WorldWideScience

Sample records for quantum dots controlled

  1. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  2. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  3. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  4. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    Science.gov (United States)

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...used the resulting enhanced control to investigate a nano- tube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams...This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum

  5. Controllability of multi-partite quantum systems and selective excitation of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, S G [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Pullen, I C H [Department of Applied Mathematics and Computing, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Solomon, A I [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2005-10-01

    We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots.

  6. Gates controlled parallel-coupled bilayer graphene double quantum dot

    CERN Document Server

    Wang, Lin-Jun; Wei, Da; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Chang, A M

    2011-01-01

    Here we report the fabrication and quantum transport measurements of gates controlled parallel-coupled bilayer graphene double quantum dot. It is shown that the interdot coupling strength of the parallel double dots can be effectively tuned from weak to strong regime by both the in-plane plunger gates and back gate. All the relevant energy scales and parameters of the bilayer graphene parallel-coupled double dot can be extracted from the honeycomb charge stability diagrams revealed through the transport measurements.

  7. Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Schneider, C.; Stobbe, Søren

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD.......1±2.6 and an encouragingly high QE of (48±14)% for the SCQDs....

  8. Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Schneider, C.; Stobbe, Søren;

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...

  9. Site-controlled quantum dots coupled to photonic crystal waveguides

    DEFF Research Database (Denmark)

    Rigal, B.; de Lasson, Jakob Rosenkrantz; Jarlov, C.;

    2016-01-01

    We demonstrate selective optical coupling of multiple, site controlled semiconductor quantum dots (QDs) to photonic crystal waveguide structures. The impact of the exact position and emission spectrum of the QDs on the coupling efficiency is elucidated. The influence of optical disorder and end...

  10. Emission energy control of semiconductor quantum dots using phase change material

    Science.gov (United States)

    Kanazawa, Shohei; Sato, Yu; Yamamura, Ariyoshi; Saiki, Toshiharu

    2015-03-01

    Semiconductor quantum dots have paid much attention as it is a promising candidate for quantum, optical devices, such as quantum computer and quantum dot laser. We propose a local emission energy control method of semiconductor quantum dots using applying strain by volume expansion of phase change material. Phase change material can change its phase crystalline to amorphous, and the volume expand by its phase change. This method can control energy shift direction and amount by amorphous religion and depth. Using this method, we matched emission energy of two InAs/InP quantum dots. This achievement can connect to observing superradiance phenomenon and quantum dot coupling effect.

  11. Control and measurement of electron spins in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kouwenhoven, L.P.; Elzerman, J.M.; Hanson, R.; Willems van Beveren, L.H.; Vandersypen, L.M.K. [ERATO Mesoscopic Correlation Project, Delft University of Technology, Delft (Netherlands); Kavli Institute of Nanoscience Delft (Netherlands)

    2006-11-15

    We present an overview of experimental steps taken towards using the spin of a single electron trapped in a semiconductor quantum dot as a spin qubit [Loss and DiVincenzo, Phys. Rev. A 57, 120 (1998)]. Fabrication and characterization of a double quantum dot containing two coupled spins has been achieved, as well as initialization and single-shot read-out of the spin state. The relaxation time T {sub 1} of single-spin and two-spin states was found to be on the order of a millisecond, dominated by spin-orbit interactions. The time-averaged dephasing time T{sub 2}{sup *}, due to fluctuations in the ensemble of nuclear spins in the host semiconductor, was determined to be on the order of several tens of nanoseconds. Coherent manipulation of single-spin states can be performed using a microfabricated wire located close to the quantum dot, while two-spin interactions rely on controlling the tunnel barrier connecting the respective quantum dots [Petta et al., Science 309, 2180 (2005)]. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Dissipative tunneling in structures with quantum dots and quantum molecules

    OpenAIRE

    Dahnovsky, Yu. I.; Krevchik, V. D.; Semenov, M. B.; Yamamoto, K.; Zhukovsky, V. Ch.; Aringazin, A. K.; Kudryashov, E. I.; Mayorov, V. G.

    2005-01-01

    The problem of tunneling control in systems "quantum dot - quantum well" (as well as "quantum dot - quantum dot" or quantum molecule) and "quantum dot - bulk contact" is studied as a quantum tunneling with dissipation process in the semiclassical (instanton) approximation. For these systems temperature and correlation between a quantum dot radius and a quantum well width (or another quantum dot radius) are considered to be control parameters. The condition for a single electron blockade is fo...

  13. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  14. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Science.gov (United States)

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  15. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    Science.gov (United States)

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  16. Quantum efficiency and oscillator strength of site-controlled InAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Stobbe, Søren; Schneider, C.

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled InAs quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD......) samples with varying thickness of the capping layer. We determine radiative and nonradiative decay rates, from which we calculate an OS of 10.1+/-2.6 and an encouragingly high QE of (47+/-14)% for the SCQDs. The nonideal QE is attributed to nonradiative recombination at the etched nanohole interface...

  17. Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots.

    Science.gov (United States)

    Li, Hongling; Tay, Roland Yingjie; Tsang, Siu Hon; Zhen, Xu; Teo, Edwin Hang Tong

    2015-12-22

    Boron nitride quantum dots (BNQDs), as a new member of heavy metal-free quantum dots, have aroused great interest in fundamental research and practical application due to their unique physical/chemical properties. However, it is still a challenge to controllably synthesize high-quality BNQDs with high quantum yield (QY), uniform size and strong fluorescent. In this work, BNQDs have been successfully fabricated by the liquid exfoliation and the subsequent solvothermal process with respect to its facileness and easy large scale up. Importantly, BNQDs with high-quality can be controllably obtained by adjusting the synthetic parameters involved in the solvothermal process including filling factor, synthesis temperature, and duration time. Encouragingly, the as-prepared BNQDs possess strong blue luminescence with QY as high as 19.5%, which can be attributed to the synergetic effect of size, surface chemistry and edge defects. In addition, this strategy presented here provides a new reference for the controllable synthesis of other heavy metal-free QDs. Furthermore, the as-prepared BNQDs are non-toxic to cells and exhibit nanosecond-scaled lifetimes, suggesting they have great potential biological and optoelectronic applications.

  18. Dynamically controlled charge sensing of a few-electron silicon quantum dot

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2011-12-01

    Full Text Available We report charge sensing measurements of a silicon metal-oxide-semiconductor quantum dot using a single-electron transistor as a charge sensor with dynamic feedback control. Using digitally-controlled feedback, the sensor exhibits sensitive and robust detection of the charge state of the quantum dot, even in the presence of charge drifts and random charge upset events. The sensor enables the occupancy of the quantum dot to be probed down to the single electron level.

  19. Charging dynamics of a floating gate transistor with site-controlled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Maier, P., E-mail: patrick.maier@physik.uni-wuerzburg.de; Hartmann, F.; Emmerling, M.; Schneider, C.; Höfling, S.; Kamp, M.; Worschech, L. [Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany)

    2014-08-04

    A quantum dot memory based on a GaAs/AlGaAs quantum wire with site-controlled InAs quantum dots was realized by means of molecular beam epitaxy and etching techniques. By sampling of different gate voltage sweeps for the determination of charging and discharging thresholds, it was found that discharging takes place at short time scales of μs, whereas several seconds of waiting times within a distinct negative gate voltage range were needed to charge the quantum dots. Such quantum dot structures have thus the potential to implement logic functions comprising charge and time dependent ingredients such as counting of signals or learning rules.

  20. Controlling light-matter interaction with mesoscopic quantum dots

    DEFF Research Database (Denmark)

    Stobbe, Søren; Kristensen, Philip Trøst; Lodahl, Peter

    2012-01-01

    Semiconductor quantum dots (QDs) enable efficient coupling between light and matter, which is useful in applications such as light-harvesting and all-solid-state quantum information processing. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic...

  1. Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Xia; Zhang Jian-Qi; Yu Ya-Fei; Zhang Zhi-Ming

    2011-01-01

    We propose a scheme for realizing two-qubit controlled phase gates on two nonidentical quantum dots trapped in separate cavities.In our scheme,each dot simultaneously interacts with one highly detuned cavity mode and two strong driven classical fields.During the gate operation,the quantum dots undergo no transition,while the system can acquire different phases conditional on different states of the quantum dots.With the application of the single-qubit operations,two-qubit controlled phase gates can be realized.

  2. Single semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Michler, Peter (ed.) [Stuttgart Univ. (Germany). Inst. fuer Halbleiteroptik und Funktionelle Grenzflaechen

    2009-07-01

    This book reviews recent advances in the exciting and rapidly growing field of semiconductor quantum dots via contributions from some of the most prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots due to their potential applications in devices operating with single electron spins and/or single photons. This includes single and coupled quantum dots in external fields, cavity-quantum electrodynamics, and single and entangled photon pair generation. Single Semiconductor Quantum Dots also addresses growth techniques to allow for a positioned nucleation of dots as well as applications of quantum dots in quantum information technologies. (orig.)

  3. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  4. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  5. Quantum control study of ultrafast optical responses in semiconductor quantum dot devices.

    Science.gov (United States)

    Huang, Jung Y; Lin, Chien Y; Liu, Wei-Sheng; Chyi, Jen-Inn

    2014-12-15

    Two quantum control spectroscopic techniques were applied to study InAs quantum dot (QD) devices, which contain different strain-reducing layers. By adaptively control light matter interaction, a delayed resonant response from the InAs QDs was found to be encoded into the optimal phase profile of ultrafast optical pulse used. We verified the delayed resonant response to originate from excitons coupled to acoustic phonons of InAs QDs with two-dimensional coherent spectroscopy. Our study yields valuable dynamical information that can deepen our understanding of the coherent coupling process of exciton in the quantum-confined systems.

  6. Detection and control of charge states in a quintuple quantum dot

    Science.gov (United States)

    Ito, Takumi; Otsuka, Tomohiro; Amaha, Shinichi; Delbecq, Matthieu R.; Nakajima, Takashi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Noiri, Akito; Kawasaki, Kento; Tarucha, Seigo

    2016-12-01

    A semiconductor quintuple quantum dot with two charge sensors and an additional contact to the center dot from an electron reservoir is fabricated to demonstrate the concept of scalable architecture. This design enables formation of the five dots as confirmed by measurements of the charge states of the three nearest dots to the respective charge sensor. The gate performance of the measured stability diagram is well reproduced by a capacitance model. These results provide an important step towards realizing controllable large scale multiple quantum dot systems.

  7. Physics of lateral triple quantum-dot molecules with controlled electron numbers.

    Science.gov (United States)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-11-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.

  8. Quantum phase transition of light as a control of the entanglement between interacting quantum dots

    NARCIS (Netherlands)

    Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian

    We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly

  9. Designing artificial 2D crystals with site and size controlled quantum dots.

    Science.gov (United States)

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS2), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS2. By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  10. Controlling the polarization eigenstate of a quantum dot exciton with light

    CERN Document Server

    Belhadj, Thomas; Amand, Thierry; Renucci, Pierre; Krebs, Olivier; Lemaitre, Aristide; Voisin, Paul; Marie, Xavier; Urbaszek, Bernhard

    2009-01-01

    We demonstrate optical control of the polarization eigenstates of a neutral quantum dot exciton without any external fields. By varying the excitation power of a circularly polarized laser in micro-photoluminescence experiments on individual InGaAs quantum dots we control the magnitude and direction of an effective internal magnetic field created via optical pumping of nuclear spins. The adjustable nuclear magnetic field allows us to tune the linear and circular polarization degree of the neutral exciton emission. The quantum dot can thus act as a tunable light polarization converter.

  11. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  12. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    CERN Document Server

    Jamil, Ayesha; Kalliakos, Sokratis; Schwagmann, Andre; Ward, Martin B; Brody, Yarden; Ellis, David J P; Farrer, Ian; Griffiths, Jonathan P; Jones, Geb A C; Ritchie, David A; Shields, Andrew J

    2014-01-01

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device scale arrays of quantum dots are formed by a two step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the exit of the waveguide is 12 \\pm 5 % before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  13. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J., E-mail: andrew.shields@crl.toshiba.co.uk [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom); Schwagmann, Andre; Brody, Yarden [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom)

    2014-03-10

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device–scale arrays of quantum dots are formed by a two–step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12% ± 5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  14. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    Science.gov (United States)

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  15. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots

    Science.gov (United States)

    Breger, Joyce; Delehanty, James B; Medintz, Igor L

    2015-01-01

    The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future. PMID:25154379

  16. Controlled self-assembly of hydrophobic quantum dots through silanization.

    Science.gov (United States)

    Yang, Ping; Ando, Masanori; Murase, Norio

    2011-09-01

    We demonstrate the formation of one-, two-, and three-dimensional nanocomposites through the self-assembly of silanized CdSe/ZnS quantum dots (QDs) by using a controlled sol-gel process. The self-assembly behavior of the QDs was created when partially hydrolyzed silicon alkoxide monomers replaced hydrophobic ligands on the QDs. We examined systematically self-assembly conditions such as solvent components and QD sizes in order to elucidate the formation mechanism of various QD nanocomposites. The QD nanocomposites were assembled in water phase or on the interface of water and oil phase in emulsions. The partially hydrolyzed silicon alkoxides act as intermolecules to assemble the QDs. The QD nanocomposites with well-defined solid or hollow spherical, fiber-like, sheet-like, and pearl-like morphologies were prepared by adjusting the experimental conditions. The high photoluminescence efficiency of the prepared QD nanocomposites suggests partially hydrolyzed silicon alkoxides reduced the surface deterioration of QDs during self-assembly. These techniques are applicable to other hydrophobic QDs for fabricating complex QD nanocomposites.

  17. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-01-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms. PMID:27112420

  18. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used......Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... to probe coherence times of exciton states and relaxation processes, both of which are important for future applications....

  19. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used......Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... to probe coherence times of exciton states and relaxation processes, both of which are important for future applications....

  20. Electrostatic Control of Single IndiumArsenic Quantum Dots using IndiumPhosphorus Nanotemplates

    Science.gov (United States)

    Cheriton, Ross

    This thesis focuses on pioneering a scalable route to fabricate quantum information devices based upon single InAs/InP quantum dots emitting in the telecommunications wavelength band around lambda = 1550 nm. Using metallic gates in combination with nanotemplate, site-selective epitaxy techniques, arrays of single quantum dots are produced and electrostatically tuned with a high degree of control over the electrical and optical properties of each individual quantum dot. Using metallic gates to apply local electric fields, the number of electrons within each quantum dot can be tuned and the nature of the optical recombination process controlled. Four electrostatic gates mounted along the sides of a square-based, pyramidal nanotemplate in combination with a flat metallic gate on the back of the InP substrate allow the application of electric fields in any direction across a single quantum dot. Using lateral fields provided by the metallic gates on the sidewalls of the pyramid and a vertical electric field able to control the charge state of the quantum dot, the exchange splitting of the exciton, trion and biexciton are measured as a function of gate voltage. A quadrupole electric field configuration is predicted to symmetrize the product of electron and hole wavefunctions within the dot, producing two degenerate exciton states from the two possible optical decay pathways of the biexciton. Building upon these capabilities, the anisotropic exchange splitting between the exciton states within the biexciton cascade is shown to be reversibly tuned through zero for the first time. We show direct control over the electron and hole wavefunction symmetry, thus enabling the entanglement of emitted photon pairs in asymmetric quantum dots. Optical spectroscopy of single InAs/InP quantum dots atop pyramidal nanotemplates in magnetic fields up to 28T is used to examine the dispersion of the s, p and d shell states. The g-factor and diamagnetic shift of the exciton and charged

  1. Optical control of electron spin qubit in InAs self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Emary, Clive [TU Berlin, Sekr. PN 7-1, Institut fuer Theoretische Physik, Hardenbergstr. 36, D-10623 Berlin (Germany); Sham, Lu Jeu [Department of Physics, University of California San Diego, La Jolla, California 92093 (United States)

    2008-07-01

    The spin of an electron trapped in a self-assembled quantum dot is viewed as a promising quantum bit. We present here a theory of the control of such qubits using short laser pulses to excite virtual trion states within the dots. We describe mechanisms for qubit initialisation and for performing universal one and two qubit operations. We show that, for InAs dots, initialisation can be achieved on the nanosecond time-scale, and that coherent operations can performed with laser pulses with durations of tens of picoseconds. These results are of direct relevance to current experiments.

  2. Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiongwen, E-mail: hnsxw617@163.com [Department of Physics, Huaihua University, Huaihua 418008 (China); Chen, Baoju; Song, Kehui [Department of Physics, Huaihua University, Huaihua 418008 (China); Zhou, Guanghui [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081 (China)

    2016-05-01

    Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov–Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage V{sub g} applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.

  3. Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system

    Science.gov (United States)

    Chen, Xiongwen; Chen, Baoju; Song, Kehui; Zhou, Guanghui

    2016-05-01

    Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov-Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage Vg applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.

  4. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials

    Science.gov (United States)

    Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.

    2017-03-01

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  5. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  6. Quantum-dot emitters in photonic nanostructures

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    The spontaneous emission from self-assembled semiconductor quantum dots is strongly influenced by the environment in which they are placed. This can be used to determine fundamental optical properties of the quantum dots as well as to manipulate and control the quantum-dot emission itself....

  7. Quantum interference and control of the optical response in quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)

    2013-11-25

    We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.

  8. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  9. Size controlled near-infrared high-quality PbSe quantum dots

    Science.gov (United States)

    Kalasad, M. N.; Rabinal, M. K.; Mulimani, B. G.; Greenham, N. C.

    2015-06-01

    Herein, we report the size controlled preparation of PbSe quantum dots (QDs) by non coordinating solvent route using oleic acid as surfactant molecules. The particles size is controlled by varying temperature and time of reaction. The present method of synthesis gives highly stable colloids, spherical in shape, better size tunability, narrow size distribution, extremely small size, monodisperse and exhibit strong near-infrared emission. The estimated particles sizes are in the range of 2 to 8 nm. These PbSe quantum dots are used for applications in optoelectronics and biological imaging.

  10. Memristive operation mode of a site-controlled quantum dot floating gate transistor

    Energy Technology Data Exchange (ETDEWEB)

    Maier, P., E-mail: patrick.maier@physik.uni-wuerzburg.de; Hartmann, F.; Mauder, T.; Emmerling, M.; Schneider, C.; Kamp, M.; Worschech, L. [Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, S. [Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2015-05-18

    We have realized a floating gate transistor based on a GaAs/AlGaAs heterostructure with site-controlled InAs quantum dots. By short-circuiting the source contact with the lateral gates and performing closed voltage sweep cycles, we observe a memristive operation mode with pinched hysteresis loops and two clearly distinguishable conductive states. The conductance depends on the quantum dot charge which can be altered in a controllable manner by the voltage value and time interval spent in the charging region. The quantum dot memristor has the potential to realize artificial synapses in a state-of-the-art opto-electronic semiconductor platform by charge localization and Coulomb coupling.

  11. All-electrical coherent control of the exciton states in a single quantum dot

    CERN Document Server

    de la Giroday, A Boyer; Pooley, M A; Stevenson, R M; Skold, N; Patel, R B; Farrer, I; Ritchie, D A; Shields, A J

    2010-01-01

    We demonstrate high-fidelity reversible transfer of quantum information from the polarisation of photons into the spin-state of an electron-hole pair in a semiconductor quantum dot. Moreover, spins are electrically manipulated on a sub-nanosecond timescale, allowing us to coherently control their evolution. By varying the area of the electrical pulse, we demonstrate phase-shift and spin-flip gate operations with near-unity fidelities. Our system constitutes a controllable quantum interface between flying and stationary qubits, an enabling technology for quantum logic in the solid-state.

  12. Measurement based controlled not gate for topological qubits in a Majorana fermion and quantum-dot hybrid system

    Science.gov (United States)

    Xue, Zheng-Yuan

    2013-04-01

    We propose a scheme to implement controlled not gate for topological qubits in a quantum-dot and Majorana fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. A measurement based two-qubit controlled not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov-Casher effect.

  13. Ultrafast control of electron spin in a quantum dot using geometric phase

    Science.gov (United States)

    Malinovsky, V. S.; Rudin, S.

    2012-12-01

    We propose a scheme to perform arbitrary unitary operations on a single electron-spin qubit in a quantum dot. The design is solely based on the geometrical phase that the qubit state acquires after a cyclic evolution in the parameter space. The scheme is utilizing ultrafast linearly-chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled by the relative phase between pulses. The analytic expression of the evolution operator for the electron spin in a quantum dot, which provides a clear geometrical interpretation of the qubit dynamics is obtained. Using parameters of InGaN/GaN, GaN/AlN quantum dots we provide an estimate for the time scale of the qubit rotations and parameters of the external fields.

  14. Tunneling induced transparency and controllable group velocity in triple and multiple quantum-dot molecules

    CERN Document Server

    Tian, Si-Cong; Wan, Ren-Gang; Ning, Yong-Qiang; Wang, Li-Jun

    2013-01-01

    We analyze the interaction of a triple quantum dot molecules controlled by the tunneling coupling instead of coupling laser. A general analytic expression for the steady-state linear susceptibility for a probe-laser field is obtained and we show that the system can exhibit two transparency windows. The group velocity of the probe-laser pulse is also analyzed. By changing the tunneling couplings, two laser pulses with different central frequency can propagate with the same group velocity. And the group velocity can be as low as 300 m/s in our system. We extend our analysis to the case of multiple quantum dot molecules (the number of the quantum dots is N) and show that the system can exhibit at most N-1 transparency windows. And at most N-1 laser pulses with different central frequencies can be slowed down.

  15. Quantum-biological control of energy transfer in hybrid quantum dot-metallic nanoparticle systems

    Science.gov (United States)

    Sadeghi, Seyed M.; Hood, Brady; Patty, Kira

    2016-09-01

    We show theoretically that when a semiconductor quantum dot and metallic nanoparticle system interacts with a laser field, quantum coherence can introduce a new landscape for the dynamics of Forster resonance energy transfer (FRET). We predict adsorption of biological molecules to such a hybrid system can trigger dramatic changes in the way energy is transferred, blocking FRET while the distance between the quantum dot and metallic nanoparticle (R) and other structural specifications remain unchanged. We study the impact of variation of R on the FRET rate in the presence of quantum coherence and its ultrafast decay, offering a characteristically different dependency than the standard 1/R6. Application of the results for quantum nanosensors is discussed.

  16. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    Directory of Open Access Journals (Sweden)

    Sakuma Y

    2006-01-01

    Full Text Available AbstractAn atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs. Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  17. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  18. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots.

    Science.gov (United States)

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor

    2012-12-04

    Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Site-Control of InAs/GaAs Quantum Dots with Indium-Assisted Deoxidation

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2016-03-01

    Full Text Available Site-controlled epitaxial growth of InAs quantum dots on GaAs substrates patterned with periodic nanohole arrays relies on the deterministic nucleation of dots into the holes. In the ideal situation, each hole should be occupied exactly by one single dot, with no nucleation onto planar areas. However, the single-dot occupancy per hole is often made difficult by the fact that lithographically-defined holes are generally much larger than the dots, thus providing several nucleation sites per hole. In addition, deposition of a thin GaAs buffer before the dots tends to further widen the holes in the [110] direction. We have explored a method of native surface oxide removal by using indium beams, which effectively prevents hole elongation along [110] and greatly helps single-dot occupancy per hole. Furthermore, as compared to Ga-assisted deoxidation, In-assisted deoxidation is efficient in completely removing surface contaminants, and any excess In can be easily re-desorbed thermally, thus leaving a clean, smooth GaAs surface. Low temperature photoluminescence showed that inhomogeneous broadening is substantially reduced for QDs grown on In-deoxidized patterns, with respect to planar self-assembled dots.

  20. Unidirectional Emission of a Site-Controlled Single Quantum Dot from a Pyramidal Structure.

    Science.gov (United States)

    Kim, Sejeong; Gong, Su-Hyun; Cho, Jong-Hoi; Cho, Yong-Hoon

    2016-10-12

    Emission control of a quantum emitter made of semiconductor materials is of significance in various optical applications. Specifically, the realization of efficient quantum emitters is important because typical semiconductor quantum dots are associated with low extraction efficiency levels due to their high refractive index contrast. Here, we report bright and unidirectional emission from a site-controlled InGaN quantum dot formed on the apex of a silver-coated GaN nanopyramidal structure. We show that the majority of the extracted light from the quantum dot is guided toward the bottom of the pyramid with high directionality. We also demonstrate that nanopyramid structures can be detached from a substrate, thus demonstrating great potential of this structure in various applications. To clarify the directional radiation, the far-field radiation pattern is measured using Fourier microscopy. This scheme will pave the way toward the realization of a bright and unidirectional quantum emitter along with easy fabrication and large-area reproducibility.

  1. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  2. Linearly polarized single photon antibunching from a site-controlled InGaN quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Jemsson, Tomas; Machhadani, Houssaine; Karlsson, K. Fredrik; Hsu, Chih-Wei; Holtz, Per-Olof [Department of Physics, Chemistry, and Biology (IFM), Semiconductor Materials, Linköping University, S-58183 Linköping (Sweden)

    2014-08-25

    We report on the observation of linearly polarized single photon antibunching in the excitonic emission from a site-controlled InGaN quantum dot. The measured second order coherence function exhibits a significant dip at zero time difference, corresponding to g{sub m}{sup 2}(0)=0.90 under continuous laser excitation. This relatively high value of g{sub m}{sup 2}(0) is well understood by a model as the combination of short exciton life time (320 ps), limited experimental timing resolution and the presence of an uncorrelated broadband background emission from the sample. Our result provides the first rigorous evidence of InGaN quantum dot formation on hexagonal GaN pyramids, and it highlights a great potential in these dots as fast polarized single photon emitters if the background emission can be eliminated.

  3. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  4. Coherent control and suppressed nuclear feedback of a single quantum dot hole qubit

    CERN Document Server

    De Greve, Kristiaan; Press, David; Ladd, Thaddeus D; Bisping, Dirk; Schneider, Christian; Kamp, Martin; Worschech, Lukas; Hoefling, Sven; Forchel, Alfred; Yamamoto, Yoshihisa

    2011-01-01

    Future communication and computation technologies that exploit quantum information require robust and well-isolated qubits. Electron spins in III-V semiconductor quantum dots, while promising candidates, see their dynamics limited by undesirable hysteresis and decohering effects of the nuclear spin bath. Replacing electrons with holes should suppress the hyperfine interaction and consequently eliminate strong nuclear effects. Using picosecond optical pulses, we demonstrate coherent control of a single hole qubit and examine both free-induction and spin-echo decay. In moving from electrons to holes, we observe significantly reduced hyperfine interactions, evidenced by the reemergence of hysteresis-free dynamics, while obtaining similar coherence times, limited by non-nuclear mechanisms. These results demonstrate the potential of optically controlled, quantum dot hole qubits.

  5. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity

    CERN Document Server

    Midolo, L; Hoang, T B; Xia, T; van Otten, F W M; Li, L H; Linfield, E; Lermer, M; Höfling, S; Fiore, A

    2012-01-01

    We demonstrate the control of the spontaneous emission rate of single InAs quantum dots embedded in a double-membrane photonic crystal cavity by the electromechanical tuning of the cavity resonance. Controlling the separation between the two membranes with an electrostatic field we obtain the real-time spectral alignment of the cavity mode to the excitonic line and we observe an enhancement of the spontaneous emission rate at resonance. The cavity has been tuned over 13 nm without shifting the exciton energies. A spontaneous emission enhancement of 4.5 has been achieved with a coupling efficiency of the dot to the mode 92%.

  6. Size control by rate control in colloidal PbSe quantum dot synthesis

    Science.gov (United States)

    Čapek, Richard Karel; Yanover, Dianna; Lifshitz, Efrat

    2015-03-01

    A recently demonstrated approach to control the size of colloidal nanoparticles, ``size control by rate control'', which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The ``size control by rate control'' concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses.A recently demonstrated approach to control the size of colloidal nanoparticles, ``size control by rate control'', which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The ``size control by rate control'' concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses. Electronic supplementary information (ESI) available: Additional data about the reaction and growth kinetics, NMR-data and exemplary TEM images of PbSe-CQDs prepared by the procedure described in this publication. See DOI: 10.1039/c5nr00028a

  7. Quantum control of two interacting electrons in a coupled quantum dot

    Institute of Scientific and Technical Information of China (English)

    Song Hong-Zhou; Zhang Ping; Duan Su-Qing; Zhao Xian-Geng

    2006-01-01

    Quantum-state engineering, i.e. active manipulation over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. Here we discuss the dynamics of two interacting electrons in a coupled quantum dot driven by an external electric field. The results show that the two quantum dots can be used to prepare a maximally entangled Bell state by changing the strength and duration of an oscillatory electric field. Different from the suggestion made by Loss et al (1998 Phys. Rev. A 57 120), the present entanglement involves the spatial degree of freedom for the two electrons. We also find that the coherent tunnelling suppression discussed by Grossmann et al (1991 Phys. Rev. Lett. 67 516) persists in the two-particle case: i.e. two electrons initially localized in one dot can remain dynamically localized, although the strong Coulomb repulsion prevents them from behaving so. Surprisingly,the interaction enhances the degree of localization to a large extent compared with that in the non-interacting case.This phenomenon is referred to as the Coulomb-enhanced dynamical localization.

  8. Efficient controlled-phase gate for single-spin qubits in quantum dots

    NARCIS (Netherlands)

    Meunier, T.; Calado, V.E.; Vandersypen, L.M.K.

    2011-01-01

    Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems

  9. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  10. Electric-field controlled ferromagnetism in MnGe magnetic quantum dots

    Directory of Open Access Journals (Sweden)

    Faxian Xiu

    2011-03-01

    Full Text Available Electric-field control of ferromagnetism in magnetic semiconductors at room temperature has been actively pursued as one of the important approaches to realize practical spintronics and non-volatile logic devices. While Mn-doped III-V semiconductors were considered as potential candidates for achieving this controllability, the search for an ideal material with high Curie temperature (Tc>300 K and controllable ferromagnetism at room temperature has continued for nearly a decade. Among various dilute magnetic semiconductors (DMSs, materials derived from group IV elements such as Si and Ge are the ideal candidates for such materials due to their excellent compatibility with the conventional complementary metal-oxide-semiconductor (CMOS technology. Here, we review recent reports on the development of high-Curie temperature Mn0.05Ge0.95 quantum dots (QDs and successfully demonstrate electric-field control of ferromagnetism in the Mn0.05Ge0.95 quantum dots up to 300 K. Upon the application of gate-bias to a metal-oxide-semiconductor (MOS capacitor, the ferromagnetism of the channel layer (i.e. the Mn0.05Ge0.95 quantum dots was modulated as a function of the hole concentration. Finally, a theoretical model based upon the formation of magnetic polarons has been proposed to explain the observed field controlled ferromagnetism.

  11. Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities

    DEFF Research Database (Denmark)

    Reitzenstein, S.; Schneider, C.; Albert, F.

    2011-01-01

    , e.g., the large scale fabrication of quantum light sources. As a result, large efforts focus on the growth and the device integration of site-controlled QDs. We present the growth of low density arrays of site-controlled In(Ga)As QDs where shallow etched nanoholes act as nucleation sites......Semiconductor quantum dots (QDs) are fascinating nanoscopic structures for photonics and future quantum information technology. However, the random position of self-organized QDs inhibits a deterministic coupling in devices relying on cavity quantum electrodynamics (cQED) effects which complicates....... The nanoholes are located relative to cross markers which allows for a precise spatial alignment of the site-controlled QDs (SCQDs) and the photonic modes of high quality microcavites with an accuracy better than 50 nm. We also address the optical quality of the SCQDs in terms of the single SCQD emission mode...

  12. Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots

    CERN Document Server

    Childress, L I; Lukin, M D

    2003-01-01

    We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.

  13. Activation of silicon quantum dots for emission

    Institute of Scientific and Technical Information of China (English)

    Huang Wei-Qi; Miao Xin-Jian; Huang Zhong-Mei; Liu Shi-Rong; Qin Chao-Jian

    2012-01-01

    The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs.From this point of view,we can build up radiative matter for emission.Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots.Our experimental results demonstrate that annealing is important in the treatment of the activation,and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.

  14. Nanoscale quantum-dot supercrystals

    Science.gov (United States)

    Baimuratov, Anvar S.; Turkov, Vadim K.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory allowing one to calculate the energy spectra and wave functions of collective excitations in twoand three-dimensional quantum-dot supercrystals. We derive analytical expressions for the energy spectra of twodimensional supercrystals with different Bravias lattices, and use them to analyze the possibility of engineering the supercrystals' band structure. We demonstrate that the variation of the supercrystal's parameters (such as the symmetry of the periodic lattice and the properties of the quantum dots or their environment) enables an unprecedented control over its optical properties, thus paving a way towards the development of new nanophotonics materials.

  15. Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses

    CERN Document Server

    Karni, Ouri; Eisenstein, Gadi; Ivanov, Vitalii; Reithmaier, Johann Peter

    2016-01-01

    We demonstrate the ability to control quantum coherent Rabi-oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) by shaping the light pulses that trigger them. The experiments described here show that when the excitation is resonant with the short wavelength slope of the SOA gain spectrum, a linear frequency chirp affects its ability to trigger Rabi-oscillations within the SOA: A negative chirp inhibits Rabi-oscillations whereas a positive chirp can enhance them, relative to the interaction of a transform limited pulse. The experiments are confirmed by a numerical calculation that models the propagation of the experimentally shaped pulses through the SOA.

  16. Single to quadruple quantum dots with tunable tunnel couplings

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Otsuka, T.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan)

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  17. Tuning the emission of CdSe quantum dots by controlled trap enhancement.

    Science.gov (United States)

    Baker, David R; Kamat, Prashant V

    2010-07-06

    Ligand exchange with 3-mercaptopropionic acid (MPA) has been successfully used to tune the emission intensity of trioctylphosphineoxide/dodecylamine-capped CdSe quantum dots. Addition of 3-mercaptopropionic acid (MPA) to CdSe quantum dot suspension enhances the deep trap emission with concurrent quenching of the band edge emission. The smaller sized quantum dots, because of larger surface/volume ratio, create a brighter trap emission and are more easily tuned. An important observation is that the deep trap emission which is minimal after synthesis is brightened to have a quantum yield of 1-5% and can be tuned based on the concentration of MPA in solution with the quantum dots. Photoluminescence decay and transient absorption measurements reveal the role of surface bound MPA in altering the photophysical properties of CdSe quantum dots.

  18. Resonant optical control of the spin of a single Cr atom in a quantum dot

    Science.gov (United States)

    Lafuente-Sampietro, A.; Utsumi, H.; Boukari, H.; Kuroda, S.; Besombes, L.

    2017-01-01

    A Cr atom in a semiconductor host carries a localized spin with an intrinsic large spin to strain coupling, which is particularly promising for the development of hybrid spin-mechanical systems and coherent mechanical spin driving. We demonstrate here that the spin of an individual Cr atom inserted in a semiconductor quantum dot can be controlled optically. We first show that a Cr spin can be prepared by resonant optical pumping. Monitoring the time dependence of the intensity of the resonant fluorescence of the quantum dot during this process permits us to probe the dynamics of the optical initialization of the Cr spin. Using this initialization and readout technique we measured a Cr spin relaxation time at T =5 K in the microsecond range. We finally demonstrate that, under a resonant single-mode laser field, the energy of any spin state of an individual Cr atom can be independently tuned by using the optical Stark effect.

  19. Optimal control of a charge qubit in a double quantum dot with a Coulomb impurity

    Science.gov (United States)

    Coden, Diego S. Acosta; Romero, Rodolfo H.; Ferrón, Alejandro; Gomez, Sergio S.

    2017-02-01

    We study the efficiency of modulated external electric pulses to produce efficient and fast charge localization transitions in a two-electron double quantum dot. We use a configuration interaction method to calculate the electronic structure of a quantum dot model within the effective mass approximation. The interaction with the electric field is considered within the dipole approximation and optimal control theory is applied to design high-fidelity ultrafast pulses in pristine samples. We assessed the influence of the presence of Coulomb charged impurities on the efficiency and speed of the pulses. A protocol based on a two-step optimization is proposed for preserving both advantages of the original pulse. The processes affecting the charge localization is explained from the dipole transitions of the lowest lying two-electron states, as described by a discrete model with an effective electron-electron interaction.

  20. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, S.

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  1. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang [State Key laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Wan, Ren-Gang [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China)

    2015-06-15

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process.

  2. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  3. Deterministic Photon Pairs and Coherent Optical Control of a Single Quantum Dot

    Science.gov (United States)

    Jayakumar, Harishankar; Predojević, Ana; Huber, Tobias; Kauten, Thomas; Solomon, Glenn S.; Weihs, Gregor

    2013-03-01

    The strong confinement of semiconductor excitons in a quantum dot gives rise to atomlike behavior. The full benefit of such a structure is best observed in resonant excitation where the excited state can be deterministically populated and coherently manipulated. Because of the large refractive index and device geometry it remains challenging to observe resonantly excited emission that is free from laser scattering in III/V self-assembled quantum dots. Here we exploit the biexciton binding energy to create an extremely clean single photon source via two-photon resonant excitation of an InAs/GaAs quantum dot. We observe complete suppression of the excitation laser and multiphoton emissions. Additionally, we perform full coherent control of the ground-biexciton state qubit and observe an extended coherence time using an all-optical echo technique. The deterministic coherent photon pair creation makes this system suitable for the generation of time-bin entanglement and experiments on the interaction of photons from dissimilar sources.

  4. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau-Zener-Stückelberg interference.

    Science.gov (United States)

    Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2013-01-01

    A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale [corrected], orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau-Zener-Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications.

  5. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference

    Science.gov (United States)

    Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2013-01-01

    A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale, orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau–Zener–Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications. PMID:23360992

  6. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  7. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small

  8. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  9. Control of transient gain absorption via tunneling and incoherent pumping in triple quantum dots

    Science.gov (United States)

    Tian, Si-Cong; Zhang, Xiao-Jun; Wan, Ren-Gang; Wang, Li-Jie; Shu, Shi-Li; Wang, Tao; Lu, Ze-Feng; Sun, Fang-Yuan; Tong, Cun-Zhu

    2017-01-01

    The transient gain-absorption properties of the probe field in vertical triple quantum dots assisted by double tunneling and incoherent pumping are investigated. With a proper intensity value and detuning of the second tunneling, the transient gain in triple quantum dots with incoherent pumping can be completely eliminated. In addition, the incoherent pumping affects both the amplitude of the transient absorption and the steady-state value. The dependence of transient behaviors on other parameters, such as the radiative decay rate and the pure dephasing decay rate of the quantum dots, is also discussed. The scheme may have important applications in quantum information networks and communication.

  10. Coherent optoelectronics with single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zrenner, A; Ester, P; Michaelis de Vasconcellos, S; Huebner, M C; Lackmann, L; Stufler, S [Universitaet Paderborn, Department Physik, Warburger Strasse 100, D-33098 Paderborn (Germany); Bichler, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)], E-mail: zrenner@mail.upb.de

    2008-11-12

    The optical properties of semiconductor quantum dots are in many respects similar to those of atoms. Since quantum dots can be defined by state-of-the-art semiconductor technologies, they exhibit long-term stability and allow for well-controlled and efficient interactions with both optical and electrical fields. Resonant ps excitation of single quantum dot photodiodes leads to new classes of coherent optoelectronic functions and devices, which exhibit precise state preparation, phase-sensitive optical manipulations and the control of quantum states by electrical fields.

  11. Coherent optoelectronics with single quantum dots

    Science.gov (United States)

    Zrenner, A.; Ester, P.; Michaelis de Vasconcellos, S.; Hübner, M. C.; Lackmann, L.; Stufler, S.; Bichler, M.

    2008-11-01

    The optical properties of semiconductor quantum dots are in many respects similar to those of atoms. Since quantum dots can be defined by state-of-the-art semiconductor technologies, they exhibit long-term stability and allow for well-controlled and efficient interactions with both optical and electrical fields. Resonant ps excitation of single quantum dot photodiodes leads to new classes of coherent optoelectronic functions and devices, which exhibit precise state preparation, phase-sensitive optical manipulations and the control of quantum states by electrical fields.

  12. On-chip electrically controlled routing of photons from a single quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, C.; Coles, R. J.; Royall, B.; O' Hara, J.; Prtljaga, N.; Fox, A. M.; Skolnick, M. S.; Wilson, L. R. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Itskevich, I. E., E-mail: I.Itskevich@hull.ac.uk [School of Engineering, University of Hull, Hull HU6 7RX (United Kingdom); Clarke, E. [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-06-01

    Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integrated quantum photonic circuits.

  13. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    Science.gov (United States)

    Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; Dutschke, Anke; Hoffmann, Björn; Chen, Xuewen; Christiansen, Silke; Buck, Matthew R.; Hollingsworth, Jennifer A.; Götzinger, Stephan; Sandoghdar, Vahid

    2017-01-01

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement with the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics. PMID:28195140

  14. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    CERN Document Server

    Matsuzaki, Korenobu; Liu, Hsuan-Wei; Dutschke, Anke; Hoffmann, Björn; Chen, Xuewen; Christiansen, Silke; Buck, Matthew R; Hollingsworth, Jennifer A; Götzinger, Stephan; Sandoghdar, Vahid

    2016-01-01

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other non-radiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60% and 70%, respectively, in very good agreement with the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.

  15. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    Science.gov (United States)

    Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; Dutschke, Anke; Hoffmann, Björn; Chen, Xuewen; Christiansen, Silke; Buck, Matthew R.; Hollingsworth, Jennifer A.; Götzinger, Stephan; Sandoghdar, Vahid

    2017-02-01

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement with the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.

  16. Quantum Computing with Electron Spins in Quantum Dots

    CERN Document Server

    Vandersypen, L M K; Van Beveren, L H W; Elzerman, J M; Greidanus, J S; De Franceschi, S; Kouwenhoven, Leo P

    2002-01-01

    We present a set of concrete and realistic ideas for the implementation of a small-scale quantum computer using electron spins in lateral GaAs/AlGaAs quantum dots. Initialization is based on leads in the quantum Hall regime with tunable spin-polarization. Read-out hinges on spin-to-charge conversion via spin-selective tunneling to or from the leads, followed by measurement of the number of electron charges on the dot via a charge detector. Single-qubit manipulation relies on a microfabricated wire located close to the quantum dot, and two-qubit interactions are controlled via the tunnel barrier connecting the respective quantum dots. Based on these ideas, we have begun a series of experiments in order to demonstrate unitary control and to measure the coherence time of individual electron spins in quantum dots.

  17. Conversion from Single Photon to Single Electron Spin Using Electrically Controllable Quantum Dots

    Science.gov (United States)

    Oiwa, Akira; Fujita, Takafumi; Kiyama, Haruki; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2017-01-01

    Polarization is a fundamental property of light and could provide various solutions to the development of secure optical communications with high capacity and high speed. In particular, the coherent quantum state conversion between single photons and single electron spins is a prerequisite for long-distance quantum communications and distributed quantum computation. Electrically defined quantum dots have already been proven to be suitable for scalable solid state qubits by demonstrations of single-spin coherent manipulations and two-qubit gate operations. Thus, their capacity for quantum information technologies would be considerably extended by the achievement of entanglement between an electron spin in the quantum dots and a photon. In this review paper, we show the basic technologies for trapping single electrons generated by single photons in quantum dots and for detecting their spins using the Pauli effect with sensitive charge sensors.

  18. Temperature and Magnetic Field Effects on the Transport Controlled Charge State of a Single Quantum Dot

    Directory of Open Access Journals (Sweden)

    Moskalenko ES

    2010-01-01

    Full Text Available Abstract Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier.

  19. Quantum-dot supercrystals for future nanophotonics

    Science.gov (United States)

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-01-01

    The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave functions of the supercrystals' collective excitations through the variation of different structural and material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon alterations in the quantum dot arrangement. This feature offers unprecedented control over the supercrystal's electromagnetic properties and enables the development of new nanophotonics materials and devices.

  20. Coherent control of a V-type three-level system in a single quantum dot.

    Science.gov (United States)

    Wang, Q Q; Muller, A; Cheng, M T; Zhou, H J; Bianucci, P; Shih, C K

    2005-10-28

    In a semiconductor quantum dot, the IIx and IIy transitions to the polarization eigenstates, |x> and |y>, naturally form a three-level V-type system. Using low-temperature polarized photoluminescence spectroscopy, we have investigated the exciton dynamics arising under strong laser excitation. We also explicitly solved the density matrix equations for comparison with the experimental data. The polarization of the exciting field controls the coupling between the otherwise orthogonal states. In particular, when the system is initialized into \\Y>, a polarization-tailored pulse can swap the population into |x>, and vice versa, effectively operating on the exciton spin.

  1. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the line

  2. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the

  3. Quantum dot nanostructures

    Directory of Open Access Journals (Sweden)

    Mohamed Henini

    2002-06-01

    These sophisticated technologies for the growth of high quality epitaxial layers of compound semiconductor materials on single crystal semiconductor substrates are becoming increasingly important for the development of the semiconductor electronics industry. This article is intended to convey the flavor of the subject by focusing on the technology and applications of self-assembled quantum dots (QDs and to give an introduction to some of the essential characteristics.

  4. Size-controlled synthesis of SnO{sub 2} quantum dots and their gas-sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jianping, E-mail: dujp518@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zhao, Ruihua [Shanxi Kunming Tobacco Limited Liability Company, Taiyuan 030012, Shanxi (China); Xie, Yajuan [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Li, Jinping, E-mail: jpli211@hotmail.com [Research Institute of Special Chemicals, Taiyuan University of Technology, Shanxi, 030024 (China)

    2015-08-15

    Graphical abstract: The gas-sensing property of quantum dots is related to their sizes. SnO{sub 2} quantum dots (TQDs) were synthesized and the sizes were controlled by a simple strategy. The results show that controlling QDs size is efficient to detect low-concentration hazardous volatile compounds selectively. - Highlights: • SnO{sub 2} quantum dots with controllable size were synthesized by hydrothermal route. • The sizes of SnO{sub 2} quantum dots (TQDs) were controlled by a simple strategy. • The responses to volatile chemicals strongly depend on the size of quantum dots. • Small-size TQDs exhibit a good selectivity and response to triethylamine. • Controlling size is efficient to detect low-concentration toxic gases selectively. - Abstract: Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV–vis and Raman spectrometry. The as-synthesized SnO{sub 2} shows the characteristics of quantum dots and the narrowest size distribution is about 2–3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO{sub 2} quantum dots to detect low

  5. Orbital Topology Controlling Charge Injection in Quantum-Dot-Sensitized Solar Cells.

    Science.gov (United States)

    Hansen, Thorsten; Žídek, Karel; Zheng, Kaibo; Abdellah, Mohamed; Chábera, Pavel; Persson, Petter; Pullerits, Tõnu

    2014-04-03

    Quantum-dot-sensitized solar cells are emerging as a promising development of dye-sensitized solar cells, where photostable semiconductor quantum dots replace molecular dyes. Upon photoexcitation of a quantum dot, an electron is transferred to a high-band-gap metal oxide. Swift electron transfer is crucial to ensure a high overall efficiency of the solar cell. Using femtosecond time-resolved spectroscopy, we find the rate of electron transfer to be surprisingly sensitive to the chemical structure of the linker molecules that attach the quantum dots to the metal oxide. A rectangular barrier model is unable to capture the observed variation. Applying bridge-mediated electron-transfer theory, we find that the electron-transfer rates depend on the topology of the frontier orbital of the molecular linker. This promises the capability of fine tuning the electron-transfer rates by rational design of the linker molecules.

  6. Quantum Computer Using Coupled Quantum Dot Molecules

    CERN Document Server

    Wu, N J; Natori, A; Yasunaga, H; Wu*, Nan-Jian

    1999-01-01

    We propose a method for implementation of a quantum computer using artificial molecules. The artificial molecule consists of two coupled quantum dots stacked along z direction and one single electron. One-qubit and two-qubit gates are constructed by one molecule and two coupled molecules, respectively.The ground state and the first excited state of the molecule are used to encode the |0> and |1> states of a qubit. The qubit is manipulated by a resonant electromagnetic wave that is applied directly to the qubit through a microstrip line. The coupling between two qubits in a quantum controlled NOT gate is switched on (off) by floating (grounding) the metal film electrodes. We study the operations of the gates by using a box-shaped quantum dot model and numerically solving a time-dependent Schridinger equation, and demonstrate that the quantum gates can perform the quantum computation. The operating speed of the gates is about one operation per 4ps. The reading operation of the output of the quantum computer can...

  7. Origin and control of blinking in quantum dots.

    Science.gov (United States)

    Efros, Alexander L; Nesbitt, David J

    2016-08-03

    Semiconductor nanocrystals offer an enormous diversity of potential device applications, based on their size-tunable photoluminescence, high optical stability and 'bottom-up' chemical approaches to self-assembly. However, the promise of such applications can be seriously limited by photoluminescence intermittency in nanocrystal emission, that is, 'blinking', arising from the escape of either one or both of the photoexcited carriers to the nanocrystal surface. In the first scenario, the remaining nanocrystal charge quenches photoluminescence via non-radiative Auger recombination, whereas for the other, the exciton is thought to be intercepted before thermalization and does not contribute to the photoluminescence. This Review summarizes the current understanding of the mechanisms responsible for nanocrystal blinking kinetics as well as core-shell engineering efforts to control such phenomena. In particular, 'softening' of the core-shell confinement potential strongly suppresses non-radiative Auger processes in charged nanocrystals, with successful non-blinking implementations demonstrated in CdSe-CdS core-thick-shell nanocrystals and their modifications.

  8. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  9. Amplification Without Inversion in Semiconductor Quantum Dot

    Science.gov (United States)

    Hajibadali, A.; Abbasian, K.; Rostami, A.

    In this paper, we have realized amplification without inversion (AWI) in quantum dot (QD). A Y-type four-level system of InxGa1-xN quantum dot has been obtained and investigated for AWI. It has been shown that, with proper setting of control fields' amplitude, we can obtain reasonable gain. With proper setting of phase difference of control fields and probe field, we can obtain considerable gain in resonant wavelength. We have designed this system by solving the Schrödinger-Poisson equations for InxGa1-xN quantum dot in GaN substrate, self-consistently.

  10. Electron correlations in quantum dots

    CERN Document Server

    Tipton, D L J

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining p...

  11. Enhanced Cross-Phase Modulation via Phase Control in a Quantum dot Nanostructure

    Institute of Scientific and Technical Information of China (English)

    郝向英; 郑安寿; 王英; 李小刚

    2012-01-01

    A four-level quantum dot (QD) nanostructure interacting with four fields (two weak near-infrared (NIR) pulses and two control fields) forms the well-known double-cascade configuration.We investigate the cross-phase modulation (XPM) between the two NIR pulses.The results show,in such a closed-loop scheme,that the XPM can be greatly enhanced,while the linear absorption and two-photon absorption (gain) can be efficiently depressed by tuning the relative phase among the applied fields.This protocol may have potential applications in NIR all-optical switch design and quantum information processing with the solid-state materials.

  12. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  13. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.

    Science.gov (United States)

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-02-07

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.

  14. Optical control of the spin of a magnetic atom in a semiconductor quantum dot

    Directory of Open Access Journals (Sweden)

    Besombes L.

    2015-04-01

    Full Text Available The control of single spins in solids is a key but challenging step for any spin-based solid-state quantumcomputing device. Thanks to their expected long coherence time, localized spins on magnetic atoms in a semiconductor host could be an interesting media to store quantum information in the solid state. Optical probing and control of the spin of individual or pairs of Manganese (Mn atoms (S = 5/2 have been obtained in II-VI and IIIV semiconductor quantum dots during the last years. In this paper, we review recently developed optical control experiments of the spin of an individual Mn atoms in II-VI semiconductor self-assembled or strain-free quantum dots (QDs.We first show that the fine structure of the Mn atom and especially a strained induced magnetic anisotropy is the main parameter controlling the spin memory of the magnetic atom at zero magnetic field. We then demonstrate that the energy of any spin state of a Mn atom or pairs of Mn atom can be independently tuned by using the optical Stark effect induced by a resonant laser field. The strong coupling with the resonant laser field modifies the Mn fine structure and consequently its dynamics.We then describe the spin dynamics of a Mn atom under this strong resonant optical excitation. In addition to standard optical pumping expected for a resonant excitation, we show that the Mn spin population can be trapped in the state which is resonantly excited. This effect is modeled considering the coherent spin dynamics of the coupled electronic and nuclear spin of the Mn atom optically dressed by a resonant laser field. Finally, we discuss the spin dynamics of a Mn atom in strain-free QDs and show that these structures should permit a fast optical coherent control of an individual Mn spin.

  15. Single-photon emission from InAsP quantum dots embedded in density-controlled InP nanowires

    Science.gov (United States)

    Yanase, Shougo; Sasakura, Hirotaka; Hara, Shinjiro; Motohisa, Junichi

    2017-04-01

    We attempted to control the density and size of InP-based nanowires (NWs) and nanowire quantum dots (NW-QDs) during selective-area metalorganic vapor phase epitaxy. InP nanowire arrays with a 5 µm pitch and an average NW diameter d of 67 nm were successfully grown by optimization of growth conditions. InAsP quantum dots were embedded in these density-controlled InP NW arrays, and clear single-photon emission and exciton-biexciton cascaded emission were confirmed by excitation-dependent photoluminescence and photon correlation measurements.

  16. Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy.

    Science.gov (United States)

    Schramm, A; Tommila, J; Strelow, C; Hakkarainen, T V; Tukiainen, A; Dumitrescu, M; Mews, A; Kipp, T; Guina, M

    2012-05-04

    We present the growth of single, site-controlled InAs quantum dots on GaAs templates using UV-nanoimprint lithography and molecular beam epitaxy. A large quantum dot array with a period of 1.5 µm was achieved. Single quantum dots were studied by steady-state and time-resolved micro-photoluminescence experiments. We obtained single exciton emission with a linewidth of 45 µeV. In time-resolved experiments, we observed decay times of about 670 ps. Our results underline the potential of nanoimprint lithography and molecular beam epitaxy to create large-scale, single quantum dot arrays.

  17. Quantum dots with single-atom precision.

    Science.gov (United States)

    Fölsch, Stefan; Martínez-Blanco, Jesús; Yang, Jianshu; Kanisawa, Kiyoshi; Erwin, Steven C

    2014-07-01

    Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.

  18. Spin transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A.T. da Cunha; Anda, Enrique V. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2003-07-01

    Full text: We investigate the spin polarized transport properties of a nanoscopic device constituted by a quantum dot connected to two leads. The electrical current circulates with a spin polarization that is modulated via a gate potential that controls the intensity of the spin-orbit coupling, the Rashba effect. We study a polarized field-effect transistor when one of its parts is constituted by a small quantum dot, which energies are controlled by another gate potential operating inside the confined region. The high confinement and correlation suffered by the charges inside the dot gives rise to novel phenomena. We show that through the manipulation of the gate potential applied to the dot it is possible to control, in a very efficient way, the intensity and polarization of the current that goes along the system. Other crucial parameters to be varied in order to understand the behavior of this system are the intensity of the external applied electric and magnetic field. The system is represented by the Anderson Impurity Hamiltonian summed to a spin-orbit interaction, which describes the Rashba effect. To obtain the current of this out-of-equilibrium system we use the Keldysh formalism.The solution of the Green function are compatible with the Coulomb blockade regime. We show that under the effect of a external magnetic field, if the dot is small enough the device operates as a complete spin filter that can be controlled by the gate potential. The behavior of this device when it is injected into it a polarized current and modulated by the Rashba effect is as well studied. (author)

  19. Controlling Photon Echo in a Quantum-Dot Semiconductor Optical Amplifier Using Shaped Excitation

    Science.gov (United States)

    Mishra, A. K.; Karni, O.; Khanonkin, I.; Eisenstein, G.

    2017-05-01

    Two-pulse photon-echo-based quantum-memory applications require a precise control over the echo strength and appearance time. We describe a numerical investigation of observation and control of photon echo in a room-temperature InAs /InP -based quantum-dot (QD) semiconductor optical amplifier (SOA). We address an important case where the spectral excitation is narrower than the inhomogeneous broadening of the SOA. It is revealed that, in such a QD SOA, the amplitude of the echo pulse depends not only on the excitation-to-rephasing pulse temporal separation but also on the interference among the rephrasing pulse and the echo pulses generated during the propagation along the amplifier. More importantly, the appearance time and amplitude of the echo pulse can be precisely controlled by shaping the first (excitation) pulse. We also assert that deviations in the echo pulse stemming from the SOA gain inhomogeneity can be compensated for so as to be utilized in quantum coherent information processing.

  20. Plasmonic Control of Radiation and Absorption Processes in Semiconductor Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Paiella, Roberto [Boston Univ., MA (United States); Moustakas, Theodore D. [Boston Univ., MA (United States)

    2017-07-31

    This document reviews a research program funded by the DOE Office of Science, which has been focused on the control of radiation and absorption processes in semiconductor photonic materials (including III-nitride quantum wells and quantum dots), through the use of specially designed metallic nanoparticles (NPs). By virtue of their strongly confined plasmonic resonances (i.e., collective oscillations of the electron gas), these nanostructures can concentrate incident radiation into sub-wavelength “hot spots” of highly enhanced field intensity, thereby increasing optical absorption by suitably positioned absorbers. By reciprocity, the same NPs can also dramatically increase the spontaneous emission rate of radiating dipoles located within their hot spots. The NPs can therefore be used as optical antennas to enhance the radiation output of the underlying active material and at the same time control the far-field pattern of the emitted light. The key accomplishments of the project include the demonstration of highly enhanced light emission efficiency as well as plasmonic collimation and beaming along geometrically tunable directions, using a variety of plasmonic excitations. Initial results showing the reverse functionality (i.e., plasmonic unidirectional absorption and photodetection) have also been generated with similar systems. Furthermore, a new paradigm for the near-field control of light emission has been introduced through rigorous theoretical studies, based on the use of gradient metasurfaces (i.e., optical nanoantenna arrays with spatially varying shape, size, and/or orientation). These activities have been complemented by materials development efforts aimed at the synthesis of suitable light-emitting samples by molecular beam epitaxy. In the course of these efforts, a novel technique for the growth of III-nitride quantum dots has also been developed (droplet heteroepitaxy), with several potential advantages in terms of compositional and geometrical

  1. Controlling of Goos-Hänchen shift via biexciton coherence in a quantum dot

    Science.gov (United States)

    Asadpour, S. H.; Nasehi, R.; Mahmoudi, M.; Soleimani, H. R.

    2015-04-01

    Controlling of the Goos-Hänchen (GH) shifts of the reflected and transmitted probe pulses through a cavity containing four-level GaAs/AlGaAs quantum dot with 15 periods of 17.5 nm GaAs wells and 25-nm Al0.3Ga0.7As barriers is investigated. Under appropriate conditions, the probe absorption can be converted to the probe gain, therefore, the controlling of negative and positive GH shift in the both reflected and transmitted probe beams can be occurred simultaneously. Our obtained results show that the group index of the probe beams could be negative or positive in both reflected and transmitted pulses. Therefore, simultaneous subluminal or superluminal light propagation in reflected and transmitted pulses can be achieved.

  2. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot.

    Science.gov (United States)

    Holmes, Mark J; Choi, Kihyun; Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2014-02-12

    We demonstrate triggered single photon emission at room temperature from a site-controlled III-nitride quantum dot embedded in a nanowire. Moreover, we reveal a remarkable temperature insensitivity of the single photon statistics, and a g((2))[0] value at 300 K of just 0.13. The combination of using high-quality, small, site-controlled quantum dots with a wide-bandgap material system is crucial for providing both sufficient exciton confinement and an emission spectrum with minimal contamination in order to enable room temperature operation. Arrays of such single photon emitters will be useful for room-temperature quantum information processing applications such as on-chip quantum communication.

  3. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  4. Degree of supersaturation: An effective tool to control the luminescence efficiency and size distribution in CdTe quantum dots

    Science.gov (United States)

    Kumar, Indrajit; Priyam, Amiya; Choubey, Ravi Kant

    2013-06-01

    Supersaturation controlled synthesis of thioglycollic acid (TGA) capped CdTe quantum dots in aqueous medium has been carried out. With a four-fold increase in the degree of supersaturation, the photoluminescence quantum efficiency of the nanoparticles was enhanced more than five times to a remarkably high value of 46%. This was accompanied by concomitant narrowing of the size distribution of the QDs. The simplified approach obviates the need for post-preparative treatments to improve the particle characteristics.

  5. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids

    NARCIS (Netherlands)

    Boehme, Simon C.; Walvis, T. Ardaan; Infante, Ivan; Grozema, Ferdinand C.; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J.

    2014-01-01

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We

  6. Full control of quadruple quantum dot circuit charge states in the single electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, M. R., E-mail: matthieu.delbecq@riken.jp; Nakajima, T.; Otsuka, T.; Amaha, S. [RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan); Watson, J. D. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, M. J. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Tarucha, S. [RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan); Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-05-05

    We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model.

  7. Engineering quantum dots for electrical control of the fine structure splitting

    Science.gov (United States)

    Pooley, M. A.; Bennett, A. J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2013-07-01

    We have studied the variation in fine-structure splitting (FSS) under application of vertical electric field in a range of quantum dots grown by different methods. In each sample, we confirm that this energy splitting changes linearly over the field range we can access. We conclude that this linear tuning is a general feature of self-assembled quantum dots, observed under different growth conditions, emission wavelengths, and in different material systems. Statistical measurements of characteristic parameters such as emission energy, Stark shift, and FSS tuning are presented which may provide a guide for future attempts to increase the yield of quantum dots that can be tuned to a minimal value of FSS with vertical electric field.

  8. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

    Science.gov (United States)

    Weiss, Emily A

    2013-11-19

    In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this

  9. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  10. Gate-controlled spin splitting in quantum dots with ferromagnetic leads in the Kondo regime

    Science.gov (United States)

    Martinek, J.; Sindel, M.; Borda, L.; Barnaś, J.; Bulla, R.; König, J.; Schön, G.; Maekawa, S.; von Delft, J.

    2005-09-01

    The effect of a gate voltage ( Vg ) on the spin splitting of an electronic level in a quantum dot (QD) attached to ferromagnetic leads is studied in the Kondo regime using a generalized numerical renormalization group technique. We find that the Vg dependence of the QD level spin splitting strongly depends on the shape of the density of states (DOS). For one class of DOS shapes there is nearly no Vg dependence; for another, Vg can be used to control the magnitude and sign of the spin splitting, which can be interpreted as a local exchange magnetic field. We find that the spin splitting acquires a new type of logarithmic divergence. We give an analytical explanation for our numerical results and explain how they arise due to spin-dependent charge fluctuations.

  11. Conditions for entangled photon emission from (111)B site-controlled pyramidal quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Juska, G., E-mail: gediminas.juska@tyndall.ie; Murray, E.; Dimastrodonato, V.; Chung, T. H.; Moroni, S. T.; Gocalinska, A.; Pelucchi, E. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

    2015-04-07

    A study of highly symmetric site-controlled pyramidal In{sub 0.25}Ga{sub 0.75}As quantum dots (QDs) is presented. It is discussed that polarization-entangled photons can be also obtained from pyramidal QDs of different designs from the one already reported in Juska et al. [Nat. Photonics 7, 527 (2013)]. Moreover, some of the limitations for a higher density of entangled photon emitters are addressed. Among these issues are (1) a remaining small fine-structure splitting and (2) an effective QD charging under non-resonant excitation conditions, which strongly reduce the number of useful biexciton-exciton recombination events. A possible solution of the charging problem is investigated exploiting a dual-wavelength excitation technique, which allows a gradual QD charge tuning from strongly negative to positive and, eventually, efficient detection of entangled photons from QDs, which would be otherwise ineffective under a single-wavelength (non-resonant) excitation.

  12. Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene.

    Science.gov (United States)

    Lee, Jiye; Bao, Wei; Ju, Long; Schuck, P James; Wang, Feng; Weber-Bargioni, Alexander

    2014-12-10

    Electrically controlling resonant energy transfer of optical emitters provides a novel mechanism to switch nanoscale light sources on and off individually for optoelectronic applications. Graphene's optical transitions are tunable through electrostatic gating over a broad wavelength spectrum, making it possible to modulate energy transfer from a variety of nanoemitters to graphene at room temperature. We demonstrate photoluminescence switching of individual colloidal quantum dots by electrically tuning their energy transfer to graphene. The gate dependence of energy transfer modulation confirms that the transition occurs when the Fermi level is shifted over half the emitter's excitation energy. The modulation magnitude decreases rapidly with increasing emitter-graphene distance (d), following the 1/d(4) rate trend unique to the energy transfer process to two-dimensional materials.

  13. High-performance controllable ambipolar infrared phototransistors based on graphene-quantum dot hybrid

    CERN Document Server

    Wang, Ran; Wang, Haiyang; Song, Xiaoxian; Jin, Lufan; Dai, Haitao; Wu, Sen; Yao, Jianquan

    2014-01-01

    The field effect transistors (FETs) exhibited ultrahigh responsivity (107 A/W) to infrared light with great improvement of mobility in graphene / PbS quantum dot (QD) hybrid. These reported transistors are either unipolar or depletion mode devices. In this paper, we presented and fabricated conveniently-controlled grapheme / PbS QD hybrid FETs. Through the investigation on electric and optoelectronic properties, the ambipolar FETs (normally OFF) can be switched ON by raising gate voltage (VG) up to 3.7 V and -0.8 V in the first and third quadrants. Near these thresholds (VT) each carrier species shows comparable mobility (~ 300 cm2V-1s-1). Photo-responsivity reach ~ 107 A/W near each threshold and it will linearly increases with (VG-VT). These hybrid FETs become strongly competitive candidates for devices in flexible integrated circuits with low cost, large area, low-energy consumption and high performances.

  14. Quantum Dots Investigated for Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  15. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells.

    Science.gov (United States)

    Kolay, Ankita; Kumar, P Naresh; Kumar, Sarode Krishna; Deepa, Melepurath

    2017-02-08

    Charge transfer at the TiO2/quantum dots (QDs) interface, charge collection at the TiO2/QDs/current collector (FTO or SnO2:F) interface, and back electron transfer at the TiO2/QDs/S(2-) interface are processes controlled by the electron transport layer or TiO2. These key processes control the power conversion efficiencies (PCEs) of quantum dot solar cells (QDSCs). Here, four TiO2 morphologies, porous nanoparticles (PNPs), nanowires (NWs), nanosheets (NSHs) and nanoparticles (NPs), were sensitized with CdS and the photovoltaic performances were compared. The marked differences in the cell parameters on going from one morphology to the other have been explained by correlating the shape, structure and the above-described interfacial properties of a given TiO2 morphology to the said parameters. The average magnitudes of PCEs follow the order: NWs (5.96%) > NPs (4.95%) > PNPs (4.85%) > NSHs (2.5%), with the champion cell based on NWs exhibiting a PCE of 6.29%. For NWs, an optimal balance between the fast photo-excited electron injection to NWs at the NW/CdS interface, the high resistance offered at the TiO2 NW/CdS/S(2-) interfaces to electron recombination with the oxidized electrolyte or with the holes in CdS, the low electron transport resistance in NWs, and low dark currents, yields the highest efficiency due to directional unhindered transport of electrons afforded by the NWs. For NSHs, electron trapping in the two dimensional sheets, and a high electron recombination rate prevent the effective transfer of electrons to FTO, thus reducing short circuit current density significantly, resulting in a poor performance. This study provides a deep understanding of charge transfer, transport and collection processes necessary for the design of efficient QDSCs.

  16. Beyond the heteroepitaxial quantum dot : self-assembling complex nanostructures controlled by strain and growth kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Peter (Brookhaven National Laboratory, Upton, NY); Lam, Chi-Hang (Hong Kong Polytechnic University, Hong Kong); Gray, Jennifer Lynn (University of Virginia, Charlottesville, VA); Means, Joel L. (Texas A& M University, College Station, TX); Floro, Jerrold Anthony; Hull, Robert (University of Virginia, Charlottesville, VA)

    2005-06-01

    Heteroepitaxial growth of GeSi alloys on Si (001) under deposition conditions that partially limit surface mobility leads to an unusual form of strain-induced surface morphological evolution. We discuss a kinetic growth regime wherein pits form in a thick metastable wetting layer and, with additional deposition, evolve to a quantum dot molecule - a symmetric assembly of four quantum dots bound by the central pit. We discuss the size selection and scaling of quantum dot molecules. We then examine the key mechanism - preferred pit formation - in detail, using ex situ atomic force microscopy, in situ scanning tunneling microscopy, and kinetic Monte Carlo simulations. A picture emerges wherein localized pits appear to arise from a damped instability. When pits are annealed, they extend into an array of highly anisotropic surface grooves via a one-dimensional growth instability. Subsequent deposition on this grooved film results in a fascinating structure where compact quantum dots and molecules, as well as highly ramified quantum wires, are all simultaneously self-assembled.

  17. Quantum dots: Rethinking the electronics

    Science.gov (United States)

    Bishnoi, Dimple

    2016-05-01

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  18. Composition-controlled optical properties of colloidal CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ayele, Delele Worku [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Department of Chemistry, Bahir Dar University, Bahir Dar (Ethiopia); Su, Wei-Nien, E-mail: wsu@mail.ntust.edu.tw [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chou, Hung-Lung [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Chun-Jern [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Hwang, Bing-Joe, E-mail: bjh@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China)

    2014-12-15

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties.

  19. Electron Spins in Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  20. Control of valley dynamics in silicon quantum dots in the presence of an interface step

    Science.gov (United States)

    Boross, Péter; Széchenyi, Gábor; Culcer, Dimitrie; Pályi, András

    2016-07-01

    Recent experiments on silicon nanostructures have seen breakthroughs toward scalable, long-lived quantum information processing. The valley degree of freedom plays a fundamental role in these devices, and the two lowest-energy electronic states of a silicon quantum dot can form a valley qubit. In this paper, we show that a single-atom high step at the silicon/barrier interface induces a strong interaction of the qubit and in-plane electric fields and that the strength of this interaction can be controlled by varying the relative position of the electron and the step. We analyze the consequences of this enhanced interaction on the dynamics of the qubit. The charge densities of the qubit states are deformed differently by the interface step, allowing nondemolition qubit readout via valley-to-charge conversion. A gate-induced in-plane electric field together with the interface step enables fast control of the valley qubit via electrically driven valley resonance. We calculate single- and two-qubit gate times, as well as relaxation and dephasing times, and present predictions for the parameter range where the gate times can be much shorter than the relaxation time and dephasing is reduced.

  1. Controllable delay of ultrashort pulses in a quantum dot optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optical and electrical tuning of the propagation time of 170 fs pulses in a quantum dot semiconductor amplifier at room temperature is demonstrated. Both pulse slowdown and advancement is possible and we achieve fractional delays (delay divided with pulse duration) of up to 40%. The results...

  2. Using Local Perturbations To Manipulate and Control Pointer States in Quantum Dot Systems

    Science.gov (United States)

    Akis, Richard; Speyer, Gil; Ferry, David; Brunner, Roland

    2012-02-01

    Recently, scanning gate microscopy (SGM) was used to image scarred wave functions in an open InAs quantum dot[1]. The SGM tip provides a local potential perturbation and imaging is performed by measuring changes in conductance. Scarred wave functions, long associated with quantum chaos, have been shown in open dots to correspond to pointer states[2], eigenstates that survive the decoherence process that occurs via coupling to the environment. Pointer states modulate the conductance, yielding periodic fluctuations and the scars, normally thought unstable, are stabilized by quantum Darwinism [3]. We shall show that, beyond probing, pointer states can be manipulated by local perturbations. Particularly interesting effects occur in coupled quantum dot arrays, where a pointer state localized in one dot can be shifted over into another with a perturbation in a completely different part of the system. These nonlocal effects may perhaps be exploited to give such systems an exotic functionality. [1] A. M. Burke, R. Akis, T. E. Day, Gil Speyer, D. K. Ferry, and B. R. Bennett, Phys. Rev. Lett. 104, 176801 (2010). [2] D. K. Ferry, R. Akis, and J. P. Bird, Phys. Rev. Lett. 104, 176801 (2004). [3] R. Brunner, R. Akis,D. K. Ferry, F. Kuchar,and R. Meisels, Phys. Rev. Lett. 101, 024102 (2008).

  3. Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts

    Science.gov (United States)

    Hauptmann, J. R.; Paaske, J.; Lindelof, P. E.

    2008-05-01

    Manipulation of the spin states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin filters, spin transistors and single spin memories as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the quantum dot becomes spin polarized by the local exchange field. Here, we report on the experimental realization of this tunnelling-induced spin splitting in a carbon-nanotube quantum dot coupled to ferromagnetic nickel electrodes with a strong tunnel coupling ensuring a sizeable exchange field. As charge transport in this regime is dominated by the Kondo effect, we can use this sharp many-body resonance to read off the local spin polarization from the measured bias spectroscopy. We demonstrate that the exchange field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo resonance, and we demonstrate that the exchange field itself, and hence the local spin polarization, can be tuned and reversed merely by tuning the gate voltage.

  4. Controlled suppression of the photoluminescence superlinear dependence on excitation density in quantum dots.

    Science.gov (United States)

    Bietti, Sergio; Sanguinetti, Stefano

    2012-10-04

    : We have shown that it is possible to tune, up to complete suppression, the photoluminescence superlinear dependence on the excitation density in quantum dot samples at high temperatures by annealing treatments. The effect has been attributed to the reduction of the defectivity of the material induced by annealing.

  5. Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity

    Energy Technology Data Exchange (ETDEWEB)

    Jarlov, C., E-mail: clement.jarlov@epfl.ch; Lyasota, A.; Ferrier, L.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E. [Laboratory of Physics of Nanostructures, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-11-09

    Exciton and cavity mode (CM) dynamics in site-controlled pyramidal quantum dots (QDs), integrated with linear photonic crystal membrane cavities, are investigated for a range of temperatures and photo-excitation power levels. The absence of spurious multi-excitonic effects, normally observed in similar structures based on self-assembled QDs, permits the observation of effects intrinsic to two-level systems embedded in a solid state matrix and interacting with optical cavity modes. The coupled exciton and CM dynamics follow the same trend, indicating that the CM is fed only by the exciton transition. The Purcell reduction of the QD and CM decay times is reproduced well by a theoretical model that includes exciton linewidth broadening and temperature dependent non-radiative processes, from which we extract a Purcell factor of 17 ± 5. For excitation powers above QD saturation, we show the influence of quantum wire barrier states at short delay time, and demonstrate the absence of multiexcitonic background emission.

  6. Site-controlled and advanced epitaxial Ge/Si quantum dots: fabrication, properties, and applications

    Science.gov (United States)

    Brehm, Moritz; Grydlik, Martyna

    2017-09-01

    In this review, we report on fabrication paths, challenges, and emerging solutions to integrate group-IV epitaxial quantum dots (QDs) as active light emitters into the existing standard Si technology. Their potential as laser gain material for the use of optical intra- and inter-chip interconnects as well as possibilities to combine a single-photon-source-based quantum cryptographic means with Si technology will be discussed. We propose that the mandatory addressability of the light emitters can be achieved by a combination of organized QD growth assisted by templated self-assembly, and advanced inter-QD defect engineering to boost the optical emissivity of group-IV QDs at room-temperature. Those two main parts, the site-controlled growth and the light emission enhancement in QDs through the introduction of single defects build the main body of the review. This leads us to a roadmap for the necessary further development of this emerging field of CMOS-compatible group-IV QD light emitters for on-chip applications.

  7. Quantum dots in cell biology.

    Science.gov (United States)

    Barroso, Margarida M

    2011-03-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.

  8. Hydrophobin-Encapsulated Quantum Dots.

    Science.gov (United States)

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  9. Quantum Dots in Cell Biology

    OpenAIRE

    Barroso, Margarida M.

    2011-01-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated t...

  10. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  11. Tailoring Magnetism in Quantum Dots

    Science.gov (United States)

    Zutic, Igor; Abolfath, Ramin; Hawrylak, Pawel

    2007-03-01

    We study magnetism in magnetically doped quantum dots as a function of particle numbers, temperature, confining potential, and the strength of Coulomb interaction screening. We show that magnetism can be tailored by controlling the electron-electron Coulomb interaction, even without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at substantially higher temperatures than in the non-interacting case or in the bulk-like dilute magnetic semiconductors. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations. Cond-mat/0612489. [1] R. Abolfath, P. Hawrylak, I. Zuti'c, preprint.

  12. Growth and structural characterization of pyramidal site-controlled quantum dots with high uniformity and spectral purity

    CERN Document Server

    Dimastrodonato, Valeria; Young, Robert J; Pelucchi, Emanuele

    2010-01-01

    This work presents some fundamental features of pyramidal site-controlled InGaAs Quantum Dots (QDs) grown by MetalOrganic Vapour Phase Epitaxy on patterned GaAs (111)B substrate. The dots self-form inside pyramidal recesses patterned on the wafer via pre-growth processing. The major advantage of this growth technique is the control it provides over the dot nucleation posi-tion and the dimensions of the confined structures onto the sub-strate. The fundamental steps of substrate patterning and the QD forma-tion mechanism are described together with a discussion of the structural particulars. The post-growth processes, including sur-face etching and substrate removal, which are required to facili-tate optical characterization, are discussed. With this approach extremely high uniformity and record spectral purity are both achieved.

  13. Single quantum dots fundamentals, applications, and new concepts

    CERN Document Server

    2003-01-01

    This book reviews recent advances in the exciting and rapid growing field of semiconductor quantum dots by contributions from some of the most prominent researchers in the field. Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons. Single Quantum Dots also addresses various growth techniques as well as potential device applications such as quantum dot lasers, and new concepts like a single-photon source, and a single quantum dot laser.

  14. Controlling the cytotoxicity of CdSe magic-sized quantum dots as a function of surface defect density.

    Science.gov (United States)

    Silva, Anielle Christine Almeida; Silva, Marcelo José Barbosa; da Luz, Felipe Andrés Cordero; Silva, Danielle Pereira; de Deus, Samantha Luara Vieira; Dantas, Noelio Oliveira

    2014-09-10

    Quantum dots are potentially very useful as fluorescent probes in biological systems. However, they are inherently cytotoxic because of their constituents. We controlled the cytotoxicity of CdSe magic-sized quantum dots (MSQDs) as a function of surface defect density by altering selenium (Se) concentration during synthesis. Higher Se concentrations reduced the cytotoxicity of the CdSe MSQDs and diminished mRNA expression of methallothionein because of the low cadmium ions (Cd(2+)) concentration adsorbed on the surface of the MSQDs. These results agree with luminescence spectra, which show that higher Se concentrations decrease the density of surface defects. Therefore, our results describe for the first time a simple way of controlling the cytotoxicity of CdSe MSQDs and making them safer to use as fluorescence probes in biological systems.

  15. Optical control and determination of charge in self-assembled quantum dots

    Science.gov (United States)

    Korkusinski, M.; Hawrylak, P.; Babinski, A.; Potemski, M.; Raymond, S.; Lapointe, J.; Wasilewski, Z.

    2007-03-01

    We present a theory and experiment allowing for optical control of charge in a single InAs/GaAs quantum dot (QD) in magnetic fields up to 23 T [1]. The charge is controlled by excitation energy and power and is determined by comparing the experimental PL spectra of the QD to the ones calculated for N electrons and one hole using the parabolic confinement and the CI technique for many-carrier states. The number N is determined from the characteristic features in PL [2]. For N=4 electrons in low fields the degenerate p shell is half-filled and the system is in a triplet state. At larger fields the degeneracy is removed and a triplet-singlet transition occurs. This transition is seen as a discontinuity in the magnetic-field dependence of PL lines. In even higher fields, electrons increase their polarization through spin-flip transitions, which also leads to discontinuities of the PL spectra. Also, as the magnetic moment of electrons increases, the electron-hole exchange leads to the appearance of multiple PL lines. [1] A. Babinski et al, Physica E 26, 190 (2005) [2] A. Wojs and P. Hawrylak, Phys. Rev. B 55, 13066 (1997)

  16. Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slab

    CERN Document Server

    Lobanov, S V; Gippius, N A; Maksimov, A A; Filatov, E V; Tartakovskii, I I; Kulakovskii, V D; Weiss, T; Schneider, C; Geßler, J; Kamp, M; Höfling, S

    2015-01-01

    Polarization properties of the emission have been investigated for quantum dots embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the waveguide layer has been shown to result in a high circular polarization degree $\\rho_c$ of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of $|\\rho_c|$ is predicted to exceed 98%. The experimentally achieved value of $|\\rho_c|=81$% is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretic...

  17. Optically active quantum dots

    Science.gov (United States)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  18. Controlling of group velocity via terahertz signal radiation in a defect medium doped by four-level InGaN/GaN quantum dot nanostructure

    Science.gov (United States)

    Jafarzadeh, Hossein; Sangachin, Elnaz Ahmadi; Asadpour, Seyyed Hossein

    2015-07-01

    In this paper, we propose a novel scheme for controlling the group velocity of transmitted and reflected pulse from defect medium doped with four-level InGaN/GaN quantum dot nanostructure. Quantum dot nanostructure is designed numerically by Schrödinger and Poisson equations which solve self consistently. By size control of quantum dot and external voltage, one can design a four-level quantum dot with appropriate energy levels which can be suitable for controlling the group velocity of pulse transmission and reflection from defect slab with terahertz signal field. It is found that in the presence and absence of terahertz signal field the behaviors of transmission and reflection pulses are completely different. Moreover, it is shown that for strong terahertz signal field, by changing the thickness of the slab, simultaneous peak and dip for transmission and reflection pulse are obtained.

  19. Polarization controlled emission from closely stacked InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, Masaya; Takahashi, Akihiro; Ueda, Tatsuya; Yusuke, Bessho; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2013-11-15

    We have controlled the electronic states of closely-stacked InAs/GaAs quantum dots with a 4.0 nm spacer layer and investigated the optical gain characteristics. With an increase in the stacking-layer number (SLN), the [001] transverse-magnetic (TM) polarization component increases as well as the linear polarization anisotropy in the (001) plane becomes remarkable. These SLN-dependent polarization characteristics result from the valence-band mixing induced by the vertically-coupled electronic states in stacked QDs. We have systematically studied polarized electroluminescence properties of a semiconductor-optical amplifier devise containing 30-stacked InAs/GaAs QDs. The net modal gain was analyzed by using the Hakki-Paoli method. The injection current dependence of the gain spectra shows a state filling effect and a change in the contribution of the TM polarization component. The polarization insensitive gain feature within {+-}1 dB has been achieved in the low injection current condition. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Electrical and optical control of optical gain in a coupled triple quantum dot system operating in telecommunication window

    Science.gov (United States)

    Mehmannavaz, Mohammad Reza; Sattari, Hamed

    2014-12-01

    We investigate the light amplification and gain without inversion (GWI) in triple quantum dot molecules in both steady-state and transient state. We demonstrate that the light amplification and GWI of a light pulse can be controlled through the rates of the incoherent pumping and tunneling between electronic levels. The required switching times for switching of a light pulse from absorption to gain and vice versa is then discussed. We obtain switching time at about 40 ps, which resembles a high-speed optical switch in nanostructure. The proposed approach in QDMs may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  1. Controlling the Photophysical Properties of Semiconductor Quantum Dot Arrays by Strategically Altering Their Surface Chemistry

    Science.gov (United States)

    Marshall, Ashley R.

    Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of

  2. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  3. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    See, Gloria G. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Xu, Lu; Nuzzo, Ralph G. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Sutanto, Erick; Alleyne, Andrew G. [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 154 Mechanical Engineering Building, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801 (United States)

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  4. Beer's law in semiconductor quantum dots

    CERN Document Server

    Adamashvili, G T

    2010-01-01

    The propagation of a coherent optical linear wave in an ensemble of semiconductor quantum dots is considered. It is shown that a distribution of transition dipole moments of the quantum dots changes significantly the polarization and Beer's absorption length of the ensemble of quantum dots. Explicit analytical expressions for these quantities are presented.

  5. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires

    NARCIS (Netherlands)

    Brauns, M.; Ridderbos, Joost; Ridderbos, Joost; Li, Ang; van der Wiel, Wilfred Gerard; Bakkers, Erik P.A.M.; Zwanenburg, Floris Arnoud

    2016-01-01

    We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over

  6. Single-electron Spin Resonance in a Quadruple Quantum Dot

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-08-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

  7. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    the absence of any bias voltage. The two pumping parameters are the energy levels of the two dots. Since they are spatially separated and a finite pumping signal requires two pumping parameters, a net transport relies on nonlocality. As a consequence local Andreev reflection does not contribute to the pumping current. In order to clearly identify crossed Andreev reflection it has to be distinguished from single-particle tunneling arising due to superpositions of the states of the two dots. We find that the dependence of the current on the average dot level position as well as the symmetry of the coupling strengths between dots and normal conductors clearly distinguishes the two processes from each other. This is an important advantage of the pumping current, for example, in comparison to the linear conductance. Finally, we focus on the AC Josephson transport through a strongly interacting quantum dot. To this end, we extent a diagrammatic theory on the DC Josephson transport to the time dependent case taking into account the Coulomb repulsion nonperturbatively. This general formalism is applied to a three-terminal device, where a quantum dot is tunnel coupled to a normal conductor and two superconductors with an infinite superconducting gap. Since the AC Josephson effect requires the presence of two superconductors, in lowest order of the perturbation expansion a finite AC signal between dot and superconductor S1 relies on the induction of superconducting correlations on the dot exclusively by superconductor S2. The main advantage of employing a normal conductor is that the average dot occupation can easily be tuned by the chemical potential of the normal conductor. Therefore, in the considered three-terminal device, in contrast to conventional Josephson junctions, not only the frequency but also the amplitude of the AC signal can be controlled by a DC bias voltage applied between the normal conductor and the two superconductors.

  8. Producing Quantum Dots by Spray Pyrolysis

    Science.gov (United States)

    Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

    2006-01-01

    An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

  9. Dot-in-Well Quantum-Dot Infrared Photodetectors

    Science.gov (United States)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    system is expected to enable achievement of greater densities of QDs and correspondingly greater quantum efficiencies. The host GaAs/AlGaAs MQW structures are highly compatible with mature fabrication processes that are now used routinely in making QWIP FPAs. The hybrid InGaAs-dot/GaAs/AlGaAs-well system also offers design advantages in that the effects of variability of dot size can be partly compensated by engineering quantum-well sizes, which can be controlled precisely.

  10. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires

    Science.gov (United States)

    Brauns, Matthias; Ridderbos, Joost; Li, Ang; van der Wiel, Wilfred G.; Bakkers, Erik P. A. M.; Zwanenburg, Floris A.

    2016-10-01

    We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing.

  11. Experiments towards size and dopant control of germanium quantum dots for solar applications

    OpenAIRE

    2015-01-01

    While the literature for the doping of silicon quantum dots (QDs) and nanocrystals (NCs) is extensive, reports of doping their germanium analogs are sparse. We report a range of attempts to dope Ge QDs both during and post-synthesis. The QDs have been characterized by TEM, XPS, and I/V measurements of SiO2 coated QD thin films in test cells using doped Si substrates. The solution synthesis of Ge QDs by the reduction of GeCl4 with LiAlH4 results in Ge QDs with a low level of chlorine atoms on ...

  12. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    Science.gov (United States)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  13. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  14. Coupled quantum dot-ring structures by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Somaschini, C; Bietti, S; Koguchi, N; Sanguinetti, S, E-mail: stefano.sanguinetti@unimib.it [L-NESS and Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy)

    2011-05-06

    The fabrication, by pure self-assembly, of GaAs/AlGaAs dot-ring quantum nanostructures is presented. The growth is performed via droplet epitaxy, which allows for the fine control, through As flux and substrate temperature, of the crystallization kinetics of nanometer scale metallic Ga reservoirs deposited on the surface. Such a procedure permits the combination of quantum dots and quantum rings into a single, multi-functional, complex quantum nanostructure.

  15. Chemical Control of Lead Sulfide Quantum Dot Shape, Self-Assembly, and Charge Transport

    Science.gov (United States)

    McPhail, Martin R.

    Lead(II) sulfide quantum dots (PbS QDs) are a promising excitonic material for numerous application that require that control of fluxes of charge and energy at nanoscale interfaces, such as solar energy conversion, photo- and electrocatalysis, light emitting diodes, chemical sensing, single-electron logic elements, field effect transistors, and photovoltaics. PbS QDs are particularly suitable for photonics applications because they exhibit size-tunable band-edge absorption and fluorescence across the entire near-infrared spectrum, undergo efficient multi-exciton generation, exhibit a long radiative lifetime, and possess an eight-fold degenerate ground-state. The effective integration of PbS QDs into these applications requires a thorough understanding of how to control their synthesis, self-assembly, and charge transport phenomena. In this document, I describe a series of experiments to elucidate three levels of chemical control on the emergent properties of PbS QDs: (1) the role of surface chemistry in controlling PbS QD shape during solvothermal synthesis, (2) the role of QD shape and ligand functionalization in self-assembly at a liquid-air interface, and (3) the role of QD packing structure on steady-state conductivity and transient current dynamics. At the synthetic level (1), I show that the final shape and surface chemistry of PbS QDs is highly sensitive to the formation of organosulfur byproducts by commonly used sulfur reagents. The insight into PbS QD growth gained from this work is then developed to controllably tune PbS QD shape from cubic to octahedral to hexapodal while maintaining QD size. At the following level of QD self-assembly (2), I show how QD size and shape dictate packing geometry in extended 2D arrays and how this packing can be controllably interrupted in mixed monolayers. I also study the role of ligand structure on the reorganization of QD arrays at a liquid-air interface and find that the specific packing defects in QD arrays vary

  16. Submonolayer Quantum Dot Infrared Photodetector

    Science.gov (United States)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  17. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  18. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width...... quantum optical properties for single photon application and quantum optics.......We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer...

  19. Controlling the morphology of GaN layers grown on AlN in Ga self-surfactant conditions: from quantum wells to quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, C.; Daudin, B.; Monroy, E.; Sarigiannidou, E.; Rouviere, J.L.; Hori, Y.; Brault, J.; Gogneau, N. [Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054-Grenoble Cedex 9 (France); Fanget, S.; Bru-Chevallier, C. [Laboratoire de Physique de la Matiere - CNRS (UMR5511), INSA de Lyon, Batiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France)

    2002-12-01

    We show that the growth mode of GaN deposited by plasma-assisted molecular beam epitaxy on AlN can be controlled by tuning Ga/N ratio. This enables to grow either quantum dots (Ga/N<1) or quantum wells (Ga/N>>1). The inhibition of 2D/3D transition results from a decrease in effective mismatch induced by the presence of a continuous Ga film on growing GaN surface in Ga-rich conditions. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  20. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis, stro

  1. Colloidal quantum dot solar cells

    Science.gov (United States)

    Sargent, Edward H.

    2012-03-01

    Solar cells based on solution-processed semiconductor nanoparticles -- colloidal quantum dots -- have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

  2. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, Nikodem; Liu, Rongrong; Vancso, Julius G.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of addit

  3. Phase- and Polarization-Controlled Two-Photon Rabi Oscillation of the Biexciton State in a Semiconductor Quantum Dot

    Directory of Open Access Journals (Sweden)

    Erlin Sun

    2014-01-01

    Full Text Available Under a degenerate two-photon resonant excitation, the Rabi oscillation of the four-level biexciton system in a semiconductor quantum dot is theoretically investigated. The influence of the laser phases on the state manipulation is modeled and numerically calculated. Due to the interference between different excitation paths, the laser phase plays an important role and can be utilized as an alternate control knob to coherently manipulate the biexciton state. The phase control can be facilely implemented by changing the light polarization via a quarter-wave plate.

  4. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Lazić, S., E-mail: lazic.snezana@uam.es; Chernysheva, E.; Meulen, H. P. van der; Calleja Pardo, J. M. [Departamento de Física de Materiales, Instituto “Nicolás Cabrera” and Instituto de Física de Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gačević, Ž.; Calleja, E. [ISOM-DIE, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2015-09-15

    The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  5. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Science.gov (United States)

    Lazić, S.; Chernysheva, E.; Gačević, Ž.; van der Meulen, H. P.; Calleja, E.; Calleja Pardo, J. M.

    2015-09-01

    The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ˜330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  6. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Directory of Open Access Journals (Sweden)

    S. Lazić

    2015-09-01

    Full Text Available The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW. The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  7. Resonance fluorescence from a telecom-wavelength quantum dot

    CERN Document Server

    Al-Khuzheyri, R; Huwer, J; Santana, T S; Szymanska, J Skiba-; Felle, M; Ward, M B; Stevenson, R M; Farrer, I; Tanner, M G; Hadfield, R H; Ritchie, D A; Shields, A J; Gerardot, B D

    2016-01-01

    We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime--a hallmark of resonance fluorescence. The measured resonance-fluorescence spectra allow us to rule out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with numerical simulations, the experimental results provide robust characterisation of charge noise in the environment of the quantum dot. Resonant control of the quantum dot opens up new possibilities for on-demand generation of indistinguishable single photons at telecom wavelengths as well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-wavelength quantum dots.

  8. Quantum dots as biophotonics tools.

    Science.gov (United States)

    Cesar, Carlos L

    2014-01-01

    This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs' biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.

  9. Semiconductor double quantum dot micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. Copyright © 2015, American Association for the Advancement of Science.

  10. Brightness-equalized quantum dots

    Science.gov (United States)

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-10-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  11. Ordered InAs Quantum Dots with Controllable Periods Grown on Stripe-Patterned GaAs Substrates

    Institute of Scientific and Technical Information of China (English)

    REN Yun-Yun; XU Bo; WANG Zhan-Guo; LIU Ming; LONG Shi-Bing

    2007-01-01

    GaAs (001) substrates are patterned by electron beam lithography and wet chemical etching to control the nucleation of lnAs quantum dots (QDs). InAs dots are grown on the stripe-patterned substrates by solid source molecular beam epitaxy. A thick buffer layer is deposited on the strip pattern before the deposition of InAs. To enhance the surface diffusion length of the In atoms, InAs is deposited with low growth rate and low As pressure.The AFM images show that distinct one-dimensionally ordered InAs QDs with homogeneous size distribution are created, and the QDs preferentially nucleate along the trench. With the increasing amount of deposited InAs and the spacing of the trenches, a number of QDs are formed beside the trenches. The distribution of additional QDs is long-range ordered, always along the trenchs rather than across the spacing regions.

  12. Colloidal quantum dots: synthesis, properties and applications

    Science.gov (United States)

    Brichkin, S. B.; Razumov, V. F.

    2016-12-01

    Key recent results obtained in studies of a new class of luminophores, colloidal quantum dots, are analyzed. Modern methods for the synthesis and post-synthetic treatment of colloidal quantum dots that make it possible to achieve record high quantum yield of luminescence and to modify their characteristics for specific applications are considered. Currently important avenues of research on colloidal quantum dots and the problems in and prospects for their practical applications in various fields are discussed. The bibliography includes 272 references.

  13. Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transfer-based nanophotonic applications

    Science.gov (United States)

    Bouchonville, Nicolas; Molinari, Michael; Sukhanova, Alyona; Artemyev, Mikhail; Oleinikov, Vladimir A.; Troyon, Michel; Nabiev, Igor

    2011-01-01

    The fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and photochromic protein bacteriorhodopsin within its natural purple membrane (PM) is explored to monitor their assembling. It is shown that the efficiency of FRET may be controlled by variation of the surface charge and thickness of QD organic coating. Atomic force microscopy imaging revealed correlation between the surface charge of QDs and degree of their ordering on the surface of PM. The most FRET-efficient QD-PM complexes have the highest level of QDs ordering, and their assembling design may be further optimized to engineer hybrid materials with advanced biophotonic and photovoltaic properties.

  14. Local control of emission energy of semiconductor quantum dots using volume expansion of a phase-change material

    Science.gov (United States)

    Takahashi, Motoki; Syafawati Humam, Nurrul; Tsumori, Nobuhiro; Saiki, Toshiharu; Regreny, Philippe; Gendry, Michel

    2013-03-01

    A method is proposed to precisely control the emission energy of semiconductor quantum dots (QDs) by the application of local strain due to volume expansion of a phase-change material (GeSbTe) upon amorphization. The feasibility of the method is experimentally demonstrated using photoluminescence (PL) spectroscopy of single InAs/InP QDs on which a GeSbTe thin film is deposited. A significant red-shift of the PL peak energy upon amorphization and subsequent recovery by recrystallization with laser annealing were observed.

  15. How to control spin-Seebeck current in a metal-quantum dot-magnetic insulator junction

    Science.gov (United States)

    Gu, Lei; Fu, Hua-Hua; Wu, Ruqian

    2016-09-01

    The control of the spin-Seebeck current is still a challenging task for the development of spin caloritronic devices. Here, we construct a spin-Seebeck device by inserting a quantum dot (QD) between the metal lead and magnetic insulator. Using the slave-particle approach and noncrossing approximation, we find that the spin-Seebeck effect increases significantly when the energy level of the QD locates near the Fermi level of the metal lead due to the enhancement of spin flipping and occurrences of quantum resonance. Since this can be easily realized by applying a gate voltage in experiments, the spin-Seebeck device proposed here can also work as a thermovoltaic transistor. Moreover, the optimal correlation strength and the energy level position of the QD are discussed to maximize the spin-Seebeck current as required for applications in controllable spin caloritronic devices.

  16. A quintuple quantum dot system for electrical and optical control of multi/bistability in a telecommunication window

    Science.gov (United States)

    Mehmannavaz, Mohammad Reza; Sattari, Hamed

    2015-02-01

    We propose a model for a quintuple coupled quantum dot system based on a GaAs/AlGaAs heterostructure. Then, we analyze the optical bistability (OB) and optical multistability (OM) behaviours and transition between the regimes at a wavelength of λ =1.550 μ \\text{m}. We take the benefit of consecutive and parallel interdot tunnelling and an incoherent pumping field for electrical and even optical control of the processes. It is shown that OB, OM and transition between them can be accomplished and controlled by adjusting the rate of the inter-dot tunnellings (electrical bias), probe wavelength detuning and rate of the optical incoherent pumping field. By proper choice of the controlling parameters, the bistable hysteresis loop becomes narrower, which makes it easier for the cavity field to reach saturation. We interpret the OB and OM behaviours by discussing the absorption of the active medium. We also investigate switching time between the two stable states when the output field jumps from a lower branch to an upper branch. Such a controllable OB/OM and transition between them in multiple QD molecules at a wavelength of 1.550 μm, may provide some new possibilities for technological applications in optoelectronics, solid-state quantum information science and systems dealing with signal processing.

  17. Thermoelectric energy harvesting with quantum dots.

    Science.gov (United States)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  18. A comparative study about toxicity of CdSe quantum dots on reproductive system development of mice and controlling this toxicity by ZnS coverage

    Directory of Open Access Journals (Sweden)

    Akram Valipoor

    2015-10-01

    Full Text Available Objective(s:Medicinal benefits of quantum dots have been proved in recent years but there is little known about their toxicity especially in vivo toxicity. In order to use quantum dots in medical applications, studies ontheir in vivo toxicity is important. Materials and Methods: CdSe:ZnS quantum dots were injected in 10, 20, and 40 mg/kg doses to male mice10 days later, mice were sacrificed and five micron slides were prepared structural and optical properties of quantum dots were evaluated using XRD. Results:  Histological studies of testis tissue showed high toxic effect of CdSe:ZnS  in 40 mg/kg group. Histological studies of epididymis did not show any effect of quantum dots in terms of morphology and tube structure. Mean concentration of LH and testosterone and testis weight showed considerable changes in mice injected with 40 mg/kg dose of CdSe:ZnS compared to control group. However, FSH and body weight did not show any difference with control group. Conclusion: Although it has been reported that CdSe is highly protected from the environment by its shell, but  this study showed high toxicity for CdSe:ZnS when it is used in vivo which could be suggested that shell could contribute to increased toxicity of quantum dots. Considering lack of any previous study on this subject, our study could potentially be used as an basis for further extensive studies investigating the effects of quantum dots toxicity on development of male sexual system.

  19. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  20. Colloidal-quantum-dot spasers and plasmonic amplifiers

    CERN Document Server

    Kress, Stephan J P; Rohner, Patrik; Kim, David K; Antolinez, Felipe V; Zaininger, Karl-Augustin; Jayanti, Sriharsha V; Richner, Patrizia; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J

    2016-01-01

    Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser, a laser-like source of surface plasmons, was first proposed, quantum dots were specified as the ideal plasmonic gain medium. Subsequent spaser designs, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, an approach ill-suited to quantum dots and other colloidal nanomaterials. Here we develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum-dot-based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create high-quality-factor, aberration-corrected, Ag plasmonic cavities. We then incorporate quantum dots via electrohydrodynamic printing18,19 or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons above threshold. This signal is extracted, directed through an integrated amplifier,...

  1. Ultrafast spectroscopy of quantum dots

    CERN Document Server

    Foo, E

    2001-01-01

    exchange-correlation interactions among the confined carriers inside the dots are suggested to be responsible. A density functional calculation for BGR of the ground state transition shows good agreement with our experimental results, especially in the high dot occupancy regime. Many-particle state scattering gives rise to large homogeneous spectral broadening of the PL peaks, from which an intradot relaxation time approx 300 fs is estimated. This observation supports the results obtained by direct excitation of carriers within the QDs. Femtosecond time-resolved photoluminescence measured by frequency up-conversion has been used to investigate carrier dynamics in InAs/GaAs self-assembled quantum dots (QDs). Our results reveal ultrafast carrier relaxation and sequential state filling. Carrier relaxation is proposed to occur by Auger-type processes, and the sequential state filling suggests that intradot relaxation is much faster than carrier capture from the InAs wetting layer. Measurements obtained by direct ...

  2. Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature

    Science.gov (United States)

    Singh, Akhilesh K.; Barik, Puspendu; Ullrich, Bruno

    2014-12-01

    We observed changes of the transmitted monochromatic light passing through a colloidal PbS quantum dot film on glass owing to an applied moderate (smaller than 1 T) magnetic field under ambient conditions. The observed alterations show a square dependence on the magnetic field increase that cannot be achieved with bulk semiconductors. The findings point to so far not recognized application potentials of quantum dots.

  3. Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Akhilesh K.; Barik, Puspendu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210 (Mexico); Ullrich, Bruno, E-mail: bruno@fis.unam.mx, E-mail: bruno.ullrich@yahoo.com [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210 (Mexico); Ullrich Photonics LLC, Wayne, Ohio 43466 (United States)

    2014-12-15

    We observed changes of the transmitted monochromatic light passing through a colloidal PbS quantum dot film on glass owing to an applied moderate (smaller than 1 T) magnetic field under ambient conditions. The observed alterations show a square dependence on the magnetic field increase that cannot be achieved with bulk semiconductors. The findings point to so far not recognized application potentials of quantum dots.

  4. Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rastelli, A.; Plumhof, J.D.; Kumar, S.; Trotta, R.; Atkinson, P.; Zallo, E.; Krapek, V.; Schroeter, J.R.; Kiravittaya, S.; Benyoucef, M.; Thurmer, D.J.; Grimm, D.; Schmidt, O.G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Ding, F.; Zander, T. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Deneke, C. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Laboratorio Nacional de Nanotecnologia (LNNano), Rua Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas, SP (Brazil); Malachias, A. [Departamento de Fisica, Universidade Federal de Minas Gerais, CP 702, 30123-970 Belo Horizonte, MG (Brazil); Herklotz, A.; Doerr, K. [Institute for Metallic Materials, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Singh, R.; Bester, G. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Hafenbrak, R.; Joens, K.D.; Michler, P. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, University of Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2012-04-15

    This paper reviews the recent advances obtained by integrating semiconductor epitaxial films with embedded self-assembled quantum dots (QDs) on top of single-crystal piezoelectric substrates made of lead magnesium niobate-lead titanate (PMN-PT). This combination allows us to study in detail the effects produced by variable strains (up to about {+-} 0.2%) on the excitonic emission of single QDs and to add a powerful ''tuning knob'' to QDs. Biaxial stress can be used to reversibly shift the emission wavelength of QDs in a spectral range wider than 10 meV and to modify the relative binding energies of excitonic species. Anisotropic stress has instead a strong influence on the fine structure splitting of neutral excitons. Finally, we present experimental results on the effect of biaxial strain on the optical modes of microring optical resonators and show a simple approach enabling the compensation of piezo-creep via a closed-loop system. Schematic illustration of a QD membrane integrated on top of a PMN-PT substrate. Stress provided by the piezoelectric substrate allows broad range tuning of the emission properties of the overlying dots. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Aleksei A.

    2017-05-15

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  6. Polarization control of quantum dot emission by chiral photonic crystal slabs.

    Science.gov (United States)

    Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.

  7. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    Science.gov (United States)

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-07

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.

  8. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    We have produced GaAs-based quantum-dot edge-emitting lasers operating at 1.16 mu m with record-low transparency current, high output power, and high internal quantum efficiencies. We have also realized GaAs-based quantum-dot lasers emitting at 1.3 mu m, both high-power edge emitters and low...

  9. Semiconductor quantum dots for electron spin qubits

    NARCIS (Netherlands)

    van der Wiel, Wilfred Gerard; Stopa, M.; Kodera, T.; Hatano, T.; Tarucha, S.

    2006-01-01

    We report on our recent progress in applying semiconductor quantum dots for spin-based quantum computation, as proposed by Loss and DiVincenzo (1998 Phys. Rev. A 57 120). For the purpose of single-electron spin resonance, we study different types of single quantum dot devices that are designed for

  10. Phonons in Quantum-Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    QINGuo-Yi

    2004-01-01

    Phonon modes of A1As/GaAs/A1As and GaAs/A1As/metal Pb quantum-dot quantum wells (QDQW's) with the whole scale up to 90 AО are calculated by using valence force field model (VFFM) based on group theory.Their optical frequency spectra are divided into two nonoverlapping bands, the AlAs-like band and the GaAs-like band,originated from and having frequency interval inside the bulk AlAs optical band and bulk GaAs optical band, respectively.The GaAs-LO (Г)-like modes of QDQW's that have maximum bulk GaAs-LO (Г) parentages in all modes covering thewhole frequency region and all symmetries have always A1 symmetry. Its frequency is controllable by adjusting thestructure parameters. In A1As/GaAs/A1As, it may be controlled to meet any designed frequency in GaAs-like band.The results on GaAs/A1As/metal Pb QDQW's show the same effect of reducing in interface optical phonons by using the metal/semiconductor interface revealed ever by macroscopic model The frequency spectra in both GaAs-like andAlAs-like optical phonon bands are independent of the thickness of Pb shell as long as the thickness of Pb shell is no less than 5 AО Defects at metal/A1As interface have significant influence to AlAs-like optical modes but have only minor influence to GaAs-like optical modes. All these results are important for the studying of the e-ph interaction in QD structures.

  11. Phonons in Quantum-Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    QIN Guo-Yi

    2004-01-01

    Phonon modes of AlAs/GaAs/AlAs and GaAs/AlAs/metal Pb quantum-dot quantum wells (QDQW's)with the whole scale up to 90 A are calculated by using valence force field model (VFFM) based on group theory.Their optical frequency spectra are divided into two nonoverlapping bands, the AMs-like band and the GaAs-like band,originated from and having frequency interval inside the bulk AlAs optical band and bulk GaAs optical band, respectively.The GaAs-LO (F)-like modes of QDQW's that have maximum bulk GaAs-LO (F) parentages in all modes covering the whole frequency region and all symmetries have always A1 symmetry. Its frequency is controllable by adjusting the structure parameters. In AlAs/GaAs/AlAs, it may be controlled to meet any designed frequency in GaAs-like band.The results on GaAs/AMs/metal Pb QDQW's show the same effect of reducing in interface optical phonons by using the metal/semiconductor interface revealed ever by macroscopic model. The frequency spectra in both GaAs-like and AlAs-like optical phonon bands are independent of the thickness of Pb shell as long as the thickness of Pb shell is no less than 5 A. Defects at metal/AlAs interface have significant influence to AMs-like optical modes but have only minor influence to GaAs-like optical modes. All these results are important for the studying of the e-ph interaction in QD structures.

  12. Quantum computation in a quantum-dot-Majorana-fermion hybrid system

    CERN Document Server

    Xue, Zheng-Yuan

    2012-01-01

    We propose a scheme to implement universal quantum computation in a quantum-dot-Majorana-fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. Universal single-qubit gates on topological qubit can be achieved. A measurement-based two-qubit Controlled-Not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov- Casher effect.

  13. Ultrasmall colloidal PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Nick; Wehrung, Michael; O' Dell, Ryan Andrew [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Sun, Liangfeng, E-mail: lsun@bgsu.edu [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403 (United States)

    2014-09-15

    Ultrasmall colloidal lead sulfide quantum dots can increase the open circuit voltages of quantum-dot-based solar cells because of their large energy gap. Their small size and visible or near infrared light-emitting property make them attractive to the applications of biological fluorescence labeling. Through a modified organometallic route, we can synthesize lead sulfide quantum dots as small as 1.6 nm in diameter. The low reaction temperature and the addition of a chloroalkane cosolvent decrease the reaction rate, making it possible to obtain the ultrasmall quantum dots. - Highlights: • Ultrasmall colloidal PbS quantum dots as small as 1.6 nm in diameter are synthesized. • The quantum dots emit red light with photoluminescence peak at 760 nm. • The growth temperature is as low as 50 °C. • Addition of cosolvent 1,2-dichloroethane in the reaction decreases the reaction rate.

  14. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.

    Science.gov (United States)

    Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-04-26

    Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.

  15. Size and quality control of fast grown CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Fregnaux, Mathieu [Laboratoire de Physique des Milieux Denses, Universite Paul Verlaine - Metz, 1 Boulevard Arago, 57078 Metz (France); Laboratoire de Spectrometrie de Masse et Chimie Laser, Universite Paul Verlaine - Metz, 1 Boulevard Arago, 57078 Metz (France); Dalmasso, Stephane; Laurenti, Jean-Pierre [Laboratoire de Physique des Milieux Denses, Universite Paul Verlaine - Metz, 1 Boulevard Arago, 57078 Metz (France); Gaumet, Jean-Jacques [Laboratoire de Spectrometrie de Masse et Chimie Laser, Universite Paul Verlaine - Metz, 1 Boulevard Arago, 57078 Metz (France)

    2012-08-15

    The synthesis of high quality II-VI semiconductor quantum dots (QDs) is fundamental for developing new devices in several applications such as biomarkers, solar cells or blue-UV lasers. These emerging technologies are funded on the size-dependent optical properties of the QDs. Consequently, it is a crucial aspect to get insight into different ways for syntheses of their nanosized particles. In this work, we use two different QD elaboration methods: (i) a single source precursor thermal growth methodology and (ii) a microwave synthetic route. Using both protocols, high quality small QDs (Oe < 5 nm) are produced. Both growing techniques offer the advantage to be simple and fast: 2 hours (i) and less than 25 minutes (ii) in duration, growth temperatures do not exceed 280 C. For both elaboration procedures, we report a unique physics/chemistry cross-disciplinary study on these small size QDs: mass spectrometry (MS) technique provides background data about composition, size and stability of particles; crystalline structure and size distribution of the QDs are obtained from X-ray diffraction (XRD) and transmission electron microscopy (TEM); room temperature (RT) optical spectrometry of nanodispersions - photoluminescence (PL) and absorption - reveals quantum size effects. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Nanospectroscopy of single quantum dots with local strain control using a phase-change mask

    Science.gov (United States)

    Saiki, Toshiharu; Shintani, Toshimichi; Kuwahara, Masashi; Regreny, Philippe; Gendry, Michel

    2017-08-01

    Herein, we describe a new technique that allows high-sensitivity near-field imaging spectroscopic analysis of individual quantum constituents in semiconductors. This method employs an optical mask composed of a phase-change material (PCM) and operates at optical telecommunication wavelengths. Superior collection efficiency and spatial resolution are achieved by using an amorphous nanoaperture as a result of the extreme optical contrast between the PCM in amorphous and crystalline phases at visible wavelengths and the good near-infrared transparency of this material. Fine tuning of quantum dot (QD) emission levels via localized strain as a result of the increase in volume of the PCM upon amorphization has also been demonstrated. Both red and blue shifts of the energy levels were predicted to occur beneath the flat and edge regions of the amorphous mask, respectively, using finite element simulations. The viability of localized strain tuning as an approach to nanospectroscopy employing phase changes was confirmed by measurements of the photoluminescence of individual InAs/InP QDs. In addition, the emission levels of two neighboring QDs were matched based on modifying the shift magnitudes and directions via careful adjustment of the indenter size and position.

  17. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  18. Charge-extraction strategies for colloidal quantum dot photovoltaics

    KAUST Repository

    Lan, Xinzheng

    2014-02-20

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p-and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction. © 2014 Macmillan Publishers Limited.

  19. POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    L.C.Fai

    2004-01-01

    Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.

  20. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems.

  1. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  2. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  3. Quantum Optics with Quantum Dots in Photonic Nanowires

    DEFF Research Database (Denmark)

    Gérard, J.-M.; Claudon, J.; Bleuse, J.;

    2011-01-01

    We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  4. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Matthieu; Bleuse, Joel;

    2012-01-01

    Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....

  5. Colloidal quantum dots as optoelectronic elements

    Science.gov (United States)

    Vasudev, Milana; Yamanaka, Takayuki; Sun, Ke; Li, Yang; Yang, Jianyong; Ramadurai, Dinakar; Stroscio, Michael A.; Dutta, Mitra

    2007-02-01

    Novel optoelectronic systems based on ensembles of semiconductor nanocrystals are addressed in this paper. Colloidal semiconductor quantum dots and related quantum-wire structures have been characterized optically; these optical measurements include those made on self-assembled monolayers of DNA molecules terminated on one end with a common substrate and on the other end with TiO II quantum dots. The electronic properties of these structures are modeled and compared with experiment. The characterization and application of ensembles of colloidal quantum dots with molecular interconnects are considered. The chemically-directed assembly of ensembles of colloidal quantum dots with biomolecular interconnects is demonstrated with quantum dot densities in excess of 10 +17 cm -3. A number of novel photodetectors have been designed based on the combined use of double-barrier quantum-well injectors, colloidal quantum dots, and conductive polymers. Optoelectronic devices including photodetectors and solar cells based on threedimensional ensembles of quantum dots are considered along with underlying phenomena such as miniband formation and the robustness of minibands to displacements of quantum dots in the ensemble.

  6. Spins of Andreev states in double quantum dots

    Science.gov (United States)

    Su, Zhaoen; Chen, Jun; Yu, Peng; Hocervar, Moira; Plissard, Sebastien; Car, Diana; Tacla, Alexandre; Daley, Andrew; Pekker, David; Bakkers, Erik; Frolov, Sergey

    Andreev (or Shiba) states in coupled double quantum dots is an open field. Here we demonstrate the realization of Andreev states in double quantum dots in an InSb nanowire coupled to two NbTiN superconductors. The magnetic field dependence of the Andreev states has been explored to resolve the spins in different double dot configurations. The experiment helps to understand the interplay between pair correlation, exchange energy and charging energy with a well-controlled system. It also opens the possibility to implement Majorana modes in Kitaev chains made of such dots.

  7. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  8. Working Beyond Moore’s Limit - Coherent Nonlinear Optical Control of Individual and Coupled Single Electron Doped Quantum Dots

    Science.gov (United States)

    2015-07-06

    Assembled InAs Quantum Dot,”, Applied Physics Letters 97, p. 113110 (2010). DOI: 10.1063/1.3487783 http://scitation.aip.org/content/ aip /journal/apl/97/11...in an InAs quantum dot. Conference on Advances in Photonics of Quantum Computing, Memory, and Communication III, JAN 27- 28, 2010 San Francisco, CA...invited Advances in Atomic, Molecular, and Optical Physics, Vol 64, Su- sanne Yelin, editor, Elsevier, Oxford (2015). 15. A. P. Burgers, J. R

  9. Probing relaxation times in graphene quantum dots

    Science.gov (United States)

    Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph

    2013-01-01

    Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294

  10. Quantum Dot Spectrum Converters for Enhanced High Efficiency Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to enhance solar cell efficiency, radiation resistance and affordability. The Quantum Dot Spectrum Converter (QDSC) disperses quantum dots...

  11. Quantum Entanglement and Teleportation of Quantum-Dot States in Microcavities

    CERN Document Server

    Miranowicz, A; Liu, Yu-xi; Chimczak, G; Koashi, M; Imoto, N; 10.1380/ejssnt.2007.51

    2009-01-01

    Generation and control of quantum entanglement are studied in an equivalent-neighbor system of spatially-separated semiconductor quantum dots coupled by a single-mode cavity field. Generation of genuinely multipartite entanglement of qubit states realized by conduction-band electron-spin states in quantum dots is discussed. A protocol for quantum teleportation of electron-spin states via cavity decay is briefly described.

  12. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  13. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states

    DEFF Research Database (Denmark)

    Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.;

    2009-01-01

    , allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots....... The oscillator strength varies weakly with frequency in agreement with behavior of quantum dots in the strong confinement limit. Surprisingly, previously calculated tight-binding results differ by a factor of 5 with the measured absolute values. Results from pseudopotential calculations agree well...

  14. Graphene mediated Stark shifting of quantum dot energy levels

    Science.gov (United States)

    Kinnischtzke, Laura; Goodfellow, Kenneth M.; Chakraborty, Chitraleema; Lai, Yi-Ming; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Vamivakas, A. Nick

    2016-05-01

    We demonstrate an optoelectronic device comprised of single InAs quantum dots in an n-i-Schottky diode where graphene has been used as the Schottky contact. Deterministic electric field tuning is shown using Stark-shifted micro-photoluminescence from single quantum dots. The extracted dipole moments from the Stark shifts are comparable to conventional devices where the Schottky contact is a semi-transparent metal. Neutral and singly charged excitons are also observed in the well-known Coulomb-blockade plateaus. Our results indicate that graphene is a suitable replacement for metal contacts in quantum dot devices which require electric field control.

  15. Solvothermal synthesis of InP quantum dots.

    Science.gov (United States)

    Nag, Angshuman; Sarma, D D

    2009-09-01

    We report an efficient and fast solvothermal route to prepare highly crystalline monodispersed InP quantum dots. This solvothermal route, not only ensures inert atmosphere, which is strictly required for the synthesis of phase pure InP quantum dots but also allows a reaction temperature as high as 430 degrees C, which is otherwise impossible to achieve using a typical solution chemistry; the higher reaction temperature makes the reaction more facile. This method also has a judicious control over the size of the quantum dots and thus in tuning the bandgap.

  16. Colloidal quantum dot photodetectors

    KAUST Repository

    Konstantatos, Gerasimos

    2011-05-01

    We review recent progress in light sensors based on solution-processed materials. Spin-coated semiconductors can readily be integrated with many substrates including as a post-process atop CMOS silicon and flexible electronics. We focus in particular on visible-, near-infrared, and short-wavelength infrared photodetectors based on size-effect-tuned semiconductor nanoparticles made using quantum-confined PbS, PbSe, Bi 2S3, and In2S3. These devices have in recent years achieved room-temperature D values above 1013 Jones, while fully-depleted photodiodes based on these same materials have achieved MHz response combined with 1012 Jones sensitivities. We discuss the nanoparticle synthesis, the materials processing, integrability, temperature stability, physical operation, and applied performance of this class of devices. © 2010 Elsevier Ltd. All rights reserved.

  17. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction.

    Science.gov (United States)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-04-21

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO˙ is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.

  18. Control of the Redox Activity of Quantum Dots through Introduction of Fluoroalkanethiolates into Their Ligand Shells.

    Science.gov (United States)

    Weinberg, David J; He, Chen; Weiss, Emily A

    2016-02-24

    Increasing the fraction of 1H,1H,2H,2H-perfluorodecanethiol (PFDT) in the mixed-PFDT/oleate ligand shell of a PbS quantum dot (QD) dramatically reduces the permeability of the ligand shell to alkyl-substituted benzoquinones (s-BQs), as measured by a decrease in the efficiency of collisional photoinduced electron transfer. Replacing only 21% of the oleates on the QD surface with PFDT reduces the yield of photo-oxidation by tetramethyl BQ by 68%. Experiments with s-BQ quenchers of two different sizes reveal that the degree of protection provided by the PFDT-doped monolayer, relative to a decanethiolate (DT)-doped monolayer at similar coverage, is due to both size exclusion (PFDT is larger and more rigid than DT), and the oleophobicity of PFDT. This work demonstrates the usefulness of fluorinated ligands in designing molecule-selective and potentially corrosion-inhibiting surface coatings for QDs for applications as robust emitters or high fidelity sensing platforms.

  19. Near-infrared superluminescent diode using stacked self-assembled InAs quantum dots with controlled emission wavelengths

    Science.gov (United States)

    Ozaki, Nobuhiko; Yasuda, Takuma; Ohkouchi, Shunsuke; Watanabe, Eiichiro; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.

    2014-01-01

    A near-infrared superluminescent diode (SLD) using stacked InAs/GaAs quantum dots (QDs) was developed. The emission wavelength of each QD layer was controlled by varying the thickness of a strain-reducing layer deposited on the QD. The controlled ground state emission peaks enabled formation of a dipless broadband spectrum with the contributions of the first excited state emissions. The bandwidth of the resulting emission was approximately 170 nm with a peak wavelength of 1280 nm. The integrated electroluminescence intensity exhibited a superlinear relation with respect to the injected current density, indicating an SLD emission behavior owing to contributions of stimulated emissions from QDs. The developed broadband SLD was found to be suitable as a potential light source for optical coherence tomography (OCT) leading to improved resolution of OCT images. The axial resolution estimated from the Fourier-transformed spectrum is 4.1 µm.

  20. Photolithographic process for the patterning of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Joo; Park, Sang Joon; Lee, Sang Wha [Department of Chemical and Bioengineering, Kyungwon University, Seongnam-si, Gyeonggi-Do 461-701 (Korea, Republic of); Kim, Jong Sung [Department of Chemical and Bioengineering, Kyungwon University, Seongnam-si, Gyeonggi-Do 461-701 (Korea, Republic of)], E-mail: jskim@kyungwon.ac.kr

    2008-09-15

    Recently, quantum dots have been used as molecular probes substituting for conventional organic fluorophores. Quantum dots are stable against photobleaching and have more controllable emission bands, broader absorption spectra, and higher quantum yields. In this study, an array of ZnS-coated CdSe quantum dots on a slide glass has been prepared by photolithographic method. The array pattern was prepared using a positive photoresist (AZ1518) and developer (AZ351). The patterned glass was silanized with 3-aminopropyltriethoxysilane (APTES), and carboxyl-coated quantum dots were selectively attached onto the array pattern. The silanization was examined by measuring contact angle and the surface of the array pattern was analyzed using AFM and fluorescent microscope.

  1. Optical studies of capped quantum dots

    NARCIS (Netherlands)

    Wuister, S.F.

    2005-01-01

    This thesis describes the synthesis and spectroscopy of CdSe and CdTe semiconductor quantum dots (QDs). The first chapter gives an introduction into the unique size dependent properties of semiconductor quantum dots. Highly luminescent QDs of CdSe and CdTe were prepared via a high temperature method

  2. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  3. Optically active quantum-dot molecules.

    Science.gov (United States)

    Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2017-02-20

    Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

  4. Research on Self-Assembling Quantum Dots.

    Science.gov (United States)

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  5. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  6. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  7. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots mad

  8. Transmission Phase Through Two Quantum Dots Embedded in a Four-Terminal Quantum Ring

    OpenAIRE

    Sigrist, M.; Fuhrer, A; Ihn, T.; Ensslin, K.; Wegscheider, W.; Bichler, M.

    2003-01-01

    We use the Aharonov-Bohm effect in a four-terminal ring based on a Ga[Al]As heterostructure for the measurement of the relative transmission phase. In each of the two interfering paths we induce a quantum dot. The number of electrons in the two dots can be controlled independently. The transmission phase is measured as electrons are added to or taken away from the individual quantum dots.

  9. Long-distance coherent coupling in a quantum dot array.

    Science.gov (United States)

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.

  10. Biocompatible quantum dots for biological applications.

    Science.gov (United States)

    Rosenthal, Sandra J; Chang, Jerry C; Kovtun, Oleg; McBride, James R; Tomlinson, Ian D

    2011-01-28

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.

  11. Charge-controlled nuclear polarization of a single InAs/GaAs quantum dot under optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Eble, Benoit; Krebs, Olivier; Lemaitre, Aristide; Kowalik, Katarzyna; Kudelski, Arkadiusz; Voisin, Paul [CNRS-Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France); Urbaszek, Bernhard; Amand, Thierry; Marie, Xavier [Laboratoire de Nanophysique Magnetisme et Optoelectronique, INSA, 31077 Toulouse Cedex 4 (France)

    2006-07-01

    We report on electron spin physics in a single charge-tunable self-assembled InAs/GaAs quantum dot. The hyperfine interaction between the optically oriented electron and nuclear spins leads to the polarization of the quantum dot nuclei. The sign of the resulting Overhauser-shift depends on the trion state X{sup +} or X{sup -}, and remarkably its amplitude does not vanish in zero magnetic field. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    . The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...

  13. Site-controlled growth of InP/GaInP quantum dots on GaAs substrates

    Science.gov (United States)

    Baumann, V.; Stumpf, F.; Steinl, T.; Forchel, A.; Schneider, C.; Höfling, S.; Kamp, M.

    2012-09-01

    A technology platform for the epitaxial growth of site-controlled InP quantum dots (QDs) on GaAs substrates is presented. Nanoholes are patterned in a GaInP layer on a GaAs substrate by electron beam lithography and dry chemical etching, serving as QD nucleation centers. The effects of a thermal treatment on the structured surfaces for deoxidation are investigated in detail. By regrowth on these surfaces, accurate QD positioning is obtained for square array arrangements with lattice periods of 1.25 μm along with a high suppression of interstitial island formation. The optical properties of these red-emitting QDs (λ ˜ 670 nm) are investigated by means of ensemble- and micro-photoluminescence spectroscopy at cryogenic temperatures.

  14. Tunable Few-Electron Quantum Dots as Spin Qubits

    Science.gov (United States)

    Elzerman, Jeroen; Hanson, Ronald; Greidanus, Jacob; Willems van Beveren, Laurens; de Franceschi, Silvano; Vandersypen, Lieven; Tarucha, Seigo; Kouwenhoven, Leo

    2003-03-01

    Recently it was proposed to make a quantum bit using the spin of an electron in a quantum dot. We present the first experimental steps towards realizing a system of two coupled qubits. The Zeeman splitting between the two spin states defining the qubit is measured for a one-electron dot in a parallel magnetic field. For a two-electron dot, we control the spin singlet-triplet energy difference with a perpendicular magnetic field, and we induce a transition from singlet to triplet ground state. We find relaxation from triplet to singlet to be extremely slow (> 1 mus), which is promising for quantum computing. We couple two few-electron dots, creating the first fully tunable few-electron double dot. Its charge configuration can be read out with a nearby QPC acting as an integrated charge detector.

  15. The luminescent properties and toxicity controllability investigation of novel ZnO quantum dots with Schiff base complexes modification.

    Science.gov (United States)

    Yu, Shi Yong; Jing, Hui; Cao, Zhen; Su, Hai Quan

    2014-05-01

    The Schiff base complexes modified ZnO quantum dots (ZnO-SBC QDs) are successfully synthesized via the reflux and chemical co-precipitation route. For control experiments, we also synthesized the ZnO QDs and amino-modified ZnO QDs (ZnO-NH2 QDs). The structures and morphologies of the samples were characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), FTIR spectroscopy (IR), Fluorescence Spectrometer (FL) and so on. The XRD pattern shows that the three types of QDs possess hexagonal wurtzite structures. The TEM investigation reveals that the as-prepared products have hexagonal morphologies. The plane fringe with 0.26 nm crystalline plane spacing of three types of quantum dots is assigned to the ZnO {002} planes via HR-TEM, which match with the lattice parameter of the hexagonal wurtzite structure of ZnO and also coincide with the data obtained by XRD. By analyzing the fluorescence emission and excitation spectra of ZnO QDs, ZnO-NH2 QDs, ZnO-SBC QDs and Schiff base complexes, we find that the ZnO-SBC QDs still have a perfect fluorescence emission which makes it interesting candidates for luminescence applications such as biochemical sensors and fluorescent labels to mark the cells and DNA. This novel ZnO-SBC QDs under UV irradiation is capable of generating reactive oxygen species by UV irradiation and may be used for the photodynamic therapy. The surface modification with Schiff base complexes makes it difficult to release Zn2+, therefore the toxicity is much more controllable.

  16. Electron transport in quantum dots

    CERN Document Server

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  17. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.

  18. Towards site controlled growth of InAs quantum dots on patterned GaAs by microsphere photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Rengstl, Ulrich; Koroknay, Elisabeth; Rossbach, Robert; Jetter, Michael; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2011-07-01

    To use quantum dots (QDs) in single photon applications, like quantum information processing, we are working on separate addressable, site controlled QDs. For this, we generate surface potential modulations by patterning the GaAs surface before the overgrowth in a metal-organic vapor-phase epitaxy system (MOVPE). Conventional patterning techniques, such as electron beam lithography or site controlled surface oxidation using scanning tunneling microscopy, have the disadvantage of high time consumption. A faster method for prepatterning a large surface uses microsphere photolithography. For partial exposure of UV-sensitive photoresist, we use a hexagonal close-packed microsphere monolayer as an array of microlenses to focus UV-light. We obtained structures with controllable diameters of 300 to 700 nm in the photoresist, which can be used as an etching mask for wet chemical etching to generate holes in the GaAs surface. After this, various steps of post etch cleaning and oxide removal are necessary to obtain a GaAs buffer with low defect density and high optical quality after the following overgrowth. The prepatterning also leads to an increased accumulation of deposited InAs inside the holes, which supports island growth.

  19. A triple quantum dot in a single-wall carbon nanotube

    DEFF Research Database (Denmark)

    Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Hayashi, T.

    2008-01-01

    A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams....... Simulations using a capacitor model including tunnel coupling between neighboring dots captures the observed behavior with good agreement. Furthermore, anticrossings between indirectly coupled levels and higher order cotunneling are discussed. Udgivelsesdato: April...

  20. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  1. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  2. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  3. Quantum dots for next-generation photovoltaics

    Directory of Open Access Journals (Sweden)

    Octavi E. Semonin

    2012-11-01

    Full Text Available Colloidal quantum-confined semiconductor nanostructures are an emerging class of functional material that are being developed for novel solar energy conversion strategies. One of the largest losses in a bulk or thin film solar cell occurs within a few picoseconds after the photon is absorbed, as photons with energy larger than the semiconductor bandgap produce charge-carriers with excess kinetic energy, which is then dissipated via phonon emission. Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photoconversion step. In this review, we provide the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (nanocrystals confined in three dimensions in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion.

  4. Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device

    Institute of Scientific and Technical Information of China (English)

    Hong Xue-Kun; Yang Xi-Feng; Feng Jin-Fu; Liu Yu-Shen

    2013-01-01

    We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage.This device possesses a nonresonant tunneling channel and two resonant tunneling channels.The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot.We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient.This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region.Importantly,an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages.Therefore,the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.

  5. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... oscillator strength due to Coulomb effects. This is in stark contrast to the measured oscillator strength, which turns out to be so small that it can be described by excitons in the strong confinement regime. We attribute these findings to exciton localization in local potential minima arising from alloy...

  6. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    Semiconductor quantum dots are often described as "artificial atoms": They are small nanometre-sized structures in which electrons only are allowed to exist at certain discrete levels due to size quantization, thus allowing the engineering of fundamental properties such as the coupling to light....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...

  7. Scanning gate microscopy of ultra clean carbon nanotube quantum dots

    OpenAIRE

    Xue, Jiamin; Dhall, Rohan; Cronin, Stephen B.; LeRoy, Brian J.

    2015-01-01

    We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can b...

  8. Universal quantum computation with electron spins in quantum dots based on superpositions of spacetime paths and Coulomb blockade

    CERN Document Server

    Lin, C C Y; Wu, Y Z; Zhang, W M; Lin, Cyrus C.Y.; Soo, Chopin; Wu, Yin-Zhong; Zhang, Wei-Min

    2004-01-01

    Using electrostatic gates to control the electron positions, we present a new controlled-NOT gate based on quantum dots. The qubit states are chosen to be the spin states of an excess conductor electron in the quantum dot; and the main ingredients of our scheme are the superpositions of space-time paths of electrons and the effect of Coulomb blockade. All operations are performed only on individual quantum dots and are based on fundamental interactions. Without resorting to spin-spin terms or other assumed interactions, the scheme can be realized with a dedicated circuit and a necessary number of quantum dots. Gate fidelity of the quantum computation is also presented.

  9. Quantum dots for terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H C; Aslan, B; Gupta, J A; Wasilewski, Z R; Aers, G C; SpringThorpe, A J; Buchanan, M [Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6 (Canada)], E-mail: h.c.liu@nrc.ca

    2008-09-24

    Nanostructures made of semiconductors, such as quantum wells and quantum dots (QD), are well known, and some have been incorporated in practical devices. Here we focus on novel structures made of QDs and related devices for terahertz (THz) generation. Their potential advantages, such as low threshold current density, high characteristic temperature, increased differential gain, etc, make QDs promising candidates for light emitting applications in the THz region. Our idea of using resonant tunneling through QDs is presented, and initial results on devices consisting of self-assembled InAs QDs in an undoped GaAs matrix, with a design incorporating a GaInNAs/GaAs short period superlattice, are discussed. Moreover, shallow impurities are also being explored for possible THz emission: the idea is based on the tunneling through bound states of individual donor or acceptor impurities in the quantum well. Initial results on devices having an AlGaAs/GaAs double-barrier resonant tunneling structure are discussed.

  10. Electronic properties of aperiodic quantum dot chains

    Science.gov (United States)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2012-04-01

    The electronic spectral and transport properties of aperiodic quantum dot chains are investigated. The systems with singular continuous energy spectrum are considered: Thue-Morse chain, double-periodic chain, Rudin-Shapiro chain. The influence of electronic energy in quantum dot on the spectral properties, band structure, density of states and spectral resistivity, is discussed. Low resistivity regions correspond to delocalized states and these states could be current states. Also we discuss the magnetic field application as the way to tune electronic energy in quantum dot and to obtain metallic or insulating conducting states of the systems.

  11. Time-bin Entanglement from Quantum Dots

    CERN Document Server

    Weihs, Gregor; Predojević, Ana

    2016-01-01

    The desire to have a source of single entangled photon pairs can be satisfied using single quantum dots as emitters. However, we are not bound to pursue only polarization entanglement, but can also exploit other degrees of freedom. In this chapter we focus on the time degree of freedom, to achieve so-called time-bin entanglement. This requires that we prepare the quantum dot coherently into the biexciton state and also build special interferometers for analysis. Finally this technique can be extended to achieve time-bin and polarization hyper-entanglement from a suitable quantum dot.

  12. Fluorescent Quantum Dots for Biological Labeling

    Science.gov (United States)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  13. Quantum dot heterojunction solar cells: the mechanism of device operation and impacts of quantum dot oxidation

    OpenAIRE

    Ihly, Rachelle

    2014-01-01

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic s...

  14. Hybrid passivated colloidal quantum dot solids

    Science.gov (United States)

    Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H.

    2012-09-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.

  15. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  16. Quantum Dots in Vertical Nanowire Devices

    NARCIS (Netherlands)

    Van Weert, M.

    2010-01-01

    The research described in this thesis is aimed at constructing a quantum interface between a single electron spin and a photon, using a nanowire quantum dot. Such a quantum interface enables information transfer from a local electron spin to the polarization of a photon for long distance readout.

  17. Non-adiabatic geometrical quantum gates in semiconductor quantum dots

    CERN Document Server

    Solinas, P; Zanghì, N; Rossi, F; Solinas, Paolo; Zanardi, Paolo; Zanghì, Nino; Rossi, Fausto

    2003-01-01

    In this paper we study the implementation of non-adiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding/manipulation schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be in principle implemented

  18. Colloidal quantum dot photovoltaics: The effect of polydispersity

    KAUST Repository

    Zhitomirsky, David

    2012-02-08

    The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity. © 2012 American Chemical Society.

  19. Hyper-parallel photonic quantum computation with coupled quantum dots

    Science.gov (United States)

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-01-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

  20. Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy

    Science.gov (United States)

    Rödel, R.; Bauer, A.; Kremling, S.; Reitzenstein, S.; Höfling, S.; Kamp, M.; Worschech, L.; Forchel, A.

    2012-01-01

    We demonstrate a method to controllably reduce the density of self-assembled InP quantum dots (QDs) by cyclic deposition with growth interruptions. Varying the number of cycles enabled a reduction of the QD density from 7.4 × 1010 cm - 2 to 1.8 × 109 cm - 2 for the same total amount of deposited InP. Simultaneously, a systematic increase of the QD size could be observed. Emission characteristics of different-sized InP QDs were analyzed. Excitation power dependent and time-resolved measurements confirm a transition from type I to type II band alignment for large InP quantum dots. Photon autocorrelation measurements of type I QDs performed under pulsed excitation reveal pronounced antibunching (g(2)(τ = 0) = 0.06 ± 0.03) as expected for a single-photon emitter. The described growth routine has great promise for the exploitation of InP QDs as quantum emitters.

  1. Microwave-Driven Coherent Operation of a Semiconductor Quantum Dot Charge Qubit (Author’s Manuscript)

    Science.gov (United States)

    2015-02-16

    Microwave-driven coherent operation of a semiconductor quantum dot charge qubit Dohun Kim,1 D. R. Ward,1 C. B. Simmons,1 John King Gamble,2 Robin...Fig.4a. Coherent microwave ac-gating of a semiconductor quantum dot charge qubit offers fast ( >GHz) manip- ulation rates for all elementary rotation...2014). [12] Kim, D. et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014). [13] Vion, D

  2. Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate.

    Science.gov (United States)

    Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo

    2016-10-01

    Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH

    Science.gov (United States)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2015-09-01

    Cadmium selenide (CdSe) quantum dots (Q-dots) were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO). Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL). The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM). Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

  4. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH

    Directory of Open Access Journals (Sweden)

    R. K. Ratnesh

    2015-09-01

    Full Text Available Cadmium selenide (CdSe quantum dots (Q-dots were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO. Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL. The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM. Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

  5. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH

    Energy Technology Data Exchange (ETDEWEB)

    Ratnesh, R. K.; Mehata, Mohan Singh, E-mail: msmehata@gmail.com [Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi-110042 (India)

    2015-09-15

    Cadmium selenide (CdSe) quantum dots (Q-dots) were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO). Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL). The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM). Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

  6. Thermopower of few-electron quantum dots with Kondo correlations

    Science.gov (United States)

    Ye, Lvzhou

    2015-03-01

    The thermopower of few-electron quantum dots is crucially influenced by on-dot electron-electron interactions, particularly in the presence of Kondo correlations. We present a comprehensive picture which elucidates the underlying relations between the thermopower and the spectral density function of two-level quantum dots. The effects of various electronic states, including the Kondo states originating from both spin and orbital degrees of freedom, are clearly unraveled. With these insights, we have exemplified an effective and viable way to control the sign of thermopower of Kondo-correlated quantum dots. This is realized by tuning the temperature and by selecting the appropriate level spacing and Coulomb repulsion strength. Such a physical picture is affirmed by accurate numerical data obtained with a hierarchical equations of motion approach. Our understandings and findings provide useful insights into controlling the direction of electric (heat) current through a quantum dot by applying a temperature (voltage) gradient across the two coupling leads. This may have important implications for novel thermoelectric applications of quantum dots. The support from the Natural Science Foundation of China (Grants No. 21033008, No. 21233007, No. 21303175, and No. 21322305) and the Strategic Priority Research Program (B) of the CAS (XDB01020000) is gratefully appreciated.

  7. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan;

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  8. Double Acceptor Interaction in Semimagnetic Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Merwyn Jasper D. Reuben

    2011-01-01

    Full Text Available The effect of geometry of the semimagnetic Quantum Dot on the Interaction energy of a double acceptor is computed in the effective mass approximation using the variational principle. A peak is observed at the lower dot sizes as a magnetic field is increased which is attributed to the reduction in confinement.

  9. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  10. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  11. Electronic structure of rectangular HgTe quantum dots

    Science.gov (United States)

    Li, Jian; Zhang, Dong; Zhu, Jia-Ji

    2017-09-01

    We theoretically investigate the single- and few-electron ground-states properties of HgTe topological insulator quantum dots with rectangular hard-wall confining potential using configuration interaction method. For the case of single electron, the edge states is robust against the deformation from a square quantum dot to a rectangular ones, in contrast to the bulk states, the energy gap of the QDs increased due to the coupling of the opposite edge states; for the case of few electrons, the electrons first fill the edge states in the bulk band gap and the addition energy exhibit universal even-odd oscillation due to the shape-independent two-fold degeneracy of the edge states. The size of this edge shell can be controlled by tuning the dot size, shape or the bulk band gap via lateral or vertical electric gating respectively of the HgTe quantum dot.

  12. An All-Optical Quantum Gate in a Semiconductor Quantum Dot

    National Research Council Canada - National Science Library

    Xiaoqin Li; Yanwen Wu; Duncan Steel; D. Gammon; T. H. Stievater; D. S. Katzer; D. Park; C. Piermarocchi; L. J. Sham

    2003-01-01

    We report coherent optical control of a biexciton (two electron-hole pairs), confined in a single quantum dot, that shows coherent oscillations similar to the excited-state Rabi flopping in an isolated atom...

  13. Chaotic quantum dots with strongly correlated electrons

    OpenAIRE

    Shankar, R.

    2007-01-01

    Quantum dots pose a problem where one must confront three obstacles: randomness, interactions and finite size. Yet it is this confluence that allows one to make some theoretical advances by invoking three theoretical tools: Random Matrix theory (RMT), the Renormalization Group (RG) and the 1/N expansion. Here the reader is introduced to these techniques and shown how they may be combined to answer a set of questions pertaining to quantum dots

  14. Start Shift of Individual Quantum Dots

    Science.gov (United States)

    1999-06-18

    We will here describe the results of the influence of electric field on InP quantum dots embedded in GalnP, lattice matched to GaAs. Experimental...details The sample we used was grown by metal-organic vapour phase epitaxy, and contained InP quantum dots in GanP, lattice matched to GaAs (n-type

  15. Germanium quantum dots: Optical properties and synthesis

    OpenAIRE

    Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

    1994-01-01

    Three different size distributions of Ge quantum dots (>~200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Col...

  16. Renormalization in Periodically Driven Quantum Dots.

    Science.gov (United States)

    Eissing, A K; Meden, V; Kennes, D M

    2016-01-15

    We report on strong renormalization encountered in periodically driven interacting quantum dots in the nonadiabatic regime. Correlations between lead and dot electrons enhance or suppress the amplitude of driving depending on the sign of the interaction. Employing a newly developed flexible renormalization-group-based approach for periodic driving to an interacting resonant level we show analytically that the magnitude of this effect follows a power law. Our setup can act as a non-Markovian, single-parameter quantum pump.

  17. Molecular-structure control of ultrafast electron injection at cationic porphyrin-CdTe quantum dot interfaces

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-03-05

    Charge transfer (CT) at donor (D)/acceptor (A) interfaces is central to the functioning of photovoltaic and light-emitting devices. Understanding and controlling this process on the molecular level has been proven to be crucial for optimizing the performance of many energy-challenge relevant devices. Here, we report the experimental observations of controlled on/off ultrafast electron transfer (ET) at cationic porphyrin-CdTe quantum dot (QD) interfaces using femto- and nanosecond broad-band transient absorption (TA) spectroscopy. The time-resolved data demonstrate how one can turn on/off the electron injection from porphyrin to the CdTe QDs. With careful control of the molecular structure, we are able to tune the electron injection at the porphyrin-CdTe QD interface from zero to very efficient and ultrafast. In addition, our data demonstrate that the ET process occurs within our temporal resolution of 120 fs, which is one of the fastest times recorded for organic photovoltaics. © 2015 American Chemical Society.

  18. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    Science.gov (United States)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  19. Quantum-Coherence-Assisted Tunable On- and Off-Resonance Tunneling through a Quantum-Dot-Molecule Dielectric Film

    Science.gov (United States)

    Shen, Jian Qi; Zeng, Rui Xi

    2017-02-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates.

  20. Quantum Effects in Higher-Order Correlators of a Quantum-Dot Spin Qubit

    Science.gov (United States)

    Bechtold, A.; Li, F.; Müller, K.; Simmet, T.; Ardelt, P.-L.; Finley, J. J.; Sinitsyn, N. A.

    2016-07-01

    We measure time correlators of a spin qubit in an optically active quantum dot beyond the second order. Such higher-order correlators are shown to be directly sensitive to pure quantum effects that cannot be explained within the classical framework. They allow direct determination of ensemble and quantum dephasing times, T2* and T2, using only repeated projective measurements and without the need for coherent spin control. Our method enables studies of purely quantum behavior in solid state systems, including tests of the Leggett-Garg type of inequalities that rule out local hidden variable interpretation of the quantum-dot spin dynamics.

  1. Thermoelectric study of dissipative quantum-dot heat engines

    Science.gov (United States)

    De, Bitan; Muralidharan, Bhaskaran

    2016-10-01

    This paper examines the thermoelectric response of a dissipative quantum-dot heat engine based on the Anderson-Holstein model in two relevant operating limits, (i) when the dot phonon modes are out of equilibrium, and (ii) when the dot phonon modes are strongly coupled to a heat bath. In the first case, a detailed analysis of the physics related to the interplay between the quantum-dot level quantization, the on-site Coulomb interaction, and the electron-phonon coupling on the thermoelectric performance reveals that an n -type heat engine performs better than a p -type heat engine. In the second case, with the aid of the dot temperature estimated by incorporating a thermometer bath, it is shown that the dot temperature deviates from the bath temperature as electron-phonon interaction in the dot becomes stronger. Consequently, it is demonstrated that the dot temperature controls the direction of phonon heat currents, thereby influencing the thermoelectric performance. Finally, the conditions on the maximum efficiency with varying phonon couplings between the dot and all the other macroscopic bodies are analyzed in order to reveal the nature of the optimum junction.

  2. Silicon quantum dots for biological applications.

    Science.gov (United States)

    Chinnathambi, Shanmugavel; Chen, Song; Ganesan, Singaravelu; Hanagata, Nobutaka

    2014-01-01

    Semiconductor nanoparticles (or quantum dots, QDs) exhibit unique optical and electronic properties such as size-controlled fluorescence, high quantum yields, and stability against photobleaching. These properties allow QDs to be used as optical labels for multiplexed imaging and in drug delivery detection systems. Luminescent silicon QDs and surface-modified silicon QDs have also been developed as potential minimally toxic fluorescent probes for bioapplications. Silicon, a well-known power electronic semiconductor material, is considered an extremely biocompatible material, in particular with respect to blood. This review article summarizes existing knowledge related to and recent research progress made in the methods for synthesizing silicon QDs, as well as their optical properties and surface-modification processes. In addition, drug delivery systems and in vitro and in vivo imaging applications that use silicon QDs are also discussed.

  3. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  4. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  5. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange.

    Science.gov (United States)

    Aqoma, Havid; Al Mubarok, Muhibullah; Hadmojo, Wisnu Tantyo; Lee, Eun-Hye; Kim, Tae-Wook; Ahn, Tae Kyu; Oh, Seung-Hwan; Jang, Sung-Yeon

    2017-05-01

    Colloidal-quantum-dot (CQD) photovoltaic devices are promising candidates for low-cost power sources owing to their low-temperature solution processability and bandgap tunability. A power conversion efficiency (PCE) of >10% is achieved for these devices; however, there are several remaining obstacles to their commercialization, including their high energy loss due to surface trap states and the complexity of the multiple-step CQD-layer-deposition process. Herein, high-efficiency photovoltaic devices prepared with CQD-ink using a phase-transfer-exchange (PTE) method are reported. Using CQD-ink, the fabrication of active layers by single-step coating and the suppression of surface trap states are achieved simultaneously. The CQD-ink photovoltaic devices achieve much higher PCEs (10.15% with a certified PCE of 9.61%) than the control devices (7.85%) owing to improved charge drift and diffusion. Notably, the CQD-ink devices show much lower energy loss than other reported high-efficiency CQD devices. This result reveals that the PTE method is an effective strategy for controlling trap states in CQDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit

    Institute of Scientific and Technical Information of China (English)

    CAO Gang; WANG Li; TU Tao; LI Hai-Ou; XIAO Ming; GUO Guo-Ping

    2012-01-01

    We propose an effective method to design the working parameters of a pulse-driven charge qubit implemented with double quantum dot.It is shown that intrinsic qubit population leakage to undesired states in the control and measurement process can be determined by the simulation of coherent dynamics of the qubit and minimized by choosing proper working parameters such as pulse shape.The result demonstrated here bodes well for future quantum gate operations and quantum computing applications.

  7. Inter-dot coupling effects on transport through correlated parallel coupled quantum dots

    Indian Academy of Sciences (India)

    Shyam Chand; G Rajput; K C Sharma; P K Ahluwalia

    2009-05-01

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.

  8. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  9. Optically programmable electron spin memory using semiconductor quantum dots.

    Science.gov (United States)

    Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J

    2004-11-04

    The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.

  10. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  11. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Amy Szuchmacher [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Soto, Carissa M [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Wilson, Charmaine D [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Whitley, Jessica L [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Moore, Martin H [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Sapsford, Kim E [George Mason University, 10910 University Boulevard, Manassas, VA 20110 (United States); Lin, Tianwei [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Chatterji, Anju [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Johnson, John E [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ratna, Banahalli R [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-10-28

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot-protein assemblies were studied in detail. The IgG-QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV-QD complexes have a local concentration of quantum dots greater than 3000 nmol ml{sup -1}, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  12. Quantum Dots and Their Multimodal Applications: A Review

    OpenAIRE

    Holloway, Paul H; Teng-Kuan Tseng; Lei Qian; Debasis Bera

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons ...

  13. Controlled synthesis of Eu2+ and Eu3+ doped ZnS quantum dots and their photovoltaic and magnetic properties

    Science.gov (United States)

    Horoz, Sabit; Yakami, Baichhabi; Poudyal, Uma; Pikal, Jon M.; Wang, Wenyong; Tang, Jinke

    2016-04-01

    Eu-doped ZnS quantum dots (QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu2+ and Eu3+ doped ZnS can be controllably synthesized. The Eu2+ doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu2+ intra-ion transition of 4f6d1 - 4f7, while the Eu3+ doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu3+ doped samples exhibit signs of ferromagnetism, on the other hand, Eu2+ doped samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.

  14. Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Oh Kim, Jun [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Ku, Zahyun; Urbas, Augustine, E-mail: youngchul.jun@inha.ac.kr, E-mail: Augustine.Urbas@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Krishna, Sanjay [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Kang, Sang-Woo; Jun Lee, Sang [Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Chul Jun, Young, E-mail: youngchul.jun@inha.ac.kr, E-mail: Augustine.Urbas@wpafb.af.mil [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-04-28

    We propose and analyze a novel detector structure for pixel-level multispectral infrared imaging. More specifically, we investigate the device performance of a grating-integrated quantum dots-in-a-well photodetector under backside illumination. Our design uses 1-dimensional grating patterns fabricated directly on a semiconductor contact layer and, thus, adds a minimal amount of additional effort to conventional detector fabrication flows. We show that we can gain wide-range control of spectral response as well as large overall detection enhancement by adjusting grating parameters. For small grating periods, the spectral responsivity gradually changes with parameters. We explain this spectral tuning using the Fabry–Perot resonance and effective medium theory. For larger grating periods, the responsivity spectra get complicated due to increased diffraction into the active region, but we find that we can obtain large enhancement of the overall detector performance. In our design, the spectral tuning range can be larger than 1 μm, and, compared to the unpatterned detector, the detection enhancement can be greater than 92% and 148% for parallel and perpendicular polarizations. Our work can pave the way for practical, easy-to-fabricate detectors, which are highly useful for many infrared imaging applications.

  15. Quantum analysis of plasmonic coupling between quantum dots and nanoparticles

    Science.gov (United States)

    Ahmad, SalmanOgli

    2016-10-01

    In this study, interaction between core-shells nanoparticles and quantum dots is discussed via the full-quantum-theory method. The electromagnetic field of the nanoparticles is derived by the quasistatic approximation method and the results for different regions of the nanoparticles are quantized from the time-harmonic to the wave equation. Utilizing the optical field quantization, the nanoparticles' and quantum dots' deriving amplitudes contributing to the excitation waves are determined. In the current model, two counterpropagating waves with two different frequencies are applied. We derived the Maxwell-Bloch equations from the Heisenberg-Langevin equations; thus the nanoparticles-quantum dots interaction is perused. Moreover, by full quantum analyzing of the analytical expression, the quantum-plasmonic coupling relation and the Purcell factor are achieved. We show that the spontaneous emission of quantum dots can be dramatically manipulated by engineering the plasmon-plasmon interaction in the core-shells nanoparticles. This issue is a very attractive point for designing a wide variety of quantum-plasmonic sensors. Through the investigation of the nanoparticle plasmonic interaction effects on absorbed power, the results show that the nanoparticles' and quantum dots' absorption saturation state can be switched to each other just by manipulation of their deriving amplitudes. In fact, we manage the interference between the two waves' deriving amplitudes just by the plasmonic interactions effect.

  16. Quantum dot imaging for embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Gambhir Sanjiv S

    2007-10-01

    Full Text Available Abstract Background Semiconductor quantum dots (QDs hold increasing potential for cellular imaging both in vitro and in vivo. In this report, we aimed to evaluate in vivo multiplex imaging of mouse embryonic stem (ES cells labeled with Qtracker delivered quantum dots (QDs. Results Murine embryonic stem (ES cells were labeled with six different QDs using Qtracker. ES cell viability, proliferation, and differentiation were not adversely affected by QDs compared with non-labeled control cells (P = NS. Afterward, labeled ES cells were injected subcutaneously onto the backs of athymic nude mice. These labeled ES cells could be imaged with good contrast with one single excitation wavelength. With the same excitation wavelength, the signal intensity, defined as (total signal-background/exposure time in millisecond was 11 ± 2 for cells labeled with QD 525, 12 ± 9 for QD 565, 176 ± 81 for QD 605, 176 ± 136 for QD 655, 167 ± 104 for QD 705, and 1,713 ± 482 for QD 800. Finally, we have shown that QD 800 offers greater fluorescent intensity than the other QDs tested. Conclusion In summary, this is the first demonstration of in vivo multiplex imaging of mouse ES cells labeled QDs. Upon further improvements, QDs will have a greater potential for tracking stem cells within deep tissues. These results provide a promising tool for imaging stem cell therapy non-invasively in vivo.

  17. Electromechanical transition in quantum dots

    Science.gov (United States)

    Micchi, G.; Avriller, R.; Pistolesi, F.

    2016-09-01

    The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nanomechanical oscillator may lead to a transition towards a mechanically bistable and blocked-current state. Its observation is at reach in carbon-nanotube state-of-art experiments. In a recent publication [Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802] we have shown that this transition is characterized by pronounced signatures on the oscillator mechanical properties: the susceptibility, the displacement fluctuation spectrum, and the ring-down time. These properties are extracted from transport measurements, however the relation between the mechanical quantities and the electronic signal is not always straightforward. Moreover the dependence of the same quantities on temperature, bias or gate voltage, and external dissipation has not been studied. The purpose of this paper is to fill this gap and provide a detailed description of the transition. Specifically we find (i) the relation between the current-noise and the displacement spectrum; (ii) the peculiar behavior of the gate-voltage dependence of these spectra at the transition; (iii) the robustness of the transition towards the effect of external fluctuations and dissipation.

  18. Lindblad theory of dynamical decoherence of quantum-dot excitons

    OpenAIRE

    Eastham, P. R.; Spracklen, A O; Keeling, Jonathan Mark James

    2013-01-01

    We use the Bloch-Redfield-Wangsness theory to calculate the effects of acoustic phonons in coherent control experiments where quantum-dot excitons are driven by shaped laser pulses. This theory yields a generalized Lindblad equation for the density operator of the dot, with time-dependent damping and decoherence due to phonon transitions between the instantaneous dressed states. It captures similar physics to the form recently applied to Rabi oscillation experiments [Ramsay et al., Phys. Rev....

  19. Charge sensing of a few-donor double quantum dot in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Watson, T. F., E-mail: tfwatson15@gmail.com; Weber, B.; Büch, H.; Fuechsle, M.; Simmons, M. Y., E-mail: michelle.simmons@unsw.edu.au [Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2015-12-07

    We demonstrate the charge sensing of a few-donor double quantum dot precision placed with atomic resolution scanning tunnelling microscope lithography. We show that a tunnel-coupled single electron transistor (SET) can be used to detect electron transitions on both dots as well as inter-dot transitions. We demonstrate that we can control the tunnel times of the second dot to the SET island by ∼4 orders of magnitude by detuning its energy with respect to the first dot.

  20. Study on Wide-gap Gallium-nitride Based Films and Their Quantum-dots Devices

    Science.gov (United States)

    2006-09-05

    propose that the size controlled GaN based quantum dot LED for the prospective white light source cold be used to simulate the sun light for higher Lumen...compositions, the quantum dots of InGaN or InN could emit light to cover the whole visible spectrum. The quantum dot based white light device could...wavelength could be shifted from red to the blue region. The high efficiency, quantum dot size-controlled, white light LED could thus be produced

  1. Peptide linkers for the assembly of semiconductor quantum dot bioconjugates

    Science.gov (United States)

    Boeneman, Kelly; Mei, Bing C.; Deschamps, Jeffrey R.; Delehanty, James B.; Mattoussi, Hedi; Medintz, Igor

    2009-02-01

    The use of semiconductor luminescent quantum dots for the labeling of biomolecules is rapidly expanding, however it still requires facile methods to attach functional globular proteins to biologically optimized quantum dots. Here we discuss the development of controlled variable length peptidyl linkers to attach biomolecules to poly(ethylene) glycol (PEG) coated quantum dots for both in vitro and in vivo applications. The peptides chosen, β-sheets and alpha helices are appended to polyhistidine sequences and this allows for control of the ratio of peptide bioconjugated to QD and the distance from QD to the biomolecule. Recombinant DNA engineering, bacterial peptide expression and Ni-NTA purification of histidine labeled peptides are utilized to create the linkers. Peptide length is confirmed by in vitro fluorescent resonance energy transfer (FRET).

  2. A single-electron probe for buried optically active quantum dot

    Directory of Open Access Journals (Sweden)

    T. Nakaoka

    2012-09-01

    Full Text Available We present a simple method that enables both single electron transport through a self-assembled quantum dot and photon emission from the dot. The quantum dot buried in a semiconductor matrix is electrically connected with nanogap electrodes through tunneling junctions formed by a localized diffusion of the nanogap electrode metals. Coulomb blockade stability diagrams for the optically-active dot are clearly resolved at 4.2 K. The position of the quantum dot energy levels with respect to the contact Fermi level is controlled by the kind of metal atoms diffused from the nanogap electrodes.

  3. Coherence and control of a single electron spin in a quantum dot

    NARCIS (Netherlands)

    Koppens, F.H.L.

    2007-01-01

    An electron does not only have an electric charge, but also a small magnetic moment, called spin. In a magnetic field, the spin can point in the same direction as the field (spin-up) or in the opposite direction (spin-down). However, the laws of quantum mechanics also allow the spin to exist in both

  4. UV Nano-Lights: Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2014-08-01

    method is also applicable to bare nanoparticles in polar solvents. 15. SUBJECT TERMS Quantum Dots, Nonlinear Optical Materials , Energy...TERMS Quantum Dots, Nonlinear Optical Materials , Energy Conservation, Up-conversion 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  5. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...... coherence. The inferred homogeneous line widths are significantly smaller than the line widths usually observed in the photoluminescence from single quantum dots indicating an additional inhomogeneours broadening mechanism in the latter....

  6. Modulation Response of Semiconductor Quantum Dot Nanocavity Lasers

    DEFF Research Database (Denmark)

    Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    The modulation response of quantum-dot based nanocavity devices is investigated using a semiconductor theory. We show that high modulation bandwidth is achieved even in the presence of inhomogeneous broadening of the quantum dot ensemble.......The modulation response of quantum-dot based nanocavity devices is investigated using a semiconductor theory. We show that high modulation bandwidth is achieved even in the presence of inhomogeneous broadening of the quantum dot ensemble....

  7. Carbon quantum dots and a method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    2017-08-22

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  8. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    OpenAIRE

    Z. O. Lipatova; E. V. Kolobkova; V. A. Aseev

    2015-01-01

    Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been fou...

  9. Interfacing single photons and single quantum dots with photonic nanostructures

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren

    2013-01-01

    Photonic nanostructures provide a way of tailoring the interaction between light and matter and the past decade has witnessed a tremendous experimental and theoretical progress on this subject. In particular, the combination with semiconductor quantum dots has proven very successful. This manuscript reviews quantum optics with excitons in single quantum dots embedded in photonic nanostructures. The ability to engineer the interaction strength in integrated photonic nanostructures enables a range of fundamental quantum-electrodynamics experiments on, e.g., spontaneous-emission control, modified Lamb shifts, and enhanced dipole-dipole interaction. Furthermore, highly efficient single-photon sources and giant photon nonlinearities may be constructed with immediate applications for photonic quantum-information processing. The review summarizes the general theoretical framework of photon emission including the role of dephasing processes, and applies it to photonic nanostructures of current interest, such as photo...

  10. Design of tunneling injection quantum dot lasers

    Institute of Scientific and Technical Information of China (English)

    JIA Guo-zhi; YAO Jiang-hong; SHU Yong-chun; WANG Zhan-guo

    2007-01-01

    To implement high quality tunneling injection quantum dot lasers,effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probability,tunneling time and carriers thermal escape time from the quantum well. The calculation results show that with increasing of the ground-state energy level in quantum well,the tunneling probability increases and the tunneling time decreases,while the thermal escape time decreases because the ground-state energy levelis shallower. Longitudinal optical phonon-assisted tunneling can be an effective method to solve the problem that both the tunneling time and the thermal escape time decrease simultaneously with the ground-state energy level increasing in quantum well.

  11. Angiogenic Profiling of Synthesized Carbon Quantum Dots.

    Science.gov (United States)

    Shereema, R M; Sruthi, T V; Kumar, V B Sameer; Rao, T P; Shankar, S Sharath

    2015-10-20

    A simple method was employed for the synthesis of green luminescent carbon quantum dots (CQDs) from styrene soot. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy. The prepared carbon quantum dots did not show cellular toxicity and could successfully be used for labeling cells. We also evaluated the effects of carbon quantum dots on the process of angiogenesis. Results of a chorioallantoic membrane (CAM) assay revealed the significant decrease in the density of branched vessels after their treatment with CQDs. Further application of CQDs significantly downregulated the expression levels of pro-angiogenic growth factors like VEGF and FGF. Expression of VEGFR2 and levels of hemoglobin were also significantly lower in CAMs treated with CQDs, indicating that the CQDs inhibit angiogenesis. Data presented here also show that CQDs can selectively target cancer cells and therefore hold potential in the field of cancer therapy.

  12. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    Directory of Open Access Journals (Sweden)

    Aaron Clapp

    2011-11-01

    Full Text Available Luminescent colloidal quantum dots (QDs possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands.

  13. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.

    Science.gov (United States)

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric

    2016-04-01

    Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery.

  14. Quantum dot heterojunction solar cells: The mechanism of device operation and impacts of quantum dot oxidation

    Science.gov (United States)

    Ihly, Rachelle

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic study of the absorption properties of PbS quantum dot films exposed to air, heat, and UV illumination as a function of quantum dot size has been described. A method to improve the air-stability of films with atomic layer deposition of alumina is demonstrated. Encapsulation of quantum dot films using a protective layer of alumina results in quantum dot solids that maintain tuned absorption for 1000 hours. This thesis focuses on the use of atomic force microscopy and electrical variants thereof to study the physical and electrical characteristics of quantum dot arrays. These types of studies have broad implications in understanding charge transport mechanisms and solar cell device operation, with a particular emphasis on quantum dot transistors and solar cells. Imaging the channel potential of a PbSe quantum dot thin-film in a transistor showed a uniform distribution of charge coinciding with the transistor current voltage characteristics. In a second study, solar cell device operation of ZnO/PbS heterojunction solar cells was investigated by scanning active cross-sections with Kelvin probe microscopy as a function of applied bias, illumination and device architecture. This technique directly provides operating potential and electric field profiles to characterize drift and diffusion currents occurring in the device. SKPM established a field-free region occurring in the quantum dot layer, indicative of diffusion-limited transport. These results provide the path to optimization of

  15. Resonant tunneling in graphene pseudomagnetic quantum dots.

    Science.gov (United States)

    Qi, Zenan; Bahamon, D A; Pereira, Vitor M; Park, Harold S; Campbell, D K; Neto, A H Castro

    2013-06-12

    Realistic relaxed configurations of triaxially strained graphene quantum dots are obtained from unbiased atomistic mechanical simulations. The local electronic structure and quantum transport characteristics of y-junctions based on such dots are studied, revealing that the quasi-uniform pseudomagnetic field induced by strain restricts transport to Landau level- and edge state-assisted resonant tunneling. Valley degeneracy is broken in the presence of an external field, allowing the selective filtering of the valley and chirality of the states assisting in the resonant tunneling. Asymmetric strain conditions can be explored to select the exit channel of the y-junction.

  16. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  17. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  18. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  19. THz quantum-confined Stark effect in semiconductor quantum dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.;

    2012-01-01

    We demonstrate an instantaneous all-optical manipulation of optical absorption at the ground state of InGaAs/GaAs quantum dots (QDs) via a quantum-confined Stark effect (QCSE) induced by the electric field of incident THz pulses with peak electric fields reaching 200 kV/cm in the free space...

  20. A Polaron in a Quantum Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; XIE HongJing; CHEN ChuanYu

    2002-01-01

    The polaron effect in a quantum dot quantum well (QDQW)system is investigated by using the perturbation method. Both the bound electron states outside and inside the shell well are taken into account . Numerical calculation on the CdS/HgS QDQW shows that the phonon correction to the electron ground state energy is quite significant and cannot be neglected.

  1. Tunable few-electron double quantum dots with integrated charge read-out

    Science.gov (United States)

    Elzerman, J. M.; Hanson, R.; Greidanus, J. S.; Willems van Beveren, L. H.; De Franceschi, S.; Vandersypen, L. M. K.; Tarucha, S.; Kouwenhoven, L. P.

    2004-11-01

    We report on the realization of few-electron double quantum dots defined in a two-dimensional electron gas by means of surface gates on top of a GaAs/AlGaAs heterostructure. Two quantum point contacts (QPCs) are placed in the vicinity of the double quantum dot and serve as charge detectors. These enable determination of the number of conduction electrons on each dot. This number can be reduced to zero, while still allowing transport measurements through the double dot. The coupling between the two dots can be controlled even in the few-electron regime. Microwave radiation is used to pump an electron from one dot to the other by absorption of a single photon. The experiments demonstrate that this quantum dot circuit can serve as a good starting point for a scalable spin-qubit system.

  2. Realization of electrically tunable single quantum dot nanocavities

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Felix Florian Georg

    2009-03-15

    We investigated the design, fabrication and optical investigation of electrically tunable single quantum dot-photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light matter interaction. We demonstrate that the quantum confined Stark effect can be employed to quickly and reversibly switch the dot-cavity coupling, simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by up to {proportional_to}4 meV relative to the nanocavity mode, before the emission quenches due to carrier tunneling escape from the dots. We directly probe spontaneous emission, irreversible polariton decay and the statistics of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. The structures investigated are p-i-n photodiodes consisting of an 180nm thick free-standing GaAs membrane into which a two dimensional photonic crystal is formed by etching a triangular lattice of air holes. Low mode volume nanocavities (V{sub mode}<1.6 ({lambda}/n){sup 3}) are realized by omitting 3 holes in a line to form L3 cavities and a single layer of InGaAs self-assembled quantum dots is embedded into the midpoint of the membrane. The nanocavities are electrically contacted via 35 nm thick p- and n-doped contact layers in the GaAs membrane. In the weak coupling regime, time resolved spectroscopy reveals a {proportional_to}7 x shortening of the spontaneous emission lifetime as the dot is tuned through the nanocavity mode, due to the Purcell effect. Upon strongly detuning the same quantum dot transition from the nanocavity mode we observe an additional {proportional_to}8 x lengthening of the spontaneous emission lifetime. These observations unequivocally highlight two regimes of dot

  3. Probing silicon quantum dots by single-dot techniques

    Science.gov (United States)

    Sychugov, Ilya; Valenta, Jan; Linnros, Jan

    2017-02-01

    Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.

  4. Spin-Orbit Coupling, Antilocalization, and Parallel Magnetic Fields in Quantum Dots

    DEFF Research Database (Denmark)

    Zumbuhl, D.; Miller, Jessica; M. Marcus, C.;

    2002-01-01

    We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak...... localization, consistent with random matrix theory results once orbital coupling of the parallel field is included. In situ control of spin-orbit coupling in dots is demonstrated as a gate-controlled crossover from weak localization to antilocalization....

  5. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  6. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    Science.gov (United States)

    Kobayashi, T.; van der Heijden, J.; House, M. G.; Hile, S. J.; Asshoff, P.; Gonzalez-Zalba, M. F.; Vinet, M.; Simmons, M. Y.; Rogge, S.

    2016-04-01

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO2 interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  7. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  8. Germanium quantum dots: Optical properties and synthesis

    Science.gov (United States)

    Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

    1994-07-01

    Three different size distributions of Ge quantum dots (≳200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Γ25→L indirect transitions.

  9. Nonlocal quantum cloning via quantum dots trapped in distant cavities

    Institute of Scientific and Technical Information of China (English)

    Yu Tao; Zhu Ai-Dong; Zhang Shou

    2012-01-01

    A scheme for implementing nonlocal quantum cloning via quantum dots trapped in cavities is proposed.By modulating the parameters of the system,the optimal 1 → 2 universal quantum cloning machine,1 → 2 phase-covariant cloning machine,and 1 → 3 economical phase-covariant cloning machine are constructed.The present scheme,which is attainable with current technology,saves two qubits compared with previous cloning machines.

  10. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  11. Josephson ϕ0-junction in nanowire quantum dots

    Science.gov (United States)

    Szombati, D. B.; Nadj-Perge, S.; Car, D.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.

    2016-06-01

    The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier. This current is driven by a superconducting phase difference ϕ between the leads. In the presence of chiral and time-reversal symmetry of the Cooper pair tunnelling process, the current is strictly zero when ϕ vanishes. Only if these underlying symmetries are broken can the supercurrent for ϕ = 0 be finite. This corresponds to a ground state of the junction being offset by a phase ϕ0, different from 0 or π. Here, we report such a Josephson ϕ0-junction based on a nanowire quantum dot. We use a quantum interferometer device to investigate phase offsets and demonstrate that ϕ0 can be controlled by electrostatic gating. Our results may have far-reaching implications for superconducting flux- and phase-defined quantum bits as well as for exploring topological superconductivity in quantum dot systems.

  12. Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates

    Science.gov (United States)

    Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.

    2015-03-01

    We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.

  13. Charged-Exciton Complexes in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2001-01-01

    It is known experimentally that stable charged-exciton complexes can exist in low-dimensional semiconductor nanostructures. Much less is known about the properties of such charged-exciton complexes since three-body problems are very difficult to be solved, even numerically. Here we introduce the correlated hyperspherical harmonics as basis functions to solve the hyperangular equation for negatively and positively charged excitons (trions) in a harmonic quantum dot. By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton as a function of the radius of quantum dot. Based on symmetry analysis, the level crossover as the dot radius increases can be fully explained as the results of symmetry constraint.``

  14. Saturating optical resonances in quantum dots

    Science.gov (United States)

    Nair, Selvakumar V.; Rustagi, K. C.

    Optical bistability in quantum dots, recently proposed by Chemla and Miller, is studied in a two-resonance model. We show that for such classical electromagnetic resonances the applicability of a two-resonance model is far more restrictive than for those in atoms.

  15. System and method for making quantum dots

    KAUST Repository

    Bakr, Osman M.

    2015-05-28

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.

  16. Quantum dot waveguides: ultrafast dynamics and applications

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    In this paper we analyze, based on numerical simulations, the dynamics of semiconductor devices incorporating quantum dots (QDs). In particular we emphasize the unique ultrafast carrier dynamics occurring between discrete QD bound states, and its influence on QD semiconductor optical amplifiers...... (SOAs). Also the possibility of realizing an all-optical regenerator by incorporating a QD absorber section in an amplifier structure is discussed....

  17. Electron Scattering in Intrananotube Quantum Dots

    NARCIS (Netherlands)

    Buchs, G.; Bercioux, D.; Ruffieux, P.; Gröning, P.; Grabert, H.; Gröning, O.

    2009-01-01

    Intratube quantum dots showing particle-in-a-box-like states with level spacings up to 200 meV are realized in metallic single-walled carbon nanotubes by means of low dose medium energy Ar+ irradiation. Fourier-transform scanning tunneling spectroscopy compared to results of a Fabry-Perot electron r

  18. Enabling biomedical research with designer quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, G.J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  19. Single Molecule Applications of Quantum Dots

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.

    2013-01-01

    Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows: 1...

  20. Spin Wigner molecules in quantum dots

    Science.gov (United States)

    Zutic, Igor; Oszwaldowski, Rafal; Stano, Peter; Petukhov, A. G.

    2013-03-01

    The interplay of confinement and Coulomb interactions in quantum dots can lead to strongly correlated phases differing qualitatively from the Fermi liquid behavior. While in three dimensions the correlation-induced Wigner crystal is elusive and expected only in the limit of an extremely low carrier density, its nanoscale analog, the Wigner molecule, has been observed in quantum dots at much higher densities [1]. We explore how the presence of magnetic impurities in quantum dots can provide additional opportunities to study correlation effects and the resulting ordering in carrier and impurity spins[2]. By employing exact diagonalization we reveal that seemingly simple two-carrier quantum dots lead to a rich phase diagram [2,3]. We propose experiments to verify our predictions; in particular, we discuss interband optical transitions as a function of temperature and magnetic field. DOE-BES, meta-QUTE 259 ITMS NFP Grant No. 26240120022, CE SAS QUTE, EU 260 Project Q-essence, Grant No. APVV-0646-10, and SCIEX.

  1. Optical Properties of Quantum-Dot-Doped Liquid Scintillators

    CERN Document Server

    Aberle, C; Weiss, S; Winslow, L

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  2. Optical properties of quantum-dot-doped liquid scintillators

    Science.gov (United States)

    Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.

    2013-10-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  3. Tunable double quantum dots in InAs nanowires defined by local gate electrodes.

    Science.gov (United States)

    Fasth, Carina; Fuhrer, Andreas; Samuelson, Lars

    2006-03-01

    We present low-temperature transport measurements on quantum dots induced in homogeneous InAs quantum wires 50 nm in diameter. Quantum dots are induced by electrical depletion of the wire using local gate electrodes with down to 30 nm electrode spacing. This scheme has permitted the realization of fully gate-defined multiple quantum dots along the nanowire [1]. Tunability in double quantum dots is a prerequisite for the system to be operated as a quantum gate. We demonstrate control over the lead tunnel barrier transparencies and, in the case of double quantum dots, the interdot coupling. Using the local gate electrodes also as plunger gates we measure double dot honeycomb stability diagrams which show the transition from a single large dot to two weakly coupled dots at 4.2K. The induced quantum dots can be tuned into the few-electron regime which is shown from Coulomb blockade measurements. We extract values of orbital energy-level spacings, capacitances and capacitive and tunnel interdot coupling for this system. [1] C. Fasth et al., NanoLett 5, 1487 (2005).

  4. Probing the quantum-classical connection with open quantum dots

    Science.gov (United States)

    Ferry, D. K.; Akis, R.; Brunner, R.

    2015-10-01

    Open quantum dots provide a natural system in which to study both classical and quantum features of transport. From the classical point of view these dots possess a mixed phase space which yields families of closed, regular orbits as well as an expansive sea of chaos. As a closed test bed, they provide a natural system with a very rich set of eigen-states. When coupled to the environment through a pair of quantum point contacts, each of which passes several modes, the original quantum environment evolves into a set of decoherent and coherent states, which eventually couple to the classical states discussed above. The manner of this connection is governed strongly by decoherence theory. The remaining coherent states possess all the properties of pointer states. Here, we discuss the quantum-classical connection and how it appears within the experimental world.

  5. Electron-Nuclear Dynamics in a Quantum Dot under Nonunitary Electron Control

    Science.gov (United States)

    2011-07-20

    Þ sin2 ! eTR 2 ; (8) where Se is the length of the electron steady-state SV and for brevity we have suppressed the superscript 1 [13]. The zero...of m such that ð!e þmAÞTR is an odd integer multiple of , and the locations of these peaks can be controlled by adjusting ! eTR . A systematic...q20 2q0 cos; ð1 q20Þ tanð! eTR =2Þ; q0! eTR sin; (11) where c is as in Ref. [15]. Nonzero x; y components arise from expanding the Overhauser

  6. Quantum Dots and Their Multimodal Applications: A Review

    Directory of Open Access Journals (Sweden)

    Paul H. Holloway

    2010-03-01

    Full Text Available Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence or electric field (electroluminescence. In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  7. Single photo-electron trapping, storage, and detection in a one-electron quantum dot

    OpenAIRE

    Rao, Deepak Sethu; Szkopek, Thomas; Robinson, Hans Daniel; Yablonovitch, Eli; Jiang, Hong-Wen

    2004-01-01

    There has been considerable progress in electro-statically emptying, and re-filling, quantum dots with individual electrons. Typically the quantum dot is defined by electrostatic gates on a GaAs/AlGaAs modulation doped heterostructure. We report the filling of such a quantum dot by a single photo-electron, originating from an individual photon. The electrostatic dot can be emptied and reset in a controlled fashion before the arrival of each photon. The trapped photo-electron is detected by a ...

  8. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  9. Light emission from Si quantum dots

    Directory of Open Access Journals (Sweden)

    Philippe M. Fauchet

    2005-01-01

    Full Text Available Si quantum dots (QDs as small as ∼2 nm in diameter have been synthesized by a variety of techniques. Because of quantum confinement and the elimination of bulk or surface defects, these dots can emit light from the near infrared throughout the visible with quantum efficiencies in excess of 10%. The luminescence wavelength range has been extended to longer wavelengths by the addition of light-emitting rare earths such as erbium (Er. Light-emitting devices (LEDs have been fabricated and their performances are starting to approach those of direct band gap semiconductor or organic LEDs. A search for a Si QD-based laser is even under way. The state-of-the-art in the materials science, physics, and device development of luminescent Si QDs is reviewed and areas of future research are pointed out.

  10. Quantum Size- Dependent Third- Order Nonlinear Optical Susceptibility in Semiconductor Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    SUN Ting; XIONG Gui-guang

    2005-01-01

    The density matrix approach has been employed to investigate the optical nonlinear polarization in a single semiconductor quantum dot(QD). Electron states are considered to be confined within a quantum dot with infinite potential barriers. It is shown, by numerical calculation, that the third-order nonlinear optical susceptibilities for a typical Si quantum dot is dependent on the quantum size of the quantum dot and the frequency of incident light.

  11. Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Stobbe, Søren; Nikolaev, Ivan S.;

    2008-01-01

    and a theoretical model, we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics......The radiative and nonradiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements, we extract the oscillator strength and the quantum efficiency and their dependence on emission energy. From our results...

  12. Local Quantum Dot Tuning on Photonic Crystal Chips

    CERN Document Server

    Faraon, Andrei; Fushman, Ilya; Stoltz, Nick; Petroff, Pierre; Vuckovic, Jelena

    2007-01-01

    Quantum networks based on InGaAs quantum dots embedded in photonic crystal devices rely on QDs being in resonance with each other and with the cavities they are embedded in. We developed a new technique based on temperature tuning to spectrally align different quantum dots located on the same chip. The technique allows for up to 1.8nm reversible on-chip quantum dot tuning.

  13. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has...... developed in the study of single quantum dots, characterized by sharp atomic-like transition lines revealing their zero-dimensional density of states. Substantial information about the fundamental properties of individual quantum dots, as well as their interactions with other dots and the host lattice, can...

  14. Sensitivity of quantum-dot semiconductor lasers to optical feedback.

    Science.gov (United States)

    O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V

    2004-05-15

    The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

  15. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  16. Electron-hole confinement symmetry in silicon quantum dots

    NARCIS (Netherlands)

    Müller, F.; Mueller, Filipp; Konstantaras, Georgios; Spruijtenburg, P.C.; van der Wiel, Wilfred Gerard; Zwanenburg, Floris Arnoud

    2015-01-01

    We report electrical transport measurements on a gate-defined ambipolar quantum dot in intrinsic silicon. The ambipolarity allows its operation as either an electron or a hole quantum dot of which we change the dot occupancy by 20 charge carriers in each regime. Electron−hole confinement symmetry is

  17. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  18. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  19. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  20. Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kaizu, Toshiyuki, E-mail: kaizu@crystal.kobe-u.ac.jp [Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Matsumura, Takuya; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2015-10-21

    We investigated the effects of the GaAs capping temperature on the morphological and photoluminescence (PL) properties of InAs quantum dots (QDs) on GaAs(001). The broadband tuning of the emission wavelength from 1.1 to 1.3 μm was achieved at room temperature by only adjusting the GaAs capping temperature. As the capping temperature was decreased, the QD shrinkage due to In desorption and In-Ga intermixing during the capping process was suppressed. This led to QDs with a high aspect ratio, and resultantly, the emission wavelength shifted toward the longer-wavelength side. In addition, the linearly polarized PL intensity elucidated anisotropic characteristics reflecting the shape anisotropy of the embedded QDs, in which a marked change in polarization anisotropy occurred at capping temperatures lower than 460 °C.

  1. Electrically tunable quantum interfaces between photons and spin qubits in carbon nanotube quantum dots

    Science.gov (United States)

    Shen, Ze-Song; Hong, Fang-Yu

    2016-11-01

    We present a new scheme for quantum interfaces (QIs) to accomplish the interconversion of photonic qubits and spin qubits based on optomechanical resonators and the spin-orbit-induced interactions in suspended carbon nanotube quantum dots (CNTQDs). This interface implements quantum spin transducers and further enables electrical manipulation of local electron spin qubits, which lays the foundation for all-electrical control of state transfer protocols between two distant quantum nodes in a quantum network. We numerically evaluate the state transfer processes and proceed to estimate the effect of each coupling strength on the operation fidelities. The simulation suggests that high operation fidelities are obtainable under realistic experimental conditions.

  2. Electronic Structure of Helium Atom in a Quantum Dot

    Science.gov (United States)

    Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T. K.

    2016-03-01

    Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India

  3. Fabrication and evaluation of series-triple quantum dots by thermal oxidation of silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Takafumi, E-mail: takafumi-uchida@frontier.hokudai.ac.jp; Jo, Mingyu; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo [Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814 Japan (Japan); Fujiwara, Akira [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, 243-0198 Japan (Japan)

    2015-11-15

    Series-connected triple quantum dots were fabricated by a simple two-step oxidation technique using the pattern-dependent oxidation of a silicon nanowire and an additional oxidation of the nanowire through the gap of the fine gates attached to the nanowire. The characteristics of multi-dot single-electron devices are obtained. The formation of each quantum dot beneath an attached gate is confirmed by analyzing the electrical characteristics and by evaluating the gate capacitances between all pairings of gates and quantum dots. Because the gate electrode is automatically attached to each dot, the device structure benefits from scalability. This technique promises integrability of multiple quantum dots with individual control gates.

  4. Mitigation of quantum dot cytotoxicity by microencapsulation.

    Directory of Open Access Journals (Sweden)

    Amelia Romoser

    Full Text Available When CdSe/ZnS-polyethyleneimine (PEI quantum dots (QDs are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the "first line of defense" for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor.

  5. The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods.

    Science.gov (United States)

    Asokan, Subashini; Krueger, Karl M; Alkhawaldeh, Ammar; Carreon, Alessandra R; Mu, Zuze; Colvin, Vicki L; Mantzaris, Nikos V; Wong, Michael S

    2005-10-01

    Fluorescent semiconductor nanoparticles, or quantum dots, have potential uses as an optical material, in which the optoelectronic properties can be tuned precisely by particle size. Advances in chemical synthesis have led to improvements in size and shape control, cost, and safety. A limiting step in large-scale production is identified to be the raw materials cost, in which a common synthesis solvent, octadecene, accounts for most of the materials cost for a batch of CdSe quantum dots. Thus, less expensive solvents are needed. In this paper, we identify heat transfer fluids, a class of organic liquids commonly used in chemical process industries to transport heat between unit operations, as alternative solvents for quantum dot synthesis. We specifically show that two heat transfer fluids can be used successfully in the synthesis of CdSe quantum dots with uniform particle sizes. We show that the synthesis chemistry for CdSe/CdS core/shell quantum dots and CdSe quantum rods can also be performed in heat transfer fluids. With the aid of a population balance model, we interpret the effect of different HT fluids on QD growth kinetics in terms of solvent effects, i.e., solvent viscosity, CdSe bulk solubility in the solvent, and surface free energy.

  6. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  7. Templating growth of gold nanostructures with a CdSe quantum dot array.

    Science.gov (United States)

    Paul, Neelima; Metwalli, Ezzeldin; Yao, Yuan; Schwartzkopf, Matthias; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter; Paul, Amitesh

    2015-06-07

    In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of ≈7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage.

  8. Studies of silicon quantum dots prepared at different substrate temperatures

    Science.gov (United States)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  9. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots.

    Science.gov (United States)

    Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2011-01-01

    Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.

  10. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots

    Directory of Open Access Journals (Sweden)

    Generalov R

    2011-09-01

    Full Text Available Roman Generalov1,2, Simona Kavaliauskiene1, Sara Westrøm1, Wei Chen3, Solveig Kristensen2, Petras Juzenas11Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 2School of Pharmacy, University of Oslo, Oslo, Norway; 3Department of Physics, The University of Texas at Arlington, Arlington, TX, USAAbstract: Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.Keywords: fluorescence lifetime, free radicals, liposomes, lipodots, reactive oxygen species

  11. Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser

    CERN Document Server

    Chusseau, Laurent; Viktorovitch, P; Letartre, Xavier

    2013-01-01

    This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz generation by photomixing.

  12. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    Science.gov (United States)

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  13. Principles of conjugating quantum dots to proteins via carbodiimide chemistry.

    Science.gov (United States)

    Song, Fayi; Chan, Warren C W

    2011-12-09

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein-quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  14. SU(4) Kondo entanglement in double quantum dot devices

    Science.gov (United States)

    Bonazzola, Rodrigo; Andrade, J. A.; Facio, Jorge I.; García, D. J.; Cornaglia, Pablo S.

    2017-08-01

    We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties and consider the general experimental situation where the coupling parameters of the two quantum dots differ. We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the double quantum dot is suppressed. We present density matrix renormalization group numerical results for the spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main physics of the problem.

  15. Control of the binding energy by tuning the single dopant position, magnetic field strength and shell thickness in ZnS/CdSe core/shell quantum dot

    Science.gov (United States)

    Talbi, A.; Feddi, E.; Zouitine, A.; Haouari, M. El; Zazoui, M.; Oukerroum, A.; Dujardin, F.; Assaid, E.; Addou, M.

    2016-10-01

    Recently, the new tunable optoelectronic devices associated to the inclusion of the single dopant are in continuous emergence. Combined to other effects such as magnetic field, geometrical confinement and dielectric discontinuity, it can constitute an approach to adjusting new transitions. In this paper, we present a theoretical investigation of magnetic field, donor position and quantum confinement effects on the ground state binding energy of single dopant confined in ZnS/CdSe core/shell quantum dot. Within the framework of the effective mass approximation, the Schrödinger equation was numerically been solved by using the Ritz variational method under the finite potential barrier. The results show that the binding energy is very affected by the core/shell sizes and by the external magnetic field. It has been shown that the single dopant energy transitions can be controlled by tuning the dopant position and/or the field strength.

  16. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    Energy Technology Data Exchange (ETDEWEB)

    Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Tagliaferri, M. L. V. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Universit di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Vinet, M. [CEA/LETI-MINATEC, CEA-Grenoble, 17 rue des martyrs, F-38054 Grenoble (France); Sanquer, M. [SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, 38054 Grenoble (France); Ferguson, A. J. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

    2016-05-16

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  17. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  18. Nanostructure assembly of indium sulphide quantum dots and their characterization.

    Science.gov (United States)

    Vigneashwari, B; Ravichandran, V; Parameswaran, P; Dash, S; Tyagi, A K

    2008-02-01

    Nanocrystals (approximately 5 nm) of the semiconducting wide band gap material beta-In2S3 obtained by chemical synthesis through a hydrothermal route were characterized for phase and compositional purity. These nanoparticles exhibited quantum confinement characteristics as revealed by a blue-shifted optical absorption. These quantum dots of beta-In2S3 were electrically driven from a monodisperse colloidal suspension on to conducting glass substrates by Electophoretic Deposition (EPD) technique and nanostructural thin films were obtained. The crystalline and morphological structures of these deposits were investigated by X-ray diffraction and nanoscopic techniques. We report here that certain interesting nanostructural morphologies were observed in the two-dimensional quantum dot assemblies of beta-In2S3. The effect of the controlling parameters on the cluster growth and deposit integrity was also systematically studied through a series of experiments and the results are reported here.

  19. Light-hole exciton in a nanowire quantum dot

    Science.gov (United States)

    Jeannin, Mathieu; Artioli, Alberto; Rueda-Fonseca, Pamela; Bellet-Amalric, Edith; Kheng, Kuntheak; André, Régis; Tatarenko, Serge; Cibert, Joël; Ferrand, David; Nogues, Gilles

    2017-01-01

    Quantum dots inserted inside semiconductor nanowires are extremely promising candidates as building blocks for solid-state-based quantum computation and communication. They provide very high crystalline and optical properties and offer a convenient geometry for electrical contacting. Having a complete determination and full control of their emission properties is one of the key goals of nanoscience researchers. Here we use strain as a tool to create in a single magnetic nanowire quantum dot a light-hole exciton, an optically active quasiparticle formed from a single electron bound to a single light hole. In this frame, we provide a general description of the mixing within the hole quadruplet induced by strain or confinement. A multi-instrumental combination of cathodoluminescence, polarization-resolved Fourier imaging, and magneto-optical spectroscopy, allows us to fully characterize the hole ground state, including its valence band mixing with heavy-hole states.

  20. Mortalin imaging in normal and cancer cells with quantum dot immunoconjugates

    Institute of Scientific and Technical Information of China (English)

    ZEENIA KAUL; TOMOKO YAGUCHI; SUNIL C KAUL; TAKASHI HIRANO; RENU WADHWA; KAZUNARI TAIRA

    2003-01-01

    Quantum dots are the nanoparticles that are recently emerging as an alternative to organic fluorescence probes in cell biology and biomedicine,and have several predictive advantages.These include their i)broad absorption spectra allowing visualization with single light source,ii)exceptional photo-stability allowing long term studies and iii)narrow and symmetrical emission spectrum that is controlled by their size and material composition.These unique properties allow simultaneous excitation of different size of quantum dots with a single excitation light source,their simultaneous resolution and visualization as different colors.At present there are only a few studies that have tested quantum dots in cellular imaging.We describe here the use of quantum dots in mortalin imaging of normal and cancer cells.Mortalin staining pattern with quantum dots in both normal and cancer cells mimicked those obtained with organic florescence probes and were considerably stable.

  1. Barrier Li Quantum Dots in Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    LIUYi-Min; LIXiao-Zhu; YANWen-Hong; BAOCheng-Guang

    2003-01-01

    The methods for the few-body system are introduced to investigate the states of the barrier Li quantum dots (QDs) in an arbitrary strength of magnetic field. The configuration, which consists of a positive ion located on the z-axis at a distaneed from the two-dimensional QD plane (the x-y plane) and three electrons in the dot plane bound by the positive ion, is called a barrier Li center. The system, which consists of three electrons in the dot plane bound by the ion,is called a barrier Li QD. The dependence of energy of the state of the barrier Li QD on an external magnetic field B and the distance d is obtained. The angular momentum L of the ground states is found to jump not only with the variation orB but also with d.

  2. Bit-Serial Adder Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    quantum-mechanical sense) between neighboring dots within the cell. The Coulomb repulsion between the two electrons tends to make them occupy antipodal dots in the cell. For an isolated cell, there are two energetically equivalent arrangements (denoted polarization states) of the extra electrons. The cell polarization is used to encode binary information. Because the polarization of a nonisolated cell depends on Coulomb-repulsion interactions with neighboring cells, universal logic gates and binary wires could be constructed, in principle, by arraying QCA of suitable design in suitable patterns. Again, for reasons too complex to describe here, in order to ensure accuracy and timeliness of the output of a QCA array, it is necessary to resort to an adiabatic switching scheme in which the QCA array is divided into subarrays, each controlled by a different phase of a multiphase clock signal. In this scheme, each subarray is given time to perform its computation, then its state is frozen by raising its inter-dot potential barriers and its output is fed as the input to the successor subarray. The successor subarray is kept in an unpolarized state so it does not influence the calculation of preceding subarray. Such a clocking scheme is consistent with pipeline computation in the sense that each different subarray can perform a different part of an overall computation. In other words, QCA arrays are inherently suitable for pipeline and, moreover, systolic computations. This sequential or pipeline aspect of QCA would be utilized in the proposed bit-serial adders.

  3. Theory of Electro-optic Modulation via a Quantum Dot Coupled to a Nano-resonator

    CERN Document Server

    Majumdar, Arka; Faraon, Andrei; Vuckovic, Jelena

    2009-01-01

    In this paper, we analyze the performance of an electro-optic modulator based on a single quantum dot strongly coupled to a nano-resonator, where electrical control of the quantum dot frequency is achieved via quantum confined Stark effect. Using realistic system parameters, we show that modulation speeds of a few tens of GHz are achievable with this system, while the energy per switching operation can be as small as 0.5 fJ. In addition, we study the non-linear distortion, and the effect of pure quantum dot dephasing on the performance of the modulator.

  4. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  5. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  6. A Novel Approach to the Fabrication of CdSe Quantum Dots in Aqueous Solution: Procedures for Controlling Size, Fluorescence Intensity, and Stability over Time

    Directory of Open Access Journals (Sweden)

    M. J. Almendral-Parra

    2014-01-01

    Full Text Available This paper report a straightforward approach for the synthesis of CdSe quantum dots (CdSe QDs in aqueous solution. This method, performed in homogeneous phase, affords optimal sizes and high quantum yields for each application desired. It is an a la carte procedure for the synthesis of nanoparticles aimed at their later application. By controlling the experimental conditions, CdSe QDs of sizes ranging between 2 and 6 nm can be obtained. The best results were achieved in an ice-bath thermostated at 4°C, using mercaptoacetic acid as dispersant. Under these conditions, a slow growth of quantum nanocrystals was generated and this was controlled kinetically by the hydrolysis of SeSO32- to generate Se2-   in situ, one of the forming species of the nanocrystal. The organic dispersant mercaptoacetate covalently binds to the Cd2+ ion, modifying the diffusion rate of the cation, and plays a key role in the stabilization of CdSe QDs. In optimum conditions, when kept in their own solution CdSe QDs remain dispersed over 4 months. The NPs obtained under optimal conditions show high fluorescence, which is a great advantage as regards their applications. The quantum efficiency is also high, owing to the formation under certain conditions of a nanoshell of Cd(OH2, values of 60% being reached.

  7. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    Science.gov (United States)

    2015-05-01

    SPDC photon is teleported to a single quantum dot spin by a projective measurement using a Hong Ou Mandel (HOM) interferometer. The SPDC source...photo diode B: Blue CW: Continuous wave DBR: Distributed Bragg reflector EOM: Electro-optics modulator H: Horizontal HOM: Hong-Ou- Mandel InAs

  8. Quantum optics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Cadeddu, Davide; Teissier, Jean

    2016-01-01

    We present an exploration of the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter's properties with the highest sensitivity, allowing...

  9. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide;

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  10. Optical resonators and quantum dots: An excursion into quantum optics, quantum information and photonics

    Science.gov (United States)

    Bianucci, Pablo

    Modern communications technology has encouraged an intimate connection between Semiconductor Physics and Optics, and this connection shows best in the combination of electron-confining structures with light-confining structures. Semiconductor quantum dots are systems engineered to trap electrons in a mesoscopic scale (the are composed of ≈ 10000 atoms), resulting in a behavior resembling that of atoms, but much richer. Optical microresonators are engineered to confine light, increasing its intensity and enabling a much stronger interaction with matter. Their combination opens a myriad of new directions, both in fundamental Physics and in possible applications. This dissertation explores both semiconductor quantum dots and microresonators, through experimental work done with semiconductor quantum dots and microsphere resonators spanning the fields of Quantum Optics, Quantum Information and Photonics; from quantum algorithms to polarization converters. Quantum Optics leads the way, allowing us to understand how to manipulate and measure quantum dots with light and to elucidate the interactions between them and microresonators. In the Quantum Information area, we present a detailed study of the feasibility of excitons in quantum dots to perform quantum computations, including an experimental demonstration of the single-qubit Deutsch-Jozsa algorithm performedin a single semiconductor quantum dot. Our studies in Photonics involve applications of microsphere resonators, which we have learned to fabricate and characterize. We present an elaborate description of the experimental techniques needed to study microspheres, including studies and proof of concept experiments on both ultra-sensitive microsphere sensors and whispering gallery mode polarization converters.

  11. Nanobeam photonic crystal cavity quantum dot laser

    CERN Document Server

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  12. Energy level statistics of quantum dots.

    Science.gov (United States)

    Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Woods Halley, J

    2007-05-08

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  13. Many electron effects in semiconductor quantum dots

    Indian Academy of Sciences (India)

    R K Pandey; Manoj K Harbola; V Ranjan; Vijay A Singh

    2003-01-01

    Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as ‘artificial atoms’ by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the local density approximation (LDA) and the Harbola–Sahni (HS) scheme. HS is free of the selfinteraction error of the LDA. Our calculations have been performed in a three-dimensional quantum dot. We have carried out a study of the size and shape dependence of the level spacing. Scaling laws for the Hubbard ‘’ are established.

  14. Energy level statistics of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Tsau, C-Y [University of Wisconsin-Madison, Madison, WI 53706 (United States); Nghiem, Diu [University of Wisconsin-Madison, Madison, WI 53706 (United States); Joynt, Robert [University of Wisconsin-Madison, Madison, WI 53706 (United States); Halley, J Woods [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2007-05-08

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  15. Energy level statistics of quantum dots

    Science.gov (United States)

    Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Halley, J. Woods

    2007-05-01

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  16. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter.

    Science.gov (United States)

    Farahani, J N; Pohl, D W; Eisler, H-J; Hecht, B

    2005-07-01

    The interaction of a single quantum dot with a bowtie antenna is demonstrated for visible light. The antenna is generated at the apex of a Si3N4 atomic force microscopy tip by focused ion beam milling. When scanned over the quantum dot, its photoluminescence is enhanced while its excited-state lifetime is decreased. Our observations demonstrate that the relaxation channels of a single quantum emitter can be controlled by coupling to an efficiently radiating metallic nanoantenna.

  17. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  18. DLTS measurements on GaSb/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hoegner, Annika; Nowozin, Tobias; Marent, Andreas; Bimberg, Dieter [Institut fuer Festkoerperphysik, TU Berlin (Germany); Tseng, Chi-Che [Institute of Photonics Technologies, NTHU (China); Lin, Shih-Yen [Institute of Optoelectronic Sciences, NTOU (China)

    2010-07-01

    Memory devices based on hole storage in self-organized quantum dots offer significant advantages with respect to storage time and scalability. Recently, we demonstrated a first prototype based on InAs/GaAs quantum dots at low temperatures. To enable feasible storage times at room temperature the localisation energy of the quantum dots has to be increased by using other material systems. A first step in this direction is the use of GaSb quantum dots within a GaAs matrix. We have characterized self-organized GaSb/GaAs quantum dots embedded into a n{sup +}p-diode structure. DLTS measurements on hole emission were conducted and yield a strong peak from which a mean emission energy of about 400 meV can be extracted. The reference sample without the quantum dots (containing only the wetting layer) shows no such peak.

  19. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    a future challenge for the droplet-epitaxy technique. A multipolar theory of spontaneous emission from quantum dots is developed to explain the recent observation that In(Ga)As quantum dots break the dipole theory. The analysis yields a large mesoscopic moment, which contains magnetic-dipole and electric......-matter interaction of both electric and magnetic character. Our study demonstrates that In(Ga)As quantum dots lack parity symmetry and, as consequence, can be employed for locally probing the parity symmetry of complex photonic nanostructures. This opens the prospect for interfacing quantum dots with optical......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...

  20. Quantum dot spectroscopy using a single phosphorus donor

    Science.gov (United States)

    Büch, Holger; Fuechsle, Martin; Baker, William; House, Matthew G.; Simmons, Michelle Y.

    2015-12-01

    Using a deterministic single P donor placed with atomic precision accuracy next to a nanoscale silicon quantum dot, we present a way to analyze the energy spectrum of small quantum dots in silicon by tunnel-coupled transport measurements. The energy-level structure of the quantum dot is observed as resonance features within the transport bias triangles when the donor chemical potential is aligned with states within the quantum dot as confirmed by a numeric rate equation solver SIMON. This technique allows us to independently extract the quantum dot level structure irrespective of the density of states in the leads. Such a method is useful for the investigation of silicon quantum dots in the few-electron regime where the level structure is governed by an intricate interplay between the spin- and the valley-orbit degrees of freedom.

  1. Decoherence in Nearly-Isolated Quantum Dots

    DEFF Research Database (Denmark)

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single......-particle level spacing, but is greatly suppressed for temperature greater than the level spacing, suggesting that inelastic scattering or other dephasing mechanisms dominate in this regime....

  2. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2011-01-01

    The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have...... is demonstrated and the influence of disorder is discussed. The findings have a strong bearing on future nanophotonic devices....

  3. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have...... is demonstrated and the influence of disorder is discussed. The findings have a strong bearing on future nanophotonic devices....

  4. Quantum dot/glycol chitosan fluorescent nanoconjugates

    OpenAIRE

    Mansur, Alexandra AP; Herman S. Mansur

    2015-01-01

    In this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV–vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spec...

  5. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pharmaceutical and biomedical applications of quantum dots.

    Science.gov (United States)

    Bajwa, Neha; Mehra, Neelesh K; Jain, Keerti; Jain, Narendra K

    2016-05-01

    Quantum dots (QDs) have captured the fascination and attention of scientists due to their simultaneous targeting and imaging potential in drug delivery, in pharmaceutical and biomedical applications. In the present study, we have exhaustively reviewed various aspects of QDs, highlighting their pharmaceutical and biomedical applications, pharmacology, interactions, and toxicological manifestations. The eventual use of QDs is to dramatically improve clinical diagnostic tests for early detection of cancer. In recent years, QDs were introduced to cell biology as an alternative fluorescent probe.

  9. The pinning effect in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Monisha, P. J., E-mail: pjmonisha@gmail.com [School of Physics, University of Hyderabad, Hyderabad-500046 (India); Mukhopadhyay, Soma [Department of Physics, D V R College of Engineering and Technology, Hyderabad-502285 (India)

    2014-04-24

    The pinning effect is studied in a Gaussian quantum dot using the improved Wigner-Brillouin perturbation theory (IWBPT) in the presence of electron-phonon interaction. The electron ground state plus one phonon state is degenerate with the electron in the first excited state. The electron-phonon interaction lifts the degeneracy and the first excited states get pinned to the ground state plus one phonon state as we increase the confinement frequency.

  10. Electrically addressing a single self-assembled quantum dot

    CERN Document Server

    Ellis, D J P; Atkinson, P; Ritchie, D A; Shields, A J

    2006-01-01

    We report on the use of an aperture in an aluminum oxide layer to restrict current injection into a single self-assembled InAs quantum dot, from an ensemble of such dots within a large mesa. The insulating aperture is formed through the wet-oxidation of a layer of AlAs. Under photoluminescence we observe that only one quantum dot in the ensemble exhibits a Stark shift, and that the same single dot is visible under electroluminescence. Autocorrelation measurements performed on the electroluminescence confirm that we are observing emission from a single quantum dot.

  11. Geometric quantum gates for an electron-spin qubit in a quantum dot

    Science.gov (United States)

    Malinovsky, Vladimir; Rudin, Sergey

    2012-06-01

    A scheme to perform arbitrary unitary operations on a single electron-spin qubit in a quantum dot is proposed. The design is based on the geometrical phase acquired after a cyclic evolution by the qubit state. The scheme is utilizing ultrafast linearly-chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled by the relative phase between pulses. The analytic expression of the evolution operator for the electron spin in a quantum dot, which provides a clear geometrical interpretation of the qubit dynamics, is obtained. Using parameters of InGAN/GaN, GaN/AlN quantum dots we provide an estimate for the time scale of the qubit rotations and parameters of the external fields. Robustness of the proposed scheme against external noise is also discussed.

  12. Incoherent control of Goos-Hänchen shifts in a four-level InGaN/GaN quantum dot nanostructure

    Science.gov (United States)

    Solookinejad, G.; Panahi, M.; Ahmadi Sangachin, E.; Asadpour, Seyyed Hossein

    2016-04-01

    In this paper, we propose a new configuration for manipulating Goos-Hänchen (GH) shifts in reflected and transmitted probe beams in a fixed geometrical scheme with a confined four-level InGaN/GaN quantum dot nanostructure. Here, the four-level quantum dot nanostructure is driven by a weak probe light, a coherent coupling field, and two broadband polarized fields that serve as the incoherent pumping fields. We theoretically show that by modulation of the external coupling field, incoherent pumping rates, and detuning of the probe light, the GH shifts in the reflected and transmitted probe light can be controlled. Our results show that enhanced GH shifts of reflected and transmitted probe beams can be obtained by simultaneous use of incoherent pumping rates and detuning of the probe light. Moreover, we find that the GH shifts in both reflected and transmitted probe beams can be negative or positive at certain angles of the incident probe field. Thus, these results may provide some new possibilities for technological applications in all-optical systems based on nanostructure devices.

  13. Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots

    Science.gov (United States)

    Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.

    2000-01-01

    The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.

  14. One-qubit quantum gates in a circular graphene quantum dot: genetic algorithm approach.

    Science.gov (United States)

    Amparán, Gibrán; Rojas, Fernando; Pérez-Garrido, Antonio

    2013-05-16

    The aim of this work was to design and control, using genetic algorithm (GA) for parameter optimization, one-charge-qubit quantum logic gates σx, σy, and σz, using two bound states as a qubit space, of circular graphene quantum dots in a homogeneous magnetic field. The method employed for the proposed gate implementation is through the quantum dynamic control of the qubit subspace with an oscillating electric field and an onsite (inside the quantum dot) gate voltage pulse with amplitude and time width modulation which introduce relative phases and transitions between states. Our results show that we can obtain values of fitness or gate fidelity close to 1, avoiding the leakage probability to higher states. The system evolution, for the gate operation, is presented with the dynamics of the probability density, as well as a visualization of the current of the pseudospin, characteristic of a graphene structure. Therefore, we conclude that is possible to use the states of the graphene quantum dot (selecting the dot size and magnetic field) to design and control the qubit subspace, with these two time-dependent interactions, to obtain the optimal parameters for a good gate fidelity using GA.

  15. One-qubit quantum gates in a circular graphene quantum dot: genetic algorithm approach

    Science.gov (United States)

    Amparán, Gibrán; Rojas, Fernando; Pérez-Garrido, Antonio

    2013-05-01

    The aim of this work was to design and control, using genetic algorithm (GA) for parameter optimization, one-charge-qubit quantum logic gates σ x, σ y, and σ z, using two bound states as a qubit space, of circular graphene quantum dots in a homogeneous magnetic field. The method employed for the proposed gate implementation is through the quantum dynamic control of the qubit subspace with an oscillating electric field and an onsite (inside the quantum dot) gate voltage pulse with amplitude and time width modulation which introduce relative phases and transitions between states. Our results show that we can obtain values of fitness or gate fidelity close to 1, avoiding the leakage probability to higher states. The system evolution, for the gate operation, is presented with the dynamics of the probability density, as well as a visualization of the current of the pseudospin, characteristic of a graphene structure. Therefore, we conclude that is possible to use the states of the graphene quantum dot (selecting the dot size and magnetic field) to design and control the qubit subspace, with these two time-dependent interactions, to obtain the optimal parameters for a good gate fidelity using GA.

  16. Electronic structure of helium atom in a quantum dot

    CERN Document Server

    Saha, Jayanta K; Mukherjee, T K

    2015-01-01

    Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) [n = 1-6] states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns [n = 2-5] and 2pnp [n = 2-5] configuration of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential representing the quantum dot. It has been explicitly demonstrated that electronic structure properties become a sensitive function of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the wi...

  17. Spontaneous Coherence Effects in Quantum Dots and Quantum Wells Placed in Microcavities

    Directory of Open Access Journals (Sweden)

    Kaputkina N.E.

    2016-01-01

    Full Text Available The Bose-Einstein condensation temperature Tc for a system of coupled quantum dots in a microcavity was estimated in function of the confining potential steepness, the external magnetic field strength, and the barrier layer width for indirect excitons. The effect of the magnetic field on Tc was found to be nonmonotonic over a certain range of the control parameters. The reason is the presence of two competing mechanisms accompanying the increase of the magnetic field: (a increase of the magnetoexciton effective mass and (b increase of the effective confining potential steepness for quantum dots.

  18. Electron States of Few-Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    戴振宏; 孙金祚; 张立德; 李作宏; 黄士勇; 隋鹏飞

    2002-01-01

    We study few-electron semiconductor quantum dots using the unrestricted Hartree-Fock-Roothaan method based on the Gaussian basis. Our emphasis is on the energy level calculation for quantum dots. The confinement potential in a quantum dot is assumed to be in a form of three-dimensional spherical finite potential well. Some valuable results, such as the rearrangement of the energy level, have been obtained.

  19. Semiconductor quantum dot scintillation under gamma-ray irradiation.

    Science.gov (United States)

    Létant, S E; Wang, T-F

    2006-12-01

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.

  20. Quantum transport through an array of quantum dots.

    Science.gov (United States)

    Chen, Shuguang; Xie, Hang; Zhang, Yu; Cui, Xiaodong; Chen, Guanhua

    2013-01-07

    The transient current through an array of as many as 1000 quantum dots is simulated with two newly developed quantum mechanical methods. To our surprise, upon switching on the bias voltage, the current increases linearly with time before reaching its steady state value. And the time required for the current to reach its steady state value is proportional to the length of the array, and more interestingly, is exactly the time for a conducting electron to travel through the array at the Fermi velocity. These quantum phenomena can be understood by a simple analysis on the energetics of an equivalent classical circuit. An experimental design is proposed to confirm the numerical findings.

  1. Tuning the quantum critical crossover in quantum dots

    Science.gov (United States)

    Murthy, Ganpathy

    2005-03-01

    Quantum dots with large Thouless number g embody a regime where both disorder and interactions can be treated nonperturbatively using large-N techniques (with N=g) and quantum phase transitions can be studied. Here we focus on dots where the noninteracting Hamiltonian is drawn from a crossover ensemble between two symmetry classes, where the crossover parameter introduces a new, tunable energy scale independent of and much smaller than the Thouless energy. We show that the quantum critical regime, dominated by collective critical fluctuations, can be accessed at the new energy scale. The nonperturbative physics of this regime can only be described by the large-N approach, as we illustrate with two experimentally relevant examples. G. Murthy, PRB 70, 153304 (2004). G. Murthy, R. Shankar, D. Herman, and H. Mathur, PRB 69, 075321 (2004)

  2. Investigation of Quantum Dot Lasers

    Science.gov (United States)

    2007-11-02

    Lett. 79, 722 (2001). 8. Report of Inventions None. 9. List of Scientific Personnel Supported, Degrees, Awards and Honors Siddhartha ...Ghosh, GSRA Sameer Pradhan, GSRA Sasan Fathpour, GSRA Zetian Mi, GSRA Siddhartha Ghosh, Ph.D., “Growth of In(Ga)As/GaAs self-organized quantum

  3. Ramsey fringes in a single InGaAs/GaAs quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Ester, P.; Stufler, S.; Michaelis Vasconcellos, S. de; Zrenner, A. [Universitaet Paderborn, Warburger Strasse 100, 33098 Paderborn (Germany); Bichler, M. [Walter Schottky Institut, TU Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2006-08-15

    We report the observation of Ramsey fringes in single InGaAs/GaAs quantum dots. With double pulse p/2 excitation it is possible to control the occupancy and the phase of a quantum dot. The occupancy of the quantum dot oscillates with detuning. These Ramsey fringes are caused by a voltage dependent detuning of the QD. Due to the double pulse excitation the spectral sensitivity is strongly enhanced as compared to single pulse experiments. At long delay times we are able to resolve extremely narrow spectral fringes, clearly below the homogeneous linewidth of the underlying QD two level system. Our results demonstrate precision measurements on single quantum dots with strong implications for future quantum gates and quantum measurements. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Quantum dot mediated imaging of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Jayagopal, Ashwath; Haselton, Frederick R [Department of Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Su Yanru; Blakemore, John L; Linton, MacRae F; Fazio, Sergio [Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)], E-mail: rick.haselton@vanderbilt.edu

    2009-04-22

    The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE{sup -/-} mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.

  5. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    OpenAIRE

    Takaaki Yamaguchi; Yoshijiro Tsuruda; Tomohiro Furukawa; Lumi Negishi; Yuki Imura; Shohei Sakuda; Etsuro Yoshimura; Michio Suzuki

    2016-01-01

    CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum) were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were pr...

  6. Core–shell quantum dots: Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  7. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    Science.gov (United States)

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  8. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor

    DEFF Research Database (Denmark)

    Hu, Yongjie; Churchill, Hugh; Reilly, David

    2007-01-01

    : the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots......Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation...... and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin...

  9. Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; Maier, Sebastian; McCutcheon, Dara;

    2015-01-01

    Resonant excitation of solid state quantum emitters has the potential to deterministically excite a localized exciton while ensuring a maximally coherent emission. In this work, we demonstrate the coherent coupling of an exciton localized in a lithographically positioned, site-controlled semicond...

  10. Realizing Controllable Quantum States

    Science.gov (United States)

    Takayanagi, Hideaki; Nitta, Junsaku

    excitations in low-dimensional electron gases studied by far-infrared photoconductivity spectroscopy / C.-M. Hu. Control of photogenerated carriers and spins using surface acoustic waves / P. V. Santos, J. A. H. Stotz and R. Hey. PbTe nanostructures for spin filtering and detecting / G. Grabecki. G-factor control in an Ids-inserted InGaAs/InAlAs heterostructure / J. Nitta et al. Spin hall effect in p-type semiconductors / S. Murakami. Spin diffusion in mesoscopic superconducting A1 wires / Y.-S. Shin. H.-J. Lee and H.-W. Lee. Magnetization processes revealed by in-plane DC magnetoresistance measurements on manganite bicrystal thin film devices / R. Gunnarsson. M. Hanson and T. Claeson. Giant magnetoconductance at interface between a two-dimensional hole system and a magnetic semiconductor (Ga, Mn)As / Y. Hashimoto, S. Katsumoto and Y. Iye. Diffusion modes of the transport in diluted magnetic semiconductors / I. Kanazawa. Effect of an invasive voltage probe on the spin polarized current / J. Ohe and T. Ohtsuki -- 9. Spintronics in quantum dots. Tunable exchange interaction and Kondo screening in quantum dot devices / H. Tamura et al. Kondo effect in quantum dots in presence of itinerant-electron magnetism / J. Martinek et al. Optical band edge of II-VI and III-V based diluted magnetic semiconductors / M. Takahashi. Spin-polarized transport properties through double quantum dots / Y. Tanaka and N. Kawakami. RKKY interaction between two quantum dots embedded in an Aharonov-Bohm ring / Y. Utsumi et al. Fabrication and characterization of quantum dot single electron spin resonance devices / T. Kodera et al. Kondo effect in quantum dots with two orbitals and spin 1/2 - crossover from SU (4) to SU (2) symmetry / M. Eto. Detecting spin polarization of electrons in quantum dot edge channels by photoluminescence / S. Nomura. Manipulation of exchange interaction in a double quantum dot / M. Stopa, S. Tarucha and T. Hatano. Electron-density dependence of photoluminescence from Be

  11. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  12. Efficient spray-coated colloidal quantum dot solar cells

    KAUST Repository

    Kramer, Illan J.

    2014-11-10

    (Figure Presented). A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control - an approach termed as sprayLD - an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.

  13. Nonlinear laser dynamics from quantum dots to cryptography

    CERN Document Server

    Lüdge, Kathy

    2012-01-01

    A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research.By presenting both experimental and theoretical results, the distinguished authors consider solitary lase

  14. Tunable Spin-Qubit Coupling Mediated by a Multielectron Quantum Dot

    Science.gov (United States)

    Srinivasa, V.; Xu, H.; Taylor, J. M.

    2015-06-01

    We present an approach for entangling electron spin qubits localized on spatially separated impurity atoms or quantum dots via a multielectron, two-level quantum dot. The effective exchange interaction mediated by the dot can be understood as the simplest manifestation of Ruderman-Kittel-Kasuya-Yosida exchange, and can be manipulated through gate voltage control of level splittings and tunneling amplitudes within the system. This provides both a high degree of tunability and a means for realizing high-fidelity two-qubit gates between spatially separated spins, yielding an experimentally accessible method of coupling donor electron spins in silicon via a hybrid impurity-dot system.

  15. Spectral density of Cooper pairs in two level quantum dot-superconductors Josephson junction

    Science.gov (United States)

    Dhyani, A.; Rawat, P. S.; Tewari, B. S.

    2016-09-01

    In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  16. Programmed pH-Responsive Microcapsules for the Controlled Release of CdSe/ZnS Quantum Dots.

    Science.gov (United States)

    Liao, Wei-Ching; Riutin, Marianna; Parak, Wolfgang J; Willner, Itamar

    2016-09-27

    Two methods for the preparation of pH-responsive all-DNA microcapsules loaded with CdSe/ZnS quantum dots (QDs) are discussed. One approach involves the construction of DNA microcapsules composed of nucleic acid layers that include, at pH 7.2, "dormant" C-G·C(+) triplex sequences. The formation of the C-G·C(+) triplex structures at pH 5.0 leads to the cleavage of the microcapsules and to the release of the QDs. A second approach involves the synthesis of CdSe/ZnS QD-loaded DNA microcapsules, stabilized at pH 7.2 by T-A·T interlayer triplex bridges. The dissociation of the bridges at pH 9.0 separates the bridging triplex units, resulting in the degradation of the microcapsules and to the release of the QDs. The programmed pH-stimulated release of luminescent QDs, emitting at 620 and 560 nm, from the C-G·C(+) or T-A·T triplex-responsive microcapsules is demonstrated by subjecting the QD-loaded microcapsule mixtures to pH 5.0 or pH 9.0, respectively.

  17. Controlled synthesis of CdSe quantum dots by a microwave-enhanced process: a green approach for mass production.

    Science.gov (United States)

    Ayele, Delele Worku; Chen, Hung-Ming; Su, Wei-Nien; Pan, Chun-Jern; Chen, Liang-Yih; Chou, Hung-Lung; Cheng, Ju-Hsiang; Hwang, Bing-Joe; Lee, Jyh-Fu

    2011-05-09

    A method that does not employ hot-injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with zinc blende structure. In this environmentally benign synthetic route, which uses less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and thus their optical properties can be manipulated by changing the microwave reaction conditions. The QDs were characterized by XRD, TEM, UV/Vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot-injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. Possible applications of the CdSe QDs were assessed by deposition on TiO(2) films.

  18. Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

    Science.gov (United States)

    Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Felle, M.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2017-08-01

    The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.

  19. Thermospin diode effect based on a quantum dot system

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xin, E-mail: xglu@fudan.edu.cn [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Zhang, Lifa [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Morrel, William G. [School of Medicine, University of California San Francisco, San Francisco, CA 94122 (United States); Wu, Chang-Qin [Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University, Shanghai 200433 (China); Li, Baowen, E-mail: phylibw@nus.edu.sg [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456 (Singapore)

    2014-11-14

    The rectification of spin current driven by a temperature difference in a simple model consisting of a quantum dot connected to two ferromagnetic leads has been studied using the rate equation technique. In addition to the dot level, the magnitude of thermospin current rectification depends on the temperature bias across the system, the asymmetry parameter and the Coulomb charging energy, where the last two parameters are necessary conditions for rectification to occur in the system. The thermospin current rectification becomes analytically simplified at the limitation condition of asymmetry. With an applied Zeeman magnetic field, an ideal 100% rectification of thermospin current can be obtained at specific dot energies, which can be controlled by an external gate voltage. - Highlights: • Model of thermal induced spin current diode made of FM leads and QD. • Asymmetric character is essential for occurring current rectification. • Coulomb charging energy plays indispensable role in rectification. • High rectification of thermospin current is obtained with Zeeman magnetic field.

  20. Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna

    CERN Document Server

    Urena, E Bermudez; Itzhakov, S; Rigneault, H; Quidant, R; Oron, D; Wenger, J; 10.1002/adma.201202783

    2012-01-01

    Plasmonic antennas are key elements to control the luminescence of quantum emitters. However, the antenna's influence is often hidden by quenching losses. Here, the luminescence of a quantum dot coupled to a gold dimer antenna is investigated. Detailed analysis of the multiply excited states quantifies the antenna's influence on the excitation intensity and the luminescence quantum yield separately.

  1. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  2. Designing field-controllable graphene-dot-graphene single molecule switches: A quantum-theoretical proof-of-concept under realistic operating conditions

    Science.gov (United States)

    Pejov, Ljupčo; Petreska, Irina; Kocarev, Ljupčo

    2015-12-01

    A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a "quantum dot"), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1-014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1-245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green's function formalism, as well as by analysis of frontier molecular orbitals' behavior.

  3. Designing field-controllable graphene-dot-graphene single molecule switches: A quantum-theoretical proof-of-concept under realistic operating conditions.

    Science.gov (United States)

    Pejov, Ljupčo; Petreska, Irina; Kocarev, Ljupčo

    2015-12-28

    A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a "quantum dot"), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1-014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1-245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green's function formalism, as well as by analysis of frontier molecular orbitals' behavior.

  4. Nonrenewal statistics in transport through quantum dots

    Science.gov (United States)

    Ptaszyński, Krzysztof

    2017-01-01

    The distribution of waiting times between successive tunneling events is an already established method to characterize current fluctuations in mesoscopic systems. Here, I investigate mechanisms generating correlations between subsequent waiting times in two model systems, a pair of capacitively coupled quantum dots and a single-level dot attached to spin-polarized leads. Waiting time correlations are shown to give insight into the internal dynamics of the system; for example they allow distinction between different mechanisms of the noise enhancement. Moreover, the presence of correlations breaks the validity of the renewal theory. This increases the number of independent cumulants of current fluctuation statistics, thus providing additional sources of information about the transport mechanism. I also propose a method for inferring the presence of waiting time correlations based on low-order current correlation functions. This method gives a way to extend the analysis of nonrenewal current fluctuations to the systems for which single-electron counting is not experimentally feasible. The experimental relevance of the findings is also discussed; for example reanalysis of previous results concerning transport in quantum dots is suggested.

  5. Production and targeting of monovalent quantum dots.

    Science.gov (United States)

    Seo, Daeha; Farlow, Justin; Southard, Kade; Jun, Young-Wook; Gartner, Zev J

    2014-10-23

    The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety.

  6. Amphoteric CdSe nanocrystalline quantum dots.

    Science.gov (United States)

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  7. Quantum Dots: An Experiment for Physical or Materials Chemistry

    Science.gov (United States)

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  8. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...

  9. Enchanced methods of hydrophilized CdSe quantum dots synthesis

    Science.gov (United States)

    Potapkin, D. V.; Zharkova, I. S.; Goryacheva, I. Y.

    2015-03-01

    Quantum dots are bright and stable fluorescence signal sources, but for most of applications they need an additional hydrophilization step. Unfortunately, most of existing approaches lead to QD's fluorescence quenching, so there is a need for additional enhancing of hydrophilized QD's brightness like UV irradiation, which can be used both on water insoluble QD's with oleic acid ligands (in toluene) and on hydrophilized QD's covered with UV-stable polymer (in aqueous solution). For synthesis of bright water-soluble fluorescent labels CdSe/CdS/ZnS colloidal quantum dots were covered with PAMAM dendrimer and irradiated with UV lamp in quartz cuvettes for 3 hours at the room temperature and then compared with control sample.

  10. Facile synthesis and photoluminescence mechanism of graphene quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Zhou, Ligang; Zhang, Shenli; Pan, Wei, E-mail: sjtushelwill@sjtu.edu.cn; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn [Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China)

    2014-12-28

    We report a facile hydrothermal synthesis of intrinsic fluorescent graphene quantum dots (GQDs) with two-dimensional morphology. This synthesis uses glucose, concentrate sulfuric acid, and deionized water as reagents. Concentrated sulfuric acid is found to play a key role in controlling the transformation of as-prepared hydrothermal products from amorphous carbon nanodots to well-crystallized GQDs. These GQDs show typical absorption characteristic for graphene, and have nearly excitation-independent ultraviolet and blue intrinsic emissions. Temperature-dependent PL measurements have demonstrated strong electron-electron scattering and electron-phonon interactions, suggesting a similar temperature behavior of GQDs to inorganic semiconductor quantum dots. According to optical studies, the ultraviolet emission is found to originate from the recombination of electron-hole pairs localized in the C=C bonds, while the blue emission is from the electron transition of sp{sup 2} domains.

  11. Dynamical spin-spin coupling of quantum dots

    Science.gov (United States)

    Grigoryan, Vahram; Xiao, Jiang; A spintronics Group Team

    2014-03-01

    We carried out a nested Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the spin-spin coupling between two dynamical quantum dots under the influence of rotating transverse magnetic field. As a result of the rotating field, we predict a novel Ising type spin-spin coupling mechanism between quantum dots, whose strength is tunable via the magnitude of the rotating field. Due to its dynamical origin, this new coupling mechanism is qualitatively different from the all existing static couplings such as RKKY, while the strength could be comparable to the strength of the RKKY coupling. The dynamical coupling with the intristic RKKY coupling enables to construct a four level system of maximally entangled Bell states in a controllable manner. This work was supported by the special funds for the Major State Basic Research Project of China (No. 2011CB925601) and the National Natural Science Foundation of China (Grants No. 11004036 and No. 91121002).

  12. Laser driven impurity states in two-dimensional quantum dots and quantum rings

    Science.gov (United States)

    Laroze, D.; Barseghyan, M.; Radu, A.; Kirakosyan, A. A.

    2016-11-01

    The hydrogenic donor impurity states in two-dimensional GaAs/Ga0.7Al0.3As quantum dot and quantum ring have been investigated under the action of intense laser field. A laser dressed effect on both electron confining and electron-impurity Coulomb interaction potentials has been considered. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. The accidental degeneracy of the impurity states have been observed for different positions of the impurity and versus values of the laser field parameter. The obtained theoretical results indicate a novel opportunity to tune the performance of quantum dots and quantum rings and to control their specific properties by means of laser field.

  13. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement

    OpenAIRE

    2014-01-01

    We investigate coherent single surface-plasmon transport in a metal nanowire strongly coupled to two colloidal quantum dots. Analytical expressions are obtained for the transmission and reflection coefficients by solving the corresponding eigenvalue equation. Remote entanglement of the wave functions of the two quantum dots can be created if the inter-dot distance is equal to a multiple half-wavelength of the surface plasmon. Furthermore, by applying classical laser pulses to the quantum dots...

  14. Quantum state preparation in semiconductor dots by adiabatic rapid passage

    OpenAIRE

    Wu, Yanwen; Piper, I.M.; Ediger, M.; Brereton, P.; Schmidgall, E. R.; Hugues, M.; Hopkinson, M.; Phillips, R.T.

    2010-01-01

    Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We d...

  15. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system

    CERN Document Server

    Englund, Dirk; Bajcsy, Michal; Faraon, Andrei; Petroff, Pierre; vuckovic, Jelena

    2011-01-01

    We study dynamics of the interaction between two weak light beams mediated by a strongly coupled quantum dot-photonic crystal cavity system. First, we perform all optical switching of a weak continuous-wave signal with a pulsed control beam, and then perform switching between two pulsed beams (40ps pulses) at the single photon level. Our results show that the quantum dot-nanocavity system creates strong, controllable interactions at the single photon level.

  16. CdSe Quantum Dots for Solar Cell Devices

    Directory of Open Access Journals (Sweden)

    A. B. Kashyout

    2012-01-01

    Full Text Available CdSe quantum dots have been prepared with different sizes and exploited as inorganic dye to sensitize a wide bandgap TiO2 thin films for QDs solar cells. The synthesis is based on the pyrolysis of organometallic reagents by injection into a hot coordinating solvent. This provides temporally discrete nucleation and permits controlled growth of macroscopic quantities of nanocrystallites. XRD, HRTEM, UV-visible, and PL were used to characterize the synthesized quantum dots. The results showed CdSe quantum dots with sizes ranging from 3 nm to 6 nm which enabled the control of the optical properties and consequently the solar cell performance. Solar cell of 0.08% performance under solar irradiation with a light intensity of 100 mW/cm2 has been obtained. CdSe/TiO2 solar cells without and with using mercaptopropionic acid (MPA as a linker between CdSe and TiO2 particles despite a Voc of 428 mV, Jsc of 0.184 mAcm-2, FF of 0.57, and η of 0.05% but with linker despite a Voc of 543 mV, Jsc of 0.318 mAcm-2 , FF of 0.48, and η of 0.08%, respectively.

  17. Quantum dot labeling of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cascio Wayne E

    2007-11-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are multipotent cells with the potential to differentiate into bone, cartilage, fat and muscle cells and are being investigated for their utility in cell-based transplantation therapy. Yet, adequate methods to track transplanted MSCs in vivo are limited, precluding functional studies. Quantum Dots (QDs offer an alternative to organic dyes and fluorescent proteins to label and track cells in vitro and in vivo. These nanoparticles are resistant to chemical and metabolic degradation, demonstrating long term photostability. Here, we investigate the cytotoxic effects of in vitro QD labeling on MSC proliferation and differentiation and use as a cell label in a cardiomyocyte co-culture. Results A dose-response to QDs in rat bone marrow MSCs was assessed in Control (no-QDs, Low concentration (LC, 5 nmol/L and High concentration (HC, 20 nmol/L groups. QD yield and retention, MSC survival, proinflammatory cytokines, proliferation and DNA damage were evaluated in MSCs, 24 -120 hrs post QD labeling. In addition, functional integration of QD labeled MSCs in an in vitro cardiomyocyte co-culture was assessed. A dose-dependent effect was measured with increased yield in HC vs. LC labeled MSCs (93 ± 3% vs. 50% ± 15%, p 90% of QD labeled cells were viable in all groups, however, at 120 hrs increased apoptosis was measured in HC vs. Control MSCs (7.2% ± 2.7% vs. 0.5% ± 0.4%, p Conclusion Fluorescent QDs label MSC effectively in an in vitro co-culture model. QDs are easy to use, show a high yield and survival rate with minimal cytotoxic effects. Dose-dependent effects suggest limiting MSC QD exposure.

  18. Role of hyperfine interaction on electron spin optical orientation in charge-controlled InAs-GaAs single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, O.; Eble, B.; Lemaitre, A.; Kudelski, A.; Voisin, P. [Laboratoire de Photonique et Nanostructures-CNRS, Route de Nozay, 91460 Marcoussis (France); Urbaszek, B.; Marie, X.; Amand, T. [Laboratoire de Nanophysique Magnetisme et Optoelectronique, INSA, 31077 Toulouse Cedex 4 (France); Kowalik, K. [Laboratoire de Photonique et Nanostructures-CNRS, Route de Nozay, 91460 Marcoussis (France); Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warsaw (Poland)

    2007-01-15

    We report on electron spin physics in a single charge-tunable self-assembled InAs/GaAs quantum dot. The hyperfine interaction between the optically oriented electron and nuclear spins leads to the polarization of the quantum dot nuclei. The sign of the resulting Overhauser-shift depends on the trion state X{sup +} or X{sup -}, and remarkably its strength does not vanish in zero magnetic field. This explains the quenching of X{sup +} spin relaxation under steady-state excitation polarization. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; CHENG Fang

    2011-01-01

    @@ We theoretically investigate the influence of both Rashba spin-orbit interaction (RSOI) and Dresselhaus spin- orbit interaction (DSOI) on electron spin states, electron distribution and the optical absorption of a quantum dot.Our theoretical results show that the interplay between RSOI and DSOI results in an effective periodic potential, which consequently breaks the rotational symmetry and makes the quantum dot behave like two laterally coupled quantum dots.In the presence of RSOI and/or DSOI the spin is no longer a conserved quantity and its magnitude can be tuned by changing the strength of RSOI and/or DSOI.By reversing the direction of the perpendicular electric field, we can rotate the spatial distribution.This property provides us with a new way to control quantum states in a quantum dot by electrical means.

  20. Confinement of gold quantum dot arrays inside ordered mesoporous silica thin film

    Institute of Scientific and Technical Information of China (English)

    Chi Yaqing; Zhong Haiqin; Zhang Xueao; Fang Liang; Chang Shengli

    2009-01-01

    Periodic disposed quantum dot arrays are very useful for the large scale integration of single electron devices. Gold quantum dot arrays were self-assembled inside pore channels of ordered amino-functionalized mesoporous silica thin films, employing the neutralization reaction between chloroauric acid and amino groups. The diameters of quantum dots are controlled via changing the aperture of pore channels from 2.3 to 8.3 nm, which are characterized by HRTEM, SEM and FT-IR. UV-vis absorption spectra of gold nanoparticle/mesoporous silica composite thin films exhibit a blue shift and intensity drop of the absorption peak as the aperture of mesopores decreases,which represents the energy level change of quantum dot arrays due to the quantum size effect.

  1. Polarization properties and disorder effects in H{sub 3} photonic crystal cavities incorporating site-controlled, high-symmetry quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Surrente, Alessandro; Felici, Marco; Gallo, Pascal; Dwir, Benjamin; Rudra, Alok; Kapon, Eli, E-mail: eli.kapon@epfl.ch [Laboratory of Physics of Nanostructures, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Biasiol, Giorgio [Istituto Officina dei Materiali CNR, Laboratorio TASC, I-34149 Trieste (Italy)

    2015-07-20

    We report on the effects of optical disorder on breaking the symmetry of the cavity modes of H{sub 3} photonic crystal cavities incorporating site-controlled pyramidal quantum dots (QDs) as the internal light source. The high in-plane symmetry of the polarization states of the pyramidal QDs simplifies the analysis of the polarization states of the H{sub 3} cavities. It is shown that the optical disorder induced by fabrication imperfections lifts the degeneracy of the two quadrupole cavity modes and tilts the elongation axes of the cavity mode patterns with respect to the ideal, hexagonal symmetry case. These results are useful for designing QD-cavity structures for polarization-entangled photon sources and few-QD lasers.

  2. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  3. Nano-laser on silicon quantum dots

    Science.gov (United States)

    Huang, Wei-Qi; Liu, Shi-Rong; Qin, Chao-Jian; Lü, Quan; Xu, Li

    2011-04-01

    A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.

  4. An Exciton Bound to a Neutral Donor in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    解文方

    2002-01-01

    The binding energies for an exciton (X) trapped in a two-dimensional quantum dot by a neutral donor have been calculated using the method of few-body physics for the heavy hole (σ= 0.196) and the light hole (σr = 0.707).We find that the (D0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy increases with the decrease of the dot radius. At dot radius R →∞, we compare our calculated result with the previous results.

  5. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    Institute of Scientific and Technical Information of China (English)

    L(U) Rong; ZHANG Guang-Ming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  6. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    Science.gov (United States)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-07-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  7. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  8. Quantum model for mode locking in pulsed semiconductor quantum dots

    Science.gov (United States)

    Beugeling, W.; Uhrig, Götz S.; Anders, Frithjof B.

    2016-12-01

    Quantum dots in GaAs/InGaAs structures have been proposed as a candidate system for realizing quantum computing. The short coherence time of the electronic quantum state that arises from coupling to the nuclei of the substrate is dramatically increased if the system is subjected to a magnetic field and to repeated optical pulsing. This enhancement is due to mode locking: oscillation frequencies resonant with the pulsing frequencies are enhanced, while off-resonant oscillations eventually die out. Because the resonant frequencies are determined by the pulsing frequency only, the system becomes immune to frequency shifts caused by the nuclear coupling and by slight variations between individual quantum dots. The effects remain even after the optical pulsing is terminated. In this work, we explore the phenomenon of mode locking from a quantum mechanical perspective. We treat the dynamics using the central-spin model, which includes coupling to 10-20 nuclei and incoherent decay of the excited electronic state, in a perturbative framework. Using scaling arguments, we extrapolate our results to realistic system parameters. We estimate that the synchronization to the pulsing frequency needs time scales in the order of 1 s .

  9. A Nanowire-Based Plasmonic Quantum Dot Laser.

    Science.gov (United States)

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  10. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has dev...

  11. Transport through Zero-Dimensional States in a Quantum Dot

    NARCIS (Netherlands)

    Kouwenhoven, Leo P.; Wees, Bart J. van; Harmans, Kees J.P.M.; Williamson, John G.

    1990-01-01

    We have studied the electron transport through zero-dimensional (0D) states. 0D states are formed when one-dimensional edge channels are confined in a quantum dot. The quantum dot is defined in a two-dimensional electron gas with a split gate technique. To allow electronic transport, connection to

  12. Electron spin and charge in semiconductor quantum dots

    NARCIS (Netherlands)

    Elzerman, J.M.

    2004-01-01

    In this thesis, the spin and charge degree of freedom of electrons in semiconductor lateral and vertical quantum dots are experimentally investigated. The lateral quantum dot devices are defined in a two-dimensional electron gas (2DEG) below the surface of a GaAs/AlGaAs heterostructure, by metallic

  13. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis;

    2000-01-01

    . The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...

  14. Negative Trions Trapped by a Spherical Parabolic Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a negatively charged exciton trapped by a spherical parabolic quantum dot has been investigated. The energy spectra of low-lying states are calculated by means of matrix diagonalization. The important feature of the low-lying states of the negatively charged excitons in a spherical quantum dot is obtained via an analysis of the energy spectra.

  15. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail...

  16. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We deta...

  17. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  18. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  19. Self-polarization in spherical quantum dot

    Directory of Open Access Journals (Sweden)

    Stojanović Dušanka P.

    2015-01-01

    Full Text Available The electronic structures of CdS quantum dot (QD with dielectric mismatch are calculated. Poisson equation is solved analitically in case of point charge placed inside semiconductor sphere embeded in dielectric matrix in case of different values of the dielectric permittivity of QD and matrix. The validity of the effective mass approximation for the conduction band is assumed. Schrödinger equation for one electron is solved analitically. On the basis of the Poisson equation solution self potential is examined and used as perturbation to calculate the self-polarization effect.

  20. Graphene Quantum Dots for Theranostics and Bioimaging.

    Science.gov (United States)

    Schroeder, Kathryn L; Goreham, Renee V; Nann, Thomas

    2016-10-01

    Since their advent in the early 1990s, nanomaterials hold promise to constitute improved technologies in the biomedical area. In particular, graphene quantum dots (GQDs) were conjectured to produce new or improve current methods used for bioimaging, drug delivery, and biomarker sensors for early detection of diseases. This review article critically compares and discusses current state-of-the-art use of GQDs in biology and health sciences. It shows the ability of GQDs to be easily functionalised for use as a targeted multimodal treatment and imaging platform. The in vitro and in vivo toxicity of GQDs are explored showing low toxicity for many types of GQDs.