WorldWideScience

Sample records for quantum dot molecules

  1. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  2. Dissipative tunneling in structures with quantum dots and quantum molecules

    OpenAIRE

    Dahnovsky, Yu. I.; Krevchik, V. D.; Semenov, M. B.; Yamamoto, K.; Zhukovsky, V. Ch.; Aringazin, A. K.; Kudryashov, E. I.; Mayorov, V. G.

    2005-01-01

    The problem of tunneling control in systems "quantum dot - quantum well" (as well as "quantum dot - quantum dot" or quantum molecule) and "quantum dot - bulk contact" is studied as a quantum tunneling with dissipation process in the semiclassical (instanton) approximation. For these systems temperature and correlation between a quantum dot radius and a quantum well width (or another quantum dot radius) are considered to be control parameters. The condition for a single electron blockade is fo...

  3. Quantum Computer Using Coupled Quantum Dot Molecules

    CERN Document Server

    Wu, N J; Natori, A; Yasunaga, H; Wu*, Nan-Jian

    1999-01-01

    We propose a method for implementation of a quantum computer using artificial molecules. The artificial molecule consists of two coupled quantum dots stacked along z direction and one single electron. One-qubit and two-qubit gates are constructed by one molecule and two coupled molecules, respectively.The ground state and the first excited state of the molecule are used to encode the |0> and |1> states of a qubit. The qubit is manipulated by a resonant electromagnetic wave that is applied directly to the qubit through a microstrip line. The coupling between two qubits in a quantum controlled NOT gate is switched on (off) by floating (grounding) the metal film electrodes. We study the operations of the gates by using a box-shaped quantum dot model and numerically solving a time-dependent Schridinger equation, and demonstrate that the quantum gates can perform the quantum computation. The operating speed of the gates is about one operation per 4ps. The reading operation of the output of the quantum computer can...

  4. Optically active quantum-dot molecules.

    Science.gov (United States)

    Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2017-02-20

    Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

  5. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  6. Spin Wigner molecules in quantum dots

    Science.gov (United States)

    Zutic, Igor; Oszwaldowski, Rafal; Stano, Peter; Petukhov, A. G.

    2013-03-01

    The interplay of confinement and Coulomb interactions in quantum dots can lead to strongly correlated phases differing qualitatively from the Fermi liquid behavior. While in three dimensions the correlation-induced Wigner crystal is elusive and expected only in the limit of an extremely low carrier density, its nanoscale analog, the Wigner molecule, has been observed in quantum dots at much higher densities [1]. We explore how the presence of magnetic impurities in quantum dots can provide additional opportunities to study correlation effects and the resulting ordering in carrier and impurity spins[2]. By employing exact diagonalization we reveal that seemingly simple two-carrier quantum dots lead to a rich phase diagram [2,3]. We propose experiments to verify our predictions; in particular, we discuss interband optical transitions as a function of temperature and magnetic field. DOE-BES, meta-QUTE 259 ITMS NFP Grant No. 26240120022, CE SAS QUTE, EU 260 Project Q-essence, Grant No. APVV-0646-10, and SCIEX.

  7. Single Molecule Applications of Quantum Dots

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.

    2013-01-01

    Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows: 1...

  8. Quantum Electrodynamics of Quantum Dot-Metal Nanoparticles Molecules

    CERN Document Server

    Ridolfo, A; Fina, N; Saija, R; Savasta, S

    2010-01-01

    We study theoretically the quantum optical properties of hybrid molecules composed of an individual quantum dot and a metallic nanoparticle. We calculate the resonance fluorescence of this hybrid system. Its incoherent part, the one arising from nonlinear quantum processes, results to be enhanced by more than two orders of magnitude as compared to that in the absence of the metallic nanoparticle. Scattering spectra at different excitation powers and nonperturbative calculations of intensity-field correlation functions show that this system can act as a nonlinear ultra-compact two-photon switch for incident photons, where the presence (or absence) of a single incident photon field is sufficient to allow (or prevent) the scattering of subsequent photons. We also find that a small frequency shift of the incident light field may cause changes in the intensity field correlation function of orders of magnitude.

  9. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  10. Phonon-assisted decoherence and tunneling in quantum dot molecules

    DEFF Research Database (Denmark)

    Grodecka-Grad, Anna; Foerstner, Jens

    2011-01-01

    We study the influence of the phonon environment on the electron dynamics in a doped quantum dot molecule. A non-perturbative quantum kinetic theory based on correlation expansion is used in order to describe both diagonal and off-diagonal electron-phonon couplings representing real and virtual...... processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...... the quantum dots is studied in detail. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)...

  11. Tunneling through molecules and quantum dots: master-equation approaches

    OpenAIRE

    Timm, Carsten

    2008-01-01

    An important class of approaches to the description of electronic transport through molecules and quantum dots is based on the master equation. We discuss various formalisms for deriving a master equation and their interrelations. It is shown that the master equations derived by Wangsness, Bloch, and Redfield and by Koenig et al. are equivalent. The roles of the large-reservoir and Markov approximations are clarified. The Markov approximation is traced back to nonzero bias voltage and tempera...

  12. Tunnel-coupled quantum dots: Atomistic Theory of Quantum Dot Molecules and Arrays

    Science.gov (United States)

    Bryant, Garnett W.; Aizpurua, J.; Jaskolski, W.; Zielinski, Michal

    2003-03-01

    Quantum dots are studied as artificial atoms for building novel artificial solids, as nanodevices in nanoelectronics, and as bio/nanohybrids. We present an atomistic tight-binding theory of coupled CdS nanocrystals and vertically and laterally coupled InAs self-assembled dots. Electron states of coupled dots follow the analogy of coupled dots as artificial molecules. Symmetric/antisymmetric pairs are formed with strongest coupling between states with high density at interdot interfaces. Complex coupling of hole states, with significant departures from the artificial molecule analogy, occurs because the coupling is determined by the hole envelope function and the hole atomic state. Some hole states couple to form symmetric/antisymmetric pairs. Other hole states couple through additional intermediate states to form two strongly split symmetric states and an antisymmetric state insensitive to coupling. These coupling effects lead to level reordering, changes in state symmetry, conversion of dark states to bright states and vice versa, and tailored polarization dependence.

  13. Quantum interference and control of the optical response in quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)

    2013-11-25

    We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.

  14. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, D., E-mail: david.hernandez@uca.es [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Herrera, M.; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 (PTM), 28760 Tres Cantos, Madrid (Spain); Pizarro, J.; Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-07-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  15. Quantum-Coherence-Assisted Tunable On- and Off-Resonance Tunneling through a Quantum-Dot-Molecule Dielectric Film

    Science.gov (United States)

    Shen, Jian Qi; Zeng, Rui Xi

    2017-02-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates.

  16. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  17. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  18. Electron Transport in Quantum Dots and Heat Transport in Molecules

    DEFF Research Database (Denmark)

    Kirsanskas, Gediminas

    to as artificial atoms [2, 3]. Additionally, in order for the system to be truly quantum, the size of the dot has to be comparable to the de Broglie wavelength of the electrons in it. What we have mentioned so far is rather abstract conditions, which practically can be realized in various systems, such as...... in all three directions, which makes it effectively zero dimensional and corresponds to discrete electronic orbitals (levels) and excitation spectrum. This is analogous to the situation in atoms, where confinement potential replaces the potential of the nucleus, thus quantum dots are often referred...

  19. A Single Molecule Investigation of the Photostability of Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Kulatunga, Pasad; Lagerholm, B. Christoffer

    2012-01-01

    Quantum dots (QDs) are very attractive probes for multi-color fluorescence applications. We report here however that single QDs that are subject to continuous blue excitation from a 100W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching...

  20. A single molecule investigation of the photostability of quantum dots.

    Directory of Open Access Journals (Sweden)

    Eva Christensen Arnspang

    Full Text Available Quantum dots (QDs are very attractive probes for multi-color fluorescence imaging in biological applications because of their immense brightness and reported extended photostability. We report here however that single QDs, suitable for biological applications, that are subject to continuous blue excitation from a conventional 100 W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a permanent dark, photobleached state. We further show that β-mercaptoethanol has a dual stabilizing effect on the fluorescence emission of QDs: 1 by increasing the frequency of time that a QD is in its fluorescent state, and 2 by decreasing the photobleaching rate. The observed QD color spectral switching is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination. However, of significant importance for biological applications, we find that even small, biologically compatible, concentrations (25 µM of β-mercaptoethanol has a significant stabilizing effect on the emission color of QDs, but that greater amounts are required to completely abolish the spectral blue shifting or to minimize the emission intermittency of QDs.

  1. Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots

    Science.gov (United States)

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra

    2011-03-01

    For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.

  2. Physics of lateral triple quantum-dot molecules with controlled electron numbers.

    Science.gov (United States)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-11-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.

  3. Synthesis and Resonance Energy Transfer in Conjugates of Luminescent Cadmium Selenide Quantum Dots and Chlorin e6 Molecules

    Science.gov (United States)

    Fedosyuk, A. A.; Artemyev, M. V.

    2013-05-01

    We synthesized a new type of conjugates of highly luminescent water soluble CdSe/ZnS colloidal quantum dots covalently bound to Chlorin e6 dye molecules. We observed a resonance energy transfer from quantum dots emitting at 660 nm to Chlorine e6 molecules in our conjugates which can be utilized for phototherapy. Contrary to that quantum dots emitting at 588 nm show non-resonance quenching of excitonic luminescence without the energy transfer to dye molecules.

  4. Coherent spectroscopy of a strongly driven triple quantum dot molecule

    Institute of Scientific and Technical Information of China (English)

    Xie Yan; Duan Su-Qing; Chu Wei-Dong; Yang Ning

    2010-01-01

    Based on a calculation model, we study the interference phenomena of serially coupled V-type and A-type triple quantum dots (CTQDs) driven simultaneously by a strong driving field and a weak probe field. Strongly depending on the configuration of the three-level CTQD, the probe absorption spectra, which are shown in the tunneling current,exhibit various quantum coherence properties. In the case where the two pairs of transitions of the CTQD have a small eigenfrequency difference , the double-coupling effect of the driving field results in two Autler-Townes doublets and one weak Mollow triplet in one spectrum. With the value of increasing, only one Autler-Townes splitting remains due to the single-coupling of the field. We also find that the effect of spontaneous emission of phonons may lead to an obvious background current, which can be used to distinguish which transition is driven by the driving field in experiment. The interesting quantum property of a CTQD revealed in our results suggests its potential applications in quantum modulators and quantum logic devices.

  5. Nanoassemblies Based on Semiconductor Quantum Dots and Dye Molecules:. Single Objects Detection and Related Interface Dynamics

    Science.gov (United States)

    Zenkevich, E.; von Borczyskowski, C.; Kowerko, D.

    2013-05-01

    Single molecule spectroscopy of QD-dye nanoassemblies is shown that single functionalized dye molecules (perylene-bisimides and meso-pyridyl porphyrins) can be considered as extremely sensitive probes for studying exciton and relaxation processes in semiconductor CdSe/ZnS quantum dots.

  6. Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules

    Institute of Scientific and Technical Information of China (English)

    TIAN Peng; HUANG Li-Rong; YUAN Xiu-Hua; HUANG De-Xiu

    2011-01-01

    @@ Self-assembled InAs quantum dot molecules are grown on GaAs substrates without following any special protocols by using metal-organic chemical vapor deposition.The effects of indium composition and the thickness of the InGaAs cap layer on the optical properties of InAs quantum dot molecules are investigated by photoluminescence.With increasing indium composition and thickness of the InGaAs cap layer, the ground-state wavelength of the emission spectrum redshifts and the peak intensity decreases.In addition, the structural and optical properties of quantum dots and quantum dot molecules are comparatively studied, and the results show that when quantum dots turn into quantum dot molecules, the emission wavelength red shifts.

  7. Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Lovey, Daniel A; Gomez, Sergio S; Romero, Rodolfo H, E-mail: rhromero@exa.unne.edu.ar [Instituto de Modelado e Innovacion Tecnologica, CONICET, and Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400) Corrientes (Argentina)

    2011-10-26

    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model. (paper)

  8. Tunneling induced transparency and controllable group velocity in triple and multiple quantum-dot molecules

    CERN Document Server

    Tian, Si-Cong; Wan, Ren-Gang; Ning, Yong-Qiang; Wang, Li-Jun

    2013-01-01

    We analyze the interaction of a triple quantum dot molecules controlled by the tunneling coupling instead of coupling laser. A general analytic expression for the steady-state linear susceptibility for a probe-laser field is obtained and we show that the system can exhibit two transparency windows. The group velocity of the probe-laser pulse is also analyzed. By changing the tunneling couplings, two laser pulses with different central frequency can propagate with the same group velocity. And the group velocity can be as low as 300 m/s in our system. We extend our analysis to the case of multiple quantum dot molecules (the number of the quantum dots is N) and show that the system can exhibit at most N-1 transparency windows. And at most N-1 laser pulses with different central frequencies can be slowed down.

  9. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used......Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... to probe coherence times of exciton states and relaxation processes, both of which are important for future applications....

  10. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used......Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... to probe coherence times of exciton states and relaxation processes, both of which are important for future applications....

  11. Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules.

    Science.gov (United States)

    Li, Jian-Bo; He, Meng-Dong; Chen, Li-Qun

    2014-10-06

    We study theoretically four-wave parametric amplification arising from the nonlinear optical response of hybrid molecules composed of semiconductor quantum dots and metallic nanoparticles. It is shown that highly efficient four-wave parametric amplification can be achieved by adjusting the frequency and intensity of the pump field and the distance between the quantum dot and the metallic nanoparticle. Specifically, the induced probe-wave gain is tunable in a large range from 1 to 1.43 × 10⁵. This gain reaches its maximum at the position of three-photon resonance. Our findings hold great promise for developing four-wave parametric oscillators.

  12. Evolution of self-assembled InAs quantum dot molecules by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tangmettajittakul, Ong-arj; Thainoi, Supachok; Panyakeow, Somsak; Ratanathammaphan, Somchai [Semiconductor Device Research Laboratory (Nanotech Center of Excellence), Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok (Thailand)

    2012-07-15

    Self-assembled InAs quantum dot molecules (QDMs) have been grown by thin-capping-and-regrowth MBE technique. The QDM-forming conditions have been changed by varying InAs growth rate in the range of 0.01-0.03 ML/s. We found that the InAs growth rate affects nano-propeller shape, dot density, and dot height. The densities of QDs, nano-propellers, and QDMs are increasing while increasing the InAs growth rate. In contrast, the dot height and the length of propeller blades are contrary to growth rate. Also, the uniformity of dots in QDMs can be changed by an increase of growth rate. These results are confirmed by photoluminescence (PL) measurement (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Dynamic Localization Condition of Two Electrons in a Strong dc-ac Biased Quantum Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Min; DUAN Su-Qing; ZHAO Xian-Geng; LIU Cheng-Shi

    2004-01-01

    @@ We present a perturbation investigation of dynamic localization condition of two electrons in a strong dc-ac biased quantum dot molecule. By reducing the system to an Hubbard-type effective two-site model and by applying Floquet theory, we find that the dynamical localization phenomenon occurs under certain values of the large strength of the dc and ac field. This demonstrates the possibility of using appropriate dc-ac fields to manipulate dynamical localized states in mesoscopic devices, which is an essential component of practical schemes for quantum information processing. Our conclusion is instructive to the field of quantum function devices.

  14. Growth and characterization of InP ringlike quantum-dot molecules grown by solid-source molecular beam epitaxy.

    Science.gov (United States)

    Jevasuwan, Wipakorn; Boonpeng, Poonyasiri; Panyakeow, Somsak; Ratanathammaphan, Somchai

    2010-11-01

    In this paper, we have studied the fabrication of InP ringlike quantum-dot molecules on GaAs(001) substrate grown by solid-source molecular beam epitaxy using droplet epitaxy technique and the effect of In deposition rate on the physical and optical properties of InP ringlike quantum-dot molecules. The In deposition rate is varied from 0.2 ML/s to 0.4, 0.8 and 1.6 ML/s. The surface morphology and cross-section were examined by ex-situ atomic force microscope and transmission electron microscope, respectively. The increasing of In deposition rate results in the decreasing of outer and inner diameters of InP ringlike quantum-dot molecules and height of InP quantum dots but increases the InP quantum dot and ringlike quantum-dot molecule densities. The photoluminescence peaks of InP ringlike quantum-dot molecules are blue-shifted and FWHM is narrower when In deposition rate is bigger.

  15. Role of Interactions in Electronic Structure of a Two-Electron Quantum Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    DONG Qing-Rui; XU Ying-Qiang; ZHANG Shi-Yong; NIU Zhi-Chuan

    2004-01-01

    @@ We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference △E between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.

  16. Dipolariton formation in quantum dot molecules strongly coupled to optical resonators

    CERN Document Server

    Domínguez, Marlon S; Ramírez, Hanz Y

    2016-01-01

    In this theoretical work, we study a double quantum dot interacting strongly with a microcavity, while undergoing resonant tunneling. Effects of interdot tunneling on the light-matter hybridized states are determined, and tunability of their brightness degrees and associated dipole moments is demonstrated. These results predict dipolariton generation in artificial molecules coupled to optical resonators, and provide a promising scenario for control of emission efficiency and coherence times of exciton polaritons.

  17. Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments.

    Science.gov (United States)

    Martynenko, Irina V; Orlova, Anna O; Maslov, Vladimir G; Baranov, Alexander V; Fedorov, Anatoly V; Artemyev, Mikhail

    2013-01-01

    The photoexcitation energy transfer is found and investigated in complexes of CdSe/ZnS cationic quantum dots and chlorin e6 molecules formed by covalent bonding and electrostatic interaction in aqueous solution and in porous track membranes. The quantum dots and chlorin e6 molecules form stable complexes that exhibit Förster resonance energy transfer (FRET) from quantum dots to chlorin e6 regardless of complex formation conditions. Competitive channels of photoexcitation energy dissipation in the complexes, which hamper the FRET process, were found and discussed.

  18. Series Solution for Localization and Entanglement of an Exciton in a Quantum Dot Molecule by an ac Electric Field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Schr(o)dinger equation involving the phenomenon of the localization and entanglement for an exciton in a quantum dot molecule by an ac electric field is analytically investigated. New exact series solutions for the Schr(o)dinger equation have been obtained for the first time. The analytical expressions can further describe the dynamical behaviors of an interacting electron-hole pair in a double coupled quantum dot molecule under an ac electric field accurately.

  19. Electron transport through a linear tri-quantum-dot molecule Aharonov-Bohm interference

    Science.gov (United States)

    Bai, Jiyuan; He, Zelong; Li, Li; Ye, Shujiang; Sun, Weimin

    2017-09-01

    Using the non-equilibrium Keldysh Green's function technique, electron transport properties through a two-terminal linear tri-quantum-dot molecule Aharonov-Bohm (A-B) interference are investigated. The conductance as a function of electron energy is numerically calculated. The influence of magnetic flux and interdot coupling strength on the conductance is researched. Fano resonances emerge in the conductance spectrum, and two bound states in the continuum form simultaneously when the interdot couplings take appropriate values. A conductance dip is observed and evolves into an antiresonance band with increasing magnetic flux. The system can be designed as a quantum switch by adjusting the intramolecular couplings.

  20. Hilbert space structure of a solid state quantum computer two-electron states of a double quantum dot artificial molecule

    CERN Document Server

    Hu, X; Hu, Xuedong

    2000-01-01

    We study theoretically a double quantum dot hydrogen molecule in the GaAs conduction band as the basic elementary gate for a quantum computer with the electron spins in the dots serving as qubits. Such a two-dot system provides the necessary two-qubit entanglement required for quantum computation. We determine the excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its dependence on an external magnetic field. In particular, we focus on the splitting of the lowest singlet and triplet states, the double occupation probability of the lowest states, and the relative energy scales of these states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We critically discuss the applicability of the envelope funct...

  1. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita; Carrillo-Carrion, Carolina; Niebling, Tobias; Parak, Wofgang J.; Heimbrodt, Wolfram, E-mail: Wolfram.Heimbrodt@physik.uni-marburg.de [Department of Physics and Material Sciences Center, Philipps-University Marburg, Renthof 5, D-35032 Marburg (Germany)

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.

  2. Time resolved single molecule spectroscopy of semiconductor quantum dot/conjugated organic hybrid nanostructures

    Science.gov (United States)

    Odoi, Michael Yemoh

    Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(tau) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2) (0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering , blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the Cd

  3. Shot noise of the spin inelastic tunneling through a quantum dot with single molecule-magnet

    Institute of Scientific and Technical Information of China (English)

    Chang Bo; Liang Jiu-Qing

    2011-01-01

    We have studied the quantum fluctuations of inelastic spin-electron scattering in quantum dot with an embedded biaxial single molecule-magnet and particularly investigated the zero-frequency shot noise and Fano factor in different magnetic fields. It is found that the shot noise and Fano factor exhibit a stepwise behaviour as bias increases in the presence of interaction between the electron and molecule-magnet for a weak magnetic field. As magnetic field becomes strong, a dip is displayed in the shot-noise-bias curve due to the suppression of inelastic shot noise caused by the quantum tunneling of magnetisation. Because of the spontaneous inelastic tunneling at zero bias, a small shot noise occurs, which results in the case of Fano factor F > 1. Moreover, our results show that the sweeping speed can also influence the shot noise and Fano factor obviously.

  4. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  5. Effects of Magnetic Field on the Valence Bond Property of the Double-Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The effects of the magnetic field on the valence bond property of the double-quantum-dot molecule are numerically studied by the finite element method and perturbation approach because of the absence of cylindrical symmetry in the horizontally coupled dots. The calculation results show that the energy value of the ground state changes differently from that of the first excited state with increasing magnetic field strength, and they cross under a certain magnetic field. The increasing magnetic field makes the covalent bond state change into an ionic bond state, which agrees qualitatively with experimental results and makes ionic bond states remain. The oscillator strength of transition between covalent bond states decreases distinctly with the increasing magnetic field strength, when the molecule is irradiated by polarized light. Such a phenomenon is possibly useful for actual applications.

  6. Role of confinements on the melting of Wigner molecules in quantum dots

    Science.gov (United States)

    Bhattacharya, Dyuti; Filinov, Alexei V.; Ghosal, Amit; Bonitz, Michael

    2016-03-01

    We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B 86, 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder. Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids". An intriguing signature of weakening liquidity with increasing temperature, T, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting". Our analyses carry serious implications for a variety of experiments on many-particle systems - semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.

  7. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... for simultaneous investigations of different plasma membrane species in order to discriminate the effect of the label from differences in movement of the target molecules....

  8. Electronic coupling of single lateral strained InGaAs quantum dot molecule based on nanohole structure

    Science.gov (United States)

    Parvizi, Roghaieh

    2016-02-01

    The electronic properties of laterally coupled InGaAs/GaAs quantum dot molecule are studied theoretically under in-plane electric field. The quantum dot molecule energy spectrum and envelope functions are calculated by solving one-band effective-mass Schrödinger equation with considering strain effect by employing finite element method in three dimensions. The obtained results indicate that the electron's coupling energy strongly depends on the In mole fractions of the nanohole, such that quantum dots act as a molecule in case that In mole fractions of dots are larger than that of nanohole. It can be also observed that electrons perceive the double-dots structure composing quantum dot molecule in close distances(less than 7 nm), while the holes discern two single dots structure. The effect of an in-plane electric field on the energy spectrum is investigated and it can be demonstrated that the coupling energy can be tuned by applying a low-intensity static electric field.

  9. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang [State Key laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Wan, Ren-Gang [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China)

    2015-06-15

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process.

  10. Effect of Coulomb Interaction on Dynamical Localization in a Two-Electron Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Min; DUAN Su-Qing; ZHAO Xian-Geng; LIU Cheng-Shi

    2004-01-01

    The combined interaction of Coulomb interaction and ac fields with two electrons in a quantum dot molecule is studied respectively with numerical simulation, perturbation theory and the approximation of driven two-level model. The dynamical localization occurs with the ac field whose ratio of the amplitude to the angular frequency is a root of n-order Bessel functions, where n is determined by the Coulomb interaction energy. Such results are explained with either the driven two-level approximation or the degenerated three-level model and verified by the numerical simulations.

  11. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... functionalization tag (e.g. streptavidin (sAv)) or the presence of multiple mono- or multivalent functionalization tags per QD. In this work, we have compared commercially available sAv-QDs of different sizes with custom prepared Co enzyme A (CoA)-QDs both targeting a GPI-anchored protein modified with either...

  12. Quantum Dot Molecule Polaritons and a Voltage-Tunable Vacuum Rabi Splitting

    Science.gov (United States)

    Vora, Patrick; Bracker, Allan; Carter, Samuel; Kim, Mijin; Kim, Chul Soo; Economou, Sophia; Gammon, Daniel

    2015-03-01

    InAs quantum dots (QDs) are a popular system for realizing quantum information protocols and studying cavity-QED. An additional class of optical transitions can be accessed by using quantum dot molecules (QDMs): a pair of tunnel-coupled QDs. Recombination can occur within one of the QDs (intradot) or across the tunnel barrier (interdot). Interdot transitions are typically weaker due to reduced wavefunction overlap. Recently, our team embedded a QDM within a GaAs photonic crystal cavity and demonstrated photonic enhancement of a singlet-triplet qubit. Here, we realize a strongly-coupled cavity-QDM system and demonstrate cavity-QED effects inaccessible in single QDs. These include the first observation of molecular polaritons in InAs QDs and a voltage-tunable vacuum Rabi splitting (2 g) . The tunable vacuum Rabi splitting can only occur in QDMs and provides an advantage as g is typically fixed post-fabrication. This flexibility could be useful for optical signal processing schemes that exploit the anharmonicity of the Jaynes-Cummings ladder.

  13. Engineering the hole confinement for CdTe-based quantum dot molecules

    Science.gov (United States)

    Kłopotowski, Ł.; Wojnar, P.; Kret, S.; Parlińska-Wojtan, M.; Fronc, K.; Wojtowicz, T.; Karczewski, G.

    2015-06-01

    We demonstrate an efficient method to engineer the quantum confinement in a system of two quantum dots grown in a vertical stack. We achieve this by using materials with a different lattice constant for the growth of the outer and inner barriers. We monitor the resulting dot morphology with transmission electron microscopy studies and correlate the results with ensemble quantum dot photoluminescence. Furthermore, we embed the double quantum dots into diode structures and study photoluminescence as a function of bias voltage. We show that in properly engineered structures, it is possible to achieve a resonance of the hole states by tuning the energy levels with electric field. At the resonance, we observe signatures of a formation of a molecular state, hybridized over the two dots.

  14. Engineering the hole confinement for CdTe-based quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kłopotowski, Ł., E-mail: lukasz.klopotowski@ifpan.edu.pl; Wojnar, P.; Kret, S.; Fronc, K.; Wojtowicz, T.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Parlińska-Wojtan, M. [Facility for Electron Microscopy and Sample Preparation, Center for Microelectronics and Nanotechnology, Faculty of Mathematics and Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-959 Rzeszów (Poland)

    2015-06-14

    We demonstrate an efficient method to engineer the quantum confinement in a system of two quantum dots grown in a vertical stack. We achieve this by using materials with a different lattice constant for the growth of the outer and inner barriers. We monitor the resulting dot morphology with transmission electron microscopy studies and correlate the results with ensemble quantum dot photoluminescence. Furthermore, we embed the double quantum dots into diode structures and study photoluminescence as a function of bias voltage. We show that in properly engineered structures, it is possible to achieve a resonance of the hole states by tuning the energy levels with electric field. At the resonance, we observe signatures of a formation of a molecular state, hybridized over the two dots.

  15. Interaction of a conjugated polyaromatic molecule with a single dangling bond quantum dot on a hydrogenated semiconductor.

    Science.gov (United States)

    Godlewski, Szymon; Kolmer, Marek; Engelund, Mads; Kawai, Hiroyo; Zuzak, Rafal; Garcia-Lekue, Aran; Saeys, Mark; Echavarren, Antonio M; Joachim, Christian; Sanchez-Portal, Daniel; Szymonski, Marek

    2016-02-07

    Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds.

  16. Blinking effect and the use of quantum dots in single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Domingo, M.P. [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Pardo, Julian [Grupo Apoptosis, Inmunidad y Cancer, Departamento Bioquimica y Biologia Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza (Spain); Fundacion Aragon I-D (ARAID), Gobierno de Aragon, Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain); Graeber, P. [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Galvez, E.M., E-mail: eva@icb.csic.es [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  17. Single semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Michler, Peter (ed.) [Stuttgart Univ. (Germany). Inst. fuer Halbleiteroptik und Funktionelle Grenzflaechen

    2009-07-01

    This book reviews recent advances in the exciting and rapidly growing field of semiconductor quantum dots via contributions from some of the most prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots due to their potential applications in devices operating with single electron spins and/or single photons. This includes single and coupled quantum dots in external fields, cavity-quantum electrodynamics, and single and entangled photon pair generation. Single Semiconductor Quantum Dots also addresses growth techniques to allow for a positioned nucleation of dots as well as applications of quantum dots in quantum information technologies. (orig.)

  18. Investigating the photostability of quantum dots at the single-molecule level.

    Science.gov (United States)

    Zhao, Wenfeng; Dong, Suli; Sun, Lichun; Wang, Qi; Gai, Hongwei

    2014-12-01

    Quantum dots (QDs) have shown great potential to provide spatial, temporal, and structural information for biological systems. However, blinking, photobleaching, and spectral blueshift are adverse effects on their practical applications in biomedical research. An investigation of the effects of six reducing agents including cysteine (Cys), 1,4-dithiothreitol (DTT), ethyl gallate (EG), L-glutathione (GSH), mercaptoacetic acid (MAA), and thiourea (TU) on the photostability of single QDs was studied. Our experiments demonstrate that both DTT and EG effectively inhibit blinking, photobleaching, and spectral blueshift. GSH molecules block blinking and photobleaching of QDs. The other reagents, Cys, MAA, and TU, only have the ability to counteract blinking. Possible explanations are given on the basis of research evidence. The results suggest possibilities for significant improvements in QDs for biological applications by adjusting the environmental conditions.

  19. Quantum-dot-sensitized solar cells: understanding linker molecules through theory and experiment.

    Science.gov (United States)

    Margraf, Johannes T; Ruland, Andrés; Sgobba, Vito; Guldi, Dirk M; Clark, Timothy

    2013-02-19

    We have investigated the role of linker molecules in quantum-dot-sensitized solar cells (QDSSCs) using density-functional theory (DFT) and experiments. Linkers not only govern the number of attached QDs but also influence charge separation, recombination, and transport. Understanding their behavior is therefore not straightforward. DFT calculations show that mercaptopropionic acid (MPA) and cysteine (Cys) exhibit characteristic binding configurations on TiO(2) surfaces. This information is used to optimize the cell assembly process, yielding Cys-based cells that significantly outperform MPA cells, and reach power conversion efficiencies (PCE) as high as 2.7% under AM 1.5 illumination. Importantly, the structural information from theory also helps understand the cause for this improved performance.

  20. Sensitization of photoprocesses in colloidal Ag2S quantum dots by dye molecules

    Science.gov (United States)

    Ovchinnikov, Oleg V.; Kondratenko, Tamara S.; Grevtseva, Irina G.; Smirnov, Mikhail S.; Pokutnyi, Sergey I.

    2016-07-01

    The effect of photosensitization of IR luminescence excitation (1205 nm) of colloidal Ag2S quantum dots (QDs) with average size of 2.5±0.6 nm in gelatin at 600 to 660 nm by molecules of 3,3'-di-(γ-sulfopropyl)-4,4',5,5'-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt (Dye1) and thionine dye (Dye2) was registered. Cis-J-aggregates of Dye1 and cations monomer of Dye2 conjugated with Ag2S QDs take part in this process. The photosensitization of luminescence excitation of colloidal Ag2S QDs was interpreted by resonance nonradiation transfer of electronic excitation energy from cis-J-aggregates of Dye1 and cations of Dye2 to centers of recombination luminescence of Ag2S QDs.

  1. Strain fields and chemical composition maps of Si Ge:Si(001) quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Marina Soares; Medeiros-Ribeiro, Gilberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Gray, Jeniffer L.; Hull, Robert [University of Virginia, Charlottesville, VA (United States); Floro, Jerrold A. [Sandia National Laboratories, NM (United States); Magalhaes-Paniago, Rogerio [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica

    2006-07-01

    Depending on kinetic and thermodynamic factors, numerous interesting structures can be created starting from epitaxially grown Si Ge:Si(001). In a regime of relatively low growth temperatures (about 550 degree C), a cooperative nucleation process takes place: pyramidal pits are formed preferentially, followed by the nucleation of {l_brace}105{r_brace} elongated islands, leading to Quantum Dot Molecules (QDMs), where the islands can interact electronically with each other. A thorough understanding of the formation of these structures requires knowledge of their strain and compositional fields. Recently, Grazing Incidence Anomalous X ray Diffraction (GIXRD) has been used to understand these issues. The purpose of the measurements taken on the XD1 beam line of the LNLS was to investigate compositional inhomogeneities in QDMs, which helped to elucidate their mechanisms of formation. (author)

  2. Blinking effect and the use of quantum dots in single molecule spectroscopy.

    Science.gov (United States)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M P; Pardo, Julian; Gräber, P; Galvez, E M

    2013-01-01

    Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the "on"/"off" states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  3. Intracellular tracking of single native molecules with electroporation-delivered quantum dots.

    Science.gov (United States)

    Sun, Chen; Cao, Zhenning; Wu, Min; Lu, Chang

    2014-11-18

    Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at native intracellular molecules and organelles in live cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles.

  4. Doping effect on the adsorption of NH3 molecule onto graphene quantum dot: From the physisorption to the chemisorption

    Science.gov (United States)

    Seyed-Talebi, Seyedeh Mozhgan; Beheshtian, J.; Neek-amal, M.

    2013-09-01

    The adsorption of ammonia molecule onto a graphene hexagonal flake, aluminum (Al) and boron (B) doped graphene flakes (graphene quantum dots, GQDs) are investigated using density functional theory. We found that NH3 molecule is absorbed to the hollow site through the physisorption mechanism without altering the electronic properties of GQD. However, the adsorption energy of NH3 molecule onto the Al- and B-doped GQDs increases with respect GQD resulting chemisorption. The adsorption of NH3 onto the Al-doped and B-doped GQDs makes graphene locally buckled, i.e., B- doped and Al-doped GQDs are not planar. The adsorption mechanism onto a GQD is different than that of graphene. This study reveals important features of the edge passivation and doping effects of the adsorption mechanism of external molecules onto the graphene quantum dots.

  5. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

    Science.gov (United States)

    Weiss, Emily A

    2013-11-19

    In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this

  6. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes

    Science.gov (United States)

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong

    2013-10-01

    The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to

  7. Electron Transfer as a Probe of the Interfacial Quantum Dot-Organic Molecule Interaction

    Science.gov (United States)

    Peterson, Mark D.

    This dissertation describes a set of experimental and theoretical studies of the interaction between small organic molecules and the surfaces of semiconductor nanoparticles, also called quantum dots (QDs). Chapter 1 reviews the literature on the influence of ligands on exciton relaxation dynamics following photoexcitation of semiconductor QDs, and describes how ligands promote or inhibit processes such as emission, nonradiative relaxation, and charge transfer to redox active adsorbates. Chapter 2 investigates the specific interaction of alkylcarboxylated viologen derivatives with CdS QDs, and shows how a combination of steady-state photoluminescence (PL) and transient absorption (TA) experiments can be used to reveal the specific binding geometry of redox active organic molecules on QD surfaces. Chapter 3 expands on Chapter 2 by using PL and TA to provide information about the mechanisms through which methyl viologen (MV 2+) associates with CdS QDs to form a stable QD/MV2+ complex, suggesting two chemically distinct reactions. We use our understanding of the QD/molecule interaction to design a drug delivery system in Chapter 4, which employs PL and TA experiments to show that conformational changes in a redox active adsorbate may follow electron transfer, "activating" a biologically inert Schiff base to a protein inhibitor form. The protein inhibitor limits cell motility and may be used to prevent tumor metastasis in cancer patients. Chapter 5 discusses future applications of QD/molecule redox couples with an emphasis on efficient multiple charge-transfer reactions -- a process facilitated by the high degeneracy of band-edge states in QDs. These multiple charge-transfer reactions may potentially increase the thermodynamic efficiency of solar cells, and may also facilitate the splitting of water into fuel. Multiple exciton generation procedures, multi-electron transfer experiments, and future directions are discussed.

  8. Functionalized Self-Assembled InAs/GaAs Quantum-Dot Structures Hybridized with Organic Molecules

    DEFF Research Database (Denmark)

    Chen, Miaoxiang Max; Kobashi, K.; Chen, B.

    2010-01-01

    Low-dimensional III-V semiconductors have many advantages over other semiconductors; however, they are not particularly stable under physiological conditions. Hybridizing biocompatible organic molecules with advanced optical and electronic semiconductor devices based on quantum dots (QDs......) and quantum wires could provide an efficient solution to realize stress-free and nontoxic interfaces to attach larger functional biomolecules. Monitoring the modifications of the optical properties of the hybrid molecule-QD systems by grafting various types of air-stable diazonium salts onto the QD structures...

  9. Prospect of detection and recognition of single biological molecules using ultrafast coherent dynamics in quantum dot-metallic nanoparticle systems

    Science.gov (United States)

    Sadeghi, S. M.

    2015-08-01

    Conventional plasmonic sensors are based on the intrinsic resonances of metallic nanoparticles. In such sensors wavelength shift of such resonances are used to detect biological molecules. Recently we introduced ultra-sensitive timedomain nanosensors based on the way variations in the environmental conditions influence coherent dynamics of hybrid systems consisting of metallic nanoparticles and quantum dots. Such dynamics are generated via interaction of these systems with a laser field, generating quantum coherence and coherent exciton-plasmon coupling. These sensors are based on impact of variations of the refractive index of the environment on such dynamics, generating time-dependent changes in the emission of the QDs. In this paper we study the impact of material properties of the metallic nanoparticles on this process and demonstrate the key role played by the design of the quantum dots. We show that Ag nanoparticles, even in a simple spherical shape, may allow these sensors to operate at room temperature, owing to the special properties of quantum dot-metallic nanoparticle systems that may allow coherent effects utilized in such sensors happen in the presence of the ultrafast polarization dephasing of quantum dots.

  10. Photoluminescence Intermittency from Single Quantum Dots to Organic Molecules: Emerging Themes

    Science.gov (United States)

    Riley, Erin A.; Hess, Chelsea M.; Reid, Philip J.

    2012-01-01

    Recent experimental and theoretical studies of photoluminescence intermittency (PI) or “blinking” exhibited by single core/shell quantum dots and single organic luminophores are reviewed. For quantum dots, a discussion of early models describing the origin of PI in these materials and recent challenges to these models are presented. For organic luminophores the role of electron transfer, proton transfer and other photophysical processes in PI are discussed. Finally, new experimental and data analysis methods are outlined that promise to be instrumental in future discoveries regarding the origin(s) of PI exhibited by single emitters. PMID:23202909

  11. Dynamical Localization in a Two-Electron Quantum Dot Molecule Biased by a dc Voltage

    Institute of Scientific and Technical Information of China (English)

    王立民; 段素青; 赵宪庚; 刘承师; 马本堃

    2003-01-01

    We study the dynamics of two interacting electrons in a coupled-quantum-dot system with a time-dependent external electric field. The numerical results of the two-particle states reveal that the dynamical localization still exists under appropriate dc and ac voltage amplitudes. Such localization is different from the stationary localization phenomenon. Our conclusion is instructive for the field of quantum function devices.

  12. Using light-switching molecules to modulate charge mobility in a quantum dot array

    Science.gov (United States)

    Chu, Iek-Heng; Trinastic, Jonathan; Wang, Lin-Wang; Cheng, Hai-Ping

    2014-03-01

    We have studied the electron hopping in a two-CdSe quantum dot (QD) system linked by an azobenzene-derived light-switching molecule. This system can be considered as a prototype of a QD supercrystal. Following the computational strategies given in our recent work [I.-H. Chu et al., J. Phys. Chem. C 115, 21409 (2011), 10.1021/jp206526s], we have investigated the effects of molecular attachment, molecular isomer (trans and cis), and QD size on the electron hopping rate using Marcus theory. Our results indicate that molecular attachment has a large impact on the system for both isomers. In the most energetically favorable attachment, the cis isomer provides significantly greater coupling between the two QDs and hence the electron hopping rate is greater compared to the trans isomer. As a result, the carrier mobility of the QD array in the low carrier density, weak external electric-field regime is several orders of magnitude higher in the cis compared to the trans configuration. This demonstration of mobility modulation using QDs and azobenzene could lead to an alternative type of switching device.

  13. Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haixia [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Jiang Bingying [School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400040 (China); Xiang Yun, E-mail: yunatswu@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Yuyong; Chai Yaqin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-03-04

    A novel strategy for 'signal on' and sensitive one-spot simultaneous detection of multiple small molecular analytes based on electrochemically encoded barcode quantum dot (QD) tags is described. The target analytes, adenosine triphosphate (ATP) and cocaine, respectively, are sandwiched between the corresponding set of surface-immobilized primary binding aptamers and the secondary binding aptamer/QD bioconjugates. The captured QDs yield distinct electrochemical signatures after acid dissolution, whose position and size reflect the identity and level, respectively, of the corresponding target analytes. Due to the inherent amplification feature of the QD labels and the 'signal on' detection scheme, as well as the sensitive monitoring of the metal ions released upon acid dissolution of the QD labels, low detection limits of 30 nM and 50 nM were obtained for ATP and cocaine, respectively, in our assays. Our multi-analyte sensing system also shows high specificity to target analytes and promising applicability to complex sample matrix, which makes the proposed assay protocol an attractive route for screening of small molecules in clinical diagnosis.

  14. Probing ultrafast carrier tunneling dynamics in individual quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Kai; Bechtold, Alexander; Kaldewey, Timo; Zecherle, Markus; Wildmann, Johannes S.; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J. [Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748, Garching (Germany); Ruppert, Claudia; Betz, Markus [Experimentelle Physik 2, TU Dortmund, 44221, Dortmund (Germany); Krenner, Hubert J. [Lehrstuhl fuer Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universitaet Augsburg, Universitaetsstr 1, 86159, Augsburg (Germany); Villas-Boas, Jose M. [Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, MG (Brazil)

    2013-02-15

    Ultrafast pump-probe spectroscopy is employed to directly monitor the tunneling of charge carriers from single and vertically coupled quantum dots and probe intra-molecular dynamics. Immediately after resonant optical excitation, several peaks are observed in the pump-probe spectrum arising from Coulomb interactions between the photogenerated charge carriers. The influence of few-Fermion interactions in the photoexcited system and the temporal evolution of the optical response is directly probed in the time domain. In addition, the tunneling times for electrons and holes from the QD nanostructure are independently determined. In polarization resolved measurements, near perfect Pauli-spin blockade is observed in the spin-selective absorption spectrum as well as stimulated emission. While electron and hole tunneling from single quantum dots is shown to be well explained by the WKB formalism, for coupled quantum dots pronounced resonances in the electron tunneling rate are observed arising from elastic and inelastic electron tunneling between the different dots. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Hydrophobin-Encapsulated Quantum Dots.

    Science.gov (United States)

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  16. Binding of electrons, holes, and excitons in symmetric strained InP/ In0.49 Ga0.51 P triple quantum-dot molecules

    Science.gov (United States)

    Tadić, M.; Peeters, F. M.

    2004-11-01

    The electron, hole, and exciton spectra in the strained quantum-dot molecule consisting of three vertically arranged type-II InP/ In0.49 Ga0.51 P self-assembled quantum dots are modeled by the k•p theory. For the sake of simplicity, we consider dots of cylindrical shape, but take into account the anisotropy of the strain through the continuum mechanical model. For thick spacers, the strain leads to an upward shift of the lowest energies in all explored electron shells, but for spacers thinner than, say, the coupling length, the quantum mechanical coupling prevails, and downward shifts are observed. The magnitudes of both the energy shift and the coupling length vary with the quantum-dot height. For the holes, the interplay of strain and mixing enables binding at larger distances than for the electrons. The overlap of the hole clouds is basically established by means of the light holes, which are confined by the strain in the spacer between the dots and may efficiently couple the heavy-hole states, which are localized inside the quantum dots. Similar to electrons, the exciton lowest-energy states of different angular momenta, as computed by an exact-diagonalization approach, exhibit overshoots on the single-quantum-dot levels. Good agreement is found with experiment on the spatial location of electrons and holes in the triple-quantum-dot molecules.

  17. Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units

    DEFF Research Database (Denmark)

    Chen, Miaoxiang Max; Kobashi, Kazufumi

    2012-01-01

    Hybridizing air-stable organic-molecules with advanced III-V semiconductor quantum-dots (QDs) structures can be utilized to create a new generation of biochemical sensing devices. In order to enhance their optical performances, the active regions in these QDs structures commonly consist...... of multistacked dots-in-a-well (DWELL) units. The effects of grafted molecules on the performances of the QDs structures with multistacked DWELLs, however, still remain unclear. Here, we show the significant improvements in the optical properties of InAs QDs in a hybrid nanosystem obtained by grafting...... biocompatible diazonium salt compound (amine donor) atop InAs QDs structure. Since its interface between the QDs structure and molecular monolayer retains an uncontaminated and non-oxidized condition, the nanosystem is an ideal platform to study the intrinsic properties of charge-carrier transport inside...

  18. Analysis of the fluctuations of a single-tethered, quantum-dot labeled DNA molecule in shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Laube, K; Guenther, K; Mertig, M, E-mail: michael.mertig@tu-dresden.de [Professur fuer Physikalische Chemie, Mess- und Sensortechnik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2011-05-11

    A novel technique for analyzing the conformational fluctuations of a single, surface-tethered DNA molecule by fluorescence microscopy is reported. Attaching a nanometer-sized fluorescent quantum dot to the free end of a {lambda}-phage DNA molecule allows us to study the fluctuations of a native DNA molecule without the mechanical properties being altered by fluorescent dye staining. We report on the investigation of single-tethered DNA in both the unperturbed and the shear flow induced stretched state. The dependence of the observed fractional extension and the magnitude of fluctuations on the shear rate can be qualitatively interpreted by Brochard's stem-and-flower model. The cyclic dynamics of a DNA molecule is directly observed in the shear flow experiment.

  19. All-optical non-demolition measurement of single-hole spin in a quantum-dot molecule

    OpenAIRE

    F. Troiani; Wilson-Rae, I.; Tejedor, C.

    2006-01-01

    We propose an all-optical scheme to perform a non-demolition measurement of a single hole spin localized in a quantum-dot molecule. The latter is embedded in a microcavity and driven by two lasers. This allows to induce Raman transitions which entangle the spin state with the polarization of the emitted photons. We find that the measurement can be completed with high fidelity on a timescale of 100 ps, shorter than the typical T2. Furthermore, we show that the scheme can be used to induce and ...

  20. X-ray Diffraction Mapping Of Strain Fields And Chemical Composition Of Sige:si(001) Quantum Dot Molecules

    OpenAIRE

    2006-01-01

    A variety of surface morphologies can be formed by controlling kinetic parameters during heteroepitaxial film growth. The system reported is a Si0.7 Ge0.3 film grown by molecular beam epitaxy at 550°C and a 1 s deposition rate, producing quantum dot molecule (QDM) structures. These nanostructures are very uniform in size and shape, allowing strain mapping and chemical composition evaluation by means of anomalous x-ray diffraction in a grazing incidence geometry. Tensile and compressed regions...

  1. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  2. Quantum dot single molecule tracking reveals a wide range of diffusive motions of membrane transport proteins

    Science.gov (United States)

    Crane, Jonathan M.; Haggie, Peter M.; Verkman, A. S.

    2009-02-01

    Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.

  3. Quantum dots and microfluidic single-molecule detection for screening genetic and epigenetic cancer markers in clinical samples

    Science.gov (United States)

    Wang, Tza-Huei; Bailey, Vasudev; Liu, Kelvin

    2011-06-01

    Genomic analysis of biomarkers, including genetic markers such as point mutations and epigenetic markers such as DNA methylation, has become a central theme in modern disease diagnosis and prognosis. Recently there is an increasing interest in using single-molecule detection (SMD) for genomic detection. The driving force not only comes from its ultrahigh sensitivity that can allow the detection of low-abundance nucleic acids with reduced or without the need of amplification but also from its potential in achieving high-accuracy quantification of rare targets via singlemolecule sorting. The unique photophysical properties of semiconductor quantum dots (QDs) have made them ideal for use as spectral labels and luminescent probes. QDs also make excellent donors to pair with organic dyes in the fluorescence resonance energy transfer (FRET) process due to the features of narrow emission spectra and small Stokes shift. We have developed highly sensitive, quantitative and clinically relevant technologies for analysis of genomic markers based on the convergence of SMD, microfluidic manipulations, and quantum dot fluorescence resonance energy transfer technology (QD-FRET). Extraordinary performances of these new technologies have been exemplified by analysis of a variety of biomarkers including point mutations, DNA integrity and DNA methylation in clinical samples.

  4. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  5. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  6. Colloidal quantum dots as optoelectronic elements

    Science.gov (United States)

    Vasudev, Milana; Yamanaka, Takayuki; Sun, Ke; Li, Yang; Yang, Jianyong; Ramadurai, Dinakar; Stroscio, Michael A.; Dutta, Mitra

    2007-02-01

    Novel optoelectronic systems based on ensembles of semiconductor nanocrystals are addressed in this paper. Colloidal semiconductor quantum dots and related quantum-wire structures have been characterized optically; these optical measurements include those made on self-assembled monolayers of DNA molecules terminated on one end with a common substrate and on the other end with TiO II quantum dots. The electronic properties of these structures are modeled and compared with experiment. The characterization and application of ensembles of colloidal quantum dots with molecular interconnects are considered. The chemically-directed assembly of ensembles of colloidal quantum dots with biomolecular interconnects is demonstrated with quantum dot densities in excess of 10 +17 cm -3. A number of novel photodetectors have been designed based on the combined use of double-barrier quantum-well injectors, colloidal quantum dots, and conductive polymers. Optoelectronic devices including photodetectors and solar cells based on threedimensional ensembles of quantum dots are considered along with underlying phenomena such as miniband formation and the robustness of minibands to displacements of quantum dots in the ensemble.

  7. Corrugated single layer templates for molecules: From $h$-BN Nanomesh to Graphene based Quantum dot arrays

    CERN Document Server

    Ma, Haifeng; Schmidlin, Jeanette; Roth, Silvan; Morscher, Martin; Greber, Thomas

    2010-01-01

    Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of sp2 hybridized single layers of hexagonal boron nitride or carbon (graphene) on metal supports. If the substrate and the single layer have a lattice mismatch, superstructures are formed. On substrates like rhodium or ruthenium these superstructures have unit cells with ~3 nm lattice constant. They are corrugated and contain sub-units, which behave like traps for molecules or quantum dots, which are small enough to become operational at room temperature. For graphene on Rh(111) we emphasize a new structural element of small extra hills within the corrugation landscape. For the case of molecules like water it is shown that new phases assemble on such templates, and that they can be used as "nano-laboratories" where many individual processes are studied in parallel. Furthermore, it is shown that the h-BN/Rh(111) nanomesh displays a strong scanning tunneling microscopy ...

  8. Quantum Wigner molecules in semiconductor quantum dots and cold-atom optical traps and their mathematical symmetries

    CERN Document Server

    Yannouleas, Constantine

    2016-01-01

    Strong repelling interactions between a few fermions or bosons confined in two-dimensional circular traps lead to particle localization and formation of quantum Wigner molecules (QWMs) possessing definite point-group space symmetries. These point-group symmetries are "hidden" (or emergent), namely they cannot be traced in the circular single-particle densities (SPDs) associated with the exact many-body wave functions, but they are manifested as characteristic signatures in the ro-vibrational spectra. An example, among many, are the few-body QWM states under a high magnetic field or at fast rotation, which are precursor states for the fractional quantum Hall effect. The hidden geometric symmetries can be directly revealed by using spin-resolved conditional probability distributions, which are extracted from configuration-interaction (CI), exact-diagonalization wave functions. The hidden symmetries can also be revealed in the CI SPDs by reducing the symmetry of the trap (from circular to elliptic to quasi-linea...

  9. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, S.

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  10. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  11. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small

  12. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  13. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  14. Quantum dots with single-atom precision.

    Science.gov (United States)

    Fölsch, Stefan; Martínez-Blanco, Jesús; Yang, Jianshu; Kanisawa, Kiyoshi; Erwin, Steven C

    2014-07-01

    Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.

  15. 量子点的单分子生物成像%Study on Single Bio-Molecule Imaging of Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    杨丹丹; 罗雪; 王润芳; 任小苗; 马迪; 张紫薇(综述); 王艳(审校)

    2015-01-01

    半导体量子点(量子点)是纳米尺度的晶体,其具有独特的光物理性质,如荧光寿命较长、对光漂白有独特的稳定性、较大的带隙位移及狭窄对称的荧光谱峰,这些特性使量子点成为有前途的生物光学标记,如作为免疫荧光标记细胞和组织、DNA探针及单分子探针等。量子点可用于标记DNA序列或电化学检测蛋白质。该文就量子点的属性与毒性及其光学与电化学生物的分析应用,尤其是量子点在生物医学中的应用予以综述。%Semiconductor quantum dots are nanometre-scale crystals,which have unique photophysical properties,such as longer fluorescence lifetime,unique stability on photobleaching,and larger bandgap dis-placement and narrow symmetrical fluorescence spectra peak .Such properties enable quantum dots to be the promising optical labels for the biological applications ,such as immunofluorescence labeling of cells and tis-sues,DNA probe and single-molecule probes.Meanwhile,quantum dots can also be used as labels for the electrochemical detection of DNA or proteins .Here is to make a review of the properties and toxicity of quan-tum dots and their analytical applications in optics and electrochemical biology ,especially the application of quantum dots in the area of biomedicine.

  16. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the line

  17. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the

  18. Quantum dot nanostructures

    Directory of Open Access Journals (Sweden)

    Mohamed Henini

    2002-06-01

    These sophisticated technologies for the growth of high quality epitaxial layers of compound semiconductor materials on single crystal semiconductor substrates are becoming increasingly important for the development of the semiconductor electronics industry. This article is intended to convey the flavor of the subject by focusing on the technology and applications of self-assembled quantum dots (QDs and to give an introduction to some of the essential characteristics.

  19. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  20. Electron correlations in quantum dots

    CERN Document Server

    Tipton, D L J

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining p...

  1. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  2. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  3. Principles of conjugating quantum dots to proteins via carbodiimide chemistry.

    Science.gov (United States)

    Song, Fayi; Chan, Warren C W

    2011-12-09

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein-quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  4. Influence of single dye molecules on temperature and time dependent optical properties of CdSe/ZnS quantum dots: Ensemble and single nanoassembly detection

    Science.gov (United States)

    Zenkevich, Eduard I.; Stupak, Alexander P.; Kowerko, Danny; Borczyskowski, Christian von

    2012-10-01

    Optical spectroscopy on ensembles and single CdSe/ZnS semiconductor quantum dots (QDs) demonstrates a competition of trap and near band edge photoluminescence (PL). This competition can be markedly influenced by a few surface attached pyridyl functionalized dye molecules (porphyrins or perylene diimides) forming nanoassemblies with well defined geometries. Temperature variation and related changes in absorption and emission reveal sharp changes of the ligand shell structure in a narrow temperature range for organic (TOPO and amine) surfactants (phase transition). The effects on QD PL at this transition become considerably pronounced upon attachment of only a few dye molecules to QD surface. Moreover, under ambient conditions amine capped QDs are photodegraded in the course of time. This process is enhanced by attached dye molecules both on the ensemble and single particle/dye level. This investigation elaborates the importance of (switchable) surface states for the characterization of the PL of QDs.

  5. Quantum dots: Rethinking the electronics

    Science.gov (United States)

    Bishnoi, Dimple

    2016-05-01

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  6. Wigner molecules and charged excitons in near-field magnetophotoluminescence spectra of self-organized InP/GaInP quantum dots

    Science.gov (United States)

    Mintairov, A. M.; Kapaldo, J.; Merz, J. L.; Vlasov, A. S.; Blundell, S. A.

    2017-03-01

    We used high-spatial-resolution, low-temperature near-field scanning optical microscopy (NSOM) operating at magnetic fields B =0 -10 T to study the effects of Wigner localization (WL) on emission spectra of single self-organized InP/GaInP quantum dots (QDs) and investigate the stability of singly (trion) and doubly (tetron) charged exciton complexes in the weak quantum confinement regime. Using NSOM measurements together with configuration interaction calculations, we identify the dots having different electron population N (N =1 -12 ) , quantum confinement (ℏ ω0=0.6 -8 meV ) and size D (D =70 -170 nm ) . For N =2 , we observed a magnetic-field-induced molecular-droplet transition, accompanied by the decomposition of the tetron into a Wigner molecule complex (WMC), and the activation of rotovibronic structure. For N =1 , unusually strong vibronic structure resulting from a trion-type WMC was observed. We have shown that magnetic-field-induced shifts of this structure allow measurement of single particle Fock-Darwin levels and angular momentum transitions of the WMC. In addition, we demonstrated the use of NSOM imaging to probe the charge density distribution and observed anomalous dependence of the image size on the quantum confinement, implying a pairing of electrons or formation of whispering gallery modes in the QD. We demonstrated that InP/GaInP QDs, provide a Wigner-Seitz radius (rs) up to 13, and that the measurements of NSOM magneto-optical spectroscopy using these dots makes it possible to study effects arising from strong Coulomb interaction of a few confined electrons (holes).

  7. Semiconductor Quantum Dots in Chemical Sensors and Biosensors

    OpenAIRE

    Nikos Chaniotakis; Frasco, Manuela F.

    2009-01-01

    Quantum dots are nanometre-scale semiconductor crystals with unique optical properties that are advantageous for the development of novel chemical sensors and biosensors. The surface chemistry of luminescent quantum dots has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids or small-molecule ligands. This review overviews the design of sensitive and selective nanoprobes, ranging from the type of target molecules to the optical ...

  8. Semiconductor Quantum Dots in Chemical Sensors and Biosensors

    Directory of Open Access Journals (Sweden)

    Nikos Chaniotakis

    2009-09-01

    Full Text Available Quantum dots are nanometre-scale semiconductor crystals with unique optical properties that are advantageous for the development of novel chemical sensors and biosensors. The surface chemistry of luminescent quantum dots has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids or small-molecule ligands. This review overviews the design of sensitive and selective nanoprobes, ranging from the type of target molecules to the optical transduction scheme. Representative examples of quantum dot-based optical sensors from this fast-moving field have been selected and are discussed towards the most promising directions for future research.

  9. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform.

    Science.gov (United States)

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong; Shi, Hanchang; Long, Feng

    2016-01-28

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples.

  10. Quantum dots in cell biology.

    Science.gov (United States)

    Barroso, Margarida M

    2011-03-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.

  11. Quantum Dots in Cell Biology

    OpenAIRE

    Barroso, Margarida M.

    2011-01-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated t...

  12. Effects of bias on dynamics of an AC-driven two-electron quantum-dot molecule

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Min; Duan Su-Qing; Zhao Xian-Geng; Liu Cheng-Shi

    2005-01-01

    The effects of bias on the dynamical localization of two interacting electrons in a pair of coupled quantum dots driven by external AC fields have been numerically investigated. With an effective two-site model and Floquet formalism,the time-dependent Schrodinger equation is numerically solved and the Pmin, the minimum of the population evolution of the initial state within a certain time period, is used to quantify the degree of the dynamical localization. Results indicate that the bias can change the energy of the initial state and break the dynamical symmetry of the system with a pure AC field. And the amplitude of the AC field with dynamical localization phenomenon changes with bias. All the numerical results are explained by the perturbation theory and two-level approximation.

  13. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode

    Science.gov (United States)

    Mora-Seró, Iván; Giménez, Sixto; Moehl, Thomas; Fabregat-Santiago, Francisco; Lana-Villareal, Teresa; Gómez, Roberto; Bisquert, Juan

    2008-10-01

    Colloidal CdSe quantum dots (QDs) of different sizes, prepared by a solvothermal route, have been employed as sensitizers of nanostructured TiO2 electrode based solar cells. Three different bifunctional linker molecules have been used to attach colloidal QDs to the TiO2 surface: mercaptopropionic acid (MPA), thioglycolic acid (TGA), and cysteine. The linker molecule plays a determinant role in the solar cell performance, as illustrated by the fact that the incident photon to charge carrier generation efficiency (IPCE) could be improved by a factor of 5-6 by using cysteine with respect to MPA. The photovoltaic properties of QD sensitized electrodes have been characterized for both three-electrode and closed two-electrode solar cell configurations. For three-electrode measurement a maximum power conversion efficiency near 1% can be deduced, but this efficiency is halved in the closed cell configuration mainly due to the decrease of the fill factor (FF).

  14. Photoluminescence spectral study of single cadmium selenide/zinc sulfide colloidal nanocrystals in poly(methyl methacrylate) and quantum dots molecules

    Science.gov (United States)

    Shen, Yaoming

    Quantum dots (QDs)and Nano-crystals (NCs) have been studies for decades. Because of the nanoscale quantum confinement, delta shape like energy density states and narrowband emitters properties, they hold great promise for numerous optoelectronics and photonics applications. They could be used for tunable lasers, white LED, Nano-OLED, non-volatile memory and solar cells. They are also the most promising candidates for the quantum computing. The benefits for NCs over QDs is that NCs can be incorporated into a variety of polymers as well as thin films of bulk semiconductors. These exceptional flexibility and structural control distinguish NCs from the more traditional QD structures fabricated using epitaxial growth techniques. In my research of work, I studied the photoluminescence (PL) and absorption character of ensemble NCs incorporated in Polymethyl methacrylate (PMMA). To understand the behavior of the NCs in PMMA, it is important to measure a singe NC to avoid the inhomogenous broading of many NCs. So I particularly studied the behavior of a single NC in PMMA matrix. A microphotoluminescence setup to optically isolate a single nanocrystal is used. Random spectral shift and blinking behavior (on and off) are found. Addition to that, two color spectral shifting, is a major phenomena found in the system. Other interesting results such as PL intensity changes (decreasing or increasing with time) and quenching effect are observed and explained too. From the correlation function, we can distinguish the phonon replicas. The energy of these phonons can be calculated very accurately from the experiment result. The Huang-Rhys factors can be estimated too. Self-assembled semiconductor quantum dots (QDs), from highly strained-layer heteroepitaxy in the Stranski-Krastanow (S-K) growth mode, have been intensively studied because of the delta-function-like density of states, which is significant for optoelectronic applications. Spontaneous formation of semiconductor quantum-dot

  15. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  16. Optically active quantum dots

    Science.gov (United States)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  17. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong [School of Environment and Natural Resources, Renmin University of China, Beijing (China); Shi, Hanchang [School of Environment, Tsinghua University, Beijing (China); Long, Feng, E-mail: longf04@ruc.edu.cn [School of Environment and Natural Resources, Renmin University of China, Beijing (China)

    2016-01-28

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples

  18. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  19. Influence of single dye molecules on temperature and time dependent optical properties of CdSe/ZnS quantum dots: Ensemble and single nanoassembly detection

    Energy Technology Data Exchange (ETDEWEB)

    Zenkevich, Eduard I., E-mail: zenkev@tut.by [National Technical University of Belarus, Department of Information Technologies and Robotics, Nezavisimosti Ave., 65, Minsk 220013 (Belarus); Stupak, Alexander P. [B.I. Stepanov Institute of Physics, National Academy of Science of Belarus, Nezavisimosti Ave., 70, 220072 Minsk (Belarus); Kowerko, Danny; Borczyskowski, Christian von [Institute of Physics and Center for Nanostructured Materials and Analytics (nanoMA), Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2012-10-08

    Highlights: Black-Right-Pointing-Pointer Ensemble and single assembly optical experiments for CdSe/ZnS QD-dye nanocomposites. Black-Right-Pointing-Pointer Temperature lowering or dye attachment leads to a phase transition of capping layer. Black-Right-Pointing-Pointer It changes the distribution and energy of surface traps and QD band edge emission. Black-Right-Pointing-Pointer QD photodegradation in the course of time is enlarged by attached dye molecules. Black-Right-Pointing-Pointer Phase transition has impact on QD core structure and exciton-phonon coupling. -- Abstract: Optical spectroscopy on ensembles and single CdSe/ZnS semiconductor quantum dots (QDs) demonstrates a competition of trap and near band edge photoluminescence (PL). This competition can be markedly influenced by a few surface attached pyridyl functionalized dye molecules (porphyrins or perylene diimides) forming nanoassemblies with well defined geometries. Temperature variation and related changes in absorption and emission reveal sharp changes of the ligand shell structure in a narrow temperature range for organic (TOPO and amine) surfactants (phase transition). The effects on QD PL at this transition become considerably pronounced upon attachment of only a few dye molecules to QD surface. Moreover, under ambient conditions amine capped QDs are photodegraded in the course of time. This process is enhanced by attached dye molecules both on the ensemble and single particle/dye level. This investigation elaborates the importance of (switchable) surface states for the characterization of the PL of QDs.

  20. Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots

    CERN Document Server

    Childress, L I; Lukin, M D

    2003-01-01

    We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.

  1. Quantum-dot emitters in photonic nanostructures

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    The spontaneous emission from self-assembled semiconductor quantum dots is strongly influenced by the environment in which they are placed. This can be used to determine fundamental optical properties of the quantum dots as well as to manipulate and control the quantum-dot emission itself....

  2. Beer's law in semiconductor quantum dots

    CERN Document Server

    Adamashvili, G T

    2010-01-01

    The propagation of a coherent optical linear wave in an ensemble of semiconductor quantum dots is considered. It is shown that a distribution of transition dipole moments of the quantum dots changes significantly the polarization and Beer's absorption length of the ensemble of quantum dots. Explicit analytical expressions for these quantities are presented.

  3. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes

    Science.gov (United States)

    Gromova, Yulia A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.

    2013-10-01

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.

  4. Nanoscale quantum-dot supercrystals

    Science.gov (United States)

    Baimuratov, Anvar S.; Turkov, Vadim K.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory allowing one to calculate the energy spectra and wave functions of collective excitations in twoand three-dimensional quantum-dot supercrystals. We derive analytical expressions for the energy spectra of twodimensional supercrystals with different Bravias lattices, and use them to analyze the possibility of engineering the supercrystals' band structure. We demonstrate that the variation of the supercrystal's parameters (such as the symmetry of the periodic lattice and the properties of the quantum dots or their environment) enables an unprecedented control over its optical properties, thus paving a way towards the development of new nanophotonics materials.

  5. Basic Research of Self-Organized Quantum Dots and Their Potential In Solar Cells and Novel Devices Applications (Phase 4)

    Science.gov (United States)

    2006-01-01

    addition, InP quantum dots are also another candidate for high efficiency quantum dot solar cells due to their wider bandgap which gives better response...at visible region of solar spectrum. However, novel epitaxial growth of high density InP quantum dots with appropriate capping layers is needed to...improvement. We are looking forward to studying InP quantum dots for new structure of quantum dot molecule solar cells having higher open- circuit voltage

  6. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  7. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis, stro

  8. Colloidal quantum dot solar cells

    Science.gov (United States)

    Sargent, Edward H.

    2012-03-01

    Solar cells based on solution-processed semiconductor nanoparticles -- colloidal quantum dots -- have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

  9. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, Nikodem; Liu, Rongrong; Vancso, Julius G.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of addit

  10. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  11. Semiconductor double quantum dot micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. Copyright © 2015, American Association for the Advancement of Science.

  12. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  13. Brightness-equalized quantum dots

    Science.gov (United States)

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-10-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  14. Colloidal quantum dots: synthesis, properties and applications

    Science.gov (United States)

    Brichkin, S. B.; Razumov, V. F.

    2016-12-01

    Key recent results obtained in studies of a new class of luminophores, colloidal quantum dots, are analyzed. Modern methods for the synthesis and post-synthetic treatment of colloidal quantum dots that make it possible to achieve record high quantum yield of luminescence and to modify their characteristics for specific applications are considered. Currently important avenues of research on colloidal quantum dots and the problems in and prospects for their practical applications in various fields are discussed. The bibliography includes 272 references.

  15. Thermoelectric energy harvesting with quantum dots.

    Science.gov (United States)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  16. Ultrafast spectroscopy of quantum dots

    CERN Document Server

    Foo, E

    2001-01-01

    exchange-correlation interactions among the confined carriers inside the dots are suggested to be responsible. A density functional calculation for BGR of the ground state transition shows good agreement with our experimental results, especially in the high dot occupancy regime. Many-particle state scattering gives rise to large homogeneous spectral broadening of the PL peaks, from which an intradot relaxation time approx 300 fs is estimated. This observation supports the results obtained by direct excitation of carriers within the QDs. Femtosecond time-resolved photoluminescence measured by frequency up-conversion has been used to investigate carrier dynamics in InAs/GaAs self-assembled quantum dots (QDs). Our results reveal ultrafast carrier relaxation and sequential state filling. Carrier relaxation is proposed to occur by Auger-type processes, and the sequential state filling suggests that intradot relaxation is much faster than carrier capture from the InAs wetting layer. Measurements obtained by direct ...

  17. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    We have produced GaAs-based quantum-dot edge-emitting lasers operating at 1.16 mu m with record-low transparency current, high output power, and high internal quantum efficiencies. We have also realized GaAs-based quantum-dot lasers emitting at 1.3 mu m, both high-power edge emitters and low...

  18. Semiconductor quantum dots for electron spin qubits

    NARCIS (Netherlands)

    van der Wiel, Wilfred Gerard; Stopa, M.; Kodera, T.; Hatano, T.; Tarucha, S.

    2006-01-01

    We report on our recent progress in applying semiconductor quantum dots for spin-based quantum computation, as proposed by Loss and DiVincenzo (1998 Phys. Rev. A 57 120). For the purpose of single-electron spin resonance, we study different types of single quantum dot devices that are designed for

  19. Ultrasmall colloidal PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Nick; Wehrung, Michael; O' Dell, Ryan Andrew [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Sun, Liangfeng, E-mail: lsun@bgsu.edu [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403 (United States)

    2014-09-15

    Ultrasmall colloidal lead sulfide quantum dots can increase the open circuit voltages of quantum-dot-based solar cells because of their large energy gap. Their small size and visible or near infrared light-emitting property make them attractive to the applications of biological fluorescence labeling. Through a modified organometallic route, we can synthesize lead sulfide quantum dots as small as 1.6 nm in diameter. The low reaction temperature and the addition of a chloroalkane cosolvent decrease the reaction rate, making it possible to obtain the ultrasmall quantum dots. - Highlights: • Ultrasmall colloidal PbS quantum dots as small as 1.6 nm in diameter are synthesized. • The quantum dots emit red light with photoluminescence peak at 760 nm. • The growth temperature is as low as 50 °C. • Addition of cosolvent 1,2-dichloroethane in the reaction decreases the reaction rate.

  20. Fluorescence Quenching of CdSe/ZnS Quantum Dots by Using Black Hole Quencher Molecules Intermediated With Peptide for Biosensing Application.

    Science.gov (United States)

    Pillai, Sreenadh Sasidharan; Yukawa, Hiroshi; Onoshima, Daisuke; Biju, Vasudevanpillai; Baba, Yoshinobu

    2015-12-17

    Quantum dots (QDs) have recently been investigated as fluorescent probes for detecting a very small number of biomolecules and live cells; however, the establishment of molecular imaging technology with on-off control of QD fluorescence remains to be established. Here we have achieved the fluorescence off state of QDs with the conjugation of black hole quencher (BHQ) molecules intermediated with peptide by using streptavidin-QDs585 and biotin-pep-BHQ-1. The fluorescence of streptavidin-QDs585 was decreased by the addition of biotin-pep-BHQ-1 in a dose-dependent manner. It has been suggested that the decrease in QDs585 fluorescence occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of fluorescence intensity and lifetime of streptavidin-QDs585 and QDs585-pep-BHQ-1. QDs585 fluorescence could be quenched by more than 60% efficiency in this system. The sequence of intermediate peptide (pep) was GPLGVRGK, which can be cleaved by matrix metalloproteinases (MMPs) produced by cancer cells. QDs585-pep-BHQ-1 is thus expected to detect the MMP production by the recovery of QDs585 fluorescence as a new bioanalytical agent for molecular imaging.

  1. The formation and transformation of the spatial weak-light bright and dark solitons in a quantum dot molecule with the interdot tunneling coupling

    Science.gov (United States)

    Zeng, Kuanhong; Wang, Denglong; She, Yanchao; Luo, Xiaoqin

    2013-11-01

    We study analytically the properties of the optical absorption and the spatial weak-light solitons in a quantum dot molecule system with the interdot tunneling coupling (ITC). It is shown that, for the linear case, there exists tunneling induced transparency (TIT) in the context of a weak ITC, while the TIT can be replaced by Autler-Townes splitting in the presence of a strong ITC. For the nonlinear case, it is probable to realize the spatial optical solitons even under weak light intensity. Interestingly, we find that there appears transformation behavior between the bright and dark solitons by properly turning both the ITC strength and the detuning of the probe field. Meanwhile, the transformation condition of the bright and dark solitons is obtained. Additionally it is also found that the amplitude of the solitons first descends and then rises with the increasing of ITC strength. Our results may have potential applications for nonlinear optical experiments and optical telecommunication engineering in solid systems.

  2. POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    L.C.Fai

    2004-01-01

    Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.

  3. Activation of silicon quantum dots for emission

    Institute of Scientific and Technical Information of China (English)

    Huang Wei-Qi; Miao Xin-Jian; Huang Zhong-Mei; Liu Shi-Rong; Qin Chao-Jian

    2012-01-01

    The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs.From this point of view,we can build up radiative matter for emission.Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots.Our experimental results demonstrate that annealing is important in the treatment of the activation,and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.

  4. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems.

  5. Spin transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A.T. da Cunha; Anda, Enrique V. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2003-07-01

    Full text: We investigate the spin polarized transport properties of a nanoscopic device constituted by a quantum dot connected to two leads. The electrical current circulates with a spin polarization that is modulated via a gate potential that controls the intensity of the spin-orbit coupling, the Rashba effect. We study a polarized field-effect transistor when one of its parts is constituted by a small quantum dot, which energies are controlled by another gate potential operating inside the confined region. The high confinement and correlation suffered by the charges inside the dot gives rise to novel phenomena. We show that through the manipulation of the gate potential applied to the dot it is possible to control, in a very efficient way, the intensity and polarization of the current that goes along the system. Other crucial parameters to be varied in order to understand the behavior of this system are the intensity of the external applied electric and magnetic field. The system is represented by the Anderson Impurity Hamiltonian summed to a spin-orbit interaction, which describes the Rashba effect. To obtain the current of this out-of-equilibrium system we use the Keldysh formalism.The solution of the Green function are compatible with the Coulomb blockade regime. We show that under the effect of a external magnetic field, if the dot is small enough the device operates as a complete spin filter that can be controlled by the gate potential. The behavior of this device when it is injected into it a polarized current and modulated by the Rashba effect is as well studied. (author)

  6. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  7. Quantum Optics with Quantum Dots in Photonic Nanowires

    DEFF Research Database (Denmark)

    Gérard, J.-M.; Claudon, J.; Bleuse, J.;

    2011-01-01

    We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  8. Quantum Dot Spectrum Converters for Enhanced High Efficiency Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to enhance solar cell efficiency, radiation resistance and affordability. The Quantum Dot Spectrum Converter (QDSC) disperses quantum dots...

  9. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  10. Colloidal quantum dot photodetectors

    KAUST Repository

    Konstantatos, Gerasimos

    2011-05-01

    We review recent progress in light sensors based on solution-processed materials. Spin-coated semiconductors can readily be integrated with many substrates including as a post-process atop CMOS silicon and flexible electronics. We focus in particular on visible-, near-infrared, and short-wavelength infrared photodetectors based on size-effect-tuned semiconductor nanoparticles made using quantum-confined PbS, PbSe, Bi 2S3, and In2S3. These devices have in recent years achieved room-temperature D values above 1013 Jones, while fully-depleted photodiodes based on these same materials have achieved MHz response combined with 1012 Jones sensitivities. We discuss the nanoparticle synthesis, the materials processing, integrability, temperature stability, physical operation, and applied performance of this class of devices. © 2010 Elsevier Ltd. All rights reserved.

  11. Understanding the electric field control of the electronic and optical properties of strongly-coupled multi-layered quantum dot molecules

    Science.gov (United States)

    Usman, Muhammad

    2015-10-01

    Strongly-coupled quantum dot molecules (QDMs) are widely employed in the design of a variety of optoelectronic, photovoltaic, and quantum information devices. An efficient and optimized performance of these devices demands engineering of the electronic and optical properties of the underlying QDMs. The application of electric fields offers a way to realise such a control over the QDM characteristics for a desired device operation. We performed multi-million-atom atomistic tight-binding calculations to study the influence of electric fields on the electron and hole wave function confinements and symmetries, the ground-state transition energies, the band-gap wavelengths, and the optical transition modes. Electrical fields parallel () and anti-parallel () to the growth direction were investigated to provide a comprehensive guide for understanding the electric field effects. The strain-induced asymmetry of the hybridized electron states is found to be weak and can be balanced by applying a small electric field, of the order of 1 kV cm-1. The strong interdot couplings completely break down at large electric fields, leading to single QD states confined at the opposite edges of the QDM. This mimics a transformation from a type-I band structure to a type-II band structure for the QDMs, which is a critical requirement for the design of intermediate-band solar cells (IBSCs). The analysis of the field-dependent ground-state transition energies reveals that the QDM can be operated both as a high dipole moment device by applying large electric fields and as a high polarizability device under the application of small electric field magnitudes. The quantum confined Stark effect (QCSE) red shifts the band-gap wavelength to 1.3 μm at the 15 kV cm-1 electric field; however the reduced electron-hole wave function overlaps lead to a decrease in the interband optical transition strengths by roughly three orders of magnitude. The study of the polarisation-resolved optical modes

  12. Optical studies of capped quantum dots

    NARCIS (Netherlands)

    Wuister, S.F.

    2005-01-01

    This thesis describes the synthesis and spectroscopy of CdSe and CdTe semiconductor quantum dots (QDs). The first chapter gives an introduction into the unique size dependent properties of semiconductor quantum dots. Highly luminescent QDs of CdSe and CdTe were prepared via a high temperature method

  13. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  14. Research on Self-Assembling Quantum Dots.

    Science.gov (United States)

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  15. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  16. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  17. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots mad

  18. Monitoring Cellular Interactions during T Cell Activation at the Single Molecule Level Using Semiconductor Quantum-Dots

    Science.gov (United States)

    2005-05-10

    shift in the absorption and emission spectra for one of the tested shells, suggesting that exciton-molecular orbital (X-MO) coupling might take place...different bioconjugated qdots were compared. Testing the lipid raft hypothesis by single molecule imaging of targeted peptide-coated qdots: GPI- (lipid...The Rank Prize in opto-electronics The 2001 Michael and Kate Barany Biophysical Society Award Fellow of the Optical Society of America (1999).

  19. Quantum-dot supercrystals for future nanophotonics

    Science.gov (United States)

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-01-01

    The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave functions of the supercrystals' collective excitations through the variation of different structural and material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon alterations in the quantum dot arrangement. This feature offers unprecedented control over the supercrystal's electromagnetic properties and enables the development of new nanophotonics materials and devices.

  20. Biocompatible quantum dots for biological applications.

    Science.gov (United States)

    Rosenthal, Sandra J; Chang, Jerry C; Kovtun, Oleg; McBride, James R; Tomlinson, Ian D

    2011-01-28

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.

  1. Tailoring Magnetism in Quantum Dots

    Science.gov (United States)

    Zutic, Igor; Abolfath, Ramin; Hawrylak, Pawel

    2007-03-01

    We study magnetism in magnetically doped quantum dots as a function of particle numbers, temperature, confining potential, and the strength of Coulomb interaction screening. We show that magnetism can be tailored by controlling the electron-electron Coulomb interaction, even without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at substantially higher temperatures than in the non-interacting case or in the bulk-like dilute magnetic semiconductors. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations. Cond-mat/0612489. [1] R. Abolfath, P. Hawrylak, I. Zuti'c, preprint.

  2. Coherent optoelectronics with single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zrenner, A; Ester, P; Michaelis de Vasconcellos, S; Huebner, M C; Lackmann, L; Stufler, S [Universitaet Paderborn, Department Physik, Warburger Strasse 100, D-33098 Paderborn (Germany); Bichler, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)], E-mail: zrenner@mail.upb.de

    2008-11-12

    The optical properties of semiconductor quantum dots are in many respects similar to those of atoms. Since quantum dots can be defined by state-of-the-art semiconductor technologies, they exhibit long-term stability and allow for well-controlled and efficient interactions with both optical and electrical fields. Resonant ps excitation of single quantum dot photodiodes leads to new classes of coherent optoelectronic functions and devices, which exhibit precise state preparation, phase-sensitive optical manipulations and the control of quantum states by electrical fields.

  3. Coherent optoelectronics with single quantum dots

    Science.gov (United States)

    Zrenner, A.; Ester, P.; Michaelis de Vasconcellos, S.; Hübner, M. C.; Lackmann, L.; Stufler, S.; Bichler, M.

    2008-11-01

    The optical properties of semiconductor quantum dots are in many respects similar to those of atoms. Since quantum dots can be defined by state-of-the-art semiconductor technologies, they exhibit long-term stability and allow for well-controlled and efficient interactions with both optical and electrical fields. Resonant ps excitation of single quantum dot photodiodes leads to new classes of coherent optoelectronic functions and devices, which exhibit precise state preparation, phase-sensitive optical manipulations and the control of quantum states by electrical fields.

  4. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    . The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...

  5. Electron transport in quantum dots

    CERN Document Server

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  6. Quantum Computing with Electron Spins in Quantum Dots

    CERN Document Server

    Vandersypen, L M K; Van Beveren, L H W; Elzerman, J M; Greidanus, J S; De Franceschi, S; Kouwenhoven, Leo P

    2002-01-01

    We present a set of concrete and realistic ideas for the implementation of a small-scale quantum computer using electron spins in lateral GaAs/AlGaAs quantum dots. Initialization is based on leads in the quantum Hall regime with tunable spin-polarization. Read-out hinges on spin-to-charge conversion via spin-selective tunneling to or from the leads, followed by measurement of the number of electron charges on the dot via a charge detector. Single-qubit manipulation relies on a microfabricated wire located close to the quantum dot, and two-qubit interactions are controlled via the tunnel barrier connecting the respective quantum dots. Based on these ideas, we have begun a series of experiments in order to demonstrate unitary control and to measure the coherence time of individual electron spins in quantum dots.

  7. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  8. Correlation effects in strain-induced quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, R.; DeVittorio, M.; Cingolani, R.; Molinari, E. [Ist. Nazionale per la Fisica della Materia (INFM) and Dipt. di Ingegneria dell' Innovazione, Univ. Lecce (Italy); Hohenester, U. [INFM and Dipt. di Fisica, Univ. Modena e Reggio E. (Italy); Lipsanen, H.; Tulkki, J. [Optoelectronics Lab. and Lab. of Computational Engineering, Helsinki Univ. of Technology (Finland); Ahopelto, J. [VTT Electronics (Finland); Uchida, K.; Miura, N. [Inst. for Solid State Physics, Univ. of Tokyo (Japan); Arakawa, Y. [Inst. of Industrial Science, Univ. of Tokyo (Japan)

    2001-03-08

    We report on Coulomb correlation effects in the luminescence of strain-induced quantum dots. In single dots, under low power excitation, we observe the rising of sharp lines associated to the formation of excitonic molecules. In the grand-ensemble, in magnetic fields up to 45 T, we observe Darwin-Fock states of the dots to merge into a unique Landau level, with a considerable reduction in the total diamagnetic shift due to the enhanced electron-hole correlation caused by the increased degeneracy of the state. (orig.)

  9. Peptide-mediated intracellular delivery of quantum dots

    DEFF Research Database (Denmark)

    Lagerholm, B Christoffer

    2007-01-01

    Quantum dots (QDs) have received a great amount of interest for use as fluorescent labels in biological applications. QDs are brightly fluorescent and very photostable, satisfying even imaging applications that require single molecule detection at high repetition rates over long periods of time...

  10. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... oscillator strength due to Coulomb effects. This is in stark contrast to the measured oscillator strength, which turns out to be so small that it can be described by excitons in the strong confinement regime. We attribute these findings to exciton localization in local potential minima arising from alloy...

  11. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    Semiconductor quantum dots are often described as "artificial atoms": They are small nanometre-sized structures in which electrons only are allowed to exist at certain discrete levels due to size quantization, thus allowing the engineering of fundamental properties such as the coupling to light....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...

  12. Scanning gate microscopy of ultra clean carbon nanotube quantum dots

    OpenAIRE

    Xue, Jiamin; Dhall, Rohan; Cronin, Stephen B.; LeRoy, Brian J.

    2015-01-01

    We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can b...

  13. Quantum dots for terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H C; Aslan, B; Gupta, J A; Wasilewski, Z R; Aers, G C; SpringThorpe, A J; Buchanan, M [Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6 (Canada)], E-mail: h.c.liu@nrc.ca

    2008-09-24

    Nanostructures made of semiconductors, such as quantum wells and quantum dots (QD), are well known, and some have been incorporated in practical devices. Here we focus on novel structures made of QDs and related devices for terahertz (THz) generation. Their potential advantages, such as low threshold current density, high characteristic temperature, increased differential gain, etc, make QDs promising candidates for light emitting applications in the THz region. Our idea of using resonant tunneling through QDs is presented, and initial results on devices consisting of self-assembled InAs QDs in an undoped GaAs matrix, with a design incorporating a GaInNAs/GaAs short period superlattice, are discussed. Moreover, shallow impurities are also being explored for possible THz emission: the idea is based on the tunneling through bound states of individual donor or acceptor impurities in the quantum well. Initial results on devices having an AlGaAs/GaAs double-barrier resonant tunneling structure are discussed.

  14. Electronic properties of aperiodic quantum dot chains

    Science.gov (United States)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2012-04-01

    The electronic spectral and transport properties of aperiodic quantum dot chains are investigated. The systems with singular continuous energy spectrum are considered: Thue-Morse chain, double-periodic chain, Rudin-Shapiro chain. The influence of electronic energy in quantum dot on the spectral properties, band structure, density of states and spectral resistivity, is discussed. Low resistivity regions correspond to delocalized states and these states could be current states. Also we discuss the magnetic field application as the way to tune electronic energy in quantum dot and to obtain metallic or insulating conducting states of the systems.

  15. Amplification Without Inversion in Semiconductor Quantum Dot

    Science.gov (United States)

    Hajibadali, A.; Abbasian, K.; Rostami, A.

    In this paper, we have realized amplification without inversion (AWI) in quantum dot (QD). A Y-type four-level system of InxGa1-xN quantum dot has been obtained and investigated for AWI. It has been shown that, with proper setting of control fields' amplitude, we can obtain reasonable gain. With proper setting of phase difference of control fields and probe field, we can obtain considerable gain in resonant wavelength. We have designed this system by solving the Schrödinger-Poisson equations for InxGa1-xN quantum dot in GaN substrate, self-consistently.

  16. Time-bin Entanglement from Quantum Dots

    CERN Document Server

    Weihs, Gregor; Predojević, Ana

    2016-01-01

    The desire to have a source of single entangled photon pairs can be satisfied using single quantum dots as emitters. However, we are not bound to pursue only polarization entanglement, but can also exploit other degrees of freedom. In this chapter we focus on the time degree of freedom, to achieve so-called time-bin entanglement. This requires that we prepare the quantum dot coherently into the biexciton state and also build special interferometers for analysis. Finally this technique can be extended to achieve time-bin and polarization hyper-entanglement from a suitable quantum dot.

  17. Fluorescent Quantum Dots for Biological Labeling

    Science.gov (United States)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  18. Quantum dot heterojunction solar cells: the mechanism of device operation and impacts of quantum dot oxidation

    OpenAIRE

    Ihly, Rachelle

    2014-01-01

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic s...

  19. Quantum Dots in Vertical Nanowire Devices

    NARCIS (Netherlands)

    Van Weert, M.

    2010-01-01

    The research described in this thesis is aimed at constructing a quantum interface between a single electron spin and a photon, using a nanowire quantum dot. Such a quantum interface enables information transfer from a local electron spin to the polarization of a photon for long distance readout.

  20. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot

    DEFF Research Database (Denmark)

    Jauffred, L.; Kyrsting, A.; Christensen, Eva Arnspang;

    2014-01-01

    Colloidal quantum dots are luminescent long-lived probes that can be two-photon excited and manipulated by a single laser beam. Therefore, quantum dots can be used for simultaneous single molecule visualization and force manipulation using an infra-red laser. Here, we show that even a single opti...

  1. Non-adiabatic geometrical quantum gates in semiconductor quantum dots

    CERN Document Server

    Solinas, P; Zanghì, N; Rossi, F; Solinas, Paolo; Zanardi, Paolo; Zanghì, Nino; Rossi, Fausto

    2003-01-01

    In this paper we study the implementation of non-adiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding/manipulation schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be in principle implemented

  2. Single to quadruple quantum dots with tunable tunnel couplings

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Otsuka, T.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan)

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  3. Quantum Dots Investigated for Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  4. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  5. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Science.gov (United States)

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  6. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan;

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  7. Double Acceptor Interaction in Semimagnetic Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Merwyn Jasper D. Reuben

    2011-01-01

    Full Text Available The effect of geometry of the semimagnetic Quantum Dot on the Interaction energy of a double acceptor is computed in the effective mass approximation using the variational principle. A peak is observed at the lower dot sizes as a magnetic field is increased which is attributed to the reduction in confinement.

  8. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  9. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  10. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator.

    Science.gov (United States)

    Li, Jian-Bo; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Chen, Li-Qun; Wu, Gui-Hong; Peng, Yu-Xiang; Luo, Xiao-Yu; Guo, Ze-Ping

    2016-02-08

    We investigate theoretically four-wave mixing (FWM) response and optical bistability (OB) in a hybrid nanosystem composed of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) coupled to a nanomechanical resonator (NR). It is shown that the FWM signal is enhanced by more than three orders of magnitude as compared to that of the system without exciton-phonon interaction, and the FWM signal can also be suppressed significantly and broadened due to the exciton-plasmon interaction. As the MNP couples strongly with the SQD, the bistable FWM response can be achieved by adjusting the SQD-MNP distance and the pumping intensity. For a given pumping constant and a fixed SQD-MNP distance, the enhanced exciton-phonon interaction can promote the occurrence of bistability. Our findings not only present a feasible way to detect the spacing between two nanoparticles, but also hold promise for developing quantum switches and nanoscale rulers.

  11. Chaotic quantum dots with strongly correlated electrons

    OpenAIRE

    Shankar, R.

    2007-01-01

    Quantum dots pose a problem where one must confront three obstacles: randomness, interactions and finite size. Yet it is this confluence that allows one to make some theoretical advances by invoking three theoretical tools: Random Matrix theory (RMT), the Renormalization Group (RG) and the 1/N expansion. Here the reader is introduced to these techniques and shown how they may be combined to answer a set of questions pertaining to quantum dots

  12. Start Shift of Individual Quantum Dots

    Science.gov (United States)

    1999-06-18

    We will here describe the results of the influence of electric field on InP quantum dots embedded in GalnP, lattice matched to GaAs. Experimental...details The sample we used was grown by metal-organic vapour phase epitaxy, and contained InP quantum dots in GanP, lattice matched to GaAs (n-type

  13. Germanium quantum dots: Optical properties and synthesis

    OpenAIRE

    Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

    1994-01-01

    Three different size distributions of Ge quantum dots (>~200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Col...

  14. Renormalization in Periodically Driven Quantum Dots.

    Science.gov (United States)

    Eissing, A K; Meden, V; Kennes, D M

    2016-01-15

    We report on strong renormalization encountered in periodically driven interacting quantum dots in the nonadiabatic regime. Correlations between lead and dot electrons enhance or suppress the amplitude of driving depending on the sign of the interaction. Employing a newly developed flexible renormalization-group-based approach for periodic driving to an interacting resonant level we show analytically that the magnitude of this effect follows a power law. Our setup can act as a non-Markovian, single-parameter quantum pump.

  15. Submonolayer Quantum Dot Infrared Photodetector

    Science.gov (United States)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  16. Quantum dots as biophotonics tools.

    Science.gov (United States)

    Cesar, Carlos L

    2014-01-01

    This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs' biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.

  17. Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor.

    Science.gov (United States)

    Orlova, A O; Gromova, Yu A; Maslov, V G; Andreeva, O V; Baranov, A V; Fedorov, A V; Prudnikau, A V; Artemyev, M V; Berwick, K

    2013-08-23

    The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.

  18. Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor

    Science.gov (United States)

    Orlova, A. O.; Gromova, Yu A.; Maslov, V. G.; Andreeva, O. V.; Baranov, A. V.; Fedorov, A. V.; Prudnikau, A. V.; Artemyev, M. V.; Berwick, K.

    2013-08-01

    The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.

  19. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  20. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  1. Inter-dot coupling effects on transport through correlated parallel coupled quantum dots

    Indian Academy of Sciences (India)

    Shyam Chand; G Rajput; K C Sharma; P K Ahluwalia

    2009-05-01

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.

  2. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  3. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  4. Quantum Dots and Their Multimodal Applications: A Review

    OpenAIRE

    Holloway, Paul H; Teng-Kuan Tseng; Lei Qian; Debasis Bera

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons ...

  5. Phonons in Quantum-Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    QINGuo-Yi

    2004-01-01

    Phonon modes of A1As/GaAs/A1As and GaAs/A1As/metal Pb quantum-dot quantum wells (QDQW's) with the whole scale up to 90 AО are calculated by using valence force field model (VFFM) based on group theory.Their optical frequency spectra are divided into two nonoverlapping bands, the AlAs-like band and the GaAs-like band,originated from and having frequency interval inside the bulk AlAs optical band and bulk GaAs optical band, respectively.The GaAs-LO (Г)-like modes of QDQW's that have maximum bulk GaAs-LO (Г) parentages in all modes covering thewhole frequency region and all symmetries have always A1 symmetry. Its frequency is controllable by adjusting thestructure parameters. In A1As/GaAs/A1As, it may be controlled to meet any designed frequency in GaAs-like band.The results on GaAs/A1As/metal Pb QDQW's show the same effect of reducing in interface optical phonons by using the metal/semiconductor interface revealed ever by macroscopic model The frequency spectra in both GaAs-like andAlAs-like optical phonon bands are independent of the thickness of Pb shell as long as the thickness of Pb shell is no less than 5 AО Defects at metal/A1As interface have significant influence to AlAs-like optical modes but have only minor influence to GaAs-like optical modes. All these results are important for the studying of the e-ph interaction in QD structures.

  6. Phonons in Quantum-Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    QIN Guo-Yi

    2004-01-01

    Phonon modes of AlAs/GaAs/AlAs and GaAs/AlAs/metal Pb quantum-dot quantum wells (QDQW's)with the whole scale up to 90 A are calculated by using valence force field model (VFFM) based on group theory.Their optical frequency spectra are divided into two nonoverlapping bands, the AMs-like band and the GaAs-like band,originated from and having frequency interval inside the bulk AlAs optical band and bulk GaAs optical band, respectively.The GaAs-LO (F)-like modes of QDQW's that have maximum bulk GaAs-LO (F) parentages in all modes covering the whole frequency region and all symmetries have always A1 symmetry. Its frequency is controllable by adjusting the structure parameters. In AlAs/GaAs/AlAs, it may be controlled to meet any designed frequency in GaAs-like band.The results on GaAs/AMs/metal Pb QDQW's show the same effect of reducing in interface optical phonons by using the metal/semiconductor interface revealed ever by macroscopic model. The frequency spectra in both GaAs-like and AlAs-like optical phonon bands are independent of the thickness of Pb shell as long as the thickness of Pb shell is no less than 5 A. Defects at metal/AlAs interface have significant influence to AMs-like optical modes but have only minor influence to GaAs-like optical modes. All these results are important for the studying of the e-ph interaction in QD structures.

  7. Electron Spins in Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  8. Quantum analysis of plasmonic coupling between quantum dots and nanoparticles

    Science.gov (United States)

    Ahmad, SalmanOgli

    2016-10-01

    In this study, interaction between core-shells nanoparticles and quantum dots is discussed via the full-quantum-theory method. The electromagnetic field of the nanoparticles is derived by the quasistatic approximation method and the results for different regions of the nanoparticles are quantized from the time-harmonic to the wave equation. Utilizing the optical field quantization, the nanoparticles' and quantum dots' deriving amplitudes contributing to the excitation waves are determined. In the current model, two counterpropagating waves with two different frequencies are applied. We derived the Maxwell-Bloch equations from the Heisenberg-Langevin equations; thus the nanoparticles-quantum dots interaction is perused. Moreover, by full quantum analyzing of the analytical expression, the quantum-plasmonic coupling relation and the Purcell factor are achieved. We show that the spontaneous emission of quantum dots can be dramatically manipulated by engineering the plasmon-plasmon interaction in the core-shells nanoparticles. This issue is a very attractive point for designing a wide variety of quantum-plasmonic sensors. Through the investigation of the nanoparticle plasmonic interaction effects on absorbed power, the results show that the nanoparticles' and quantum dots' absorption saturation state can be switched to each other just by manipulation of their deriving amplitudes. In fact, we manage the interference between the two waves' deriving amplitudes just by the plasmonic interactions effect.

  9. Electromechanical transition in quantum dots

    Science.gov (United States)

    Micchi, G.; Avriller, R.; Pistolesi, F.

    2016-09-01

    The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nanomechanical oscillator may lead to a transition towards a mechanically bistable and blocked-current state. Its observation is at reach in carbon-nanotube state-of-art experiments. In a recent publication [Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802] we have shown that this transition is characterized by pronounced signatures on the oscillator mechanical properties: the susceptibility, the displacement fluctuation spectrum, and the ring-down time. These properties are extracted from transport measurements, however the relation between the mechanical quantities and the electronic signal is not always straightforward. Moreover the dependence of the same quantities on temperature, bias or gate voltage, and external dissipation has not been studied. The purpose of this paper is to fill this gap and provide a detailed description of the transition. Specifically we find (i) the relation between the current-noise and the displacement spectrum; (ii) the peculiar behavior of the gate-voltage dependence of these spectra at the transition; (iii) the robustness of the transition towards the effect of external fluctuations and dissipation.

  10. Designing field-controllable graphene-dot-graphene single molecule switches: A quantum-theoretical proof-of-concept under realistic operating conditions

    Science.gov (United States)

    Pejov, Ljupčo; Petreska, Irina; Kocarev, Ljupčo

    2015-12-01

    A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a "quantum dot"), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1-014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1-245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green's function formalism, as well as by analysis of frontier molecular orbitals' behavior.

  11. Designing field-controllable graphene-dot-graphene single molecule switches: A quantum-theoretical proof-of-concept under realistic operating conditions.

    Science.gov (United States)

    Pejov, Ljupčo; Petreska, Irina; Kocarev, Ljupčo

    2015-12-28

    A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a "quantum dot"), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1-014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1-245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green's function formalism, as well as by analysis of frontier molecular orbitals' behavior.

  12. Dot-in-Well Quantum-Dot Infrared Photodetectors

    Science.gov (United States)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  13. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  14. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  15. UV Nano-Lights: Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2014-08-01

    method is also applicable to bare nanoparticles in polar solvents. 15. SUBJECT TERMS Quantum Dots, Nonlinear Optical Materials , Energy...TERMS Quantum Dots, Nonlinear Optical Materials , Energy Conservation, Up-conversion 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  16. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  17. 'Giant' multishell CdSe nanocrystal quantum dots with supporessed blinking: novel fluorescent probes for real-time detection of single-molecule events

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A [Los Alamos National Laboratory; Vela, Javier [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Casson, Amy R [Los Alamos National Laboratory; Chen, Yongfen [NON LANL

    2009-01-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent ofNQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell. Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and lhat on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd.Znl.'S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  18. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  19. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...... coherence. The inferred homogeneous line widths are significantly smaller than the line widths usually observed in the photoluminescence from single quantum dots indicating an additional inhomogeneours broadening mechanism in the latter....

  20. Modulation Response of Semiconductor Quantum Dot Nanocavity Lasers

    DEFF Research Database (Denmark)

    Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    The modulation response of quantum-dot based nanocavity devices is investigated using a semiconductor theory. We show that high modulation bandwidth is achieved even in the presence of inhomogeneous broadening of the quantum dot ensemble.......The modulation response of quantum-dot based nanocavity devices is investigated using a semiconductor theory. We show that high modulation bandwidth is achieved even in the presence of inhomogeneous broadening of the quantum dot ensemble....

  1. Carbon quantum dots and a method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    2017-08-22

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  2. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    OpenAIRE

    Z. O. Lipatova; E. V. Kolobkova; V. A. Aseev

    2015-01-01

    Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been fou...

  3. Multiplexed modular genetic targeting of quantum dots.

    Science.gov (United States)

    Saurabh, Saumya; Beck, Lauren E; Maji, Suvrajit; Baty, Catherine J; Wang, Yi; Yan, Qi; Watkins, Simon C; Bruchez, Marcel P

    2014-11-25

    While DNA-directed nanotechnology is now a well-established platform for bioinspired nanoscale assembly in vitro, the direct targeting of various nanomaterials in living biological systems remains a significant challenge. Hybrid biological systems with integrated and targeted nanomaterials may have interesting and exploitable properties, so methods for targeting various nanomaterials to precise biological locations are required. Fluorescence imaging has benefited from the use of nanoparticles with superior optical properties compared to fluorescent organic dyes or fluorescent proteins. While single-particle tracking (SPT) in living cells with genetically encoded proteins is limited to very short trajectories, the high photon output of genetically targeted and multiplexed quantum dots (QDs) would enable long-trajectory analysis of multiple proteins. However, challenges with genetic targeting of QDs limit their application in these experiments. In this report, we establish a modular method for targeting QD nanoparticles selectively to multiple genetically encoded tags by precomplexing QD-streptavidin conjugates with cognate biotinylated hapten molecules. This approach enables labeling and SPT of multiple genetically encoded proteins on living cells at high speed and can label expressed proteins in the cytosol upon microinjection into living cells. While we demonstrate labeling with three distinct QD conjugates, the approach can be extended to other specific hapten-affinity molecule interactions and alternative nanoparticles, enabling precise directed targeting of nanoparticles in living biological systems.

  4. Design of tunneling injection quantum dot lasers

    Institute of Scientific and Technical Information of China (English)

    JIA Guo-zhi; YAO Jiang-hong; SHU Yong-chun; WANG Zhan-guo

    2007-01-01

    To implement high quality tunneling injection quantum dot lasers,effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probability,tunneling time and carriers thermal escape time from the quantum well. The calculation results show that with increasing of the ground-state energy level in quantum well,the tunneling probability increases and the tunneling time decreases,while the thermal escape time decreases because the ground-state energy levelis shallower. Longitudinal optical phonon-assisted tunneling can be an effective method to solve the problem that both the tunneling time and the thermal escape time decrease simultaneously with the ground-state energy level increasing in quantum well.

  5. DNA-based programing of quantum dot properties.

    Science.gov (United States)

    Ma, Nan; Kelley, Shana O

    2013-01-01

    Nucleic acid molecules can serve as robust ligands for aqueous synthesis of semiconductor nanocrystals or quantum dots (QDs). QD properties including size, morphology, dispersity, emission maximum, and quantum yield are highly dependent on the sequences and structures of nucleic acids used for the synthesis. This synthetic strategy provides a novel facile means of constructing compact, stable, and biofunctionalized QDs in one step, which is of particular interest for a variety of applications such as biosensing, bioimaging, and self-assembly. This article summarizes recent advances in nucleic acid-templated QD synthesis with an emphasis on the nucleic acids-based programing of quantum dots properties. A variety of applications based on DNA-passivated QDs are also discussed. Copyright © 2012 Wiley Periodicals, Inc.

  6. Angiogenic Profiling of Synthesized Carbon Quantum Dots.

    Science.gov (United States)

    Shereema, R M; Sruthi, T V; Kumar, V B Sameer; Rao, T P; Shankar, S Sharath

    2015-10-20

    A simple method was employed for the synthesis of green luminescent carbon quantum dots (CQDs) from styrene soot. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy. The prepared carbon quantum dots did not show cellular toxicity and could successfully be used for labeling cells. We also evaluated the effects of carbon quantum dots on the process of angiogenesis. Results of a chorioallantoic membrane (CAM) assay revealed the significant decrease in the density of branched vessels after their treatment with CQDs. Further application of CQDs significantly downregulated the expression levels of pro-angiogenic growth factors like VEGF and FGF. Expression of VEGFR2 and levels of hemoglobin were also significantly lower in CAMs treated with CQDs, indicating that the CQDs inhibit angiogenesis. Data presented here also show that CQDs can selectively target cancer cells and therefore hold potential in the field of cancer therapy.

  7. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  8. Quantum dot heterojunction solar cells: The mechanism of device operation and impacts of quantum dot oxidation

    Science.gov (United States)

    Ihly, Rachelle

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic study of the absorption properties of PbS quantum dot films exposed to air, heat, and UV illumination as a function of quantum dot size has been described. A method to improve the air-stability of films with atomic layer deposition of alumina is demonstrated. Encapsulation of quantum dot films using a protective layer of alumina results in quantum dot solids that maintain tuned absorption for 1000 hours. This thesis focuses on the use of atomic force microscopy and electrical variants thereof to study the physical and electrical characteristics of quantum dot arrays. These types of studies have broad implications in understanding charge transport mechanisms and solar cell device operation, with a particular emphasis on quantum dot transistors and solar cells. Imaging the channel potential of a PbSe quantum dot thin-film in a transistor showed a uniform distribution of charge coinciding with the transistor current voltage characteristics. In a second study, solar cell device operation of ZnO/PbS heterojunction solar cells was investigated by scanning active cross-sections with Kelvin probe microscopy as a function of applied bias, illumination and device architecture. This technique directly provides operating potential and electric field profiles to characterize drift and diffusion currents occurring in the device. SKPM established a field-free region occurring in the quantum dot layer, indicative of diffusion-limited transport. These results provide the path to optimization of

  9. Recent advances in exciton-based quantum information processing in quantum dot nanostructures

    Science.gov (United States)

    Krenner, Hubert J.; Stufler, Stefan; Sabathil, Matthias; Clark, Emily C.; Ester, Patrick; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J.; Zrenner, Artur

    2005-08-01

    Recent experimental developments in the field of semiconductor quantum dot (QD) spectroscopy are discussed. Firstly, we report about single QD exciton two-level systems and their coherent properties in terms of single-qubit manipulations. In the second part, we report on coherent quantum coupling in a prototype 'two-qubit' system consisting of a vertically stacked pair of QDs. The interaction can be tuned in such QD molecule devices using an applied voltage as external parameter.

  10. Recent advances in exciton-based quantum information processing in quantum dot nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Krenner, Hubert J [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Stufler, Stefan [Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany); Sabathil, Matthias [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Clark, Emily C [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Ester, Patrick [Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany); Bichler, Max [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Abstreiter, Gerhard [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Finley, Jonathan J [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Zrenner, Artur [Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2005-08-01

    Recent experimental developments in the field of semiconductor quantum dot (QD) spectroscopy are discussed. Firstly, we report about single QD exciton two-level systems and their coherent properties in terms of single-qubit manipulations. In the second part, we report on coherent quantum coupling in a prototype 'two-qubit' system consisting of a vertically stacked pair of QDs. The interaction can be tuned in such QD molecule devices using an applied voltage as external parameter.

  11. Resonant tunneling in graphene pseudomagnetic quantum dots.

    Science.gov (United States)

    Qi, Zenan; Bahamon, D A; Pereira, Vitor M; Park, Harold S; Campbell, D K; Neto, A H Castro

    2013-06-12

    Realistic relaxed configurations of triaxially strained graphene quantum dots are obtained from unbiased atomistic mechanical simulations. The local electronic structure and quantum transport characteristics of y-junctions based on such dots are studied, revealing that the quasi-uniform pseudomagnetic field induced by strain restricts transport to Landau level- and edge state-assisted resonant tunneling. Valley degeneracy is broken in the presence of an external field, allowing the selective filtering of the valley and chirality of the states assisting in the resonant tunneling. Asymmetric strain conditions can be explored to select the exit channel of the y-junction.

  12. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  13. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  14. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  15. THz quantum-confined Stark effect in semiconductor quantum dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.;

    2012-01-01

    We demonstrate an instantaneous all-optical manipulation of optical absorption at the ground state of InGaAs/GaAs quantum dots (QDs) via a quantum-confined Stark effect (QCSE) induced by the electric field of incident THz pulses with peak electric fields reaching 200 kV/cm in the free space...

  16. A Polaron in a Quantum Dot Quantum Well

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; XIE HongJing; CHEN ChuanYu

    2002-01-01

    The polaron effect in a quantum dot quantum well (QDQW)system is investigated by using the perturbation method. Both the bound electron states outside and inside the shell well are taken into account . Numerical calculation on the CdS/HgS QDQW shows that the phonon correction to the electron ground state energy is quite significant and cannot be neglected.

  17. Quantum-biological control of energy transfer in hybrid quantum dot-metallic nanoparticle systems

    Science.gov (United States)

    Sadeghi, Seyed M.; Hood, Brady; Patty, Kira

    2016-09-01

    We show theoretically that when a semiconductor quantum dot and metallic nanoparticle system interacts with a laser field, quantum coherence can introduce a new landscape for the dynamics of Forster resonance energy transfer (FRET). We predict adsorption of biological molecules to such a hybrid system can trigger dramatic changes in the way energy is transferred, blocking FRET while the distance between the quantum dot and metallic nanoparticle (R) and other structural specifications remain unchanged. We study the impact of variation of R on the FRET rate in the presence of quantum coherence and its ultrafast decay, offering a characteristically different dependency than the standard 1/R6. Application of the results for quantum nanosensors is discussed.

  18. Probing silicon quantum dots by single-dot techniques

    Science.gov (United States)

    Sychugov, Ilya; Valenta, Jan; Linnros, Jan

    2017-02-01

    Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.

  19. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    Science.gov (United States)

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...used the resulting enhanced control to investigate a nano- tube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams...This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum

  20. Designing field-controllable graphene-dot-graphene single molecule switches: A quantum-theoretical proof-of-concept under realistic operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pejov, Ljupčo, E-mail: ljupcop@pmf.ukim.mk [Department of Physical Chemistry, Institute of Chemistry, SS. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1001 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Petreska, Irina [Institute of Physics, Faculty of Natural Sciences and Mathematics, SS. Cyril and Methodius University, P.O. Box 162, 1001 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Kocarev, Ljupčo [Macedonian Academy of Sciences and Arts, Krste Misirkov 2, P.O. Box 428, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Faculty of Computer Science and Engineering, SS. Cyril and Methodius University, P.O. Box 393, 100 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); BioCircuits Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0402 (United States)

    2015-12-28

    A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a “quantum dot”), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditions (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1–014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1–245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green’s function formalism, as well as by analysis of frontier molecular orbitals’ behavior.

  1. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  2. Germanium quantum dots: Optical properties and synthesis

    Science.gov (United States)

    Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

    1994-07-01

    Three different size distributions of Ge quantum dots (≳200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Γ25→L indirect transitions.

  3. Nonlocal quantum cloning via quantum dots trapped in distant cavities

    Institute of Scientific and Technical Information of China (English)

    Yu Tao; Zhu Ai-Dong; Zhang Shou

    2012-01-01

    A scheme for implementing nonlocal quantum cloning via quantum dots trapped in cavities is proposed.By modulating the parameters of the system,the optimal 1 → 2 universal quantum cloning machine,1 → 2 phase-covariant cloning machine,and 1 → 3 economical phase-covariant cloning machine are constructed.The present scheme,which is attainable with current technology,saves two qubits compared with previous cloning machines.

  4. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  5. Charged-Exciton Complexes in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2001-01-01

    It is known experimentally that stable charged-exciton complexes can exist in low-dimensional semiconductor nanostructures. Much less is known about the properties of such charged-exciton complexes since three-body problems are very difficult to be solved, even numerically. Here we introduce the correlated hyperspherical harmonics as basis functions to solve the hyperangular equation for negatively and positively charged excitons (trions) in a harmonic quantum dot. By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton as a function of the radius of quantum dot. Based on symmetry analysis, the level crossover as the dot radius increases can be fully explained as the results of symmetry constraint.``

  6. Saturating optical resonances in quantum dots

    Science.gov (United States)

    Nair, Selvakumar V.; Rustagi, K. C.

    Optical bistability in quantum dots, recently proposed by Chemla and Miller, is studied in a two-resonance model. We show that for such classical electromagnetic resonances the applicability of a two-resonance model is far more restrictive than for those in atoms.

  7. System and method for making quantum dots

    KAUST Repository

    Bakr, Osman M.

    2015-05-28

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.

  8. Quantum dot waveguides: ultrafast dynamics and applications

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    In this paper we analyze, based on numerical simulations, the dynamics of semiconductor devices incorporating quantum dots (QDs). In particular we emphasize the unique ultrafast carrier dynamics occurring between discrete QD bound states, and its influence on QD semiconductor optical amplifiers...... (SOAs). Also the possibility of realizing an all-optical regenerator by incorporating a QD absorber section in an amplifier structure is discussed....

  9. Electron Scattering in Intrananotube Quantum Dots

    NARCIS (Netherlands)

    Buchs, G.; Bercioux, D.; Ruffieux, P.; Gröning, P.; Grabert, H.; Gröning, O.

    2009-01-01

    Intratube quantum dots showing particle-in-a-box-like states with level spacings up to 200 meV are realized in metallic single-walled carbon nanotubes by means of low dose medium energy Ar+ irradiation. Fourier-transform scanning tunneling spectroscopy compared to results of a Fabry-Perot electron r

  10. Producing Quantum Dots by Spray Pyrolysis

    Science.gov (United States)

    Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

    2006-01-01

    An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

  11. Enabling biomedical research with designer quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, G.J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  12. Optical Properties of Quantum-Dot-Doped Liquid Scintillators

    CERN Document Server

    Aberle, C; Weiss, S; Winslow, L

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  13. Optical properties of quantum-dot-doped liquid scintillators

    Science.gov (United States)

    Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.

    2013-10-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  14. Orbital Topology Controlling Charge Injection in Quantum-Dot-Sensitized Solar Cells.

    Science.gov (United States)

    Hansen, Thorsten; Žídek, Karel; Zheng, Kaibo; Abdellah, Mohamed; Chábera, Pavel; Persson, Petter; Pullerits, Tõnu

    2014-04-03

    Quantum-dot-sensitized solar cells are emerging as a promising development of dye-sensitized solar cells, where photostable semiconductor quantum dots replace molecular dyes. Upon photoexcitation of a quantum dot, an electron is transferred to a high-band-gap metal oxide. Swift electron transfer is crucial to ensure a high overall efficiency of the solar cell. Using femtosecond time-resolved spectroscopy, we find the rate of electron transfer to be surprisingly sensitive to the chemical structure of the linker molecules that attach the quantum dots to the metal oxide. A rectangular barrier model is unable to capture the observed variation. Applying bridge-mediated electron-transfer theory, we find that the electron-transfer rates depend on the topology of the frontier orbital of the molecular linker. This promises the capability of fine tuning the electron-transfer rates by rational design of the linker molecules.

  15. Probing the quantum-classical connection with open quantum dots

    Science.gov (United States)

    Ferry, D. K.; Akis, R.; Brunner, R.

    2015-10-01

    Open quantum dots provide a natural system in which to study both classical and quantum features of transport. From the classical point of view these dots possess a mixed phase space which yields families of closed, regular orbits as well as an expansive sea of chaos. As a closed test bed, they provide a natural system with a very rich set of eigen-states. When coupled to the environment through a pair of quantum point contacts, each of which passes several modes, the original quantum environment evolves into a set of decoherent and coherent states, which eventually couple to the classical states discussed above. The manner of this connection is governed strongly by decoherence theory. The remaining coherent states possess all the properties of pointer states. Here, we discuss the quantum-classical connection and how it appears within the experimental world.

  16. Quantum Dots and Their Multimodal Applications: A Review

    Directory of Open Access Journals (Sweden)

    Paul H. Holloway

    2010-03-01

    Full Text Available Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence or electric field (electroluminescence. In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  17. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  18. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  19. Light emission from Si quantum dots

    Directory of Open Access Journals (Sweden)

    Philippe M. Fauchet

    2005-01-01

    Full Text Available Si quantum dots (QDs as small as ∼2 nm in diameter have been synthesized by a variety of techniques. Because of quantum confinement and the elimination of bulk or surface defects, these dots can emit light from the near infrared throughout the visible with quantum efficiencies in excess of 10%. The luminescence wavelength range has been extended to longer wavelengths by the addition of light-emitting rare earths such as erbium (Er. Light-emitting devices (LEDs have been fabricated and their performances are starting to approach those of direct band gap semiconductor or organic LEDs. A search for a Si QD-based laser is even under way. The state-of-the-art in the materials science, physics, and device development of luminescent Si QDs is reviewed and areas of future research are pointed out.

  20. Fast Optically Driven Spin Qubit Gates in an InAs Quantum Dot

    Science.gov (United States)

    2010-01-01

    epitaxy. The sample is placed in a magneto cryostat to enable operating temperatures of approximately 5 K. Optical excitation through 1μm diameter...Reinecke and D. Gammon, “ Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule ”, Phys. Rev. Lett., 101, 236804 (2008) 12...Theory of Fast Optical Spin Rotation in a Quantum Dot Based on Geometric Phases and Trapped States”, Phys. Rev. Lett., 99, 217401 (2007) 16. Y

  1. Quantum Size- Dependent Third- Order Nonlinear Optical Susceptibility in Semiconductor Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    SUN Ting; XIONG Gui-guang

    2005-01-01

    The density matrix approach has been employed to investigate the optical nonlinear polarization in a single semiconductor quantum dot(QD). Electron states are considered to be confined within a quantum dot with infinite potential barriers. It is shown, by numerical calculation, that the third-order nonlinear optical susceptibilities for a typical Si quantum dot is dependent on the quantum size of the quantum dot and the frequency of incident light.

  2. Local Quantum Dot Tuning on Photonic Crystal Chips

    CERN Document Server

    Faraon, Andrei; Fushman, Ilya; Stoltz, Nick; Petroff, Pierre; Vuckovic, Jelena

    2007-01-01

    Quantum networks based on InGaAs quantum dots embedded in photonic crystal devices rely on QDs being in resonance with each other and with the cavities they are embedded in. We developed a new technique based on temperature tuning to spectrally align different quantum dots located on the same chip. The technique allows for up to 1.8nm reversible on-chip quantum dot tuning.

  3. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has...... developed in the study of single quantum dots, characterized by sharp atomic-like transition lines revealing their zero-dimensional density of states. Substantial information about the fundamental properties of individual quantum dots, as well as their interactions with other dots and the host lattice, can...

  4. Sensitivity of quantum-dot semiconductor lasers to optical feedback.

    Science.gov (United States)

    O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V

    2004-05-15

    The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

  5. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  6. Electron-hole confinement symmetry in silicon quantum dots

    NARCIS (Netherlands)

    Müller, F.; Mueller, Filipp; Konstantaras, Georgios; Spruijtenburg, P.C.; van der Wiel, Wilfred Gerard; Zwanenburg, Floris Arnoud

    2015-01-01

    We report electrical transport measurements on a gate-defined ambipolar quantum dot in intrinsic silicon. The ambipolarity allows its operation as either an electron or a hole quantum dot of which we change the dot occupancy by 20 charge carriers in each regime. Electron−hole confinement symmetry is

  7. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  8. Mitigation of quantum dot cytotoxicity by microencapsulation.

    Directory of Open Access Journals (Sweden)

    Amelia Romoser

    Full Text Available When CdSe/ZnS-polyethyleneimine (PEI quantum dots (QDs are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the "first line of defense" for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor.

  9. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    Science.gov (United States)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  10. Andreev and Majorana bound states in single and double quantum dot structures

    Science.gov (United States)

    Silva, Joelson F.; Vernek, E.

    2016-11-01

    We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green’s function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.

  11. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  12. Studies of silicon quantum dots prepared at different substrate temperatures

    Science.gov (United States)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  13. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots.

    Science.gov (United States)

    Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2011-01-01

    Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.

  14. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots

    Directory of Open Access Journals (Sweden)

    Generalov R

    2011-09-01

    Full Text Available Roman Generalov1,2, Simona Kavaliauskiene1, Sara Westrøm1, Wei Chen3, Solveig Kristensen2, Petras Juzenas11Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 2School of Pharmacy, University of Oslo, Oslo, Norway; 3Department of Physics, The University of Texas at Arlington, Arlington, TX, USAAbstract: Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.Keywords: fluorescence lifetime, free radicals, liposomes, lipodots, reactive oxygen species

  15. Single quantum dots fundamentals, applications, and new concepts

    CERN Document Server

    2003-01-01

    This book reviews recent advances in the exciting and rapid growing field of semiconductor quantum dots by contributions from some of the most prominent researchers in the field. Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons. Single Quantum Dots also addresses various growth techniques as well as potential device applications such as quantum dot lasers, and new concepts like a single-photon source, and a single quantum dot laser.

  16. Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser

    CERN Document Server

    Chusseau, Laurent; Viktorovitch, P; Letartre, Xavier

    2013-01-01

    This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz generation by photomixing.

  17. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    Science.gov (United States)

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  18. SU(4) Kondo entanglement in double quantum dot devices

    Science.gov (United States)

    Bonazzola, Rodrigo; Andrade, J. A.; Facio, Jorge I.; García, D. J.; Cornaglia, Pablo S.

    2017-08-01

    We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties and consider the general experimental situation where the coupling parameters of the two quantum dots differ. We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the double quantum dot is suppressed. We present density matrix renormalization group numerical results for the spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main physics of the problem.

  19. Probing relaxation times in graphene quantum dots

    Science.gov (United States)

    Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph

    2013-01-01

    Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294

  20. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    Energy Technology Data Exchange (ETDEWEB)

    Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Tagliaferri, M. L. V. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Universit di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Vinet, M. [CEA/LETI-MINATEC, CEA-Grenoble, 17 rue des martyrs, F-38054 Grenoble (France); Sanquer, M. [SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, 38054 Grenoble (France); Ferguson, A. J. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

    2016-05-16

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  1. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release.

    Science.gov (United States)

    Zhang, Xiaomeng; Ding, Shushu; Cao, Sumei; Zhu, Anwei; Shi, Guoyue

    2016-06-15

    Selective and sensitive detection of extracellular lactate is of fundamental significance for studying the metabolic alterations in tumor progression. Here we report the rational design and synthesis of a quantum-dot-hydrogel-based fluorescent probe for biosensing and bioimaging the extracellular lactate. By surface engineering the destabilized quantum dot sol with Nile Blue, the destabilized Nile-Blue-functionalized quantum dot sol cannot only self-assemble forming quantum dot hydrogel but also monitor lactate in the presence of nicotinamide adenine dinucleotide cofactor and lactate dehydrogenase through fluorescence resonance energy transfer. Notably, the surface engineered quantum dot hydrogel show high selectivity toward lactate over common metal ions, amino acids and other small molecules that widely coexist in biological system. Moreover, the destabilized Nile-Blue-functionalized quantum dots can encapsulate isolated cancer cells when self-assembled into a hydrogel and thus specifically detect and image the extracellular lactate metabolism. By virtue of these properties, the functionalized quantum dot hydrogel was further successfully applied to monitor the effect of metabolic agents.

  2. Barrier Li Quantum Dots in Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    LIUYi-Min; LIXiao-Zhu; YANWen-Hong; BAOCheng-Guang

    2003-01-01

    The methods for the few-body system are introduced to investigate the states of the barrier Li quantum dots (QDs) in an arbitrary strength of magnetic field. The configuration, which consists of a positive ion located on the z-axis at a distaneed from the two-dimensional QD plane (the x-y plane) and three electrons in the dot plane bound by the positive ion, is called a barrier Li center. The system, which consists of three electrons in the dot plane bound by the ion,is called a barrier Li QD. The dependence of energy of the state of the barrier Li QD on an external magnetic field B and the distance d is obtained. The angular momentum L of the ground states is found to jump not only with the variation orB but also with d.

  3. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    Science.gov (United States)

    2015-05-01

    SPDC photon is teleported to a single quantum dot spin by a projective measurement using a Hong Ou Mandel (HOM) interferometer. The SPDC source...photo diode B: Blue CW: Continuous wave DBR: Distributed Bragg reflector EOM: Electro-optics modulator H: Horizontal HOM: Hong-Ou- Mandel InAs

  4. Quantum optics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Cadeddu, Davide; Teissier, Jean

    2016-01-01

    We present an exploration of the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter's properties with the highest sensitivity, allowing...

  5. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide;

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  6. Optical resonators and quantum dots: An excursion into quantum optics, quantum information and photonics

    Science.gov (United States)

    Bianucci, Pablo

    Modern communications technology has encouraged an intimate connection between Semiconductor Physics and Optics, and this connection shows best in the combination of electron-confining structures with light-confining structures. Semiconductor quantum dots are systems engineered to trap electrons in a mesoscopic scale (the are composed of ≈ 10000 atoms), resulting in a behavior resembling that of atoms, but much richer. Optical microresonators are engineered to confine light, increasing its intensity and enabling a much stronger interaction with matter. Their combination opens a myriad of new directions, both in fundamental Physics and in possible applications. This dissertation explores both semiconductor quantum dots and microresonators, through experimental work done with semiconductor quantum dots and microsphere resonators spanning the fields of Quantum Optics, Quantum Information and Photonics; from quantum algorithms to polarization converters. Quantum Optics leads the way, allowing us to understand how to manipulate and measure quantum dots with light and to elucidate the interactions between them and microresonators. In the Quantum Information area, we present a detailed study of the feasibility of excitons in quantum dots to perform quantum computations, including an experimental demonstration of the single-qubit Deutsch-Jozsa algorithm performedin a single semiconductor quantum dot. Our studies in Photonics involve applications of microsphere resonators, which we have learned to fabricate and characterize. We present an elaborate description of the experimental techniques needed to study microspheres, including studies and proof of concept experiments on both ultra-sensitive microsphere sensors and whispering gallery mode polarization converters.

  7. Nanobeam photonic crystal cavity quantum dot laser

    CERN Document Server

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  8. Energy level statistics of quantum dots.

    Science.gov (United States)

    Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Woods Halley, J

    2007-05-08

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  9. Many electron effects in semiconductor quantum dots

    Indian Academy of Sciences (India)

    R K Pandey; Manoj K Harbola; V Ranjan; Vijay A Singh

    2003-01-01

    Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as ‘artificial atoms’ by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the local density approximation (LDA) and the Harbola–Sahni (HS) scheme. HS is free of the selfinteraction error of the LDA. Our calculations have been performed in a three-dimensional quantum dot. We have carried out a study of the size and shape dependence of the level spacing. Scaling laws for the Hubbard ‘’ are established.

  10. Energy level statistics of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Tsau, C-Y [University of Wisconsin-Madison, Madison, WI 53706 (United States); Nghiem, Diu [University of Wisconsin-Madison, Madison, WI 53706 (United States); Joynt, Robert [University of Wisconsin-Madison, Madison, WI 53706 (United States); Halley, J Woods [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2007-05-08

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  11. Energy level statistics of quantum dots

    Science.gov (United States)

    Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Halley, J. Woods

    2007-05-01

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  12. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  13. DLTS measurements on GaSb/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hoegner, Annika; Nowozin, Tobias; Marent, Andreas; Bimberg, Dieter [Institut fuer Festkoerperphysik, TU Berlin (Germany); Tseng, Chi-Che [Institute of Photonics Technologies, NTHU (China); Lin, Shih-Yen [Institute of Optoelectronic Sciences, NTOU (China)

    2010-07-01

    Memory devices based on hole storage in self-organized quantum dots offer significant advantages with respect to storage time and scalability. Recently, we demonstrated a first prototype based on InAs/GaAs quantum dots at low temperatures. To enable feasible storage times at room temperature the localisation energy of the quantum dots has to be increased by using other material systems. A first step in this direction is the use of GaSb quantum dots within a GaAs matrix. We have characterized self-organized GaSb/GaAs quantum dots embedded into a n{sup +}p-diode structure. DLTS measurements on hole emission were conducted and yield a strong peak from which a mean emission energy of about 400 meV can be extracted. The reference sample without the quantum dots (containing only the wetting layer) shows no such peak.

  14. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    a future challenge for the droplet-epitaxy technique. A multipolar theory of spontaneous emission from quantum dots is developed to explain the recent observation that In(Ga)As quantum dots break the dipole theory. The analysis yields a large mesoscopic moment, which contains magnetic-dipole and electric......-matter interaction of both electric and magnetic character. Our study demonstrates that In(Ga)As quantum dots lack parity symmetry and, as consequence, can be employed for locally probing the parity symmetry of complex photonic nanostructures. This opens the prospect for interfacing quantum dots with optical......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...

  15. Quantum dot spectroscopy using a single phosphorus donor

    Science.gov (United States)

    Büch, Holger; Fuechsle, Martin; Baker, William; House, Matthew G.; Simmons, Michelle Y.

    2015-12-01

    Using a deterministic single P donor placed with atomic precision accuracy next to a nanoscale silicon quantum dot, we present a way to analyze the energy spectrum of small quantum dots in silicon by tunnel-coupled transport measurements. The energy-level structure of the quantum dot is observed as resonance features within the transport bias triangles when the donor chemical potential is aligned with states within the quantum dot as confirmed by a numeric rate equation solver SIMON. This technique allows us to independently extract the quantum dot level structure irrespective of the density of states in the leads. Such a method is useful for the investigation of silicon quantum dots in the few-electron regime where the level structure is governed by an intricate interplay between the spin- and the valley-orbit degrees of freedom.

  16. Decoherence in Nearly-Isolated Quantum Dots

    DEFF Research Database (Denmark)

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single......-particle level spacing, but is greatly suppressed for temperature greater than the level spacing, suggesting that inelastic scattering or other dephasing mechanisms dominate in this regime....

  17. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2011-01-01

    The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have...... is demonstrated and the influence of disorder is discussed. The findings have a strong bearing on future nanophotonic devices....

  18. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have...... is demonstrated and the influence of disorder is discussed. The findings have a strong bearing on future nanophotonic devices....

  19. Quantum dot/glycol chitosan fluorescent nanoconjugates

    OpenAIRE

    Mansur, Alexandra AP; Herman S. Mansur

    2015-01-01

    In this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV–vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spec...

  20. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Pharmaceutical and biomedical applications of quantum dots.

    Science.gov (United States)

    Bajwa, Neha; Mehra, Neelesh K; Jain, Keerti; Jain, Narendra K

    2016-05-01

    Quantum dots (QDs) have captured the fascination and attention of scientists due to their simultaneous targeting and imaging potential in drug delivery, in pharmaceutical and biomedical applications. In the present study, we have exhaustively reviewed various aspects of QDs, highlighting their pharmaceutical and biomedical applications, pharmacology, interactions, and toxicological manifestations. The eventual use of QDs is to dramatically improve clinical diagnostic tests for early detection of cancer. In recent years, QDs were introduced to cell biology as an alternative fluorescent probe.

  4. The pinning effect in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Monisha, P. J., E-mail: pjmonisha@gmail.com [School of Physics, University of Hyderabad, Hyderabad-500046 (India); Mukhopadhyay, Soma [Department of Physics, D V R College of Engineering and Technology, Hyderabad-502285 (India)

    2014-04-24

    The pinning effect is studied in a Gaussian quantum dot using the improved Wigner-Brillouin perturbation theory (IWBPT) in the presence of electron-phonon interaction. The electron ground state plus one phonon state is degenerate with the electron in the first excited state. The electron-phonon interaction lifts the degeneracy and the first excited states get pinned to the ground state plus one phonon state as we increase the confinement frequency.

  5. Electrically addressing a single self-assembled quantum dot

    CERN Document Server

    Ellis, D J P; Atkinson, P; Ritchie, D A; Shields, A J

    2006-01-01

    We report on the use of an aperture in an aluminum oxide layer to restrict current injection into a single self-assembled InAs quantum dot, from an ensemble of such dots within a large mesa. The insulating aperture is formed through the wet-oxidation of a layer of AlAs. Under photoluminescence we observe that only one quantum dot in the ensemble exhibits a Stark shift, and that the same single dot is visible under electroluminescence. Autocorrelation measurements performed on the electroluminescence confirm that we are observing emission from a single quantum dot.

  6. Visualization of plasma membrane compartmentalization by high-speed quantum dot tracking

    DEFF Research Database (Denmark)

    Clausen, M. P.; Lagerholm, B. C.

    2013-01-01

    In this study, we have imaged plasma membrane molecules labeled with quantum dots in live cells using a conventional wide-field microscope with high spatial precision at sampling frequencies of 1.75 kHz. Many of the resulting single molecule trajectories are sufficiently long (up to several thous...

  7. The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots.

    Science.gov (United States)

    Grisorio, Roberto; Debellis, Doriana; Suranna, Gian Paolo; Gigli, Giuseppe; Giansante, Carlo

    2016-06-01

    Colloidal quantum dots are composed of nanometer-sized crystallites of inorganic semiconductor materials bearing organic molecules at their surface. The organic/inorganic interface markedly affects forms and functions of the quantum dots, therefore its description and control are important for effective application. Herein we demonstrate that archetypal colloidal PbS quantum dots adapt their interface to the surroundings, thus existing in solution phase as equilibrium mixtures with their (metal-)organic ligand and inorganic core components. The interfacial equilibria are dictated by solvent polarity and concentration, show striking size dependence (leading to more stable ligand/core adducts for larger quantum dots), and selectively involve nanocrystal facets. This notion of ligand/core dynamic equilibrium may open novel synthetic paths and refined nanocrystal surface-chemistry strategies.

  8. Electron States of Few-Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    戴振宏; 孙金祚; 张立德; 李作宏; 黄士勇; 隋鹏飞

    2002-01-01

    We study few-electron semiconductor quantum dots using the unrestricted Hartree-Fock-Roothaan method based on the Gaussian basis. Our emphasis is on the energy level calculation for quantum dots. The confinement potential in a quantum dot is assumed to be in a form of three-dimensional spherical finite potential well. Some valuable results, such as the rearrangement of the energy level, have been obtained.

  9. Semiconductor quantum dot scintillation under gamma-ray irradiation.

    Science.gov (United States)

    Létant, S E; Wang, T-F

    2006-12-01

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.

  10. Controllability of multi-partite quantum systems and selective excitation of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, S G [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Pullen, I C H [Department of Applied Mathematics and Computing, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Solomon, A I [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2005-10-01

    We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots.

  11. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Matthieu; Bleuse, Joel;

    2012-01-01

    Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....

  12. Quantum transport through an array of quantum dots.

    Science.gov (United States)

    Chen, Shuguang; Xie, Hang; Zhang, Yu; Cui, Xiaodong; Chen, Guanhua

    2013-01-07

    The transient current through an array of as many as 1000 quantum dots is simulated with two newly developed quantum mechanical methods. To our surprise, upon switching on the bias voltage, the current increases linearly with time before reaching its steady state value. And the time required for the current to reach its steady state value is proportional to the length of the array, and more interestingly, is exactly the time for a conducting electron to travel through the array at the Fermi velocity. These quantum phenomena can be understood by a simple analysis on the energetics of an equivalent classical circuit. An experimental design is proposed to confirm the numerical findings.

  13. Tuning the quantum critical crossover in quantum dots

    Science.gov (United States)

    Murthy, Ganpathy

    2005-03-01

    Quantum dots with large Thouless number g embody a regime where both disorder and interactions can be treated nonperturbatively using large-N techniques (with N=g) and quantum phase transitions can be studied. Here we focus on dots where the noninteracting Hamiltonian is drawn from a crossover ensemble between two symmetry classes, where the crossover parameter introduces a new, tunable energy scale independent of and much smaller than the Thouless energy. We show that the quantum critical regime, dominated by collective critical fluctuations, can be accessed at the new energy scale. The nonperturbative physics of this regime can only be described by the large-N approach, as we illustrate with two experimentally relevant examples. G. Murthy, PRB 70, 153304 (2004). G. Murthy, R. Shankar, D. Herman, and H. Mathur, PRB 69, 075321 (2004)

  14. Investigation of Quantum Dot Lasers

    Science.gov (United States)

    2007-11-02

    Lett. 79, 722 (2001). 8. Report of Inventions None. 9. List of Scientific Personnel Supported, Degrees, Awards and Honors Siddhartha ...Ghosh, GSRA Sameer Pradhan, GSRA Sasan Fathpour, GSRA Zetian Mi, GSRA Siddhartha Ghosh, Ph.D., “Growth of In(Ga)As/GaAs self-organized quantum

  15. Electronic structures of stacked layers quantum dots: influence of the non-perfect alignment and the applied electric field

    Institute of Scientific and Technical Information of China (English)

    Jia Bo-Yong; Yu Zhong-Yuan; Liu Yu-Min; Han Li-Hong; Yao Wen-Jie; Feng Hao; Ye Han

    2011-01-01

    Electronic structures of the artificial molecule comprising two truncated pyramidal quantum dots vertically coupled and embedded in the matrix are theoretically analysed via the finite element method. When the quantum dots are completely aligned, the electron energy levels decrease with the horizontally applied electric field. However, energy levels may have the maxima at non-zero electric field if the dots are staggered by a distance of several nanometers in the same direction of the electric field. In addition to shifting the energy levels, the electric field can also manipulate the electron wavefunctions confined in the quantum dots, in company with the non-perfect alignment.

  16. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    See, Gloria G. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Xu, Lu; Nuzzo, Ralph G. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Sutanto, Erick; Alleyne, Andrew G. [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 154 Mechanical Engineering Building, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801 (United States)

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  17. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    OpenAIRE

    Takaaki Yamaguchi; Yoshijiro Tsuruda; Tomohiro Furukawa; Lumi Negishi; Yuki Imura; Shohei Sakuda; Etsuro Yoshimura; Michio Suzuki

    2016-01-01

    CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum) were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were pr...

  18. Core–shell quantum dots: Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  19. Single-electron Spin Resonance in a Quadruple Quantum Dot

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-08-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

  20. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    Science.gov (United States)

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  1. Coupling single quantum dots to plasmonic nanocones: optical properties.

    Science.gov (United States)

    Meixner, Alfred J; Jäger, Regina; Jäger, Sebastian; Bräuer, Annika; Scherzinger, Kerstin; Fulmes, Julia; Krockhaus, Sven zur Oven; Gollmer, Dominik A; Kern, Dieter P; Fleischer, Monika

    2015-01-01

    Coupling a single quantum emitter, such as a fluorescent molecule or a quantum dot (QD), to a plasmonic nanostructure is an important issue in nano-optics and nano-spectroscopy, relevant for a wide range of applications, including tip-enhanced near-field optical microscopy, plasmon enhanced molecular sensing and spectroscopy, and nanophotonic amplifiers or nanolasers, to mention only a few. While the field enhancement of a sharp nanoantenna increasing the excitation rate of a very closely positioned single molecule or QD has been well investigated, the detailed physical mechanisms involved in the emission of a photon from such a system are, by far, less investigated. In one of our ongoing research projects, we try to address these issues by constructing and spectroscopically analysing geometrically simple hybrid heterostructures consisting of sharp gold cones with single quantum dots attached to the very tip apex. An important goal of this work is to tune the longitudinal plasmon resonance by adjusting the cones' geometry to the emission maximum of the core-shell CdSe/ZnS QDs at nominally 650 nm. Luminescence spectra of the bare cones, pure QDs and hybrid systems were distinguished successfully. In the next steps we will further investigate, experimentally and theoretically, the optical properties of the coupled systems in more detail, such as the fluorescence spectra, blinking statistics, and the current results on the fluorescence lifetimes, and compare them with uncoupled QDs to obtain a clearer picture of the radiative and non-radiative processes.

  2. Modelling graphene quantum dot functionalization via ethylene-dinitrobenzoyl

    Energy Technology Data Exchange (ETDEWEB)

    Noori, Keian; Giustino, Feliciano [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hübener, Hannes [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, Av. Tolosa 72, 20018 San Sebastián (Spain); Kymakis, Emmanuel [Center of Materials Technology and Photonics & Electrical Engineering Department, Technological Educational Institute (TEI) of Crete, Heraklion, 71004 Crete (Greece)

    2016-03-21

    Ethylene-dinitrobenzoyl (EDNB) linked to graphene oxide has been shown to improve the performance of graphene/polymer organic photovoltaics. Its binding conformation on graphene, however, is not yet clear, nor have its effects on work function and optical absorption been explored more generally for graphene quantum dots. In this report, we clarify the linkage of EDNB to GQDs from first principles and show that the binding of the molecule increases the work function of graphene, while simultaneously modifying its absorption in the ultraviolet region.

  3. In vitro derby imaging of cancer biomarkers using quantum dots.

    Science.gov (United States)

    Ko, Mee Hyang; Kim, Soonhag; Kang, Won Jun; Lee, Jung Hwan; Kang, Hyungu; Moon, Sung Hwan; Hwang, Do Won; Ko, Hae Young; Lee, Dong Soo

    2009-05-01

    Semiconductor quantum dots (QDs), which have broad absorption with narrow emission spectra, are useful for multiplex imaging. Here, fluorescence derby imaging using dual color QDs conjugated by the AS1411 aptamer (targeting nucleolin) and the arginine-glycine-aspartic acid (targeting the integrin alpha(v)beta(3)) in cancer cells is reported. Simultaneous fluorescence imaging of cellular distribution of nucleolin and integrin alpha(v)beta(3) using QDs enables easy monitoring of separate targets in the cancer cells and the normal healthy cells. These results suggest the feasibility of a concurrent visualization of QD-based multiple cancer biomarkers using small molecules such as aptamer or peptide ligands.

  4. Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

    Science.gov (United States)

    Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Felle, M.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2017-08-01

    The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.

  5. Quantum dots for next-generation photovoltaics

    Directory of Open Access Journals (Sweden)

    Octavi E. Semonin

    2012-11-01

    Full Text Available Colloidal quantum-confined semiconductor nanostructures are an emerging class of functional material that are being developed for novel solar energy conversion strategies. One of the largest losses in a bulk or thin film solar cell occurs within a few picoseconds after the photon is absorbed, as photons with energy larger than the semiconductor bandgap produce charge-carriers with excess kinetic energy, which is then dissipated via phonon emission. Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photoconversion step. In this review, we provide the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (nanocrystals confined in three dimensions in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion.

  6. Hybrid passivated colloidal quantum dot solids

    Science.gov (United States)

    Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H.

    2012-09-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.

  7. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Nonrenewal statistics in transport through quantum dots

    Science.gov (United States)

    Ptaszyński, Krzysztof

    2017-01-01

    The distribution of waiting times between successive tunneling events is an already established method to characterize current fluctuations in mesoscopic systems. Here, I investigate mechanisms generating correlations between subsequent waiting times in two model systems, a pair of capacitively coupled quantum dots and a single-level dot attached to spin-polarized leads. Waiting time correlations are shown to give insight into the internal dynamics of the system; for example they allow distinction between different mechanisms of the noise enhancement. Moreover, the presence of correlations breaks the validity of the renewal theory. This increases the number of independent cumulants of current fluctuation statistics, thus providing additional sources of information about the transport mechanism. I also propose a method for inferring the presence of waiting time correlations based on low-order current correlation functions. This method gives a way to extend the analysis of nonrenewal current fluctuations to the systems for which single-electron counting is not experimentally feasible. The experimental relevance of the findings is also discussed; for example reanalysis of previous results concerning transport in quantum dots is suggested.

  9. Production and targeting of monovalent quantum dots.

    Science.gov (United States)

    Seo, Daeha; Farlow, Justin; Southard, Kade; Jun, Young-Wook; Gartner, Zev J

    2014-10-23

    The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety.

  10. Amphoteric CdSe nanocrystalline quantum dots.

    Science.gov (United States)

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  11. Transport across two interacting quantum dots: bulk Kondo, Kondo box and molecular regimes

    Science.gov (United States)

    Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique

    2014-03-01

    We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of small number of sites, so that Kondo box effects are present. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism. We finally study how the transport properties are affected as N is increased. We used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory. The results obtained with both methods describe qualitatively and also quantitatively the same physics.

  12. Quantum Dots: An Experiment for Physical or Materials Chemistry

    Science.gov (United States)

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  13. Resonance fluorescence from a telecom-wavelength quantum dot

    CERN Document Server

    Al-Khuzheyri, R; Huwer, J; Santana, T S; Szymanska, J Skiba-; Felle, M; Ward, M B; Stevenson, R M; Farrer, I; Tanner, M G; Hadfield, R H; Ritchie, D A; Shields, A J; Gerardot, B D

    2016-01-01

    We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime--a hallmark of resonance fluorescence. The measured resonance-fluorescence spectra allow us to rule out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with numerical simulations, the experimental results provide robust characterisation of charge noise in the environment of the quantum dot. Resonant control of the quantum dot opens up new possibilities for on-demand generation of indistinguishable single photons at telecom wavelengths as well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-wavelength quantum dots.

  14. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...

  15. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  16. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width...... quantum optical properties for single photon application and quantum optics.......We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer...

  17. Electron-phonon interaction in quantum transport through quantum dots and molecular systems

    Science.gov (United States)

    Ojeda, J. H.; Duque, C. A.; Laroze, D.

    2016-12-01

    The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.

  18. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement

    OpenAIRE

    2014-01-01

    We investigate coherent single surface-plasmon transport in a metal nanowire strongly coupled to two colloidal quantum dots. Analytical expressions are obtained for the transmission and reflection coefficients by solving the corresponding eigenvalue equation. Remote entanglement of the wave functions of the two quantum dots can be created if the inter-dot distance is equal to a multiple half-wavelength of the surface plasmon. Furthermore, by applying classical laser pulses to the quantum dots...

  19. Quantum state preparation in semiconductor dots by adiabatic rapid passage

    OpenAIRE

    Wu, Yanwen; Piper, I.M.; Ediger, M.; Brereton, P.; Schmidgall, E. R.; Hugues, M.; Hopkinson, M.; Phillips, R.T.

    2010-01-01

    Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We d...

  20. Coupled quantum dot-ring structures by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Somaschini, C; Bietti, S; Koguchi, N; Sanguinetti, S, E-mail: stefano.sanguinetti@unimib.it [L-NESS and Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy)

    2011-05-06

    The fabrication, by pure self-assembly, of GaAs/AlGaAs dot-ring quantum nanostructures is presented. The growth is performed via droplet epitaxy, which allows for the fine control, through As flux and substrate temperature, of the crystallization kinetics of nanometer scale metallic Ga reservoirs deposited on the surface. Such a procedure permits the combination of quantum dots and quantum rings into a single, multi-functional, complex quantum nanostructure.

  1. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  2. Nano-laser on silicon quantum dots

    Science.gov (United States)

    Huang, Wei-Qi; Liu, Shi-Rong; Qin, Chao-Jian; Lü, Quan; Xu, Li

    2011-04-01

    A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.

  3. An Exciton Bound to a Neutral Donor in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    解文方

    2002-01-01

    The binding energies for an exciton (X) trapped in a two-dimensional quantum dot by a neutral donor have been calculated using the method of few-body physics for the heavy hole (σ= 0.196) and the light hole (σr = 0.707).We find that the (D0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy increases with the decrease of the dot radius. At dot radius R →∞, we compare our calculated result with the previous results.

  4. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    Institute of Scientific and Technical Information of China (English)

    L(U) Rong; ZHANG Guang-Ming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  5. Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Suriamoorthy, Preethi; Zhang, Xing; Hao, Guiyang; Joly, Alan G.; Singh, S.; Hossu, Marius; Sun, Xiankai; Chen, Wei

    2010-12-01

    In this study, we report the preparation,luminescence, and targeting properties of folic acid- CdTe quantum dot conjugates. Water-soluble CdTe quantum dots were synthesized and conjugated with folic acid using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide chemistry. The in-fluence of folic acid on the luminescence properties of CdTe quantum dots was investigated, and no energy transfer between them was observed. To investigate the efficiency of folic acid-CdTe nanoconjugates for tumor targeting, pure CdTe quantum dots and folic acid-coated CdTe quantum dots were incubated with human naso- pharyngeal epidermal carcinoma cell line with positive expressing folic acid receptors (KB cells) and lung cancer cells without expression of folic acid receptors (A549 cells). For the cancer cells with positive folate receptors (KB cells), the uptake for CdTe quantum dots is very low, but for folic acid-CdTe nanoconjugates, the uptake is very high. For the lung cancer cells without folate receptors (A549 cells), the uptake for folic acid- CdTe nanoconjugates is also very low. The results indicate that folic acid is an effective targeting molecule for tumor cells with overexpressed folate receptors.

  6. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    Science.gov (United States)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-07-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  7. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  8. Quantum model for mode locking in pulsed semiconductor quantum dots

    Science.gov (United States)

    Beugeling, W.; Uhrig, Götz S.; Anders, Frithjof B.

    2016-12-01

    Quantum dots in GaAs/InGaAs structures have been proposed as a candidate system for realizing quantum computing. The short coherence time of the electronic quantum state that arises from coupling to the nuclei of the substrate is dramatically increased if the system is subjected to a magnetic field and to repeated optical pulsing. This enhancement is due to mode locking: oscillation frequencies resonant with the pulsing frequencies are enhanced, while off-resonant oscillations eventually die out. Because the resonant frequencies are determined by the pulsing frequency only, the system becomes immune to frequency shifts caused by the nuclear coupling and by slight variations between individual quantum dots. The effects remain even after the optical pulsing is terminated. In this work, we explore the phenomenon of mode locking from a quantum mechanical perspective. We treat the dynamics using the central-spin model, which includes coupling to 10-20 nuclei and incoherent decay of the excited electronic state, in a perturbative framework. Using scaling arguments, we extrapolate our results to realistic system parameters. We estimate that the synchronization to the pulsing frequency needs time scales in the order of 1 s .

  9. A Nanowire-Based Plasmonic Quantum Dot Laser.

    Science.gov (United States)

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  10. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has dev...

  11. Transport through Zero-Dimensional States in a Quantum Dot

    NARCIS (Netherlands)

    Kouwenhoven, Leo P.; Wees, Bart J. van; Harmans, Kees J.P.M.; Williamson, John G.

    1990-01-01

    We have studied the electron transport through zero-dimensional (0D) states. 0D states are formed when one-dimensional edge channels are confined in a quantum dot. The quantum dot is defined in a two-dimensional electron gas with a split gate technique. To allow electronic transport, connection to

  12. Electron spin and charge in semiconductor quantum dots

    NARCIS (Netherlands)

    Elzerman, J.M.

    2004-01-01

    In this thesis, the spin and charge degree of freedom of electrons in semiconductor lateral and vertical quantum dots are experimentally investigated. The lateral quantum dot devices are defined in a two-dimensional electron gas (2DEG) below the surface of a GaAs/AlGaAs heterostructure, by metallic

  13. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis;

    2000-01-01

    . The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...

  14. Negative Trions Trapped by a Spherical Parabolic Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a negatively charged exciton trapped by a spherical parabolic quantum dot has been investigated. The energy spectra of low-lying states are calculated by means of matrix diagonalization. The important feature of the low-lying states of the negatively charged excitons in a spherical quantum dot is obtained via an analysis of the energy spectra.

  15. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail...

  16. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We deta...

  17. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  18. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  19. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  20. Gates controlled parallel-coupled bilayer graphene double quantum dot

    CERN Document Server

    Wang, Lin-Jun; Wei, Da; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Chang, A M

    2011-01-01

    Here we report the fabrication and quantum transport measurements of gates controlled parallel-coupled bilayer graphene double quantum dot. It is shown that the interdot coupling strength of the parallel double dots can be effectively tuned from weak to strong regime by both the in-plane plunger gates and back gate. All the relevant energy scales and parameters of the bilayer graphene parallel-coupled double dot can be extracted from the honeycomb charge stability diagrams revealed through the transport measurements.

  1. Self-polarization in spherical quantum dot

    Directory of Open Access Journals (Sweden)

    Stojanović Dušanka P.

    2015-01-01

    Full Text Available The electronic structures of CdS quantum dot (QD with dielectric mismatch are calculated. Poisson equation is solved analitically in case of point charge placed inside semiconductor sphere embeded in dielectric matrix in case of different values of the dielectric permittivity of QD and matrix. The validity of the effective mass approximation for the conduction band is assumed. Schrödinger equation for one electron is solved analitically. On the basis of the Poisson equation solution self potential is examined and used as perturbation to calculate the self-polarization effect.

  2. Graphene Quantum Dots for Theranostics and Bioimaging.

    Science.gov (United States)

    Schroeder, Kathryn L; Goreham, Renee V; Nann, Thomas

    2016-10-01

    Since their advent in the early 1990s, nanomaterials hold promise to constitute improved technologies in the biomedical area. In particular, graphene quantum dots (GQDs) were conjectured to produce new or improve current methods used for bioimaging, drug delivery, and biomarker sensors for early detection of diseases. This review article critically compares and discusses current state-of-the-art use of GQDs in biology and health sciences. It shows the ability of GQDs to be easily functionalised for use as a targeted multimodal treatment and imaging platform. The in vitro and in vivo toxicity of GQDs are explored showing low toxicity for many types of GQDs.

  3. Hyper-parallel photonic quantum computation with coupled quantum dots

    Science.gov (United States)

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-01-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

  4. Colloidal-quantum-dot spasers and plasmonic amplifiers

    CERN Document Server

    Kress, Stephan J P; Rohner, Patrik; Kim, David K; Antolinez, Felipe V; Zaininger, Karl-Augustin; Jayanti, Sriharsha V; Richner, Patrizia; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J

    2016-01-01

    Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser, a laser-like source of surface plasmons, was first proposed, quantum dots were specified as the ideal plasmonic gain medium. Subsequent spaser designs, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, an approach ill-suited to quantum dots and other colloidal nanomaterials. Here we develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum-dot-based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create high-quality-factor, aberration-corrected, Ag plasmonic cavities. We then incorporate quantum dots via electrohydrodynamic printing18,19 or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons above threshold. This signal is extracted, directed through an integrated amplifier,...

  5. Non-blinking quantum dot with a plasmonic nanoshell resonator

    Science.gov (United States)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  6. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld;

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...... observe that second-harmonic images of the quantum-dot surface structure show wavelength-dependent spatial variations. Imaging at different wavelength is used to demonstrate second-harmonic generation from the semiconductor quantum dots. (C) 2000 American Institute of Physics....

  7. Quantum dots in diagnostics and detection: principles and paradigms.

    Science.gov (United States)

    Pisanic, T R; Zhang, Y; Wang, T H

    2014-06-21

    Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection.

  8. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    Z. O. Lipatova

    2015-03-01

    Full Text Available Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been found to be dependent on the registration wavelength in the range from 450 to 700 nm. Obtained fluorophosphate glasses with CdS quantum dots can find their application as fluorescent materials with intensive luminescence band and long excited-state natural lifetime.

  9. Interaction of porphyrins with CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei, E-mail: weichen@uta.edu [Department of Physics, University of Texas at Arlington, Box 19059 Arlington, TX 76019 (United States)

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  10. Self-assembled quantum dots in a nanowire system for quantum photonics

    OpenAIRE

    Heiss, M.; Fontana, Y.; Gustafsson, A; Wüst, G.; Magen, C.; O’Regan, D. D.; Luo, J. W.; Ketterer, B.; Conesa-Boj, S.; Kuhlmann, A. V.; Houel, J.; Russo-Averchi, E.; Morante, J. R.; Cantoni, M.; Marzari, N.

    2013-01-01

    Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-innanowire...

  11. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  12. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    Science.gov (United States)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Hatami, F.; Masselink, W. T.; Zhang, H.; Casalboni, M.

    2016-03-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N2) and in solvent vapours of methanol, clorophorm, acetone and water were measured. The presence of vapors of clorophorm, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed.

  13. The Electron-Hole Pair in a Single Quantum Dot and That in a Vertically Coupled Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    XIEWen-Fang; ZHUWu

    2003-01-01

    The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots are studied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method of numerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the binding energy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupled quantum dot as a function of the dot radius for different vaJues of the distance and the magnetic field strength.

  14. Edge-state blockade of transport in quantum dot arrays

    Science.gov (United States)

    Benito, Mónica; Niklas, Michael; Platero, Gloria; Kohler, Sigmund

    2016-03-01

    We propose a transport blockade mechanism in quantum dot arrays and conducting molecules based on an interplay of Coulomb repulsion and the formation of edge states. As a model we employ a dimer chain that exhibits a topological phase transition. The connection to a strongly biased electron source and drain enables transport. We show that the related emergence of edge states is manifest in the shot noise properties as it is accompanied by a crossover from bunched electron transport to a Poissonian process. For both regions we develop a scenario that can be captured by a rate equation. The resulting analytical expressions for the Fano factor agree well with the numerical solution of a full quantum master equation.

  15. Biosensing with Luminescent Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hedi Mattoussi

    2006-08-01

    Full Text Available Luminescent semiconductor nanocrystals or quantum dots (QDs are a recentlydeveloped class of nanomaterial whose unique photophysical properties are helping tocreate a new generation of robust fluorescent biosensors. QD properties of interest forbiosensing include high quantum yields, broad absorption spectra coupled to narrow sizetunablephotoluminescent emissions and exceptional resistance to both photobleaching andchemical degradation. In this review, we examine the progress in adapting QDs for severalpredominantly in vitro biosensing applications including use in immunoassays, asgeneralized probes, in nucleic acid detection and fluorescence resonance energy transfer(FRET - based sensing. We also describe several important considerations when workingwith QDs mainly centered on the choice of material(s and appropriate strategies forattaching biomolecules to the QDs.

  16. Semiconductor Quantum Dots for Biomedicial Applications

    Science.gov (United States)

    Shao, Lijia; Gao, Yanfang; Yan, Feng

    2011-01-01

    Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690

  17. Semiconductor quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  18. Semiconductor quantum dot-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Jianjun Tian

    2013-10-01

    Full Text Available Semiconductor quantum dots (QDs have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1 the effect of quantum confinement on QDSCs, 2 the multiple exciton generation (MEG of QDs, 3 fabrication methods of QDs, and 4 nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  19. Electron states in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dhayal, Suman S., E-mail: ssdhayal@gmail.com [Department of Physics, University of North Texas, P.O. Box 311427, Denton, Texas 76203 (United States); Ramaniah, Lavanya M., E-mail: lavanya@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Physics Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Ruda, Harry E.; Nair, Selvakumar V., E-mail: selva.nair@utoronto.ca [Centre for Nanotechnology, University of Toronto, 170 College Street, Toronto, Ontario M5S 3E3 (Canada)

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  20. Silicon quantum dots for biological applications.

    Science.gov (United States)

    Chinnathambi, Shanmugavel; Chen, Song; Ganesan, Singaravelu; Hanagata, Nobutaka

    2014-01-01

    Semiconductor nanoparticles (or quantum dots, QDs) exhibit unique optical and electronic properties such as size-controlled fluorescence, high quantum yields, and stability against photobleaching. These properties allow QDs to be used as optical labels for multiplexed imaging and in drug delivery detection systems. Luminescent silicon QDs and surface-modified silicon QDs have also been developed as potential minimally toxic fluorescent probes for bioapplications. Silicon, a well-known power electronic semiconductor material, is considered an extremely biocompatible material, in particular with respect to blood. This review article summarizes existing knowledge related to and recent research progress made in the methods for synthesizing silicon QDs, as well as their optical properties and surface-modification processes. In addition, drug delivery systems and in vitro and in vivo imaging applications that use silicon QDs are also discussed.

  1. Coherent spin dynamics in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Amand, T.; Senes, M.; Marie, X.; Renucci, P. [Laboratoire de Nanophysique, Magnetisme et Optoelectronique-LPMC, INSA, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Urbaszek, B. [Laboratoire de Nanophysique, Magnetisme et Optoelectronique-LPMC, INSA, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Krebs, O.; Laurent, S.; Voisin, P. [Laboratoire de Photonique et Nanostructures, route de Nozay, 91460 Marcoussis (France); Warburton, R.J. [Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2005-05-01

    The anisotropic exchange interaction (AEI) between electrons and holes is shown to play a central role in quantum dots (QDs) spin dynamics. In neutral QDs, AEI is at the origin of spin quantum beats observed under resonant excitation between the lowest energy doublet of linearly dipole-active eigenstates. In negatively charged QDs, AEI is at the origin of QD emission with opposite helicity to the optic al excitation, under non-resonant excitation conditions. Finally, the possibility of leaving a spin information in the system after recombination of the photo-injected electron-hole pair is discussed with respect to the type and the level of the doping. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Interference and interactions in open quantum dots

    CERN Document Server

    Bird, J P; Ferry, D K; Moura, A P S; Lai, Y C; Indlekofer, K M

    2003-01-01

    In this report, we review the results of our joint experimental and theoretical studies of electron-interference, and interaction, phenomena in open electron cavities known as quantum dots. The transport through these structures is shown to be heavily influenced by the remnants of their discrete density of states, elements of which remain resolved in spite of the strong coupling that exists between the cavity and its reservoirs. The experimental signatures of this density of states are discussed at length in this report, and are shown to be related to characteristic wavefunction scarring, involving a small number of classical orbits. A semiclassical analysis of this behaviour shows it to be related to the effect of dynamical tunnelling, in which electrons are injected into the dot tunnel through classically forbidden regions of phase space, to access isolated regular orbits. The dynamical tunnelling gives rise to the formation of long-lived quasi-bound states in the open dots, and the many-body implications a...

  3. Electrons, holes, and excitons in superlattice of cylindrical quantum dots with weakest coupling of quasiparticles between quantum dots layers

    CERN Document Server

    Tkach, N V; Zegrya, G G

    2002-01-01

    The theoretical investigation of the spectrum of electrons, holes, and excitons in the superlattice of cylindrical quantum dots with weakest coupling of quasiparticles between vertical layers of quantum dots is carried out. The calculations are fulfilled by the example of cylindrical quantum dots of beta-HgS introduced into beta-CdS as the superlattice. It is shown that electron and hole in such system form quasi-two-dimensional energy minibands, but excitons are described by the Sugano-Shinada model. The dependence of quasiparticle spectra on geometric parameters of the superlattice with cylindrical quantum dots is studied. It is shown that the position of minibands of all quasiparticles is very sensitive to variation of the quantum dot height

  4. Using quantum dot photoluminescence for load detection

    Science.gov (United States)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  5. Colloidal quantum dot light-emitting devices

    Directory of Open Access Journals (Sweden)

    Vanessa Wood

    2010-07-01

    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  6. Study of metallothionein-quantum dots interactions.

    Science.gov (United States)

    Tmejova, Katerina; Hynek, David; Kopel, Pavel; Krizkova, Sona; Blazkova, Iva; Trnkova, Libuse; Adam, Vojtech; Kizek, Rene

    2014-05-01

    Nanoparticles have gained increasing interest in medical and in vivo applications. Metallothionein (MT) is well known as a maintainer of metal ions balance in intracellular space. This is due to high affinity of this protein to any reactive species including metals and reactive oxygen species. The purpose of this study was to determine the metallothionein-quantum dots interactions that were investigated by spectral and electrochemical techniques. CuS, CdS, PbS, and CdTe quantum dots (QDs) were analysed. The highest intensity was shown for CdTe, than for CdS measured by fluorescence. These results were supported by statistical analysis and considered as significant. Further, these interactions were analysed using gel electrophoresis, where MT aggregates forming after interactions with QDs were detected. Using differential pulse voltammetry Brdicka reaction, QDs and MT were studied. This method allowed us to confirm spectral results and, moreover, to observe the changes in MT structure causing new voltammetric peaks called X and Y, which enhanced with the prolonged time of interaction up to 6 h.

  7. Quantum dot imaging for embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Gambhir Sanjiv S

    2007-10-01

    Full Text Available Abstract Background Semiconductor quantum dots (QDs hold increasing potential for cellular imaging both in vitro and in vivo. In this report, we aimed to evaluate in vivo multiplex imaging of mouse embryonic stem (ES cells labeled with Qtracker delivered quantum dots (QDs. Results Murine embryonic stem (ES cells were labeled with six different QDs using Qtracker. ES cell viability, proliferation, and differentiation were not adversely affected by QDs compared with non-labeled control cells (P = NS. Afterward, labeled ES cells were injected subcutaneously onto the backs of athymic nude mice. These labeled ES cells could be imaged with good contrast with one single excitation wavelength. With the same excitation wavelength, the signal intensity, defined as (total signal-background/exposure time in millisecond was 11 ± 2 for cells labeled with QD 525, 12 ± 9 for QD 565, 176 ± 81 for QD 605, 176 ± 136 for QD 655, 167 ± 104 for QD 705, and 1,713 ± 482 for QD 800. Finally, we have shown that QD 800 offers greater fluorescent intensity than the other QDs tested. Conclusion In summary, this is the first demonstration of in vivo multiplex imaging of mouse ES cells labeled QDs. Upon further improvements, QDs will have a greater potential for tracking stem cells within deep tissues. These results provide a promising tool for imaging stem cell therapy non-invasively in vivo.

  8. Using quantum dot photoluminescence for load detection

    Energy Technology Data Exchange (ETDEWEB)

    Moebius, M., E-mail: martin.moebius@zfm.tu-chemnitz.de; Hartwig, M. [Technische Universität Chemnitz, Reichenhainer Straße, 09126 Chemnitz (Germany); Martin, J. [Fraunhofer Institute for Electronic Nano Systems, Technologie-Campus 3, 09126 Chemnitz (Germany); Baumann, R. R.; Otto, T.; Gessner, T. [Technische Universität Chemnitz, Reichenhainer Straße, 09126 Chemnitz (Germany); Fraunhofer Institute for Electronic Nano Systems, Technologie-Campus 3, 09126 Chemnitz (Germany)

    2016-08-15

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N′,N′-Tetrakis(3-methylphenyl)-3,3′-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  9. Using quantum dot photoluminescence for load detection

    Directory of Open Access Journals (Sweden)

    M. Moebius

    2016-08-01

    Full Text Available We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N′,N′-Tetrakis(3-methylphenyl-3,3′-dimethylbenzidine (HMTPD and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  10. Polymersomes containing quantum dots for cellular imaging

    Directory of Open Access Journals (Sweden)

    Camblin M

    2014-05-01

    Full Text Available Marine Camblin,1 Pascal Detampel,1 Helene Kettiger,1 Dalin Wu,2 Vimalkumar Balasubramanian,1,* Jörg Huwyler1,*1Division of Pharmaceutical Technology, 2Department of Chemistry, University of Basel, Basel, Switzerland*These authors contributed equally to this workAbstract: Quantum dots (QDs are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps made of poly(dimethylsiloxane-poly(2-methyloxazoline (PDMS-PMOXA diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS at physiological pH (7.4. Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2 and was visualized by confocal laser scanning microscopy (CLSM. Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging.Keywords: quantum dots, polymersomes, cellular imaging, cellular uptake

  11. Using a quantum dot system to realize perfect state transfer

    Institute of Scientific and Technical Information of China (English)

    Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang

    2011-01-01

    There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M,Petrosyan D and Lambropoulos P 2004 Europhys.Lett.65 297] where a quantum dot system is used to realize quantum communication.To overcome these disadvantages,we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST).First,we calculate the interaction relation for PQST in the spin chain.Second,we review the interaction between the quantum dots in the Heitler-London approach.Third,we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST.

  12. Open quantum dots in graphene: Scaling relativistic pointer states

    Science.gov (United States)

    Ferry, D. K.; Huang, L.; Yang, R.; Lai, Y.-C.; Akis, R.

    2010-04-01

    Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not "washed out" through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.

  13. Charge-extraction strategies for colloidal quantum dot photovoltaics

    KAUST Repository

    Lan, Xinzheng

    2014-02-20

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p-and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction. © 2014 Macmillan Publishers Limited.

  14. Ultrafast photoinduced dynamics in quantum dot-based systems for light harvesting

    Institute of Scientific and Technical Information of China (English)

    Kaibo Zheng; Khadga Karki; Karel Zidek; Tonu Pullerits

    2015-01-01

    Colloidal semiconductor nanocrystals, referred to as quantum dots, offer simple low-temperature solution-based methods for constructing optoelectronic devices such as light emitting diodes and solar cells. We review recent progress in the understanding of photoinduced processes in key components of a certain type of quantum dot solar cells where the dots sensitize a suitable metal oxide, such as ZnO or TiO2, for electron injection, and NiO for hole injection. The electron and hole injection dynamics are discussed in detail as a function of the quantum dot size and core-shell structure, the linker molecule type, and the morphology of the accepting metal oxide. Hole trapping is identified as a major factor limiting the performance of quantum dot-based devices. We review possible strategies for improvement that use core-shell structures and directed excitation energy transfer between quantum dots. Finally, the generation and injection of multiple excitons are revisited. We show that the assumption of a linear relationship between the intensity of transient absorption signal and the number of excitons does not generally hold, and this observation can partially explain highly disparate results for the effidency of generating multiple exdtons. A consistent calculation procedure for studies of multiple exciton generation is provided. Finally we offer a brief personal outlook on the topic.

  15. Single-photon superradiance from a quantum dot

    DEFF Research Database (Denmark)

    Tighineanu, Petru; Daveau, Raphaël Sura; Lehmann, Tau Bernstorff

    2016-01-01

    We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron...... temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies....

  16. Pulse train amplification and regeneration based on semiconductor quantum dots waveguide

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We numerical analyze pulse train amplification up to 200 Gbit/s in quantum dot amplifiers and present regeneration properties with saturable absorber based on semiconductor quantum dot waveguides.......We numerical analyze pulse train amplification up to 200 Gbit/s in quantum dot amplifiers and present regeneration properties with saturable absorber based on semiconductor quantum dot waveguides....

  17. RKKY interaction in a chirally coupled double quantum dot system

    Energy Technology Data Exchange (ETDEWEB)

    Heine, A. W.; Tutuc, D.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Zwicknagl, G. [Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regensburg (Germany); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, Schafmattstr. 16, 8093 Zürich, Switzerland and Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regens (Germany)

    2013-12-04

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.

  18. Use of quantum dot-conjugated antibodies to study intracellular cancer biomarkers in living and fixed cells

    Science.gov (United States)

    Ling, Jian

    2008-02-01

    Quantum dots have unique properties for long-term immunofluorescence imaging of molecular activities inside living cells. The key is how to deliver the quantum dot-conjugated antibodies into cells and further allow the antibodies freely move inside cells to bind target molecules. This study investigated the feasibility of using Pep-1, a cell penetration protein, to facilitate the internalization of quantum dot-conjugated antibodies for the labeling of two intracellular cervical cancer biomarkers: p16 and Mcm5. Quantum dots were directly conjugated with the antibodies to p16 and Mcm5 and, they were able to stain fixed cells and to differentiate biomarker positive and negative cells. The non-covalent binding between the conjugates and Pep-1 peptides allows the quick internalization of the quantum dot-conjugated antibodies into living cells. The internalized conjugates were concentrated in the perinuclear regions of the biomarker-positive HeLa cells. In the biomarker negative Um-Uc-3 cells, however, the conjugates concentrated in juxtaneclear region. Cells bearing with quantum dots still go through the mitosis process. Although the study indicates many questions need to be answered and many problems need to be solved, the use of cell penetration peptide is a promising method for the intracellular labeling of living cell molecules using quantum dots.

  19. Quantum fluctuations in semiconductor quantum dots and their contributions to the self-energy functions of exciton states

    Science.gov (United States)

    Mutygullina, A. A.; Khamadeev, M. A.; Blum, D. O.; Shirdelhavar, A. H.

    2017-06-01

    Influence of quantum fluctuations in a system consisting of a quantum dot and the reservoir of acoustic phonons on processes in which the quantum dot takes part is investigated. Under some conditions this influence is shown to be very strong. We find a contribution from the quantum fluctuations to the self-energy function of the exciton coupled to the quantum dot.

  20. Spins of Andreev states in double quantum dots

    Science.gov (United States)

    Su, Zhaoen; Chen, Jun; Yu, Peng; Hocervar, Moira; Plissard, Sebastien; Car, Diana; Tacla, Alexandre; Daley, Andrew; Pekker, David; Bakkers, Erik; Frolov, Sergey

    Andreev (or Shiba) states in coupled double quantum dots is an open field. Here we demonstrate the realization of Andreev states in double quantum dots in an InSb nanowire coupled to two NbTiN superconductors. The magnetic field dependence of the Andreev states has been explored to resolve the spins in different double dot configurations. The experiment helps to understand the interplay between pair correlation, exchange energy and charging energy with a well-controlled system. It also opens the possibility to implement Majorana modes in Kitaev chains made of such dots.

  1. Beyond the heteroepitaxial quantum dot : self-assembling complex nanostructures controlled by strain and growth kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Peter (Brookhaven National Laboratory, Upton, NY); Lam, Chi-Hang (Hong Kong Polytechnic University, Hong Kong); Gray, Jennifer Lynn (University of Virginia, Charlottesville, VA); Means, Joel L. (Texas A& M University, College Station, TX); Floro, Jerrold Anthony; Hull, Robert (University of Virginia, Charlottesville, VA)

    2005-06-01

    Heteroepitaxial growth of GeSi alloys on Si (001) under deposition conditions that partially limit surface mobility leads to an unusual form of strain-induced surface morphological evolution. We discuss a kinetic growth regime wherein pits form in a thick metastable wetting layer and, with additional deposition, evolve to a quantum dot molecule - a symmetric assembly of four quantum dots bound by the central pit. We discuss the size selection and scaling of quantum dot molecules. We then examine the key mechanism - preferred pit formation - in detail, using ex situ atomic force microscopy, in situ scanning tunneling microscopy, and kinetic Monte Carlo simulations. A picture emerges wherein localized pits appear to arise from a damped instability. When pits are annealed, they extend into an array of highly anisotropic surface grooves via a one-dimensional growth instability. Subsequent deposition on this grooved film results in a fascinating structure where compact quantum dots and molecules, as well as highly ramified quantum wires, are all simultaneously self-assembled.

  2. Seeded emulsion polymerization as a powerful tool for the biofunctionalization of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Habercorn, Lasse; Merkl, Jan-Philip; Kloust, Hauke Christian; Feld, Artur; Schmidtke, Christian; Wolter, Christopher; Janschel, Marcus [Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ostermann, Johannes [Center for Applied Nanotechnology GmbH, Grindelallee 117, 20146 Hamburg (Germany); Weller, Horst [Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Center for Applied Nanotechnology GmbH, Grindelallee 117, 20146 Hamburg (Germany)

    2016-05-18

    With the polymer encapsulation of quantum dots via seeded emulsion polymerization we present a powerful tool for the preparation of fluorescent nanoparticles with an extraordinary stability in aqueous solution. The method of the seeded emulsion polymerization allows a straightforward and simple in situ functionalization of the polymer shell under preserving the optical properties of the quantum dots. These requirements are inevitable for the application of semiconductor nanoparticles as markers for biomedical applications. Polymer encapsulated quantum dots have shown only a marginal loss of quantum yields when they were exposed to copper(II)-ions. Under normal conditions the quantum dots were totally quenched in presence of copper(II)-ions. Furthermore, a broad range of in situ functionalized polymer-coated quantum dots were obtained by addition of functional monomers or surfactants like fluorescent dye molecules, antibodies or specific DNA aptamers. Furthermore the emulsion polymerization can be used to prepare multifunctional hybrid systems, combining different nanoparticles within one construct without any adverse effect of the properties of the starting materials.{sup 1,2}.

  3. Quantum dot density studies for quantum dot intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, Sedsel Fretheim; Zhou, Dayong; Vitelli, Stefano; Mayani, Maryam Gholami; Fimland, Bjoern-Ove; Reenaas, Turid Worren

    2010-07-01

    Quantum dots (QDs) have been an active area of research for many years and have been implemented in several applications, such as lasers and detectors. During the last years, some attempts have been made to increase the absorption and efficiency of solar cells by inserting QDs into the intrinsic region of pin solar cells. So far, these attempts have been successful in increasing the absorption, but not the cell efficiency. There are probably several reasons for this lack of efficiency increase, but we believe that one important reason is the low density of the implemented QDs. In this work, samples of single layer InAs QDs on n-GaAs(001) substrates have been grown by molecular beam epitaxy (MBE) and we have performed a systematic study of how deposition parameters affect the QD density. The aim is to achieve densities > 1011 cm-2. The nominal substrate temperature (360 - 500 deg. C), the InAs growth rate (0.085 - 1 ML/s) and thickness (2.0 - 2.8 ML) have been varied in a systematic way for two different deposition methods of InAs, i.e. continuous deposition or deposition with interruptions. In addition, we have for the continuous growth samples also varied the As-flux (0.5 - 6 centre dot10-6 torr). Scanning electron microscopy (SEM) has been the main characterization method to determine quantum dot sizes and densities, and atomic force microscopy (AFM) has been used for evaluation of the quantum dot heights. We find that the QD density increases with reduced growth temperature and that it is higher for samples grown continuously than for samples grown with growth interruptions. The homogeneity is also strongly affected by temperature, InAs deposition method and the As-flux. We have observed QD densities as high as 2.5 centre dot1011 cm-2 for the samples grown at the lowest growth temperatures. (Author)

  4. Solution-processed colloidal lead sulfide quantum dots for near-infrared quantum information processing applications

    Science.gov (United States)

    Bose, Ranojoy

    In this thesis, we study solution-processed lead sulfide quantum dots for near-infrared quantum information and communication applications. Quantum dots processed through synthetic routes and colloidally suspended in solution offer far-reaching device application possibilities that are unparalelled in traditional self-assembled quantum dots. Lead sulfide quantum dots are especially promising for near-infrared quantum optics due to their optical emission at the wavelengths of fiber-optic communications (1.3--1.5 microm). The broad absorption spectrum of these quantum dots can be used for solar light-harvesting applications, to which end the results of Chapter 2---where we study Forster resonance energy transfer in quantum dot solids---provide remarkable insights into photon emission from quantum-dot based solar cells. In subsequent chapters, we explore quantum-dot photonic crystal applications, where exciton-photon interactions in the cavity environment remarkably allow for the emission of indistinguishable single photons that are important for distribution of high-security quantum keys---being highly sensitive to 'eavesdropping'. Particularly, the suggestion of the solution-processed QED system is novel compared to traditional self-assembled systems, and as we will discuss, offer integration and processing capabilities that are unprecedented, and perform well at wavelength ranges where standard QED systems scale poorly. The results of chapters 3--6 are therefore significant in the general field of cavity quantum electrodynamics.

  5. Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Schneider, C.; Stobbe, Søren

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD.......1±2.6 and an encouragingly high QE of (48±14)% for the SCQDs....

  6. Quantum phase transition of light as a control of the entanglement between interacting quantum dots

    NARCIS (Netherlands)

    Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian

    We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly

  7. Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Schneider, C.; Stobbe, Søren;

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...

  8. Genetic algorithm-guided discovery of additive combinations that direct quantum dot assembly.

    Science.gov (United States)

    Bawazer, Lukmaan A; Ihli, Johannes; Comyn, Timothy P; Critchley, Kevin; Empson, Christopher J; Meldrum, Fiona C

    2015-01-14

    The use of combinations of organic additives to control crystallization, as occurs in biomineralization, is rarely investigated due to the vast potential reaction space. It is demonstrated here that combinatorial approaches led by genetic algorithm heuristics can enable identification of active additive combinations, and four key organic molecules are rapidly identified, which generate highly fluorescent CdS quantum dot superstructures.

  9. A Novel Particle Detector: Quantum Dot Doped Liquid Scintillator

    Science.gov (United States)

    Winslow, Lindley; Conrad, Janet; Jerry, Ruel

    2010-02-01

    Quantum dots are semiconducting nanocrystals. When excited by light shorter then their characteristic wavelength, they re-emit in a narrow band around this wavelength. The size of the quantum is proportional to the characteristic wavelength so they can be tuned for many applications. CdS quantum dots are made in wavelengths from 360nm to 460nm, a perfect range for the sensitivity of photo-multiplier tubes. The synthesis of quantum dots automatically leaves them in toluene, a good organic scintillator and Cd is a particularly interesting material as it has one of the highest thermal neutron cross sections and has several neutrinoless double beta decay and double electron capture isotopes. The performance of quantum dot loaded scintillator compared to standard scintillators is measured and some unique properties presented. )

  10. A triple quantum dot based nano-electromechanical memory device

    Energy Technology Data Exchange (ETDEWEB)

    Pozner, R.; Lifshitz, E. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Peskin, U., E-mail: uri@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Lise Meitner Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  11. Photolithographic process for the patterning of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Joo; Park, Sang Joon; Lee, Sang Wha [Department of Chemical and Bioengineering, Kyungwon University, Seongnam-si, Gyeonggi-Do 461-701 (Korea, Republic of); Kim, Jong Sung [Department of Chemical and Bioengineering, Kyungwon University, Seongnam-si, Gyeonggi-Do 461-701 (Korea, Republic of)], E-mail: jskim@kyungwon.ac.kr

    2008-09-15

    Recently, quantum dots have been used as molecular probes substituting for conventional organic fluorophores. Quantum dots are stable against photobleaching and have more controllable emission bands, broader absorption spectra, and higher quantum yields. In this study, an array of ZnS-coated CdSe quantum dots on a slide glass has been prepared by photolithographic method. The array pattern was prepared using a positive photoresist (AZ1518) and developer (AZ351). The patterned glass was silanized with 3-aminopropyltriethoxysilane (APTES), and carboxyl-coated quantum dots were selectively attached onto the array pattern. The silanization was examined by measuring contact angle and the surface of the array pattern was analyzed using AFM and fluorescent microscope.

  12. Recombination in quantum dot sensitized solar cells.

    Science.gov (United States)

    Mora-Seró, Iván; Giménez, Sixto; Fabregat-Santiago, Francisco; Gómez, Roberto; Shen, Qing; Toyoda, Taro; Bisquert, Juan

    2009-11-17

    Quantum dot sensitized solar cells (QDSCs) have attracted significant attention as promising third-generation photovoltaic devices. In the form of quantum dots (QDs), the semiconductor sensitizers have very useful and often tunable properties; moreover, their theoretical thermodynamic efficiency might be as high as 44%, better than the original 31% calculated ceiling. Unfortunately, the practical performance of these devices still lags behind that of dye-sensitized solar cells. In this Account, we summarize the strategies for depositing CdSe quantum dots on nanostructured mesoporous TiO(2) electrodes and discuss the methods that facilitate improvement in the performance and stability of QDSCs. One particularly significant factor for solar cells that use polysulfide electrolyte as the redox couple, which provides the best performance among QDSCs, is the passivation of the photoanode surface with a ZnS coating, which leads to a dramatic increase of photocurrents and efficiencies. However, these solar cells usually show a poor current-potential characteristic, so a general investigation of the recombination mechanisms is required for improvements. A physical model based on recombination through a monoenergetic TiO(2) surface state that takes into account the effect of the surface coverage has been developed to better understand the recombination mechanisms of QDSCs. The three main methods of QD adsorption on TiO(2) are (i) in situ growth of QDs by chemical bath deposition (CBD), (ii) deposition of presynthesized colloidal QDs by direct adsorption (DA), and (iii) deposition of presynthesized colloidal QDs by linker-assisted adsorption (LA). A systematic investigation by impedance spectroscopy of QDSCs prepared by these methods showed a decrease in the charge-transfer resistance and increased electron lifetimes for CBD samples; the same result was found after ZnS coating because of the covering of the TiO(2) surface. The increase of the lifetime with the ZnS treatment

  13. Linewidth broadening of a quantum dot coupled to an off-resonant cavity

    CERN Document Server

    Majumdar, Arka; Kim, Erik; Englund, Dirk; Kim, Hyochul; Petroff, Pierre; Vuckovic, Jelena

    2010-01-01

    We study the coupling between a photonic crystal cavity and an off-resonant quantum dot under resonant excitation of the cavity or the quantum dot. Linewidths of the quantum dot and the cavity as a function of the excitation laser power are measured. We show that the linewidth of the quantum dot, measured by observing the cavity emission, is significantly broadened compared to the theoretical estimate. This indicates additional incoherent coupling between the quantum dot and the cavity.

  14. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... is obtained by exciting and detecting the photoluminescence through a microscope objective which is located inside the cryostat. Furthermore, e-beam lithography and mesa etching have been used to reduce the size of the detection area to a few hundred nanometers in diameter. These techniques allow us...

  15. Second Bound State of Biexcitons in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Eang

    2003-01-01

    The second bound state of the biexcitons in a quantum dot, with orbital angular momentum L = 1, is reported. By using the method of few-body physics, the binding energy spectra of the second bound state of a biexciton in a GaAs quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio and the quantum dot size. The fact that the biexcitons have a second bound state may aid in the better understanding of their binding mechanism.

  16. Kondo effect in quantum dots and molecular devices

    Institute of Scientific and Technical Information of China (English)

    JIANG Lang; LI Hongxiang; HU Wenping; ZHU Daoben

    2005-01-01

    Kondo effect is a very important many-body phenomenon in condensed matter physics,which explains why the resistance increases as the temperature is lowered (usually <10 K) in dilute magnetic alloy, and why the conductance increases as temperature is decreased in quantum dots. This paper simply introduces equilibrium and non- equilibrium Kondo effects in quantum dots together with the Kondo effect in quantum dots with even number of electrons (when the singlet and triplet states are degenerate). Furthermore, Kondo effect in single atom/molecular transistors is introduced, which indicates a new way to study Kondo effect.

  17. Thermal Rectification Effect of an Interacting Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    CHEN Xue-Ou; DONG Bing; LEI Xiao-Lin

    2008-01-01

    @@ We investigate the nonlinear thermal transport properties of a single interacting quantum dot with two energy levels tunnel-coupled to two electrodes using nonequilibrium Green function method and Hartree-Fock decoupling approximation. In the case of asymmetric tunnel-couplings to two electrodes, for example, when the upper level of the quantum dot is open for transport, whereas the lower level is blocked, our calculations predict a strong asymmetry for the heat (energy) current, which shows that the quantum dot system may act as a thermal rectifier in this specific situation.

  18. Quantum dot doped solid polymer electrolyte for device application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pramod K.; Kim, Kang Wook; Rhee, Hee-Woo [Department of Chemical and Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul 121-742 (Korea)

    2009-06-15

    ZnS capped CdSe quantum dots embedded in PEO:KI:I{sub 2} polymer electrolyte matrix have been synthesized and characterized for dye sensitized solar cell (DSSC) application. The complex impedance spectroscopy shows enhance in ionic conductivity ({sigma}) due to charges provide by quantum dots (QD) while AFM affirm the uniform distribution of QD into polymer electrolyte matrix. Cyclic voltammetry revealed the possible interaction between polymer electrolyte, QD and iodide/iodine. The photovoltaic performances of the DSSC containing quantum dots doped polymer electrolyte was also found to improve. (author)

  19. Quantum dots microstructured optical fiber for x-ray detection

    Science.gov (United States)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2016-02-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  20. Emission redistribution from a quantum dot-bowtie nanoantenna

    OpenAIRE

    Regler, A.; Schraml, K.; Lyamkina, A.; Spiegl, M; Müller, K.; Vuckovic, J.; Finley, J. J.; Kaniber, M.

    2016-01-01

    We present a combined experimental and simulation study of a single self-assembled InGaAs quantum dot coupled to a nearby ($\\sim 25nm$) plasmonic antenna. Micro-photoluminescence spectroscopy shows a $\\sim 2.4\\times$ increase of intensity, which is attributed to spatial far-field redistribution of the emission from the quantum dot-antenna system. Power-dependent studies show similar saturation powers of $2.5\\mu W$ for both coupled and uncoupled quantum dot emission in polarization-resolved me...

  1. Graphene mediated Stark shifting of quantum dot energy levels

    Science.gov (United States)

    Kinnischtzke, Laura; Goodfellow, Kenneth M.; Chakraborty, Chitraleema; Lai, Yi-Ming; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Vamivakas, A. Nick

    2016-05-01

    We demonstrate an optoelectronic device comprised of single InAs quantum dots in an n-i-Schottky diode where graphene has been used as the Schottky contact. Deterministic electric field tuning is shown using Stark-shifted micro-photoluminescence from single quantum dots. The extracted dipole moments from the Stark shifts are comparable to conventional devices where the Schottky contact is a semi-transparent metal. Neutral and singly charged excitons are also observed in the well-known Coulomb-blockade plateaus. Our results indicate that graphene is a suitable replacement for metal contacts in quantum dot devices which require electric field control.

  2. Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ian D. Tomlinson

    2007-01-01

    Full Text Available We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes.

  3. Infrared Focal Plane Arrays Based on Semiconductor Quantum Dots

    Science.gov (United States)

    2002-01-01

    studied in the framework of this, including the collaborating researchers in each of them, are detailed below: 1. “Ultra Small InAs/GaInP/ InP Quantum Dots ”: with...of detectors, which will be attached to Si based signal processors. D:\\FINAL REPORT.doc 4 Part 1 Ultra Small InAs/GaInP/ InP Quantum Dots The heights of...an ensemble of self-assembled InAs/GaAs or InAs/ InP quantum dots (QDs) are typically in the range of 10-30 monolayers [1]. Here, we report on InAs

  4. Temperature Studies of Single InP Quantum Dots

    Science.gov (United States)

    1999-06-18

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012858 TITLE: Temperature Studies of Single InP Quantum Dots DISTRIBUTION...34 QWR/QD.07 St Petersburg, Russia, June 14-18, 1999 © 1999 loffe Institute Temperature studies of single InP quantum dots Valdry Zwiller, Mats-Erik...Information on the size and geometry of our self-assembled InP Quantum Dots grown on GamnP lattice matched to GaAs has been published elsewhere -I

  5. Solvothermal synthesis of InP quantum dots.

    Science.gov (United States)

    Nag, Angshuman; Sarma, D D

    2009-09-01

    We report an efficient and fast solvothermal route to prepare highly crystalline monodispersed InP quantum dots. This solvothermal route, not only ensures inert atmosphere, which is strictly required for the synthesis of phase pure InP quantum dots but also allows a reaction temperature as high as 430 degrees C, which is otherwise impossible to achieve using a typical solution chemistry; the higher reaction temperature makes the reaction more facile. This method also has a judicious control over the size of the quantum dots and thus in tuning the bandgap.

  6. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  7. PL Emission and Shape of Silicon Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-0-Si bridge bond on curved surface provides the localized levels in band gap and its bonding energy is shallower than that on facet. The red-shifting of PL spectra on smaller silicon quantum dots can be explained by curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided in curved surface effect.About The Author: Zhong-Mei Huang,Master in Guizhou University.

  8. Diffusion doping in quantum dots: bond strength and diffusivity.

    Science.gov (United States)

    Saha, Avijit; Makkar, Mahima; Shetty, Amitha; Gahlot, Kushagra; A R, Pavan; Viswanatha, Ranjani

    2017-02-23

    Semiconducting materials uniformly doped with optical or magnetic impurities have been useful in a number of potential applications. However, clustering or phase separation during synthesis has made this job challenging. Recently the "inside out" diffusion doping was proposed to be successful in obtaining large sized quantum dots (QDs) uniformly doped with a dilute percentage of dopant atoms. Herein, we demonstrate the use of basic physical chemistry of diffusion to control the size and concentration of the dopants within the QDs for a given transition metal ion. We have studied three parameters; the bond strength of the core molecules and the diffusion coefficient of the diffusing metal ion are found to be important while the ease of cation exchange was not highly influential in the control of size and concentration of the single domain dilute magnetic semiconductor quantum dots (DMSQDs) with diverse dopant ions M(2+) (Fe(2+), Ni(2+), Co(2+), Mn(2+)). Steady state optical emission spectra reveal that the dopants are incorporated inside the semiconducting CdS and the emission can be tuned during shell growth. We have shown that this method enables control over doping percentage and the QDs show a superior ferromagnetic response at room temperature as compared to previously reported systems.

  9. Quantum Dot-Photonic Crystal Cavity QED Based Quantum Information Processing

    Science.gov (United States)

    2012-08-14

    Physical Review A, 2012] 3. Study of the off-resonant quantum dot-cavity coupling in solid-state cavity QED system, and the phonon mediated off...resonant interaction between two quantum dots [Majumdar et al., Physical Review B , 2012] 4. Coherent optical spectroscopy of a single quantum dot via an off...Resonant cavity - much simpler than in conventional approaches [Majumdar et al, Physical Review B, 2011; Papageorge et al., New. Journal of Physics

  10. The Electron-Hole Pair in a Single Quantum Dot and That in a Vertically Coupled Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang; ZHU Wu

    2003-01-01

    The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots arestudied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method ofnumerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the bindingenergy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupledquantum dot as a function of the dot radius for different values of the distance and the magnetic field strength.

  11. Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics

    Directory of Open Access Journals (Sweden)

    Emrick Todd

    2007-01-01

    Full Text Available AbstractCdSe quantum dots functionalized with oligo-(phenylene vinylene (OPV ligands (CdSe-OPV nanostructures represent a new class of composite nanomaterials with significantly modified photophysics relative to bulk blends or isolated components. Single-molecule spectroscopy on these species have revealed novel photophysics such as enhanced energy transfer, spectral stability, and strongly modified excited state lifetimes and blinking statistics. Here, we review the role of ligands in quantum dot applications and summarize some of our recent efforts probing energy and charge transfer in hybrid CdSe-OPV composite nanostructures.

  12. Agarose gel investigation of quantum dots conjugated with short ssDNA.

    Science.gov (United States)

    Wu, Tsai-Chin; Dutta, Mitra; Stroscio, Michael A

    2013-12-01

    Herein, we investigate the migration distance of quantum-dot-functionalized complexes in electrophoresis. The quantitative study of these moving particles in an electrophoretic environment is modeled using an extended Smoluchowski equation. An extended Smoluchowski equation is proposed to addressed the D(m) to Ln(N) plot slope variation issue present in previous work and agreement between experiment and theory is found. The procedures underlying this work then discusses the potential of using agarose electrophoresis as a mean of monitoring the composition of nano-complexes consisting of quantum dots functionalized with differing numbers of DNA molecules.

  13. Size controlled near-infrared high-quality PbSe quantum dots

    Science.gov (United States)

    Kalasad, M. N.; Rabinal, M. K.; Mulimani, B. G.; Greenham, N. C.

    2015-06-01

    Herein, we report the size controlled preparation of PbSe quantum dots (QDs) by non coordinating solvent route using oleic acid as surfactant molecules. The particles size is controlled by varying temperature and time of reaction. The present method of synthesis gives highly stable colloids, spherical in shape, better size tunability, narrow size distribution, extremely small size, monodisperse and exhibit strong near-infrared emission. The estimated particles sizes are in the range of 2 to 8 nm. These PbSe quantum dots are used for applications in optoelectronics and biological imaging.

  14. Quantum computation in a quantum-dot-Majorana-fermion hybrid system

    CERN Document Server

    Xue, Zheng-Yuan

    2012-01-01

    We propose a scheme to implement universal quantum computation in a quantum-dot-Majorana-fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. Universal single-qubit gates on topological qubit can be achieved. A measurement-based two-qubit Controlled-Not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov- Casher effect.

  15. Toward the in vivo study of captopril-conjugated quantum dots

    Science.gov (United States)

    Manabe, Noriyoshi; Hoshino, Akiyoshi; Liang, Yi-qiang; Goto, Tomomasa; Kato, Norihiro; Yamamoto, Kenji

    2005-04-01

    Photo-luminescent semiconductor quantum dots are nanometer-size probes that have the potential to be applied to the fields of the bio-imaging and the study of the cell mobility inside the body. At the same time, on the other hand, quantum dots are expected to carry some kind of molecules to the local organ inside of the animal body, which leads to the expectation that they can be used as a medicine-carrier. For this purpose, we conjugate (2S)-1-[(2s)-2-Methyl-3-sulfanylpropionyl]pyrrolidine-2-carboxylic acid (cap) with the quantum dot. Cap has the effect as an anti-hypertension drug, which inhibits angiotensin 1 converting enzyme. We conjugated the quantum dot with cap by the exchange reaction avoiding the regions which holds medicinal effect. Quantum dot conjugated with cap (QD-cap) were 3-times brighter than thioglycerol-coated quantum dots (QD-OH). The particle size of cap was 1.1nm and that of QD-cap was 12nm. QD-cap was permeated into the HeLa cells, while QD-MUA were taken into the HeLa cells by endocytosis. In addition, no apoptosis was detected against the cells that permeated QD-cap, because there was no damage to DNA. These results indicated that QD-conjugated medicines (QD-medicine) could be safe in the experiment on the level of the cell. More over, when QD-cap was intravenously injected into Stroke-prone Spontaneously Hypertensive Rats (SHRSP), they reduced blood pressure at systole. Therefore, the anti-hypertension effect of cap remained after conjugated with the quantum dot. These results suggested that QD-medicine were effective on the animal level.

  16. PREFACE: Quantum dots as probes in biology

    Science.gov (United States)

    Cieplak, Marek

    2013-05-01

    The recent availability of nanostructured materials has resulted in an explosion of research focused on their unique optical, thermal, mechanical and magnetic properties. Optical imagining, magnetic enhancement of contrast and drug delivery capabilities make the nanoparticles of special interest in biomedical applications. These materials have been involved in the development of theranostics—a new field of medicine that is focused on personalized tests and treatment. It is likely that multimodal nanomaterials will be responsible for future diagnostic advances in medicine. Quantum dots (QD) are nanoparticles which exhibit luminescence either through the formation of three-dimensional excitons or excitations of the impurities. The excitonic luminescence can be tuned by changing the size (the smaller the size, the higher the frequency). QDs are usually made of semiconducting materials. Unlike fluorescent proteins and organic dyes, QDs resist photobleaching, allow for multi-wavelength excitations and have narrow emission spectra. The techniques to make QDs are cheap and surface modifications and functionalizations can be implemented. Importantly, QDs could be synthesized to exhibit useful optomagnetic properties and, upon functionalization with an appropriate biomolecule, directed towards a pre-selected target for diagnostic imaging and photodynamic therapy. This special issue on Quantum dots in Biology is focused on recent research in this area. It starts with a topical review by Sreenivasan et al on various physical mechanisms that lead to the QD luminescence and on using wavelength shifts for an improvement in imaging. The next paper by Szczepaniak et al discusses nanohybrids involving QDs made of CdSe coated by ZnS and combined covalently with a photosynthetic enzyme. These nanohybrids are shown to maintain the enzymatic activity, however the enzyme properties depend on the size of a QD. They are proposed as tools to study photosynthesis in isolated

  17. Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots

    Science.gov (United States)

    Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan

    2016-05-01

    Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.

  18. Kondo effects in triangular triple quantum dots

    Science.gov (United States)

    Oguri, Akira; Numata, Takahide; Nisikawa, Yunori; Hewson, A. C.

    2009-03-01

    We study the conductance through a triangular triple quantum dot, which is connected to two noninteracting leads, using the numerical renormalization group (NRG). It is found that the system shows a variety of Kondo effects depending on the filling of the triangle. The SU(4) Kondo effect occurs at half-filling, and a sharp conductance dip due to a phase lapse appears in the gate-voltage dependence. Furthermore, when four electrons occupy the three sites on average, a local S=1 moment, which is caused by the Nagaoka mechanism, is induced along the triangle. The temperature dependence of the entropy and spin susceptibility of the triangle shows that this moment is screened by the conduction electrons via two separate stages at different temperatures. The two-terminal and four-terminal conductances show a clear difference at the gate voltages, where the SU(4) or the S=1 Kondo effects occur[1]. We will also discuss effects of deformations of the triangular configuration, caused by the inhomogeneity in the inter-dot couplings and in the gate voltages. [4pt] [1] T.Numata, Y.Nisikawa, A.Oguri, and A.C.Hewson: arXiv:0808.3496.

  19. Application of Quantum Dots in Biological Imaging

    Directory of Open Access Journals (Sweden)

    Shan Jin

    2011-01-01

    Full Text Available Quantum dots (QDs are a group of semiconducting nanomaterials with unique optical and electronic properties. They have distinct advantages over traditional fluorescent organic dyes in chemical and biological studies in terms of tunable emission spectra, signal brightness, photostability, and so forth. Currently, the major type of QDs is the heavy metal-containing II-IV, IV-VI, or III-V QDs. Silicon QDs and conjugated polymer dots have also been developed in order to lower the potential toxicity of the fluorescent probes for biological applications. Aqueous solubility is the common problem for all types of QDs when they are employed in the biological researches, such as in vitro and in vivo imaging. To circumvent this problem, ligand exchange and polymer coating are proven to be effective, besides synthesizing QDs in aqueous solutions directly. However, toxicity is another big concern especially for in vivo studies. Ligand protection and core/shell structure can partly solve this problem. With the rapid development of QDs research, new elements and new morphologies have been introduced to this area to fabricate more safe and efficient QDs for biological applications.

  20. Mitochondria as target of Quantum dots toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahan; Zhang, Yue; Xiao, Qi; Tian, Fangfang; Liu, Xiaorong; Li, Ran; Zhao, Guangyuan; Jiang, Fenglei [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Liu, Yi, E-mail: yiliuchem@whu.edu.cn [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2011-10-30

    Highlights: {yields} The present work investigated the toxicity of CdTe QDs on the function of mitochondria isolated from rat livers. {yields} These results will help us learn more about QDs toxicity at subcellular (mitochondrial) level. {yields} QDs toxicity on mitochondria indicates that the QDs require to be further improved before they can be safely used in clinic. - Abstract: Quantum dots (QDs) hold great promise in many biological applications, with the persistence of safety concerns about the environment and human health. The present work investigated the potential toxicity of CdTe QDs on the function of mitochondria isolated from rat livers by examining mitochondrial respiration, swelling, and lipid peroxidation. We observed that QDs can significantly affect the mitochondrial membrane properties, bioenergetics and induce mitochondrial permeability transition (MPT). These results will help us learn more about QDs toxicity at subcellular (mitochondrial) level.

  1. Optoelectronic Applications of Colloidal Quantum Dots

    Science.gov (United States)

    Wang, Zhiping; Zhang, Nanzhu; Brenneman, Kimber; Wu, Tsai Chin; Jung, Hyeson; Biswas, Sushmita; Sen, Banani; Reinhardt, Kitt; Liao, Sicheng; Stroscio, Michael A.; Dutta, Mitra

    This chapter highlights recent optoelectronic applications of colloidal quantum dots (QDs). In recent years, many colloidal QD-based optoelectronic devices, and device concepts have been proposed and studied. Many of these device concepts build on traditional optoelectronic device concepts. Increasingly, many new optoelectronic device concepts have been based on the use of biomolecule QD complexes. In this chapter, both types of structures are discussed. Special emphasis is placed on new optoelectronic device concepts that incorporate DNA-based aptamers in biomolecule QD complexes. Not only are the extensions of traditional devices and concepts realizable, such as QD-based photo detectors, displays, photoluminescent and photovoltaic devices, light-emitting diodes (LEDs), photovoltaic devices, and solar cells, but new devices concepts such a biomolecule-based molecular sensors possible. This chapter highlights a number of such novel QD-based devices and device concepts.

  2. Quantum Dot Devices for Optical Signal Processing

    DEFF Research Database (Denmark)

    Chen, Yaohui

    . Additional to the static linear amplication properties, we focus on exploring the gain dynamics on the time scale ranging from sub-picosecond to nanosecond. In terms of optical signals that have been investigated, one is the simple sinusoidally modulated optical carrier with a typical modulation frequency...... range of 1-100 gigahertz. Our simulations reveal the role of ultrafast intradot carrier dynamics in enhancing modulation bandwidth of quantum dot semiconductor optical ampliers. Moreover, the corresponding coherent gain response also provides rich dispersion contents over a broad bandwidth. One...... important implementation is recently boosted by the research in slow light. The idea is to migrate such dynamical gain knowledge for the investigation of microwave phase shifter based on semiconductor optical waveguide. Our study reveals that phase shifting based on the conventional semiconductor optical...

  3. Semiconductor quantum dot-inorganic nanotube hybrids.

    Science.gov (United States)

    Kreizman, Ronen; Schwartz, Osip; Deutsch, Zvicka; Itzhakov, Stella; Zak, Alla; Cohen, Sidney R; Tenne, Reshef; Oron, Dan

    2012-03-28

    A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.

  4. Tellurium quantum dots: Preparation and optical properties

    Science.gov (United States)

    Lu, Chaoyu; Li, Xueming; Tang, Libin; Lai, Sin Ki; Rogée, Lukas; Teng, Kar Seng; Qian, Fuli; Zhou, Liangliang; Lau, Shu Ping

    2017-08-01

    Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics.

  5. Highly Fluorescent Noble Metal Quantum Dots

    Science.gov (United States)

    Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.

    2009-01-01

    Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412

  6. Theoretical study of quantum confined Stark shift in InAs/GaAs quantum dots

    Institute of Scientific and Technical Information of China (English)

    Guo Ru-Hai; Shi Hong-Yan; Sun Xiu-Dong

    2004-01-01

    The quantum confined Stark effect (QCSE) of the self-assembled InAs/GaAs quantum dots has been investigated theoretically. The ground-state transition energies for quantum dots in the shape of a cube, pyramid or "truncated pyramid" are calculated and analysed. We use a method based on the Green function technique for calculating the strain in quantum dots and an efficient plane-wave envelope-function technique to determine the ground-state electronic structure of them with different shapes. The symmetry of quantum dots is broken by the effect of strain. So the properties of carriers show different behaviours from the traditional quantum device. Based on these results, we also calculate permanent built-in dipole moments and compare them with recent experimental data. Our results demonstrate that the measured Stark effect in self-assembled InAs/GaAs quantum dot structures can be explained by including linear grading.

  7. Tunable Few-Electron Quantum Dots as Spin Qubits

    Science.gov (United States)

    Elzerman, Jeroen; Hanson, Ronald; Greidanus, Jacob; Willems van Beveren, Laurens; de Franceschi, Silvano; Vandersypen, Lieven; Tarucha, Seigo; Kouwenhoven, Leo

    2003-03-01

    Recently it was proposed to make a quantum bit using the spin of an electron in a quantum dot. We present the first experimental steps towards realizing a system of two coupled qubits. The Zeeman splitting between the two spin states defining the qubit is measured for a one-electron dot in a parallel magnetic field. For a two-electron dot, we control the spin singlet-triplet energy difference with a perpendicular magnetic field, and we induce a transition from singlet to triplet ground state. We find relaxation from triplet to singlet to be extremely slow (> 1 mus), which is promising for quantum computing. We couple two few-electron dots, creating the first fully tunable few-electron double dot. Its charge configuration can be read out with a nearby QPC acting as an integrated charge detector.

  8. Bound polarons in quantum dot quantum well structures

    Institute of Scientific and Technical Information of China (English)

    Xing Yan; Wang Zhi-Ping; Wang Xu

    2009-01-01

    The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the framework of the diclectric continuum approximation. The electron-phonon interaction Hamiltonian for QDQW structures is obtained and the exchange interaction between impurity and LO-phonons is discussed. The binding energy and the trapping energy of the bound polaron in CdS/HgS QDQW structures are calculated. The numcrical results reveal that there exist three branches of eigenfrequcncies of surface optical vibration in the CdS/HgS QDQW structure. It is also shown that the binding energy and the trapping energy increase as the inner radius of the QDQW structure decreases, with the outer radius fixed, and the trapping energy takes a major part of the binding energy when the inner radius is very small.

  9. Excitons in quantum-dot quantum-well nanoparticles

    Institute of Scientific and Technical Information of China (English)

    史俊杰

    2002-01-01

    A variational calculation is presented for the ground-state properties of excitons confined in spherical core-shell quantum-dot quantum-well (QDQW) nanoparticles. The relationship between the exciton states and structure parameters of QDQW nanoparticles is investigated, in which both the heavy-hole and the light-hole exciton states are considered. The results show that the confinement energies of the electron and hole states and the exciton binding energies depend sensitively on the well width and core radius of the QDQW structure. A detailed comparison between the heavy-hole and light-hole exciton states is given. Excellent agreement is found between experimental results and our calculated 1se-1sh transition energies.

  10. Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system

    Science.gov (United States)

    2012-01-01

    We theoretically investigate coherent optical spectroscopy of a biological semiconductor quantum dot (QD) coupled to DNA molecules. Coupling with DNAs, the linear optical responses of the peptide QDs will be enhanced significantly in the simultaneous presence of two optical fields. Based on this technique, we propose a scheme to measure the vibrational frequency of DNA and the coupling strength between peptide QD and DNA in all-optical domain. Distinct with metallic quantum dot, biological QD is non-toxic and pollution-free to environment, which will contribute to clinical medicine experiments. This article leads people to know more about the optical behaviors of DNAs-quantum dot system, with the currently popular pump-probe technique. PMID:22340277

  11. Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system.

    Science.gov (United States)

    Li, Jin-Jin; Zhu, Ka-Di

    2012-02-16

    We theoretically investigate coherent optical spectroscopy of a biological semiconductor quantum dot (QD) coupled to DNA molecules. Coupling with DNAs, the linear optical responses of the peptide QDs will be enhanced significantly in the simultaneous presence of two optical fields. Based on this technique, we propose a scheme to measure the vibrational frequency of DNA and the coupling strength between peptide QD and DNA in all-optical domain. Distinct with metallic quantum dot, biological QD is non-toxic and pollution-free to environment, which will contribute to clinical medicine experiments. This article leads people to know more about the optical behaviors of DNAs-quantum dot system, with the currently popular pump-probe technique.

  12. Interaction of Globular Plasma Proteins with Water-Soluble CdSe Quantum Dots.

    Science.gov (United States)

    Pathak, Jyotsana; Rawat, Kamla; Sanwlani, Shilpa; Bohidar, H B

    2015-06-08

    The interactions between water-soluble semiconductor quantum dots [hydrophilic 3-mercaptopropionic acid (MPA)-coated CdSe] and three globular plasma proteins, namely, bovine serum albumin (BSA), β-lactoglobulin (β-Lg) and human serum albumin (HSA), are investigated. Acidic residues of protein molecules form electrostatic interactions with these quantum dots (QDs). To determine the stoichiometry of proteins bound to QDs, we used dynamic light scattering (DLS) and zeta potential techniques. Fluorescence resonance energy transfer (FRET) experiments revealed energy transfer from tryptophan residues in the proteins to the QD particles. Quenching of the intrinsic fluorescence of protein molecules was noticed during this binding process (hierarchy HSA<β-Lg molecules). Upon binding with QD particles, the protein molecules underwent substantial conformational changes at the secondary-structure level (50 % helicity lost), due to loss in hydration.

  13. Exciton lifetime measurements on single silicon quantum dots.

    Science.gov (United States)

    Sangghaleh, Fatemeh; Bruhn, Benjamin; Schmidt, Torsten; Linnros, Jan

    2013-06-01

    We measured the exciton lifetime of single silicon quantum dots, fabricated by electron beam lithography, reactive ion etching and oxidation. The observed photoluminescence decays are of mono-exponential character with a large variation (5-45 μs) from dot to dot, even for the same emission energy. We show that this lifetime variation may be the origin of the heavily debated non-exponential (stretched) decays typically observed for ensemble measurements.

  14. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  15. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  16. Long-distance coherent coupling in a quantum dot array.

    Science.gov (United States)

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.

  17. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single-dot lum...

  18. Ultrafast gain and index dynamics in quantum dot amplifiers

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    The ultrafast dynamics of gain and refractive index in an InAs/GaAs quantum dot amplifier are investigated at room temperature. The gain is observed to recover with a 90 fs time constant, ruling out problems of slow carrier capture into the dots, and making this component promising for high...

  19. Electron Energy Level Statistics in Graphene Quantum Dots

    NARCIS (Netherlands)

    De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.

    2008-01-01

    Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the experi

  20. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    a future challenge for the droplet-epitaxy technique. A multipolar theory of spontaneous emission from quantum dots is developed to explain the recent observation that In(Ga)As quantum dots break the dipole theory. The analysis yields a large mesoscopic moment, which contains magnetic-dipole and electric......-matter interaction of both electric and magnetic character. Our study demonstrates that In(Ga)As quantum dots lack parity symmetry and, as consequence, can be employed for locally probing the parity symmetry of complex photonic nanostructures. This opens the prospect for interfacing quantum dots with optical...... metamaterials for tailoring light-matter interaction at the single-electron and single-photon level....

  1. Nonequilibrium electron transport through quantum dots in the Kondo regime

    DEFF Research Database (Denmark)

    Wölfle, Peter; Paaske, Jens; Rosch, Achim

    2005-01-01

    Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how the ...

  2. Non-Markovian spontaneous emission from a single quantum dot

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke;

    2011-01-01

    We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....

  3. Heterovalent cation substitutional doping for quantum dot homojunction solar cells

    Science.gov (United States)

    Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

    2013-12-01

    Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%.

  4. Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation

    National Research Council Canada - National Science Library

    Vlad Sukhovatkin; Sean Hinds; Lukasz Brzozowski; Edward H. Sargent

    2009-01-01

    Multiexciton generation (MEG) has been indirectly observed in colloidal quantum dots, both in solution and the solid state, but has not yet been shown to enhance photocurrent in an optoelectronic device...

  5. Advanced Epitaxial Lift-Off Quantum Dot Photovoltaic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a high-efficiency, triple-junction, epitaxial lift-off (ELO) solar cell by incorporating quantum dots (QDs) within the current-limiting...

  6. A fast "hybrid" silicon double quantum dot qubit

    CERN Document Server

    Shi, Zhan; Prance, J R; Gamble, John King; Koh, Teck Seng; Shim, Yun-Pil; Hu, Xuedong; Savage, D E; Lagally, M G; Eriksson, M A; Friesen, Mark; Coppersmith, S N

    2011-01-01

    We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers $S^2=3/4$ ($S=\\half$) and $S_z = -\\half$, with the two different states being singlet and triplet in the doubly occupied dot. The architecture is relatively simple to fabricate, a universal set of fast operations can be implemented electrically, and the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

  7. Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    Science.gov (United States)

    Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.

    2016-12-01

    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.

  8. Type 2 quantum dots in Ge/Si system

    CERN Document Server

    Dvurechenskij, A V

    2001-01-01

    The results on the electronic structure of spatially indirect excitons, multiparticle excitonic complexes, and negative interband photoconductivity in arrays of Ge/Si type 2 quantum dots are presented. These data have been compared with the well known results for type 2 A sup I sup I sup I B sup V and A sup I sup I B sup V sup I -based heterostructures with quantum dots. Fundamental physical phenomena are found to be the result of an increase in the binding energy of excitons in quantum dots as compared with that of free excitons in bulk homogeneous materials; the shortwave shift of exciton transition energy at multiparticle complexes production (charges excitons, biexcitons), as well as the trapping of equilibrium carrier by localized states induced by the charged quantum dot electric field

  9. Electro-absorption of silicene and bilayer graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Talaat, Mohamed H.; Lukyanchuk, Igor; Portnoi, M. E.; Saroka, V. A.

    2016-07-01

    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.

  10. Probing of Unembedded Metallic Quantum Dots with Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, C G; Denison, A B; Weber, M H; Wilcoxon, J P; Woessner, S; Lynn, K G

    2003-08-01

    We employed the two detector coincident Doppler Broadening Technique (coPAS) to investigate Ag, Au and Ag/Au alloy quantum dots of varying sizes which were deposited in thin layers on glass slides. The Ag quantum dots range from 2 to 3 nm in diameter, while the Ag/Au alloy quantum dots exhibit Ag cores of 2 nm and 3 nm and Au shells of varying thickness. We investigate the possibility of positron confinement in the Ag core due to positron affinity differences between Ag and Au. We describe the results and their significance to resolving the issue of whether positrons annihilate within the quantum dot itself or whether surface and positron escape effects play an important role.

  11. An orientation analysis method for protein immobilized on quantum dot particles

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Satoka, E-mail: aoyagi@life.shimane-u.ac.jp [Faculty of Life and Environmental Science, Shimane University, 1060 Matsue-shi, Shimane 690-8504 (Japan); Inoue, Masae [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2009-11-30

    The evaluation of orientation of biomolecules immobilized on nanodevices is crucial for the development of high performance devices. Such analysis requires ultra high sensitivity so as to be able to detect less than one molecular layer on a device. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has sufficient sensitivity to evaluate the uppermost surface structure of a single molecular layer. The objective of this study is to develop an orientation analysis method for proteins immobilized on nanomaterials such as quantum dot particles, and to evaluate the orientation of streptavidin immobilized on quantum dot particles by means of TOF-SIMS. In order to detect fragment ions specific to the protein surface, a monoatomic primary ion source (Ga{sup +}) and a cluster ion source (Au{sub 3}{sup +}) were employed. Streptavidin-immobilized quantum dot particles were immobilized on aminosilanized ITO glass plates at amino groups by covalent bonding. The reference samples streptavidin directly immobilized on ITO plates were also prepared. All samples were dried with a freeze dryer before TOF-SIMS measurement. The positive secondary ion spectra of each sample were obtained using TOF-SIMS with Ga{sup +} and Au{sub 3}{sup +}, respectively, and then they were compared so as to characterize each sample and detect the surface structure of the streptavidin immobilized with the biotin-immobilized quantum dots. The chemical structures of the upper surface of the streptavidin molecules immobilized on the quantum dot particles were evaluated with TOF-SIMS spectra analysis. The indicated surface side of the streptavidin molecules immobilized on the quantum dots includes the biotin binding site.

  12. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells.

    Science.gov (United States)

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-12-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.

  13. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    Science.gov (United States)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  14. Electric properties of Ge quantum dot embedded in Si matrix

    Institute of Scientific and Technical Information of China (English)

    MA Xi-ying; SHI Wei-lin

    2005-01-01

    The electric characteristics of Ge quantum dot grown by molecular beam epitaxy in Si matrix were investigated by admittance spectroscopy and deep level transient spectroscopy. The admittance spectroscopy measurements show that the activation energy of 0.341 eV can be considered as the emitting energy of hole from the ground state of the quantum dot. And the capacitance variation with temperature of the sample shows a platform at various frequencies with reverse bias 0.5 V, which indicates that the boundary of space charge region is located at the quantum dot layer where the large confined hole concentration blocks the further extension of space charge region. When the temperature increases from 120 K to 200 K, the holes in the dot emit out completely. The position of the platform shifting with the increase of the applied frequency shows the frequency effects of the charges in the quantum dot. The deep level transient spectroscopy results show that the charge concentration in the Ge quantum dot is a function of the pulse duration and the reverse bias voltage, the activation energy and capture cross-section of hole decrease with the increase of pulse duration due to the Coulomb charging effect. The valence-band offsets of hole in Ge dot obtained by admittance spectroscopy and deep level transient spectroscopy are 0.341 and 0.338 eV, respectively.

  15. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires

    NARCIS (Netherlands)

    Brauns, M.; Ridderbos, Joost; Ridderbos, Joost; Li, Ang; van der Wiel, Wilfred Gerard; Bakkers, Erik P.A.M.; Zwanenburg, Floris Arnoud

    2016-01-01

    We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over

  16. Capping biological quantum dots with the peptide CLPFFD to increase stability and to reduce effects on cell viability

    Science.gov (United States)

    Riveros, A. L.; Astudillo, J.; Vásquez, C. C.; Jara, Danilo H.; Guerrero, Ariel R.; Guzman, F.; Osorio-Roman, I. O.; Kogan, M. J.

    2016-08-01

    Highly fluorescent nanoparticles, or quantum dots, have multiple applications in biology and biomedicine; however, in most cases, it is necessary to functionalize them to enhance their biocompatibility and selectivity. Generally, functionalization is performed after nanoparticle synthesis and involves the use of molecules or macromolecules having two important traits: specific biological activity and functional groups that facilitate nanoparticle capping (i.e. atom-atom interaction). For this reason, we carried out a simple protocol for the chemical synthesis of cadmium telluride quantum dots capped with glutathione, and we then functionalized these nanoparticles with the amphipathic peptide CLPFFD. This peptide attaches selectively to β-Amyloid fibres, which are involved in Alzheimer's disease. Our results show that the optical properties of the quantum dots are not affected by functionalization with this peptide. Infrared spectra showed that cadmium telluride quantum dots were functionalized with the peptide CLPFFD. In addition, no significant differences were observed between the surface charge of the quantum dots with or without CLPFFD and the nanocrystal size calculated for HR-TEM was 4.2 nm. Finally, our results show that quantum dots with CLPFFD are stable and that they resulted in a significantly reduced cytotoxicity with respect to that induced by quantum dots not conjugated with the peptide. Moreover, the results show that the CLPFFD-functionalized nanoparticles bind to β-Amyloid fibres.

  17. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2011-06-03

    Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V oc, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. THz Electro-absorption Effect in Quantum Dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.;

    2011-01-01

    Instantaneous electro-absorption effect in quantum dots, induced by electric field of THz pulse with 3 THz bandwidth is demonstrated in THz pump - optical probe experiment. This effect may be promising for Tbit/s wireless transmission systems.......Instantaneous electro-absorption effect in quantum dots, induced by electric field of THz pulse with 3 THz bandwidth is demonstrated in THz pump - optical probe experiment. This effect may be promising for Tbit/s wireless transmission systems....

  19. Optical phonons in Ge quantum dots obtained on Si(111)

    CERN Document Server

    Talochkin, A B

    2002-01-01

    The light combination scattering on the optical phonons in the Ge quantum dots, obtained on the Si surface of the (111) orientation through the molecular-beam epitaxy, is studied. The series of lines, connected with the phonon spectrum quantization, was observed. It is shown, that the phonon modes frequencies are well described by the elastic properties and dispersion of the voluminous Ge optical phonons. The value of the Ge quantum dots deformation is determined

  20. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  1. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  2. Dynamical symmetries in Kondo tunneling through complex quantum dots.

    Science.gov (United States)

    Kuzmenko, T; Kikoin, K; Avishai, Y

    2002-10-07

    Kondo tunneling reveals hidden SO(n) dynamical symmetries of evenly occupied quantum dots. As is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible values n=3,4,5,7 can be easily tuned by gate voltages. Following construction of the corresponding o(n) algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group for a magnetic field induced anisotropic Kondo tunneling is SU(2) or SO(4).

  3. Solution-processed nanocrystal quantum dot tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joshua J.; Lim, Yee-Fun [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States); Wenger, Whitney N.; Hoffman, Rachel S.; Hanrath, Tobias [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 (United States); Luria, Justin; Marohn, John A. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Jasieniak, Jacek [CSIRO Materials Science and Engineering, Bayview Ave, Clayton, Victoria 3168 (Australia)

    2011-07-26

    Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V{sub oc}, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Intraband Relaxation and Its Influences on Quantum Dot Lasers

    Institute of Scientific and Technical Information of China (English)

    DENG Sheng-Ling; HUANG Yong-Zhen; YU Li-Juan

    2005-01-01

    @@ A comprehensive two-level numerical model is developed to describe carrier distribution in a quantum-dot laser. Light-emission spectra with different intraband relaxation rates (2ps, 7.5ps and 20ps) are calculated and analysed to investigate the influence of relaxation rates on performance of the quantum-dot laser. The results indicate that fast intraband relaxation favours not only the ground state single mode operation but also the higher injection efficiency.

  5. On the density of states of circular graphene quantum dots

    Science.gov (United States)

    Chau Nguyen, H.; Nguyen, Nhung T. T.; Nguyen, V. Lien

    2017-10-01

    We suggest a simple approach to calculate the local density of states that effectively applies to any structure created by an axially symmetric potential on a continuous graphene sheet such as circular graphene quantum dots or rings. Calculations performed for the graphene quantum dot studied in a recent scanning tunneling microscopy measurement (Gutierrez et al 2016 Nat. Phys. 12 1069–75) show an excellent experimental-theoretical agreement.

  6. Progress in the toxicological researches for quantum dots

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Quantum dots (QDs) have received more and more attention as a novel example of nanomaterials. Due to their unique fluorescent characteristics,quantum dots have been successfully applied in biotech-nology and medicine applications. Recently,the toxicity and the potential environmental effects of QDs have become a research hotspot. In this paper,toxicological effects of QDs are reviewed,and the prospects and research directions are given based on the analysis of this research field.

  7. Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes

    Science.gov (United States)

    2010-01-01

    To fabricate quantum dot arrays with programmable periodicity, functionalized DNA origami nanotubes were developed. Selected DNA staple strands were biotin-labeled to form periodic binding sites for streptavidin-conjugated quantum dots. Successful formation of arrays with periods of 43 and 71 nm demonstrates precise, programmable, large-scale nanoparticle patterning; however, limitations in array periodicity were also observed. Statistical analysis of AFM images revealed evidence for steric hindrance or site bridging that limited the minimum array periodicity. PMID:20681601

  8. Progress in the toxicological researches for quantum dots

    Institute of Scientific and Technical Information of China (English)

    LI HongCheng; ZHOU QunFang; LIU Wei; YAN Bing; ZHAO Yibing; JIANG GuiBin

    2008-01-01

    Quantum dots (QDs) have Received more and more attention as a novel example of nanomaterials. Due to their unique fluorescent characteristics, quantum dots have been successfully applied in biotech-nology and medicine applications. Recently, the toxicity and the potential environmental effects of QDs have become a research hotspot. In this paper, toxicological effects of QDs are reviewed, and the prospects and research directions are given based on the analysis of this research field.

  9. Colloidal quantum dot materials for infrared optoelectronics

    Science.gov (United States)

    Arinze, Ebuka S.; Nyirjesy, Gabrielle; Cheng, Yan; Palmquist, Nathan; Thon, Susanna M.

    2015-09-01

    Colloidal quantum dots (CQDs) are an attractive material for optoelectronic applications because they combine flexible, low-cost solution-phase synthesis and processing with the potential for novel functionality arising from their nanostructure. Specifically, the bandgap of films composed of arrays of CQDs can be tuned via the quantum confinement effect for tailored spectral utilization. PbS-based CQDs can be tuned throughout the near and mid-infrared wavelengths and are a promising materials system for photovoltaic devices that harvest non-visible solar radiation. The performance of CQD solar cells is currently limited by an absorption-extraction compromise, whereby photon absorption lengths in the near infrared spectral regime exceed minority carrier diffusion lengths in the bulk films. Several light trapping strategies for overcoming this compromise and increasing the efficiency of infrared energy harvesting will be reviewed. A thin-film interference technique for creating multi-colored and transparent solar cells will be presented, and a discussion of designing plasmonic nanomaterials based on earth-abundant materials for integration into CQD solar cells is developed. The results indicate that it should be possible to achieve high absorption and color-tunability in a scalable nanomaterials system.

  10. Quantum Dot Solar Cell Fabrication Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.; Luther, Joseph M.; Beard, Matthew C.

    2017-01-10

    Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. We include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solar cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is intended to be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance.

  11. Optical nuclear spin polarization in quantum dots

    Science.gov (United States)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2016-10-01

    Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time. Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805).

  12. Magnetic Field Effects on Quantum-Dot Spin Valves

    Institute of Scientific and Technical Information of China (English)

    GAO Jin-Hua; SUN Qing-Feng; XIE Xin-Cheng

    2009-01-01

    We study the magnetic field effects on the spin-polarized transport of the quantum dot (QD) spin valve in the sequential tunneling regime. A set of generalized master equation is derived. Based on that, we discuss the collinear and noneollinear magnetic field effects, respectively. In the collinear magnetic field case, we find that the Zeeman splitting can induce a negative differential conductance (NDC), which is quite different from the one found in previous studies. It has a critical polarization in the parallel arrangement and will disappear in the antiparallel configuration. In the noncollinear magnetic field case, the current shows two plateaus and their angular dependence is analyzed. Although sometimes the two current plateaus have similar angular dependence, their mechanisms are different. Our formalism is also suitable for calculating the transport in magnetic molecules, in which the spin splitting is induced not by a magnetic field but by the intrinsic magnetization.

  13. Interaction of solitons with a string of coupled quantum dots

    Science.gov (United States)

    Kumar, Vijendra; Swami, O. P.; Taneja, S.; Nagar, A. K.

    2016-05-01

    In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.

  14. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    CERN Document Server

    Jamil, Ayesha; Kalliakos, Sokratis; Schwagmann, Andre; Ward, Martin B; Brody, Yarden; Ellis, David J P; Farrer, Ian; Griffiths, Jonathan P; Jones, Geb A C; Ritchie, David A; Shields, Andrew J

    2014-01-01

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device scale arrays of quantum dots are formed by a two step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the exit of the waveguide is 12 \\pm 5 % before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  15. Spin Quantum Beats in InP Quantum Dots in a Magnetic Field

    Science.gov (United States)

    2001-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013252 TITLE: Spin Quantum Beats in InP Quantum Dots in a Magnetic Field...Technology" SRPN.05 St Petersburg, Russia, June 18-22, 2001 (0 2001 loffe Institute Spin quantum beats in InP quantum dots in a magnetic field L A... quantum dots . A detailed description of the structure is given in [ ]. The luminescence was excited by 3 ps pulses of a Ti:sapphire laser, 40 meV above

  16. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J., E-mail: andrew.shields@crl.toshiba.co.uk [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom); Schwagmann, Andre; Brody, Yarden [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom)

    2014-03-10

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device–scale arrays of quantum dots are formed by a two–step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12% ± 5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.

  17. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    Science.gov (United States)

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10(5) cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines.

  18. Colloidal quantum dot photovoltaics: The effect of polydispersity

    KAUST Repository

    Zhitomirsky, David

    2012-02-08

    The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity. © 2012 American Chemical Society.

  19. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  20. Quantum Entanglement and Teleportation of Quantum-Dot States in Microcavities

    CERN Document Server

    Miranowicz, A; Liu, Yu-xi; Chimczak, G; Koashi, M; Imoto, N; 10.1380/ejssnt.2007.51

    2009-01-01

    Generation and control of quantum entanglement are studied in an equivalent-neighbor system of spatially-separated semiconductor quantum dots coupled by a single-mode cavity field. Generation of genuinely multipartite entanglement of qubit states realized by conduction-band electron-spin states in quantum dots is discussed. A protocol for quantum teleportation of electron-spin states via cavity decay is briefly described.