Coulomb interactions, leading to renormalizations of the single-particle energies, are taken into account assuming the screened Hartree-Fock approximation. Throughout the literature the phase dynamics of the electric field inside the laser cavity is implemented by assuming a constant α-factor. Our model accounts for the effects of α via a more rigorous treatment of light-semiconductor interaction. As a result the model allows to extract a value for the α-factor from the intrinsic phase dynamics of the system. The extracted α-factor is not a constant, but rather changes on the one hand dynamically throughout the simulations, and on the other hand with all operation conditions. Furthermore, the dynamical shift of the band-gap energy due to the Coulomb interactions gives rise to modifications in the locking behavior of the laser, that can not be explained with the simpler free-carrier models.

  14. Linewidth broadening of a quantum dot coupled to an off-resonant cavity

    CERN Document Server

    Majumdar, Arka; Kim, Erik; Englund, Dirk; Kim, Hyochul; Petroff, Pierre; Vuckovic, Jelena

    2010-01-01

    We study the coupling between a photonic crystal cavity and an off-resonant quantum dot under resonant excitation of the cavity or the quantum dot. Linewidths of the quantum dot and the cavity as a function of the excitation laser power are measured. We show that the linewidth of the quantum dot, measured by observing the cavity emission, is significantly broadened compared to the theoretical estimate. This indicates additional incoherent coupling between the quantum dot and the cavity.

  15. 2D substrate imaging of a tapered laser cavity based on InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, R; O' Callaghan, J; Mukherjee, J; Mclnerney, J G; Corbett, B [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Reithmaier, J P [Technische Physik Institute of Nanostructure Technologies and Analytics (INA) University of Kassel (Germany); Deubert, S; Forchel, A, E-mail: roberto.pagano@tyndall.i [Technische Physik, University of Wuerzburg, 97074 Wuerzburg (Germany)

    2009-11-15

    Tapered cavities are an excellent solution to obtaining high brightness semiconductor laser sources for use in applications from frequency doubling to material processing. The high power density levels reached in such lasers can lead to nonlinear mechanisms related to the refractive index variations that de-stabilise the optical field distribution inside the laser cavity. These mechanisms are detrimental to the beam quality of the laser limiting its focussing ability. In this work we map the spatial distribution and evolution of the carrier density in tapered lasers as a function of injection current. A device with a taper length of 2.75 mm, taper angle of 6{sup 0} and ridge length of 1.25 mm is used to demonstrate the principle. The active region consists of three layers of InGaAs quantum dots emitting around 950 nm. A window for imaging the spontaneous emission profile through the transparent GaAs substrate was formed by patterning the n-contact metal layer. The imaging was performed in the continuous wave regime to include the thermal-induced refractive index perturbation. The results show a non-uniform carrier and thermal distribution inside the cavity even at low current levels.

  16. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement

    OpenAIRE

    2014-01-01

    We investigate coherent single surface-plasmon transport in a metal nanowire strongly coupled to two colloidal quantum dots. Analytical expressions are obtained for the transmission and reflection coefficients by solving the corresponding eigenvalue equation. Remote entanglement of the wave functions of the two quantum dots can be created if the inter-dot distance is equal to a multiple half-wavelength of the surface plasmon. Furthermore, by applying classical laser pulses to the quantum dots...

  17. Room temperature continuous wave operation of 1.33-μm InAs/GaAs quantum dot laser with high output power

    Institute of Scientific and Technical Information of China (English)

    Qin Han; Hongling Peng; Ronghan Wu; Zhichuan Niu; Haiqiao Ni; Shiyong Zhang; Xiaohong Yang; Yun Du; Cunzhu Tong; Huan Zhao; Yingqiang Xu

    2006-01-01

    @@ Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-Mw output power at ground state of 1.33-1.35μm for a 20-μm ridge-waveguide laser without facet coating is achieved. By optimizing the molecular beam epitaxy (MBE) growth conditions,the QD density per layer is raised to 4 × 1010 cm-2. The laser keeps lasing at ground state until the temperature reaches 65 ℃.

  18. Dosimetric investigations of laser-induced phase transition of MX1-cell membranes by use of quantum dots

    Science.gov (United States)

    Beuthan, J.; Dressler, C.; Minet, O.; Müller, G.

    2006-05-01

    It is well known that laser scattered-light applicators when applied for laser-induced tumor therapy allow the precise thermal destruction of metastases. Using laser radiation in the NIR spectral range (usually, Nd:YAG laser systems λ = 1064 nm), a penetration depth of 5-10 cm (1/ e is the decrease in radiation intensity) is achieved in biological tissues. The major tissue-optical parameters, i.e., absorption coefficient μa, scattering coefficient μs, and the anisotropy factor g, show biological tissues to be strongly scattering media which have a so-called optical window in the NIR. As a consequence, the therapeutic laser radiation is scattered and absorbed at a deeper level, leading to a virtual enlargement of the laser applicator. The thermal sclerotization and the thermal cell damage originate within the absorbing volume of the laser radiation and spread outward by thermal diffusion. There are three dosimetrically relevant zones of thermal and biological damage: (1) a zone of thermal coagulation; (2) a threshold of partial necrosis (destruction of all metabolic processes in the cell is the maintenance of essential parts of the cytoskeleton and the plasma membrane); this is characterized by a specific temperature range, the so-called phase transition, which refers to the transition from the gel phase of the biomembrane to the fluid phase; the determination of this temperature zone is an integral part of the following experimental investigations on MX1 cells; (3) an external zone of thermal effects made up of partial and multiple damage with a statistical chance of survival. This paper describes the investigations on heat stress in cancer cells to verify the maximum phase transition of the outer MX1 cell membranes and the related results. For this purpose, a novel method of quantum dot fluorescence dosimetry was developed. The evaluation of the measured laser-induced fluorescences yields a first approximation of the determination of the phase transition on MX1

  19. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  20. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  1. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources

    Science.gov (United States)

    Wan, Yating; Li, Qiang; Liu, Alan Y.; Gossard, Arthur C.; Bowers, John E.; Hu, Evelyn L.; Lau, Kei May

    2016-07-01

    Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature To of 105 K has been extracted.

  2. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk [Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Liu, Alan Y. [Materials Department, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Gossard, Arthur C.; Bowers, John E. [Materials Department, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Hu, Evelyn L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2016-07-04

    Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature T{sub o} of 105 K has been extracted.

  3. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  4. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates

    Science.gov (United States)

    Wan, Yating; Li, Qiang; Liu, Alan Y.; Chow, Weng W.; Gossard, Arthur C.; Bowers, John E.; Hu, Evelyn L.; Lau, Kei May

    2016-05-01

    Subwavelength micro-disk lasers (MDLs) as small as 1 μm in diameter on exact (001) silicon were fabricated using colloidal lithography. The micro-cavity gain medium incorporating five-stacked InAs quantum dot layers was grown on a high crystalline quality GaAs-on-V-grooved-Si template with no absorptive intermediate buffers. Under continuous-wave optical pumping, the MDLs on silicon exhibit lasing in the 1.2-μm wavelength range with low thresholds down to 35 μW at 10 K. The MDLs compare favorably with devices fabricated on native GaAs substrates and state-of-the-art work reported elsewhere. Feasibility of device miniaturization can be projected by size-dependent lasing characteristics. The results show a promising path towards dense integration of photonic components on the mainstream complementary metal-oxide-semiconductor platform.

  5. High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W

    Science.gov (United States)

    Schwarzbäck, T.; Bek, R.; Hargart, F.; Kessler, C. A.; Kahle, H.; Koroknay, E.; Jetter, M.; Michler, P.

    2013-03-01

    We demonstrate an optically pumped semiconductor disk laser (OP-SDL) using InP quantum dots (QDs) as active material fabricated by metal-organic vapor-phase epitaxy. The QDs are grown within [(Al0.1Ga0.9)0.52In0.48]0.5P0.5 (abbr. Al0.1GaInP) barriers in order to achieve an emission wavelength around 655 nm. We present optical investigations of the active region showing typical QD behavior like blue shift with increasing excitation power and single emission lines, which show anti-bunching in an intensity auto-correlation measurement. We report maximum output powers of the OP-SDL of 1.39 W at low emission wavelength of ˜654 nm with a slope efficiency of ηdiff=25.4 %.

  6. Core–shell quantum dots: Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  7. Quantum dots: Rethinking the electronics

    Science.gov (United States)

    Bishnoi, Dimple

    2016-05-01

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  8. Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes

    Science.gov (United States)

    Bagga, K.; Barchanski, A.; Intartaglia, R.; Dante, S.; Marotta, R.; Diaspro, A.; Sajti, C. L.; Brandi, F.

    2013-06-01

    A novel approach for nanofabricating protein-functionalized luminescent silicon nanoparticles based on infrared ultrafast laser ablation of silicon in an aqueous solution of Staphylococcus aureus protein A is reported. It is demonstrated that 8 nm protein A-capped silicon quantum dots with blue-green photoemissive properties are generated. The conjugation efficiency studies reveal a high percentage of protein A attached to the Si nanoparticle surface through physical adsorption phenomena during the in situ laser process. The biological functionality of laser-generated Staphylococcus aureus protein A-capped Si nanoparticles is investigated. Confocal and electron microscopy together with energy dispersive x-ray spectroscopy analysis show that these Si-based bio-nanostructures selectively bind IgG in the cells. Cell viability studies reveal that these protein A-capped Si nanoparticles are suitable for biological applications, demonstrating their potential as universal secondary biomarkers for in vivo applications such as long-term, real-time cell labeling, cell staining and controlled drug delivery.

  9. Colloidal-quantum-dot spasers and plasmonic amplifiers

    CERN Document Server

    Kress, Stephan J P; Rohner, Patrik; Kim, David K; Antolinez, Felipe V; Zaininger, Karl-Augustin; Jayanti, Sriharsha V; Richner, Patrizia; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J

    2016-01-01

    Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser, a laser-like source of surface plasmons, was first proposed, quantum dots were specified as the ideal plasmonic gain medium. Subsequent spaser designs, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, an approach ill-suited to quantum dots and other colloidal nanomaterials. Here we develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum-dot-based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create high-quality-factor, aberration-corrected, Ag plasmonic cavities. We then incorporate quantum dots via electrohydrodynamic printing18,19 or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons above threshold. This signal is extracted, directed through an integrated amplifier,...

  10. Quantum dots in cell biology.

    Science.gov (United States)

    Barroso, Margarida M

    2011-03-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.

  11. Hydrophobin-Encapsulated Quantum Dots.

    Science.gov (United States)

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  12. Quantum Dots in Cell Biology

    OpenAIRE

    Barroso, Margarida M.

    2011-01-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated t...

  13. Simultaneous effects of pressure and temperature on the binding energy and diamagnetic susceptibility of a laser dressed donor in a spherical quantum dot

    Science.gov (United States)

    Vaseghi, B.; Sajadi, T.

    2012-07-01

    Binding energies and diamagnetic susceptibility of an impurity in a spherical GaAs quantum dot under the simultaneous influence of static pressure, temperature and laser radiation are investigated. Pressure- and temperature-dependent dressed potential which is produced by the combined effects of laser radiation and impurity considerably change the energy spectrum and diamagnetic susceptibility of the system. It is shown that binding energies and diamagnetic susceptibility increase with increasing pressure. Moreover, laser radiation effects on the diamagnetic susceptibility are not significant in comparison with its effects on the binding energy.

  14. Simultaneous effects of pressure and temperature on the binding energy and diamagnetic susceptibility of a laser dressed donor in a spherical quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Vaseghi, B., E-mail: behroozv1@yahoo.com [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Sajadi, T. [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)

    2012-07-15

    Binding energies and diamagnetic susceptibility of an impurity in a spherical GaAs quantum dot under the simultaneous influence of static pressure, temperature and laser radiation are investigated. Pressure- and temperature-dependent dressed potential which is produced by the combined effects of laser radiation and impurity considerably change the energy spectrum and diamagnetic susceptibility of the system. It is shown that binding energies and diamagnetic susceptibility increase with increasing pressure. Moreover, laser radiation effects on the diamagnetic susceptibility are not significant in comparison with its effects on the binding energy.

  15. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Kang, Zhitao; Summers, Christopher J. [Phosphor Technology Center of Excellence, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); Bansihev, Alexandr A.; Christensen, James M.; Dlott, Dana D. [School of Chemical Sciences and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Breidenich, Jennifer; Scripka, David A.; Thadhani, Naresh N. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Zhou, Min, E-mail: min.zhou@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

    2016-01-04

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  16. Site-selective assembly of quantum dots on patterned self-assembled monolayers fabricated by laser direct-writing

    Science.gov (United States)

    Wu, Chong; Wang, Yongsheng; Han, Xuemingyue; Hu, Xinming; Cheng, Qianyi; Han, Baohang; Liu, Qian; Ren, Tianling; He, Yonghong; Sun, Shuqing; Ma, Hui

    2012-06-01

    A simple and efficient route for quantum dot (QDs) patterning using self-assembled monolayers (SAMs) as templates is described. By means of a laser direct-writing (LDW) technique, SAMs of octadecylphosphonic acid formed by adsorption on native oxide layer of titanium film were patterned through laser-induced ablation of the SAM molecules. This technique allows the creation of chemical-specific patterns accompanied by slight change in the topography. Using atomic force microscopy and friction force microscopy, the dependence of feature size and characteristics on the irradiation dose was demonstrated. Upon immersion of a substrate with patterned SAMs bearing thiol as the terminal group into a dispersion of QDs resulted in the assembly of QDs on the specific thiol-terminated areas. Patterns of QDs with different photoluminescent wavelength were generated. The LDW technique, which is convenient and flexible due to its path-directed and maskless fabrication process, provided a new powerful approach for patterning materials on surfaces for various applications.

  17. Simple and seamless broadband optical frequency comb generation using an InAs/InP quantum dot laser.

    Science.gov (United States)

    Liu, Li; Zhang, Xiupu; Xu, Tiefeng; Dai, Zhenxiang; Dai, Shixun; Liu, Taijun

    2017-03-15

    A simple and seamless broadband optical frequency comb (OFC) generator is proposed and experimentally demonstrated using a Fabry-Perot quantum dot mode-locked laser combined with a dual-driven LiNbO3 Mach-Zehnder modulator driven by a low-power radio frequency (RF) signal. It is experimentally demonstrated that the 10-dB seamless bandwidth of the OFC is 8.2 nm (1.02 THz), which has 62 and 40 comb lines for frequency intervals of 16.56 GHz and 24.84 GHz, respectively. The single-sideband phase noise is as low as -112 and -108  dBc/Hz at an offset of 10 kHz, respectively, for the photodetector-converted 16.56 and 24.84 GHz frequency carriers. Correspondingly, the RF linewidths of the 16.56 GHz and 24.84 GHz carriers are about 251 Hz-263 Hz, respectively. Using a QD laser, an ultra-low phase noise and quasi-tunable broadband OFC generator is obtained easily.

  18. Two-state semiconductor laser self-mixing velocimetry exploiting coupled quantum-dot emission-states: experiment, simulation and theory.

    Science.gov (United States)

    Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan

    2014-09-22

    We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λ(GS) = 1245 nm) and excited-state (λ(ES) = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement.

  19. InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers

    DEFF Research Database (Denmark)

    Semenova, Elizaveta; Kulkova, Irina; Kadkhodazadeh, Shima;

    2011-01-01

    In this work the epitaxial growth of InAs quantum dots (QDs) in an InGaAsP matrix on an InP wafer is described. A new approach to shift the emission wavelength to the 1.5μm region using deposition of a thin GaAs capping layer on top of the QDs is suggested and exploited. Laser structures based on...

  20. 10  GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror.

    Science.gov (United States)

    Resan, B; Kurmulis, S; Zhang, Z Y; Oehler, A E H; Markovic, V; Mangold, M; Südmeyer, T; Keller, U; Hogg, R A; Weingarten, K J

    2016-05-10

    Semiconductor saturable absorber mirror (SESAM) modelocked high pulse repetition rate (≥10  GHz) diode-pumped solid-state lasers are proven as an enabling technology for high data rate coherent communication systems owing to their low noise and high pulse-to-pulse optical phase-coherence. Compared to quantum well, quantum dot (QD)-based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the first 10 GHz pulse repetition rate QD-SESAM modelocked laser at 1.55 μm, exhibiting 2 ps pulse width from an Er-doped glass oscillator (ERGO). The 10 GHz ERGO laser is modelocked with InAs/GaAs QD-SESAM with saturation fluence as low as 9  μJ/cm2.

  1. Optically active quantum dots

    Science.gov (United States)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  2. Synthesis and characterization of CdSe/ZnS core-shell quantum dots immobilized on solid substrates through laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gyoergy, E. [Centre d' Investigacions en Nanociencia i Nanotecnologia, Institut Catala de Nanotecnologia, Consejo Superior de Investigaciones Cientificas (CIN2, ICN-CSIC), Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Perez del Pino, A. [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Cientificas (ICMAB, CSIC), Bellaterra (Spain); Roqueta, J.; Ballesteros, B. [Centre d' Investigacions en Nanociencia i Nanotecnologia, Institut Catala de Nanotecnologia, Consejo Superior de Investigaciones Cientificas (CIN2, ICN-CSIC), Bellaterra (Spain); Miguel, A.S.; Maycock, C.; Oliva, A.G. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa (ITQB-UNL), Oeiras (Portugal)

    2012-11-15

    CdSe/ZnS core-shell quantum dots (QDs) have been immobilized onto solid substrates by matrix assisted pulsed laser evaporation (MAPLE). An UV KrF* ({lambda} = 248 nm, {tau}{sub FWHM} {approx_equal} 25 ns) excimer laser source was used for irradiations of the composite MAPLE targets. The targets were prepared by the dispersion of the CdSe/ZnS QDs in a solvent with high absorption at the incident laser radiation. The dependence of the surface morphology, crystalline structure, chemical composition, and functional properties of the laser transferred CdSe/ZnS QDs on the processing conditions as incident laser fluence value and ambient atmosphere inside the irradiation chamber was investigated. The possible physical mechanisms implied in the laser ablation process were identified. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Room-temperature dephasing in InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Märcher;

    1999-01-01

    Summary form only given. Semiconductor quantum dots (QDs) are receiving increasing attention for fundamental studies on zero-dimensional confinement and for device applications. Quantum-dot lasers are expected to show superior performances, like high material gain, low and temperature...... stacked layers of InAs-InGaAs-GaAs quantum dots....

  4. InP Self Assembled Quantum Dot Lasers Grown on GaAs Substrates by Metalorganic Chemical Vapor Deposition

    Science.gov (United States)

    2002-01-01

    GaAs (100) substrates by MOCVD. InP quantum dots grown on In(0.5)Al(0.3)Ga(0.2)P have a high density on the order of about 1 - 2 x 10/sq cm with a...dominant size of about 10-15 nm for 7.5 ML growth. (1) These In(0.5)Al(0.3)Ga(0.2)P/ InP quantum dots have previously been characterized by atomic-force

  5. Emission energy control of semiconductor quantum dots using phase change material

    Science.gov (United States)

    Kanazawa, Shohei; Sato, Yu; Yamamura, Ariyoshi; Saiki, Toshiharu

    2015-03-01

    Semiconductor quantum dots have paid much attention as it is a promising candidate for quantum, optical devices, such as quantum computer and quantum dot laser. We propose a local emission energy control method of semiconductor quantum dots using applying strain by volume expansion of phase change material. Phase change material can change its phase crystalline to amorphous, and the volume expand by its phase change. This method can control energy shift direction and amount by amorphous religion and depth. Using this method, we matched emission energy of two InAs/InP quantum dots. This achievement can connect to observing superradiance phenomenon and quantum dot coupling effect.

  6. Light emission from Si quantum dots

    Directory of Open Access Journals (Sweden)

    Philippe M. Fauchet

    2005-01-01

    Full Text Available Si quantum dots (QDs as small as ∼2 nm in diameter have been synthesized by a variety of techniques. Because of quantum confinement and the elimination of bulk or surface defects, these dots can emit light from the near infrared throughout the visible with quantum efficiencies in excess of 10%. The luminescence wavelength range has been extended to longer wavelengths by the addition of light-emitting rare earths such as erbium (Er. Light-emitting devices (LEDs have been fabricated and their performances are starting to approach those of direct band gap semiconductor or organic LEDs. A search for a Si QD-based laser is even under way. The state-of-the-art in the materials science, physics, and device development of luminescent Si QDs is reviewed and areas of future research are pointed out.

  7. Gain Measurement and Anomalous Decrease of Peak Gain at Long Wavelength for InAs/GaAs Quantum-Dot Lasers

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin-Long; HUANG Yong-Zhen; DU Yun; ZHAO Huan; NI Hai-Qiao; NIU Zhi-Chuan

    2007-01-01

    Mode gain spectrum is measured by the Fourier series expansion method for InAs/GaAs quantum-dot (QD) lasers with seven stacks of QDs at different injection currents. Gain spectra with distinctive peaks are observed at the short and long wavelengths of about 1210nm and 1300nm. For a QD laser with the cavity length of 1060 μm, the peak gain of the long wavelength first increases slowly or even decreases with the injection current as the peak gain of the short wavelength increases quickly, and finally increases quickly before approaching the saturated values as the injection current further increases.

  8. Impact of gain compression on modulation response and dynamic properties of three state lasing InGaAs/GaAs quantum dot lasers

    Science.gov (United States)

    Shafieenezhad, Azam; Rajaei, Esfandiar; Yazdani, Saeed

    2016-04-01

    In this paper, we have theoretically studied dynamics of a semiconductor quantum dot (QD) laser for enhancing its small signal and large signal modulation as a function of compression gain. We have considered InGaAs/GaAs QD laser rate equations and solved this equation system numerically. We have revealed that a diminution in compression gain leads to an improvement in frequency bandwidth for this three state lasing system. We also have calculated turn on delay and output power that obviously indicates the effect of compression gain on relaxation oscillations.

  9. Widely tunable narrow-linewidth 1.5 μm light source based on a monolithically integrated quantum dot laser array

    Science.gov (United States)

    Becker, A.; Sichkovskyi, V.; Bjelica, M.; Rippien, A.; Schnabel, F.; Kaiser, M.; Eyal, O.; Witzigmann, B.; Eisenstein, G.; Reithmaier, J. P.

    2017-05-01

    A monolithically integrated widely tunable narrow-linewidth light source was realized on an InP-based quantum dot (QD) gain material. The quasi zero-dimensional nature of QDs and the resulting low linewidth enhancement factor enabled standalone distributed feedback (DFB) lasers with intrinsic linewidths as low as 110 kHz. An integrated device comprising four DFB lasers with on-chip micro-heaters, a 3 dB-coupler network, and a semiconductor optical amplifier (SOA), which covers the entire C+ telecom band, exhibits a linewidth of below 200 kHz independent of the SOA operation current.

  10. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  11. Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

    Science.gov (United States)

    Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Felle, M.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2017-08-01

    The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.

  12. Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots

    CERN Document Server

    Childress, L I; Lukin, M D

    2003-01-01

    We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.

  13. Quantum-dot emitters in photonic nanostructures

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    The spontaneous emission from self-assembled semiconductor quantum dots is strongly influenced by the environment in which they are placed. This can be used to determine fundamental optical properties of the quantum dots as well as to manipulate and control the quantum-dot emission itself....

  14. Beer's law in semiconductor quantum dots

    CERN Document Server

    Adamashvili, G T

    2010-01-01

    The propagation of a coherent optical linear wave in an ensemble of semiconductor quantum dots is considered. It is shown that a distribution of transition dipole moments of the quantum dots changes significantly the polarization and Beer's absorption length of the ensemble of quantum dots. Explicit analytical expressions for these quantities are presented.

  15. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity

    Science.gov (United States)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2016-10-01

    In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.

  16. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    Science.gov (United States)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  17. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si

    Science.gov (United States)

    Jung, Daehwan; Norman, Justin; Kennedy, M. J.; Shang, Chen; Shin, Bongki; Wan, Yating; Gossard, Arthur C.; Bowers, John E.

    2017-09-01

    We demonstrate highly efficient, low threshold InAs quantum dot lasers epitaxially grown on on-axis (001) GaP/Si substrates using molecular beam epitaxy. Electron channeling contrast imaging measurements show a threading dislocation density of 7.3 × 106 cm-2 from an optimized GaAs template grown on GaP/Si. The high-quality GaAs templates enable as-cleaved quantum dot lasers to achieve a room-temperature continuous-wave (CW) threshold current of 9.5 mA, a threshold current density as low as 132 A/cm2, a single-side output power of 175 mW, and a wall-plug-efficiency of 38.4% at room temperature. As-cleaved QD lasers show ground-state CW lasing up to 80 °C. The application of a 95% high-reflectivity coating on one laser facet results in a CW threshold current of 6.7 mA, which is a record-low value for any kind of Fabry-Perot laser grown on Si.

  18. Nanoscale quantum-dot supercrystals

    Science.gov (United States)

    Baimuratov, Anvar S.; Turkov, Vadim K.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory allowing one to calculate the energy spectra and wave functions of collective excitations in twoand three-dimensional quantum-dot supercrystals. We derive analytical expressions for the energy spectra of twodimensional supercrystals with different Bravias lattices, and use them to analyze the possibility of engineering the supercrystals' band structure. We demonstrate that the variation of the supercrystal's parameters (such as the symmetry of the periodic lattice and the properties of the quantum dots or their environment) enables an unprecedented control over its optical properties, thus paving a way towards the development of new nanophotonics materials.

  19. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    Energy Technology Data Exchange (ETDEWEB)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin 10623 (Germany); Huang, H.; Schires, K. [Télécom Paristech, Université Paris-Saclay, 46 rue Barrault, CNRS LTCI 75634 Paris Cedex 13 (France); Grillot, F. [Télécom Paristech, Université Paris-Saclay, 46 rue Barrault, CNRS LTCI 75634 Paris Cedex 13 (France); Center for High Technology Materials, University of New-Mexico, Albuquerque, New Mexico 1313 (United States); Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin 10623 (Germany); King Abdulaziz University, 22254 Jeddah (Saudi Arabia)

    2015-11-09

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ{sup (3)}/g{sub 0} of ∼4 × 10{sup −19} m{sup 3}/V{sup 3} are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carrier populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ{sup (3)}/g{sub 0} compared to quantum dash lasers.

  20. Spin Quantum Beats in InP Quantum Dots in a Magnetic Field

    Science.gov (United States)

    2001-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013252 TITLE: Spin Quantum Beats in InP Quantum Dots in a Magnetic Field...Technology" SRPN.05 St Petersburg, Russia, June 18-22, 2001 (0 2001 loffe Institute Spin quantum beats in InP quantum dots in a magnetic field L A... quantum dots . A detailed description of the structure is given in [ ]. The luminescence was excited by 3 ps pulses of a Ti:sapphire laser, 40 meV above

  1. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect%硅基III-V族量子点激光器的发展现状和前景

    Institute of Scientific and Technical Information of China (English)

    王霆; 张建军; Huiyun Liu

    2015-01-01

    In this article, the recent progress of III-V quantum dot lasers on silicon substrates for silicon photonic integration is reviewed. By introducing various epitaxial techniques, room-temperature 1.3-µm InAs/GaAs quantum dot laser on Si, Ge and SiGe substrates have been achieved respectively. Quantum dot lasers on Ge substrate has an ultra-low threshold current density of 55.2 A/cm2 at room temperature, which can operate over 60 ◦C in continuous-wave mode. Futhermore, by using the SiGe virtual substrate, at 30 ◦C and an output power of 16.6 mW, a laser lifetime of 4600 h has been reached, which indicates a bright future for the large-scale photonic integration.

  2. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.

    Science.gov (United States)

    Tanabe, Katsuaki; Guimard, Denis; Bordel, Damien; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2010-05-10

    An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits InAs quantum dot ground state lasing at 1.31 microm at room temperature with a threshold current density of 600 A/cm(2).

  3. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  4. High net modal gain (>100 cm(-1)) in 19-stacked InGaAs quantum dot laser diodes at 1000 nm wavelength band.

    Science.gov (United States)

    Tanoue, Fumihiko; Sugawara, Hiroharu; Akahane, Kouichi; Yamamoto, Naokatsu

    2013-07-01

    An InGaAs quantum dot (QD) laser diode with 19-stacked QDs separated by 20 nm-thick GaAs spacers was fabricated using an ultrahigh-rate molecular beam epitaxial growth technique, and the laser characteristics were evaluated. A 19-stacked simple broad area QD laser diode was lased at the 1000 nm waveband. A net modal gain of 103 cm(-1) was obtained at 2.25 kA/cm(2), and the saturated modal gain was 145.6 cm(-1); these are the highest values obtained to our knowledge. These results indicate that using this technique to highly stack QDs is effective for improving the net modal gain of QD lasers.

  5. Operation of an InAs quantum-dot embedded GaAs photonic crystal slab waveguide laser by using two-photon pumping for photonics integrated circuits

    Directory of Open Access Journals (Sweden)

    H. Oda

    2016-06-01

    Full Text Available The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

  6. Effects of the structure asymmetry on optical responses in GaAs double quantum dots under intense laser and electric fields

    Science.gov (United States)

    Bejan, Doina

    2016-10-01

    The effects of the potential shape asymmetry on the nonlinear optical absorption and optical rectification in GaAs double quantum dots under intense non-resonant laser field and static electric field were investigated comparatively using the effective mass approximation and the compact density-matrix formalism under steady state conditions. The obtained results show that: (i) for both systems, the optical spectra are redshifted with the increase of the laser intensity only in the presence of the electric field, exceptions appearing at the highest considered laser intensity for both systems and at low laser field intensity for the asymmetric system; (ii) the augment of the static field intensity blueshifts the optical spectra of both systems; (iii) the spectra of the asymmetric system are displaced toward higher energies and show a shoulder-like feature at a given electric field value; (iv) the optical rectification spectra are more intense for the symmetric system.

  7. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers.

    Science.gov (United States)

    Tahvili, M S; Du, L; Heck, M J R; Nötzel, R; Smit, M K; Bente, E A J M

    2012-03-26

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.

  8. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis, stro

  9. Colloidal quantum dot solar cells

    Science.gov (United States)

    Sargent, Edward H.

    2012-03-01

    Solar cells based on solution-processed semiconductor nanoparticles -- colloidal quantum dots -- have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

  10. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, Nikodem; Liu, Rongrong; Vancso, Julius G.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of addit

  11. Radiation Effects in Nanostructures: Comparison of Proton Irradiation Induced Changes on Quantum Dots and Quantum Wells

    Science.gov (United States)

    Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.

    2000-01-01

    Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.

  12. Variational Photocarrier Radiometry Reconstruction of Exciton Lifetime Spectra for a Coupled PbS Colloidal Quantum Dot Thin Film Under Combined AC and DC Laser Excitation

    Science.gov (United States)

    Wang, Jing; Mandelis, Andreas; Melnikov, Alexander

    2015-06-01

    Colloidal quantum dots (CQDs) have attracted significant interest for applications in electronic and optoelectronic devices such as photodetectors, light emitting diodes, and solar cells. However, a poor understanding of charge transport in these nanocrystalline films hinders their practical applications. The photocarrier radiometry (PCR) technique, a frequency-domain photoluminescence method spectrally gated for radiative recombination photon emissions and exclusion of thermal infrared photons, has been applied to a coupled PbS CQD thin film with inter-dot spacing of 0.5 nm to 1 nm for the analysis of charge transport properties. As the nanoparticle bandgap depends on the size of the quantum dots, polydispersity of the CQD thin film causes bandgap variability leading to photoexcited carrier (exciton) decay lifetime broadening and temperature dependence. The carrier transport mechanisms of QDs are quite different from bulk semiconductors, so the conventional carrier-diffusion wave-based PCR theory was modified into a non-diffusive limit model. A developed variational discrete lifetime reconstruction approach was used to analyze PCR frequency scans under two optical excitation modes: a modulated laser source without, and with, an additional continuous laser source. Using this model, the CQD mean lifetime values were found and variational discrete lifetime spectra were reconstructed.

  13. Temperature Compensation for Threshold Current and Slope Efficiency of 1.3μm InAs/GaAs Quantum-Dot Lasers by Facet Coating Design

    Institute of Scientific and Technical Information of China (English)

    XU Peng-Fei; YANG Tao; JI Hai-Ming; CAO Yu-Lian; GU Yong-Xian; WANG Zhan-Guo

    2011-01-01

    @@ We demonstrate a technique of temperature compensation for 1.3μm InAs/GaAs quantum-dot(QD)lasers by facet coating design.The key point of the technique is to make sure that the mirror loss of the lasers decreases as the temperature rises.To realize this, we design a type of facet coating by shifting the central wavelength of the facet coating from 1310nm to 1480nm, whose reflectivity increases as the emission wavelength of the lasers red-shifts.Consequently, the laser with the new facet coating exhibits a characteristic temperature doubled in size and a more stable slope efficiency in the temperature range from 10℃ to 70℃, compared with the traditional one with a temperature-independent mirror loss.%We demonstrate a technique of temperature compensation for 1.3μm InAs/GaAs quantum-dot (QD) lasers by facet coating design. The key point of the technique is to make sure that the mirror loss of the lasers decreases as the temperature rises. To realize this, we design a type of facet coating by shifting the central wavelength of the facet coating from 1310nm to 1480nm, whose reflectivity increases as the emission wavelength of the lasers red-shifts. Consequently, the laser with the new facet coating exhibits a characteristic temperature doubled in size and a more stable slope efficiency in the temperature range from 10℃ to 70℃, compared with the traditional one with a temperature-independent mirror loss.

  14. Impact of Hole Dynamics on InAs/GaAs Quantum Dot Lasers

    Directory of Open Access Journals (Sweden)

    Dr. Hussein H. Warid

    2014-01-01

    Full Text Available In this paper, the internal mechanism of the QD has been studied, based on the separate electron-hole dynamics. For the first time, we have established the numerical model of InAs/GaAs QD laser by using four-levels rate equations model (4LREM include different processes ,recombination, capture, escape, for holes and electrons. Then, the (4LREM is solved numerically using fourth-order Runge-Kutta method. Gain characteristic and the output power of the QD laser have been studied respectively. The results show that the QD laser has small threshold current for ground state (GS, excited state (ES and continues state (CS. The simulation results are in accordance with the experimental results, which prove that the rate equation model can simulate various properties of QD laser perfectly. The work is beneficial to QD laser research. As a simplified model of QD laser, both homogeneous and inhomogeneous broadening effects are ignored, and the model can be further improved

  15. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  16. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  17. Brightness-equalized quantum dots

    Science.gov (United States)

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-10-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  18. Colloidal quantum dots: synthesis, properties and applications

    Science.gov (United States)

    Brichkin, S. B.; Razumov, V. F.

    2016-12-01

    Key recent results obtained in studies of a new class of luminophores, colloidal quantum dots, are analyzed. Modern methods for the synthesis and post-synthetic treatment of colloidal quantum dots that make it possible to achieve record high quantum yield of luminescence and to modify their characteristics for specific applications are considered. Currently important avenues of research on colloidal quantum dots and the problems in and prospects for their practical applications in various fields are discussed. The bibliography includes 272 references.

  19. Quantum Computer Using Coupled Quantum Dot Molecules

    CERN Document Server

    Wu, N J; Natori, A; Yasunaga, H; Wu*, Nan-Jian

    1999-01-01

    We propose a method for implementation of a quantum computer using artificial molecules. The artificial molecule consists of two coupled quantum dots stacked along z direction and one single electron. One-qubit and two-qubit gates are constructed by one molecule and two coupled molecules, respectively.The ground state and the first excited state of the molecule are used to encode the |0> and |1> states of a qubit. The qubit is manipulated by a resonant electromagnetic wave that is applied directly to the qubit through a microstrip line. The coupling between two qubits in a quantum controlled NOT gate is switched on (off) by floating (grounding) the metal film electrodes. We study the operations of the gates by using a box-shaped quantum dot model and numerically solving a time-dependent Schridinger equation, and demonstrate that the quantum gates can perform the quantum computation. The operating speed of the gates is about one operation per 4ps. The reading operation of the output of the quantum computer can...

  20. The influence of the quantum dot/polymethylmethacrylate composite preparation method on the stability of its optical properties under laser radiation

    Science.gov (United States)

    Zvaigzne, M. A.; Martynov, I. L.; Krivenkov, V. A.; Samokhvalov, P. S.; Nabiev, I. R.

    2017-01-01

    Photoluminescent semiconductor nanocrystals, quantum dots (QDs), are nowadays one of the most promising materials for developing a new generation of fluorescent labels, new types of light-emitting devices and displays, flexible electronic components, and solar panels. In many areas the use of QDs is associated with an intense optical excitation, which, in the case of a prolonged exposure, often leads to changes in their optical characteristics. In the present work we examined how the method of preparation of quantum dot/polymethylmethacrylate (QD/PMMA) composite influenced the stability of the optical properties of QD inside the polymer matrix under irradiation by different laser harmonics in the UV (355 nm) and visible (532 nm) spectral regions. The composites were synthesized by spin-coating and radical polymerization methods. Experiments with the samples obtained by spin-coating showed that the properties of the QD/PMMA films remain almost constant at values of the radiation dose below 10 fJ per particle. Irradiating the composites prepared by the radical polymerization method, we observed a monotonic increase in the luminescence quantum yield (QY) accompanied by an increase in the luminescence decay time regardless of the wavelength of the incident radiation. We assume that the observed difference in the optical properties of the samples under exposure to laser radiation is associated with the processes occurring during radical polymerization, in particular, with charge transfer from the radical particles inside QDs. The results of this study are important for understanding photophysical properties of composites on the basis of QDs, as well as for selection of the type of polymer and the composite synthesis method with quantum dots that would allow one to avoid the degradation of their luminescence.

  1. Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

    OpenAIRE

    Li-wei Liu; Si-yi Hu; Yin-ping Dou; Tian-hang Liu; Jing-quan Lin; Yue Wang

    2015-01-01

    This study investigates near-infrared region Ag2S quantum dots (QDs) and their nonlinear optical response under 532 nm nanosecond laser pulses. Our experimental result shows that nonlinear transmission is reduced from 0.084 to 0.04. The observed narrowing behavior of the output pulse width shows superior optical limiting. We discuss the physical mechanisms responsible for the nonlinear optical response of the QDs. The average size of the nanocrystals was 5.5 nm. Our results suggest the possib...

  2. Metal organic vapor-phase epitaxy of InAs/InGaAsP quantum dots for laser applications at 1.5 μm

    DEFF Research Database (Denmark)

    Semenova, Elizaveta; Kulkova, Irina; Kadkhodazadeh, Shima

    2011-01-01

    The epitaxial growth of InAs/InGaAsP/InP quantum dots (QDs) for emission around 1.5 mu m by depositing a thin layer of GaAs on top of the QDs is presented in this letter. The infuence of various growth parameters on the properties of the QDs, in particular, size, shape, chemical composition......, and emission wavelength are investigated. Continuous wave lasing in ridge waveguide QD laser structures in the 1.5 mu m wavelength range is demonstrated. VC 2011 American Institute of Physics. [doi:10.1063/1.3634029]...

  3. Photoluminescence spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532-nm laser radiation and gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suresh C. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)], E-mail: sharma@uta.edu; Murphree, Jay; Chakraborty, Tonmoy [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2008-11-15

    We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under {approx}100 W/cm{sup 2} laser radiation, the PL intensity (I{sub PL}) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission ({lambda}{sub peak}) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm{sup 2} 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both I{sub PL} and {lambda}{sub peak} are significantly different; I{sub PL} increases to a saturation level, and the magnitude of the blue-shift in {lambda}{sub peak} is reduced. We discuss possible mechanisms underlying these results.

  4. Thermoelectric energy harvesting with quantum dots.

    Science.gov (United States)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  5. Ultrafast spectroscopy of quantum dots

    CERN Document Server

    Foo, E

    2001-01-01

    exchange-correlation interactions among the confined carriers inside the dots are suggested to be responsible. A density functional calculation for BGR of the ground state transition shows good agreement with our experimental results, especially in the high dot occupancy regime. Many-particle state scattering gives rise to large homogeneous spectral broadening of the PL peaks, from which an intradot relaxation time approx 300 fs is estimated. This observation supports the results obtained by direct excitation of carriers within the QDs. Femtosecond time-resolved photoluminescence measured by frequency up-conversion has been used to investigate carrier dynamics in InAs/GaAs self-assembled quantum dots (QDs). Our results reveal ultrafast carrier relaxation and sequential state filling. Carrier relaxation is proposed to occur by Auger-type processes, and the sequential state filling suggests that intradot relaxation is much faster than carrier capture from the InAs wetting layer. Measurements obtained by direct ...

  6. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot

    DEFF Research Database (Denmark)

    Jauffred, L.; Kyrsting, A.; Christensen, Eva Arnspang;

    2014-01-01

    Colloidal quantum dots are luminescent long-lived probes that can be two-photon excited and manipulated by a single laser beam. Therefore, quantum dots can be used for simultaneous single molecule visualization and force manipulation using an infra-red laser. Here, we show that even a single opti...

  7. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  8. Ultralow-Threshold Electrically Pumped Quantum-Dot Photonic-Crystal Nanocavity Laser

    Science.gov (United States)

    2011-05-01

    electron- beam lithography and dry-etched 100 nm into the membrane using an Ar/Cl2/BCl3 electron-cyclotron resonance reactive ion etch ( ECR -RIE). A...pattern was defined using electron-beam lithography and etched into the membrane using an Ar/Cl2/BCl3 ECR - RIE. Simultaneously with the photonic crystal...E.H. performed the fabricated laser material characterization. B.E. and G.S. performed electrical and optical measurements. B.E. analysed and modelled

  9. Semiconductor quantum dots for electron spin qubits

    NARCIS (Netherlands)

    van der Wiel, Wilfred Gerard; Stopa, M.; Kodera, T.; Hatano, T.; Tarucha, S.

    2006-01-01

    We report on our recent progress in applying semiconductor quantum dots for spin-based quantum computation, as proposed by Loss and DiVincenzo (1998 Phys. Rev. A 57 120). For the purpose of single-electron spin resonance, we study different types of single quantum dot devices that are designed for

  10. Ultrasmall colloidal PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Nick; Wehrung, Michael; O' Dell, Ryan Andrew [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Sun, Liangfeng, E-mail: lsun@bgsu.edu [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403 (United States)

    2014-09-15

    Ultrasmall colloidal lead sulfide quantum dots can increase the open circuit voltages of quantum-dot-based solar cells because of their large energy gap. Their small size and visible or near infrared light-emitting property make them attractive to the applications of biological fluorescence labeling. Through a modified organometallic route, we can synthesize lead sulfide quantum dots as small as 1.6 nm in diameter. The low reaction temperature and the addition of a chloroalkane cosolvent decrease the reaction rate, making it possible to obtain the ultrasmall quantum dots. - Highlights: • Ultrasmall colloidal PbS quantum dots as small as 1.6 nm in diameter are synthesized. • The quantum dots emit red light with photoluminescence peak at 760 nm. • The growth temperature is as low as 50 °C. • Addition of cosolvent 1,2-dichloroethane in the reaction decreases the reaction rate.

  11. Narrow ridge waveguide high power single mode 1.3-μm InAs/InGaAs ten-layer quantum dot lasers

    Directory of Open Access Journals (Sweden)

    Cao Q

    2007-01-01

    Full Text Available AbstractTen-layer InAs/In0.15Ga0.85As quantum dot (QD laser structures have been grown using molecular beam epitaxy (MBE on GaAs (001 substrate. Using the pulsed anodic oxidation technique, narrow (2 μm ridge waveguide (RWG InAs QD lasers have been fabricated. Under continuous wave operation, the InAs QD laser (2 × 2,000 μm2 delivered total output power of up to 272.6 mW at 10 °C at 1.3 μm. Under pulsed operation, where the device heating is greatly minimized, the InAs QD laser (2 × 2,000 μm2 delivered extremely high output power (both facets of up to 1.22 W at 20 °C, at high external differential quantum efficiency of 96%. Far field pattern measurement of the 2-μm RWG InAs QD lasers showed single lateral mode operation.

  12. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots.

    Science.gov (United States)

    Russo, Paola; Hu, Anming; Compagnini, Giuseppe; Duley, Walter W; Zhou, Norman Y

    2014-02-21

    Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the solution. The sheets consist of one to six stacked layers of spongy graphene, which form an irregular 3D porous structure that displays pores with an average size of 15-20 nm. Several characterization techniques have confirmed the porous nature of the collected layers. The analyses of the aqueous solution confirmed the presence of GQDs with dimensions of about 2-5 nm. It is found that the formation of both PG and GQDs depends on the fs-laser ablation energy. At laser fluences less than 12 J cm(-2), no evidence of either PG or GQDs is detected. However, polyynes with six and eight carbon atoms per chain are found in the solution. For laser energies in the 20-30 J cm(-2) range, these polyynes disappeared, while PG and GQDs were found at the water-air interface and in the solution, respectively. The origin of these materials can be explained based on the mechanisms for water breakdown and coal gasification. The absence of PG and GQDs, after the laser ablation of HOPG in liquid nitrogen, confirms the proposed mechanisms.

  13. POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    L.C.Fai

    2004-01-01

    Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.

  14. Activation of silicon quantum dots for emission

    Institute of Scientific and Technical Information of China (English)

    Huang Wei-Qi; Miao Xin-Jian; Huang Zhong-Mei; Liu Shi-Rong; Qin Chao-Jian

    2012-01-01

    The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs.From this point of view,we can build up radiative matter for emission.Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots.Our experimental results demonstrate that annealing is important in the treatment of the activation,and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.

  15. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems.

  16. Sub-monolayer Deposited InGaAs/GaAs Quantum Dot Heterostructures and Lasers

    DEFF Research Database (Denmark)

    Xu, Zhangcheng

    2004-01-01

    .The growth temperature of SML InGaAs/GaAs QDs in one sample was as low as 480 0C. Plan-view transmission electron microscopy observation shows that SML QDs are slightly elongated along the [1 -1 0] crystal direction, and the QD density is extremely high (> 1011 cm-2). By using lower temperature micro...... conditions of QDs are the same as those of this sample.The lasing wavelength, the threshold current density, and the characteristic temperature of a SML InGaAs/GaAs QD broad area laser with a 628 ìm-long cavity and a 100 ìm-wide stripe, are 965 nm, 373 A/cm2 and 81 K, respectively, at 30 0C. The gain spectra...... the threshold at the lasing wavelength, and the gain spectrum becomes symmetric with respect to the lasing wavelength when the injection current is about 0.98 Ith. The zero linewidth-enhancement-factor at the lasing wavelength has been observed, when the injection current is about 0.98 Ith. This is the first...

  17. Spin transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A.T. da Cunha; Anda, Enrique V. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2003-07-01

    Full text: We investigate the spin polarized transport properties of a nanoscopic device constituted by a quantum dot connected to two leads. The electrical current circulates with a spin polarization that is modulated via a gate potential that controls the intensity of the spin-orbit coupling, the Rashba effect. We study a polarized field-effect transistor when one of its parts is constituted by a small quantum dot, which energies are controlled by another gate potential operating inside the confined region. The high confinement and correlation suffered by the charges inside the dot gives rise to novel phenomena. We show that through the manipulation of the gate potential applied to the dot it is possible to control, in a very efficient way, the intensity and polarization of the current that goes along the system. Other crucial parameters to be varied in order to understand the behavior of this system are the intensity of the external applied electric and magnetic field. The system is represented by the Anderson Impurity Hamiltonian summed to a spin-orbit interaction, which describes the Rashba effect. To obtain the current of this out-of-equilibrium system we use the Keldysh formalism.The solution of the Green function are compatible with the Coulomb blockade regime. We show that under the effect of a external magnetic field, if the dot is small enough the device operates as a complete spin filter that can be controlled by the gate potential. The behavior of this device when it is injected into it a polarized current and modulated by the Rashba effect is as well studied. (author)

  18. Guest Editorial: Quantum Dots

    Science.gov (United States)

    2009-06-24

    cost of infrared imaging systems by enabling cryogenic dewars and Stirling cooling systems to be replaced by thermo-electric coolers . The QDIP...and moderate to high bandwidth semiconductor lasers in the 0.85- to 1.5-mm wavelength range mainly based on the InGaAs system . Advances such as

  19. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  20. Quantum Optics with Quantum Dots in Photonic Nanowires

    DEFF Research Database (Denmark)

    Gérard, J.-M.; Claudon, J.; Bleuse, J.;

    2011-01-01

    We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  1. Colloidal quantum dots as optoelectronic elements

    Science.gov (United States)

    Vasudev, Milana; Yamanaka, Takayuki; Sun, Ke; Li, Yang; Yang, Jianyong; Ramadurai, Dinakar; Stroscio, Michael A.; Dutta, Mitra

    2007-02-01

    Novel optoelectronic systems based on ensembles of semiconductor nanocrystals are addressed in this paper. Colloidal semiconductor quantum dots and related quantum-wire structures have been characterized optically; these optical measurements include those made on self-assembled monolayers of DNA molecules terminated on one end with a common substrate and on the other end with TiO II quantum dots. The electronic properties of these structures are modeled and compared with experiment. The characterization and application of ensembles of colloidal quantum dots with molecular interconnects are considered. The chemically-directed assembly of ensembles of colloidal quantum dots with biomolecular interconnects is demonstrated with quantum dot densities in excess of 10 +17 cm -3. A number of novel photodetectors have been designed based on the combined use of double-barrier quantum-well injectors, colloidal quantum dots, and conductive polymers. Optoelectronic devices including photodetectors and solar cells based on threedimensional ensembles of quantum dots are considered along with underlying phenomena such as miniband formation and the robustness of minibands to displacements of quantum dots in the ensemble.

  2. Single-Photon Superradiance from a Quantum Dot

    Science.gov (United States)

    Tighineanu, Petru; Daveau, Raphaël S.; Lehmann, Tau B.; Beere, Harvey E.; Ritchie, David A.; Lodahl, Peter; Stobbe, Søren

    2016-04-01

    We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a fivefold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.

  3. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  4. Single-section mode-locked 1.55-μm InAs/InP quantum dot lasers grown by MOVPE

    Science.gov (United States)

    Gao, Feng; Luo, Shuai; Ji, Hai-Ming; Liu, Song-Tao; Lu, Dan; Ji, Chen; Yang, Tao

    2016-07-01

    We report on ultra-short pulse single-section mode-locked lasers emitting at 1.55 μm, based on self-assembled InAs/InGaAsP/InP quantum dot active regions grown by metal-organic vapor phase epitaxy (MOVPE). For a 1.5-mm-long Fabry-Perot laser, mode-locking at a repetition rate of 29.8 GHz with pulse duration of 855 fs is obtained without any external pulse compression techniques. The mode-beating exhibits a narrow RF linewidth less than 30 kHz, and a wide frequency tuning range up to 73 MHz can be achieved by simply changing the injection current. Moreover, a higher repetition rate of 55.6 GHz and the transform limited Gaussian-pulse with the 707 fs pulse duration are achieved from a device with a shorter cavity length of 0.8 mm.

  5. Pulsed laser deposition of CdSe Quantum dots on Zn2SnO4 nanowires and their photovoltaic applications.

    Science.gov (United States)

    Dai, Qilin; Chen, Jiajun; Lu, Liyou; Tang, Jinke; Wang, Wenyong

    2012-08-08

    In this work we report a physical deposition-based, one-step quantum dot (QD) synthesis and assembly on ternary metal oxide nanowires for photovoltaic applications. Typical solution-based synthesis of colloidal QDs for QD sensitized solar cells involves nontrivial ligand exchange processing and toxic wet chemicals, and the effect of the ligands on carrier transport has not been fully understood. In this research using pulsed laser deposition, CdSe QDs were coated on Zn(2)SnO(4) nanowires without ligand molecules, and the coverage could be controlled by adjusting the laser fluence. Growth of QDs in dense nanowire network structures was also achieved, and photovoltaic cells fabricated using this method exhibited promising device performance. This approach could be further applied for the assembly of QDs where ligand exchange is difficult and could possibly lead to reduced fabrication cost and improved device performance.

  6. Submonolayer InGaAs/GaAs quantum-dot lasers with high modal gain and zero-linewidth enhancement factor

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Birkedal, Dan; Juhl, Michael

    2004-01-01

    The gain spectra of a submonolayer (SML) InGaAs/GaAs quantum dot (QD) laser working at 30°C were measured using the Hakki–Paoli method. It is found that the maximum modal gain of QD ground states is as high as 44 cm–1 and no gain saturation occurs below the threshold at the lasing wavelength of 964.......1 nm. When the injection current is about 0.98 times the threshold, the gain spectrum becomes symmetric with respect to the lasing wavelength, and zero-linewidth enhancement factor is observed. These properties are attributed to the high density and the high uniformity of SML QDs in our laser diode....

  7. Quantum Dot Spectrum Converters for Enhanced High Efficiency Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to enhance solar cell efficiency, radiation resistance and affordability. The Quantum Dot Spectrum Converter (QDSC) disperses quantum dots...

  8. Amphoteric CdSe nanocrystalline quantum dots.

    Science.gov (United States)

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  9. Lindblad theory of dynamical decoherence of quantum-dot excitons

    OpenAIRE

    Eastham, P. R.; Spracklen, A O; Keeling, Jonathan Mark James

    2013-01-01

    We use the Bloch-Redfield-Wangsness theory to calculate the effects of acoustic phonons in coherent control experiments where quantum-dot excitons are driven by shaped laser pulses. This theory yields a generalized Lindblad equation for the density operator of the dot, with time-dependent damping and decoherence due to phonon transitions between the instantaneous dressed states. It captures similar physics to the form recently applied to Rabi oscillation experiments [Ramsay et al., Phys. Rev....

  10. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  11. Colloidal quantum dot photodetectors

    KAUST Repository

    Konstantatos, Gerasimos

    2011-05-01

    We review recent progress in light sensors based on solution-processed materials. Spin-coated semiconductors can readily be integrated with many substrates including as a post-process atop CMOS silicon and flexible electronics. We focus in particular on visible-, near-infrared, and short-wavelength infrared photodetectors based on size-effect-tuned semiconductor nanoparticles made using quantum-confined PbS, PbSe, Bi 2S3, and In2S3. These devices have in recent years achieved room-temperature D values above 1013 Jones, while fully-depleted photodiodes based on these same materials have achieved MHz response combined with 1012 Jones sensitivities. We discuss the nanoparticle synthesis, the materials processing, integrability, temperature stability, physical operation, and applied performance of this class of devices. © 2010 Elsevier Ltd. All rights reserved.

  12. Optical studies of capped quantum dots

    NARCIS (Netherlands)

    Wuister, S.F.

    2005-01-01

    This thesis describes the synthesis and spectroscopy of CdSe and CdTe semiconductor quantum dots (QDs). The first chapter gives an introduction into the unique size dependent properties of semiconductor quantum dots. Highly luminescent QDs of CdSe and CdTe were prepared via a high temperature method

  13. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  14. Optically active quantum-dot molecules.

    Science.gov (United States)

    Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2017-02-20

    Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

  15. Research on Self-Assembling Quantum Dots.

    Science.gov (United States)

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  16. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  17. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  18. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots mad

  19. Optically induced magnetization in diluted magnetic quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    John Peter, A. [Government Arts College, Melur 625 106, Madurai (India)], E-mail: a_johnpeter@rediffmail.com; Lily Mary Eucharista, K. [Arul Anandar College, Karumathur 625 514, Madurai (India)

    2009-03-15

    We report the effect of intense laser field on donor impurities in a semimagnetic Cd{sub 1-x{sub in}}Mn{sub x{sub in}}Te/Cd{sub 1-x{sub out}}Mn{sub x{sub out}}Te quantum dot. The spin polaronic energy of different Mn{sup 2+} is evaluated for different dot radii using a mean field theory in the presence of laser field. Magnetization is calculated for various concentrations of Mn{sup 2+} ions with different dot sizes. Significant magnetization of Mn spins can be obtained through the formation of polarized exciton magnetic polarons (EMPs). A rapid decrease of the laser dressed donor ionization energy for different values of dot sizes with increasing field intensity is predicted. Also, it is found that the polarization of EMPs increases rapidly at higher excitation energies.

  20. Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon.

    Science.gov (United States)

    Wan, Yating; Li, Qiang; Liu, Alan Y; Gossard, Arthur C; Bowers, John E; Hu, Evelyn L; Lau, Kei May

    2016-04-01

    Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut. The lasing threshold is as low as hundreds of microwatts, similar to the thresholds of identical lasers grown on a GaAs substrate. The heteroepitaxial structure employed here does not require the use of an absorptive germanium buffer and/or dislocation filter layers, both of which impede the efficient coupling of light from the laser active regions to silicon waveguides. This allows for full compatibility with the extensive silicon-on-insulator (SOI) technology. The large-area virtual GaAs (on Si) substrates can be directly adopted in various mature in-plane laser configurations, both optically and electrically. Thus, this demonstration represents a major advancement toward the commercial success of fully integrated silicon photonics.

  1. Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    Directory of Open Access Journals (Sweden)

    Yoon SF

    2006-01-01

    Full Text Available AbstractSelf-assembled GaInNAs quantum dots (QDs were grown on GaAs (001 substrate using solid-source molecular-beam epitaxy (SSMBE equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM, photoluminescence (PL, and transmission electron microscopy (TEM measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW operation at room temperature (RT with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2 at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2, with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C.

  2. Efficient electron transfer and reduced recombination with Nd:YAG laser scribing for high-efficiency quantum dot-sensitized solar cells

    Science.gov (United States)

    Zheng, Tao; Kim, Hee-Je; Gopi, Chandu V. V. M.; Venkata-Haritha, Mallineni; Son, Min-Kyu; Seo, Hyunwoong

    2017-09-01

    Inefficient charge transfer and charge recombination are critical but challenging issues that restrict the power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSSCs). These issues must be addressed to boost the performance of QDSSCs. We present a novel Nd:YAG laser scribing treatment for fluorine doped tin oxide (FTO) substrate that reduces electron loss by reducing the moving distance of electrons and strongly inhibiting interfacial recombination processes in QDSSCs. Consequently, TiO2/CdS/CdSe/Mn-ZnSe QDSSCs on the Nd:YAG laser scribed FTO exhibited a PCE of 6.26% under 1 sun (100 mW cm-2) irradiation, while TiO2/CdS/CdSe/Mn-ZnSe QDSSCs on the FTO without Nd:YAG laser scribing exhibited a PCE of 5.51%. The short circuit current density and fill factor are also increased after laser scribing, which arises from increased electron transfer with reduced recombination. Electrochemical impedance spectroscopy modeling reveals that the Nd:YAG laser scribed QDSSC has increased charge collection efficiency and reduced interfacial recombination compared with normal QDSSC.

  3. InAs/InP量子点激光器制备工艺研究%Fabricating technique of InAs/InP quantum dot lasers

    Institute of Scientific and Technical Information of China (English)

    李世国; 龚谦; 王瑞春; 王新中; 陈朋; 曹春芳; 岳丽; 刘庆博

    2012-01-01

    Narrow stripe of InAs/InP quantum dot laser is fabricated by the chemical wet etching method.The materials of stripe are composed of InGaAs and InP in systems of InAs/InP quantum dot laser.A vertical stripe with width of 6 μm is achieved by choosing suitable rate of H2SO4∶H2O2∶H2O and H3PO4∶HCl and etching orientation of InP at room temperature.The laser emits its wavelength in the fiber optical communication region around 1.55 μm under continuous-wave mode.More than 12 mW output power from one facet is obtained at room temperature.%报道了通过化学湿刻蚀制备窄脊条InAs/InP量子点激光器的方法。激光器脊条主要是由半导体材料InGaAs和InP构成,通过选择合适配比的H2SO4∶H2O2∶H2O和H3PO4∶HCl腐蚀溶液和InP的腐蚀方向,在室温下选择性地腐蚀了InGaAs和InP,获得了窄脊条宽为6μm的量子点激光器。此激光器能够在室温连续波模式下工作,激射波长在光纤通信重要窗口1.55μm,单面最大输出功率超过12mW。

  4. Quantum-dot supercrystals for future nanophotonics

    Science.gov (United States)

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-01-01

    The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave functions of the supercrystals' collective excitations through the variation of different structural and material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon alterations in the quantum dot arrangement. This feature offers unprecedented control over the supercrystal's electromagnetic properties and enables the development of new nanophotonics materials and devices.

  5. Biocompatible quantum dots for biological applications.

    Science.gov (United States)

    Rosenthal, Sandra J; Chang, Jerry C; Kovtun, Oleg; McBride, James R; Tomlinson, Ian D

    2011-01-28

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.

  6. Performance of a quantum-dot external-cavity laser based on digital micro-mirror device%基于DMD的外腔量子点激光器性能研究

    Institute of Scientific and Technical Information of China (English)

    成若海; 王海龙; 龚谦; 严进一; 汪洋; 柳庆博; 曹春芳; 岳丽

    2013-01-01

    In order to obtain more complete test data of quantum-dot external-cavity lasers,the InAs/InP quantum-dot external-cavity lasers using digital micro-mirror device (DMD) are successfully built up and their spectrum characteristics and the tuning range are measured.We also measure its tuning range and the corresponding change in the mode based on DMD quantum external cavity laser dots.The spectrum characteristics of InAs/InP quantum-dot external-cavity laser based on the grating and the DMD are compared theoretically and experimentally,and the differences between the reflection spectrum and angular dispersion are obtained.And a new method based on DMD will be applied to the external-cavity quantum-dot lasers.%为了取得更加完善的外腔量子点激光器(QDL)测试数据,构建了基于数字微镜器件(DMD,digital micro-mirror device)的InAs/InP量子点外腔QDL.测量了其光谱特性以及调谐范围,得到了基于DMD的外腔QDL调谐范围和相应的模式变化.在理论和实验上与基于光栅的外腔QDL性能进行了比较,得到了在角色散和反射光谱中与光栅的区别,实现了将DMD应用于外腔QDL中而获得的一种新方法.

  7. Tailoring Magnetism in Quantum Dots

    Science.gov (United States)

    Zutic, Igor; Abolfath, Ramin; Hawrylak, Pawel

    2007-03-01

    We study magnetism in magnetically doped quantum dots as a function of particle numbers, temperature, confining potential, and the strength of Coulomb interaction screening. We show that magnetism can be tailored by controlling the electron-electron Coulomb interaction, even without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at substantially higher temperatures than in the non-interacting case or in the bulk-like dilute magnetic semiconductors. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations. Cond-mat/0612489. [1] R. Abolfath, P. Hawrylak, I. Zuti'c, preprint.

  8. Coherent optoelectronics with single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zrenner, A; Ester, P; Michaelis de Vasconcellos, S; Huebner, M C; Lackmann, L; Stufler, S [Universitaet Paderborn, Department Physik, Warburger Strasse 100, D-33098 Paderborn (Germany); Bichler, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)], E-mail: zrenner@mail.upb.de

    2008-11-12

    The optical properties of semiconductor quantum dots are in many respects similar to those of atoms. Since quantum dots can be defined by state-of-the-art semiconductor technologies, they exhibit long-term stability and allow for well-controlled and efficient interactions with both optical and electrical fields. Resonant ps excitation of single quantum dot photodiodes leads to new classes of coherent optoelectronic functions and devices, which exhibit precise state preparation, phase-sensitive optical manipulations and the control of quantum states by electrical fields.

  9. Coherent optoelectronics with single quantum dots

    Science.gov (United States)

    Zrenner, A.; Ester, P.; Michaelis de Vasconcellos, S.; Hübner, M. C.; Lackmann, L.; Stufler, S.; Bichler, M.

    2008-11-01

    The optical properties of semiconductor quantum dots are in many respects similar to those of atoms. Since quantum dots can be defined by state-of-the-art semiconductor technologies, they exhibit long-term stability and allow for well-controlled and efficient interactions with both optical and electrical fields. Resonant ps excitation of single quantum dot photodiodes leads to new classes of coherent optoelectronic functions and devices, which exhibit precise state preparation, phase-sensitive optical manipulations and the control of quantum states by electrical fields.

  10. Modulation of carrier dynamics and threshold characteristics in 1.3-μm quantum dot photonic crystal nanocavity lasers

    Science.gov (United States)

    Xing, Enbo; Tong, Cunzhu; Rong, Jiamin; Shu, Shili; Wu, Hao; Wang, Lijie; Tian, Sicong; Wang, Lijun

    2016-08-01

    A self-consistent all-pathway quantum dot (QD) rate equation model, in which all possible relaxation pathways are considered, is used to investigate the influence of quality (Q) factor on the carrier dynamics of 1.3-μm InAs/GaAs QD photonic crystal (PhC) nanolasers. It is found that Q factor not only affects the photon lifetime, but also modulates the carrier occupation in QDs. About three times increases of carrier injection efficiency in QD ground state can be realized in nanocavity with high Q factor. However, it also reveals that over 90% improvement of threshold current happens when Q factor increases from 2000 to 7000, which means it might be not necessary to pursuit for ultrahigh Q factor for the purpose of low threshold current.

  11. Gain recovery dynamics and limitations in quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg

    2001-01-01

    Summary form only given. While ultra-low threshold current densities have been achieved in quantum dot (QD) lasers, the predicted potential for high-speed modulation has not yet been realized despite the high differential gain. Furthermore, recent single pulse experiments demonstrated very fast...

  12. Electron transport in quantum dots

    CERN Document Server

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  13. Quantum Computing with Electron Spins in Quantum Dots

    CERN Document Server

    Vandersypen, L M K; Van Beveren, L H W; Elzerman, J M; Greidanus, J S; De Franceschi, S; Kouwenhoven, Leo P

    2002-01-01

    We present a set of concrete and realistic ideas for the implementation of a small-scale quantum computer using electron spins in lateral GaAs/AlGaAs quantum dots. Initialization is based on leads in the quantum Hall regime with tunable spin-polarization. Read-out hinges on spin-to-charge conversion via spin-selective tunneling to or from the leads, followed by measurement of the number of electron charges on the dot via a charge detector. Single-qubit manipulation relies on a microfabricated wire located close to the quantum dot, and two-qubit interactions are controlled via the tunnel barrier connecting the respective quantum dots. Based on these ideas, we have begun a series of experiments in order to demonstrate unitary control and to measure the coherence time of individual electron spins in quantum dots.

  14. Quantum dot density studies for quantum dot intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, Sedsel Fretheim; Zhou, Dayong; Vitelli, Stefano; Mayani, Maryam Gholami; Fimland, Bjoern-Ove; Reenaas, Turid Worren

    2010-07-01

    Quantum dots (QDs) have been an active area of research for many years and have been implemented in several applications, such as lasers and detectors. During the last years, some attempts have been made to increase the absorption and efficiency of solar cells by inserting QDs into the intrinsic region of pin solar cells. So far, these attempts have been successful in increasing the absorption, but not the cell efficiency. There are probably several reasons for this lack of efficiency increase, but we believe that one important reason is the low density of the implemented QDs. In this work, samples of single layer InAs QDs on n-GaAs(001) substrates have been grown by molecular beam epitaxy (MBE) and we have performed a systematic study of how deposition parameters affect the QD density. The aim is to achieve densities > 1011 cm-2. The nominal substrate temperature (360 - 500 deg. C), the InAs growth rate (0.085 - 1 ML/s) and thickness (2.0 - 2.8 ML) have been varied in a systematic way for two different deposition methods of InAs, i.e. continuous deposition or deposition with interruptions. In addition, we have for the continuous growth samples also varied the As-flux (0.5 - 6 centre dot10-6 torr). Scanning electron microscopy (SEM) has been the main characterization method to determine quantum dot sizes and densities, and atomic force microscopy (AFM) has been used for evaluation of the quantum dot heights. We find that the QD density increases with reduced growth temperature and that it is higher for samples grown continuously than for samples grown with growth interruptions. The homogeneity is also strongly affected by temperature, InAs deposition method and the As-flux. We have observed QD densities as high as 2.5 centre dot1011 cm-2 for the samples grown at the lowest growth temperatures. (Author)

  15. Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry–Perot laser

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Schires, K.; Grillot, F. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 46 rue Barrault, 75013 Paris Cedex (France); Poole, P. J. [National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)

    2015-04-06

    Non-degenerate four-wave mixing in an InAs/InP quantum dot Fabry–Perot laser is investigated with an optical injection-locking scheme. Wavelength conversion is obtained for frequency detunings ranging from +2.5 THz to −3.5 THz. The normalized conversion efficiency is maintained above −40 dB between −1.5 and +0.5 THz with an optical signal-to-noise ratio above 20 dB and a maximal third-order nonlinear susceptibility normalized to material gain of 2 × 10{sup −19} m{sup 3}/V{sup 2}. In addition, we show that injection-locking at different positions in the gain spectrum has an impact on the nonlinear conversion process and the symmetry between up- and down- converted signals.

  16. Thermal Effects and Small Signal Modulation of 1.3-μm InAs/GaAs Self-Assembled Quantum-Dot Lasers

    Directory of Open Access Journals (Sweden)

    Tong CZ

    2011-01-01

    Full Text Available Abstract We investigate the influence of thermal effects on the high-speed performance of 1.3-μm InAs/GaAs quantum-dot lasers in a wide temperature range (5–50°C. Ridge waveguide devices with 1.1 mm cavity length exhibit small signal modulation bandwidths of 7.51 GHz at 5°C and 3.98 GHz at 50°C. Temperature-dependent K-factor, differential gain, and gain compression factor are studied. While the intrinsic damping-limited modulation bandwidth is as high as 23 GHz, the actual modulation bandwidth is limited by carrier thermalization under continuous wave operation. Saturation of the resonance frequency was found to be the result of thermal reduction in the differential gain, which may originate from carrier thermalization.

  17. Influence of optical coherence on the electron spin in singly charged InP quantum dots excited by resonant laser pulses

    Science.gov (United States)

    Tomimoto, Shinichi; Kawana, Keisuke; Murakami, Akira; Masumoto, Yasuaki

    2012-06-01

    We have experimentally studied the spin dynamics of excitons, electrons, and trions in charge-tunable InP/InGaP quantum dots (QDs) excited by picosecond resonant laser pulses by observing the time-resolved Kerr rotation. In singly charged QDs, inversion of the spin polarization direction of doped electrons is found to be caused simply by variation in the pulse intensity, which is accompanied by an abrupt change of the spin coherence time. This phenomenon is reproduced by density-matrix calculations allowing for the reaction on the QD electron-trion four-level system during its coherent radiation emission. This result means that the optical coherence is another critical factor affecting electron spin coherence.

  18. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  19. Quantum-dot based nanothermometry in optical plasmonic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, Laura Martinez [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Zhang, Qiming; Li, Xiangping; Gu, Min [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Jaque, Daniel [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain)

    2014-11-03

    We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.

  20. Quantum dots with single-atom precision.

    Science.gov (United States)

    Fölsch, Stefan; Martínez-Blanco, Jesús; Yang, Jianshu; Kanisawa, Kiyoshi; Erwin, Steven C

    2014-07-01

    Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.

  1. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    Energy Technology Data Exchange (ETDEWEB)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha [Research Center for Physics, Indonesian Institute of Sciences, Building 442, Kawasan Puspiptek, South Tangerang,Banten 15314 Indonesia (Indonesia)

    2016-03-11

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  2. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    Science.gov (United States)

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  3. Polymersomes containing quantum dots for cellular imaging

    Directory of Open Access Journals (Sweden)

    Camblin M

    2014-05-01

    Full Text Available Marine Camblin,1 Pascal Detampel,1 Helene Kettiger,1 Dalin Wu,2 Vimalkumar Balasubramanian,1,* Jörg Huwyler1,*1Division of Pharmaceutical Technology, 2Department of Chemistry, University of Basel, Basel, Switzerland*These authors contributed equally to this workAbstract: Quantum dots (QDs are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps made of poly(dimethylsiloxane-poly(2-methyloxazoline (PDMS-PMOXA diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS at physiological pH (7.4. Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2 and was visualized by confocal laser scanning microscopy (CLSM. Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging.Keywords: quantum dots, polymersomes, cellular imaging, cellular uptake

  4. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... oscillator strength due to Coulomb effects. This is in stark contrast to the measured oscillator strength, which turns out to be so small that it can be described by excitons in the strong confinement regime. We attribute these findings to exciton localization in local potential minima arising from alloy...

  5. Scanning gate microscopy of ultra clean carbon nanotube quantum dots

    OpenAIRE

    Xue, Jiamin; Dhall, Rohan; Cronin, Stephen B.; LeRoy, Brian J.

    2015-01-01

    We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can b...

  6. Quantum dots for terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H C; Aslan, B; Gupta, J A; Wasilewski, Z R; Aers, G C; SpringThorpe, A J; Buchanan, M [Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6 (Canada)], E-mail: h.c.liu@nrc.ca

    2008-09-24

    Nanostructures made of semiconductors, such as quantum wells and quantum dots (QD), are well known, and some have been incorporated in practical devices. Here we focus on novel structures made of QDs and related devices for terahertz (THz) generation. Their potential advantages, such as low threshold current density, high characteristic temperature, increased differential gain, etc, make QDs promising candidates for light emitting applications in the THz region. Our idea of using resonant tunneling through QDs is presented, and initial results on devices consisting of self-assembled InAs QDs in an undoped GaAs matrix, with a design incorporating a GaInNAs/GaAs short period superlattice, are discussed. Moreover, shallow impurities are also being explored for possible THz emission: the idea is based on the tunneling through bound states of individual donor or acceptor impurities in the quantum well. Initial results on devices having an AlGaAs/GaAs double-barrier resonant tunneling structure are discussed.

  7. Electronic properties of aperiodic quantum dot chains

    Science.gov (United States)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2012-04-01

    The electronic spectral and transport properties of aperiodic quantum dot chains are investigated. The systems with singular continuous energy spectrum are considered: Thue-Morse chain, double-periodic chain, Rudin-Shapiro chain. The influence of electronic energy in quantum dot on the spectral properties, band structure, density of states and spectral resistivity, is discussed. Low resistivity regions correspond to delocalized states and these states could be current states. Also we discuss the magnetic field application as the way to tune electronic energy in quantum dot and to obtain metallic or insulating conducting states of the systems.

  8. Amplification Without Inversion in Semiconductor Quantum Dot

    Science.gov (United States)

    Hajibadali, A.; Abbasian, K.; Rostami, A.

    In this paper, we have realized amplification without inversion (AWI) in quantum dot (QD). A Y-type four-level system of InxGa1-xN quantum dot has been obtained and investigated for AWI. It has been shown that, with proper setting of control fields' amplitude, we can obtain reasonable gain. With proper setting of phase difference of control fields and probe field, we can obtain considerable gain in resonant wavelength. We have designed this system by solving the Schrödinger-Poisson equations for InxGa1-xN quantum dot in GaN substrate, self-consistently.

  9. Time-bin Entanglement from Quantum Dots

    CERN Document Server

    Weihs, Gregor; Predojević, Ana

    2016-01-01

    The desire to have a source of single entangled photon pairs can be satisfied using single quantum dots as emitters. However, we are not bound to pursue only polarization entanglement, but can also exploit other degrees of freedom. In this chapter we focus on the time degree of freedom, to achieve so-called time-bin entanglement. This requires that we prepare the quantum dot coherently into the biexciton state and also build special interferometers for analysis. Finally this technique can be extended to achieve time-bin and polarization hyper-entanglement from a suitable quantum dot.

  10. Fluorescent Quantum Dots for Biological Labeling

    Science.gov (United States)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  11. Multiphoton excitation of disc shaped quantum dot in presence of laser (THz) and magnetic field for bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Lahon, Siddhartha; Gambhir, Monica; Jha, P.K.; Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2010-04-15

    Recently, multiphoton processes in nanostructures have attracted much attention for their promising applications, especially in growing field of bioimaging. Here we investigate the optical response of quantum disc (QD) in the presence of laser and a static magnetic field. Floquet theory is employed to solve the equation of motion for laser driven intraband transitions between the states of the conduction band. Several interesting features namely dynamic stark shift, power broadening, and hole burning on excited levels degeneracy breaking are observed with variation of electric and magnetic field strengths. Enhancement and power broadening observed for excited states probabilities with increase of external fields are directly linked to the emission spectra of QD and will be useful for making future bioimaging devices. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Quantum dot heterojunction solar cells: the mechanism of device operation and impacts of quantum dot oxidation

    OpenAIRE

    Ihly, Rachelle

    2014-01-01

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic s...

  13. Quantum Dots in Vertical Nanowire Devices

    NARCIS (Netherlands)

    Van Weert, M.

    2010-01-01

    The research described in this thesis is aimed at constructing a quantum interface between a single electron spin and a photon, using a nanowire quantum dot. Such a quantum interface enables information transfer from a local electron spin to the polarization of a photon for long distance readout.

  14. Non-adiabatic geometrical quantum gates in semiconductor quantum dots

    CERN Document Server

    Solinas, P; Zanghì, N; Rossi, F; Solinas, Paolo; Zanardi, Paolo; Zanghì, Nino; Rossi, Fausto

    2003-01-01

    In this paper we study the implementation of non-adiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding/manipulation schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be in principle implemented

  15. Influence of Indium-Percentage Variation on Dynamical Characteristics of InxGa1-xAs/GaAs(001) Quantum Dot Lasers

    CERN Document Server

    Borji, Mahdi Ahmadi

    2015-01-01

    The influence of indium percentage on dynamical characteristics of InxGa1-xAs/GaAs(001) quantum dot lasers (QDLs) is investigated. Energy levels of self-organized truncated-cone-shape QDs are calculated by means of the eight-band k.p model, and their dependence to indium percentage is surveyed. Then, by presenting a three-level model and numerical solution of the resulting rate equations, laser properties are determined. Our results show that inclusion of more indium gives rise in the reduced energy gap and electron-hole recombination energy. Moreover, lasing process for both Ground State (GS) and Excited States (ES) sound to be sensitive to indium percentage. It is shown that rise of indium percentage at fixed injected current results in the increased ES turn-on delay and GS photon number and 3dB modulation bandwidth, and decreased ES photon number, GS turn on delay, amplitude of relaxation oscillations, output power, and ES 3dB modulation bandwidth; but has no effect on threshold current and laser gain. At ...

  16. Single to quadruple quantum dots with tunable tunnel couplings

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Otsuka, T.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan)

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  17. The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga{sub 1−x}Al{sub x}As/GaAs quantum dot under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autóonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-10-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change (the linear and third-order nonlinear) for transitions between different intersubbands in the Ga{sub 1−x}Al{sub x}As/GaAs cylindrical quantum dot under external electric field are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass approximation. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the electric and intense laser fields. By changing the intensities of the electric and laser fields, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • The effects of the non-resonant intense laser field and electric field on the nonlinear optical properties of cylindrical quantum dot are investigated. • The both total absorption coefficient and refractive index change are sensitive to dot dimensions and the effects of external fields. • By changing the external fields together with dot dimensions a blue or red shift can be obtained.

  18. Quantum Dots Investigated for Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  19. Room temperature photoluminescence of InGaAs Surface Quantum Dots

    OpenAIRE

    Ulloa Herrero, José María; Yamamoto, K.; Fernández González, Alvaro de Guzmán; Hierro Cano, Adrián

    2011-01-01

    Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and elect...

  20. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan;

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  1. Double Acceptor Interaction in Semimagnetic Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Merwyn Jasper D. Reuben

    2011-01-01

    Full Text Available The effect of geometry of the semimagnetic Quantum Dot on the Interaction energy of a double acceptor is computed in the effective mass approximation using the variational principle. A peak is observed at the lower dot sizes as a magnetic field is increased which is attributed to the reduction in confinement.

  2. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  3. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  4. Quantum interference and control of the optical response in quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)

    2013-11-25

    We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.

  5. Chaotic quantum dots with strongly correlated electrons

    OpenAIRE

    Shankar, R.

    2007-01-01

    Quantum dots pose a problem where one must confront three obstacles: randomness, interactions and finite size. Yet it is this confluence that allows one to make some theoretical advances by invoking three theoretical tools: Random Matrix theory (RMT), the Renormalization Group (RG) and the 1/N expansion. Here the reader is introduced to these techniques and shown how they may be combined to answer a set of questions pertaining to quantum dots

  6. Start Shift of Individual Quantum Dots

    Science.gov (United States)

    1999-06-18

    We will here describe the results of the influence of electric field on InP quantum dots embedded in GalnP, lattice matched to GaAs. Experimental...details The sample we used was grown by metal-organic vapour phase epitaxy, and contained InP quantum dots in GanP, lattice matched to GaAs (n-type

  7. Germanium quantum dots: Optical properties and synthesis

    OpenAIRE

    Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

    1994-01-01

    Three different size distributions of Ge quantum dots (>~200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Col...

  8. Renormalization in Periodically Driven Quantum Dots.

    Science.gov (United States)

    Eissing, A K; Meden, V; Kennes, D M

    2016-01-15

    We report on strong renormalization encountered in periodically driven interacting quantum dots in the nonadiabatic regime. Correlations between lead and dot electrons enhance or suppress the amplitude of driving depending on the sign of the interaction. Employing a newly developed flexible renormalization-group-based approach for periodic driving to an interacting resonant level we show analytically that the magnitude of this effect follows a power law. Our setup can act as a non-Markovian, single-parameter quantum pump.

  9. Submonolayer Quantum Dot Infrared Photodetector

    Science.gov (United States)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  10. Quantum dots as biophotonics tools.

    Science.gov (United States)

    Cesar, Carlos L

    2014-01-01

    This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs' biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.

  11. Influence of quasi-bound states on the carrier capture into quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend;

    2002-01-01

    An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes are beli......An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes...

  12. High Efficiency Quantum Dot III-V Thermophotovoltaic Cell for Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quantum dots are nanoscale materials that have already improved the performance of optical sensors, lasers, light emitting diodes and solar cells. The unique...

  13. High Efficiency Quantum Dot III-V Multijunction Solar Cell for Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quantum dots are nanoscale materials that have already improved the performance of optical sensors, lasers, and light emitting diodes. The unique properties of these...

  14. Carrier multiplication and exciton behavior in PbSe quantum dots

    NARCIS (Netherlands)

    Tuan Trinh, M.

    2010-01-01

    Knowledge of excited electronic states in semiconductor quantum dots (QDs) is of fundamental scientific interest and is important for application in lasers, optical detectors, LEDs, solar cells, photocatalysis, biomedical imaging, photodynamic therapy etc. In the past few years, carrier multiplicati

  15. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  16. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  17. Inter-dot coupling effects on transport through correlated parallel coupled quantum dots

    Indian Academy of Sciences (India)

    Shyam Chand; G Rajput; K C Sharma; P K Ahluwalia

    2009-05-01

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.

  18. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.

    Science.gov (United States)

    Guimard, Denis; Ishida, Mitsuru; Bordel, Damien; Li, Lin; Nishioka, Masao; Tanaka, Yu; Ekawa, Mitsuru; Sudo, Hisao; Yamamoto, Tsuyoshi; Kondo, Hayato; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2010-03-12

    We investigated the effects of post-growth annealing on the photoluminescence (PL) characteristics of InAs/GaAs quantum dots (QDs) grown by metal-organic chemical vapor deposition (MOCVD). The onset temperature at which both the peak linewidth and the PL intensity degraded and the blueshift of the ground state emission wavelength occurred was found to depend on both the QD density and the In composition of the capping layer. This behavior is particularly important in view of QD integration in photonic devices. From the knowledge of the dependences of the PL characteristics after annealing on the QD and capping growth conditions, ground state lasing at 1.30 microm could be demonstrated from InAs/GaAs QDs grown by MOCVD. Finally, we compared the laser characteristics of InAs/GaAs QDs with those of InAs/Sb:GaAs QDs, grown according to the antimony-mediated growth technique, and showed that InAs/Sb:GaAs QDs are more appropriate for laser fabrication at 1.3 microm by MOCVD.

  19. Ground state lasing at 1.30 {mu}m from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guimard, Denis; Ishida, Mitsuru; Bordel, Damien; Li Lin; Nishioka, Masao; Arakawa, Yasuhiko [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Tanaka, Yu; Kondo, Hayato; Sugawara, Mitsuru [QD Laser Inc., 1-8-1 Ohtemachi, Chyoda-ku, Tokyo 100-0004 (Japan); Ekawa, Mitsuru; Sudo, Hisao; Yamamoto, Tsuyoshi, E-mail: dguimard@iis.u-tokyo.ac.jp [Fujitsu Laboratories Limited, 10-1 Morinosato-Wakamiya, Atsugi 243-0197 (Japan)

    2010-03-12

    We investigated the effects of post-growth annealing on the photoluminescence (PL) characteristics of InAs/GaAs quantum dots (QDs) grown by metal-organic chemical vapor deposition (MOCVD). The onset temperature at which both the peak linewidth and the PL intensity degraded and the blueshift of the ground state emission wavelength occurred was found to depend on both the QD density and the In composition of the capping layer. This behavior is particularly important in view of QD integration in photonic devices. From the knowledge of the dependences of the PL characteristics after annealing on the QD and capping growth conditions, ground state lasing at 1.30 {mu}m could be demonstrated from InAs/GaAs QDs grown by MOCVD. Finally, we compared the laser characteristics of InAs/GaAs QDs with those of InAs/Sb:GaAs QDs, grown according to the antimony-mediated growth technique, and showed that InAs/Sb:GaAs QDs are more appropriate for laser fabrication at 1.3 {mu}m by MOCVD.

  20. Pulsed laser deposition of CuInS2 quantum dots on one-dimensional TiO2 nanorod arrays and their photoelectrochemical characteristics

    Science.gov (United States)

    Han, Minmin; Chen, Wenyuan; Guo, Hongjian; Yu, Limin; Li, Bo; Jia, Junhong

    2016-06-01

    In the typical solution-based synthesis of colloidal quantum dots (QDs), it always resorts to some surface treatment, ligand exchange processing or post-synthesis processing, which might involve some toxic chemical regents injurious to the performance of QD sensitized solar cells. In this work, the CuInS2 QDs are deposited on the surface of one-dimensional TiO2 nanorod arrays by the pulsed laser deposition (PLD) technique. The CuInS2 QDs are coated on TiO2 nanorods without any ligand engineering, and the performance of the obtained CuInS2 QD sensitized solar cells is optimized by adjusting the laser energy. An energy conversion efficiency of 3.95% is achieved under one sun illumination (AM 1.5, 100 mW cm-2). The improved performance is attributed to enhanced absorption in the longer wavelength region, quick interfacial charge transfer and few chance of carrier recombination with holes for CuInS2 QD-sensitized solar cells. Moreover, the photovoltaic device exhibits high stability in air without any specific encapsulation. Thus, the PLD technique could be further applied for the fabrication of QDs or other absorption materials.

  1. Real-Time 200 Gb/s (4x56.25 Gb/s) PAM-4 Transmission over 80 km SSMF using Quantum-Dot Laser and Silicon Ring-Modulator

    DEFF Research Database (Denmark)

    Eiselt, Nicklas; Griesser, Helmut; Eiselt, Michael

    2017-01-01

    We report real-time 4x56.26-Gb/s DWDM PAM-4 transmission over 80-km SSMF with novel optical transmitter sub-assembly comprising multi-wavelength quantum-dot laser and silicon ring modulators. Pre-FEC BERs below 1E-4 are achieved after 80-km, allowing error-free operation with HD-FEC......We report real-time 4x56.26-Gb/s DWDM PAM-4 transmission over 80-km SSMF with novel optical transmitter sub-assembly comprising multi-wavelength quantum-dot laser and silicon ring modulators. Pre-FEC BERs below 1E-4 are achieved after 80-km, allowing error-free operation with HD-FEC...

  2. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.

    Science.gov (United States)

    Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E

    2012-06-18

    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.

  3. Three-Dimensional Dissipative Optical Solitons in a Dielectric Medium with Quantum Dots

    Directory of Open Access Journals (Sweden)

    Gubin M.Yu.

    2015-01-01

    Full Text Available We consider the problem of formation of three-dimensional spatio-temporal dissipative solitons (laser bullets in a dense ensemble of two-level quantum dots. The principal possibility of effective laser bullets generation in an all-dielectric metamaterials with quantum dots is shown. The phenomenon arises due to the simultaneous appearance of strong local field effects and significant corrections to diffraction effects during the propagation of short optical pulses in such medium.

  4. Quantum Dots and Their Multimodal Applications: A Review

    OpenAIRE

    Holloway, Paul H; Teng-Kuan Tseng; Lei Qian; Debasis Bera

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons ...

  5. Phonons in Quantum-Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    QINGuo-Yi

    2004-01-01

    Phonon modes of A1As/GaAs/A1As and GaAs/A1As/metal Pb quantum-dot quantum wells (QDQW's) with the whole scale up to 90 AО are calculated by using valence force field model (VFFM) based on group theory.Their optical frequency spectra are divided into two nonoverlapping bands, the AlAs-like band and the GaAs-like band,originated from and having frequency interval inside the bulk AlAs optical band and bulk GaAs optical band, respectively.The GaAs-LO (Г)-like modes of QDQW's that have maximum bulk GaAs-LO (Г) parentages in all modes covering thewhole frequency region and all symmetries have always A1 symmetry. Its frequency is controllable by adjusting thestructure parameters. In A1As/GaAs/A1As, it may be controlled to meet any designed frequency in GaAs-like band.The results on GaAs/A1As/metal Pb QDQW's show the same effect of reducing in interface optical phonons by using the metal/semiconductor interface revealed ever by macroscopic model The frequency spectra in both GaAs-like andAlAs-like optical phonon bands are independent of the thickness of Pb shell as long as the thickness of Pb shell is no less than 5 AО Defects at metal/A1As interface have significant influence to AlAs-like optical modes but have only minor influence to GaAs-like optical modes. All these results are important for the studying of the e-ph interaction in QD structures.

  6. Phonons in Quantum-Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    QIN Guo-Yi

    2004-01-01

    Phonon modes of AlAs/GaAs/AlAs and GaAs/AlAs/metal Pb quantum-dot quantum wells (QDQW's)with the whole scale up to 90 A are calculated by using valence force field model (VFFM) based on group theory.Their optical frequency spectra are divided into two nonoverlapping bands, the AMs-like band and the GaAs-like band,originated from and having frequency interval inside the bulk AlAs optical band and bulk GaAs optical band, respectively.The GaAs-LO (F)-like modes of QDQW's that have maximum bulk GaAs-LO (F) parentages in all modes covering the whole frequency region and all symmetries have always A1 symmetry. Its frequency is controllable by adjusting the structure parameters. In AlAs/GaAs/AlAs, it may be controlled to meet any designed frequency in GaAs-like band.The results on GaAs/AMs/metal Pb QDQW's show the same effect of reducing in interface optical phonons by using the metal/semiconductor interface revealed ever by macroscopic model. The frequency spectra in both GaAs-like and AlAs-like optical phonon bands are independent of the thickness of Pb shell as long as the thickness of Pb shell is no less than 5 A. Defects at metal/AlAs interface have significant influence to AMs-like optical modes but have only minor influence to GaAs-like optical modes. All these results are important for the studying of the e-ph interaction in QD structures.

  7. Electron Spins in Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  8. Quantum analysis of plasmonic coupling between quantum dots and nanoparticles

    Science.gov (United States)

    Ahmad, SalmanOgli

    2016-10-01

    In this study, interaction between core-shells nanoparticles and quantum dots is discussed via the full-quantum-theory method. The electromagnetic field of the nanoparticles is derived by the quasistatic approximation method and the results for different regions of the nanoparticles are quantized from the time-harmonic to the wave equation. Utilizing the optical field quantization, the nanoparticles' and quantum dots' deriving amplitudes contributing to the excitation waves are determined. In the current model, two counterpropagating waves with two different frequencies are applied. We derived the Maxwell-Bloch equations from the Heisenberg-Langevin equations; thus the nanoparticles-quantum dots interaction is perused. Moreover, by full quantum analyzing of the analytical expression, the quantum-plasmonic coupling relation and the Purcell factor are achieved. We show that the spontaneous emission of quantum dots can be dramatically manipulated by engineering the plasmon-plasmon interaction in the core-shells nanoparticles. This issue is a very attractive point for designing a wide variety of quantum-plasmonic sensors. Through the investigation of the nanoparticle plasmonic interaction effects on absorbed power, the results show that the nanoparticles' and quantum dots' absorption saturation state can be switched to each other just by manipulation of their deriving amplitudes. In fact, we manage the interference between the two waves' deriving amplitudes just by the plasmonic interactions effect.

  9. Electromechanical transition in quantum dots

    Science.gov (United States)

    Micchi, G.; Avriller, R.; Pistolesi, F.

    2016-09-01

    The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nanomechanical oscillator may lead to a transition towards a mechanically bistable and blocked-current state. Its observation is at reach in carbon-nanotube state-of-art experiments. In a recent publication [Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802] we have shown that this transition is characterized by pronounced signatures on the oscillator mechanical properties: the susceptibility, the displacement fluctuation spectrum, and the ring-down time. These properties are extracted from transport measurements, however the relation between the mechanical quantities and the electronic signal is not always straightforward. Moreover the dependence of the same quantities on temperature, bias or gate voltage, and external dissipation has not been studied. The purpose of this paper is to fill this gap and provide a detailed description of the transition. Specifically we find (i) the relation between the current-noise and the displacement spectrum; (ii) the peculiar behavior of the gate-voltage dependence of these spectra at the transition; (iii) the robustness of the transition towards the effect of external fluctuations and dissipation.

  10. Room-Temperature Dephasing in InAs Quantum Dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper;

    2000-01-01

    The room temperature dephasing in InAs/InGaAs/GaAs self-assembled quantum dots, embedded in a waveguide for laser applications, is measured using two independent methods: spectral hole burning and four-wave mixing. Without the application of bias current for electrical carrier injection......, a dephasing time of ~260 fs, weakly dependent on the optical excitation density, is found and attributed to phonon interaction. The application of bias current, leading to population inversion in the dot ground state and optical gain, strongly decreases the dephasing time to less than 50 fs, likely due...

  11. Time-resolved characterization of InAs/InGaAs quantum dot gain material for 1.3 µm lasers on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, Andrea; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature.......The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature....

  12. Method for imaging quantum dots during exposure to gamma radiation

    Science.gov (United States)

    Immucci, Andrea N.; Chamson-Reig, Astrid; Yu, Kui; Wilkinson, Diana; Li, Chunsheng; Stodilka, Robert Z.; Carson, Jeffrey J. L.

    2011-03-01

    Quantum dots have been used in a wide variety of biomedical applications. A key advantage of these particles is that their optical properties depend predictably on size, which enables tuning of the emission wavelength. Recently, it was found that CdSe/ZnS quantum dots lose their ability to photoluminescence after exposure to gamma radiation (J. Phys. Chem. C., 113: 2580-2585 (2009). A method for readout of the loss of quantum dot photoluminescence during exposure to radiation could enable a multitude of real-time dosimetry applications. Here, we report on a method to image photoluminescence from quantum dots from a distance and under ambient lighting conditions. The approach was to construct and test a time-gated imaging system that incorporated pulsed illumination. The system was constructed from a pulsed green laser (Nd:YAG, 20 pulses/s, 5 ns pulse duration, ~5 mJ/pulse), a time-gated camera (LaVision Picostar, 2 ns gate width), and optical components to enable coaxial illumination and imaging. Using the system to image samples of equivalent concentration to the previous end-point work, quantum dot photoluminescence was measureable under ambient room lighting at a distance of 25 cm from the sample with a signal to background of 7.5:1. Continuous exposure of samples to pulsed laser produced no measureable loss of photoluminescence over a time period of one hour. With improvements to the light collection optics the range of the system is expected to increase to several metres, which will enable imaging of samples during exposure to a gamma radiation source.

  13. Dot-in-Well Quantum-Dot Infrared Photodetectors

    Science.gov (United States)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  14. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  15. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  16. UV Nano-Lights: Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2014-08-01

    method is also applicable to bare nanoparticles in polar solvents. 15. SUBJECT TERMS Quantum Dots, Nonlinear Optical Materials , Energy...TERMS Quantum Dots, Nonlinear Optical Materials , Energy Conservation, Up-conversion 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  17. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  18. Study of the evanescent wave coupled semiconductor quantum dot amplifying fiber

    Institute of Scientific and Technical Information of China (English)

    WANG Ke-xin; WANG Ting-yun; PANG Fu-fei

    2007-01-01

    Based on the character of semiconductors and the structure of optical fiber coupler,a new amplifying fiber,coupled semiconductor quantum dot amplifying fiber (CSQDAF),has been presented. A simplified model of PbS quantum dot amplifying fiber is built on the energy band structure of semiconductor quantum dots,and a simple expression deduced from the two-level rate equations and light propagation equations is shown in this paper,by which the gain of quantum dot amplifying fiber can be calculated. A gain of approximately 4.5 dB has been measured in this coupled semiconductor quantum dot amplifying fiber at a wavelength of 1310 nm,when the fiber is pumped by a laser operating at a wavelength of 980 nm with power of 30 mW.

  19. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  20. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...... coherence. The inferred homogeneous line widths are significantly smaller than the line widths usually observed in the photoluminescence from single quantum dots indicating an additional inhomogeneours broadening mechanism in the latter....

  1. Carbon quantum dots and a method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    2017-08-22

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  2. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    OpenAIRE

    Z. O. Lipatova; E. V. Kolobkova; V. A. Aseev

    2015-01-01

    Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been fou...

  3. Inelastic laser light scattering spectroscopy and functionalization of semiconductor quantum dots with peptides and integrins of cancer cells for biophotonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bairamov, B [A.F. Ioffe Physico-Technical Institute, RAS, St. Petersburg, 194021 (Russian Federation); Toporov, V [A.F. Ioffe Physico-Technical Institute, RAS, St. Petersburg, 194021 (Russian Federation); Bayramov, F [A.F. Ioffe Physico-Technical Institute, RAS, St. Petersburg, 194021 (Russian Federation); Lanzov, V [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); Dutta, M [Deparment of Electrical and Computer Engineering, University of Illinois, Chicago, IL 60607 (United States); Stroscio, M A [Deparment of Electrical and Computer Engineering, University of Illinois, Chicago, IL 60607 (United States); Irmer, G [Institute of Theoretical Physics, D-09596, Freiberg (Germany)

    2007-12-15

    Results of our study of structural properties of the nanoscale integrated semiconductor quantum dots such as CdS and ZnS-capped CdSe, conjugated with biomolecules such as short peptides and cells are presented. Nanoscale functionalization of semiconductor quantum dots with biomedical structures is promising for many applications and novel studies of intrinsic properties of both constituent systems. We study CdS semiconductor quantum dots functionalized with peptides composed of the following amino acid chains: CGGGRGDS, CGGGRVDS, CGGIKVAV, and CGGGLDV, where R is arginine, D is aspartic acid, S is serine, V is valine, K is lysine and L is Levine. As will be seen the cysteine (C) amino acid links to CdS semiconductor quantum dots via the thiol link. Furthermore, the GGG sequences of glycine (G) amino acids provide a spacer in the amino acid chain. At the same time the RGDS, RVDS, IKAV, and LDV sequences have selective bonding affinities to specialized transmembrane cellular structures known as integrins of neurons and MDA-MB-435 cancer cells, respectively. Since protein hydration is known to be a key factor affecting protein energy balance, we also studied a role that water and other bioenvironments may play in stability, surface properties, dynamical and structural characteristics of these systems. We found also the roles that the quantum confinement and functionalizing in the biomedical environments play in altering and determining the electronic, optical, and vibrational properties of these nanostructures as well as demonstrated the effectiveness to use the semiconductor quantum dots as integrin sensitive biotags.

  4. Red, green, and blue lasing enabled by single-exciton gain in colloidal quantum dot films

    Science.gov (United States)

    Nurmikko, Arto V.; Dang, Cuong

    2016-06-21

    The methods and materials described herein contemplate the use films of colloidal quantum dots as a gain medium in a vertical-cavity surface-emitting laser. The present disclosure demonstrates a laser with single-exciton gain in the red, green, and blue wavelengths. Leveraging this nanocomposite gain, the results realize a significant step toward full-color single-material lasers.

  5. Angiogenic Profiling of Synthesized Carbon Quantum Dots.

    Science.gov (United States)

    Shereema, R M; Sruthi, T V; Kumar, V B Sameer; Rao, T P; Shankar, S Sharath

    2015-10-20

    A simple method was employed for the synthesis of green luminescent carbon quantum dots (CQDs) from styrene soot. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy. The prepared carbon quantum dots did not show cellular toxicity and could successfully be used for labeling cells. We also evaluated the effects of carbon quantum dots on the process of angiogenesis. Results of a chorioallantoic membrane (CAM) assay revealed the significant decrease in the density of branched vessels after their treatment with CQDs. Further application of CQDs significantly downregulated the expression levels of pro-angiogenic growth factors like VEGF and FGF. Expression of VEGFR2 and levels of hemoglobin were also significantly lower in CAMs treated with CQDs, indicating that the CQDs inhibit angiogenesis. Data presented here also show that CQDs can selectively target cancer cells and therefore hold potential in the field of cancer therapy.

  6. Quantum-biological control of energy transfer in hybrid quantum dot-metallic nanoparticle systems

    Science.gov (United States)

    Sadeghi, Seyed M.; Hood, Brady; Patty, Kira

    2016-09-01

    We show theoretically that when a semiconductor quantum dot and metallic nanoparticle system interacts with a laser field, quantum coherence can introduce a new landscape for the dynamics of Forster resonance energy transfer (FRET). We predict adsorption of biological molecules to such a hybrid system can trigger dramatic changes in the way energy is transferred, blocking FRET while the distance between the quantum dot and metallic nanoparticle (R) and other structural specifications remain unchanged. We study the impact of variation of R on the FRET rate in the presence of quantum coherence and its ultrafast decay, offering a characteristically different dependency than the standard 1/R6. Application of the results for quantum nanosensors is discussed.

  7. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  8. Quantum dot heterojunction solar cells: The mechanism of device operation and impacts of quantum dot oxidation

    Science.gov (United States)

    Ihly, Rachelle

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic study of the absorption properties of PbS quantum dot films exposed to air, heat, and UV illumination as a function of quantum dot size has been described. A method to improve the air-stability of films with atomic layer deposition of alumina is demonstrated. Encapsulation of quantum dot films using a protective layer of alumina results in quantum dot solids that maintain tuned absorption for 1000 hours. This thesis focuses on the use of atomic force microscopy and electrical variants thereof to study the physical and electrical characteristics of quantum dot arrays. These types of studies have broad implications in understanding charge transport mechanisms and solar cell device operation, with a particular emphasis on quantum dot transistors and solar cells. Imaging the channel potential of a PbSe quantum dot thin-film in a transistor showed a uniform distribution of charge coinciding with the transistor current voltage characteristics. In a second study, solar cell device operation of ZnO/PbS heterojunction solar cells was investigated by scanning active cross-sections with Kelvin probe microscopy as a function of applied bias, illumination and device architecture. This technique directly provides operating potential and electric field profiles to characterize drift and diffusion currents occurring in the device. SKPM established a field-free region occurring in the quantum dot layer, indicative of diffusion-limited transport. These results provide the path to optimization of

  9. High Performance InAs/In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55 um Tunnel Injection Laser

    KAUST Repository

    Bhowmick, Sishir

    2014-01-01

    The characteristics of 1.55 ? InAs self-organized quantum-dot lasers, grown on (001) InP substrates by molecular beam epitaxy, have been investigated. Modulation doping of the dots with holes and tunnel injection of electrons have been incorporated in the design of the active (gain) region of the laser heterostructure. Large values of To=227 K (5 °C ? T ?45 °C) and 100 K (45 °C ? T ? 75 °C) were derived from temperature dependent measurements of the light-current characteristics. The modal gain per dot layer is 14.5 cm -1 and the differential gain derived from both light-current and small-signal modulation measurements is 0.8}\\times 10-15 cm}2. The maximum measured 3 rm dB small-signal modulation bandwidth is 14.4 GHz and the gain compression factor is 5.4\\times 10-17 cm}2. The lasers are characterized by a chirp of 0.6 AA for a modulation frequency of 10 GHz and a near zero ?-parameter at the peak of the laser emission. These characteristics are amongst the best from any 1.55 ? edge-emitting semiconductor laser. © 1965-2012 IEEE.

  10. Resonant tunneling in graphene pseudomagnetic quantum dots.

    Science.gov (United States)

    Qi, Zenan; Bahamon, D A; Pereira, Vitor M; Park, Harold S; Campbell, D K; Neto, A H Castro

    2013-06-12

    Realistic relaxed configurations of triaxially strained graphene quantum dots are obtained from unbiased atomistic mechanical simulations. The local electronic structure and quantum transport characteristics of y-junctions based on such dots are studied, revealing that the quasi-uniform pseudomagnetic field induced by strain restricts transport to Landau level- and edge state-assisted resonant tunneling. Valley degeneracy is broken in the presence of an external field, allowing the selective filtering of the valley and chirality of the states assisting in the resonant tunneling. Asymmetric strain conditions can be explored to select the exit channel of the y-junction.

  11. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  12. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  13. Giant photon gain in large-scale quantum dot circuit-QED systems

    CERN Document Server

    Agarwalla, Bijay Kumar; Mukamel, Shaul; Segal, Dvira

    2016-01-01

    Motivated by recent experiments on the generation of coherent light in engineered hybrid quantum systems, we investigate gain in a microwave photonic cavity coupled to quantum dot structures, and develop concrete directions for achieving a giant amplification in photon transmission. We propose two architectures for scaling up the electronic gain medium: (i) $N$ double quantum dot systems (N-DQD), (ii) $M$ quantum dots arranged in series akin to a quantum cascade laser setup. In both setups, the fermionic reservoirs are voltage biased, and the quantum dots are coupled to a single-mode cavity. Optical amplification is explained based on a sum rule for the transmission function, and it is determined by an intricate competition between two different processes: charge density response in the gain medium, and cavity losses to input and output ports. The same design principle is also responsible for the corresponding giant amplification in other photonic observables, mean photon number and emission spectrum, thereby...

  14. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  15. THz quantum-confined Stark effect in semiconductor quantum dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.;

    2012-01-01

    We demonstrate an instantaneous all-optical manipulation of optical absorption at the ground state of InGaAs/GaAs quantum dots (QDs) via a quantum-confined Stark effect (QCSE) induced by the electric field of incident THz pulses with peak electric fields reaching 200 kV/cm in the free space...

  16. A Polaron in a Quantum Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; XIE HongJing; CHEN ChuanYu

    2002-01-01

    The polaron effect in a quantum dot quantum well (QDQW)system is investigated by using the perturbation method. Both the bound electron states outside and inside the shell well are taken into account . Numerical calculation on the CdS/HgS QDQW shows that the phonon correction to the electron ground state energy is quite significant and cannot be neglected.

  17. Optical control of electron spin qubit in InAs self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Emary, Clive [TU Berlin, Sekr. PN 7-1, Institut fuer Theoretische Physik, Hardenbergstr. 36, D-10623 Berlin (Germany); Sham, Lu Jeu [Department of Physics, University of California San Diego, La Jolla, California 92093 (United States)

    2008-07-01

    The spin of an electron trapped in a self-assembled quantum dot is viewed as a promising quantum bit. We present here a theory of the control of such qubits using short laser pulses to excite virtual trion states within the dots. We describe mechanisms for qubit initialisation and for performing universal one and two qubit operations. We show that, for InAs dots, initialisation can be achieved on the nanosecond time-scale, and that coherent operations can performed with laser pulses with durations of tens of picoseconds. These results are of direct relevance to current experiments.

  18. Tunneling induced transparency and controllable group velocity in triple and multiple quantum-dot molecules

    CERN Document Server

    Tian, Si-Cong; Wan, Ren-Gang; Ning, Yong-Qiang; Wang, Li-Jun

    2013-01-01

    We analyze the interaction of a triple quantum dot molecules controlled by the tunneling coupling instead of coupling laser. A general analytic expression for the steady-state linear susceptibility for a probe-laser field is obtained and we show that the system can exhibit two transparency windows. The group velocity of the probe-laser pulse is also analyzed. By changing the tunneling couplings, two laser pulses with different central frequency can propagate with the same group velocity. And the group velocity can be as low as 300 m/s in our system. We extend our analysis to the case of multiple quantum dot molecules (the number of the quantum dots is N) and show that the system can exhibit at most N-1 transparency windows. And at most N-1 laser pulses with different central frequencies can be slowed down.

  19. Probing silicon quantum dots by single-dot techniques

    Science.gov (United States)

    Sychugov, Ilya; Valenta, Jan; Linnros, Jan

    2017-02-01

    Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.

  20. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    Science.gov (United States)

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...used the resulting enhanced control to investigate a nano- tube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams...This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum

  1. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  2. Thermal effects on photon-induced quantum transport in a single quantum dot.

    Science.gov (United States)

    Assunção, M O; de Oliveira, E J R; Villas-Bôas, J M; Souza, F M

    2013-04-03

    We theoretically investigate laser induced quantum transport in a single quantum dot attached to electrical contacts. Our approach, based on a nonequilibrium Green function technique, allows us to include thermal effects on the photon-induced quantum transport and excitonic dynamics, enabling the study of non-Markovian effects. By solving a set of coupled integrodifferential equations, involving correlation and propagator functions, we obtain the photocurrent and the dot occupation as a function of time. Two distinct sources of decoherence, namely, incoherent tunneling and thermal fluctuations, are observed in the Rabi oscillations. As temperature increases, a thermally activated Pauli blockade results in a suppression of these oscillations. Additionally, the interplay between photon and thermally induced electron populations results in a switch of the current sign as time evolves and its stationary value can be maximized by tuning the laser intensity.

  3. Controlling the polarization eigenstate of a quantum dot exciton with light

    CERN Document Server

    Belhadj, Thomas; Amand, Thierry; Renucci, Pierre; Krebs, Olivier; Lemaitre, Aristide; Voisin, Paul; Marie, Xavier; Urbaszek, Bernhard

    2009-01-01

    We demonstrate optical control of the polarization eigenstates of a neutral quantum dot exciton without any external fields. By varying the excitation power of a circularly polarized laser in micro-photoluminescence experiments on individual InGaAs quantum dots we control the magnitude and direction of an effective internal magnetic field created via optical pumping of nuclear spins. The adjustable nuclear magnetic field allows us to tune the linear and circular polarization degree of the neutral exciton emission. The quantum dot can thus act as a tunable light polarization converter.

  4. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    -Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic quantum number makes the physics richer (but complex. A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.

  5. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.

  6. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  7. Germanium quantum dots: Optical properties and synthesis

    Science.gov (United States)

    Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

    1994-07-01

    Three different size distributions of Ge quantum dots (≳200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Γ25→L indirect transitions.

  8. Nonlocal quantum cloning via quantum dots trapped in distant cavities

    Institute of Scientific and Technical Information of China (English)

    Yu Tao; Zhu Ai-Dong; Zhang Shou

    2012-01-01

    A scheme for implementing nonlocal quantum cloning via quantum dots trapped in cavities is proposed.By modulating the parameters of the system,the optimal 1 → 2 universal quantum cloning machine,1 → 2 phase-covariant cloning machine,and 1 → 3 economical phase-covariant cloning machine are constructed.The present scheme,which is attainable with current technology,saves two qubits compared with previous cloning machines.

  9. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  10. Charged-Exciton Complexes in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2001-01-01

    It is known experimentally that stable charged-exciton complexes can exist in low-dimensional semiconductor nanostructures. Much less is known about the properties of such charged-exciton complexes since three-body problems are very difficult to be solved, even numerically. Here we introduce the correlated hyperspherical harmonics as basis functions to solve the hyperangular equation for negatively and positively charged excitons (trions) in a harmonic quantum dot. By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton as a function of the radius of quantum dot. Based on symmetry analysis, the level crossover as the dot radius increases can be fully explained as the results of symmetry constraint.``

  11. Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System

    CERN Document Server

    Tang, Jing; Xu, Xiulai

    2015-01-01

    We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay $g^{(2)}(0)$ in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum in...

  12. Saturating optical resonances in quantum dots

    Science.gov (United States)

    Nair, Selvakumar V.; Rustagi, K. C.

    Optical bistability in quantum dots, recently proposed by Chemla and Miller, is studied in a two-resonance model. We show that for such classical electromagnetic resonances the applicability of a two-resonance model is far more restrictive than for those in atoms.

  13. System and method for making quantum dots

    KAUST Repository

    Bakr, Osman M.

    2015-05-28

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.

  14. Quantum dot waveguides: ultrafast dynamics and applications

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    In this paper we analyze, based on numerical simulations, the dynamics of semiconductor devices incorporating quantum dots (QDs). In particular we emphasize the unique ultrafast carrier dynamics occurring between discrete QD bound states, and its influence on QD semiconductor optical amplifiers...... (SOAs). Also the possibility of realizing an all-optical regenerator by incorporating a QD absorber section in an amplifier structure is discussed....

  15. Electron Scattering in Intrananotube Quantum Dots

    NARCIS (Netherlands)

    Buchs, G.; Bercioux, D.; Ruffieux, P.; Gröning, P.; Grabert, H.; Gröning, O.

    2009-01-01

    Intratube quantum dots showing particle-in-a-box-like states with level spacings up to 200 meV are realized in metallic single-walled carbon nanotubes by means of low dose medium energy Ar+ irradiation. Fourier-transform scanning tunneling spectroscopy compared to results of a Fabry-Perot electron r

  16. Producing Quantum Dots by Spray Pyrolysis

    Science.gov (United States)

    Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

    2006-01-01

    An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

  17. Enabling biomedical research with designer quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, G.J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  18. Single Molecule Applications of Quantum Dots

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.

    2013-01-01

    Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows: 1...

  19. Spin Wigner molecules in quantum dots

    Science.gov (United States)

    Zutic, Igor; Oszwaldowski, Rafal; Stano, Peter; Petukhov, A. G.

    2013-03-01

    The interplay of confinement and Coulomb interactions in quantum dots can lead to strongly correlated phases differing qualitatively from the Fermi liquid behavior. While in three dimensions the correlation-induced Wigner crystal is elusive and expected only in the limit of an extremely low carrier density, its nanoscale analog, the Wigner molecule, has been observed in quantum dots at much higher densities [1]. We explore how the presence of magnetic impurities in quantum dots can provide additional opportunities to study correlation effects and the resulting ordering in carrier and impurity spins[2]. By employing exact diagonalization we reveal that seemingly simple two-carrier quantum dots lead to a rich phase diagram [2,3]. We propose experiments to verify our predictions; in particular, we discuss interband optical transitions as a function of temperature and magnetic field. DOE-BES, meta-QUTE 259 ITMS NFP Grant No. 26240120022, CE SAS QUTE, EU 260 Project Q-essence, Grant No. APVV-0646-10, and SCIEX.

  20. Optical Properties of Quantum-Dot-Doped Liquid Scintillators

    CERN Document Server

    Aberle, C; Weiss, S; Winslow, L

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  1. Optical properties of quantum-dot-doped liquid scintillators

    Science.gov (United States)

    Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.

    2013-10-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  2. Applications of quantum dots with upconverting luminescence in bioimaging.

    Science.gov (United States)

    Chen, Yunyun; Liang, Hong

    2014-06-05

    Quantum dots (QDs) have attracted great attention in recent years due to their promising applications in bioimaging. Compared with traditional ultraviolet excitation of QDs, near-infrared laser (NIR) excitation has many advantages, such as being less harmful, little blinking effects, zero autofluorescence and deep penetration in tissue. Composing QDs with upconverting properties is promising to enable NIR excitation. This article provides a review of QDs with upconverting luminescence and their applications in bioimaging. Based on the mechanisms of luminescence, discussion will be divided into four groups: nanoheterostructures/mixtures of QDs and upconverting nanoparticles, graphene quantum dots, lanthanide-doped QDs, and double QDs. The content includes synthetic routes, upconverting luminescence properties, and their applications in bioimaging.

  3. Phonons in Ge/Si superlattices with Ge quantum dots

    CERN Document Server

    Milekhin, A G; Pchelyakov, O P; Schulze, S; Zahn, D R T

    2001-01-01

    Ge/Si superlattices with Ge quantum dots obtained by means of molecular-beam epitaxy were investigated by means of light Raman scattering under resonance conditions. These structures are shown to have oscillation properties of both two-dimensional and zero-dimensional objects. Within spectrum low-frequency range one observes twisted acoustic phonons (up to 15 order) typical for planar superlattices. Lines of acoustic phonons are overlapped with a wide band of continuous emission. Analysis of frequencies of Ge and Ge-Si optical phonons shows that Ge quantum dots are pseudoamorphous ones and mixing of Ge and Si atoms is a negligible one. One detected low-frequency shift of longitudinal optical phonons at laser excitation energy increase (2.54-2.71 eV)

  4. Designing artificial 2D crystals with site and size controlled quantum dots.

    Science.gov (United States)

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS2), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS2. By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  5. Probing the quantum-classical connection with open quantum dots

    Science.gov (United States)

    Ferry, D. K.; Akis, R.; Brunner, R.

    2015-10-01

    Open quantum dots provide a natural system in which to study both classical and quantum features of transport. From the classical point of view these dots possess a mixed phase space which yields families of closed, regular orbits as well as an expansive sea of chaos. As a closed test bed, they provide a natural system with a very rich set of eigen-states. When coupled to the environment through a pair of quantum point contacts, each of which passes several modes, the original quantum environment evolves into a set of decoherent and coherent states, which eventually couple to the classical states discussed above. The manner of this connection is governed strongly by decoherence theory. The remaining coherent states possess all the properties of pointer states. Here, we discuss the quantum-classical connection and how it appears within the experimental world.

  6. Quantum Dots and Their Multimodal Applications: A Review

    Directory of Open Access Journals (Sweden)

    Paul H. Holloway

    2010-03-01

    Full Text Available Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence or electric field (electroluminescence. In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  7. Quantum interferences of a single quantum dot in the case of detuning

    Energy Technology Data Exchange (ETDEWEB)

    Michaelis de Vasconcellos, Steffen; Stufler, Stefan; Wegner, Sven-Ake; Ester, Patrick; Zrenner, Artur [Universitaet Paderborn, Warburger Strasse 100, 33098 Paderborn (Germany); Bichler, Max [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2006-07-01

    We report on highly phase sensitive measurements with a slightly detuned excitation of a quantum mechanical two-level system. It is formed by the single exciton ground state of a single quantum dot, which is incorporated in a n-i-Schottky diode. We excited the two-level system by two partly overlapping laser pulses with variable phase shift. To investigate the properties of the quantum system we determine its occupancy by measuring the photocurrent. The experimental data is compared to a numerical simulation of the system. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  9. Energy Level Engineering in In_x Ga_(1-x) As/GaAs Quantum Dots Applicable to QD-Lasers by Changing the Stoichiometric Percentage

    CERN Document Server

    Borji, Mahdi Ahmadi

    2015-01-01

    Band edge and energy levels of truncated pyramidal In_x Ga_(1-x) As/GaAs (001) quantum dots are studied by single-band effective mass approach, and the dependence to stoichiometric percentages is investigated. It is shown that enhancement of indium percentage decreases the band gap and the recombination energy of electrons and holes. Our principal result is that decrease of recombination energy and band gap is nonlinear and the slopes are different band gap and e-h recombination energy. In addition, it is proved that strain tensor is diagonal along z-axis and the absolute value of the components gets larger by more indium inclusion. Our results appear to be in very good consonance with similar studies. Keywords: quantum dot, band structure, strain tensor, indium percentage.

  10. Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous "2.5 D" Photonic Crystal.

    Science.gov (United States)

    Ben Bakir, Badhise; Seassal, Christian; Letartre, Xavier; Regreny, Philippe; Gendry, Michel; Viktorovitch, Pierre; Zussy, Marc; Di Cioccio, Léa; Fedeli, Jean-Marc

    2006-10-02

    The authors report on the design, fabrication and operation of heterogeneous and compact "2.5 D" Photonic Crystal microlaser with a single plane of InAs quantum dots as gain medium. The high quality factor photonic structures are tailored for vertical emission. The devices consist of a top two-dimensional InP Photonic Crystal Slab, a SiO(2) bonding layer, and a bottom high index contrast Si/SiO(2) Bragg mirror deposited on a Si wafer. Despite the fact that no more than about 5% of the quantum dots distribution effectively contribute to the modal gain, room-temperature lasing operation, around 1.5 microm, was achieved by photopumping. A low effective threshold, on the order of 350 microW, and a spontaneous emission factor, over 0.13, could be deduced from experiments.

  11. Quantum Size- Dependent Third- Order Nonlinear Optical Susceptibility in Semiconductor Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    SUN Ting; XIONG Gui-guang

    2005-01-01

    The density matrix approach has been employed to investigate the optical nonlinear polarization in a single semiconductor quantum dot(QD). Electron states are considered to be confined within a quantum dot with infinite potential barriers. It is shown, by numerical calculation, that the third-order nonlinear optical susceptibilities for a typical Si quantum dot is dependent on the quantum size of the quantum dot and the frequency of incident light.

  12. Dependence of the modulation response of quantum dot based nanocavity devices on the number of emitters

    DEFF Research Database (Denmark)

    Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    A microscopic theory is used to study the dynamical properties of semiconductor quantum dot based nanocavity laser systems. The carrier kinetics and photon populations are determined using a fully quantum mechanical treatment of the light‐matter coupling. In this work, we investigate the dependency...

  13. Cooperative biexciton generation and destructive interference in coupled quantum dots using adiabatic rapid passage

    NARCIS (Netherlands)

    Renaud, N.; Grozema, F.C.

    2014-01-01

    We report numerical simulations of biexciton generation in coupled quantum dots (CQDs) placed in a static electric field and excited by a chirped laser pulse. Our simulations explicitly account for exciton-phonon interactions at finite temperature using a non-Markovian quantum jump approach to solve

  14. Local Quantum Dot Tuning on Photonic Crystal Chips

    CERN Document Server

    Faraon, Andrei; Fushman, Ilya; Stoltz, Nick; Petroff, Pierre; Vuckovic, Jelena

    2007-01-01

    Quantum networks based on InGaAs quantum dots embedded in photonic crystal devices rely on QDs being in resonance with each other and with the cavities they are embedded in. We developed a new technique based on temperature tuning to spectrally align different quantum dots located on the same chip. The technique allows for up to 1.8nm reversible on-chip quantum dot tuning.

  15. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has...... developed in the study of single quantum dots, characterized by sharp atomic-like transition lines revealing their zero-dimensional density of states. Substantial information about the fundamental properties of individual quantum dots, as well as their interactions with other dots and the host lattice, can...

  16. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  17. Electron-hole confinement symmetry in silicon quantum dots

    NARCIS (Netherlands)

    Müller, F.; Mueller, Filipp; Konstantaras, Georgios; Spruijtenburg, P.C.; van der Wiel, Wilfred Gerard; Zwanenburg, Floris Arnoud

    2015-01-01

    We report electrical transport measurements on a gate-defined ambipolar quantum dot in intrinsic silicon. The ambipolarity allows its operation as either an electron or a hole quantum dot of which we change the dot occupancy by 20 charge carriers in each regime. Electron−hole confinement symmetry is

  18. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  19. Mitigation of quantum dot cytotoxicity by microencapsulation.

    Directory of Open Access Journals (Sweden)

    Amelia Romoser

    Full Text Available When CdSe/ZnS-polyethyleneimine (PEI quantum dots (QDs are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the "first line of defense" for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor.

  20. Merging quantum dots, biomolecules, and polymers for record performance from solution-processed optoelectronics

    Science.gov (United States)

    Sargent, Edward H.

    2006-02-01

    We apply discoveries in nanoscience towards applications relevant to health, environment, security, and connectedness. A materials fundamental to our research is the quantum dot. Each quantum dot is a particle of semiconductor only a few nanometers in diameter. These semiconductor nanoparticles confine electrons to within their characteristic wavelength. Thus, just as changing the length of a guitar string changes the frequency of sound produced, so too does changing the size of a quantum dot alter the frequency - hence energy - the electron can adopt. As a result, quantum dots are tunable matter (Fig. 2). We work with colloidal quantum dots, nanoparticles produced in, and processed from, solution. They can be coated onto nearly anything - a semiconductor substrate, a window, a wall, fabric. Compared to epitaxially-grown semiconductors used to make optical detectors, lasers, and modulators, they are cheap, safe to work with, and easy to produce. Much of our work with quantum dots involves infrared light - its measurement, production, modulation, and harnessing. While there exists an abundance of work in colloidal quantum dots active in the visible, there are fewer results in the infrared. The wavelengths between 1000 and 2000 nm are nonetheless of great practical importance: half of the sun's power reaching the earth lies in this wavelength range; 'biological windows' in which tissue is relatively transparent and does not emit background light (autofluorescence) exist in the infrared; fiber-optic networks operate at 1.3 and 1.5 um.

  1. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  2. Studies of silicon quantum dots prepared at different substrate temperatures

    Science.gov (United States)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  3. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots.

    Science.gov (United States)

    Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2011-01-01

    Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.

  4. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots

    Directory of Open Access Journals (Sweden)

    Generalov R

    2011-09-01

    Full Text Available Roman Generalov1,2, Simona Kavaliauskiene1, Sara Westrøm1, Wei Chen3, Solveig Kristensen2, Petras Juzenas11Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 2School of Pharmacy, University of Oslo, Oslo, Norway; 3Department of Physics, The University of Texas at Arlington, Arlington, TX, USAAbstract: Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.Keywords: fluorescence lifetime, free radicals, liposomes, lipodots, reactive oxygen species

  5. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    Science.gov (United States)

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  6. Principles of conjugating quantum dots to proteins via carbodiimide chemistry.

    Science.gov (United States)

    Song, Fayi; Chan, Warren C W

    2011-12-09

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein-quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  7. SU(4) Kondo entanglement in double quantum dot devices

    Science.gov (United States)

    Bonazzola, Rodrigo; Andrade, J. A.; Facio, Jorge I.; García, D. J.; Cornaglia, Pablo S.

    2017-08-01

    We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties and consider the general experimental situation where the coupling parameters of the two quantum dots differ. We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the double quantum dot is suppressed. We present density matrix renormalization group numerical results for the spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main physics of the problem.

  8. Probing relaxation times in graphene quantum dots

    Science.gov (United States)

    Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph

    2013-01-01

    Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294

  9. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    Energy Technology Data Exchange (ETDEWEB)

    Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Tagliaferri, M. L. V. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Universit di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Vinet, M. [CEA/LETI-MINATEC, CEA-Grenoble, 17 rue des martyrs, F-38054 Grenoble (France); Sanquer, M. [SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, 38054 Grenoble (France); Ferguson, A. J. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

    2016-05-16

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  10. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  11. Barrier Li Quantum Dots in Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    LIUYi-Min; LIXiao-Zhu; YANWen-Hong; BAOCheng-Guang

    2003-01-01

    The methods for the few-body system are introduced to investigate the states of the barrier Li quantum dots (QDs) in an arbitrary strength of magnetic field. The configuration, which consists of a positive ion located on the z-axis at a distaneed from the two-dimensional QD plane (the x-y plane) and three electrons in the dot plane bound by the positive ion, is called a barrier Li center. The system, which consists of three electrons in the dot plane bound by the ion,is called a barrier Li QD. The dependence of energy of the state of the barrier Li QD on an external magnetic field B and the distance d is obtained. The angular momentum L of the ground states is found to jump not only with the variation orB but also with d.

  12. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-01-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms. PMID:27112420

  13. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    Science.gov (United States)

    2015-05-01

    SPDC photon is teleported to a single quantum dot spin by a projective measurement using a Hong Ou Mandel (HOM) interferometer. The SPDC source...photo diode B: Blue CW: Continuous wave DBR: Distributed Bragg reflector EOM: Electro-optics modulator H: Horizontal HOM: Hong-Ou- Mandel InAs

  14. Quantum optics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Cadeddu, Davide; Teissier, Jean

    2016-01-01

    We present an exploration of the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter's properties with the highest sensitivity, allowing...

  15. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide;

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  16. Scanning near-field infrared micro-spectroscopy on buried InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbacher, Markus; Jacob, Rainer; Winnerl, Stephan; Schneider, Harald; Helm, Manfred [Institut fuer Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Wenzel, Marc Tobias; Krysztofinski, Anja; Ribbeck, Hans-Georg von; Eng, Lukas M. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2012-07-01

    Providing an optical resolution on the nanometer length scale, scanning near-field optical microscopy (SNOM) turned out to be a capable technique to investigate the optical properties of perovskites, buried semiconductors and single quantum dots. Thereby, the line-width of the observed resonances (5 - 8 meV) is significantly smaller than the inhomogeneously broadened line-width of other spectroscopic measurements. Using a scattering-type-SNOM (s-SNOM) combined with a tunable free-electron laser (FEL) light source we investigated the electronic structure of single InAs quantum dots, capped under a 70 nm thick GaAs layer. Spectroscopic near-field scans clearly identified two inter-sublevel transitions within the quantum dots at 85 meV and 120 meV, contrasting from the surrounding medium. Moreover, spatially scanning the s-SNOM tip at fixed excitation energies allowed mapping the 3D distribution of such buried quantum dots.

  17. Optical resonators and quantum dots: An excursion into quantum optics, quantum information and photonics

    Science.gov (United States)

    Bianucci, Pablo

    Modern communications technology has encouraged an intimate connection between Semiconductor Physics and Optics, and this connection shows best in the combination of electron-confining structures with light-confining structures. Semiconductor quantum dots are systems engineered to trap electrons in a mesoscopic scale (the are composed of ≈ 10000 atoms), resulting in a behavior resembling that of atoms, but much richer. Optical microresonators are engineered to confine light, increasing its intensity and enabling a much stronger interaction with matter. Their combination opens a myriad of new directions, both in fundamental Physics and in possible applications. This dissertation explores both semiconductor quantum dots and microresonators, through experimental work done with semiconductor quantum dots and microsphere resonators spanning the fields of Quantum Optics, Quantum Information and Photonics; from quantum algorithms to polarization converters. Quantum Optics leads the way, allowing us to understand how to manipulate and measure quantum dots with light and to elucidate the interactions between them and microresonators. In the Quantum Information area, we present a detailed study of the feasibility of excitons in quantum dots to perform quantum computations, including an experimental demonstration of the single-qubit Deutsch-Jozsa algorithm performedin a single semiconductor quantum dot. Our studies in Photonics involve applications of microsphere resonators, which we have learned to fabricate and characterize. We present an elaborate description of the experimental techniques needed to study microspheres, including studies and proof of concept experiments on both ultra-sensitive microsphere sensors and whispering gallery mode polarization converters.

  18. Energy level statistics of quantum dots.

    Science.gov (United States)

    Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Woods Halley, J

    2007-05-08

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  19. Many electron effects in semiconductor quantum dots

    Indian Academy of Sciences (India)

    R K Pandey; Manoj K Harbola; V Ranjan; Vijay A Singh

    2003-01-01

    Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as ‘artificial atoms’ by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the local density approximation (LDA) and the Harbola–Sahni (HS) scheme. HS is free of the selfinteraction error of the LDA. Our calculations have been performed in a three-dimensional quantum dot. We have carried out a study of the size and shape dependence of the level spacing. Scaling laws for the Hubbard ‘’ are established.

  20. Energy level statistics of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Tsau, C-Y [University of Wisconsin-Madison, Madison, WI 53706 (United States); Nghiem, Diu [University of Wisconsin-Madison, Madison, WI 53706 (United States); Joynt, Robert [University of Wisconsin-Madison, Madison, WI 53706 (United States); Halley, J Woods [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2007-05-08

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  1. Energy level statistics of quantum dots

    Science.gov (United States)

    Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Halley, J. Woods

    2007-05-01

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  2. Si quantum dots in silicon nitride: Quantum confinement and defects

    Science.gov (United States)

    Goncharova, L. V.; Nguyen, P. H.; Karner, V. L.; D'Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J.

    2015-12-01

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiNx:H) matrix was examined over a broad range of stoichiometries from Si3N2.08 to Si3N4.14, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiNx films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH4 and NH3 gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si3Nx compositions. There is a red-shift of the measured peaks from ˜2.3 eV to ˜1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (˜Si3N3.15) in which the maximum of light emission is observed.

  3. Si quantum dots in silicon nitride: Quantum confinement and defects

    Energy Technology Data Exchange (ETDEWEB)

    Goncharova, L. V., E-mail: lgonchar@uwo.ca; Karner, V. L.; D' Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J. [Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Nguyen, P. H. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-12-14

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiN{sub x}:H) matrix was examined over a broad range of stoichiometries from Si{sub 3}N{sub 2.08} to Si{sub 3}N{sub 4.14}, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiN{sub x} films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH{sub 4} and NH{sub 3} gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si{sub 3}N{sub x} compositions. There is a red-shift of the measured peaks from ∼2.3 eV to ∼1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (∼Si{sub 3}N{sub 3.15}) in which the maximum of light emission is observed.

  4. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Directory of Open Access Journals (Sweden)

    Yong He

    2017-06-01

    Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  5. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-01-01

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165

  6. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  7. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  8. DLTS measurements on GaSb/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hoegner, Annika; Nowozin, Tobias; Marent, Andreas; Bimberg, Dieter [Institut fuer Festkoerperphysik, TU Berlin (Germany); Tseng, Chi-Che [Institute of Photonics Technologies, NTHU (China); Lin, Shih-Yen [Institute of Optoelectronic Sciences, NTOU (China)

    2010-07-01

    Memory devices based on hole storage in self-organized quantum dots offer significant advantages with respect to storage time and scalability. Recently, we demonstrated a first prototype based on InAs/GaAs quantum dots at low temperatures. To enable feasible storage times at room temperature the localisation energy of the quantum dots has to be increased by using other material systems. A first step in this direction is the use of GaSb quantum dots within a GaAs matrix. We have characterized self-organized GaSb/GaAs quantum dots embedded into a n{sup +}p-diode structure. DLTS measurements on hole emission were conducted and yield a strong peak from which a mean emission energy of about 400 meV can be extracted. The reference sample without the quantum dots (containing only the wetting layer) shows no such peak.

  9. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    a future challenge for the droplet-epitaxy technique. A multipolar theory of spontaneous emission from quantum dots is developed to explain the recent observation that In(Ga)As quantum dots break the dipole theory. The analysis yields a large mesoscopic moment, which contains magnetic-dipole and electric......-matter interaction of both electric and magnetic character. Our study demonstrates that In(Ga)As quantum dots lack parity symmetry and, as consequence, can be employed for locally probing the parity symmetry of complex photonic nanostructures. This opens the prospect for interfacing quantum dots with optical......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...

  10. Quantum dot spectroscopy using a single phosphorus donor

    Science.gov (United States)

    Büch, Holger; Fuechsle, Martin; Baker, William; House, Matthew G.; Simmons, Michelle Y.

    2015-12-01

    Using a deterministic single P donor placed with atomic precision accuracy next to a nanoscale silicon quantum dot, we present a way to analyze the energy spectrum of small quantum dots in silicon by tunnel-coupled transport measurements. The energy-level structure of the quantum dot is observed as resonance features within the transport bias triangles when the donor chemical potential is aligned with states within the quantum dot as confirmed by a numeric rate equation solver SIMON. This technique allows us to independently extract the quantum dot level structure irrespective of the density of states in the leads. Such a method is useful for the investigation of silicon quantum dots in the few-electron regime where the level structure is governed by an intricate interplay between the spin- and the valley-orbit degrees of freedom.

  11. Decoherence in Nearly-Isolated Quantum Dots

    DEFF Research Database (Denmark)

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single......-particle level spacing, but is greatly suppressed for temperature greater than the level spacing, suggesting that inelastic scattering or other dephasing mechanisms dominate in this regime....

  12. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2011-01-01

    The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have...... is demonstrated and the influence of disorder is discussed. The findings have a strong bearing on future nanophotonic devices....

  13. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have...... is demonstrated and the influence of disorder is discussed. The findings have a strong bearing on future nanophotonic devices....

  14. Quantum dot/glycol chitosan fluorescent nanoconjugates

    OpenAIRE

    Mansur, Alexandra AP; Herman S. Mansur

    2015-01-01

    In this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV–vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spec...

  15. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pharmaceutical and biomedical applications of quantum dots.

    Science.gov (United States)

    Bajwa, Neha; Mehra, Neelesh K; Jain, Keerti; Jain, Narendra K

    2016-05-01

    Quantum dots (QDs) have captured the fascination and attention of scientists due to their simultaneous targeting and imaging potential in drug delivery, in pharmaceutical and biomedical applications. In the present study, we have exhaustively reviewed various aspects of QDs, highlighting their pharmaceutical and biomedical applications, pharmacology, interactions, and toxicological manifestations. The eventual use of QDs is to dramatically improve clinical diagnostic tests for early detection of cancer. In recent years, QDs were introduced to cell biology as an alternative fluorescent probe.

  19. The pinning effect in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Monisha, P. J., E-mail: pjmonisha@gmail.com [School of Physics, University of Hyderabad, Hyderabad-500046 (India); Mukhopadhyay, Soma [Department of Physics, D V R College of Engineering and Technology, Hyderabad-502285 (India)

    2014-04-24

    The pinning effect is studied in a Gaussian quantum dot using the improved Wigner-Brillouin perturbation theory (IWBPT) in the presence of electron-phonon interaction. The electron ground state plus one phonon state is degenerate with the electron in the first excited state. The electron-phonon interaction lifts the degeneracy and the first excited states get pinned to the ground state plus one phonon state as we increase the confinement frequency.

  20. Electrically addressing a single self-assembled quantum dot

    CERN Document Server

    Ellis, D J P; Atkinson, P; Ritchie, D A; Shields, A J

    2006-01-01

    We report on the use of an aperture in an aluminum oxide layer to restrict current injection into a single self-assembled InAs quantum dot, from an ensemble of such dots within a large mesa. The insulating aperture is formed through the wet-oxidation of a layer of AlAs. Under photoluminescence we observe that only one quantum dot in the ensemble exhibits a Stark shift, and that the same single dot is visible under electroluminescence. Autocorrelation measurements performed on the electroluminescence confirm that we are observing emission from a single quantum dot.

  1. Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon

    Science.gov (United States)

    2013-04-16

    AUTHOR(S) J. Schaibley, A. Burgers, G. McCracken , L. Duan, P. Berman, D. Steel, A. Bracker, D. Gammon, and I. Sham 5d. PROJECT NUMBER QEST 5e...TERMS quantum entanglement, electron spin, photon, quantum dot, laser J. R. Schaibley, A. P. Burgers, G. A. McCracken , L.-M. Duan, P. R. Berman, D...Single Electron Spin Confined to an InAs Quantum Dot and a Photon J. R. Schaibley, A. P. Burgers, G.A. McCracken , L.-M. Duan, P. R. Berman, and D.G

  2. Electron States of Few-Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    戴振宏; 孙金祚; 张立德; 李作宏; 黄士勇; 隋鹏飞

    2002-01-01

    We study few-electron semiconductor quantum dots using the unrestricted Hartree-Fock-Roothaan method based on the Gaussian basis. Our emphasis is on the energy level calculation for quantum dots. The confinement potential in a quantum dot is assumed to be in a form of three-dimensional spherical finite potential well. Some valuable results, such as the rearrangement of the energy level, have been obtained.

  3. Semiconductor quantum dot scintillation under gamma-ray irradiation.

    Science.gov (United States)

    Létant, S E; Wang, T-F

    2006-12-01

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.

  4. Quantum dot rolled-up microtube optoelectronic integrated circuit.

    Science.gov (United States)

    Bhowmick, Sishir; Frost, Thomas; Bhattacharya, Pallab

    2013-05-15

    A rolled-up microtube optoelectronic integrated circuit operating as a phototransceiver is demonstrated. The microtube is made of a InGaAs/GaAs strained bilayer with InAs self-organized quantum dots inserted in the GaAs layer. The phototransceiver consists of an optically pumped microtube laser and a microtube photoconductive detector connected by an a-Si/SiO2 waveguide. The loss in the waveguide and responsivity of the entire phototransceiver circuit are 7.96 dB/cm and 34 mA/W, respectively.

  5. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Matthieu; Bleuse, Joel;

    2012-01-01

    Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....

  6. Quantum transport through an array of quantum dots.

    Science.gov (United States)

    Chen, Shuguang; Xie, Hang; Zhang, Yu; Cui, Xiaodong; Chen, Guanhua

    2013-01-07

    The transient current through an array of as many as 1000 quantum dots is simulated with two newly developed quantum mechanical methods. To our surprise, upon switching on the bias voltage, the current increases linearly with time before reaching its steady state value. And the time required for the current to reach its steady state value is proportional to the length of the array, and more interestingly, is exactly the time for a conducting electron to travel through the array at the Fermi velocity. These quantum phenomena can be understood by a simple analysis on the energetics of an equivalent classical circuit. An experimental design is proposed to confirm the numerical findings.

  7. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  8. Tuning the quantum critical crossover in quantum dots

    Science.gov (United States)

    Murthy, Ganpathy

    2005-03-01

    Quantum dots with large Thouless number g embody a regime where both disorder and interactions can be treated nonperturbatively using large-N techniques (with N=g) and quantum phase transitions can be studied. Here we focus on dots where the noninteracting Hamiltonian is drawn from a crossover ensemble between two symmetry classes, where the crossover parameter introduces a new, tunable energy scale independent of and much smaller than the Thouless energy. We show that the quantum critical regime, dominated by collective critical fluctuations, can be accessed at the new energy scale. The nonperturbative physics of this regime can only be described by the large-N approach, as we illustrate with two experimentally relevant examples. G. Murthy, PRB 70, 153304 (2004). G. Murthy, R. Shankar, D. Herman, and H. Mathur, PRB 69, 075321 (2004)

  9. Manipulations of a Qubit in a Semiconductor Quantum Dot

    Science.gov (United States)

    Zrenner, Artur; Stufler, Stefan; Ester, Patrick; Bichler, Max

    In a single self-assembled InGaAs quantum dot, the one exciton ground state transition defines a two-level system, which appears as an extremely narrow resonance of only a few μeV width. The resonant interaction of this two-level system with cw laser fields can be studied in detail by photocurrent spectroscopy, revealing the fine structure of the excitonic ground state as well as the effects of nonlinear absorption and power broadening. For the case of pulsed laser fields and in the absence of decoherence, the two-level system represents a qubit. Excitations with ps laser pulses result in qubit rotations, which appear as Rabi oscillations in photocurrent experiments. Double pulse experiments further allow us to infer the decoherence time and to perform coherent control on a two-level system.

  10. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    See, Gloria G. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Xu, Lu; Nuzzo, Ralph G. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Sutanto, Erick; Alleyne, Andrew G. [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 154 Mechanical Engineering Building, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801 (United States)

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  11. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    OpenAIRE

    Takaaki Yamaguchi; Yoshijiro Tsuruda; Tomohiro Furukawa; Lumi Negishi; Yuki Imura; Shohei Sakuda; Etsuro Yoshimura; Michio Suzuki

    2016-01-01

    CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum) were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were pr...

  12. Single-electron Spin Resonance in a Quadruple Quantum Dot

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-08-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

  13. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    Science.gov (United States)

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  14. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-07-07

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique. In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy. The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical

  15. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter

    2015-01-01

    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  16. Quantum-dot based ultrafast photoconductive antennae for efficient THz radiation

    Science.gov (United States)

    Gorodetsky, Andrei; Bazieva, Natalia; Rafailov, Edik U.

    2016-03-01

    Here we overview our work on quantum dot based THz photoconductive antennae, capable of being pumped at very high optical intensities of higher than 1W optical mean power, i.e. about 50 times higher than the conventional LT-GaAs based antennae. Apart from high thermal tolerance, defect-free GaAs crystal layers in an InAs:GaAs quantum dot structure allow high carrier mobility and ultra-short photo carrier lifetimes simultaneously. Thus, they combine the advantages and lacking the disadvantages of GaAs and LT-GaAs, which are the most popular materials so far, and thus can be used for both CW and pulsed THz generation. By changing quantum dot size, composition, density of dots and number of quantum dot layers, the optoelectronic properties of the overall structure can be set over a reasonable range-compact semiconductor pump lasers that operate at wavelengths in the region of 1.0 μm to 1.3 μm can be used. InAs:GaAs quantum dot-based antennae samples show no saturation in pulsed THz generation for all average pump powers up to 1W focused into 30 μm spot. Generated THz power is super-linearly proportional to laser pump power. The generated THz spectrum depends on antenna design and can cover from 150 GHz up to 1.5 THz.

  17. All-optical tailoring of single-photon spectra in a quantum-dot microcavity system

    CERN Document Server

    Breddermann, Dominik; Binder, Rolf; Zrenner, Artur; Schumacher, Stefan

    2016-01-01

    Semiconductor quantum-dot cavity systems are promising sources for solid-state based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study single-photon generation from the quantum-dot biexciton through a partly stimulated non-degenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.

  18. Microscopic mechanism underlying double-state lasing in an InAs/GaAs quantum dot laser diode elucidated using coupled rate equations and the spontaneous emission recorded from a window structure.

    Science.gov (United States)

    Lee, J M; Jeon, B H; Kim, J; Lee, D

    2015-12-14

    We investigated the microscopic mechanism underlying the double-state lasing behavior (simultaneous lasing at the ground state [GS] and excited state [ES]) in InAs/GaAs quantum dot (QD) laser diodes. The ES and GS lasing processes that contributed to double-state lasing were examined experimentally and theoretically. Experiments were conducted in which spontaneous emission from a window of a QD laser diode was examined under lasing conditions, and numerical simulations were performed using a coupled rate equation model of the QD microstates. The findings showed that, when carrier relaxation from the ES to the GS was sufficiently slow, double-state lasing occurred. Additionally, ES lasing was found to arise not from the QD group undergoing GS lasing, but rather from another QD group in which the states were lower in energy and outside of the homogeneous bandwidth.

  19. Quantum dots for next-generation photovoltaics

    Directory of Open Access Journals (Sweden)

    Octavi E. Semonin

    2012-11-01

    Full Text Available Colloidal quantum-confined semiconductor nanostructures are an emerging class of functional material that are being developed for novel solar energy conversion strategies. One of the largest losses in a bulk or thin film solar cell occurs within a few picoseconds after the photon is absorbed, as photons with energy larger than the semiconductor bandgap produce charge-carriers with excess kinetic energy, which is then dissipated via phonon emission. Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photoconversion step. In this review, we provide the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (nanocrystals confined in three dimensions in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion.

  20. Hybrid passivated colloidal quantum dot solids

    Science.gov (United States)

    Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H.

    2012-09-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.

  1. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  2. Nonrenewal statistics in transport through quantum dots

    Science.gov (United States)

    Ptaszyński, Krzysztof

    2017-01-01

    The distribution of waiting times between successive tunneling events is an already established method to characterize current fluctuations in mesoscopic systems. Here, I investigate mechanisms generating correlations between subsequent waiting times in two model systems, a pair of capacitively coupled quantum dots and a single-level dot attached to spin-polarized leads. Waiting time correlations are shown to give insight into the internal dynamics of the system; for example they allow distinction between different mechanisms of the noise enhancement. Moreover, the presence of correlations breaks the validity of the renewal theory. This increases the number of independent cumulants of current fluctuation statistics, thus providing additional sources of information about the transport mechanism. I also propose a method for inferring the presence of waiting time correlations based on low-order current correlation functions. This method gives a way to extend the analysis of nonrenewal current fluctuations to the systems for which single-electron counting is not experimentally feasible. The experimental relevance of the findings is also discussed; for example reanalysis of previous results concerning transport in quantum dots is suggested.

  3. Production and targeting of monovalent quantum dots.

    Science.gov (United States)

    Seo, Daeha; Farlow, Justin; Southard, Kade; Jun, Young-Wook; Gartner, Zev J

    2014-10-23

    The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety.

  4. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.

    Science.gov (United States)

    Woolf, Alexander; Puchtler, Tim; Aharonovich, Igor; Zhu, Tongtong; Niu, Nan; Wang, Danqing; Oliver, Rachel; Hu, Evelyn L

    2014-09-30

    Low-threshold lasers realized within compact, high-quality optical cavities enable a variety of nanophotonics applications. Gallium nitride materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light-matter interactions and realize practical devices such as efficient light-emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low-threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we use the distinctive, high-quality (Q ∼ 5,500) modes of the cavities, and the change in the highest-intensity mode as a function of pump power to better understand the dominant radiative processes. The variations of threshold power and lasing wavelength as a function of gain medium help us identify the possible limitations to lower-threshold lasing with quantum dot active medium. In addition, we have identified a distinctive lasing signature for quantum dot materials, which consistently lase at wavelengths shorter than the peak of the room temperature gain emission. These findings not only provide better understanding of lasing in nitride-based quantum dot cavity systems but also shed insight into the more fundamental issues of light-matter coupling in such systems.

  5. Quantum Dots: An Experiment for Physical or Materials Chemistry

    Science.gov (United States)

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  6. Resonance fluorescence from a telecom-wavelength quantum dot

    CERN Document Server

    Al-Khuzheyri, R; Huwer, J; Santana, T S; Szymanska, J Skiba-; Felle, M; Ward, M B; Stevenson, R M; Farrer, I; Tanner, M G; Hadfield, R H; Ritchie, D A; Shields, A J; Gerardot, B D

    2016-01-01

    We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime--a hallmark of resonance fluorescence. The measured resonance-fluorescence spectra allow us to rule out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with numerical simulations, the experimental results provide robust characterisation of charge noise in the environment of the quantum dot. Resonant control of the quantum dot opens up new possibilities for on-demand generation of indistinguishable single photons at telecom wavelengths as well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-wavelength quantum dots.

  7. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...

  8. The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hatef Ali

    2010-01-01

    Full Text Available Abstract In this work, the absorption coefficient of a metallic photonic crystal doped with nanoparticles has been obtained using numerical simulation techniques. The effects of quantum interference and the concentration of doped particles on the absorption coefficient of the system have been investigated. The nanoparticles have been considered as semiconductor quantum dots which behave as a four-level quantum system and are driven by a single coherent laser field. The results show that changing the position of the photonic band gap about the resonant energy of the two lower levels directly affects the decay rate, and the system can be switched between transparent and opaque states if the probe laser field is tuned to the resonance frequency. These results provide an application for metallic nanostructures in the fabrication of new optical switches and photonic devices.

  9. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  10. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width...... quantum optical properties for single photon application and quantum optics.......We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer...

  11. Optophononics with Coupled Quantum Dots

    Science.gov (United States)

    2014-02-18

    diode structure, the two layers of QDs were formed by subsequent deposition of InAs on GaAs with a 4 nm thick barrier of GaAs between both layers. The...cold finger of a closed cycle microscopy cryostat and kept at a temperature of 20K. A tunable diode laser with a tuning range from about 900 to 1,000...superlattices. Science 338, 935–939 (2012). 17. Kim, J.-H. et al. Coherent phonons in carbon nanotubes and graphene . Chem. Phys. 413, 55–80 (2013). 18

  12. Quantum state preparation in semiconductor dots by adiabatic rapid passage

    OpenAIRE

    Wu, Yanwen; Piper, I.M.; Ediger, M.; Brereton, P.; Schmidgall, E. R.; Hugues, M.; Hopkinson, M.; Phillips, R.T.

    2010-01-01

    Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We d...

  13. Coupled quantum dot-ring structures by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Somaschini, C; Bietti, S; Koguchi, N; Sanguinetti, S, E-mail: stefano.sanguinetti@unimib.it [L-NESS and Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy)

    2011-05-06

    The fabrication, by pure self-assembly, of GaAs/AlGaAs dot-ring quantum nanostructures is presented. The growth is performed via droplet epitaxy, which allows for the fine control, through As flux and substrate temperature, of the crystallization kinetics of nanometer scale metallic Ga reservoirs deposited on the surface. Such a procedure permits the combination of quantum dots and quantum rings into a single, multi-functional, complex quantum nanostructure.

  14. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  15. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  16. An Exciton Bound to a Neutral Donor in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    解文方

    2002-01-01

    The binding energies for an exciton (X) trapped in a two-dimensional quantum dot by a neutral donor have been calculated using the method of few-body physics for the heavy hole (σ= 0.196) and the light hole (σr = 0.707).We find that the (D0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy increases with the decrease of the dot radius. At dot radius R →∞, we compare our calculated result with the previous results.

  17. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    Institute of Scientific and Technical Information of China (English)

    L(U) Rong; ZHANG Guang-Ming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  18. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    Science.gov (United States)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-07-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  19. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  20. Quantum model for mode locking in pulsed semiconductor quantum dots

    Science.gov (United States)

    Beugeling, W.; Uhrig, Götz S.; Anders, Frithjof B.

    2016-12-01

    Quantum dots in GaAs/InGaAs structures have been proposed as a candidate system for realizing quantum computing. The short coherence time of the electronic quantum state that arises from coupling to the nuclei of the substrate is dramatically increased if the system is subjected to a magnetic field and to repeated optical pulsing. This enhancement is due to mode locking: oscillation frequencies resonant with the pulsing frequencies are enhanced, while off-resonant oscillations eventually die out. Because the resonant frequencies are determined by the pulsing frequency only, the system becomes immune to frequency shifts caused by the nuclear coupling and by slight variations between individual quantum dots. The effects remain even after the optical pulsing is terminated. In this work, we explore the phenomenon of mode locking from a quantum mechanical perspective. We treat the dynamics using the central-spin model, which includes coupling to 10-20 nuclei and incoherent decay of the excited electronic state, in a perturbative framework. Using scaling arguments, we extrapolate our results to realistic system parameters. We estimate that the synchronization to the pulsing frequency needs time scales in the order of 1 s .

  1. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has dev...

  2. Transport through Zero-Dimensional States in a Quantum Dot

    NARCIS (Netherlands)

    Kouwenhoven, Leo P.; Wees, Bart J. van; Harmans, Kees J.P.M.; Williamson, John G.

    1990-01-01

    We have studied the electron transport through zero-dimensional (0D) states. 0D states are formed when one-dimensional edge channels are confined in a quantum dot. The quantum dot is defined in a two-dimensional electron gas with a split gate technique. To allow electronic transport, connection to

  3. Electron spin and charge in semiconductor quantum dots

    NARCIS (Netherlands)

    Elzerman, J.M.

    2004-01-01

    In this thesis, the spin and charge degree of freedom of electrons in semiconductor lateral and vertical quantum dots are experimentally investigated. The lateral quantum dot devices are defined in a two-dimensional electron gas (2DEG) below the surface of a GaAs/AlGaAs heterostructure, by metallic

  4. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis;

    2000-01-01

    . The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...

  5. Negative Trions Trapped by a Spherical Parabolic Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a negatively charged exciton trapped by a spherical parabolic quantum dot has been investigated. The energy spectra of low-lying states are calculated by means of matrix diagonalization. The important feature of the low-lying states of the negatively charged excitons in a spherical quantum dot is obtained via an analysis of the energy spectra.

  6. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail...

  7. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We deta...

  8. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  9. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  10. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  11. Gates controlled parallel-coupled bilayer graphene double quantum dot

    CERN Document Server

    Wang, Lin-Jun; Wei, Da; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Chang, A M

    2011-01-01

    Here we report the fabrication and quantum transport measurements of gates controlled parallel-coupled bilayer graphene double quantum dot. It is shown that the interdot coupling strength of the parallel double dots can be effectively tuned from weak to strong regime by both the in-plane plunger gates and back gate. All the relevant energy scales and parameters of the bilayer graphene parallel-coupled double dot can be extracted from the honeycomb charge stability diagrams revealed through the transport measurements.

  12. Self-polarization in spherical quantum dot

    Directory of Open Access Journals (Sweden)

    Stojanović Dušanka P.

    2015-01-01

    Full Text Available The electronic structures of CdS quantum dot (QD with dielectric mismatch are calculated. Poisson equation is solved analitically in case of point charge placed inside semiconductor sphere embeded in dielectric matrix in case of different values of the dielectric permittivity of QD and matrix. The validity of the effective mass approximation for the conduction band is assumed. Schrödinger equation for one electron is solved analitically. On the basis of the Poisson equation solution self potential is examined and used as perturbation to calculate the self-polarization effect.

  13. Graphene Quantum Dots for Theranostics and Bioimaging.

    Science.gov (United States)

    Schroeder, Kathryn L; Goreham, Renee V; Nann, Thomas

    2016-10-01

    Since their advent in the early 1990s, nanomaterials hold promise to constitute improved technologies in the biomedical area. In particular, graphene quantum dots (GQDs) were conjectured to produce new or improve current methods used for bioimaging, drug delivery, and biomarker sensors for early detection of diseases. This review article critically compares and discusses current state-of-the-art use of GQDs in biology and health sciences. It shows the ability of GQDs to be easily functionalised for use as a targeted multimodal treatment and imaging platform. The in vitro and in vivo toxicity of GQDs are explored showing low toxicity for many types of GQDs.

  14. Hyper-parallel photonic quantum computation with coupled quantum dots

    Science.gov (United States)

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-01-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

  15. Non-blinking quantum dot with a plasmonic nanoshell resonator

    Science.gov (United States)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  16. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld;

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...... observe that second-harmonic images of the quantum-dot surface structure show wavelength-dependent spatial variations. Imaging at different wavelength is used to demonstrate second-harmonic generation from the semiconductor quantum dots. (C) 2000 American Institute of Physics....

  17. Quantum dots in diagnostics and detection: principles and paradigms.

    Science.gov (United States)

    Pisanic, T R; Zhang, Y; Wang, T H

    2014-06-21

    Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection.

  18. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    Z. O. Lipatova

    2015-03-01

    Full Text Available Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been found to be dependent on the registration wavelength in the range from 450 to 700 nm. Obtained fluorophosphate glasses with CdS quantum dots can find their application as fluorescent materials with intensive luminescence band and long excited-state natural lifetime.

  19. Interaction of porphyrins with CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei, E-mail: weichen@uta.edu [Department of Physics, University of Texas at Arlington, Box 19059 Arlington, TX 76019 (United States)

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  20. Injection Locking of a Semiconductor Double Quantum Dot Micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R

    2015-11-01

    Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.