Quantum dot conjugates in a sub-micrometer fluidic channel
Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.
2010-04-13
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells
Energy Technology Data Exchange (ETDEWEB)
Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)
2011-02-25
Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.
Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting
Energy Technology Data Exchange (ETDEWEB)
Suriamoorthy, Preethi; Zhang, Xing; Hao, Guiyang; Joly, Alan G.; Singh, S.; Hossu, Marius; Sun, Xiankai; Chen, Wei
2010-12-01
In this study, we report the preparation,luminescence, and targeting properties of folic acid- CdTe quantum dot conjugates. Water-soluble CdTe quantum dots were synthesized and conjugated with folic acid using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide chemistry. The in-fluence of folic acid on the luminescence properties of CdTe quantum dots was investigated, and no energy transfer between them was observed. To investigate the efficiency of folic acid-CdTe nanoconjugates for tumor targeting, pure CdTe quantum dots and folic acid-coated CdTe quantum dots were incubated with human naso- pharyngeal epidermal carcinoma cell line with positive expressing folic acid receptors (KB cells) and lung cancer cells without expression of folic acid receptors (A549 cells). For the cancer cells with positive folate receptors (KB cells), the uptake for CdTe quantum dots is very low, but for folic acid-CdTe nanoconjugates, the uptake is very high. For the lung cancer cells without folate receptors (A549 cells), the uptake for folic acid- CdTe nanoconjugates is also very low. The results indicate that folic acid is an effective targeting molecule for tumor cells with overexpressed folate receptors.
Ling, Jian
2008-02-01
Quantum dots have unique properties for long-term immunofluorescence imaging of molecular activities inside living cells. The key is how to deliver the quantum dot-conjugated antibodies into cells and further allow the antibodies freely move inside cells to bind target molecules. This study investigated the feasibility of using Pep-1, a cell penetration protein, to facilitate the internalization of quantum dot-conjugated antibodies for the labeling of two intracellular cervical cancer biomarkers: p16 and Mcm5. Quantum dots were directly conjugated with the antibodies to p16 and Mcm5 and, they were able to stain fixed cells and to differentiate biomarker positive and negative cells. The non-covalent binding between the conjugates and Pep-1 peptides allows the quick internalization of the quantum dot-conjugated antibodies into living cells. The internalized conjugates were concentrated in the perinuclear regions of the biomarker-positive HeLa cells. In the biomarker negative Um-Uc-3 cells, however, the conjugates concentrated in juxtaneclear region. Cells bearing with quantum dots still go through the mitosis process. Although the study indicates many questions need to be answered and many problems need to be solved, the use of cell penetration peptide is a promising method for the intracellular labeling of living cell molecules using quantum dots.
Odoi, Michael Yemoh
Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(tau) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2) (0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering , blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the Cd
Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm
Energy Technology Data Exchange (ETDEWEB)
Patil, Rajendra [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India); Gholap, Haribhau, E-mail: haribhau.gholap@fergusson.edu [Department of Physics, Fergusson College, Pune 411004 (India); Warule, Sambhaji [Department of Physics, Nowrosjee Wadia College, Pune 411001 (India); Banpurkar, Arun; Kulkarni, Gauri [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Gade, Wasudeo, E-mail: wngade@unipune.ac.in [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India)
2015-01-30
Graphical abstract: The visible light upon incident on ZnO/CdTe initiate the phenomenon of photocatalytical impedance of biofilm. - Highlights: • Synthesis of efficient light photocatalyst ZnO/CdTe nanostructures by hydrothermal method. • ZnO/CdTe nanostructures show a good antibacterial activity by action on cell membrane. • ZnO/CdTe nanostructures show a good antibiofilm activity, and also act on the cells inside the biofilm. - Abstract: The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.
Chen, Hongfeng; Titushkin, Igor; Stroscio, Michael; Cho, Michael
2007-02-15
Functionalized quantum dots offer several advantages for tracking the motion of individual molecules on the cell surface, including selective binding, precise optical identification of cell surface molecules, and detailed examination of the molecular motion without photobleaching. We have used quantum dots conjugated with integrin antibodies and performed studies to quantitatively demonstrate changes in the integrin dynamics during osteogenic differentiation of human bone marrow derived progenitor cells (BMPCs). Consistent with the unusually strong BMPC adhesion previously observed, integrins on the surface of undifferentiated BMPC were found in clusters and the lateral diffusion was slow (e.g., approximately 10(-11) cm2/s). At times as early as those after a 3-day incubation in the osteogenic differentiation media, the integrin diffusion coefficients increased by an order of magnitude, and the integrin dynamics became indistinguishable from that measured on the surface of terminally differentiated human osteoblasts. Furthermore, microfilaments in BMPCs consisted of atypically thick bundles of stress fibers that were responsible for restricting the integrin lateral mobility. Studies using laser optical tweezers showed that, unlike fully differentiated osteoblasts, the BMPC cytoskeleton is weakly associated with its cell membrane. Based on these findings, it appears likely that the altered integrin dynamics is correlated with BMPC differentiation and that the integrin lateral mobility is restricted by direct links to microfilaments.
Chen, Mei-Ling; He, Ye-Ju; Chen, Xu-Wei; Wang, Jian-Hua
2013-03-20
We report a novel quantum-dot-conjugated graphene, i.e., hybrid SiO2-coated quantum dots (HQDs)-conjugated graphene, for targeted cancer fluorescent imaging, tracking, and monitoring drug delivery, as well as cancer therapy. The hybrid SiO2 shells on the surface of QDs not only mitigate its toxicity, but also protect its fluorescence from being quenched by graphene. By functionalizing the surface of HQDs-conjugated graphene (graphene-HQDs) with transferrin (Trf), we developed a targeted imaging system capable of differential uptake and imaging of cancer cells that express the Trf receptor. The widely used fluorescent antineoplastic anthracycline drug, doxorubicin (DOX), is adsorbed on the surface of graphene and results in a large loading capacity of 1.4 mg mg(-1). It is advantageous that the new delivery system exhibits different fluorescence color in between graphene-HQDs and DOX in the aqueous core upon excitation at a same wavelength for the purpose of tracking and monitoring drug delivery. This simple multifunctional nanoparticle system can deliver DOX to the targeted cancer cells and enable us to localize the graphene-HQDs and monitor intracellular DOX release. The specificity and safety of the nanoparticle conjugate for cancer imaging, monitoring, and therapy has been demonstrated in vitro.
Agarose gel investigation of quantum dots conjugated with short ssDNA.
Wu, Tsai-Chin; Dutta, Mitra; Stroscio, Michael A
2013-12-01
Herein, we investigate the migration distance of quantum-dot-functionalized complexes in electrophoresis. The quantitative study of these moving particles in an electrophoretic environment is modeled using an extended Smoluchowski equation. An extended Smoluchowski equation is proposed to addressed the D(m) to Ln(N) plot slope variation issue present in previous work and agreement between experiment and theory is found. The procedures underlying this work then discusses the potential of using agarose electrophoresis as a mean of monitoring the composition of nano-complexes consisting of quantum dots functionalized with differing numbers of DNA molecules.
Simultaneous Multi-Species Tracking in Live Cells with Quantum Dot Conjugates
DEFF Research Database (Denmark)
Clausen, M. P.; Christensen, Eva Arnspang; Ballou, B.
2014-01-01
Quantum dots are available in a range of spectrally separated emission colors and with a range of water-stabilizing surface coatings that offers great flexibility for enabling bio-specificity. In this study, we have taken advantage of this flexibility to demonstrate that it is possible to perform...... of the trajectories are longer than 50 steps, which we by simulations show to be sufficient for robust single trajectory analysis. This analysis shows that the populations of the diffusion coefficients are heterogeneously distributed for all three species, but differ between the different species. We further show...
Quantum Dot- Conjugated Anti-GRP78 scFv Inhibits Cancer Growth in Mice
Directory of Open Access Journals (Sweden)
David Hornby
2012-01-01
Full Text Available Semiconductor quantum dots (Qdots have recently been shown to offer significant advantages over conventional fluorescent probes to image and study biological processes. The stability and low toxicity of QDs are well suited for biological applications. Despite this, the potential of Qdots remains limited owing to the inefficiency of existing delivery methods. By conjugating Qdots with small antibody fragments targeting membrane-bound proteins, such as GRP78, we demonstrate here that the Quantum dot- Anti-GRP78 scFv (Qdot-GRP78 retains its immunospecificity and its distribution can be monitored by visualization of multi-color fluorescence imaging both in vitro and in vivo. Moreover we demonstrate here for the first time that Qdot-GRP78 scFv bioconjugates can be efficiently internalized by cancer cells, thus upregulate phophosphate-AKT-ser473 and possess biological anti-tumour activity as shown by inhibition of breast cancer growth in a xenograft model. This suggests that nanocarrier-conjugated scFvs can be used as a therapeutic antibody for cancer treatment.
Baş, Deniz; Boyaci, Ismail Hakki
2011-05-01
A competitive DNA hybridization assay based on the photoelectrochemistry of the semiconductor quantum dot-single stranded DNA conjugates (QD-ssDNA) was developed. Hybridization of QD-ssDNA with the capture probe DNA immobilized on the indium-tin oxide electrodes enables photocurrent generation when the electrochemical cell was illuminated with a light source. Upon the competition between QD-ssDNA and single-stranded target DNA, the photocurrent response decreased with the increase in the target DNA concentration. A linear relationship between the photocurrent and the target DNA concentration was obtained (R(2) = 0.991). The selectivity of system towards the target DNA was also demonstrated using non-complementary sample.
Xie, Hongzhi; Li, Yi-Fen; Kagawa, Hiromi K; Trent, Jonathan D; Mudalige, Kumara; Cotlet, Mircea; Swanson, Basil I
2009-05-01
Genetic engineering of a novel protein-nanoparticle hybrid system with great potential for biosensing applications and for patterning of various types of nanoparticles is described. The hybrid system is based on a genetically modified chaperonin protein from the hyperthermophilic archaeon Sulfolobus shibatae. This chaperonin is an 18-subunit double ring, which self-assembles in the presence of Mg ions and ATP. Described here is a mutant chaperonin (His-beta-loopless, HBLL) with increased access to the central cavity and His-tags on each subunit extending into the central cavity. This mutant binds water-soluble semiconductor quantum dots, creating a protein-encapsulated fluorescent nanoparticle. The new bioconjugate has high affinity, in the order of strong antibody-antigen interactions, a one-to-one protein-nanoparticle stoichiometry, and high stability. By adding selective binding sites to the solvent-exposed regions of the chaperonin, this protein-nanoparticle bioconjugate becomes a sensor for specific targets.
Dopamine-quantum dot conjugate: a new kind of photosensitizers for photodynamic therapy of cancers
Energy Technology Data Exchange (ETDEWEB)
Chou Kailiang; Meng He; Cen Yan; Li Lei; Chen Jiyao, E-mail: jychen@fudan.edu.cn [Fudan University, State Key Laboratory of Surface Physics and Department of Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) (China)
2013-01-15
The thiol-capped CdTe quantum dots (QDs) with the average size of 3.5 nm were linked to dopamines (DAs) forming DA-QD conjugates, with the characteristics of red-shifted photoluminescence (PL) peak and remarkably reduced PL lifetime. The QDs in the conjugates readily accept the electron from DAs when excited by the visible light, resulting in the oxidation of DAs and the production of singlet oxygen ({sup 1}O{sub 2}) with the yield comparable to that of sulfonated aluminum phthalocyanine (AlPcS), a popularly used photosensitizer. The DA-QD conjugate can quickly penetrate into human nasopharyngeal carcinoma (KB) cells and seriously destroy cells under the irradiation of visible lights, showing the potential to become a new kind of photosensitizers.
Emission variation in infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies
Energy Technology Data Exchange (ETDEWEB)
Jaramillo Gómez, J.A. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico); Casas Espinola, J.L., E-mail: jlcasas@esfm.ipn.mx [ESFM – Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Douda, J. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico)
2014-11-15
The paper presents the photoluminescence (PL) and Raman scattering investigations of infrared CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) in nonconjugated states and after the conjugation to the anti-papilloma virus antibodies (Ab). The Raman scattering study has shown that the CdSeTe core includes two layers with different material compositions such as: CdSe{sub 0.5}Te{sub 0.5} and CdSe{sub 0.7}Te{sub 0.3}. PL spectra of nonconjugated CdSeTe/ZnS QDs are characterized by two Gaussian shape PL bands related to exciton emission in the CdSeTe core and in intermediate layer at the core/shell interface. PL spectra of bioconjugated QDs have changed essentially: the main PL band related to the core emission shifts into high energy and become asymmetric. The energy diagram of double core/shell CdSeTe/ZnS QDs has been analyzed to explain the PL spectrum of nonconjugated QDs and its transformation at the bioconjugation to the papiloma virus antibodies. It is shown that the PL spectrum transformation in bioconjugated QDs can be a powerful technique for biology and medicine.
Emission variation in infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies
Jaramillo Gómez, J. A.; Casas Espinola, J. L.; Douda, J.
2014-11-01
The paper presents the photoluminescence (PL) and Raman scattering investigations of infrared CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) in nonconjugated states and after the conjugation to the anti-papilloma virus antibodies (Ab). The Raman scattering study has shown that the CdSeTe core includes two layers with different material compositions such as: CdSe0.5Te0.5 and CdSe0.7Te0.3. PL spectra of nonconjugated CdSeTe/ZnS QDs are characterized by two Gaussian shape PL bands related to exciton emission in the CdSeTe core and in intermediate layer at the core/shell interface. PL spectra of bioconjugated QDs have changed essentially: the main PL band related to the core emission shifts into high energy and become asymmetric. The energy diagram of double core/shell CdSeTe/ZnS QDs has been analyzed to explain the PL spectrum of nonconjugated QDs and its transformation at the bioconjugation to the papiloma virus antibodies. It is shown that the PL spectrum transformation in bioconjugated QDs can be a powerful technique for biology and medicine.
Bharti, Shivani; Kaur, Gurvir; Gupta, Shikha; Tripathi, S. K.
2015-08-01
Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of Mw 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.
Energy Technology Data Exchange (ETDEWEB)
Bharti, Shivani; Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Centre of Advanced Study in Physics Panjab University, Chandigarh-160014 (India); Kaur, Gurvir [Sant Longowal Institute of Engineering & Technology, Longowal, Sangrur (India); Gupta, Shikha [Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh (India)
2015-08-28
Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of M{sub w} 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.
Erohin, P. S.; Utkin, D. V.; Kouklev, V. E.; Ossina, N. A.; Miheeva, E. A.; Alenkina, T. V.
2016-03-01
The application of bioconjugates of specific antibodies and CdSe quantum dots to identify two serovariants of Vibrio cholerae using fluorescence microscopy and optical spectroscopy is considered. It is found that a mixture of different bioconjugates with different emission maxima can be used without affecting the specificity of the method. Different V. cholerae serovariants are colored differently in fl uorescence microscopy (bright green and bright yellow), thereby allowing subspecies differentiation. The absorption spectrum of the bacterial suspension changed with homologous antigens in the sample and did not change with heterologous antigens. It is shown that the quantum-dot bioconjugates can serve as an alternative to the traditional fluorescence and agglutination diagnostics.
Park, Youngrong; Ryu, Yeon-Mi; Jung, Yebin; Wang, Taejun; Baek, Yeonggyeong; Yoon, Yeoreum; Bae, Sang Mun; Park, Joonhyuck; Hwang, Sekyu; Kim, Jaeil; Do, Eun-Ju; Kim, Sang-Yeob; Chung, Euiheon; Kim, Ki Hean; Kim, Sungjee; Myung, Seung-Jae
2014-09-23
The detection of colon cancer using endoscopy is widely used, but the interpretation of the diagnosis is based on the clinician's naked eye. This is subjective and can lead to false detection. Here we developed a rapid and accurate molecular fluorescence imaging technique using antibody-coated quantum dots (Ab-QDs) sprayed and washed simultaneously on colon tumor tissues inside live animals, subsequently excited and imaged by endoscopy. QDs were conjugated to matrix metalloproteinases (MMP) 9, MMP 14, or carcinoembryonic antigen (CEA) Abs with zwitterionic surface coating to reduce nonspecific bindings. The Ab-QD probes can diagnose tumors on sectioned mouse tissues, fresh mouse colons stained ex vivo and also in vivo as well as fresh human colon adenoma tissues in 30 min and can be imaged with a depth of 100 μm. The probes successfully detected not only cancers that are readily discernible by bare eyes but also hyperplasia and adenoma regions. Sum and cross signal operations provided postprocessed images that can show complementary information or regions of high priority. This multiplexed quantum dot, spray-and-wash, and endoscopy approach provides a significant advantage for detecting small or flat tumors that may be missed by conventional endoscopic examinations and bestows a strategy for the improvement of cancer diagnosis.
An Interactive Quantum Dot and Carbon Dot Conjugate for pH-Sensitive and Ratiometric Cu(2+) Sensing.
Ahmad, Kafeel; Gogoi, Sonit Kumar; Begum, Raihana; Sk, Md Palashuddin; Paul, Anumita; Chattopadhyay, Arun
2017-03-17
Herein we report the photoinduced electron transfer from Mn(2+) -doped ZnS quantum dots (Qdots) to carbon dots (Cdots) in an aqueous dispersion. We also report that the electron transfer was observed for low pH values, at which the oppositely charged nanoparticles (NPs) interacted with each other. Conversely, at higher pH values the NPs were both negatively charged and thus not in contact with each other, so the electron transfer was absent. Steady-state and time-resolved photoluminescence studies revealed that interacting particle conjugates were responsible for the electron transfer. The phenomenon could be used to detect the presence of Cu(2+) ions, which preferentially, ratiometrically, and efficiently quenched the luminescence of the Qdots.
Energy Technology Data Exchange (ETDEWEB)
Anderson, George P. [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Glaven, Richard H. [Nova Research, Inc., 1900 Elkin Street, Suite 230, Alexandria, VA 22308 (United States); Algar, W. Russ [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); College of Science, George Mason University, Fairfax, VA 22030 (United States); Susumu, Kimihiro [Optical Sciences Division, Code 5600, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Sotera Defense Solutions, Annapolis Junction, MD 20701 (United States); Stewart, Michael H. [Optical Sciences Division, Code 5600, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Medintz, Igor L. [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Goldman, Ellen R., E-mail: ellen.goldman@nrl.navy.mil [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States)
2013-07-05
Graphical abstract: -- Highlights: •Anti-ricin single domain antibodies (sdAb) were self-assembled on quantum dots (QDs). •Conjugates were prepared using dihydrolipoic acid-capped CdSe–ZnS core–shell QDs. •The sdAb–QD conjugates functioned in fluoroimmunoassays for ricin detection. •The conjugates provided signal amplification in surface plasmon resonance assays. •Conjugates provided sensitive detection compared to unconjugated sdAb reporters. -- Abstract: The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format.
Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo
2016-10-01
Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system. Copyright © 2016 Elsevier B.V. All rights reserved.
Tenório, Denise P L A; Andrade, Camila G; Cabral Filho, Paulo E; Sabino, Caetano P; Kato, Ilka T; Carvalho, Luiz B; Alves, Severino; Ribeiro, Martha S; Fontes, Adriana; Santos, Beate S
2015-01-01
Semiconductor colloidal quantum dots (QDs) have been applied in biological analysis due to their unique optical properties and their versatility to be conjugated to biomolecules, such as lectins and antibodies, acquiring specificity to label a variety of targets. Concanavalin A (Con A) lectin binds specifically to α-d-mannose and α-d-glucose regions of saccharides that are usually expressed on membranes of mammalian cells and on cell walls of microbials. Candida albicans is the most common fungal opportunistic pathogen present in humans. Therefore, in this work, this fungus was chosen as a model for understanding cells and biofilm-forming organisms. Here, we report an efficient bioconjugation process to bind CdTe (Cadmium Telluride) QDs to Con A, and applied the bioconjugates to label saccharide structures on the cellular surface of C. albicans suspensions and biofilms. By accomplishing hemagglutination experiments and circular dichroism, we observed that the Con A structure and biochemical properties were preserved after the bioconjugation. Fluorescence microscopy images of yeasts and hyphae cells, as well as biofilms, incubated with QDs-(Con A) showed a bright orange fluorescence profile, indicating that the cell walls were specifically labeled. Furthermore, flow cytometry measurements confirmed that over 93% of the yeast cells were successfully labeled by QD-(Con A) complex. In contrast, non-conjugated QDs or QDs-(inhibited Con A) do not label any kind of biological system tested, indicating that the bioconjugation was specific and efficient. The staining pattern of the cells and biofilms demonstrate that QDs were effectively bioconjugated to Con A with specific labeling of saccharide-rich structures on C. albicans. Consequently, this work opens new possibilities to monitor glucose and mannose molecules through fluorescence techniques, which can help to optimize phototherapy protocols for this kind of fungus.
Chen, Mei-Ling; He, Ye-Ju; Chen, Xu-Wei; Wang, Jian-Hua
2012-11-27
A novel and specific nanoplatform for in vitro simultaneous cancer-targeted optical imaging and magnetically guided drug delivery is developed by conjugating CdTe quantum dots with Fe(3)O(4)-filled carbon nanotubes (CNTs) for the first time. Fe(3)O(4) is filled into the interior of the CNTs, which facilitates magnetically guided delivery and improves the synergetic targeting efficiency. In comparison with that immobilized on the external surface of CNTs, the magnetite nanocrystals inside the CNTs protect it from agglomeration, enhance its chemical stability, and improve the drug loading capacity. It also avoids magnetic nanocrystals-induced quenching of fluorescence of the quantum dots. The SiO(2)-coated quantum dots (HQDs) attached on the surface of CNTs exhibit favorable fluorescence as the hybrid SiO(2) shells on the QDs surface prevent its fluorescence quenching caused by the CNTs. In addition, the hybrid SiO(2) shells also mitigate the toxicity of the CdTe QDs. By coating transferrin on the surface of the herein modified CNTs, it provides a dual-targeted drug delivery system to transport the doxorubicin hydrochloride (DOX) into Hela cells by means of an external magnetic field. The nanocarrier based on the multifunctional nanoplatform exhibits an excellent drug loading capability of ca. 110%, in addition to cancer-targeted optical imaging as well as magnetically guided drug delivery.
Tayebi, Mahnoush; Tavakkoli Yaraki, Mohammad; Mogharei, Azadeh; Ahmadieh, Mahnaz; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat
2016-09-01
In the present research, water soluble thioglycolic acid-capped CdS quantum dots (QDs) were synthesized by chemical precipitation method. The characteristics of prepared quantum dots were determined using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The obtained results revealed that CdS QDs have 5.60 nm crystallite size, hexagonal wurtzite structure and spherical morphology with less than 10 nm diameter. The photoluminescence (PL) spectroscopy was performed in order to study the effect of the presence of starch solutions. Blue emission peaks were positioned at 488 nm and its intensity quenched by increasing the concentration of starch solutions. The result of PL quenches in range of studied concentrations (0-100 ppm) was best described by Michaelis-Menten model. The amount of Michaelis constant (Km) for immobilized α-amylase in this system was about 68.08 ppm which showed a great tendency of enzyme to hydrolyze the starch as substrate. Finally, the limit of detection (LOD) was found to be about 2.24 ppm.
Energy Technology Data Exchange (ETDEWEB)
Quintos Vazquez, A.L. [ESIME—Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM–Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Casas Espinola, J.L. [ESFM–Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Jaramillo Gómez, J.A.; Douda, J. [UPIITA–Instituto Politécnico Nacional, México D. F. 07320, México (Mexico)
2013-11-15
The paper presents a comparative study of the photoluminescence (PL) and Raman scattering spectra of the core–shell CdSe/ZnS quantum dots (QDs) in nonconjugated states and after the conjugation to anti-Interleukin 10 antibodies (anti-IL10). All optical measurements are performed on the dried droplets of the original solution of nonconjugated and bioconjugated QDs located on the Si substrate. CdSe/ZnS QDs with emission at 605 and 655 nm have been used. PL spectra of nonconjugated QDs are characterized by one Gaussian shape PL band related to the exciton emission in the CdSe core. PL spectra of bioconjugated QDs have changed essentially: the core PL band shifts into the high energy spectral range (“blue” sift) and becomes asymmetric. Additionally two new PL bands appear. A set of physical reasons has been proposed for the “blue” shift explanation for the core PL band in bioconjugated QDs. Then Raman scattering spectra have been studied with the aim to analyze the impact of elastic strains or the oxidation process at the QD bioconjugation. The variation of PL spectra versus excitation light intensities has been studied to analyze the exciton emission via excited states in QDs. Finally the PL spectrum transformation for the core emission in bioconjugated QDs has been attributed to the electronic quantum confined effects stimulated by the electric charges of bioconjugated antibodies. -- Highlights: • The conjugation of CdSe/ZnS QDs to anti-Interleukin 10 antibodies has been studied. • PL shift to high energy is detected in bioconjugated CdSe/ZnS QDs. • The PL energy shift in bioconjugated QDs is stimulated by antibody electric charges. • The reasons of PL energy shift in bioconjugated QDs have been discussed.
Energy Technology Data Exchange (ETDEWEB)
Sarma, Runjun; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in
2017-02-01
We report on the radiative emission decay dynamics of a less known, γ-phase manganese selenide quantum dot system (MnSe QDs) subjected to bio-functionalization. A short-ligand thioglycolic acid (TGA), and a long-chain sodium dodecyl sulfate (SDS) surfactants were used as surface anchors prior bioconjugation with albumin proteins (BSA). Time resolved photoluminescence (TR-PL) spectra of the QDs have revealed bi-exponential decay trends with the fast (τ{sub 1}) and slow (τ{sub 2}) decay parameters assigned to the core state recombination and surface trapped excitons; respectively. The average lifetime (τ{sub avg}) was found to get shortened from a value of ∼0.87 ns–0.72 ns in unconjugated and BSA conjugated MnSe-TGA QDs; respectively. Conversely, MnSe-SDS QDs with BSA conjugation exhibited nearly four-fold enhancement of τ{sub avg} with respect to its unconjugated counterpart. Moreover, a considerable amount of Förster resonance energy transfer (FRET) was found to occur from the TGA coated MnSe QDs to BSA and with an ensuing efficiency of ∼61%. The origin of anomalous carrier life-time relaxation features has also been encountered through a simplified model as regards head group interaction experienced by the MnSe QDs with different surfactant types. Exploiting luminescence decay characteristics of a magneto-fluorescent candidate could find immense scope in diverse biological applications including assays, labeling and imaging. - Highlights: • Surface anchored manganese selenide quantum dots (MnSe QDs) have been synthesized via a physico-chemical reduction route. • Time resolved luminescence spectra of the QDs have displayed bi-exponential decay trend. • Thioglycolic acid (TGA) coated QDs exhibited shorter lifetime as compared to sodium dodecyl sulfo-succinate (SDS) coated ones. • Upon BSA conjugation, the average life time is four-fold enhanced in MnSe-SDS QDs. • An efficient FRET process has been revealed in BSA conjugated TGA coated MnSe QDs.
Directory of Open Access Journals (Sweden)
Xu P
2013-09-01
Full Text Available Peipei Xu,1 Jingyuan Li,2 Lixin Shi,3 Matthias Selke,3 Baoan Chen,4 Xuemei Wang5 1Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China; 2Laboratory Animal Center, Institute of Comparative Medicine, Nantong University, Nantong, People’s Republic of China; 3Department of Chemistry and Biochemistry, California State University – Los Angeles, Los Angeles, CA, USA; 4Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China; 5State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of ChinaAbstract: We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA and cadmium–tellurium (CdTe quantum dots (CdTe QDs modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2 cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants.Keywords: cadmium-tellurium quantum dots
Institute of Scientific and Technical Information of China (English)
范俊丽; 王晖; 王昕; 毕晓辉; 王国洲; 陈双倩; 冯茂辉
2015-01-01
目的 以前期筛选出的核酸适配子GC-1为靶向分子,量子点作为标志物,观察其对胃癌细胞的特异性识别.方法 分别以培养的低转移胃癌细胞SGC-7901、高侵袭转移性胃癌细胞OCUM-2MD3为研究对象,检测GC-1的识别能力,并采用流式和共聚焦方法初步分析适配子GC-1在细胞上的靶向结合位点.以临床确诊的30例胃癌组织切片为研究对象,采用间接荧光法分析适配子GC-1的鉴别诊断能力,并根据GC-1的阳性率进一步分析患者生存曲线.把不同数量(105、104、103、102个)的胃癌细胞OCUM-2MD3分别混匀到1 ml健康人外周血中,NH4Cl裂解法去除红细胞,然后与CY3标记的核酸适配子GC-1孵育,采用流式细胞仪分析.结果 核酸适配子GC-1耦联量子点的功能化分子探针可识别体外培养的胃癌细胞,也可识别临床胃癌患者组织切片中的癌细胞;在30例确诊的胃癌组织切片中,该功能化分子探针可识别出其中8例,该8例阳性患者与其余22例阴性患者的生存曲线分析差异有统计学意义(P＜0.01).流式分析法显示:即使102个胃癌细胞混到1 ml健康人的外周血中,CY3标记的适配子GC-1也可识别少量的外周血模拟环境中的胃癌细胞.结论 基于适配子-量子点的功能化生物分子探针可检测临床组织切片;适配子能特异识别外周血胃癌细胞,可作为捕获循环胃癌细胞的潜在分子.%Objective To identify the highly metastatic gastric cancer cells by functionalized biological molecular probe,quantum dot-conjugated aptamer GC-1.Methods First,we studied the capacity of GC-1 to distinguish high metastatic potential gastric cancer cell line OCUM-2MD3 and the low metastatic potential gastric cancer cell line SGC-7901 in vitro.Furthermore,we preliminarily examined the location of the target molecule of GC-1 by flow cytometry and confocal microscopy.In order to explore the potential clinical application of GC-1,we selected 30
Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.
Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W
2015-01-01
Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding.
Quantum Yield Measurements of Fluorophores in Lipid Bilayers Using a Plasmonic Nanocavity.
Schneider, Falk; Ruhlandt, Daja; Gregor, Ingo; Enderlein, Jörg; Chizhik, Alexey I
2017-03-20
Precise knowledge of the quantum yield is important for many fluorescence-spectroscopic techniques, for example, for Förster resonance energy transfer. However, to measure it for emitters in a complex environment and at low concentrations is far from being trivial. Using a plasmonic nanocavity, we measure the absolute quantum yield value of lipid-conjugated dyes incorporated into a supported lipid bilayer. We show that for both hydrophobic and hydrophilic molecules the quantum yield of dyes inside the lipid bilayer strongly differs from its value in aqueous solution. This finding is of particular importance for all fluorescence-spectroscopic studies involving lipid bilayers, such as protein-protein or protein-lipid interactions in membranes or direct fluorescence-spectroscopic measurements of membrane physical properties.
Schieber, Christine; Bestetti, Alessandra; Lim, Jet Phey; Ryan, Anneke D; Nguyen, Tich-Lam; Eldridge, Robert; White, Anthony R; Gleeson, Paul A; Donnelly, Paul S; Williams, Spencer J; Mulvaney, Paul
2012-10-15
Twinkle twinkle quantum dot: Conjugation of biomolecules to azide-modified quantum dots (QDs) through a bifunctional linker, using strain-promoted azide-alkyne cycloaddition with the QD and a squaramide linkage to the biomolecule (see scheme). Transferrin-conjugated QDs were internalized by transferrin-receptor expressing HeLa cells.
Zhao, Yafei; Shi, Liyi; Fang, Jianhui; Feng, Xin
2015-11-01
, excellent photostability and colloidal stability. Due to their low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay, the CDs-COOH@PEA-NFAp conjugates were successfully applied as bio-nanoplatforms to MCF-7 breast cancer cells for cellular imaging in vitro. More importantly, the functional CDs conjugated to NFAp provide an extended and general approach to construct different water-soluble NFAp bio-nanoplatforms for other easily functionalised luminescent materials. Therefore, these green nanoplatforms may be a prospective candidate for applications in bioimaging or targeted biological therapy and drug delivery. Electronic supplementary information (ESI) available: Experimental details of monodispersed NFAp and cell incubation; quantum yield measurements of CDs and CDs-COOH; PL spectra of CDS-COOH@PEA-NFAp conjugates with different weight ratios in Fig. S1; excitation-dependent PL spectra of CDs-COOH in Fig. S2; FTIR spectra of the CDs, CDs-COOH and ClCH2COONa in Fig. S3; XPS spectra of CDs and CDs-COOH in Fig. S4; XRD pattern of CDs-COOH, OA-NFAp and PEA-NFAp in Fig. S5; elemental analysis of OA-NFAp and PEA-NFAp in Fig. S6; photostability of CDs-COOH@PEA-NFAp conjugates irradiated with different excitation wavelengths (325, 345, 365, 385, and 405 nm) over a period of 3 h in Fig. S7; bright-field photos and dark-field photos of CDs, CDs-COOH, PEA-NFAp, CDs-COOH@PEA-NFAp in Fig. S8. See DOI: 10.1039/c5nr06837a
D. Shao; J. Li; F. Guan; Y. Pan; X. Xiao; M. Zhang; H. Zhang; L. Chen
2014-01-01
Using the intrinsic toxicity of nanomaterials for anticancer therapy is an emerging concept. In this work, we discovered that CdTe/CdS quantum dots, when coated with lipids (QD-LC) instead of popular liposomes, polymers, or dendrimers, demonstrated extraordinarily high specificity for cancer cells,
The influence of bio-conjugation on photoluminescence of CdSe/ZnS quantum dots
Energy Technology Data Exchange (ETDEWEB)
Torchynska, Tetyana V. [ESFM Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, México, D.F. 07738 (Mexico); Vorobiev, Yuri V. [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Querétaro, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, 76230 Querétaro (Mexico); Makhniy, Victor P. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., 58012 Chernivtsi (Ukraine); Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico)
2014-11-15
We report a considerable blue shift in the luminescence spectra of CdSe/ZnS quantum dots conjugated to anti-interleukin-10 antibodies. This phenomenon can be explained theoretically by accounting for bio-conjugation as a process causing electrostatic interaction between a quantum dot and an antibody, which reduces effective volume of the dot core. To solve the Schrödinger equation for an exciton confined in the quantum dot, we use mirror boundary conditions that were successfully tested for different geometries of quantum wells.
Directory of Open Access Journals (Sweden)
Maysinger Dusica
2006-10-01
Full Text Available Abstract Background The purpose of the study was to develop and illustrate three-dimensional (3-D reconstruction of nuclei and intracellular lipid peroxidation in cells exposed to oxidative stress induced by quantum dots. Programmed cell death is characterized by multiple biochemical and morphological changes in different organelles, including nuclei, mitochondria and lysosomes. It is the dynamics of the spatio-temporal changes in the signalling and morphological adaptations which will ultimately determine the 'shape' and fate of the cell. Results We present new approaches to the 3-D reconstruction of organelle morphology and biochemical changes in confocal live-cell images. We demonstrate the 3-D shapes of nuclei, the 3-D intracellular distributions of QDs and the accompanying lipid-membrane peroxidation, and provide methods for quantification. Conclusion This study provides an approach to 3-D organelle and nanoparticle visualization in the context of cell death; however, this approach is also applicable more generally to investigating changes in organelle morphology in response to therapeutic interventions, stressful stimuli and internalized nanoparticles. Moreover, the approach provides quantitative data for such changes, which will help us to better integrate compartmentalization of subcellular events and to link morphological and biochemical changes with physiological outcomes.
Directory of Open Access Journals (Sweden)
Lovrić Jasmina
2007-02-01
Full Text Available Abstract Background Neuroblastoma, a frequently occurring solid tumour in children, remains a therapeutic challenge as existing imaging tools are inadequate for proper and accurate diagnosis, resulting in treatment failures. Nanoparticles have recently been introduced to the field of cancer research and promise remarkable improvements in diagnostics, targeting and drug delivery. Among these nanoparticles, quantum dots (QDs are highly appealing due to their manipulatable surfaces, yielding multifunctional QDs applicable in different biological models. The biocompatibility of these QDs, however, remains questionable. Results We show here that QD surface modifications with N-acetylcysteine (NAC alter QD physical and biological properties. In human neuroblastoma (SH-SY5Y cells, NAC modified QDs were internalized to a lesser extent and were less cytotoxic than unmodified QDs. Cytotoxicity was correlated with Fas upregulation on the surface of treated cells. Alongside the increased expression of Fas, QD treated cells had increased membrane lipid peroxidation, as measured by the fluorescent BODIPY-C11 dye. Moreover, peroxidized lipids were detected at the mitochondrial level, contributing to the impairment of mitochondrial functions as shown by the MTT reduction assay and imaged with confocal microscopy using the fluorescent JC-1 dye. Conclusion QD core and surface compositions, as well as QD stability, all influence nanoparticle internalization and the consequent cytotoxicity. Cadmium telluride QD-induced toxicity involves the upregulation of the Fas receptor and lipid peroxidation, leading to impaired neuroblastoma cell functions. Further improvements of nanoparticles and our understanding of the underlying mechanisms of QD-toxicity are critical for the development of new nanotherapeutics or diagnostics in nano-oncology.
Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging
Zhou, Ronghui; Li, Mei; Wang, Shanling; Wu, Peng; Wu, Lan; Hou, Xiandeng
2014-11-01
Fluorescent bio-imaging has received significant attention in a myriad of research disciplines, and QDs are playing an increasingly important role in these areas. Doped QDs, an important alternative to conventional heavy metal-containing QDs are employed for biomedical applications. However, since QDs are exogenous substances to the biological environment, the biocompatibility of QDs is expected to be challenging in some cases. Herein, nano fluorine-doped hydroxyapatite (FAp, a well-known biocompatible material) was introduced to endow biocompatibility to Cd-free Mn-doped ZnSe@ZnS QDs. Thus, a nano-FAp-QD conjugate was developed and the biocompatibility, as well as potential cell imaging application, was investigated. To construct the proposed conjugate, Cd-free highly luminescent Mn-doped ZnSe@ZnS QDs and monodispersed nano-FAp were first prepared in high-temperature organic media. For facilitating the conjugation, hydrophobic nano-FAp was made water soluble via o-phosphoethanolamine (PEA) coating, which further provides conjugating sites for QDs to anchor. Cytotoxicity studies indicated the developed conjugate indeed possesses good compatibility and low toxicity to cells. The nano-FAp-QDs conjugate was successfully employed for cancer cell staining for at least 24 h, demonstrating the potential usefulness of this material in future biomedical research.Fluorescent bio-imaging has received significant attention in a myriad of research disciplines, and QDs are playing an increasingly important role in these areas. Doped QDs, an important alternative to conventional heavy metal-containing QDs are employed for biomedical applications. However, since QDs are exogenous substances to the biological environment, the biocompatibility of QDs is expected to be challenging in some cases. Herein, nano fluorine-doped hydroxyapatite (FAp, a well-known biocompatible material) was introduced to endow biocompatibility to Cd-free Mn-doped ZnSe@ZnS QDs. Thus, a nano-FAp-QD conjugate was developed and the biocompatibility, as well as potential cell imaging application, was investigated. To construct the proposed conjugate, Cd-free highly luminescent Mn-doped ZnSe@ZnS QDs and monodispersed nano-FAp were first prepared in high-temperature organic media. For facilitating the conjugation, hydrophobic nano-FAp was made water soluble via o-phosphoethanolamine (PEA) coating, which further provides conjugating sites for QDs to anchor. Cytotoxicity studies indicated the developed conjugate indeed possesses good compatibility and low toxicity to cells. The nano-FAp-QDs conjugate was successfully employed for cancer cell staining for at least 24 h, demonstrating the potential usefulness of this material in future biomedical research. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c4nr04473h
Principles of conjugating quantum dots to proteins via carbodiimide chemistry.
Song, Fayi; Chan, Warren C W
2011-12-09
The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein-quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.
Genotoxic and mutagenic effects of lipid-coated CdSe/ZnS quantum dots.
Aye, Mélanie; Di Giorgio, Carole; Berque-Bestel, Isabelle; Aime, Ahissan; Pichon, Benoit P; Jammes, Yves; Barthélémy, Philippe; De Méo, Michel
2013-01-20
We proposed to evaluate the genotoxicity and mutagenicity of a new quantum dots (QDs) nanoplatform (QDsN), consisting of CdSe/ZnS core-shell QDs encapsulated by a natural fusogenic lipid (1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC)) and functionalized by a nucleolipid N-[5'-(2',3'-di-oleoyl) uridine]-N',N',N'-trimethylammoniumtosylate (DOTAU). This QDs nanoplatform may represent a new therapeutic tool for the diagnosis and treatment of human cancers. The genotoxic, mutagenic and clastogenic effects of QDsN were compared to those of cadmium chloride (CdCl(2)). Three assays were used: (1) the Salmonella/microsome assay with four tester strains, (2) the comet assay and (3) the micronucleus test on CHO cells. The contribution of simulated sunlight was studied in the three assays while oxidative events were only explored in the comet assay in aliquots pretreated with the antioxidant l-ergothioneine. We found that QDsN could enter CHO-K1 cells and accumulate in cytoplasmic vesicles. It was not mutagenic in the Salmonella/mutagenicity test whereas CdCl(2) was weakly positive. In the dark, both the QDsN and CdCl(2) similarly induced dose-dependent increases in single-strand breaks and micronuclei. Exposure to simulated sunlight significantly potentiated the genotoxic activities of both QDsN and CdCl(2), but did not significantly increase micronucleus frequencies. l-Ergothioneine significantly reduced but did not completely suppress the DNA-damaging activity of QDsN and CdCl(2). The present results clearly point to the genotoxic properties and the risk of long-term adverse effects of such a nanoplatform if used for human anticancer therapy and diagnosis in the future.
Liu, Ying-Feng; Hung, Wei-Ling; Hou, Tzh-Yin; Huang, Hsiu-Ying; Lin, Cheng-An J.
2016-04-01
Traditional fluorescent labelling techniques has severe photo-bleaching problem such as organic dyes and fluorescent protein. Quantum dots made up of traditional semiconductor (CdSe/ZnS) material has sort of biological toxicity. This research has developed novel Cd-free quantum dots divided into semiconductor (Indium phosphide, InP) and noble metal (Gold). Former has lower toxicity compared to traditional quantum dots. Latter consisting of gold (III) chloride (AuCl3) and toluene utilizes sonochemical preparation and different stimulus to regulate fluorescent wavelength. Amphoteric macromolecule surface technology and ligand Exchange in self-Assembled are involved to develop hydrophilic nanomaterials which can regulate the number of grafts per molecule of surface functional groups. Calcium phosphate (CaP) nanoparticle (NP) with an asymmetric lipid bilayer coating technology developed for intracellular delivery and labelling has synthesized Cd-free quantum dots possessing high brightness and multi-fluorescence successfully. Then, polymer coating and ligand exchange transfer to water-soluble materials to produce liposome nanomaterials as fluorescent probes and enhancing medical applications of nanotechnology.
Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...
Quantum therapy in correction of the lipidic metabolism at acute pancreatitis
Anaskin, S. G.; Vlasov, A. P.; Spirina, M. A.; Vlasova, T. I.; Muratova, T. A.; Korniletsky, I. D.; Geraskin, V. S.
2017-01-01
Attempt to establish efficiency of laser therapy in correction of a lipid metabolism at patients with acute pancreatitis was the purpose of work. There were clinical laboratory researches of 48 patients with acute heavy pancreatitis. To the first clinical group (comparison) standard therapy was carried out. To patients of the second clinical group (main) in addition to basic therapy within 10 days daily sessions of laser therapy by the device "Matrix" were held later. Radiation with the wavelength of 635 nanometers, 2 MW was used. Percutaneous laser radiation of blood was carried out to projections of a cubital vein within 30 minutes daily. Inclusion of laser therapy in complex treatment of patients with pancreatitis led to more significant positive dynamics. Reduction of weight of endotoxemia in the main group is set that was verified by decrease in level of both hydrophilic, and hydrophobic toxins. The analysis of the data obtained as a result of research in the main group revealed decrease in concentration of products of free radical oxidation of lipids in comparison with group of comparison for 12,1 – 17,3% of % (p. complex treatment led to reliable inhibition of activity of enzymes of phospholipase system in blood plasma, in particular activity of a phospholipase of A2 fell for 13,2 – 34,4% (p complex treatment of sharp pancreatitis allowed to reduce significantly expressiveness of endogenous intoxication, intensity of processes of free radical oxidation of membrane lipids and activity of phospholipase systems.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Cişmileanu, Ana; Sima, Cornelia; Grigoriu, Constantin
2007-08-01
A quantum dot - immunoglobulin conjugate specific for pig IgG, was obtained by carbodiimide chemistry. We used a Western blot technique for detecting specific antibodies against Actinobacillus pleuropneumoniae (A. pp), which cause porcine pleuropneumonia. The antigen used in this technique was Apx haemolysin which is an important virulence factor of A. pp and it induces protective immunity in vaccined pigs. The detection on Western blot membrane was possible at 1/50 dilution of quantum dot conjugate at a dilution of pig serum till 1/6400. The results for pig serum demonstrated a higher sensitivity of QD-based Western blot technique for the presence of antibodies specific for Apx haemolysin in comparison with similar classical techniques (with coloured substrate for enzyme present in secondary antibody conjugate).
DEFF Research Database (Denmark)
Lagerholm, B. Christoffer; Clausen, Mathias P.; Christensen, Eva Arnspang
2010-01-01
. The spatial precision in these experiments is ~40 nm (as determined from the standard deviation of repeated position measurements of an immobile QD on a cell). Using this system, we further show that an artificial lipid, biotin-cap-DPPE, inserted in a mouse embryo fibroblast (MEF), labeled with sAv-QD655...
Visualizing the endocytosis of phenylephrine in living cells by quantum dot-based tracking.
Ma, Jing; Wu, Lina; Hou, Zhun; Song, Yao; Wang, Lei; Jiang, Wei
2014-08-01
To study the intracellular receptor-drug transportation, a fluorescent probe consisting of phenylephrine-polyethylene glycol-quantum dots conjugate was employed to track endocytosis process of phenylephrine in living cells. This type of movement was studied by continuously filming fluorescent images in the same cell. We also calculated the movement parameters, and divided the endocytosis process into 6 stages. Furthermore, the movement parameters of this probe in different organelles were determined by co-localization of the probe fluorescent images and different cellular organelles. After comparing the parameters in cellular organelles with these in 6 stages, the whole endocytosis pathway was demonstrated. These results verified that this probe successfully tracked the whole intracellular dynamic endocytosis process of phenylephrine. Our method realized the visual tracking the whole receptor-mediated endocytosis, which is a new approach on investigating the molecular mechanisms and kinetic properties of intracellular receptor-drug transportation.
... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Lipid Profile Share this page: Was this page helpful? Also ... as: Lipid Panel; Coronary Risk Panel Formal name: Lipid Profile Related tests: Cholesterol ; HDL Cholesterol ; LDL Cholesterol ; Triglycerides ; ...
Quantum Dots Antibody Coupling Research Progress%量子点抗体偶联研究进展
Institute of Scientific and Technical Information of China (English)
刘洋; 王思珍; 孙成彪; 黄燕霞
2015-01-01
量子点（Quantum Dots，QDs）是一种半导体纳米微晶，具有光稳点性好、激发光谱宽而连续、发射光谱窄而对称、荧光寿命长等优点，被广泛应用于生物标记、传感和成像等应用中，水溶性量子点表面带有功能基团，能够与抗体发生偶联，本文着重从共价和非共价偶联两个方面来进行分析，同时对量子点的前景进行展望。%Quantum Dots ,a kind of semiconductor nanomaterials,are known as its unique advantages,including sig-nal stability,long fluorescence lifetime. The excitation spectrum is wide and continuous,while the emission spectrum is narrow and symmetric. QDs are widely used in biological labeling,sensing,imaging areas. The hydrosoluble quan-tum dots have many functional groups on surface,and could be conjugated with antibody. We mainly discussed about the methods applied in quantum dots conjugation.
Khavani, Mohammad; Izadyar, Mohammad; Housaindokht, Mohammad Reza
2015-10-14
In this article, cyclic peptides (CP) with lipid substituents were theoretically designed. The dynamical behavior of the CP dimers and the cyclic peptide nanotube (CPNT) without lipid substituents in the solution (water and chloroform) during the 50 ns molecular dynamic (MD) simulations has been investigated. As a result, the CP dimers and CPNT in a non-polar solvent are more stable than in a polar solvent and CPNT is a good container for non-polar small molecules such as chloroform. The effect of the lipid substituents on the CP dimers and CPNT has been investigated in the next stage of our studies. Accordingly, these substituents increase the stability of the CP dimers and CPNT, significantly, in polar solvents. MM-PBSA and MM-GBSA calculations confirm that substitution has an important effect on the stability of the CP dimers and CPNT. Finally, the dynamical behavior of CPNT with lipid substituents in a fully hydrated DMPC bilayer shows the high ability of this structure for molecule transmission across the lipid membrane. This structure is stable enough to be used as a molecular channel. DFT calculations on the CP dimers in the gas phase, water and chloroform, indicate that H-bond formation is the driving force for dimerization. CP dimers are more stable in the gas phase in comparison to in solution. HOMO-LUMO orbital analysis indicates that the interaction of the CP units in the dimer structures is due to the molecular orbital interactions between the NH and CO groups.
Toward the in vivo study of captopril-conjugated quantum dots
Manabe, Noriyoshi; Hoshino, Akiyoshi; Liang, Yi-qiang; Goto, Tomomasa; Kato, Norihiro; Yamamoto, Kenji
2005-04-01
Photo-luminescent semiconductor quantum dots are nanometer-size probes that have the potential to be applied to the fields of the bio-imaging and the study of the cell mobility inside the body. At the same time, on the other hand, quantum dots are expected to carry some kind of molecules to the local organ inside of the animal body, which leads to the expectation that they can be used as a medicine-carrier. For this purpose, we conjugate (2S)-1-[(2s)-2-Methyl-3-sulfanylpropionyl]pyrrolidine-2-carboxylic acid (cap) with the quantum dot. Cap has the effect as an anti-hypertension drug, which inhibits angiotensin 1 converting enzyme. We conjugated the quantum dot with cap by the exchange reaction avoiding the regions which holds medicinal effect. Quantum dot conjugated with cap (QD-cap) were 3-times brighter than thioglycerol-coated quantum dots (QD-OH). The particle size of cap was 1.1nm and that of QD-cap was 12nm. QD-cap was permeated into the HeLa cells, while QD-MUA were taken into the HeLa cells by endocytosis. In addition, no apoptosis was detected against the cells that permeated QD-cap, because there was no damage to DNA. These results indicated that QD-conjugated medicines (QD-medicine) could be safe in the experiment on the level of the cell. More over, when QD-cap was intravenously injected into Stroke-prone Spontaneously Hypertensive Rats (SHRSP), they reduced blood pressure at systole. Therefore, the anti-hypertension effect of cap remained after conjugated with the quantum dot. These results suggested that QD-medicine were effective on the animal level.
DEFF Research Database (Denmark)
Günther-Pomorski, Thomas; Menon, Anant K.
2016-01-01
Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support divers...
Novel fluorescent CdTe quantum dot-thymine conjugate—synthesis, properties and possible application
Rodzik, Łucja; Lewandowska-Łańcucka, Joanna; Szuwarzyński, Michał; Szczubiałka, Krzysztof; Nowakowska, Maria
2017-01-01
Novel, highly fluorescent cadmium telluride quantum dots conjugated with thymine and stabilized with thioglycolic acid were obtained and characterized. Successful formation of the conjugate was confirmed by elemental analysis, and UV-vis, fluorescence and Fourier transform infrared spectroscopies. Crystal structure and composition of the conjugates were characterized with xray diffraction and x-ray photoelectron spectroscopy. The size of the conjugates was 4-6 nm as demonstrated using atomic force microscopy and high resolution transmission electron microscopy imaging. The plasmon resonance fluorescence band at 540 nm on excitation at 351 nm was observed for these nanoparticles. The intensity of this band increased with the increase in the amount of conjugated thymine with no shift in its position. Based on the fluorescence measurements it was found that the CdTe-thymine conjugate interacted efficiently and selectively not only with adenine, a nucleobase complementary to thymine, but also with adenine-containing modified nucleosides, i.e., 5‧-deoxy-5‧-(methylthio)adenosine and 2‧-O-methyladenosine, the urinary tumor markers which allow monitoring of the disease progression. To the best of our knowledge, as yet, there have been no studies presented in literature on that type of the interaction with CdTe-thymine conjugates. Therefore, the system presented can be considered as a working component of a selective adenine/adenosine biosensor with potential application in cancer diagnosis.
Kato, Ilka T.; Santos, Camila C.; Benetti, Endi; Tenório, Denise P. L. A.; Cabral Filho, Paulo E.; Sabino, Caetano P.; Fontes, Adriana; Santos, Beate S.; Prates, Renato A.; Ribeiro, Martha S.
2012-03-01
Candida albicans is the most frequent human opportunistic pathogenic fungus and one of the most important causes of nosocomial infections. In fact, diagnosis of invasive candidiasis presents unique problems. The aim of this work was to evaluate, by fluorescence image analysis, cellular labeling of C. albicans with CdTe/CdS quantum dots conjugated or not to concanavalin A (ConA). Yeast cells were incubated with CdTe/CdS quantum dots (QD) stabilized with mercaptopropionic acid (MPA) (emission peak at 530 nm) for 1 hour. In the overall study we observed no morphological alterations. The fluorescence microscopic analysis of the yeast cells showed that the non-functionalized QDs do not label C. albicans cells, while for the QD conjugated to ConA the cells showed a fluorescence profile indicating that the membrane was preferentially marked. This profile was expected since Concanavalin A is a protein that binds specifically to terminal carbohydrate residues at the membrane cell surface. The results suggest that the QD-labeled Candida cells represent a promising tool to open new possibilities for a precise evaluation of fungal infections in pathological conditions.
Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.
Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J
2008-01-01
GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments.
Li, Shu-Shen; Long, Gui-lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Biocompatible Fluorescent Core-Shell Nanoconjugates Based on Chitosan/Bi2S3 Quantum Dots.
Ramanery, Fábio P; Mansur, Alexandra A P; Mansur, Herman S; Carvalho, Sandhra M; Fonseca, Matheus C
2016-12-01
Bismuth sulfide (Bi2S3) is a narrow-bandgap semiconductor that is an interesting candidate for fluorescent biomarkers, thermoelectrics, photocatalysts, and photovoltaics. This study reports the synthesis and characterization of novel Bi2S3 quantum dots (QDs) functionalized using chitosan (CHI) as the capping ligands via aqueous "green" route at room temperature and ambient pressure. Transmission electron microscopy (TEM), UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and zeta potential (ZP) analysis were used to characterize the hybrids made of biopolymer-functionalized Bi2S3 semiconductor nanocrystals. The results demonstrated that the CHI ligand was effective at nucleating and controlling the growth of water-soluble colloidal Bi2S3 nanoparticles. The average sizes of the Bi2S3 nanoparticles were significantly affected by the molar ratio of the precursors but less dependent on the pH of the aqueous media, leading to the formation of nanocrystals with average diameters varying from 4.2 to 6.7 nm. These surface-modified Bi2S3 nanocrystals with CHI exhibited photoluminescence in the visible spectral region. Moreover, the results of in vitro MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay with human osteosarcoma cells (SAOS) cell line demonstrated no cytotoxic response of the nanoconjugates.Furthermore, the results indicated that the Bi2S3 QD-CHI nanoconjugates showed HEK293T cell uptake; therefore, they can be potentially used as novel fluorescent nanoprobes for the in vitro bioimaging of cells in biomedical applications. Graphical Abstract Schematic representation of the biocompatible core-shell nanostructure of the chitosan/Bi2S3 quantum dot conjugates with photoluminescent properties.
Munnik, T.
2010-01-01
This book highlights the current status of plant lipid signaling. Written by leading researchers in the field, the chapters include detailed information on the measurement, regulation and function of phospholipases, lipid kinases, lipid phosphatases, inositolpolyphosphates, polyphosphoinositides, ph
... metabolic disorder, something goes wrong with this process. Lipid metabolism disorders, such as Gaucher disease and Tay-Sachs disease, involve lipids. Lipids are fats or fat-like substances. They ...
Plant lipid signaling protocols
Munnik, T.; Heilmann, I.
2013-01-01
Eukaryotic cells are surrounded by membranes consisting of various lipids, including sterols, sphingolipids, glycolipids, and phospholipids. Besides structural functions, membranes also contain lipids with regulatory and signaling roles. Such lipids include polyphosphoinositides, the low-abundant
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Steane, A M
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of quantum information theory. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, the review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory, and, arguably, quantum from classical physics. Basic quantum information ideas are described, including key distribution, teleportation, data compression, quantum error correction, the universal quantum computer and qua...
Gosson, Maurice A. de
2012-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level set...
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
de Gosson, Maurice A
2011-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level sets defined by Fermi for the purpose of representing geometrically quantum states.
Wu, L A; Wu, Lian-Ao; Lidar, Daniel
2005-01-01
Quantum computation and communication offer unprecedented advantages compared to classical information processing. Currently, quantum communication is moving from laboratory prototypes into real-life applications. When quantum communication networks become more widespread it is likely that they will be subject to attacks by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware.
Scarani, Valerio; Iblisdir, Sofyan; Gisin, Nicolas; Acin, Antonio
2005-01-01
The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional an...
Quantum CPU and Quantum Algorithm
Wang, An Min
1999-01-01
Making use of an universal quantum network -- QCPU proposed by me\\upcite{My1}, it is obtained that the whole quantum network which can implement some the known quantum algorithms including Deutsch algorithm, quantum Fourier transformation, Shor's algorithm and Grover's algorithm.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.
2016-07-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Chattaraj, Pratim Kumar
2010-01-01
The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan
Doxorubicin Lipid Complex Injection
Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's ...
Irinotecan Lipid Complex Injection
Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...
Daunorubicin Lipid Complex Injection
Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...
Vincristine Lipid Complex Injection
Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type of cancer ... least two different treatments with other medications. Vincristine lipid complex is in a class of medications called ...
Parenteral Nutrition and Lipids.
Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah
2017-04-14
Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them.
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Energy Technology Data Exchange (ETDEWEB)
Zurek, Wojciech H [Los Alamos National Laboratory
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
Putz, Volkmar
2015-01-01
We consider ways of conceptualizing, rendering and perceiving quantum music, and quantum art in general. Thereby we give particular emphasis to its non-classical aspects, such as coherent superposition and entanglement.
Cheon, T
2004-01-01
We show that the U(2) family of point interactions on a line can be utilized to provide the U(2) family of qubit operations for quantum information processing. Qubits are realized as localized states in either side of the point interaction which represents a controllable gate. The manipulation of qubits proceeds in a manner analogous to the operation of an abacus. Keywords: quantum computation, quantum contact interaction, quantum wire
Esteban Guevara
2006-01-01
The relationships between game theory and quantum mechanics let us propose certain quantization relationships through which we could describe and understand not only quantum but also classical, evolutionary and the biological systems that were described before through the replicator dynamics. Quantum mechanics could be used to explain more correctly biological and economical processes and even it could encloses theories like games and evolutionary dynamics. This could make quantum mechanics a...
2008-01-01
Quantum Nanomechanics is the emerging field which pertains to the mechanical behavior of nanoscale systems in the quantum domain. Unlike the conventional studies of vibration of molecules and phonons in solids, quantum nanomechanics is defined as the quantum behavior of the entire mechanical structure, including all of its constituents--the atoms, the molecules, the ions, the electrons as well as other excitations. The relevant degrees of freedom of the system are described by macroscopic var...
Fehr, S.
2010-01-01
Quantum cryptography makes use of the quantum-mechanical behavior of nature for the design and analysis of cryptographic schemes. Optimally (but not always), quantum cryptography allows for the design of cryptographic schemes whose security is guaranteed solely by the laws of nature. This is in shar
Quantum Computing for Quantum Chemistry
2010-09-01
This three-year project consisted on the development and application of quantum computer algorithms for chemical applications. In particular, we developed algorithms for chemical reaction dynamics, electronic structure and protein folding. The first quantum computing for
Quantum Operations as Quantum States
Arrighi, P; Arrighi, Pablo; Patricot, Christophe
2004-01-01
In this article we formalize the correspondence between quantum states and quantum operations, and harness its consequences. This correspondence was already implicit in Choi's proof of the operator sum representation of Completely Positive-preserving linear maps; we go further and show that all of the important theorems concerning quantum operations can be derived as simple corollaries of those concerning quantum states. As we do so the discussion first provides an elegant and original review of the main features of quantum operations. Next (in the second half of the paper) we search for more results to arise from the correspondence. Thus we propose a factorizability condition and an extremal trace-preservedness condition for quantum operations, give two novel Schmidt-type decompositions of bipartite pure states and two interesting composition laws for which the set of quantum operations and quantum states remain stable. The latter enables us to define a group structure upon the set of totally entangled state...
Quantum memory in quantum cryptography
Mor, T
1999-01-01
[Shortened abstract:] This thesis investigates the importance of quantum memory in quantum cryptography, concentrating on quantum key distribution schemes. In the hands of an eavesdropper -- a quantum memory is a powerful tool, putting in question the security of quantum cryptography; Classical privacy amplification techniques, used to prove security against less powerful eavesdroppers, might not be effective when the eavesdropper can keep quantum states for a long time. In this work we suggest a possible direction for approaching this problem. We define strong attacks of this type, and show security against them, suggesting that quantum cryptography is secure. We start with a complete analysis regarding the information about a parity bit (since parity bits are used for privacy amplification). We use the results regarding the information on parity bits to prove security against very strong eavesdropping attacks, which uses quantum memories and all classical data (including error correction codes) to attack th...
Lipid exchange by ultracentrifugation
DEFF Research Database (Denmark)
Drachmann, Nikolaj Düring; Olesen, Claus
2014-01-01
Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation......, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...
Nutrients and neurodevelopment: lipids.
González, Horacio F; Visentin, Silvana
2016-10-01
Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding.
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Lipid Structure in Triolein Lipid Droplets
DEFF Research Database (Denmark)
Chaban, Vitaly V; Khandelia, Himanshu
2014-01-01
Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...... of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations...
Quantum entanglement and quantum operation
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.
Horodecki, R; Horodecki, M; Horodecki, K; Horodecki, Ryszard; Horodecki, Pawel; Horodecki, Michal; Horodecki, Karol
2007-01-01
All our former experience with application of quantum theory seems to say: {\\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via ...
Weaver, Nik
2010-01-01
We define a "quantum relation" on a von Neumann algebra M \\subset B(H) to be a weak* closed operator bimodule over its commutant M'. Although this definition is framed in terms of a particular representation of M, it is effectively representation independent. Quantum relations on l^\\infty(X) exactly correspond to subsets of X^2, i.e., relations on X. There is also a good definition of a "measurable relation" on a measure space, to which quantum relations partially reduce in the general abelian case. By analogy with the classical setting, we can identify structures such as quantum equivalence relations, quantum partial orders, and quantum graphs, and we can generalize Arveson's fundamental work on weak* closed operator algebras containing a masa to these cases. We are also able to intrinsically characterize the quantum relations on M in terms of families of projections in M \\otimes B(l^2).
Quantum Games and Quantum Discord
Nawaz, Ahmad
2010-01-01
We quantize prisoners dilemma and chicken game by our generalized quantization scheme to explore the role of quantum discord in quantum games. In order to establish this connection we use Werner-like state as an initial state of the game. In this quantization scheme measurement can be performed in entangled as well as in product basis. For the measurement in entangled basis the dilemma in both the games can be resolved by separable states with non-zero quantum discord. Similarly for product basis measurement the payoffs are quantum mechanical only for nonzero values of quantum discord.
Polyene-lipids: a new tool to image lipids
DEFF Research Database (Denmark)
Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim
2005-01-01
conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...
Gilbert, Gerald; Hamrick, Michael
2013-01-01
This book provides a detailed account of the theory and practice of quantum cryptography. Suitable as the basis for a course in the subject at the graduate level, it crosses the disciplines of physics, mathematics, computer science and engineering. The theoretical and experimental aspects of the subject are derived from first principles, and attention is devoted to the practical development of realistic quantum communications systems. The book also includes a comprehensive analysis of practical quantum cryptography systems implemented in actual physical environments via either free-space or fiber-optic cable quantum channels. This book will be a valuable resource for graduate students, as well as professional scientists and engineers, who desire an introduction to the field that will enable them to undertake research in quantum cryptography. It will also be a useful reference for researchers who are already active in the field, and for academic faculty members who are teaching courses in quantum information s...
Arrighi, P
2003-01-01
Alice communicates with words drawn uniformly amongst $\\{\\ket{j}\\}_{j=1..n}$, the canonical orthonormal basis. Sometimes however Alice interleaves quantum decoys $\\{\\frac{\\ket{j}+i\\ket{k}}{\\sqrt{2}}\\}$ between her messages. Such pairwise superpositions of possible words cannot be distinguished from the message words. Thus as malevolent Eve observes the quantum channel, she runs the risk of damaging the superpositions (by causing a collapse). At the receiving end honest Bob, whom we assume is warned of the quantum decoys' distribution, checks upon their integrity with a measurement. The present work establishes, in the case of individual attacks, the tradeoff between Eve's information gain (her chances, if a message word was sent, of guessing which) and the disturbance she induces (Bob's chances, if a quantum decoy was sent, to detect tampering). Besides secure channel protocols, quantum decoys seem a powerful primitive for constructing n-dimensional quantum cryptographic applications. Moreover the methods emp...
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
2010-03-04
efficient or less costly than their classical counterparts. A large-scale quantum computer is certainly an extremely ambi- tious goal, appearing to us...outperform the largest classical supercomputers in solving some specific problems important for data encryption. In the long term, another application...which the quantum computer depends, causing the quantum mechanically destructive process known as decoherence . Decoherence comes in several forms
Hughes, R J; Dyer, P L; Luther, G G; Morgan, G L; Schauer, M M; Hughes, Richard J; Dyer, P; Luther, G G; Morgan, G L; Schauer, M
1995-01-01
Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Quantum Networks for Generating Arbitrary Quantum States
Kaye, Phillip; Mosca, Michele
2004-01-01
Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.
Quantum physics without quantum philosophy
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Mathematisches Inst.; Goldstein, Sheldon [Rutgers State Univ., Piscataway, NJ (United States). Dept. of Mathematics; Zanghi, Nino [Genova Univ. (Italy); Istituto Nazionale Fisica Nucleare, Genova (Italy)
2013-02-01
Integrates and comments on the authors' seminal papers in the field. Emphasizes the natural way in which quantum phenomena emerge from the Bohmian picture. Helps to answer many of the objections raised to Bohmian quantum mechanics. Useful overview and summary for newcomers and students. It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schroedinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Quantum entanglement and quantum operation
Institute of Scientific and Technical Information of China (English)
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations.The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations.It includes remote state preparation by using any pure entangled states,nonlocal operation implementation using entangled states,entanglement capacity of two-qubit gates and two-qubit gates construction.
Kik, R.A.
2007-01-01
In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Abrams, D.; Williams, C.
1999-01-01
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.
Manning, Phillip
2011-01-01
The study of quantum theory allowed twentieth-century scientists to examine the world in a new way, one that was filled with uncertainties and probabilities. Further study also led to the development of lasers, the atomic bomb, and the computer. This exciting new book clearly explains quantum theory and its everyday uses in our world.
Sastry, R R
1999-01-01
The infinite dimensional generalization of the quantum mechanics of extended objects, namely, the quantum field theory of extended objects is employed to address the hitherto nonrenormalizable gravitational interaction following which the cosmological constant problem is addressed. The response of an electron to a weak gravitational field (linear approximation) is studied and the order $\\alpha$ correction to the magnetic gravitational moment is computed.
Lipids and lipid binding proteins: a perfect match.
Glatz, Jan F C
2015-02-01
Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention.
Hadjiivanov, Ludmil
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the "philosophical discussions" between Bohr, Einstein and Schr\\"odinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schr\\"odinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminati...
Richter, Johannes; Farnell, Damian; Bishop, Raymod
2004-01-01
The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
Kiefer, Claus
2012-01-01
The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
... Science Home Page The Big, Fat World of Lipids By Emily Carlson Posted August 9, 2012 Cholesterol ... ways to diagnose and treat lipid-related conditions. Lipid Encyclopedia Just as genomics and proteomics spurred advances ...
Quantum Computation Toward Quantum Gravity
Zizzi, P. A.
2001-08-01
The aim of this paper is to enlighten the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. From the above arguments, as they stand in the literature, it follows that the edges of spin networks pierce the black hole horizon and excite curvature degrees of freedom on the surface. These excitations are micro-states of Chern-Simons theory and account of the black hole entropy which turns out to be a quarter of the area of the horizon, (in units of Planck area), in accordance with the holographic principle. Moreover, the states which dominate the counting correspond to punctures of spin j = 1/2 and one can in fact visualize each micro-state as a bit of information. The obvious generalization of this result is to consider open spin networks with edges labeled by the spin -1/ 2 representation of SU(2) in a superposed state of spin "on" and spin "down." The micro-state corresponding to such a puncture will be a pixel of area which is "on" and "off" at the same time, and it will encode a qubit of information. This picture, when applied to quantum cosmology, describes an early inflationary universe which is a discrete version of the de Sitter universe.
Avanti lipid tools: connecting lipids, technology, and cell biology.
Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A
2014-08-01
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.
Directory of Open Access Journals (Sweden)
Zehra Kahveci
2014-03-01
Full Text Available This paper explores the interaction mechanism between the conjugated polyelectrolyte {[9,9-bis(6'-N,N,N-trimethylammoniumhexyl]fluorene-phenylene}bromide (HTMA-PFP and model lipid membranes. The study was carried out using different biophysical techniques, mainly fluorescence spectroscopy and microscopy. Results show that despite the preferential interaction of HTMA-PFP with anionic lipids, HTMA-PFP shows affinity for zwitterionic lipids; although the interaction mechanism is different as well as HTMA-PFP’s final membrane location. Whilst the polyelectrolyte is embedded within the lipid bilayer in the anionic membrane, it remains close to the surface, forming aggregates that are sensitive to the physical state of the lipid bilayer in the zwitterionic system. The different interaction mechanism is reflected in the polyelectrolyte fluorescence spectrum, since the maximum shifts to longer wavelengths in the zwitterionic system. The intrinsic fluorescence of HTMA-PFP was used to visualize the interaction between polymer and vesicles via fluorescence microscopy, thanks to its high quantum yield and photostability. This technique allows the selectivity of the polyelectrolyte and higher affinity for anionic membranes to be observed. The results confirmed the appropriateness of using HTMA-PFP as a membrane fluorescent marker and suggest that, given its different behaviour towards anionic and zwitterionic membranes, HTMA-PFP could be used for selective recognition and imaging of bacteria over mammalian cells.
Cariolaro, Gianfranco
2015-01-01
This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: · development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; · general formulation of a transmitter–receiver system · particular treatment of the most popular quantum co...
Regulation of lipid metabolism
Institute of Scientific and Technical Information of China (English)
Peng LI
2011-01-01
@@ Lipids including cholesterol, phospholipids, fatty acids and triacylglycerols are important cellular constituents involved in membrane structure, energy homeostasis and many biological processes such as signal transduction, organelle development and cell differentiation.Recently, the area of lipid metabolism has drawn a great deal of attention due to its emerging role in the development of metabolic disorders such as obesity, diabetes, atherosclerosis and liver steatosis.We decided to organize a special issue of Frontiers in Biology focusing on our current understanding of lipid metabolism.
Fish chemistry data (d13C, d15N, C:N, lipid content) published in Rapid Commun. Mass Spectrom. 2015, 29, 2069??2077 DOI: 10.1002/rcm.7367This dataset is associated with the following publication:Hoffman , J., M. Sierszen , and A. Cotter. Fish tissue lipid-C:N relationships for correcting ä13C values and estimating lipid content in aquatic food web studies. Rapid Communications in Mass Spectrometry. Wiley InterScience, Silver Spring, MD, USA, 29(21): 2069–2077, (2015).
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Gudder, Stanley P
2014-01-01
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism.Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles.The first two chapters survey the ne
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Garrison, J C
2008-01-01
Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor
Lowe, John P
1993-01-01
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,
Perspectives on marine zooplankton lipids
DEFF Research Database (Denmark)
Kattner, G.; Hagen, W.; Lee, R.F.
2007-01-01
We developed new perspectives to identify important questions and to propose approaches for future research on marine food web lipids. They were related to (i) structure and function of lipids, (ii) lipid changes during critical life phases, (iii) trophic marker lipids, and (iv) potential impact...... of climate change. The first addresses the role of lipids in membranes, storage lipids, and buoyancy with the following key question: How are the properties of membranes and deposits affected by the various types of lipids? The second deals with the importance of various types of lipids during reproduction......, development, and resting phases and addresses the role of the different storage lipids during growth and dormancy. The third relates to trophic marker lipids, which are an important tool to follow lipid and energy transfer through the food web. The central question is how can fatty acids be used to identify...
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
African Journals Online (AJOL)
Marinda
2009-07-20
Jul 20, 2009 ... Keywords: lipid emulsion therapy; local anaesthetic toxicity; local anaesthetic cardiotoxicity; .... of particular importance in generating sufficient ATP from fats because ..... Propofol is poorly water soluble and is dissolved in the.
Bodner, George M.
1986-01-01
Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)
African Journals Online (AJOL)
2009-03-20
Mar 20, 2009 ... risk reduction for most patients, while patients with severe ... He runs the Diabetic, Endocrine and Lipid clinics at R K Khan Hospital. Treatment .... retinopathy requiring laser therapy). ... Despite knowledge of the risk factors for.
Dynamic Transbilayer Lipid Asymmetry
van Meer, Gerrit
2011-01-01
Flippases move lipids from the outer leaflet of the membrane to the inner leaflet; floppases export them in the opposite direction. This creates an asymmetry critical for membrane function and facilitates vesicle budding.
Buhrman, H; Watrous, J; De Wolf, R; Buhrman, Harry; Cleve, Richard; Watrous, John; Wolf, Ronald de
2001-01-01
Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources. In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability. Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity. We optimize several aspects of our scheme.
Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L
2010-03-04
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
Curran, Stephen
2009-01-01
In arXiv:0807.0677, K\\"ostler and Speicher observed that de Finetti's theorem on exchangeable sequences has a free analogue if one replaces exchangeability by the stronger condition of invariance under quantum permutations. In this paper we study sequences of noncommutative random variables whose joint distribution is invariant under quantum orthogonal transformations. We prove a free analogue of Freedman's characterization of conditionally independent Gaussian families, namely an infinite sequence of self-adjoint random variables is quantum orthogonally invariant if and only if they form an operator-valued free centered equivariant semicircular family. Similarly, we show that an infinite sequence of noncommutative random variables is quantum unitarily invariant if and only if they form an operator-valued free centered equivariant circular family. We provide an example to show that, as in the classical case, these results fail for finite sequences. We then give an approximation to how far the distribution of ...
Mershin, A; Skoulakis, E M C
2000-01-01
In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.
CERN Bulletin
2013-01-01
On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail... Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".
Haroche, Serge
2013-01-01
Mr Administrator,Dear colleagues,Ladies and gentlemen, “I think I can safely say that nobody understands quantum mechanics”. This statement, made by physicist Richard Feynman, expresses a paradoxical truth about the scientific theory that revolutionised our understanding of Nature and made an extraordinary contribution to our means of acting on and gaining information about the world. In this lecture, I will discuss quantum physics with you by attempting to resolve this paradox. And if I don’...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Diego Martin-Cano, Paloma A. Huidobro, Esteban Moreno; Diego Martin-Cano; Huidobro, Paloma A.; Esteban Moreno; Garcia-Vidal, F.J.
2014-01-01
Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical inve...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Horvath, Susanne E; Daum, Günther
2013-10-01
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quantum correlations and distinguishability of quantum states
Spehner, Dominique
2014-07-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Fuchs, Christopher A
2009-01-01
This pseudo-paper consists of excerpts drawn from two of my quantum-email samizdats. Section 1 draws a picture of a physical world whose essence is ``Darwinism all the way down.'' Section 2 outlines how quantum theory should be viewed in light of this, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of ``identical'' quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a Jamesian style ``radical pluralism.'' Sections 4 and 5 further detail how quantum theory should not be viewed so much as a ``theory of the world,'' but rather as a theory of decision-making for agents immersed within a world of a particular character--the quantum world. Finally, Sections 6 and 7 attempt to sketch the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I...
2011-06-16
civilian medicine. REFERENCES: 1. Takada T, Kamei Y, Iwata T, et al. Effect of Omental Lipid Fraction on Enhancement of Skin Flap Survival. Annals of...Characterization of Feline Omentum Lipids. Lipids, 1987; 22:229-235. 7. Nottebaert M, Lane J, Juhn A, et al. Omental Angiogenic Lipid Fraction and
Perspectives on marine zooplankton lipids
DEFF Research Database (Denmark)
Kattner, G.; Hagen, W.; Lee, R.F.
2007-01-01
We developed new perspectives to identify important questions and to propose approaches for future research on marine food web lipids. They were related to (i) structure and function of lipids, (ii) lipid changes during critical life phases, (iii) trophic marker lipids, and (iv) potential impact ...
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Quantum Central Processing Unit and Quantum Algorithm
Institute of Scientific and Technical Information of China (English)
王安民
2002-01-01
Based on a scalable and universal quantum network, quantum central processing unit, proposed in our previous paper [Chin. Phys. Left. 18 (2001)166], the whole quantum network for the known quantum algorithms,including quantum Fourier transformation, Shor's algorithm and Grover's algorithm, is obtained in a unitied way.
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Quantum Transmemetic Intelligence
Piotrowski, Edward W.; Sładkowski, Jan
The following sections are included: * Introduction * A Quantum Model of Free Will * Quantum Acquisition of Knowledge * Thinking as a Quantum Algorithm * Counterfactual Measurement as a Model of Intuition * Quantum Modification of Freud's Model of Consciousness * Conclusion * Acknowledgements * References
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Mandl, F.
1992-07-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.
Directory of Open Access Journals (Sweden)
Peter Wolf
2017-05-01
Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.
LIPID PEROXIDATION IN PREECLAMPSIA
Directory of Open Access Journals (Sweden)
T.Sharmila Krishna
2015-03-01
Full Text Available Hypertension in pregnancy is a leading cause of both maternal and fetal mortality and morbidity. Preeclampsia is characterised by hypertension and proteinuria. Lipid peroxidation is an important factor in the pathophysiology of Preeclampsia. The present study was undertaken to determine Serum Malondialdehyde (MDA levels , a product of lipid peroxidation , in clinically diagnosed Preeclamptic women(n=30 and the values were compared with that of Normotensive pregnant women (n=30 aged between 18-30yrs. All of them were in their third trimester and were primigravida. Serum MDA was estimated by TBARS (thiobarbituric acid reactive substances method. We observed that Serum MDA levels were significantly increased in Preeclamptic women (p <0.000 as compared to that of Normotensive pregnant women . Increased levels of lipid peroxiation product - MDA may contribute to the pathophysiology of Preeclampsia.
Heimburg, Thomas
2010-01-01
The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...
Mullin, William J
2017-01-01
Quantum mechanics allows a remarkably accurate description of nature and powerful predictive capabilities. The analyses of quantum systems and their interpretation lead to many surprises, for example, the ability to detect the characteristics of an object without ever touching it in any way, via "interaction-free measurement," or the teleportation of an atomic state over large distances. The results can become downright bizarre. Quantum mechanics is a subtle subject that usually involves complicated mathematics -- calculus, partial differential equations, etc., for complete understanding. Most texts for general audiences avoid all mathematics. The result is that the reader misses almost all deep understanding of the subject, much of which can be probed with just high-school level algebra and trigonometry. Thus, readers with that level of mathematics can learn so much more about this fundamental science. The book starts with a discussion of the basic physics of waves (an appendix reviews some necessary class...
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Yoshida, Z
2016-01-01
Quantum systems often exhibit fundamental incapability to entertain vortex. The Meissner effect, a complete expulsion of the magnetic field (the electromagnetic vorticity), for instance, is taken to be the defining attribute of the superconducting state. Superfluidity is another, close-parallel example; fluid vorticity can reside only on topological defects with a limited (quantized) amount. Recent developments in the Bose-Einstein condensates produced by particle traps further emphasize this characteristic. We show that the challenge of imparting vorticity to a quantum fluid can be met through a nonlinear mechanism operating in a hot fluid corresponding to a thermally modified Pauli-Schroedinger spinor field. In a simple field-free model, we show that the thermal effect, represented by a nonlinear, non-Hermitian Hamiltonian, in conjunction with spin vorticity, leads to new interesting quantum states; a spiral solution is explicitly worked out.
Exner, Pavel
2015-01-01
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
Feng, Chao-Jun; Li, Xin-Zhou
In this paper, we will give a short review on quantum spring, which is a Casimir effect from the helix boundary condition that proposed in our earlier works. The Casimir force parallel to the axis of the helix behaves very much like the force on a spring that obeys the Hooke's law when the ratio r of the pitch to the circumference of the helix is small, but in this case, the force comes from a quantum effect, so we would like to call it quantum spring. On the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the ratio r. Both forces are attractive and their behaviors are the same in two and three dimensions.
Ranchin, André
2016-01-01
We introduce a new board game based on the ancient Chinese game of Go (Weiqi, Igo, Baduk). The key difference from the original game is that players no longer alternatively play single stones on the board but instead they take turns placing pairs of entangled go stones. A phenomenon of quantum-like collapse occurs when a stone is placed in an intersection directly adjacent to one or more other stones. For each neighboring stone in an entangled pair, each player then chooses which stone of the pair is kept on the board and which stone is removed. The aim of the game is still to surround more territory than the opponent and as the number of stones increases, all the entangled pairs of stones eventually reduce to single stones. Quantum Go provides an interesting and tangible illustration of quantum concepts such as superposition, entanglement and collapse.
Barbara, Bernard; Sawatzky, G; Stamp, P. C. E
2008-01-01
This book is based on some of the lectures during the Pacific Institute of Theoretical Physics (PITP) summer school on "Quantum Magnetism", held during June 2006 in Les Houches, in the French Alps. The school was funded jointly by NATO, the CNRS, and PITP, and entirely organized by PITP. Magnetism is a somewhat peculiar research field. It clearly has a quantum-mechanical basis – the microsopic exchange interactions arise entirely from the exclusion principle, in conjunction with respulsive interactions between electrons. And yet until recently the vast majority of magnetism researchers and users of magnetic phenomena around the world paid no attention to these quantum-mechanical roots. Thus, eg., the huge ($400 billion per annum) industry which manufactures hard discs, and other components in the information technology sector, depends entirely on room-temperature properties of magnets - yet at the macroscopic or mesoscopic scales of interest to this industry, room-temperature magnets behave entirely classic...
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking.
Hang, Howard C; Wilson, John P; Charron, Guillaume
2011-09-20
Protein lipidation and lipid trafficking control many key biological functions in all kingdoms of life. The discovery of diverse lipid species and their covalent attachment to many proteins has revealed a complex and regulated network of membranes and lipidated proteins that are central to fundamental aspects of physiology and human disease. Given the complexity of lipid trafficking and the protein targeting mechanisms involved with membrane lipids, precise and sensitive methods are needed to monitor and identify these hydrophobic molecules in bacteria, yeast, and higher eukaryotes. Although many analytical methods have been developed for characterizing membrane lipids and covalently modified proteins, traditional reagents and approaches have limited sensitivity, do not faithfully report on the lipids of interest, or are not readily accessible. The invention of bioorthogonal ligation reactions, such as the Staudinger ligation and azide-alkyne cycloadditions, has provided new tools to address these limitations, and their use has begun to yield fresh insight into the biology of protein lipidation and lipid trafficking. In this Account, we discuss how these new bioorthogonal ligation reactions and lipid chemical reporters afford new opportunities for exploring the biology of lipid-modified proteins and lipid trafficking. Lipid chemical reporters from our laboratory and several other research groups have enabled improved detection and large-scale proteomic analysis of fatty-acylated and prenylated proteins. For example, fatty acid and isoprenoid chemical reporters in conjunction with bioorthogonal ligation methods have circumvented the limited sensitivity and hazards of radioactive analogues, allowing rapid and robust fluorescent detection of lipidated proteins in all organisms tested. These chemical tools have revealed alterations in protein lipidation in different cellular states and are beginning to provide unique insights in mechanisms of regulation. Notably, the
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Zagoskin, Alexandre
2015-01-01
Written by Dr Alexandre Zagoskin, who is a Reader at Loughborough University, Quantum Mechanics: A Complete Introduction is designed to give you everything you need to succeed, all in one place. It covers the key areas that students are expected to be confident in, outlining the basics in clear jargon-free English, and then providing added-value features like summaries of key ideas, and even lists of questions you might be asked in your exam. The book uses a structure that is designed to make quantum physics as accessible as possible - by starting with its similarities to Newtonian physics, ra
de Bianchi, Massimiliano Sassoli
2013-01-01
In a letter to Born, Einstein wrote: "Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the old one. I, at any rate, am convinced that He does not throw dice." In this paper we take seriously Einstein's famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how...
Bojowald, Martin
1999-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Buhrman, Harry
2006-01-01
École thématique; Quantum Information, Computation and Complexity * Programme at the Institut Henri Poincaré, January 4th – April 7th, 2006 * Organizers: Ph.Grangier, M.Santha and D.L.Shepelyansky * Lectures have been filmed by Peter Rapcan and Michal Sedlak from Bratislava with the support of the Marie Curie RTN "CONQUEST" A trimester at the Centre Emile Borel - Institut Henri Poincaré is devoted to modern developments in a rapidly growing field of quantum information and communication, quan...
Baaquie, Belal E.
2007-09-01
Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.
Bernstein, Jeremy
1991-01-01
For the prominent science writer Jeremy Bernstein, the profile is the most congenial way of communicating science. Here, in what he labels a "series of conversations carried on in the reader's behalf and my own," he evokes the tremendous intellectual excitement of the world of modern physics, especially the quantum revolution. Drawing on his well-known talent for explaining the most complex scientific ideas for the layperson, Bernstein gives us a lively sense of what the issues of quantum mechanics are and of various ways in which individual physicists approached them.The author begins this se
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2016-12-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
How proteins move lipids and lipids move proteins
Sprong, H.|info:eu-repo/dai/nl/222364815; van der Sluijs, P.; van Meer, G.|info:eu-repo/dai/nl/068570368
2001-01-01
Cells determine the bilayer characteristics of different membranes by tightly controlling their lipid composition. Local changes in the physical properties of bilayers, in turn, allow membrane deformation, and facilitate vesicle budding and fusion. Moreover, specific lipids at specific locations
Ashmead, John
2010-01-01
Normally we quantize along the space dimensions but treat time classically. But from relativity we expect a high level of symmetry between time and space. What happens if we quantize time using the same rules we use to quantize space? To do this, we generalize the paths in the Feynman path integral to include paths that vary in time as well as in space. We use Morlet wavelet decomposition to ensure convergence and normalization of the path integrals. We derive the Schr\\"odinger equation in four dimensions from the short time limit of the path integral expression. We verify that we recover standard quantum theory in the non-relativistic, semi-classical, and long time limits. Quantum time is an experiment factory: most foundational experiments in quantum mechanics can be modified in a way that makes them tests of quantum time. We look at single and double slits in time, scattering by time-varying electric and magnetic fields, and the Aharonov-Bohm effect in time.
1993-05-14
Barbara , California, March 1993. I Carrier Dynamics in Quantum Wires Investigators: Wolfgang Porod I I Using the Monte Carlo technique, we have...8217.ubtle correlations between impunty scanenng events tin the "res;ence oft a ma.’neuc fle!dlp which are beyond Fermi’s Golden Rule. In this caper . we
Raedt, Hans De; Binder, K; Ciccotti, G
1996-01-01
The purpose of this set of lectures is to introduce the general concepts that are at the basis of the computer simulation algorithms that are used to study the behavior of condensed matter quantum systems. The emphasis is on the underlying concepts rather than on specific applications. Topics treate
Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.
2003-08-01
In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.
Energy Technology Data Exchange (ETDEWEB)
Sassoli de Bianchi, Massimiliano, E-mail: autoricerca@gmail.com
2013-09-15
In a letter to Born, Einstein wrote [42]: “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the ‘old one.’ I, at any rate, am convinced that He does not throw dice.” In this paper we take seriously Einstein’s famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell’s inequality. -- Highlights: •Rolling a die is a quantum process admitting a Hilbert space representation. •Rolling experiments with a single die can produce interference effects. •Two connected dice can violate Bell’s inequality. •Correlations need to be created by the measurement, to violate Bell’s inequality.
Cheon, Taksu; Tsutsui, Izumi; Fülöp, Tamás
2004-09-01
We show that the point interactions on a line can be utilized to provide U(2) family of qubit operations for quantum information processing. Qubits are realized as states localized in either side of the point interaction which represents a controllable gate. The qubit manipulation proceeds in a manner analogous to the operation of an abacus.
Keimer, Bernhard; Sachdev, Subir
2011-01-01
This is a review of the basic theoretical ideas of quantum criticality, and of their connection to numerous experiments on correlated electron compounds. A shortened, modified, and edited version appeared in Physics Today. This arxiv version has additional citations to the literature.
Peschanski, R
1993-01-01
Phenomenological and theoretical aspects of fragmentation for elementary particles (resp. nuclei) are discussed. It is shown that some concepts of classical fragmentation remain relevant in a microscopic framework, exhibiting non-trivial properties of quantum relativistic field theory (resp. lattice percolation). Email contact: pesch@amoco.saclay.cea.fr
Directory of Open Access Journals (Sweden)
Alessandro Sergi
2009-06-01
Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.
Lipid Therapy for Intoxications
Robben, Joris Henricus; Dijkman, Marieke Annet
2017-01-01
This review discusses the use of intravenous lipid emulsion (ILE) in the treatment of intoxications with lipophilic agents in veterinary medicine. Despite growing scientific evidence that ILE has merit in the treatment of certain poisonings, there is still uncertainty on the optimal composition of t
Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...
Lipid Therapy for Intoxications
Robben, Joris Henricus; Dijkman, Marieke Annet
2017-01-01
This review discusses the use of intravenous lipid emulsion (ILE) in the treatment of intoxications with lipophilic agents in veterinary medicine. Despite growing scientific evidence that ILE has merit in the treatment of certain poisonings, there is still uncertainty on the optimal composition of t
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
Quantum cryptography beyond quantum key distribution
A. Broadbent (Anne); C. Schaffner (Christian)
2016-01-01
textabstractQuantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness
Quantum cryptography beyond quantum key distribution
Broadbent, A.; Schaffner, C.
2016-01-01
Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation,
Quantum cryptography beyond quantum key distribution
Broadbent, A.; Schaffner, C.
2016-01-01
Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secu
Amphotericin B Lipid Complex Injection
Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did not respond ... to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in a class of medications ...
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-05-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Quantum Secure Dialogue with Quantum Encryption
Ye, Tian-Yu
2014-09-01
How to solve the information leakage problem has become the research focus of quantum dialogue. In this paper, in order to overcome the information leakage problem in quantum dialogue, a novel approach for sharing the initial quantum state privately between communicators, i.e., quantum encryption sharing, is proposed by utilizing the idea of quantum encryption. The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons, which can be repeatedly used after rotation. Due to quantum encryption sharing, the public announcement on the state of the initial quantum state is omitted, thus the information leakage problem is overcome. The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols. Moreover, the proposed protocol only needs single-photon measurements and nearly uses single photons as quantum resource so that it is convenient to implement in practice.
Efficient quantum walk on a quantum processor.
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F
2016-05-05
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Lipid nanotube or nanowire sensor
Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.
2009-06-09
A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
Rissmann, Robert; Oudshoorn, Marion H M; Kocks, Elise; Hennink, Wim E; Ponec, Maria; Bouwstra, Joke A
2008-10-01
The aim of the present study was to use semi-synthetic lipid mixtures to mimic the complex lipid composition, organization and thermotropic behaviour of vernix caseosa (VC) lipids. As VC shows multiple protecting and barrier supporting properties before and after birth, it is suggested that a VC substitute could be an innovative barrier cream for barrier deficient skin. Lanolin was selected as the source of the branched chain sterol esters and wax esters--the main lipid classes of VC. Different lipid fractions were isolated from lanolin and subsequently mixed with squalene, triglycerides, cholesterol, ceramides and fatty acids to generate semi-synthetic lipid mixtures that mimic the lipid composition of VC, as established by high-performance thin-layer chromatography. Differential scanning calorimetry and Fourier transform infrared spectroscopy investigations revealed that triglycerides play an important role in the (lateral) lipid organization and thermotropic behaviour of the synthetic lipid mixtures. Excellent resemblance of VC lipids was obtained when adding unsaturated triglycerides. Moreover, these lipid mixtures showed similar long range ordering as VC. The optimal lipid mixture was evaluated on tape-stripped hairless mouse skin in vivo. The rate of barrier recovery was increased and comparable to VC lipid treatment.
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiao-Qi; O'Brien, Jeremy; Wang, Jingbo; Matthews, Jonathan
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise quantum walks have shown much potential as a frame- work for developing new quantum algorithms. In this paper, we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs ef...
Interpreting Quantum Discord in Quantum Metrology
Girolami, Davide
2015-01-01
Multipartite quantum systems show properties which do not admit a classical explanation. In particular, even nonentangled states can enjoy a kind of quantum correlations called quantum discord. I discuss some recent results on the role of quantum discord in metrology. Given an interferometric phase estimation protocol where the Hamiltonian is initially unknown to the experimentalist, the quantum discord of the probe state quantifies the minimum precision of the estimation. This provides a phy...
Quantum Mechanics interpreted in Quantum Real Numbers
Corbett, J V; Corbett, John V; Durt, Thomas
2002-01-01
The concept of number is fundamental to the formulation of any physical theory. We give a heuristic motivation for the reformulation of Quantum Mechanics in terms of non-standard real numbers called Quantum Real Numbers. The standard axioms of quantum mechanics are re-interpreted. Our aim is to show that, when formulated in the language of quantum real numbers, the laws of quantum mechanics appear more natural, less counterintuitive than when they are presented in terms of standard numbers.
Lipid characterization of human saliva.
Defagó, Maria Daniela; Valentich, Mirta Ana; Actis, Adriana Beatriz
2011-12-01
Salivary lipids have been scarcely studied, and the reported results present disparities. This literature review is presented based on the importance of saliva as a diagnostic and/or prognostic medium for various diseases, its lipid content, and on its potential use for the analysis of nutritional markers that contribute to the study of diseases related to lipid consumption and metabolism.
Lipid domains in bicelles containing unsaturated lipids and cholesterol.
Cho, Hyo Soon; Dominick, Johnna L; Spence, Megan M
2010-07-22
We have created a stable bicelle system capable of forming micrometer-scale lipid domains that orient in a magnetic field, suitable for structural biology determination in solid-state NMR. The bicelles consisted of a mixture of cholesterol, saturated lipid (DMPC), and unsaturated lipid (POPC), a mixture commonly used to create domains in model membranes, along with a short chain lipid (DHPC) that allows formation of the bicelle phase. While maintaining a constant molar ratio of long to short chain lipids, q = ([POPC]+[DMPC])/[DHPC] = 3, we varied the concentrations of the unsaturated lipid, POPC, and cholesterol to observe the effects of the components on bicelle stability. Using (31)P solid-state NMR, we observed that unsaturated lipids (POPC) greatly destabilized the alignment of the membranes in the magnetic field, while cholesterol stabilized their alignment. By combining cholesterol and unsaturated lipids in the bicelles, we created membranes aligning uniformly in the magnetic field, despite very high concentrations of unsaturated lipids. These bicelles, with high concentrations of both cholesterol and unsaturated lipid, showed similar phase behavior to bicelles commonly used in structural biology, but aligned over a wider temperature range (291-314 K). Domains were observed by measuring time-dependent diffusion constants reflecting restricted diffusion of the lipids within micrometer-scale regions of the bicelles. Micron-scale domains have never been observed in POPC/DMPC/cholesterol vesicles, implying that bilayers in bicelles show different phase behavior than their counterparts in vesicles, and that bilayers in bicelles favor domain formation.
Stability of lipid excipients in solid lipid nanoparticles.
Radomska-Soukharev, Anna
2007-07-10
The paper is devoted to the investigation of chemical stability of lipids used as excipients in the production of Solid Lipid Nanoparticles (SLN). Different lipids and amounts of surfactants were considered. Most of the formulations were produced using identical binary surfactant mixtures and concentrations to analyze the effect of the chemical nature of the lipids on their stability in SLN. In some formulations, surfactants were exchanged or their concentration was increased to assess the contribution of surfactants on stability of lipids particles. Solid Lipid Nanoparticles were characterized by photon correlation spectroscopy, laser diffractometry, zeta potential determination and differential scanning calorimetry. Potential effects of lipid crystallinity and modifications were assessed. A gas chromatography (GC) analysis in combination with a method for lipid extraction from aqueous SLN dispersions was used to investigate the chemical stability of the lipid excipients forming the particle matrix. All formulations were produced by the hot homogenization technique. The production process of SLN itself did not affect the chemical stability of lipid excipient forming the particle matrix. The formulations where lipids consisted of trigylicerides showed a negligible decomposition of the structure during incubation at 25 degrees C. Dynasan 118 showed the highest chemical stability (loss<4%) within two years.
Bojowald, Martin
The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996). gr-qc/0101003 4.Isham C.J.: In: DeWitt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Lectures Given at the 1983 Les Houches Summer School on Relativity, Groups and Topology, Elsevier Science Publishing Company (1986) 5.Klauder, J.: Int. J. Mod. Phys. D 12, 1769 (2003), gr-qc/0305067 6.Klauder, J.: Int. J. Geom. Meth. Mod. Phys. 3, 81 (2006), gr-qc/0507113 7.DGiulini1995Phys. Rev. D5110563013381161995PhRvD..51.5630G10.1103/PhysRevD.51.5630Giulini, D.: Phys. Rev. D 51(10), 5630 (1995) 8.Kiefer, C., Zeh, H.D.: Phys. Rev. D 51, 4145 (1995), gr-qc/9402036 9.WFBlythCJIsham1975Phys. Rev. D117684086991975PhRvD..11..768B10.1103/PhysRevD.11.768Blyth, W
Spin network quantum simulator
Energy Technology Data Exchange (ETDEWEB)
Marzuoli, Annalisa; Rasetti, Mario
2002-12-30
We propose a general setting for a universal representation of the quantum structure on which quantum information stands, whose dynamical evolution (information manipulation) is based on angular momentum recoupling theory. Such scheme complies with the notion of 'quantum simulator' in the sense of Feynman, and is shown to be related with the topological quantum field theoretical approach to quantum computation.
Shaw, Bilal A
2010-01-01
Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement the sender (Alice) disguises her information as errors in the channel. The receiver (Bob) can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols.
Energy Technology Data Exchange (ETDEWEB)
Goernitz, T.; Weizsaecker, C.F.V.
1987-10-01
Four interpretations of quantum theory are compared: the Copenhagen interpretation (C.I.) with the additional assumption that the quantum description also applies to the mental states of the observer, and three recent ones, by Kochen, Deutsch, and Cramer. Since they interpret the same mathematical structure with the same empirical predictions, it is assumed that they formulate only different linguistic expressions of one identical theory. C.I. as a theory on human knowledge rests on a phenomenological description of time. It can be reconstructed from simple assumptions on predictions. Kochen shows that mathematically every composite system can be split into an object and an observer. Deutsch, with the same decomposition, describes futuric possibilities under the Everett term worlds. Cramer, using four-dimensional action at a distance (Wheeler-Feynman), describes all future events like past facts. All three can be described in the C.I. frame. The role of abstract nonlocality is discussed.
Häring, Reto Andreas
1993-01-01
The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.
Baaquie, Belal E; Demongeot, J; Galli-Carminati, Giuliana; Martin, F; Teodorani, Massimo
2015-01-01
At the end of the 19th century Sigmund Freud discovered that our acts and choices are not only decisions of our consciousness, but that they are also deeply determined by our unconscious (the so-called "Freudian unconscious"). During a long correspondence between them (1932-1958) Wolfgang Pauli and Carl Gustav Jung speculated that the unconscious could be a quantum system. This book is addressed both to all those interested in the new developments of the age-old enquiry in the relations between mind and matter, and also to the experts in quantum physics that are interested in a formalisation of this new approach. The description of the "Bilbao experiment" adds a very interesting experimental inquiry into the synchronicity effect in a group situation, linking theory to a quantifiable verification of these subtle effects. Cover design: "Entangled Minds". Riccardo Carminati Galli, 2014.
Dysregulated lipid metabolism in cancer
Institute of Scientific and Technical Information of China (English)
2012-01-01
Alteration of lipid metabolism has been increasingly recognized as a hallmark of cancer cells. The changes of expression and activity of lipid metabolizing enzymes are directly regulated by the activity of oncogenic signals. The dependence of tumor cells on the dysregulated lipid metabolism suggests that proteins involved in this process are excellent chemotherapeutic targets for cancer treatment. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered lipid metabolic pathways in cancer cells. Further understanding of dysregulated lipid metabolism and its associated signaling pathways will help us to better design efficient cancer therapeutic strategy.
Mould, Richard A
1999-01-01
In a previous paper, the author proposed a quantum mechanical interaction that would insure that the evolution of subjective states would parallel the evolution of biological states, as required by von Neumann's theory of measurement. The particular model for this interaction suggested an experiment that the author has now performed wih negative results. A modified model is outlined in this paper that preserves the desirable features of the original model, and is consistent with the experimen...
Ecker, Gerhard
2005-01-01
After a brief historical review of the emergence of QCD as the quantum field theory of strong interactions, the basic notions of colour and gauge invariance are introduced leading to the QCD Lagrangian. The second lecture is devoted to perturbative QCD, from tree-level processes to higher-order corrections in renormalized perturbation theory, including jet production in e+ e- annihilation, hadronic tau decays and deep inelastic scattering. The final two lectures treat various aspects of QCD b...
Experimental quantum forgery of quantum optical money
Bartkiewicz, Karol; Černoch, Antonín; Chimczak, Grzegorz; Lemr, Karel; Miranowicz, Adam; Nori, Franco
2017-03-01
Unknown quantum information cannot be perfectly copied (cloned). This statement is the bedrock of quantum technologies and quantum cryptography, including the seminal scheme of Wiesner's quantum money, which was the first quantum-cryptographic proposal. Surprisingly, to our knowledge, quantum money has not been tested experimentally yet. Here, we experimentally revisit the Wiesner idea, assuming a banknote to be an image encoded in the polarization states of single photons. We demonstrate that it is possible to use quantum states to prepare a banknote that cannot be ideally copied without making the owner aware of only unauthorized actions. We provide the security conditions for quantum money by investigating the physically-achievable limits on the fidelity of 1-to-2 copying of arbitrary sequences of qubits. These results can be applied as a security measure in quantum digital right management.
Quantum Secure Direct Communication with Quantum Memory
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-01
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Quantum Secure Direct Communication with Quantum Memory.
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-02
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Vitale, J J; Broitman, S A
1981-09-01
There is in vitro and in vivo evidence to suggest that dietary lipids play a role in modulating immune function. A review of the current literature on the interrelationships among dietary lipids, blood cholesterol levels, immunosuppression, and tumorigenesis makes for a very strong argument that (a) immunosuppression may be causally related to lymphoproliferative disorders, as well as to tumorigenesis and (b) diets high in polyunsaturated fat, relative to diets high in saturated fat, are more immunosuppressive and are better promotors of tumorigenesis. The effects of dietary fat on immune function seem to be mediated though its component parts, the unsaturated fatty acids, specially linoleic, linolenic, and arachidonic. It is not clear how these components affect immune function. Several studies suggest that one effect is mediated by altering the lipid component of the cell membrane and thus its fluidity; the more fluid the membrane, the less responsive it is. Thus, fluidity of both immune cells and those to be destroyed or protected may be affected. The effects of saturated as well as unsaturated fatty acids may be mediated by modulating serum lipoprotein levels, prostaglandin metabolism, and cholesterol concentrations and metabolism.
Butovich, Igor A.
2013-01-01
Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846
CIDE proteins and lipid metabolism.
Xu, Li; Zhou, Linkang; Li, Peng
2012-05-01
Lipid homeostasis is maintained through the coordination of lipid metabolism in various tissues, including adipose tissue and the liver. The disruption of lipid homeostasis often results in the development of metabolic disorders such as obesity, diabetes mellitus, liver steatosis, and cardiovascular diseases. Cell death-inducing DNA fragmentation factor 45-like effector family proteins, including Cidea, Cideb, and Fsp27 (Cidec), are emerging as important regulators of various lipid metabolic pathways and play pivotal roles in the development of metabolic disorders. This review summarizes the latest cell death-inducing DNA fragmentation factor 45-like effector protein discoveries related to the control of lipid metabolism, with emphasis on the role of these proteins in lipid droplet growth in adipocytes and in the regulation of very low-density lipoprotein lipidation and maturation in hepatocytes.
Energy Technology Data Exchange (ETDEWEB)
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the
Pilar, Frank L
2003-01-01
Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.
Homomorphisms of quantum groups
Meyer, Ralf; Woronowicz, Stanisław Lech
2010-01-01
We introduce some equivalent notions of homomorphisms between quantum groups that behave well with respect to duality of quantum groups. Our equivalent definitions are based on bicharacters, coactions, and universal quantum groups, respectively.
Quantum probability and quantum decision-making.
Yukalov, V I; Sornette, D
2016-01-13
A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary.
Quantum conductance in silicon quantum wires
Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A
2002-01-01
The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Dissipative tunneling in structures with quantum dots and quantum molecules
Dahnovsky, Yu. I.; Krevchik, V. D.; Semenov, M. B.; Yamamoto, K.; Zhukovsky, V. Ch.; Aringazin, A. K.; Kudryashov, E. I.; Mayorov, V. G.
2005-01-01
The problem of tunneling control in systems "quantum dot - quantum well" (as well as "quantum dot - quantum dot" or quantum molecule) and "quantum dot - bulk contact" is studied as a quantum tunneling with dissipation process in the semiclassical (instanton) approximation. For these systems temperature and correlation between a quantum dot radius and a quantum well width (or another quantum dot radius) are considered to be control parameters. The condition for a single electron blockade is fo...
Institute of Scientific and Technical Information of China (English)
2008-01-01
Quantum error correcting codes are indispensable for quantum information processing and quantum computation.In 1995 and 1996,Shor and Steane gave first several examples of quantum codes from classical error correcting codes.The construction of efficient quantum codes is now an active multi-discipline research field.In this paper we review the known several constructions of quantum codes and present some examples.
Institute of Scientific and Technical Information of China (English)
LUO Ming-Xing; CHEN Xiu-Bo; DENG Yun; Yang Yi-Xian
2013-01-01
The semiquantum techniques have been explored recently to bridge the classical communications and the quantum communications.In this paper,we present one scheme to distribute the messages from one quantum participate to one weak quantum participate who can only measure the quantum states.It is proved to be robust by combining the classical coding encryption,quantum coding and other quantum techniques.
Quantum Correlations Evolution Asymmetry in Quantum Channels
Li, Meng; Huang, Yun-Feng; Guo, Guang-Can
2017-03-01
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. Supported by the National Natural Science Foundation of China under Grant Nos. 61327901, 61490711, 61225025, 11474268, and the Fundamental Research Funds for the Central Universities under Grant No. WK2470000018
Interference of Quantum Market Strategies
Piotrowski, E W; Syska, J
2003-01-01
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper is devoted to the analysis of interference of quantum strategies in quantum market games.
Single semiconductor quantum dots
Energy Technology Data Exchange (ETDEWEB)
Michler, Peter (ed.) [Stuttgart Univ. (Germany). Inst. fuer Halbleiteroptik und Funktionelle Grenzflaechen
2009-07-01
This book reviews recent advances in the exciting and rapidly growing field of semiconductor quantum dots via contributions from some of the most prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots due to their potential applications in devices operating with single electron spins and/or single photons. This includes single and coupled quantum dots in external fields, cavity-quantum electrodynamics, and single and entangled photon pair generation. Single Semiconductor Quantum Dots also addresses growth techniques to allow for a positioned nucleation of dots as well as applications of quantum dots in quantum information technologies. (orig.)
Quantum information processing in nanostructures Quantum optics; Quantum computing
Reina-Estupinan, J H
2002-01-01
Since information has been regarded os a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes at a more basic level. This thesis is devoted to the theoretical study of structures at the nanometer-scale, 'nanostructures', through physical processes that mainly involve the solid-state and quantum optics, in order to propose reliable schemes for the processing of quantum information. Initially, the main results of quantum information theory and quantum computation are briefly reviewed. Next, the state-of-the-art of ...
Lipid nanocarriers: influence of lipids on product development and pharmacokinetics.
Pathak, Kamla; Keshri, Lav; Shah, Mayank
2011-01-01
Lipid nanocarriers are on the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery. Owing to their size-dependent properties, lipid nanoparticles offer the possibility for development of new therapeutics and an alternative system to other colloidal counterparts for drug administration. An important point to be considered in the selection of a lipid for the carrier system is its effect on the properties of the nanocarrier and also its intended use, as different types of lipids differ in their nature. Researchers around the globe have tapped the potential of solid lipid nanoparticles (SLNs) in developing formulation(s) that can be administered by various routes such as oral, ocular, parenteral, topical, and pulmonary. Since the start of this millennium, a new generation of lipid nanoparticles, namely nanostructured lipid carriers (NLCs), lipid drug conjugates (LDCs), and pharmacosomes, has evolved that have the potential to overcome the limitations of SLNs. The current review article presents broad considerations on the influence of various types of lipids on the diverse characteristics of nanocarriers, encompassing their physicochemical, formulation, pharmacokinetic, and cytotoxic aspects.
From Quantum Cheating to Quantum Security
Gottesman, D; Gottesman, Daniel; Lo, Hoi-Kwong
2000-01-01
For thousands of years, code-makers and code-breakers have been competing for supremacy. Their arsenals may soon include a powerful new weapon: quantum mechanics. We give an overview of quantum cryptology as of November 2000.
Quantum Communication Complexity of Quantum Authentication Protocols
Guedes, Elloá B
2011-01-01
In order to perform Quantum Cryptography procedures it is often essencial to ensure that the parties of the communication are authentic. Such task is accomplished by quantum authentication protocols which are distributed algorithms based on the intrinsic properties of Quantum Mechanics. The choice of an authentication protocol must consider that quantum states are very delicate and that the channel is subject to eavesdropping. However, even in face of the various existing definitions of quantum authentication protocols in the literature, little is known about them in this perspective, and this lack of knowledge may unfavor comparisons and wise choices. In the attempt to overcome this limitation, in the present work we aim at showing an approach to evaluate quantum authentication protocols based on the determination of their quantum communication complexity. Based on our investigation, no similar methods to analyze quantum authentication protocols were found in the literature. Pursuing this further, our approa...
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
1990-01-01
Quantum electrodynamics is an essential building block and an integral part of the gauge theory of unified electromagnetic, weak, and strong interactions, the so-called standard model. Its failure or breakdown at some level would have a most profound impact on the theoretical foundations of elementary particle physics as a whole. Thus the validity of QED has been the subject of intense experimental tests over more than 40 years of its history. This volume presents an up-to-date review of high precision experimental tests of QED together with comprehensive discussion of required theoretical wor
Fanni Jacques; Linder Michel; Parmentier Michel
2004-01-01
Les lipides polaires marins, notamment les phospholipides (PL), retiennent depuis quelques années l’attention des chercheurs et des industriels en raison de leur composition, particulièrement riche en acides gras polyinsaturés à longue chaîne (AGPI-LC). Ils combinent ainsi les propriétés reconnues des AGPI-LC à l’intérêt métabolique et structural des phospholipides. Les sources sont nombreuses et d’accès très diversifié. Le défi industriel provient de leurs caractéristiques amphiphiles et aro...
Ventura, D; Ventura, Dan; Martinez, Tony
1998-01-01
This paper combines quantum computation with classical neural network theory to produce a quantum computational learning algorithm. Quantum computation uses microscopic quantum level effects to perform computational tasks and has produced results that in some cases are exponentially faster than their classical counterparts. The unique characteristics of quantum theory may also be used to create a quantum associative memory with a capacity exponential in the number of neurons. This paper combines two quantum computational algorithms to produce such a quantum associative memory. The result is an exponential increase in the capacity of the memory when compared to traditional associative memories such as the Hopfield network. The paper covers necessary high-level quantum mechanical and quantum computational ideas and introduces a quantum associative memory. Theoretical analysis proves the utility of the memory, and it is noted that a small version should be physically realizable in the near future.
Nielsen, M A
1998-01-01
Quantum information theory is the study of the achievable limits of information processing within quantum mechanics. Many different types of information can be accommodated within quantum mechanics, including classical information, coherent quantum information, and entanglement. Exploring the rich variety of capabilities allowed by these types of information is the subject of quantum information theory, and of this Dissertation. In particular, I demonstrate several novel limits to the information processing ability of quantum mechanics. Results of especial interest include: the demonstration of limitations to the class of measurements which may be performed in quantum mechanics; a capacity theorem giving achievable limits to the transmission of classical information through a two-way noiseless quantum channel; resource bounds on distributed quantum computation; a new proof of the quantum noiseless channel coding theorem; an information-theoretic characterization of the conditions under which quantum error-cor...
RF Microalgal lipid content characterization
Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali
2014-05-01
Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps.
Chlorosome lipids from Chlorobium tepidum
DEFF Research Database (Denmark)
Sørensen, Peder Grove; Cox, Raymond Pickett; Miller, Mette
2008-01-01
We have extracted polar lipids and waxes from isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum and determined the fatty acid composition of each lipid class. Polar lipids amounted to 4.8 mol per 100 mol bacteriochlorophyll in the chlorosomes, while non-polar lipids (waxes......) were present at a ratio of 5.9 mol per 100 mol bacteriochlorophyll. Glycolipids constitute 60 % of the polar lipids while phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and an aminoglycosphingolipid make up respectively 15, 3, 8 and 12 %. A novel glycolipid was identified...... as a rhamnose derivative of monogalactosyldiacylglycerol, while the other major glycolipid was monogalactosyldiacylglycerol. Tetradecanoic acid was the major fatty acid in the aminoglycosphingolipid, while the other polar lipids contained predominantly hexandecanoic acid. The chlorosome waxes are esters...
Texture of lipid bilayer domains
DEFF Research Database (Denmark)
Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov
2009-01-01
chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method......We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...
Quantum Steganography and Quantum Error-Correction
Shaw, Bilal A.
2010-01-01
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…
Quantum Steganography and Quantum Error-Correction
Shaw, Bilal A.
2010-01-01
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…
Lipids and membrane lateral organization
Directory of Open Access Journals (Sweden)
Sandro eSonnino
2010-11-01
Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.
Absorption Of Dietary Lipid Components
Abdulkadir Hurşit
2015-01-01
Although the digestion and absorption of lipids that are necessary for the survival of living organisms are well known in general terms, nevertheless how different lipids to be digested, how it is distributed into the bloodstream, and how to be used by the cells, are unknown issues by most non specialist people. In recent years, knowledge of lipid digestion and absorption has expanded considerably. More insight has been gained in the mechanism of action of H + pump as a transport system in fa...
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Lipid hydroperoxides in plants.
Griffiths, G; Leverentz, M; Silkowski, H; Gill, N; Sánchez-Serrano, J J
2000-12-01
Hydroperoxides are the primary oxygenated products of polyunsaturated fatty acids and were determined spectrophotometrically based on their reaction with an excess of Fe2+ at low pH in the presence of the dye Xylenol Orange. Triphenylphosphine-mediated hydroxide formation was used to authenticate the signal generated by the hydroperoxides. The method readily detected lipid peroxidation in a range of plant tissues including Phaseolus hypocotyls (26 +/- 5 nmol.g of fresh weight(-1); mean +/- S.D.), Alstroemeria floral tissues (sepals, 66+/-13 nmol.g of fresh weight(-1); petals, 49+/-6 nmol.g of fresh weight(-1)), potato leaves (334+/-75 nmol.g of fresh weight(-1)), broccoli florets (568+/-68 nmol.g of fresh weight(-1)) and Chlamydomonas cells (602+/-40 nmol.g of wet weight(-1)). Relative to the total fatty acid content of the tissues, the percentage hydroperoxide content was within the range of 0.6-1.7% for all tissue types (photosynthetic and non-photosynthetic) and represents the basal oxidation level of membrane fatty acids in plant cells. Leaves of transgenic potato with the fatty acid hydroperoxide lyase enzyme expressed in the antisense orientation were elevated by 38%, indicating a role for this enzyme in the maintenance of cellular levels of lipid hydroperoxides.
Update of the LIPID MAPS comprehensive classification system for lipids
Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M.J.O.; Dennis, E.A.
2009-01-01
In 2005, the International Lipid Classification and Nomenclature Committee under the sponsorship of the LIPID MAPS Consortium developed and established a “Comprehensive Classification System for Lipids” based on well-defined chemical and biochemical principles and using an ontology that is extensibl
Study of antioxidant enzymes, lipid peroxidation, lipid profile and ...
African Journals Online (AJOL)
McRoy
Background: The oxidative stress and inflammation are cooperative events involved in atherosclerosis ... reactive protein (hs-CRP) and lipid status parameters in the patients with coronary artery .... Data were analyzed with t-test and expressed as mean ± SD. ... biomolecules including; lipids, proteins and DNA. Antioxidative ...
Update of the LIPID MAPS comprehensive classification system for lipids
Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; van Meer, G.|info:eu-repo/dai/nl/068570368; Wakelam, M.J.O.; Dennis, E.A.
2009-01-01
In 2005, the International Lipid Classification and Nomenclature Committee under the sponsorship of the LIPID MAPS Consortium developed and established a “Comprehensive Classification System for Lipids” based on well-defined chemical and biochemical principles and using an ontology that is
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
Quantum State Tomography and Quantum Games
Institute of Scientific and Technical Information of China (English)
Ahmad Nawaz
2012-01-01
A technique is developed for single qubit quantum state tomography using the mathematical setup of generalized quantization scheme for games. In this technique,Alice sends an unknown pure quantum state to Bob who appends it with |0><0| and then applies the unitary operators on the appended quantum state and finds the payoffs for Alice and himself.It is shown that for a particular set of unitary operators,these payoffs are equal to Stokes parameters for an unknown quantum state.In this way an unknown quantum state can be measured and reconstructed.Strictly speaking,this technique is not a game as no strategic competitions are involved.
Di Vincenzo, D P
1997-01-01
A historical review is given of the emergence of the idea of the quantum logic gate from the theory of reversible Boolean gates. I highlight the quantum XOR or controlled NOT as the fundamental two-bit gate for quantum computation. This gate plays a central role in networks for quantum error correction.
Pokharel, Bibek; Pattanayak, Arjendu
2014-05-01
We have recently computed Lyapunov exponents describing the chaotic behavior of the quantum trajectories of an open quantum nonlinear oscillator using the Quantum State Diffusion formalism. We have seen several interesting features as a function of changing system parameters. We report on progress towards controlling the observed quantum chaotic behavior using the classical Ott-Grebogi-Yorke protocol.
Advanced quantum communication systems
Jeffrey, Evan Robert
Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.
Makowski, M; Makowski, Marcin; Piotrowski, Edward W.
2005-01-01
We study a quantum version of the sequential game illustrating problems connected with making rational decisions. We compare the results that the two models (quantum and classical) yield. In the quantum model intransitivity gains importance significantly. We argue that the quantum model describes our spontaneously shown preferences more precisely than the classical model, as these preferences are often intransitive.
Quantum Entanglement and Teleportation
2011-01-01
Even Einstein has to be wrong sometimes. However, when Einstein was wrong he created a 70 year debate about the strange behavior of quantum mechanics. His debate helped prove topics such as the indeterminacy of particle states, quantum entanglement, and a rather clever use of quantum entanglement known as quantum teleportation.
Ren, Xi-Jun
2011-01-01
Quantum discord is not monogamous. We consider a pure tripartite state and show that the monogamy inequality of quantum discord is related with a relation between quantum mutual information and entanglement of formation of two parties. The upper bounds of quantum discord and classical correlation are presented. Our results relate the correlations present in a bipartite system with the monogamy or polygamy property of quantum discord in a tripartite pure state. The relation, which is about three important concepts in quantum information theory, quantum discord, entanglement of formation and mutual information, may provide new insights for their further understanding.
Bowen, G
2002-01-01
In classical information theory the capacity of a noisy communication channel cannot be increased by the use of feedback. In quantum information theory the no-cloning theorem means that noiseless copying and feedback of quantum information cannot be achieved. In this paper, quantum feedback is defined as the unlimited use of a noiseless quantum channel from receiver to sender. Given such quantum feedback, it is shown to provide no increase in the entanglement-assisted capacities of a noisy quantum channel, in direct analogy to the classical case. It is also shown that in various cases of non-assisted capacities, feedback can increase the capacity of many quantum channels.
A quantum-quantum Metropolis algorithm.
Yung, Man-Hong; Aspuru-Guzik, Alán
2012-01-17
The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature.
Solid lipid nanoparticles for parenteral drug delivery
Wissing, S.A.; Kayser, Oliver; Muller, R.H.
2004-01-01
This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC) nanoparticle
Solid lipid nanoparticles for parenteral drug delivery
Wissing, S.A.; Kayser, Oliver; Muller, R.H.
2004-01-01
This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC)
Secure quantum signatures using insecure quantum channels
Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika
2016-03-01
Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Uncertainty under quantum measures and quantum memory
Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing
2017-04-01
The uncertainty principle restricts potential information one gains about physical properties of the measured particle. However, if the particle is prepared in entanglement with a quantum memory, the corresponding entropic uncertainty relation will vary. Based on the knowledge of correlations between the measured particle and quantum memory, we have investigated the entropic uncertainty relations for two and multiple measurements and generalized the lower bounds on the sum of Shannon entropies without quantum side information to those that allow quantum memory. In particular, we have obtained generalization of Kaniewski-Tomamichel-Wehner's bound for effective measures and majorization bounds for noneffective measures to allow quantum side information. Furthermore, we have derived several strong bounds for the entropic uncertainty relations in the presence of quantum memory for two and multiple measurements. Finally, potential applications of our results to entanglement witnesses are discussed via the entropic uncertainty relation in the absence of quantum memory.
Quantum signatures of chaos or quantum chaos?
Energy Technology Data Exchange (ETDEWEB)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-11-15
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Introduction to topological quantum matter & quantum computation
Stanescu, Tudor D
2017-01-01
What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...
Role of quantum discord in quantum communication
Madhok, Vaibhav
2011-01-01
Positivity of quantum discord is shown to be equivalent to the strong sub additivity of the Von-Nuemann entropy. This leads to a connection between the mother protocol of quantum information theory [A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537, (2009)] and quantum discord. We exploit this to show that quantum discord is a measure coherence in the performance of the mother protocol. Since the mother protocol is a unification of an important class of problems (those that are bipartite, unidirectional and memoryless), we show quantum discord to be a measure of coherence in these protocols. Our work generalizes an earlier operational interpretation of quantum discord provided in terms of quantum state merging [V. Madhok and A. Datta, Phys. Rev. A 83, 032323, (2011)].
Quantum Robots Plus Environments
Benioff, P
1998-01-01
A quantum robot is a mobile quantum system including an on bord quantum computer and ancillary systems, that interact with an environment of quantum systems. Quantum robots carry out tasks whose goals include carrying out measurements and physical experiments on the environment. Environments considered so far in the literature: oracles, data bases, and quantum registers, are shown to be special cases of environments considered here. It is noted that quantum robots should include a quantum computer and cannot be simply a multistate head. A model is discussed in which each task, as a sequence of computation and action phases, is described by a unitary step operator. Overall system dynamics is described in terms of a Feynman sum over paths of completed computation and action phases. A simple task example, measuring the distance between the quantum robot and a particle on a 1D space lattice, with quantum phase path and time duration dispersion present, is analyzed.
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Quantum optical waveform conversion
Kielpinski, D; Wiseman, HM
2010-01-01
Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.
Energy Technology Data Exchange (ETDEWEB)
Viennot, David, E-mail: david.viennot@utinam.cnrs.fr; Aubourg, Lucile
2016-02-15
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems. - Highlights: • We propose a spin chain model with long range couplings having purely quantum states similar to the classical chimera states. • The quantum chimera states are characterized by the coexistence of strongly entangled and non-entangled spins in the same chain. • The quantum chimera states present some characteristics of quantum chaos.
Energy Technology Data Exchange (ETDEWEB)
Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth
2016-11-29
Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.
Quantum Information An Introduction
Hayashi, Masahito
2006-01-01
Recently, quantum information theory has been developing through a fusion of results from various research fields. This requires that understanding of basic results on diverse topics, and derived from different disciplinary perspectives, is required for appreciating the overall picture. Intended to merge key topics from both the information-theoretic and quantum- mechanical viewpoints, this graduate-level textbook provides a unified viewpoint of quantum information theory and lucid explanations of those basic results, so that the reader fundamentally grasps advances and challenges. For example, advanced topics in quantum communication such as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction), and quantum encryption especially benefit from this unified approach. Unlike earlier treatments, the text requires knowledge of only linear algebra, probability theory, and quantum mechanics, while it treats the topics of quantum hypothesis testing and the discrimination of q...
Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth
2016-11-29
Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.
Randomness: Quantum versus classical
Khrennikov, Andrei
2016-05-01
Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).
Kent, A
1998-01-01
There are good motivations for considering some type of quantum histories formalism. Several possible formalisms are known, defined by different definitions of event and by different selection criteria for sets of histories. These formalisms have a natural interpretation, according to which nature somehow chooses one set of histories from among those allowed, and then randomly chooses to realise one history from that set; other interpretations are possible, but their scientific implications are essentially the same. The selection criteria proposed to date are reasonably natural, and certainly raise new questions. For example, the validity of ordering inferences which we normally take for granted --- such as that a particle in one region is necessarily in a larger region containing it --- depends on whether or not our history respects the criterion of ordered consistency, or merely consistency. However, the known selection criteria, including consistency and medium decoherence, are very weak. It is not possibl...
Directory of Open Access Journals (Sweden)
Vukotić Veselin
2011-01-01
Full Text Available The globalization is breaking-down the idea of national state, which was the base for the development of economic theory which is dominant today. Global economic crisis puts emphasis on limited possibilities of national governments in solving economic problems and general problems of society. Does it also mean that globalization and global economic crisis points out the need to think about new economic theory and new understanding of economics? In this paper I will argue that globalization reveals the need to change dominant economic paradigm - from traditional economic theory (mainstream with macroeconomic stability as the goal of economic policy, to the “quantum economics“, which is based on “economic quantum” and immanent to the increase of wealth (material and non-material of every individual in society and promoting set of values immanent to the wealth increase as the goal of economic policy. Practically the question is how we can use global market for our development!
Pitalúa-García, Damián
2012-01-01
How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combin...
Ficek, Zbigniew
2016-01-01
The textbook introduces students to the main ideas of quantum physics and the basic mathematical methods and techniques used in the fields of advanced quantum physics, atomic physics, laser physics, nanotechnology, quantum chemistry, and theoretical mathematics. The textbook explains how microscopic objects (particles) behave in unusual ways, giving rise to what's called quantum effects. It contains a wide range of tutorial problems from simple confidence-builders to fairly challenging exercises that provide adequate understanding of the basic concepts of quantum physics.
Broadband Quantum Cryptography
Rogers, Daniel
2010-01-01
Quantum cryptography is a rapidly developing field that draws from a number of disciplines, from quantum optics to information theory to electrical engineering. By combining some fundamental quantum mechanical principles of single photons with various aspects of information theory, quantum cryptography represents a fundamental shift in the basis for security from numerical complexity to the fundamental physical nature of the communications channel. As such, it promises the holy grail of data security: theoretically unbreakable encryption. Of course, implementing quantum cryptography in real br
Quantum computing classical physics.
Meyer, David A
2002-03-15
In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers.
Energy Technology Data Exchange (ETDEWEB)
2016-11-18
There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.
Nielsen, M. A.
2000-01-01
Quantum information theory is the study of the achievable limits of information processing within quantum mechanics. Many different types of information can be accommodated within quantum mechanics, including classical information, coherent quantum information, and entanglement. Exploring the rich variety of capabilities allowed by these types of information is the subject of quantum information theory, and of this Dissertation. In particular, I demonstrate several novel limits to the informa...
Quantum correlations and measurements
Energy Technology Data Exchange (ETDEWEB)
Sperling, Jan
2015-07-16
The present thesis is a state of the art report on the characterization techniques and measurement strategies to verify quantum correlations. I mainly focus on research which has been performed in the theoretical quantum optics group at the University of Rostock during the last few years. The results include theoretical findings and analysis of experimental studies of radiation fields. We investigate the verification of quantum properties, the quantification of these quantum effects, and the characterization of quantum optical detector systems.
Cleve, R; Henderson, L; Macchiavello, C; Mosca, M
1998-01-01
Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. In effect, they follow the same logical paradigm as (multi-particle) interferometers. We show how most known quantum algorithms, including quantum algorithms for factorising and counting, may be cast in this manner. Quantum searching is described as inducing a desired relative phase between two eigenvectors to yield constructive interference on the sought elements and destructive interference on the remaining terms.
Quantum Random Number Generators
Herrero-Collantes, Miguel; Garcia-Escartin, Juan Carlos
2016-01-01
Random numbers are a fundamental resource in science and engineering with important applications in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes quantum systems a perfect source of entropy. Quantum random number generation is one of the most mature quantum technologies with many alternative generation methods. We discuss the different technologies in quantum random number generation from the early devices based on radioactive decay to the multipl...
DEFF Research Database (Denmark)
Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro
2014-01-01
Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....
Probabilistic Cloning and Quantum Computation
Institute of Scientific and Technical Information of China (English)
GAO Ting; YAN Feng-Li; WANG Zhi-Xi
2004-01-01
@@ We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning.In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.
Molecular Dynamics of Lipid Bilayers
1989-08-09
The aim of this work is to study, by molecular dynamics simulations, the properties of lipid bilayers. We have applied the vectorizable, order-N...fast angle-dependent force/potential algorithms to treat angle bending and torsion. Keywords: Molecular dynamics , Lipid bilayers.
Fasting and nonfasting lipid levels
DEFF Research Database (Denmark)
Langsted, Anne; Freiberg, Jacob J; Nordestgaard, Børge G
2008-01-01
Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events.......Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events....
Fasting and nonfasting lipid levels
DEFF Research Database (Denmark)
Langsted, Anne; Freiberg, Jacob J; Nordestgaard, Børge G
2008-01-01
Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events.......Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events....
Lipid droplets, lipophagy, and beyond.
Wang, Chao-Wen
2016-08-01
Lipids are essential components for life. Their various structural and physical properties influence diverse cellular processes and, thereby, human health. Lipids are not genetically encoded but are synthesized and modified by complex metabolic pathways, supplying energy, membranes, signaling molecules, and hormones to affect growth, physiology, and response to environmental insults. Lipid homeostasis is crucial, such that excess fatty acids (FAs) can be harmful to cells. To prevent such lipotoxicity, cells convert excess FAs into neutral lipids for storage in organelles called lipid droplets (LDs). These organelles do not simply manage lipid storage and metabolism but also are involved in protein quality management, pathogenesis, immune responses, and, potentially, neurodegeneration. In recent years, a major trend in LD biology has centered around the physiology of lipid mobilization via lipophagy of fat stored within LDs. This review summarizes key findings in LD biology and lipophagy, offering novel insights into this rapidly growing field. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Roles of Lipids in Photosynthesis.
Kobayashi, Koichi; Endo, Kaichiro; Wada, Hajime
2016-01-01
Thylakoid membranes in cyanobacterial cells and chloroplasts of algae and higher plants are the sites of oxygenic photosynthesis. The lipid composition of the thylakoid membrane is unique and highly conserved among oxygenic photosynthetic organisms. Major lipids in thylakoid membranes are glycolipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol, and the phospholipid, phosphatidylglycerol. The identification of almost all genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that these lipids play important roles not only in the formation of the lipid bilayers of thylakoid membranes but also in the folding and assembly of the protein subunits in photosynthetic complexes. In addition to the studies with the mutants, recent X-ray crystallography studies of photosynthetic complexes in thylakoid membranes have also provided critical information on the association of lipids with photosynthetic complexes and their activities. In this chapter, we summarize our current understanding about the structural and functional involvement of thylakoid lipids in oxygenic photosynthesis.
The Flexibility of Ectopic Lipids
Directory of Open Access Journals (Sweden)
Hannah Loher
2016-09-01
Full Text Available In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL, skeletal (intramyocellular lipids; IMCL or cardiac muscle cells (intracardiomyocellular lipids; ICCL. Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass, insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.
Neuroimaging of Lipid Storage Disorders
Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea
2013-01-01
Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…
The Flexibility of Ectopic Lipids.
Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel
2016-09-14
In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.
Directory of Open Access Journals (Sweden)
Fanni Jacques
2004-03-01
Full Text Available Les lipides polaires marins, notamment les phospholipides (PL, retiennent depuis quelques années l’attention des chercheurs et des industriels en raison de leur composition, particulièrement riche en acides gras polyinsaturés à longue chaîne (AGPI-LC. Ils combinent ainsi les propriétés reconnues des AGPI-LC à l’intérêt métabolique et structural des phospholipides. Les sources sont nombreuses et d’accès très diversifié. Le défi industriel provient de leurs caractéristiques amphiphiles et aromatiques particulièrement marquées qui rend leur extraction très difficile.
Lipid functionalized biopolymers: A review.
Qurat-Ul-Ain; Zia, Khalid Mahmood; Zia, Fatima; Ali, Muhammad; Rehman, Saima; Zuber, Mohammad
2016-12-01
Lipids are the main source of energy and widely used for various applications. In this review, the modification of lipids by using them in combination with other biomaterials like natural and synthetic polymers is elaborated. These new blends have characteristic features of both polymers and are characterized by different techniques (NMR, DSC, TGA, IR and Raman spectroscopy etc.) to understand their structure, properties and functional behavior. Lipids are hydrophobic, have anti-oxidant and anti-bacterial properties and thus impart hydrophobicity and flexibility to the polymers. While the polymers, on the other hand, make the lipids tougher. Properties of few polymers such as starch, polyethylene protein and chitosan that have brittleness, low combustion rate and hydrophobicity, are improved by incorporation of lipids ultimately increased their flexibility, combustion rate and hydrophobicity respectively. This review article is also focused on emerging fields for the applications of these composite materials. The most notable application of composite materials are in the field of paint industry.
Lipids changes in liver cancer
Institute of Scientific and Technical Information of China (English)
JIANG Jing-ting; XU Ning; ZHANG Xiao-ying; WU Chang-ping
2007-01-01
Liver is one of the most important organs in energy metabolism.Most plasma apolipoproteins and endogenous lipids and lipoproteins are synthesized in the liver.It depends on the integrity of liver cellular function,which ensures homeostasis of lipid and lipoprotein metabolism.When liver cancer occurs,these processes are impaired and the plasma lipid and lipoprotein patterns may be changed.Liver cancer is the fifth common malignant tumor worldwide,and is closely related to the infections of hepatitis B virus (HBV) and hepatitis C virus (HCV).HBV and HCV infections are quite common in China and other Southeast Asian countries.In addition,liver cancer is often followed by a procession of chronic hepatitis or cirrhosis,so that hepatic function is damaged obviously on these bases,which may significantly influence lipid and lipoprotein metabolism in vivo.In this review we summarize the clinical significance of lipid and lipoprotein metabolism under liver cancer.
Entanglement, quantum phase transitions and quantum algorithms
Orus, R
2006-01-01
The work that we present in this thesis tries to be at the crossover of quantum information science, quantum many-body physics, and quantum field theory. We use tools from these three fields to analyze problems that arise in the interdisciplinary intersection. More concretely, in Chapter 1 we consider the irreversibility of renormalization group flows from a quantum information perspective by using majorization theory and conformal field theory. In Chapter 2 we compute the entanglement of a single copy of a bipartite quantum system for a variety of models by using techniques from conformal field theory and Toeplitz matrices. The entanglement entropy of the so-called Lipkin-Meshkov-Glick model is computed in Chapter 3, showing analogies with that of (1+1)-dimensional quantum systems. In Chapter 4 we apply the ideas of scaling of quantum correlations in quantum phase transitions to the study of quantum algorithms, focusing on Shor's factorization algorithm and quantum algorithms by adiabatic evolution solving a...
Lipid traffic: the ABC of transbilayer movement
Raggers, R.J.; Pomorski, T.; Holthuis, J.C.M.; Kälin, N.; van Meer, G.
2000-01-01
Membrane lipids do not spontaneously exchange between the two leaflets of lipid bilayers because the polar headgroups cannot cross the hydrophobic membrane interior. Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one
The effect of electric fields on lipid membranes
Vasilkoski, Z
2006-01-01
Contrary to existing theoretical models, experimental evidence points out that electroporation (membrane defect formation under external electric fields) starts to occur within the range of transmembrane voltages that cells may routinely experience, curiously, just above the range of transmembrane voltages involved in neural signal transmission. Understanding the underlying principles of electric fields-lipid membrane interactions seems to carry a great biological importance. An argument is presented toward understanding the theoretical aspects of electroporation by using the DLVO theory, which has not been recognized previously in the context of electroporation. Further, the dispersion interactions (with its quantum nature), of the double layer counterions and membrane lipid molecules over the Stern layer are emphasized. The sign of these forces is such that they compress the membrane. A parallel is drawn to the theory of thin films. The argument is that the external electric field breaks the symmetry of the...
Expected number of quantum channels in quantum networks
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-07-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.
Reliable quantum communication over a quantum relay channel
Energy Technology Data Exchange (ETDEWEB)
Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117, Hungary and Information Systems Research Group, Mathematics and Natural Sciences, Hungarian Ac (Hungary); Imre, Sandor [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117 (Hungary)
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E.
2015-01-01
Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices. PMID:26153134
Preskill, J
1997-01-01
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 10^6 qubits, with a probability of error per quantum gate of order 10^{-6}, would be a formidable factoring engine. Even a smaller, less accurate quantum computer would be able to perform many useful tasks. (This paper is based on a talk presented at the ITP Conference on Quantum Coherence and Decoherence, 15-18 December 1996.)
Nesvizhevsky, Valery
2015-01-01
This unique book demonstrates the undivided unity and infinite diversity of quantum mechanics using a single phenomenon: quantum bounces of ultra-cold particles. Various examples of such "quantum bounces" are: gravitational quantum states of ultra-cold neutrons (the first observed quantum states of matter in a gravitational field), the neutron whispering gallery (an observed matter-wave analog of the whispering gallery effect well known in acoustics and for electromagnetic waves), and gravitational and whispering gallery states for anti-matter atoms that remain to be observed. These quantum states are an invaluable tool in the search for additional fundamental short-range forces, for exploring the gravitational interaction and quantum effects of gravity, for probing physics beyond the standard model, and for furthering studies into the foundations of quantum mechanics, quantum optics, and surface science.
Blume-Kohout, Robin; Croke, Sarah; Zwolak, Michael
2013-05-01
Measurement of a quantum system - the process by which an observer gathers information about it - provides a link between the quantum and classical worlds. The nature of this process is the central issue for attempts to reconcile quantum and classical descriptions of physical processes. Here, we show that the conventional paradigm of quantum measurement is directly responsible for a well-known disparity between the resources required to extract information from quantum and classical systems. We introduce a simple form of quantum data gathering, ``coherent measurement'', that eliminates this disparity and restores a pleasing symmetry between classical and quantum statistical inference. To illustrate the power of quantum data gathering, we demonstrate that coherent measurements are optimal and strictly more powerful than conventional one-at-a-time measurements for the task of discriminating quantum states, including certain entangled many-body states (e.g., matrix product states).
Panković, Vladan
2009-01-01
In this work, by use of a formalism similar to formalism of the quantum Zeno effect (decrease of the decay probability of an unstable quantum system by frequent measurements) and quantum anti-Zeno effect (increase of the decay probability of an unstable quantum system by frequent measurements), we introduce so-called quantum Hamlet effect. It represents a complete destruction of the quantum predictions on the decay probability of an unstable quantum system by frequent measurement. Precisely, by means of some especial, correctly defined, frequent measurements, decay probability of an unstable quantum system can behave as a divergent series without any definite value. In this way there is quantum mechanically completely unsolvable ``Hamlet dilemma'', to decay or not to decay.
Alvarez-Rodriguez, U; Lamata, L; Solano, E
2014-01-01
Addition plays a central role in mathematics and physics, while adders are ubiquitous devices in computation and electronics. In this sense, usual sum operations can be realized by classical Turing machines and also, with a suitable algorithm, by quantum Turing machines. Moreover, the sum of state vectors in the same Hilbert space, known as quantum superposition, is at the core of quantum physics. In fact, entanglement and the promised exponential speed-up of quantum computing are based on such superpositions. Here, we consider the existence of a quantum adder, defined as a unitary operation mapping two unknown quantum states encoded in different quantum systems onto their sum codified in a single one. The surprising answer is that this quantum adder is forbidden and it has the quantum cloning machine as a special case. This no-go result is of fundamental nature and its deep implications should be further studied.
Quantum information and coherence
Öhberg, Patrik
2014-01-01
This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum cont...
Randomness: quantum versus classical
Khrennikov, Andrei
2015-01-01
Recent tremendous development of quantum information theory led to a number of quantum technological projects, e.g., quantum random generators. This development stimulates a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is elaboration of a consistent and commonly accepted interpretation of quantum state. Closely related problem is clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. The second part of this review is devoted to the information interpretation of quantum mechanics (QM) in the spirit of Zeilinger and Brukner (and QBism of Fuchs et al.) and physics in general (e.g., Wheeler's "it from bit") as well as digital philosophy of Chaitin (with historical coupling to ideas of Leibnitz). Finally, w...
Controlling Quantum Information
Landahl, A J
2002-01-01
Quantum information science explores ways in which quantum physical laws can be harnessed to control the acquisition, transmission, protection, and processing of information. This field has seen explosive growth in the past several years from progress on both theoretical and experimental fronts. Essential to this endeavor are methods for controlling quantum information. In this thesis, I present three new approaches for controlling quantum information. First, I present a new protocol for continuously protecting unknown quantum states from noise. This protocol combines and expands ideas from the theories of quantum error correction and quantum feedback control. The result can outperform either approach by itself. I generalize this protocol to all known quantum stabilizer codes, and study its application to the three-qubit repetition code in detail via Monte Carlo simulations. Next, I present several new protocols for controlling quantum information that are fault-tolerant. These protocols require only local qu...
Tang, Jiang
2012-09-12
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.
SOLID LIPID NANOPARTICLES AND NANO LIPID CARRIERS: AS NOVEL SOLID LIPID BASED DRUG CARRIER
Directory of Open Access Journals (Sweden)
Girish B. Singhal
2011-02-01
Full Text Available Interest in lipid based drug delivery has developed over the past decade fuelled by a better understanding of the multiple roles lipids may play in enhancing oral bioavailability. Moreover, the emergence of novel excipients with acceptable regulatory and safety profiles coupled with advances in formulation technologies have greatly improved the potential for successful lipid based formulations. Solid lipid nanoparticles (SLN introduced in 1991 represent an alternative carrier system to traditional colloidal carriers, such as emulsions, liposomes and polymeric micro- and nanoparticles. SLN combine advantages of the traditional systems but avoid some of their major disadvantages. This paper reviews the present state of the art regarding production techniques for SLN/ nanostructured lipid carrier (NLC, drug incorporation method and types, stability. The potential of SLN/NLC to be exploited for the different administration routes is also highlighted.
Interfacing external quantum devices to a universal quantum computer.
Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.
Interfacing external quantum devices to a universal quantum computer.
Directory of Open Access Journals (Sweden)
Antonio A Lagana
Full Text Available We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.
Scan Quantum Mechanics: Quantum Inertia Stops Superposition
Gato-Rivera, Beatriz
2015-01-01
A novel interpretation of the quantum mechanical superposition is put forward. Quantum systems scan all possible available states and switch randomly and very rapidly among them. The longer they remain in a given state, the larger the probability of the system to be found in that state during a measurement. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia $I_q$ reaches a critical value $I_{cr}$ for an observable, the switching among the different eigenvalues of that observable stops and the corresponding superposition comes to an end. Consequently, increasing the mass, temperature, gravitational force, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. The process could be reversible decreasing the size, temperature, gravitational force, etc. leading to...
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Quantum Estimation Methods for Quantum Illumination.
Sanz, M; Las Heras, U; García-Ripoll, J J; Solano, E; Di Candia, R
2017-02-17
Quantum illumination consists in shining quantum light on a target region immersed in a bright thermal bath with the aim of detecting the presence of a possible low-reflective object. If the signal is entangled with the receiver, then a suitable choice of the measurement offers a gain with respect to the optimal classical protocol employing coherent states. Here, we tackle this detection problem by using quantum estimation techniques to measure the reflectivity parameter of the object, showing an enhancement in the signal-to-noise ratio up to 3 dB with respect to the classical case when implementing only local measurements. Our approach employs the quantum Fisher information to provide an upper bound for the error probability, supplies the concrete estimator saturating the bound, and extends the quantum illumination protocol to non-Gaussian states. As an example, we show how Schrödinger's cat states may be used for quantum illumination.
Quantum teleportation of propagating quantum microwaves
Energy Technology Data Exchange (ETDEWEB)
Di Candia, R.; Felicetti, S.; Sanz, M. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Fedorov, K.G.; Menzel, E.P. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Zhong, L.; Deppe, F.; Gross, R. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, A. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Solano, E. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain)
2015-12-15
Propagating quantum microwaves have been proposed and successfully implemented to generate entanglement, thereby establishing a promising platform for the realisation of a quantum communication channel. However, the implementation of quantum teleportation with photons in the microwave regime is still absent. At the same time, recent developments in the field show that this key protocol could be feasible with current technology, which would pave the way to boost the field of microwave quantum communication. Here, we discuss the feasibility of a possible implementation of microwave quantum teleportation in a realistic scenario with losses. Furthermore, we propose how to implement quantum repeaters in the microwave regime without using photodetection, a key prerequisite to achieve long distance entanglement distribution. (orig.)
Lipid composition of human meibum
Directory of Open Access Journals (Sweden)
R. Schnetler
2013-12-01
Full Text Available The structure and function of meibomian gland lipids in the tear film are highly complex. Evidence shows that the precorneal tear film consists of discrete layers: the inner mucin layer, the middle aqueous layer and the outer lipid layer. In this review we focus on the outer, biphasic lipid layer of the tear film which consists of a ‘thick’ outer, non-polar layer and a ‘thin’ inner, polar layer. We discuss the main composition of the polar and non-polar lipids within meibum (wax esters, cholesteryl esters, mono-, di- and tri-acylglycerols, ceramides, phospholipids et cetera. We address the composition of meibomian lipids in subjects suffering from various ocular diseases in comparison with the composition in healthy individuals. Further analysis is needed to determine whether a correlation exists between the etiology of various ocular diseases and the fluctuation on the lipids as well as to establish whether or not tear lipid analysis can be used as a diagnostic tool.
CERN Bulletin
2010-01-01
The turn of the XXth century witnessed a revolution in physics comparable to Isaac Newton’s discovery of the universal laws of mechanics and of gravitation three centuries earlier. The world required to be described in novel terms, as the immutable, deterministic view of our familiar universe had given way to a new world picture, one which featured chance, flux, and an incessant upsurge of waves of matter. Such a worldview was so radically new and counterintuitive that it gave rise to strong debates, to the effect that Albert Einstein himself tried to oppose it on the grounds that “God does not play dice”. In spite of the intense debates that accompanied its emergence, quantum mechanics quickly proved an incredibly efficacious new tool to understand and to predict a wide array of new phenomena. It was so successful that in no time it broke free from the environment of research labs to become part of daily life, making it possible, for example, to understand why some materials...
Schaden, Martin
2002-12-01
Quantum theory is used to model secondary financial markets. Contrary to stochastic descriptions, the formalism emphasizes the importance of trading in determining the value of a security. All possible realizations of investors holding securities and cash is taken as the basis of the Hilbert space of market states. The temporal evolution of an isolated market is unitary in this space. Linear operators representing basic financial transactions such as cash transfer and the buying or selling of securities are constructed and simple model Hamiltonians that generate the temporal evolution due to cash flows and the trading of securities are proposed. The Hamiltonian describing financial transactions becomes local when the profit/loss from trading is small compared to the turnover. This approximation may describe a highly liquid and efficient stock market. The lognormal probability distribution for the price of a stock with a variance that is proportional to the elapsed time is reproduced for an equilibrium market. The asymptotic volatility of a stock in this case is related to the long-term probability that it is traded.
Quantum information causality.
Pitalúa-García, Damián
2013-05-24
How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs.
Introduction to quantum computers
Berman, Gennady P; Mainieri, Ronnie; Tsifrinovich, Vladimir I
1998-01-01
Quantum computing promises to solve problems which are intractable on digital computers. Highly parallel quantum algorithms can decrease the computational time for some problems by many orders of magnitude. This important book explains how quantum computers can do these amazing things. Several algorithms are illustrated: the discrete Fourier transform, Shorâ€™s algorithm for prime factorization; algorithms for quantum logic gates; physical implementations of quantum logic gates in ion traps and in spin chains; the simplest schemes for quantum error correction; correction of errors caused by im
Fomin, Vladimir M
2013-01-01
This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is po
DEFF Research Database (Denmark)
Leosson, Kristjan
Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...
DEFF Research Database (Denmark)
Leosson, Kristjan
1999-01-01
Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...
Backward Evolving Quantum States
Vaidman, L
2006-01-01
The basic concept of the two-state vector formalism, which is the time symmetric approach to quantum mechanics, is the backward evolving quantum state. However, due to the time asymmetry of the memory's arrow of time, the possible ways to manipulate a backward evolving quantum state differ from those for a standard, forward evolving quantum state. The similarities and the differences between forward and backward evolving quantum states regarding the no-cloning theorem, nonlocal measurements, and teleportation are discussed. The results are relevant not only in the framework of the two-state vector formalism, but also in the framework of retrodictive quantum theory.
Dür, Wolfgang; Lamprecht, Raphael; Heusler, Stefan
2017-07-01
A long-range quantum communication network is among the most promising applications of emerging quantum technologies. We discuss the potential of such a quantum internet for the secure transmission of classical and quantum information, as well as theoretical and experimental approaches and recent advances to realize them. We illustrate the involved concepts such as error correction, teleportation or quantum repeaters and consider an approach to this topic based on catchy visualizations as a context-based, modern treatment of quantum theory at high school.
Counterfactual quantum cryptography.
Noh, Tae-Gon
2009-12-01
Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. In this Letter, we show that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.
Institute of Scientific and Technical Information of China (English)
崔迪
2015-01-01
Abstract:Quantum transmission is based on quantum entanglement, which is a kind of the phenomenon of quantum mechanics. Quantum object refers to two or more between the localized, the classic strong correlation. When two object quantum entanglement in the quantum state is not independent, but related, and the correlation distance, a pair of electronic of entanglement state, no matter how far apart, they spin direction will remain an up and a down. If one of the electronic spin direction is changed, another of the electron spin direction wil follow to change immediately.
Principles of quantum chemistry
George, David V
2013-01-01
Principles of Quantum Chemistry focuses on the application of quantum mechanics in physical models and experiments of chemical systems.This book describes chemical bonding and its two specific problems - bonding in complexes and in conjugated organic molecules. The very basic theory of spectroscopy is also considered. Other topics include the early development of quantum theory; particle-in-a-box; general formulation of the theory of quantum mechanics; and treatment of angular momentum in quantum mechanics. The examples of solutions of Schroedinger equations; approximation methods in quantum c
Lipid peroxidation and water penetration in lipid bilayers
DEFF Research Database (Denmark)
Conte, Elena; Megli, Francesco Maria; Khandelia, Himanshu
2012-01-01
Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (Hp......PLPC) and 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-lecithin (OHPLPC), exhibiting a hydroperoxide or a hydroxy group at position 13, respectively. The two oxidized lipids were used either pure or in a 1:1 molar ratio mixture with untreated 1-palmitoyl-2-linoleoyl-lecithin (PLPC). The model membranes...... were doped with spin-labeled lipids to study bilayer alterations by electron paramagnetic resonance (EPR) spectroscopy. Two different spin-labeled lipids were used, bearing the doxyl ring at position (n) 5 or 16: γ-palmitoyl-β-(n-doxylstearoyl)-lecithin (n-DSPPC) and n-doxylstearic acid (n-DSA). Small...
Energy Technology Data Exchange (ETDEWEB)
Koenneker, Carsten (comp.)
2012-11-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Quantum biology and quantum pharmacology: proceedings
Energy Technology Data Exchange (ETDEWEB)
Loewdin, P.O.; Oehrn, N.Y.; Sabin, J.R.; Zerner, M.C.
1986-01-01
The 25th Sanibel Symposia, which included the 12th meeting of the Symposium on Quantum Biology and Quantum Pharmacology, was held at the University of Florida Whitney Laboratory at Marineland on the Atlantic Coast of Florida, March 14-23, 1985. The three days (March 14-16) devoted to Quantum Biology and Quantum Pharmacology saw the presentation of more than 50 papers by the 90 participants representing about 20 different nations. These ''Proceedings'' comprise the contributions in both the invited talks and the poster sessions.
Quantum dots for quantum information technologies
2017-01-01
This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.
Aggregating quantum repeaters for the quantum internet
Azuma, Koji; Kato, Go
2017-09-01
The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016), 10.1038/ncomms13523]. Here we consider its converse problem. In particular, we present a universal protocol constructible from any given quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key distribution over any quantum network composed of practical channels such as erasure channels, dephasing channels, bosonic quantum amplifier channels, and lossy optical channels.
Quantum paradoxes quantum theory for the perplexed
Aharonov, Yakir
2005-01-01
A Guide through the Mysteries of Quantum Physics!Yakir Aharonov is one of the pioneers in measuring theory, the nature of quantum correlations, superselection rules, and geometric phases and has been awarded numerous scientific honors. The author has contributed monumental concepts to theoretical physics, especially the Aharonov-Bohm effect and the Aharonov-Casher effect. Together with Daniel Rohrlich of the Weizmann Institute, Israel, he has written a pioneering work on the remaining mysteries of quantum mechanics. From the perspective of a preeminent researcher in the fundamental aspects of quantum mechanics, the text combines mathematical rigor with penetrating and concise language
Quantum optics. Gravity meets quantum physics
Energy Technology Data Exchange (ETDEWEB)
Adams, Bernhard W. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-02-27
Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.
Quantum Darwinism in Quantum Brownian Motion
Blume-Kohout, Robin; Zurek, Wojciech H.
2008-12-01
Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.
Quantum neuromorphic hardware for quantum artificial intelligence
Prati, Enrico
2017-08-01
The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.
Converting Coherence to Quantum Correlations.
Ma, Jiajun; Yadin, Benjamin; Girolami, Davide; Vedral, Vlatko; Gu, Mile
2016-04-22
Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.
Granados, S; Quiles, J L; Gil, A; Ramírez-Tortosa, M C
2006-05-01
Cancer is one of the main causes of death in Western countries. Among the factors that contribute to the appearance of this disease, diet has a fundamental role, and specifically fats are the main component related to the increase in the incidence of cancerous diseases, particularly breast, colon-rectal, and prostate cancer. From dietary lipids, much attention has been given to the beneficial effects of fish oil, rich in polyunsaturated fatty acids n-3 serie, as well as of olive oil, rich in monounsaturated fatty acids--primarily oleic acid. On the contrary, a negative effect has been reported for polyunsaturated fatty acids n-6 serie and for saturated fatty acids. Nutrition constitutes an important aspect of the life of cancer patients. Currently, nutritional formulas are being designed with supplements of polyunsaturated n-3 fatty acids and other components such as arginine, RNA, lysine, etc., with the aim of ameliorating the effects of this pathology. The results demonstrate the lower morbility and therefore improved quality of life, a decline in mortality, and a reduction in related costs.
Hybrid lipid-based nanostructures
Dayani, Yasaman
Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and
Sub-diffraction limited quantum imaging of a living cell
Taylor, Michael A; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans-A; Bowen, Warwick P
2014-01-01
Quantum techniques allow the resolution constraints of classical imaging to be overcome, and are expected to have important applications in biology. We report the first demonstration of sub-diffraction limited quantum imaging in biology. Naturally occurring lipid granules of approximately 300nm diameter are used to image the local mechanical properties of the cellular cytoplasm, with spatial resolution enabled by thermal diffusion. Spatial structure is resolved at length scales down to 10nm. Our results confirm the longstanding prediction that use of quantum correlated light can enhance spatial resolution in biology, allowing a 14% enhancement over that achievable with coherent light. Combined with state-of-the-art sources of quantum correlated light, this technique provides a path towards an order of magnitude improvement in resolution over similar classical imaging techniques.
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this article,we make a review on the development of a newly proposed quantum computer,duality computer,or the duality quantum computer and the duality mode of quantum computers.The duality computer is based on the particle-wave duality principle of quantum mechanics.Compared to an ordinary quantum computer,the duality quantum computer is a quantum computer on the move and passing through a multi-slit.It offers more computing operations than is possible with an ordinary quantum computer.The most two distinct operations are:the quantum division operation and the quantum combiner operation.The division operation divides the wave function of a quantum computer into many attenuated,and identical parts.The combiner operation combines the wave functions in different parts into a single part.The duality mode is a way in which a quantum computer with some extra qubit resource simulates a duality computer.The main structure of duality quantum computer and duality mode,the duality mode,their mathematical description and algorithm designs are reviewed.
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Analysis of Lipid Experiments (ALEX)
DEFF Research Database (Denmark)
Husen, Peter; Tarasov, Kirill; Katafiasz, Maciej
2013-01-01
Global lipidomics analysis across large sample sizes produces high-content datasets that require dedicated software tools supporting lipid identification and quantification, efficient data management and lipidome visualization. Here we present a novel software-based platform for streamlined data ...
SOLID LIPID NANOPARTICLES: A REVIEW
Directory of Open Access Journals (Sweden)
Mudavath Hanumanaik*, Sandeep Kumar Patel and K. Ramya Sree
2013-03-01
Full Text Available ABSTRACT: Solid lipid nanoparticles (SLN are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery and research. Due to their unique size dependent properties, lipid nanoparticles offer possibility to develop new therapeutics. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could use for drug targeting. Hence solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence attracted wide attention of researchers. This review presents a broad treatment of solid lipid nanoparticles discussing their aims, production procedures, advantages, limitations and their possible remedies. Appropriate analytical techniques for the characterization of SLN like Photon Correlation Spectroscopy (PCS, Scanning Electron Microscopy (SEM, and Differential Scanning Calorimetry are highlighted. Aspects of SLN route of administration and the in vivo fate of the carriers are also discussed.
Electronic polymers in lipid membranes.
Johansson, Patrik K; Jullesson, David; Elfwing, Anders; Liin, Sara I; Musumeci, Chiara; Zeglio, Erica; Elinder, Fredrik; Solin, Niclas; Inganäs, Olle
2015-06-10
Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.
Lipid dynamics at dendritic spines.
Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores
2014-01-01
Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.
Quantum Robots and Environments
Benioff, P
1998-01-01
Quantum robots and their interactions with environments of quantum systems are described and their study justified. A quantum robot is a mobile quantum system that includes a quantum computer and needed ancillary systems on board. Quantum robots carry out tasks whose goals include specified changes in the state of the environment or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activities include determination of the action to be carried out in the next phase and possible recording of information on neighborhood environmental system states. Action phase activities include motion of the quantum robot and changes of neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. To each task is associated a unitary step operator T that gives the single time step dynamics. T = T_{a}+T_{c} is a sum of action phase and computation phase step ...
Efficient Quantum Pseudorandomness
Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał
2016-04-01
Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.
National Research Council Canada - National Science Library
Jeremy L. O'Brien
2007-01-01
In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors...
Holzner, Steve
2013-01-01
Quantum Physics For Dummies, Revised Edition helps make quantum physics understandable and accessible. From what quantum physics can do for the world to understanding hydrogen atoms, readers will get complete coverage of the subject, along with numerous examples to help them tackle the tough equations. Compatible with classroom text books and courses, Quantum Physics For Dummies, Revised Edition lets students study at their own paces and helps them prepare for graduate or professional exams. Coverage includes: The Schrodinger Equation and its Applications The Foundations of Quantum Physics Vector Notation Spin Scattering Theory, Angular Momentum, and more From the Back Cover Your plain-English guide to understanding and working with the micro world Quantum physics -- also called quantum mechanics or quantum field theory -- can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, fr...
Jennewein, Thomas; Higgins, Brendon
2013-03-01
Sending satellites equipped with quantum technologies into space will be the first step towards a global quantum-communication network. As Thomas Jennewein and Brendon Higgins explain, these systems will also enable physicists to test fundamental physics in new regimes.
Classical and Quantum Polyhedra
Schliemann, John
2014-01-01
Quantum polyhedra constructed from angular momentum operators are the building blocks of space in its quantum description as advocated by Loop Quantum Gravity. Here we extend previous results on the semiclassical properties of quantum polyhedra. Regarding tetrahedra, we compare the results from a canonical quantization of the classical system with a recent wave function based approach to the large-volume sector of the quantum system. Both methods agree in the leading order of the resulting effective operator (given by an harmonic oscillator), while minor differences occur in higher corrections. Perturbative inclusion of such corrections improves the approximation to the eigenstates. Moreover, the comparison of both methods leads also to a full wave function description of the eigenstates of the (square of the) volume operator at negative eigenvalues of large modulus. For the case of general quantum polyhedra described by discrete angular momentum quantum numbers we formulate a set of quantum operators fulfill...
Ahn, Doyeol
2011-01-01
A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...
Lombardi, Olimpia; Fortin, Sebastian; Holik, Federico; López, Cristian
2017-04-01
Preface; Introduction; Part I. About the Concept of Information: 1. About the concept of information Sebastian Fortin and Olimpia Lombardi; 2. Representation, information, and theories of information Armond Duwell; 3. Information, communication, and manipulability Olimpia Lombardi and Cristian López; Part II. Information and quantum mechanics: 4. Quantum versus classical information Jeffrey Bub; 5. Quantum information and locality Dennis Dieks; 6. Pragmatic information in quantum mechanics Juan Roederer; 7. Interpretations of quantum theory: a map of madness Adán Cabello; Part III. Probability, Correlations, and Information: 8. On the tension between ontology and epistemology in quantum probabilities Amit Hagar; 9. Inferential versus dynamical conceptions of physics David Wallace; 10. Classical models for quantum information Federico Holik and Gustavo Martin Bosyk; 11. On the relative character of quantum correlations Guido Bellomo and Ángel Ricardo Plastino; Index.
Meystre, Pierre
2007-01-01
Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to rese...
Seshu, Ch.
Quantum Key Distribution (QKD) uses Quantum Mechanics to guarantee secure communication. It enables two parties to produce a shared random bit string known only to them, which can be used as a key to encrypt and decrypt messages.
Efficient Quantum Pseudorandomness.
Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał
2016-04-29
Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.
Modeling of quantum nanomechanics
DEFF Research Database (Denmark)
Jauho, Antti-Pekka; Novotny, Tomas; Donarini, Andrea
2004-01-01
Microelectromechanical systems (MEMS) are approaching the nanoscale, which ultimately implies that the mechanical motion needs to be treated quantum mechanically. In recent years our group has developed theoretical methods to analyze the shuttle transition in the quantum regime (Novotny, 2004...
Federal Laboratory Consortium — The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland...
Quantum Gauge General Relativity
Institute of Scientific and Technical Information of China (English)
WU Ning
2004-01-01
Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein's field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.
On Universal Quantum Dimensions
Mkrtchyan, R L
2016-01-01
We derive universal expressions for quantum dimensions (universal characters) of some series of irreps of simple Lie algebras. This allows us to check Deligne's hypothesis on universal quantum dimensions for symmetric cube of adjoint representation.
Quantum engineering: Diamond envy
Nunn, Joshua
2013-03-01
Nitrogen atoms trapped tens of nanometres apart in diamond can now be linked by quantum entanglement. This ability to produce and control entanglement in solid systems could enable powerful quantum computers.
Goyal, Ketan; Kawai, Ryoichi
As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.
Quantum optics for experimentalists
Ou, Zhe-Yu Jeff
2017-01-01
This book on quantum optics is from the point of view of an experimentalist. It approaches the theory of quantum optics with the language of optical modes of classical wave theory, with which experimentalists are most familiar.
Stochastic processes - quantum physics
Energy Technology Data Exchange (ETDEWEB)
Streit, L. (Bielefeld Univ. (Germany, F.R.))
1984-01-01
The author presents an elementary introduction to stochastic processes. He starts from simple quantum mechanics and considers problems in probability, finally presenting quantum dynamics in terms of stochastic processes.
Mealworms: Alternate Source of Lipids
2014-01-01
The aim of present study was to determine the physicochemical properties of the oil obtained from Tenebrio molitor larvae (mealworms) and explore its potential as edible oil. Five batches of Tenebrio molitor larvae were investigated for their lipid content and physiochemical properties. Three batches were reared in lab (3 different productions) and two were purchased from a local supplier. The lipids were extracted using a cold extraction technique employing 2:1 ratio chloroform/methanol as s...
Quantum repeated games revisited
Frackiewicz, Piotr
2011-01-01
We present a scheme for playing quantum repeated 2x2 games based on the Marinatto and Weber's approach to quantum games. As a potential application, we study twice repeated Prisoner's Dilemma game. We show that results not available in classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games.
Directory of Open Access Journals (Sweden)
Mark Hillery
2000-07-01
Full Text Available Quantum information is stored in two-level quantum systems known as qubits. The no-cloning theorem states that the state of an unknown qubit cannot be copied. This is in contrast to classical information which can be copied. If one drops the requirement that the copies be perfect it is possible to design quantum copiers. This paper presents a short review of the theory of quantum copying.
Reconstructing quantum states efficiently
Cramer, M; Plenio, M. B.
2010-01-01
Quantum state tomography, the ability to deduce the density matrix of a quantum system from measured data, is of fundamental importance for the verification of present and future quantum devices. It has been realized in systems with few components but for larger systems it becomes rapidly infeasible because the number of quantum measurements and computational resources required to process them grow exponentially in the system size. Here we show that we can gain an exponential advantage over d...
2007-01-01
The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. On the assumption that quantum mechanics is universal and complete, we discuss three ways in which classical physics has so far been believed to emerge from quantum physic...
Razeghi, Manijeh
2010-01-01
Technology of Quantum Devices offers a multi-disciplinary overview of solid state physics, photonics and semiconductor growth and fabrication. Readers will find up-to-date coverage of compound semiconductors, crystal growth techniques, silicon and compound semiconductor device technology, in addition to intersubband and semiconductor lasers. Recent findings in quantum tunneling transport, quantum well intersubband photodetectors (QWIP) and quantum dot photodetectors (QWDIP) are described, along with a thorough set of sample problems.
Burgarth, Daniel; Yuasa, Kazuya
2011-01-01
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. Prior knowledge on some elements of the black box helps the system identification...
Quantum computing and probability.
Ferry, David K
2009-11-25
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.
Quantum Hamiltonian Complexity
2014-01-01
Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via s...
Bengtsson, Ingemar; Zyczkowski, Karol
2007-12-01
Preface; 1. Convexity, colours and statistics; 2. Geometry of probability distributions; 3. Much ado about spheres; 4. Complex projective spaces; 5. Outline of quantum mechanics; 6. Coherent states and group actions; 7. The stellar representation; 8. The space of density matrices; 9. Purification of mixed quantum states; 10. Quantum operations; 11. Duality: maps versus states; 12. Density matrices and entropies; 13. Distinguishability measures; 14. Monotone metrics and measures; 15. Quantum entanglement; Epilogue; Appendices; References; Index.
Introduction to Quantum Computation
Ekert, A.
A computation is a physical process. It may be performed by a piece of electronics or on an abacus, or in your brain, but it is a process that takes place in nature and as such it is subject to the laws of physics. Quantum computers are machines that rely on characteristically quantum phenomena, such as quantum interference and quantum entanglement in order to perform computation. In this series of lectures I want to elaborate on the computational power of such machines.
Bates, David Robert
1962-01-01
Quantum Theory: A Treatise in Three Volumes, I: Elements focuses on the principles, methodologies, and approaches involved in quantum theory, including quantum mechanics, linear combinations, collisions, and transitions. The selection first elaborates on the fundamental principles of quantum mechanics, exactly soluble bound state problems, and continuum. Discussions focus on delta function normalization, spherically symmetric potentials, rectangular potential wells, harmonic oscillators, spherically symmetrical potentials, Coulomb potential, axiomatic basis, consequences of first three postula
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Quantum walks: a comprehensive review
Venegas-Andraca, Salvador E
2012-01-01
Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important resul...
Multiparty Quantum Secret Sharing of Quantum States with Quantum Registers
Institute of Scientific and Technical Information of China (English)
GUO Ying; ZENG Gui-Hua; CHEN Zhi-Gang
2007-01-01
A quantum secret sharing scheme is proposed by making use of quantum registers.In the proposed scheme,secret message state is encoded into multipartite entangled states.Several identical multi-particle entanglement states are generated and each particle of the entanglement state is filled in different quantum registers which act as shares of the secret message.Two modes,j.e.the detecting mode and the message mode,are employed so that the eavesdropping can be detected easily and the secret message may be recovered.The seeurity analysis shows that the proposed scheme is secure against eavesdropping of eavesdropper and cheating of participants.
Quantum chaos in quantum Turing machines
Kim, I; Kim, Ilki; Mahler, Guenter
1999-01-01
We investigate a 2-spin quantum Turing architecture, in which discrete local rotations $\\alpha_m$ of the Turing head spin alternate with quantum controlled NOT-opera-\\linebreak%%operations tions. We demonstrate that a single chaotic parameter input $\\alpha_m$ leads to a chaotic dynamics in the entire Hilbert-space.
A Quantum Space behind Simple Quantum Mechanics
Directory of Open Access Journals (Sweden)
Chuan Sheng Chew
2017-01-01
Full Text Available In physics, experiments ultimately inform us about what constitutes a good theoretical model of any physical concept: physical space should be no exception. The best picture of physical space in Newtonian physics is given by the configuration space of a free particle (or the center of mass of a closed system of particles. This configuration space (as well as phase space can be constructed as a representation space for the relativity symmetry. From the corresponding quantum symmetry, we illustrate the construction of a quantum configuration space, similar to that of quantum phase space, and recover the classical picture as an approximation through a contraction of the (relativity symmetry and its representations. The quantum Hilbert space reduces into a sum of one-dimensional representations for the observable algebra, with the only admissible states given by coherent states and position eigenstates for the phase and configuration space pictures, respectively. This analysis, founded firmly on known physics, provides a quantum picture of physical space beyond that of a finite-dimensional manifold and provides a crucial first link for any theoretical model of quantum space-time at levels beyond simple quantum mechanics. It also suggests looking at quantum physics from a different perspective.
Simulation of quantum computers
De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB
2001-01-01
We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software con
Quantum Boolean image denoising
Mastriani, Mario
2015-05-01
A quantum Boolean image processing methodology is presented in this work, with special emphasis in image denoising. A new approach for internal image representation is outlined together with two new interfaces: classical to quantum and quantum to classical. The new quantum Boolean image denoising called quantum Boolean mean filter works with computational basis states (CBS), exclusively. To achieve this, we first decompose the image into its three color components, i.e., red, green and blue. Then, we get the bitplanes for each color, e.g., 8 bits per pixel, i.e., 8 bitplanes per color. From now on, we will work with the bitplane corresponding to the most significant bit (MSB) of each color, exclusive manner. After a classical-to-quantum interface (which includes a classical inverter), we have a quantum Boolean version of the image within the quantum machine. This methodology allows us to avoid the problem of quantum measurement, which alters the results of the measured except in the case of CBS. Said so far is extended to quantum algorithms outside image processing too. After filtering of the inverted version of MSB (inside quantum machine), the result passes through a quantum-classical interface (which involves another classical inverter) and then proceeds to reassemble each color component and finally the ending filtered image. Finally, we discuss the more appropriate metrics for image denoising in a set of experimental results.
Quantum entanglement and symmetry
Energy Technology Data Exchange (ETDEWEB)
Chruscinski, D; Kossakowski, A [Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland)
2007-11-15
One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.
Quantum entanglement and symmetry
Chruściński, D.; Kossakowski, A.
2007-11-01
One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.
Zwanenburg, F.A.; Dzurak, A.S.; Morello, A.; Simmons, M.Y.; Hollenberg, L.C.L.; Klimeck, G.; Rogge, S.; Coppersmith, S.N.; Eriksson, M.A.
2013-01-01
This review describes recent groundbreaking results in Si, Si/SiGe, and dopant-based quantum dots, and it highlights the remarkable advances in Si-based quantum physics that have occurred in the past few years. This progress has been possible thanks to materials development of Si quantum devices,
Maximally incompatible quantum observables
Energy Technology Data Exchange (ETDEWEB)
Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ziman, Mario, E-mail: ziman@savba.sk [RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava (Slovakia); Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno (Czech Republic)
2014-05-01
The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.
Institute of Scientific and Technical Information of China (English)
2008-01-01
After giving a bird's view of some existing quantum programming languages,this paper reports the recent results made by the quantum computation group of the State Key Laboratory for Novel Software Technology and the Department of Computer Science and Technology at Nanjing University,i.e.,the quantum programming languages NDQJava,NDQFP and their processing systems.
Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki
2009-01-01
We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e., joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.
Quantum Extended Supersymmetries
Grigore, D R; Grigore, Dan Radu; Scharf, Gunter
2003-01-01
We analyse some quantum multiplets associated with extended supersymmetries. We study in detail the general form of the causal (anti)commutation relations. The condition of positivity of the scalar product imposes severe restrictions on the (quantum) model. It is problematic if one can find out quantum extensions of the standard model with extended supersymmetries.
Quantum secure circuit evaluation
Institute of Scientific and Technical Information of China (English)
CHEN Huanhuan; LI Bin; ZHUANG Zhenquan
2004-01-01
In order to solve the problem of classical secure circuit evaluation, this paper proposes a quantum approach. In this approach, the method of inserting redundant entangled particles and quantum signature has been employed to strengthen the security of the system. Theoretical analysis shows that our solution is secure against classical and quantum attacks.
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
2012-01-01
The physics of monetary systems works like a systemic quantum process and the monetary quantum moves the economic body of production via mechanic and thermodynamic entropy.This research work compiles the foundations and conclusions of quantum monetary science as new methodical tool for achieving a higher level of economic stability as dynamic efficiency.
Quantum dense key distribution
Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C
2004-01-01
This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
Zwanenburg, Floris A.; Dzurak, Andrew S.; Morello, Andrea; Simmons, Michelle Y.; Hollenberg, Lloyd C.L.; Klimeck, Gerhard; Rogge, Sven; Coppersmith, Susan N.; Eriksson, Mark A.
2013-01-01
This review describes recent groundbreaking results in Si, Si/SiGe , and dopant-based quantum dots, and it highlights the remarkable advances in Si-based quantum physics that have occurred in the past few years. This progress has been possible thanks to materials development of Si quantum devices, a
Introduction to quantum mechanics
Villaseñor, Eduardo J. S.
2008-01-01
The purpose of this contribution is to give a very brief introduction to Quantum Mechanics for an audience of mathematicians. I will follow Segal's approach to Quantum Mechanics paying special attention to algebraic issues. The usual representation of Quantum Mechanics on Hilbert spaces is also discussed.
Zwanenburg, Floris Arnoud; Dzurak, Andrew S.; Morello, Andrea; Simmons, Michelle Y.; Hollenberg, Lloyd C.L.; Klimeck, Gerhard; Rogge, Sven; Coppersmith, Susan N.; Eriksson, Mark A.
2013-01-01
This review describes recent groundbreaking results in Si, Si=SiGe, and dopant-based quantum dots, and it highlights the remarkable advances in Si-based quantum physics that have occurred in the past few years. This progress has been possible thanks to materials development of Si quantum devices,
Salih, Hatim
2016-05-01
The phenomenon of quantum erasure has long intrigued physicists, but has surprisingly found limited practical application. Here, we propose a protocol for quantum key distribution (QKD) based on quantum erasure, promising inherent security against detector attacks. We particularly demonstrate its security against a powerful detector-blinding attack.
NMR spectroscopy for evaluation of lipid oxidation
During storage and use of edible oils and other lipid-containing foods, reactions between lipids and oxygen occur, resulting in lipid oxidation and the subsequent development of off-flavors and odors. Accurate and timely assessment of lipid oxidation is critical for effective quality control of food...
Quantum computing. Defining and detecting quantum speedup.
Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias
2014-07-25
The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question.
Avoiding Quantum Chaos in Quantum Computation
Berman, G P; Izrailev, F M; Tsifrinovich, V I
2001-01-01
We study a one-dimensional chain of nuclear $1/2-$spins in an external time-dependent magnetic field. This model is considered as a possible candidate for experimental realization of quantum computation. According to the general theory of interacting particles, one of the most dangerous effects is quantum chaos which can destroy the stability of quantum operations. According to the standard viewpoint, the threshold for the onset of quantum chaos due to an interaction between spins (qubits) strongly decreases with an increase of the number of qubits. Contrary to this opinion, we show that the presence of a magnetic field gradient helps to avoid quantum chaos which turns out to disappear with an increase of the number of qubits. We give analytical estimates which explain this effect, together with numerical data supporting
Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots
Childress, L I; Lukin, M D
2003-01-01
We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.
Relativistic quantum chemistry on quantum computers
DEFF Research Database (Denmark)
Veis, L.; Visnak, J.; Fleig, T.
2012-01-01
The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...
Okamoto, Yoshiaki; Motegi, Toshinori; Iwasa, Seiji; Sandhu, Adarsh; Tero, Ryugo
2015-04-01
The lipid bilayer is the fundamental structure of plasma membranes, and artificial lipid bilayer membranes are used as model systems of cell membranes. Recently we reported the formation of a supported lipid bilayer (SLB) on graphene oxide (GO) by the vesicle fusion method. In this study, we conjugated a quantum dot (Qdot) on the SLB surface as a fluorescence probe brighter than dye-labeled lipid molecules, to qualitatively evaluate the fluidity of the SLB on GO by the single particle tracking method. We obtained the diffusion coefficient of the Qdot-conjugated lipids in the SLB on GO. We also performed the Qdot conjugation on the SLB containing a lipid conjugated with polyethylene glycol, to prevent the nonspecific adsorption of Qdots. The difference in the diffusion coefficients between the SLBs on the GO and the bare SiO2 regions was evaluated from the trajectory of single Qdot-conjugated lipid diffusing between the two regions.
The effect of quantum noise on the restricted quantum game
Institute of Scientific and Technical Information of China (English)
Cao Shuai; Fang Mao-Fa
2006-01-01
It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of 0＜ p≤0.422 (p is the quantum noise parameter), while two special Nash equilibria appear in the range of 0.422 ＜ p＜ 1. The advantage that the quantum player diminished only in the limit of maximum quantum noise. Increasing the amount of quantum noise leads to the increase of the classical player's payoff and the reduction of the quantum player's payoff, but is helpful in forming two Nash equilibria.
Phase structure of liposome in lipid mixtures.
Zhang, Tianxi; Li, Yuzhuo; Mueller, Anja
2011-11-01
Gas microbubbles present in ultrasound imaging contrast agents are stabilized by lipid aggregates that typically contain a mixture of lipids. In this study, the phase structure of the lipid mixtures that contained two or three lipids was investigated using three different methods: dynamic light scattering, (1)H NMR, and microfluidity measurements with fluorescence probes. Three lipids that are commonly present in imaging agents (DPPC, DPPE-PEG, and DPPA) were used. Two types of systems, two-lipid model systems and simulated imaging systems were investigated. The results show that liposomes were the dominant aggregates in all the samples studied. The polar PEG side chains from the PEGylated lipid lead to the formation of micelles and micellar aggregates in small sizes. In the ternary lipid systems, almost all the lipids were present in bilayers with micelles absent and free lipids at very low concentration. These results suggest that liposomes, not micelles, contribute to the stabilization of microbubbles in an ultrasound imaging contrast agent.
Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K
2015-10-07
Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.
Guangrong Hu; Yong Fan; Lei Zhang; Cheng Yuan; Jufang Wang; Wenjian Li; Qiang Hu; Fuli Li
2013-01-01
The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy (12)C(6+) ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L(-1)⋅d(-1), 20.6% higher than wild type, likely owing to an improved maximum quantum ef...
A Study of Quantum Algorithms and Quantum Cryptography
小柴, 健史
2007-01-01
This report describes properties of basic cryptographic primitives (quantum public-key cryptosystmes and quantum one-way functions) in the quantum world where quantum computers are available. Some quantum public-key cryptosystems have already proposed. However, the security requirements for quantum public-key cryptosystems are not studied well. We propose several security notions for quantum public-key cryptosystems and discuss relation among them. In the classical setting, the notion of one-...
Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols
Directory of Open Access Journals (Sweden)
Simon J. Gay
2014-07-01
Full Text Available We describe the use of quantum process calculus to describe and analyze quantum communication protocols, following the successful field of formal methods from classical computer science. We have extended the quantum process calculus to describe d-dimensional quantum systems, which has not been done before. We summarise the necessary theory in the generalisation of quantum gates and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols, namely qudit teleportation and superdense coding.
Lipid nanoparticle interactions and assemblies
Preiss, Matthew Ryan
Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron
Shidhaye, S S; Vaidya, Reshma; Sutar, Sagar; Patwardhan, Arati; Kadam, V J
2008-10-01
The first generation of solid lipid carrier systems in nanometer range, Solid Lipid Nanoparticles (SLN), was introduced as an alternative to liposomes. SLN are aqueous colloidal dispersions, the matrix of which comprises of solid biodegradable lipids. SLN are manufactured by techniques like high pressure homogenization, solvent diffusion method etc. They exhibit major advantages such as modulated release, improved bioavailability, protection of chemically labile molecules like retinol, peptides from degradation, cost effective excipients, improved drug incorporation and wide application spectrum. However there are certain limitations associated with SLN, like limited drug loading capacity and drug expulsion during storage, which can be minimized by the next generation of solid lipids, Nanostructured lipid carriers (NLC). NLC are lipid particles with a controlled nanostructure that improves drug loading and firmly incorporates the drug during storage. Owing to their properties and advantages, SLN and NLC may find extensive application in topical drug delivery, oral and parenteral administration of cosmetic and pharmaceutical actives. Cosmeceuticals is emerging as the biggest application target of these carriers. Carrier systems like SLN and NLC were developed with a perspective to meet industrial needs like scale up, qualification and validation, simple technology, low cost etc. This paper reviews present status of SLN and NLC as carrier systems with special emphasis on their application in Cosmeceuticals; it also gives an overview about various manufacturing techniques of SLN and NLC.
Mass Spectrometry Methodology in Lipid Analysis
Lin Li; Juanjuan Han; Zhenpeng Wang; Jian'an Liu; Jinchao Wei; Shaoxiang Xiong; Zhenwen Zhao
2014-01-01
Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics tech...
Lipid bilayers on nano-templates
Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter
2009-08-04
A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents
[Lipids, depression and suicide].
Colin, A; Reggers, J; Castronovo, V; Ansseau, M
2003-01-01
Polyunsatured fatty acids are made out of a hydrocarbonated chain of variable length with several double bonds. The position of the first double bond (omega) differentiates polyunsatured omega 3 fatty acids (for example: alpha-linolenic acid or alpha-LNA) and polyunsatured omega 6 fatty acids (for example: linoleic acid or LA). These two classes of fatty acids are said to be essential because they cannot be synthetised by the organism and have to be taken from alimentation. The omega 3 are present in linseed oil, nuts, soya beans, wheat and cold water fish whereas omega 6 are present in maize, sunflower and sesame oil. Fatty acids are part of phospholipids and, consequently, of all biological membranes. The membrane fluidity, of crucial importance for its functioning, depends on its lipidic components. Phospholipids composed of chains of polyunsatured fatty acids increase the membrane fluidity because, by bending some chains, double bonds prevent them from compacting themselves perfectly. Membrane fluidity is also determined by the phospholipids/free cholesterol ratio, as cholesterol increases membrane viscosity. A diet based on a high proportion of essential polyunsatured fatty acids (fluid) would allow a higher incorporation of cholesterol (rigid) in the membranes to balance their fluidity, which would contribute to lower blood cholesterol levels. Brain membranes have a very high content in essential polyunsatured fatty acids for which they depend on alimentation. Any dietary lack of essential polyunsatured fatty acids has consequences on cerebral development, modifying the activity of enzymes of the cerebral membranes and decreasing efficiency in learning tasks. The prevalence of depression seems to increase continuously since the beginning of the century. Though different factors most probably contribute to this evolution, it has been suggested that it could be related to an evolution of alimentary patterns in the Western world, in which polyunsatured omega 3
Hosten, O.; Krishnakumar, R.; Engelsen, N. J.; Kasevich, M. A.
2016-06-01
Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit.
Quantum electronics basic theory
Fain, V M; Sanders, J H
1969-01-01
Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai
Duarte, FJ
2013-01-01
Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra-ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation. Self-contained and using mainly first-year calculus and algebra tools, the book:Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflectionProvides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglem
Brun, T A
1993-01-01
Using the decoherence formalism of Gell-Mann and Hartle, a quantum system is found which is the equivalent of the classical chaotic Duffing oscillator. The similarities and the differences from the classical oscillator are examined; in particular, a new concept of quantum maps is introduced, and alterations in the classical strange attractor due to the presence of scale- dependent quantum effects are studied. Classical quantities such as the Lyapunov exponents and fractal dimension are examined, and quantum analogs are suggested. These results are generalized into a framework for quantum dissipative chaos, and there is a brief discussion of other work in this area.
Algorithms for Quantum Computers
Smith, Jamie
2010-01-01
This paper surveys the field of quantum computer algorithms. It gives a taste of both the breadth and the depth of the known algorithms for quantum computers, focusing on some of the more recent results. It begins with a brief review of quantum Fourier transform based algorithms, followed by quantum searching and some of its early generalizations. It continues with a more in-depth description of two more recent developments: algorithms developed in the quantum walk paradigm, followed by tensor network evaluation algorithms (which include approximating the Tutte polynomial).
Directory of Open Access Journals (Sweden)
Prashant Anil Patil
2012-04-01
Full Text Available This paper gives the detailed information about Quantum computer, and difference between quantum computer and traditional computers, the basis of Quantum computers which are slightly similar but still different from traditional computer. Many research groups are working towards the highly technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. Quantum computer is very much use full for computation purpose in field of Science and Research. Large amount of data and information will be computed, processing, storing, retrieving, transmitting and displaying information in less time with that much of accuracy which is not provided by traditional computers.
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-13
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
Absolutely covert quantum communication
Bradler, Kamil; Siopsis, George; Weedbrook, Christian
2016-01-01
We present truly ultimate limits on covert quantum communication by exploiting quantum-mechanical properties of the Minkowski vacuum in the quantum field theory framework. Our main results are the following: We show how two parties equipped with Unruh-DeWitt detectors can covertly communicate at large distances without the need of hiding in a thermal background or relying on various technological tricks. We reinstate the information-theoretic security standards for reliability of asymptotic quantum communication and show that the rate of covert communication is strictly positive. Therefore, contrary to the previous conclusions, covert and reliable quantum communication is possible.
Principles of quantum electronics
Marcuse, Dietrich
1980-01-01
Principles of Quantum Electronics focuses on the concept of quantum electronics as the application of quantum theory to engineering problems. It examines the principles that govern specific quantum electronics devices and presents their theoretical applications to typical problems. Comprised of 10 chapters, this book starts with an overview of the Dirac formulation of quantum mechanics. This text then considers the derivation of the formalism of field quantization and discusses the properties of photons and phonons. Other chapters examine the interaction between the electromagnetic field and c
Cohering power of quantum operations
Energy Technology Data Exchange (ETDEWEB)
Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)
2017-05-18
Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.
Two quantum Simpson's paradoxes
Paris, Matteo G A
2012-01-01
The so-called Simpson's "paradox", or Yule-Simpson (YS) effect, occurs in classical statistics when the correlations that are present among different sets of samples are reversed if the sets are combined together, thus ignoring one or more lurking variables. Here we illustrate the occurrence of two analogue effects in quantum measurements. The first, which we term quantum-classical YS effect, may occur with quantum limited measurements and with lurking variables coming from the mixing of states, whereas the second, here referred to as quantum-quantum YS effect, may take place when coherent superpositions of quantum states are allowed. By analyzing quantum measurements on low dimensional systems (qubits and qutrits), we show that the two effects may occur independently, and that the quantum-quantum YS effect is more likely to occur than the corresponding quantum-classical one. We also found that there exist classes of superposition states for which the quantum-classical YS effect cannot occur for any measureme...
Quantum robots plus environments.
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-23
A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions is discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Fomin, Vladimir M. (ed.) [Leibniz Institute for Solid State and Materials Research, Dresden (Germany)
2014-07-01
Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.
Berthiaume, A; Laplante, S; Berthiaume, Andre; Dam, Wim van; Laplante, Sophie
2000-01-01
In this paper we give a definition for quantum Kolmogorov complexity. In the classical setting, the Kolmogorov complexity of a string is the length of the shortest program that can produce this string as its output. It is a measure of the amount of innate randomness (or information) contained in the string. We define the quantum Kolmogorov complexity of a qubit string as the length of the shortest quantum input to a universal quantum Turing machine that produces the initial qubit string with high fidelity. The definition of Vitanyi (Proceedings of the 15th IEEE Annual Conference on Computational Complexity, 2000) measures the amount of classical information, whereas we consider the amount of quantum information in a qubit string. We argue that our definition is natural and is an accurate representation of the amount of quantum information contained in a quantum state.
Advanced Visual Quantum Mechanics
Thaller, Bernd
2005-01-01
Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Ionicioiu, Radu
2015-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) -- which direct photons according to their polarization -- and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any $d$-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Villari, Leone Di Mauro; Biancalana, Fabio; Conti, Claudio
2016-01-01
We have very little experience of the quantum dynamics of the ubiquitous nonlinear waves. Observed phenomena in high energy physics are perturbations to linear waves, and classical nonlinear waves, like solitons, are barely affected by quantum effects. We know that solitons, immutable in classical physics, exhibit collapse and revivals according to quantum mechanics. However this effect is very weak and has never been observed experimentally. By predicting black hole evaporation Hawking first introduced a distinctly quantum effect in nonlinear gravitational physics.Here we show the existence of a general and universal quantum process whereby a soliton emits quantum radiation with a specific frequency content, and a temperature given by the number of quanta, the soliton Schwarzschild radius, and the amount of nonlinearity, in a precise and surprisingly simple way. This result may ultimately lead to the first experimental evidence of genuine quantum black hole evaporation. In addition, our results show that bla...
Haven, Emmanuel; Khrennikov, Andrei
2013-01-01
Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.
Ficek, Zbigniew
2017-01-01
This book covers the main ideas, methods, and recent developments of quantum-limit optical spectroscopy and applications to quantum information, resolution spectroscopy, measurements beyond quantum limits, measurement of decoherence, and entanglement. Quantum-limit spectroscopy lies at the frontier of current experimental and theoretical techniques, and is one of the areas of atomic spectroscopy where the quantization of the field is essential to predict and interpret the existing experimental results. Currently, there is an increasing interest in quantum and precision spectroscopy both theoretically and experimentally, due to significant progress in trapping and cooling of single atoms and ions. This progress allows one to explore in the most intimate detail the ways in which light interacts with atoms and to measure spectral properties and quantum effects with high precision. Moreover, it allows one to perform subtle tests of quantum mechanics on the single atom and single photon scale which were hardly eve...
Yard, J; Devetak, I; Yard, Jon; Hayden, Patrick; Devetak, Igor
2006-01-01
We analyze quantum broadcast channels, which are quantum channels with a single sender and many receivers. Focusing on channels with two receivers for simplicity, we generalize a number of results from the network Shannon theory literature which give the rates at which two senders can receive a common message, while a personalized one is sent to one of them. Our first collection of results applies to channels with a classical input and quantum outputs. The second class of theorems we prove concern sending a common classical message over a quantum broadcast channel, while sending quantum information to one of the receivers. The third group of results we obtain concern communication over an isometry, giving the rates at quantum information can be sent to one receiver, while common quantum information is sent to both, in the sense that tripartite GHZ entanglement is established. For each scenario, we provide an additivity proof for an appropriate class of channels, yielding single-letter characterizations of the...
Haven, Emmanuel
2013-01-01
Written by world experts in the foundations of quantum mechanics and its applications to social science, this book shows how elementary quantum mechanical principles can be applied to decision-making paradoxes in psychology and used in modelling information in finance and economics. The book starts with a thorough overview of some of the salient differences between classical, statistical and quantum mechanics. It presents arguments on why quantum mechanics can be applied outside of physics and defines quantum social science. The issue of the existence of quantum probabilistic effects in psychology, economics and finance is addressed and basic questions and answers are provided. Aimed at researchers in economics and psychology, as well as physics, basic mathematical preliminaries and elementary concepts from quantum mechanics are defined in a self-contained way.
Fortin, Sebastian; Holik, Federico; López, Cristian
2017-01-01
Combining physics and philosophy, this is a uniquely interdisciplinary examination of quantum information science which provides an up-to-date examination of developments in this field. The authors provide coherent definitions and theories of information, taking clearly defined approaches to considering information in connection with quantum mechanics, probability, and correlations. Concepts addressed include entanglement of quantum states, the relation of quantum correlations to quantum information, and the meaning of the informational approach for the foundations of quantum mechanics. Furthermore, the mathematical concept of information in the communicational context, and the notion of pragmatic information are considered. Suitable as both a discussion of the conceptual and philosophical problems of this field and a comprehensive stand-alone introduction, this book will benefit both experienced and new researchers in quantum information and the philosophy of physics.
Brassard, G; Tapp, A; Brassard, Gilles; Broadbent, Anne; Tapp, Alain
2004-01-01
Quantum information processing is at the crossroads of physics, mathematics and computer science. It is concerned with that we can and cannot do with quantum information that goes beyond the abilities of classical information processing devices. Communication complexity is an area of classical computer science that aims at quantifying the amount of communication necessary to solve distributed computational problems. Quantum communication complexity uses quantum mechanics to reduce the amount of communication that would be classically required. Pseudo-telepathy is a surprising application of quantum information processing to communication complexity. Thanks to entanglement, perhaps the most nonclassical manifestation of quantum mechanics, two or more quantum players can accomplish a distributed task with no need for communication whatsoever, which would be an impossible feat for classical players. After a detailed overview of the principle and purpose of pseudo-telepathy, we present a survey of recent and no-s...
Quantum random number generators
Herrero-Collantes, Miguel; Garcia-Escartin, Juan Carlos
2017-01-01
Random numbers are a fundamental resource in science and engineering with important applications in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes quantum systems a perfect source of entropy. Quantum random number generation is one of the most mature quantum technologies with many alternative generation methods. This review discusses the different technologies in quantum random number generation from the early devices based on radioactive decay to the multiple ways to use the quantum states of light to gather entropy from a quantum origin. Randomness extraction and amplification and the notable possibility of generating trusted random numbers even with untrusted hardware using device-independent generation protocols are also discussed.
Quantum simulation of a quantum stochastic walk
Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.
2017-03-01
The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born–Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.
Quantum Computer Using Coupled Quantum Dot Molecules
Wu, N J; Natori, A; Yasunaga, H; Wu*, Nan-Jian
1999-01-01
We propose a method for implementation of a quantum computer using artificial molecules. The artificial molecule consists of two coupled quantum dots stacked along z direction and one single electron. One-qubit and two-qubit gates are constructed by one molecule and two coupled molecules, respectively.The ground state and the first excited state of the molecule are used to encode the |0> and |1> states of a qubit. The qubit is manipulated by a resonant electromagnetic wave that is applied directly to the qubit through a microstrip line. The coupling between two qubits in a quantum controlled NOT gate is switched on (off) by floating (grounding) the metal film electrodes. We study the operations of the gates by using a box-shaped quantum dot model and numerically solving a time-dependent Schridinger equation, and demonstrate that the quantum gates can perform the quantum computation. The operating speed of the gates is about one operation per 4ps. The reading operation of the output of the quantum computer can...
Introduction to quantum information science
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Masahito [Nagoya Univ. (Japan). Graduate School of Mathematics; Ishizaka, Satoshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Graduate School of Integrated Arts and Sciences; Kawachi, Akinori [Tokyo Institute of Technology (Japan). Dept. of Mathematical and Computing Sciences; Kimura, Gen [Shibaura Institute of Technology, Saitama (Japan). College of Systems Engineering and Science; Ogawa, Tomohiro [Univ. of Electro-Communications, Tokyo (Japan). Graduate School of Information Systems
2015-04-01
Presents the mathematical foundation for quantum information in a very didactic way. Summarizes all required mathematical knowledge in linear algebra. Supports teaching and learning with more than 100 exercises with solutions. Includes brief descriptions to recent results with references. This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols,this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error
Multiphoton quantum optics and quantum state engineering
Energy Technology Data Exchange (ETDEWEB)
Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it
2006-05-15
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.
Hybrid Lipid as Biological Surfactants
Brewster, Robert; Pincus, Phil; Safran, Sam
2009-03-01
Systems capable of forming finite-sized, equilibrium domains are of biological interest in the context of membrane rafts where it has been observed that certain cellular functions are mediated by small (nanometric to tens of nanometers) domains with specific lipid composition that differs from the average composition of the membrane. These small domains are composed mainly of lipids with completely saturated hydrocarbon tails that show good orientational order in the membrane. The surrounding phase consists mostly of lipids with at least one unsaturated bond in the hydrocarbon tails which forces a ``kink'' in the chain and inhibits ordering. In vitro, this phase separation can be replicated; however, the finite domains coarsen into macroscopic domains with time. We have extended a model for the interactions of lipids in the membrane, akin to that developed in the group of Schick (Elliott et al., PRL 2006 and Garbes Putzel and Schick, Biophys. J. 2008), which depends entirely on the local ordering of hydrocarbon tails. We generalize this model to an additional species and identify a biologically relevant component, a lipid with one fully saturated hydrocarbon chain and one chain with at least one unsaturated bond, that may serve as a line-active component, capable of reducing the line tension between domains to zero, thus stabilizing finite sized domains in equilibrium.
Immunological Regulation by Bioactive Lipids.
Taketomi, Yoshitaka; Murakami, Makoto
2017-01-01
Mast cells originate from hematopoietic stem cells and undergo terminal maturation in the extravascular tissues, in which they are ultimately resident. Mast maturation, phenotype, and function are dictated by the local microenvironment, which has a significant influence on the ability of mast cells to recognize and respond to stimuli. Activation of mast cells can lead to the release of three distinct classes of mediators, including preformed mediators stored in secretory granules, newly transcribed cytokines and chemokines, and de novo-synthesized bioactive lipid mediators. It is currently recognized that bioactive lipids such as arachidonic acid metabolites (prostaglandins and leukotrienes) released from mast cells modulate innate and adaptive immune responses both directly and indirectly through communication with other microenvironmental immune cells or stroma cells. Moreover, mast cells express a variety of lipid receptors and, if activated by bioactive lipids such as arachidonic acid, ω3 fatty acids, lysophospholipids, and their metabolites, can alter the release and production of other mediators including histamine, cytokines, and chemokines, and thereby alter homeostatic or pathophysiological responses. This review focuses on newly identified functional aspects of bioactive lipids with regard to their immune regulation and functional outcomes in both homeostasis and allergic disease.
Quantum Discord for Investigating Quantum Correlations without Entanglement in Solids
Rong, Xing; Jin, Fangzhou; Geng, Jianpei; Feng, Pengbo; Xu, Nanyang; Wang, Ya; Ju, Chenyong; Shi, Mingjun; Du, Jiangfeng
2012-01-01
Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in quantum information processing. However, it has recently been pointed out that quantum entanglement cannot describe all the nonclassicality in the correlations. Thus the study of quantum correlations in separable states attracts widely attentions. Herein, we experimentally investigate the quantum correlations of separable thermal states in terms of quantum discord. The sudden change of quantum discord is observed, which captures ambiguously the critical point associated with the behavior of Hamiltonian. Our results display the potential applications of quantum correlations in studying the fundamental properties of quantum system, such as quantum criticality of non-zero temperature.
Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience
Directory of Open Access Journals (Sweden)
Li Rui
2017-07-01
Full Text Available It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.
Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience
Li, Rui; Alvarez-Rodriguez, Unai; Lamata, Lucas; Solano, Enrique
2017-07-01
It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.
Quantum entanglement and quantum computational algorithms
Indian Academy of Sciences (India)
Arvind
2001-02-01
The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement this algorithm classically
Quantum gravitational contributions to quantum electrodynamics.
Toms, David J
2010-11-01
Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. However, that claim has been very controversial and the matter has not been settled. Here I report an analysis (free from the earlier controversies) demonstrating that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the electric charge vanishing at high energies, a result known as asymptotic freedom.
Quantum information: primitive notions and quantum correlations
Scarani, Valerio
2009-01-01
This series of introductory lectures consists of two parts. In the first part, I rapidly review the basic notions of quantum physics and many primitives of quantum information (i.e. notions that one must be somehow familiar with in the field, like cloning, teleportation, state estimation...). The second part is devoted to a detailed introduction to the topic of quantum correlations, covering the evidence for failure of alternative theories, some aspects of the formalism of no-signaling probability distributions and some hints towards some current research topics in the field.
Direct observation of lipid domains in free standing bilayers: from simple to complex lipid mixtures
DEFF Research Database (Denmark)
Bagatolli, Luis A
2003-01-01
The direct observation of temperature-dependent lipid phase equilibria, using two-photon excitation fluorescence microscopy on giant unilamellar vesicles (GUVs) composed of different lipid mixtures, provides novel information about the physical characteristics of lipid domain coexistence. Physica...
Lipids, lipid droplets and lipoproteins in their cellular context; an ultrastructural approach
Mesman, R.J.
2013-01-01
Lipids are essential for cellular life, functioning either organized as bilayer membranes to compartmentalize cellular processes, as signaling molecules or as metabolic energy storage. Our current knowledge on lipid organization and cellular lipid homeostasis is mainly based on biochemical data.
Using a quantum computer to investigate quantum chaos
Schack, Ruediger
1997-01-01
We show that the quantum baker's map, a prototypical map invented for theoretical studies of quantum chaos, has a very simple realization in terms of quantum gates. Chaos in the quantum baker's map could be investigated experimentally on a quantum computer based on only 3 qubits.
Linear optics implementation for quantum game under quantum noise
Institute of Scientific and Technical Information of China (English)
Cao Shuai; Fang Mao-Fa
2006-01-01
It has recently been shown that linear optics alone would suffice to implement efficient quantum computation. Quantum computation circuits using coherent states as the logical qubits can be constructed from very simple linear networks, conditional measurements and coherent superposition resource states. We present the quantum game under quantum noise and a proposal for implementing the noisy quantum game using only linear optics.
Mass Spectrometry Methodology in Lipid Analysis
Directory of Open Access Journals (Sweden)
Lin Li
2014-06-01
Full Text Available Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics technology greatly push forward the study of lipidomics. Among them, mass spectrometry (MS is the most important technology for lipid analysis. In this review, the methodology based on MS for lipid analysis was introduced. It is believed that along with the rapid development of MS and its further applications to lipid analysis, more functional lipids will be identified as biomarkers and therapeutic targets and for the study of the mechanisms of disease.
Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay.
Tang, Tuo-Xian; Xiong, Wen; Finkielstein, Carla V; Capelluto, Daniel G S
2017-01-01
The protein-lipid overlay assay is an inexpensive, easy-to-implement, and high-throughput methodology that employs nitrocellulose membranes to immobilize lipids in order to rapid screen and identify protein-lipid interactions. In this chapter, we show how this methodology can identify potential modulators of protein-lipid interactions by screening water-soluble lipid competitors or even the introduction of pH changes during the binding assay to identify pH-dependent lipid binding events.
Blood lipids and prostate cancer
DEFF Research Database (Denmark)
Bull, Caroline J; Bonilla, Carolina; Holly, Jeff M P
2016-01-01
Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL...... into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL......, comparing high- (≥7 Gleason score) versus low-grade (cancers was 1.50 (95% CI: 0.92, 2.46; P = 0.11). A genetically instrumented SD increase in TGs was weakly associated with stage: the OR for advanced versus localized cancer per unit increase in genetic risk score was 1.68 (95% CI: 0...
Fuel from microalgae lipid products
Energy Technology Data Exchange (ETDEWEB)
Hill, A.M.; Feinberg, D.A.
1984-04-01
The large-scale production of microalgae is a promising method of producing a renewable feedstock for a wide variety of fuel products currently refined from crude petroleum. These microalgae-derived products include lipid extraction products (triglycerides, fatty acids, and hydrocarbons) and catalytic conversion products (paraffins and olefins). Microalgal biomass productivity and lipid composition of current experimental systems are estimated at 66.0 metric tons per hectare year and 30% lipid content. Similar yields in a large-scale facility indicate that production costs are approximately six times higher than the average domestic price for crude, well-head petroleum. Based on achievable targets for productivity and production costs, the potential for microalgae as a fuel feedstock is presented in context with selected process refining routes and is compared with conventional and alternative feedstocks (e.g., oilseeds) with which microalgae must compete. 24 references, 9 figures, 4 tables.
Yeast lipid metabolism at a glance.
Klug, Lisa; Daum, Günther
2014-05-01
During the last decades, lipids have gained much attention due to their involvement in health and disease. Lipids are required for the formation of membranes and contribute to many different processes such as cell signaling, energy supply, and cell death. Various organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, and lipid droplets are involved in lipid metabolism. The yeast Saccharomyces cerevisiae has become a reliable model organism to study biochemistry, molecular biology, and cell biology of lipids. The availability of mutants bearing defects in lipid metabolic pathways and the ease of manipulation by culture conditions facilitated these investigations. Here, we summarize the current knowledge about lipid metabolism in yeast. We grouped this large topic into three sections dealing with (1) fatty acids; (2) membrane lipids; and (3) storage lipids. Fatty acids serve as building blocks for the synthesis of membrane lipids (phospholipids, sphingolipids) and storage lipids (triacylglycerols, steryl esters). Phospholipids, sterols, and sphingolipids are essential components of cellular membranes. Recent investigations addressing lipid synthesis, degradation, and storage as well as regulatory aspects are presented. The role of enzymes governing important steps of the different lipid metabolic pathways is described. Finally, the link between lipid metabolic and dynamic processes is discussed.
Quantum information theory mathematical foundation
Hayashi, Masahito
2017-01-01
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an impro...
Quantum Computational Cryptography
Kawachi, Akinori; Koshiba, Takeshi
As computational approaches to classical cryptography have succeeded in the establishment of the foundation of the network security, computational approaches even to quantum cryptography are promising, since quantum computational cryptography could offer richer applications than the quantum key distribution. Our project focused especially on the quantum one-wayness and quantum public-key cryptosystems. The one-wayness of functions (or permutations) is one of the most important notions in computational cryptography. First, we give an algorithmic characterization of quantum one-way permutations. In other words, we show a necessary and sufficient condition for quantum one-way permutations in terms of reflection operators. Second, we introduce a problem of distinguishing between two quantum states as a new underlying problem that is harder to solve than the graph automorphism problem. The new problem is a natural generalization of the distinguishability problem between two probability distributions, which are commonly used in computational cryptography. We show that the problem has several cryptographic properties and they enable us to construct a quantum publickey cryptosystem, which is likely to withstand any attack of a quantum adversary.
Charge-reversal Lipids, Peptide-based Lipids, and Nucleoside-based Lipids for Gene Delivery
LaManna, Caroline M.; Lusic, Hrvoje; Camplo, Michel; McIntosh, Thomas J.; Barthélémy, Philippe; Grinstaff, Mark W.
2013-01-01
Conspectus Twenty years after gene therapy was introduced in the clinic, advances in the technique continue to garner headlines as successes pique the interest of clinicians, researchers, and the public. Gene therapy’s appeal stems from its potential to revolutionize modern medical therapeutics by offering solutions to a myriad of diseases by tailoring the treatment to a specific individual’s genetic code. Both viral and non-viral vectors have been used in the clinic, but the low transfection efficiencies when utilizing non-viral vectors have lead to an increased focus on engineering new gene delivery vectors. To address the challenges facing non-viral or synthetic vectors, specifically lipid-based carriers, we have focused on three main themes throughout our research: 1) that releasing the nucleic acid from the carrier will increase gene transfection; 2) that utilizing biologically inspired designs, such as DNA binding proteins, to create lipids with peptide-based headgroups will improve delivery; and 3) that mimicking the natural binding patterns observed within DNA, by using lipids having a nucleoside headgroup, will give unique supramolecular assembles with high transfection efficiency. The results presented in this Account demonstrate that cellular uptake and transfection efficacy can be improved by engineering the chemical components of the lipid vectors to enhance nucleic acid binding and release kinetics. Specifically, our research has shown that the incorporation of a charge-reversal moiety to initiate change of the lipid from positive to negative net charge during the transfection process improves transfection. In addition, by varying the composition of the spacer (rigid, flexible, short, long, and aromatic) between the cationic headgroup and the hydrophobic chains, lipids can be tailored to interact with different nucleic acids (DNA, RNA, siRNA) and accordingly affect delivery, uptake outcomes, and transfection efficiency. Introduction of a peptide
Quantum secret sharing with minimized quantum communication
Fortescue, Ben; Gour, Gilad
2013-03-01
Standard techniques for sharing a quantum secret among multiple players (such that certain subsets of the players can recover the secret while others are denied all knowledge of the secret) require a large amount of quantum communication to distribute the secret, which is likely to be the most costly resource in any practical scheme. Two known methods for reducing this cost are the use of imperfect ``ramp'' secret sharing (in which security is sacrificed for efficiency) and classical encryption (in which certain elements of the players' shares consist of classical information only). We demonstrate how one may combine these methods to reduce the required quantum communication below what has been previously achieved, in some cases to a provable minimum, without any loss of security. The techniques involved are closely-related to the properties of stabilizer codes, and thus have strong potential for being adapted to a wide range of quantum secret sharing schemes.
Towards quantum chemistry on a quantum computer.
Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G
2010-02-01
Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.
Quantum information theory and quantum statistics
Energy Technology Data Exchange (ETDEWEB)
Petz, D. [Alfred Renyi Institute of Mathematics, Budapest (Hungary)
2008-07-01
Based on lectures given by the author, this book focuses on providing reliable introductory explanations of key concepts of quantum information theory and quantum statistics - rather than on results. The mathematically rigorous presentation is supported by numerous examples and exercises and by an appendix summarizing the relevant aspects of linear analysis. Assuming that the reader is familiar with the content of standard undergraduate courses in quantum mechanics, probability theory, linear algebra and functional analysis, the book addresses graduate students of mathematics and physics as well as theoretical and mathematical physicists. Conceived as a primer to bridge the gap between statistical physics and quantum information, a field to which the author has contributed significantly himself, it emphasizes concepts and thorough discussions of the fundamental notions to prepare the reader for deeper studies, not least through the selection of well chosen exercises. (orig.)
Noncommutative Quantum Mechanics and Quantum Cosmology
Bastos, Catarina; Dias, Nuno; Prata, Joao Nuno
2009-01-01
We present a phase-space noncommutative version of quantum mechanics and apply this extension to Quantum Cosmology. We motivate this type of noncommutative algebra through the gravitational quantum well (GQW) where the noncommutativity between momenta is shown to be relevant. We also discuss some qualitative features of the GQW such as the Berry phase. In the context of quantum cosmology we consider a Kantowski-Sachs cosmological model and obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten (SW) map. The WDW equation is explicitly dependent on the noncommutative parameters, $\\theta$ and $\\eta$. We obtain numerical solutions of the noncommutative WDW equation for different values of the noncommutative parameters. We conclude that the noncommutativity in the momenta sector leads to a damped wave function implying that this type of noncommmutativity can be relevant for a selection of possible initial states for the universe.
Distribution of neutral lipids in the lipid droplet core
DEFF Research Database (Denmark)
Chaban, Vitaly V; Khandelia, Himanshu
2014-01-01
Cholesteryl esters (CEs) are a form of cholesterol (CHOL) storage in the living cells, as opposed to free CHOL. CEs are major constituents of low density lipoprotein particles. Therefore, CEs are implicated in provoking atherosclerosis. Arranged into cytoplasmic lipid droplets (LDs), CEs are stored...
Cholesterol lipids and cholesterol-containing lipid rafts in bacteria.
Huang, Zhen; London, Erwin
2016-09-01
Sterols are important components of eukaryotic membranes, but rare in bacteria. Some bacteria obtain sterols from their host or environment. In some cases, these sterols form membrane domains analogous the lipid rafts proposed to exist in eukaryotic membranes. This review describes the properties and roles of sterols in Borrelia and Helicobacter.
Basic concepts in quantum computation
Ekert, A K; Inamori, H; Ekert, Artur; Hayden, Patrick; Inamori, Hitoshi
2000-01-01
Section headings: 1 Qubits, gates and networks 2 Quantum arithmetic and function evaluations 3 Algorithms and their complexity 4 From interferometers to computers 5 The first quantum algorithms 6 Quantum search 7 Optimal phase estimation 8 Periodicity and quantum factoring 9 Cryptography 10 Conditional quantum dynamics 11 Decoherence and recoherence 12 Concluding remarks
Applications of quantum message sealing
Worley, G G
2005-01-01
In 2003, Bechmann-Pasquinucci introduced the concept of quantum seals, a quantum analogue to wax seals used to close letters and envelopes. Since then, some improvements on the method have been found. We first review the current quantum sealing techniques, then introduce and discuss potential applications of quantum message sealing, and conclude with some discussion of the limitations of quantum seals.
Quantum Advantage in Communication Networks
De, Aditi Sen
2011-01-01
Quantum channels are known to provide qualitatively better information transfer capacities over their classical counterparts. Examples include quantum cryptography, quantum dense coding, and quantum teleportation. This is a short review on paradigmatic quantum communication protocols in both bipartite as well as multipartite scenarios.
Quantum critical points in quantum impurity systems
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun Jung [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)]. E-mail: bulla@cpfs.mpg.de
2005-04-30
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.
Quantum critical points in quantum impurity systems
Lee, Hyun Jung; Bulla, Ralf
2005-04-01
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.
Decoherence in quantum mechanics and quantum cosmology
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Quantum inertia stops superposition: Scan Quantum Mechanics
Gato-Rivera, Beatriz
2017-08-01
Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.
Quantum ballistic evolution in quantum mechanics application to quantum computers
Benioff, P
1996-01-01
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also pr...
Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays
Lu, Bin; Smith, Tyler; Schmidt, Jacob J.
2015-04-01
The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which