WorldWideScience

Sample records for quantum decoherence

  1. Quantum games with decoherence

    International Nuclear Information System (INIS)

    Flitney, A P; Abbott, D

    2005-01-01

    A protocol for considering decoherence in quantum games is presented. Results for two-player, two-strategy quantum games subject to decoherence are derived and some specific examples are given. Decoherence in other types of quantum games is also considered. As expected, the advantage that a quantum player achieves over a player restricted to classical strategies is diminished for increasing decoherence but only vanishes in the limit of maximum decoherence

  2. Quantum control limited by quantum decoherence

    International Nuclear Information System (INIS)

    Xue, Fei; Sun, C. P.; Yu, S. X.

    2006-01-01

    We describe quantum controllability under the influences of the quantum decoherence induced by the quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle with its controlled system and then cause quantum decoherence in the controlled system. In competition with this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed quantum control process. In association with the phase uncertainty and the standard quantum limit, a general model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite energy within a finite time. It is also shown that if the operations of quantum control are to be determined by the initial state of the controller, then due to the decoherence which results from the quantum control itself, there exists a low bound for quantum controllability

  3. Quantum prisoner dilemma under decoherence

    International Nuclear Information System (INIS)

    Chen, L.K.; Ang, Huiling; Kiang, D.; Kwek, L.C.; Lo, C.F.

    2003-01-01

    It has recently been established that quantum strategies are superior to classical ones for games such as the prisoner's dilemma. However, quantum states are subject to decoherence. In this Letter, we investigate the effects of decoherence on a quantum game, namely the prisoner dilemma, through three prototype decoherence channels. We show that in the case of prisoner dilemma, the Nash equilibria are not changed by the effects of decoherence for maximally entangled states

  4. Decoherence and the quantum-to-classical transition

    International Nuclear Information System (INIS)

    Schlosshauer, M.A.

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: - Foundational problems at the quantum-classical border; - The role of the environment and entanglement; - Environment-induced loss of coherence and superselection; - Scattering-induced decoherence and spatial localization; - Master equations; - Decoherence models; - Experimental realization of ''Schroedinger's kittens'' and their decoherence; - Quantum computing, quantum error correction, and decoherence-free subspaces; - Implications of decoherence for interpretations of quantum mechanics and for the ''measurement problem''; - Decoherence in the brain. Written in a lucid and concise style that is accessible to all readers with a basic knowledge of quantum mechanics, this stimulating book tells the ''classical from quantum'' story in a comprehensive and coherent manner that brings together the foundational, technical, and experimental aspects of decoherence. It will be an indispensable resource for newcomers and experts alike. (orig.)

  5. Decoherence and the quantum-to-classical transition

    CERN Document Server

    Schlosshauer, Maximilian

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: • Foundational problems at the quantum–classical border; • The role of the environment and entanglement; • Environment-induced loss of coherence and superselection; • Scattering-induced decoherence and spatial localization; • Master equations; • Decoherence models; • Experimental realization of "Schrödinger kittens" and their decoherence; • Quantum computing, quantum error correction, and decoherence-free subspaces; • Implications of decoherence for interpretations of quantum mechanics and for the "measurement problem"; • Decoherence in the brain. Written in a lucid and concise style that is accessib...

  6. Decoherence in adiabatic quantum computation

    Science.gov (United States)

    Albash, Tameem; Lidar, Daniel A.

    2015-06-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  7. Non-Markovian decoherent quantum walks

    International Nuclear Information System (INIS)

    Xue Peng; Zhang Yong-Sheng

    2013-01-01

    Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect

  8. Quantum decoherence with holography

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Li, Wei; Lin, Feng-Li; Ning, Bo

    2014-01-01

    Quantum decoherence is the loss of a system’s purity due to its interaction with the surrounding environment. Via the AdS/CFT correspondence, we study how a system decoheres when its environment is a strongly-coupled theory. In the Feynman-Vernon formalism, we compute the influence functional holographically by relating it to the generating function of Schwinger-Keldysh propagators and thereby obtain the dynamics of the system’s density matrix. We present two exactly solvable examples: (1) a straight string in a BTZ black hole and (2) a scalar probe in AdS 5 . We prepare an initial state that mimics Schrödinger’s cat and identify different stages of its decoherence process using the time-scaling behaviors of Rényi entropy. We also relate decoherence to local quantum quenches, and by comparing the time evolution behaviors of the Wigner function and Rényi entropy we demonstrate that the relaxation of local quantum excitations leads to the collapse of its wave-function

  9. Chaos, decoherence and quantum cosmology

    International Nuclear Information System (INIS)

    Calzetta, Esteban

    2012-01-01

    In this topical review we discuss the connections between chaos, decoherence and quantum cosmology. We understand chaos as classical chaos in systems with a finite number of degrees of freedom, decoherence as environment induced decoherence and quantum cosmology as the theory of the Wheeler-DeWitt equation or else the consistent history formulation thereof, first in mini super spaces and later through its extension to midi super spaces. The overall conclusion is that consideration of decoherence is necessary (and probably sufficient) to sustain an interpretation of quantum cosmology based on the wavefunction of the Universe adopting a Wentzel-Kramers-Brillouin form for large Universes, but a definitive account of the semiclassical transition in classically chaotic cosmological models is not available in the literature yet. (topical review)

  10. Quantum decoherence and interlevel relations

    Science.gov (United States)

    Crull, Elise M.

    Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful

  11. Decoherence in open quantum systems

    International Nuclear Information System (INIS)

    Isar, A.

    2005-01-01

    In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes

  12. Decoherence in quantum gravity: issues and critiques

    Energy Technology Data Exchange (ETDEWEB)

    Anastopoulos, C [Department of Physics, University of Patras, 26500 Patras (Greece); Hu, B L [Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States)

    2007-05-15

    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath. A companion paper will deal with intrinsic and fundamental decoherence which also bear on issues in classical and quantum gravity.

  13. Decoherence in quantum gravity: issues and critiques

    International Nuclear Information System (INIS)

    Anastopoulos, C; Hu, B L

    2007-01-01

    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath. A companion paper will deal with intrinsic and fundamental decoherence which also bear on issues in classical and quantum gravity

  14. Quantum Darwinism, Decoherence, and the Randomness of Quantum Jumps

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Wojciech H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-06-05

    Tracing flows of information in our quantum Universe explains why we see the world as classical. Quantum principle of superposition decrees every combination of quantum states a legal quantum state. This is at odds with our experience. Decoherence selects preferred pointer states that survive interaction with the environment. They are localized and effectively classical. They persist while their superpositions decohere. Here we consider emergence of `the classical' starting at a more fundamental pre-decoherence level, tracing the origin of preferred pointer states and deducing their probabilities from the core quantum postulates. We also explore role of the environment as medium through which observers acquire information. This mode of information transfer leads to perception of objective classical reality.

  15. Decoherence in large NMR quantum registers

    International Nuclear Information System (INIS)

    Krojanski, Hans Georg; Suter, Dieter

    2006-01-01

    Decoherence causes the decay of the quantum information that is stored in highly correlated states during quantum computation. It is thus a limiting factor for all implementations of a quantum computer. Because a scalable quantum computer with hundreds or thousands of qubits is not available yet, experimental data about decoherence rates was restricted to small quantum registers. With solid state nuclear magnetic resonance we create highly correlated multiqubit states that serve as a model quantum register and measure their decay. By measuring the decay as a function of the system size, we determined the scaling of the decoherence rate with the number of qubits. Using the same system, we also used decoupling techniques to reduce the coupling between system and environment and thereby the decoherence rate by more than an order of magnitude, independent of the system size. For the free decay as well as for the decoupled case, we found a relatively weak scaling with system size, which could be fitted to a power law ∝K p with an exponent p≅1/2. This raises the prospect for large-scale quantum computation

  16. Decoherence in quantum cosmology

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    1989-01-01

    We discuss the manner in which the gravitational field becomes classical in quantum cosmology. This involves two steps. First, one must show that the quantum state of the gravitational field becomes strongly peaked about a set of classical configurations. Second, one must show that the system is in one of a number of states of a relatively permanent nature that have negligible interference with each other. This second step involves decoherence---destruction of the off-diagonal terms in the density matrix, representing interference. To introduce the notion of decoherence, we discuss it in the context of the quantum theory of measurement, following the environment-induced superselection approach of Zurek. We then go on to discuss the application of these ideas to quantum cosmology. We show, in a simple homogeneous isotropic model, that the density matrix of the Universe will decohere if the long-wavelength modes of an inhomogeneous massless scalar field are traced out. These modes effectively act as an environment which continuously ''monitors'' the scale factor. The coherence width is very small except in the neighborhood of a classical bounce. This means that one cannot really say that a classical solution bounces because the notion of classical spacetime does not apply. The coherence width decreases as the scale factor increases, which has implications for the arrow of time. We also show, using decoherence arguments, that the WKB component of the wave function of the Universe which represents expanding universes has negligible interference with the collapsing component. This justifies the usual assumption that they may be treated separately

  17. Decoherence Effects on Multiplayer Cooperative Quantum Games

    International Nuclear Information System (INIS)

    Khan, Salman; Ramzan, M.; Khan, M. Khalid.

    2011-01-01

    We study the behavior of cooperative multiplayer quantum games [Q. Chen, Y. Wang, J.T. Liu, and K.L. Wang, Phys. Lett. A 327 (2004) 98; A.P. Flitney and L.C.L. Hollenberg, Quantum Inf. Comput. 7 (2007) 111] in the presence of decoherence using different quantum channels such as amplitude damping, depolarizing and phase damping. It is seen that the outcomes of the games for the two damping channels with maximum values of decoherence reduce to same value. However, in comparison to phase damping channel, the payoffs of cooperators are strongly damped under the influence amplitude damping channel for the lower values of decoherence parameter. In the case of depolarizing channel, the game is a no-payoff game irrespective of the degree of entanglement in the initial state for the larger values of decoherence parameter. The decoherence gets the cooperators worse off. (general)

  18. Disorder and decoherence in coined quantum walks

    International Nuclear Information System (INIS)

    Zhang Rong; Qin Hao; Tang Bao; Xue Peng

    2013-01-01

    This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks. (topical review - quantum information)

  19. Decoherence in optimized quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. (paper)

  20. Quantum simulation with natural decoherence

    International Nuclear Information System (INIS)

    Tseng, C. H.; Somaroo, S.; Sharf, Y.; Knill, E.; Laflamme, R.; Havel, T. F.; Cory, D. G.

    2000-01-01

    A quantum system may be efficiently simulated by a quantum information processor as suggested by Feynman and developed by Lloyd, Wiesner, and Zalka. Within the limits of the experimental implementation, simulation permits the design and control of the kinematic and dynamic parameters of a quantum system. Extension to the inclusion of the effects of decoherence, if approached from a full quantum-mechanical treatment of the system and the environment, or from a semiclassical fluctuating field treatment (Langevin), requires the difficult access to dynamics on the time scale of the environment correlation time. Alternatively, a quantum-statistical approach may be taken which exploits the natural decoherence of the experimental system, and requires a more modest control of the dynamics. This is illustrated for quantum simulations of a four-level quantum system by a two-spin NMR ensemble quantum information processor. (c) 2000 The American Physical Society

  1. Quantum decoherence of phonons in Bose-Einstein condensates

    Science.gov (United States)

    Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette

    2018-01-01

    We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.

  2. Quantum mechanics of history: The decoherence functional in quantum mechanics

    International Nuclear Information System (INIS)

    Dowker, H.F.; Halliwell, J.J.

    1992-01-01

    We study a formulation of quantum mechanics in which the central notion is that of a quantum-mechanical history---a sequence of events at a succession of times. The primary aim is to identify sets of ''decoherent'' (or ''consistent'') histories for the system. These are quantum-mechanical histories suffering negligible interference with each other, and, therefore, to which probabilities may be assigned. These histories may be found for a given system using the so-called decoherence functional. When the decoherence functional is exactly diagonal, probabilities may be assigned to the histories, and all probability sum rules are satisfied exactly. We propose a condition for approximate decoherence, and argue that it implies that most probability sum rules will be satisfied to approximately the same degree. We also derive an inequality bounding the size of the off-diagonal terms of the decoherence functional. We calculate the decoherence functional for some simple one-dimensional systems, with a variety of initial states. For these systems, we explore the extent to which decoherence is produced using two different types of coarse graining. The first type of coarse graining involves imprecise specification of the particle's position. The second involves coupling the particle to a thermal bath of harmonic oscillators and ignoring the details of the bath (the Caldeira-Leggett model). We argue that both types of coarse graining are necessary in general. We explicitly exhibit the degree of decoherence as a function of the temperature of the bath, and of the width to within which the particle's position is specified. We study the diagonal elements of the decoherence functional, representing the probabilities for the possible histories of the system

  3. Highly Nonclassical Quantum States and Environment Induced Decoherence

    Science.gov (United States)

    Foldi, Peter

    2004-06-01

    In this thesis concrete quantum systems are investigated in the framework of the environment induced decoherence. The focus is on the dynamics of highly nonclassical quantum states, the Wigner function of which are negative over some regions of their domains. One of the chosen physical systems is a diatomic molecule, where the potential energy of the nuclei is an anharmonic function of their distance. A system of two-level atoms, which can be important from the viewpoint of quantum information technology, is also investigated. A method is described that is valid in both systems and can determine the characteristic time of the decoherence in a dynamical way. The direction of the decoherence and its relation to energy dissipation is also studied. Finally, a scheme is proposed that can prepare decoherence-free states using the experimental techniques presently available.

  4. Decoherence and the Appearance of a Classical World in Quantum Theory

    International Nuclear Information System (INIS)

    Alicki, R

    2004-01-01

    In the last decade decoherence has become a very popular topic mainly due to the progress in experimental techniques which allow monitoring of the process of decoherence for single microscopic or mesoscopic systems. The other motivation is the rapid development of quantum information and quantum computation theory where decoherence is the main obstacle in the implementation of bold theoretical ideas. All that makes the second improved and extended edition of this book very timely. Despite the enormous efforts of many authors decoherence with its consequences still remains a rather controversial subject. It touches on, namely, the notoriously confusing issues of quantum measurement theory and interpretation of quantum mechanics. The existence of different points of view is reflected by the structure and content of the book. The first three authors (Joos, Zeh and Kiefer) accept the standard formalism of quantum mechanics but seem to reject orthodox Copenhagen interpretation, Giulini and Kupsch stick to both while Stamatescu discusses models which go beyond the standard quantum theory. Fortunately, most of the presented results are independent of the interpretation and the mathematical formalism is common for the (meta)physically different approaches. After a short introduction by Joos followed by a more detailed review of the basic concepts by Zeh, chapter 3 (the longest chapter) by Joos is devoted to the environmental decoherence. Here the author considers mostly rather 'down to earth' and well-motivated mechanisms of decoherence through collisions with atoms or molecules and the processes of emission, absorption and scattering of photons. The issues of decoherence induced superselection rules and localization of objects including the possible explanation of the molecular structure are discussed in details. Many other topics are also reviewed in this chapter, e.g., the so-called Zeno effect, relationships between quantum chaos and decoherence, the role of

  5. Approaches to open quantum systems: Decoherence, localisation and all that

    International Nuclear Information System (INIS)

    Yu Ting

    1998-01-01

    This thesis is mainly concerned with issues in quantum open systems and the foundations of quantum theory. Chapter I introduces the aim, background and main results which take place in the following chapters. Chapters II and III are used to study and compare the decoherent histories approach, the environment-induced decoherence and the localisation properties of the solutions to the stochastic Schrodinger equation in quantum jump simulation and quantum state diffusion approaches, for a quantum two-level system model. We show, in particular, that there is a close connection between the decoherent histories and the quantum jump simulation, complementing a connection with the quantum state diffusion approach noted earlier by Diosi, Gisin, Halliwell and Percival. In the case of the decoherent histories analysis, the degree of approximate decoherence is discussed in detail. As by-product, by using the von Neumann entropy, we also discuss the predictability and its relation to the upper bounds of degree of decoherence. In Chapter IV, we give an alternative and elementary derivation of the Hu-Paz-Ghang master equation for quantum Brownian motion in a general environment, which involves tracing the evolution equation for the Wigner function. We also discuss the master equation in some special cases. This master equation provides a very useful tool to study the decoherence of a quantum system due to the interaction with its environment. In Chapter V, a derivation of the parameter-based uncertainty relation between position and momentum is given. This uncertainty relation can be regarded as an exact counterpart of the time-energy uncertainty relation. The final chapter is a rather brief summary of the thesis. (author)

  6. Three-player quantum Kolkata restaurant problem under decoherence

    Science.gov (United States)

    Ramzan, M.

    2013-01-01

    Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice's payoff is heavily influenced by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of decoherence, Alice's payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is symmetrical around 50% decoherence. It is also seen that for maximum decoherence ( p = 1), the influence of amplitude damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice's payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel. Furthermore, the Nash equilibrium of the problem does not change under decoherence.

  7. Quantum Computing in Decoherence-Free Subspace Constructed by Triangulation

    OpenAIRE

    Bi, Qiao; Guo, Liu; Ruda, H. E.

    2010-01-01

    A formalism for quantum computing in decoherence-free subspaces is presented. The constructed subspaces are partial triangulated to an index related to environment. The quantum states in the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These projected states can be used to perform ideal quantum logical operations without decoherence.

  8. Decoherence in two-dimensional quantum walks

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Portugal, R.; Donangelo, R.

    2006-01-01

    We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk

  9. Quantum Computing in Decoherence-Free Subspace Constructed by Triangulation

    Directory of Open Access Journals (Sweden)

    Qiao Bi

    2010-01-01

    Full Text Available A formalism for quantum computing in decoherence-free subspaces is presented. The constructed subspaces are partial triangulated to an index related to environment. The quantum states in the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These projected states can be used to perform ideal quantum logical operations without decoherence.

  10. Decoherence by engineered quantum baths

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Davide [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Calarco, Tommaso [Dipartimento di Fisica, Universita di Trento and BEC-CNR-INFM, I-38050 Povo (Italy); Giovannetti, Vittorio [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Montangero, Simone [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Fazio, Rosario [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2007-07-13

    Optical lattices can be used to simulate quantum baths and hence they can be of fundamental help to study, in a controlled way, the emergence of decoherence in quantum systems. Here we show how to implement a pure dephasing model for a two-level system coupled to an interacting spin bath. In this scheme it is possible to implement a large variety of spin environments embracing Ising, XY and Heisenberg universality classes. After having introduced the model, we calculate exactly the decoherence for the Ising and the XY spin bath model. We find universal features depending on the critical behaviour of the spin bath, both in the short- and long-time limits. The rich scenario that emerges can be tested experimentally and can be of importance for the understanding of the coherence loss in open quantum systems.

  11. Radiation damping and decoherence in quantum electrodynamics

    International Nuclear Information System (INIS)

    Breuer, H.P.

    2000-01-01

    The processes of radiation damping and decoherence in quantum electrodynamics are studied from an open system's point of view. Employing functional techniques of field theory, the degrees of freedom of the radiation field are eliminated to obtain the influence phase functional which describes the reduced dynamics of the matter variables. The general theory is applied to the dynamics of a single electron in the radiation field. From a study of the wave packet dynamics a quantitative measure for the degree of decoherence, the decoherence function, is deduced. The latter is shown to describe the emergence of decoherence through the emission of bremsstrahlung caused by the relative motion of interfering wave packets. It is argued that this mechanism is the most fundamental process in quantum electrodynamics leading to the destruction of coherence, since it dominates for short times and because it is at work even in the electromagnetic field vacuum at zero temperature. It turns out that decoherence trough bremsstrahlung is very small for single electrons but extremely large for superpositions of many-particle states. (orig.)

  12. Decoherence control in open quantum systems via classical feedback

    International Nuclear Information System (INIS)

    Ganesan, Narayan; Tarn, Tzyh-Jong

    2007-01-01

    In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations

  13. Quantum arrival time formula from decoherent histories

    International Nuclear Information System (INIS)

    Halliwell, J.J.; Yearsley, J.M.

    2009-01-01

    We use the decoherent histories approach to quantum mechanics to compute the probability for a wave packet to cross the origin during a given time interval. We define class operators (sums of strings of projectors) characterizing quantum-mechanical crossing and simplify them using a semiclassical approximation. Using these class operators we find that histories crossing the origin during different time intervals are approximately decoherent for a variety of initial states. Probabilities may therefore be assigned and coincide with the flux of the wave packet (the standard semiclassical formula), and are positive. The known initial states for which the flux is negative (backflow states) are shown to correspond to non-decoherent sets of histories, so probabilities may not be assigned.

  14. Environment-induced decoherence and the transition from quantum to classical

    International Nuclear Information System (INIS)

    Paz, J.P.; Zurek, W.H.

    2001-01-01

    We study dynamics of quantum open systems, paying special attention to these aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection (einselection) in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the 'standard lore' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law - it is shown - can be traced to the same phenomena that allow for the restoration of the correspondence principle in de-cohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out. (authors)

  15. Surface state decoherence in loop quantum gravity, a first toy model

    International Nuclear Information System (INIS)

    Feller, Alexandre; Livine, Etera R

    2017-01-01

    The quantum-to-classical transition through decoherence is a major facet of the semi-classical analysis of quantum models that are supposed to admit a classical regime, as quantum gravity should be. A particular problem of interest is the decoherence of black hole horizons and holographic screens induced by the bulk-boundary coupling with interior degrees of freedom. Here in this paper we present a first toy-model, in the context of loop quantum gravity, for the dynamics of a surface geometry as an open quantum system. We discuss the resulting decoherence and recoherence and compare the exact density matrix evolution to the commonly used master equation approximation à la Lindblad underlining its merits and limitations. The prospect of this study is to have a clearer understanding of the boundary decoherence of black hole horizons seen by outside observers. (paper)

  16. Decoherence and quantum measurements

    CERN Document Server

    Namiki, Mikio; Pascazio, Saverio

    1997-01-01

    The quantum measurement problem is one of the most fascinating and challenging topics in physics both theoretically and experimentally. It involves deep questions and the use of very sophisticated and elegant techniques. After analyzing the fundamental principles of quantum mechanics and of the Copenhagen interpretation, this book reviews the most important approaches to the measurement problem and rigorously reformulates the "collapse of the wave function" by measurement, as a dephasing process quantitatively characterized by an order parameter (called the decoherence parameter), according to

  17. Long-distance quantum communication. Decoherence-avoiding mechanisms

    International Nuclear Information System (INIS)

    Kolb Bernardes, Nadja

    2012-01-01

    Entanglement is the essence of most quantum information processes. For instance, it is used as a resource for quantum teleportation or perfectly secure classical communication. Unfortunately, inevitable noise in the quantum channel will typically affect the distribution of entanglement. Owing to fundamental principles, common procedures used in classical communication, such as amplification, cannot be applied. Therefore, the fidelity and rate of transmission will be limited by the length of the channel. Quantum repeaters were proposed to avoid the exponential decay with the distance and to permit long-distance quantum communication. Long-distance quantum communication constitutes the framework for the results presented in this thesis. The main question addressed in this thesis is how the performance of quantum repeaters are affected by various sources of decoherence. Moreover, what can be done against decoherence to improve the performance of the repeater. We are especially interested in the so-called hybrid quantum repeater; however, many of the results presented here are sufficiently general and may be applied to other systems as well. First, we present a detailed entanglement generation rate analysis for the quantum repeater. In contrast to what is commonly found in the literature, our analysis is general and analytical. Moreover, various sources of errors are considered, such as imperfect local two-qubit operations and imperfect memories, making it possible to determine the requirements for memory decoherence times. More specifically, we apply our formulae in the context of a hybrid quantum repeater and we show that in a possible experimental scenario, our hybrid system can create near-maximally entangled pairs over a distance of 1280 km at rates of the order of 100 Hz. Furthermore, aiming to protect the system against different types of errors, we analyze the hybrid quantum repeater when supplemented by quantum error correction. We propose a scheme for

  18. Long-distance quantum communication. Decoherence-avoiding mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kolb Bernardes, Nadja

    2012-12-17

    Entanglement is the essence of most quantum information processes. For instance, it is used as a resource for quantum teleportation or perfectly secure classical communication. Unfortunately, inevitable noise in the quantum channel will typically affect the distribution of entanglement. Owing to fundamental principles, common procedures used in classical communication, such as amplification, cannot be applied. Therefore, the fidelity and rate of transmission will be limited by the length of the channel. Quantum repeaters were proposed to avoid the exponential decay with the distance and to permit long-distance quantum communication. Long-distance quantum communication constitutes the framework for the results presented in this thesis. The main question addressed in this thesis is how the performance of quantum repeaters are affected by various sources of decoherence. Moreover, what can be done against decoherence to improve the performance of the repeater. We are especially interested in the so-called hybrid quantum repeater; however, many of the results presented here are sufficiently general and may be applied to other systems as well. First, we present a detailed entanglement generation rate analysis for the quantum repeater. In contrast to what is commonly found in the literature, our analysis is general and analytical. Moreover, various sources of errors are considered, such as imperfect local two-qubit operations and imperfect memories, making it possible to determine the requirements for memory decoherence times. More specifically, we apply our formulae in the context of a hybrid quantum repeater and we show that in a possible experimental scenario, our hybrid system can create near-maximally entangled pairs over a distance of 1280 km at rates of the order of 100 Hz. Furthermore, aiming to protect the system against different types of errors, we analyze the hybrid quantum repeater when supplemented by quantum error correction. We propose a scheme for

  19. Quantum coherence phenomena in semiconductor quantum dots: quantum interference, decoherence and Rabi oscillation

    International Nuclear Information System (INIS)

    Htoon, H.; Shih, C.K.; Takagahara, T.

    2003-01-01

    We performed extensive studies on quantum decoherence processes of excitons trapped in the various excited states of SAQDs. Energy level structure and dephasing times of excited states were first determined by conducting photoluminescence excitation spectroscopy and wave-packet interferometry on a large number of individual SAQDs. This large statistical basis allows us to extract the correlation between the energy level structure and dephasing times. The major decoherence mechanisms and their active regime were identified from this correlation. A significant suppression of decoherence was also observed in some of the energetically isolated excited states, providing an experimental evidence for the theoretical prediction, known as 'phonon bottleneck effect'. Furthermore, we observed the direct experimental evidence of Rabi oscillation in these excited states with long decoherence times. In addition, a new type of quantum interference (QI) phenomenon was discovered in the wave-packet interferometry experiments performed in the strong excitation regime where the non-linear effects of Rabi oscillation become important. Detailed theoretical investigations attribute this phenomenon to the coherent dynamics resulting from the interplay of Rabi oscillation and QI

  20. Decoherence of quantum fields: Pointer states and predictability

    International Nuclear Information System (INIS)

    Anglin, J.R.; Zurek, W.H.

    1996-01-01

    We study environmentally induced decoherence of an electromagnetic field in a homogeneous, linear, dielectric medium. We derive an independent oscillator model for such an environment, which is sufficiently realistic to encompass essentially all linear physical optics. Applying the open-quote open-quote predictability sieve close-quote close-quote to the quantum field, and introducing the concept of a open-quote open-quote quantum halo,close-quote close-quote we recover the familiar dichotomy between background field configurations and photon excitations around them. We are then able to explain why a typical linear environment for the electromagnetic field will effectively render the former classically distinct, but leave the latter fully quantum mechanical. Finally, we suggest how and why quantum matter fields should suffer a very different form of decoherence. copyright 1996 The American Physical Society

  1. Gravitational Field effects on the Decoherence Process and the Quantum Speed Limit.

    Science.gov (United States)

    Dehdashti, Sh; Avazzadeh, Z; Xu, Z; Shen, J Q; Mirza, B; Wang, H

    2017-11-08

    In this paper we use spinor transformations under local Lorentz transformations to investigate the curvature effect on the quantum-to-classical transition, described in terms of the decoherence process and of the quantum speed limit. We find that gravitational fields (introduced adopting the Schwarzschild and anti-de Sitter geometries) affect both the decoherence process and the quantum speed limit of a quantum particle with spin-1/2. In addition, as a tangible example, we study the effect of the Earth's gravitational field, characterized by the Rindler space-time, on the same particle. We find that the effect of the Earth's gravitational field on the decoherence process and quantum speed limit is very small, except when the mean speed of the quantum particle is comparable to the speed of light.

  2. Decoherence assisting a measurement-driven quantum evolution process

    International Nuclear Information System (INIS)

    Roa, Luis; Olivares-Renteria, G. A.

    2006-01-01

    We study the problem of driving an unknown initial mixed quantum state onto a known pure state without using unitary transformations. This can be achieved, in an efficient manner, with the help of sequential measurements on at least two unbiased bases. However here we found that, when the system is affected by a decoherence mechanism, only one observable is required in order to achieve the same goal. In this way the decoherence can assist the process. We show that, depending on the sort of decoherence, the process can converge faster or slower than the method implemented by means of two complementary observables

  3. Decoherence in Nearly-Isolated Quantum Dots

    DEFF Research Database (Denmark)

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single...

  4. Decoherence in quantum lossy systems: superoperator and matrix techniques

    Science.gov (United States)

    Yazdanpanah, Navid; Tavassoly, Mohammad Kazem; Moya-Cessa, Hector Manuel

    2017-06-01

    Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.

  5. Decoherent histories analysis of minisuperspace quantum cosmology

    International Nuclear Information System (INIS)

    Halliwell, J J

    2011-01-01

    Recent results on the decoherent histories quantization of simple cosmological models (minisuperspace models) are described. The most important issue is the construction, from the wave function, of a probability distribution answering various questions of physical interest, such as the probability of the system entering a given region of configuration space at any stage in its entire history. A standard but heuristic procedure is to use the flux of (components of) the wave function in a WKB approximation as the probability. This gives sensible semiclassical results but lacks an underlying operator formalism. Here, we supply the underlying formalism by deriving probability distributions linked to the Wheeler-DeWitt equation using the decoherent histories approach to quantum theory, building on the generalized quantum mechanics formalism developed by Hartle. The key step is the construction of class operators characterizing questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival time problem in non-relativistic quantum mechanics, we show that the appropriate class operators in quantum cosmology are readily constructed using a complex potential. The class operator for not entering a region of configuration space is given by the S-matrix for scattering off a complex potential localized in that region. We thus derive the class operators for entering one or more regions in configuration space. The class operators commute with the Hamiltonian, have a sensible classical limit and are closely related to an intersection number operator. The corresponding probabilities coincide, in a semiclassical approximation, with standard heuristic procedures.

  6. Decoherent histories analysis of minisuperspace quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, J J, E-mail: j.halliwell@imperial.ac.uk [Blackett Laboratory Imperial College London SW7 2BZ (United Kingdom)

    2011-07-08

    Recent results on the decoherent histories quantization of simple cosmological models (minisuperspace models) are described. The most important issue is the construction, from the wave function, of a probability distribution answering various questions of physical interest, such as the probability of the system entering a given region of configuration space at any stage in its entire history. A standard but heuristic procedure is to use the flux of (components of) the wave function in a WKB approximation as the probability. This gives sensible semiclassical results but lacks an underlying operator formalism. Here, we supply the underlying formalism by deriving probability distributions linked to the Wheeler-DeWitt equation using the decoherent histories approach to quantum theory, building on the generalized quantum mechanics formalism developed by Hartle. The key step is the construction of class operators characterizing questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival time problem in non-relativistic quantum mechanics, we show that the appropriate class operators in quantum cosmology are readily constructed using a complex potential. The class operator for not entering a region of configuration space is given by the S-matrix for scattering off a complex potential localized in that region. We thus derive the class operators for entering one or more regions in configuration space. The class operators commute with the Hamiltonian, have a sensible classical limit and are closely related to an intersection number operator. The corresponding probabilities coincide, in a semiclassical approximation, with standard heuristic procedures.

  7. Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.

    2004-01-01

    Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs

  8. Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. E-mail: chudnov@lehman.cuny.edu

    2004-05-01

    Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs.

  9. Decoherence bypass of macroscopic superpositions in quantum measurement

    International Nuclear Information System (INIS)

    Spehner, Dominique; Haake, Fritz

    2008-01-01

    We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that a distinct pointer position is tied to each eigenvalue of the measured object observable. Those different pointer positions mutually decohere under the influence of an environment. Overcoming limitations of previous approaches we (i) cope with initial correlations between pointer and environment by considering them initially in a metastable local thermal equilibrium, (ii) allow for object-pointer entanglement and environment-induced decoherence of distinct pointer readouts to proceed simultaneously, such that mixtures of macroscopically distinct object-pointer product states arise without intervening macroscopic superpositions, and (iii) go beyond the Markovian treatment of decoherence. (fast track communication)

  10. Decoherence in a scalable adiabatic quantum computer

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-01-01

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks

  11. Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent

    International Nuclear Information System (INIS)

    Gilmore, Joel; McKenzie, Ross H

    2005-01-01

    We give a theoretical treatment of the interaction of electronic excitations (excitons) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Foerster resonant energy transfer

  12. Local decoherence-resistant quantum states of large systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Utkarsh; Sen, Aditi; Sen, Ujjwal, E-mail: ujjwal@hri.res.in

    2015-02-06

    We identify an effectively decoherence-free class of quantum states, each of which consists of a “minuscule” and a “large” sector, against local noise. In particular, the content of entanglement and other quantum correlations in the minuscule to large partition is independent of the number of particles in their large sectors, when all the particles suffer passage through local amplitude and phase damping channels. The states of the large sectors are distinct in terms of markedly different amounts of violation of Bell inequality. In case the large sector is macroscopic, such states are akin to the Schrödinger cat. - Highlights: • We identify an effectively decoherence-free class of quantum states of large systems. • We work with local noise models. • Decay of entanglement as well as information-theoretic quantum correlations considered. • The states are of the form of the Schrödinger cats, with minuscule and large sectors. • The states of the large sector are distinguishable by their violation of Bell inequality.

  13. Experimental fault-tolerant quantum cryptography in a decoherence-free subspace

    International Nuclear Information System (INIS)

    Zhang Qiang; Pan Jianwei; Yin Juan; Chen Tengyun; Lu Shan; Zhang Jun; Li Xiaoqiang; Yang Tao; Wang Xiangbin

    2006-01-01

    We experimentally implement a fault-tolerant quantum key distribution protocol with two photons in a decoherence-free subspace [Phys. Rev. A 72, 050304(R) (2005)]. It is demonstrated that our protocol can yield a good key rate even with a large bit-flip error rate caused by collective rotation, while the usual realization of the Bennett-Brassard 1984 protocol cannot produce any secure final key given the same channel. Since the experiment is performed in polarization space and does not need the calibration of a reference frame, important applications in free-space quantum communication are expected. Moreover, our method can also be used to robustly transmit an arbitrary two-level quantum state in a type of decoherence-free subspace

  14. Probing models of quantum decoherence in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatos, Nikolaos E; Sarkar, Sarben [King' s College London, Department of Physics, Theoretical Physics, Strand London WC2R 2LS (United Kingdom)

    2007-05-15

    In this review we discuss the string theoretical motivations for induced decoherence and deviations from ordinary quantum-mechanical behaviour; this leads to intrinsic CPT violation in the context of an extended class of quantum-gravity models. We proceed to a description of precision tests of CPT symmetry and quantum mechanics using mainly neutral kaons and neutrinos. We emphasize the possibly unique role of neutral meson factories in providing tests of models where the quantum-mechanical CPT operator is not well-defined, leading to modifications of Einstein-Podolsky-Rosen particle correlators. Finally, we discuss experimental probes of decoherence in cosmology, including studies of dissipative relaxation models of dark energy in non-critical (non-equilibrium) string theory and the associated modifications of the Boltzmann equation for the evolution of species abundances.

  15. Decoherence in a double-slit quantum eraser

    International Nuclear Information System (INIS)

    Torres-Ruiz, F. A.; Lima, G.; Delgado, A.; Saavedra, C.; Padua, S.

    2010-01-01

    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down-conversion process, is prepared in a maximally entangled polarization state. A birefringent double slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled-not gate that couples the polarization with the transversal momentum of these photons. The other photon, which acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wavelike to particle-like behavior of the signal photons crossing the double slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.

  16. Robust control of decoherence in realistic one-qubit quantum gates

    International Nuclear Information System (INIS)

    Protopopescu, V; Perez, R; D'Helon, C; Schmulen, J

    2003-01-01

    We present an open-loop (bang-bang) scheme to control decoherence in a generic one-qubit quantum gate and implement it in a realistic simulation. The system is consistently described within the spin-boson model, with interactions accounting for both adiabatic and thermal decoherence. The external control is included from the beginning in the Hamiltonian as an independent interaction term. After tracing out the environment modes, reduced equations are obtained for the two-level system in which the effects of both decoherence and external control appear explicitly. The controls are determined exactly from the condition to eliminate decoherence, i.e. to restore unitarity. Numerical simulations show excellent performance and robustness of the proposed control scheme

  17. Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?

    Science.gov (United States)

    Brezinski, Mark E; Rupnick, Maria

    2016-01-01

    Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems. PMID:29200743

  18. Decoherence control in quantum computing with simple chirped ...

    Indian Academy of Sciences (India)

    strate this with selective control of decoherence for a multilevel system with a simple ... The concept of quantum computer (QC) has attracted considerable attention ... as intramolecular vibrational relaxation (IVR), which is the most important ...

  19. Quantum-like model of brain's functioning: decision making from decoherence.

    Science.gov (United States)

    Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei

    2011-07-21

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-06

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  1. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-01

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  2. Quantum dissipative dynamics and decoherence of dimers on helium droplets

    International Nuclear Information System (INIS)

    Schlesinger, Martin

    2011-01-01

    In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4 He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold ''refrigerator'' for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb 2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K 2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the

  3. Decoherence in a dynamical quantum phase transition of the transverse Ising chain

    International Nuclear Information System (INIS)

    Mostame, Sarah; Schaller, Gernot; Schuetzhold, Ralf

    2007-01-01

    For the prototypical example of the Ising chain in a transverse field, we study the impact of decoherence on the sweep through a second-order quantum phase transition. Apart from the advance in the general understanding of the dynamics of quantum phase transitions, these findings are relevant for adiabatic quantum algorithms due to the similarities between them. It turns out that (in contrast to first-order transitions studied previously) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins or qubits), which might limit the scalability of the system

  4. Exploration of possible quantum gravity effects with neutrinos I: Decoherence in neutrino oscillations experiments

    International Nuclear Information System (INIS)

    Sakharov, Alexander; Mavromatos, Nick; Sarkar, Sarben; Meregaglia, Anselmo; Rubbia, Andre

    2009-01-01

    Quantum gravity may involve models with stochastic fluctuations of the associated metric field, around some fixed background value. Such stochastic models of gravity may induce decoherence for matter propagating in such fluctuating space time. In most cases, this leads to fewer neutrinos of all active flavours being detected in a long baseline experiment as compared to three-flavour standard neutrino oscillations. We discuss the potential of the CNGS and J-PARC beams in constraining models of quantum-gravity induced decoherence using neutrino oscillations as a probe. We use as much as possible model-independent parameterizations, even though they are motivated by specific microscopic models, for fits to the expected experimental data which yield bounds on quantum-gravity decoherence parameters.

  5. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  6. Macroscopic superposition states and decoherence by quantum telegraph noise

    International Nuclear Information System (INIS)

    Abel, Benjamin Simon

    2008-01-01

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  7. Quantum computing with four-particle decoherence-free states in ion trap

    OpenAIRE

    Feng, Mang; Wang, Xiaoguang

    2001-01-01

    Quantum computing gates are proposed to apply on trapped ions in decoherence-free states. As phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum computing based on this model would be perfect. Possible application of our scheme in future ion-trap quantum computer is discussed.

  8. The Problem of Time in Quantum Cosmology: A Decoherent Histories View

    International Nuclear Information System (INIS)

    Christodoulakis, Theodosios; Wallden, Petros

    2011-01-01

    The problem of time in quantum gravity arises due to the diffeomorphisms invariance of the theory and appears via the Hamiltonian constraint, in the canonical quantizations. There is a need for a description where one can ask some timeless questions that still encode some sense of temporality. The decoherent histories approach to quantum theory, already at the kinematical level admits an internal time. Several alternative proposals for resolving the problem of time via the decoherent histories, exist, and in this contribution we focus on one particular and examine how it manifests itself at some simple cosmological models.

  9. Preservation of a lower bound of quantum secret key rate in the presence of decoherence

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Shounak, E-mail: shounak.datta@bose.res.in; Goswami, Suchetana, E-mail: suchetana.goswami@bose.res.in; Pramanik, Tanumoy, E-mail: tanu.pram99@bose.res.in; Majumdar, A.S., E-mail: archan@bose.res.in

    2017-03-11

    It is well known that the interaction of quantum systems with the environment reduces the inherent quantum correlations. Under special circumstances the effect of decoherence can be reversed, for example, the interaction modelled by an amplitude damping channel can boost the teleportation fidelity from the classical to the quantum region for a bipartite quantum state. Here, we first show that this phenomenon fails to preserve the quantum secret key rate derived under individual attack. We further show that the technique of weak measurement can be used to slow down the process of decoherence, thereby helping to preserve the quantum secret key rate when one or both systems are interacting with the environment via an amplitude damping channel. Most interestingly, in certain cases weak measurement with post-selection where one considers both success and failure of the technique is shown to be more useful than without it when both systems interact with the environment. - Highlights: • In general, decoherence has negative effect on the steerability and quantum secret key rate of a bipartite state. • Quantum key rate can be preserved against the effect of decoherence using the technique of weak measurement. • The technique of weak measurements includes a weak measurement and its reversal. • For some strength of weak measurement and environmental interaction, the average secret key rate is improved.

  10. Preservation of a lower bound of quantum secret key rate in the presence of decoherence

    International Nuclear Information System (INIS)

    Datta, Shounak; Goswami, Suchetana; Pramanik, Tanumoy; Majumdar, A.S.

    2017-01-01

    It is well known that the interaction of quantum systems with the environment reduces the inherent quantum correlations. Under special circumstances the effect of decoherence can be reversed, for example, the interaction modelled by an amplitude damping channel can boost the teleportation fidelity from the classical to the quantum region for a bipartite quantum state. Here, we first show that this phenomenon fails to preserve the quantum secret key rate derived under individual attack. We further show that the technique of weak measurement can be used to slow down the process of decoherence, thereby helping to preserve the quantum secret key rate when one or both systems are interacting with the environment via an amplitude damping channel. Most interestingly, in certain cases weak measurement with post-selection where one considers both success and failure of the technique is shown to be more useful than without it when both systems interact with the environment. - Highlights: • In general, decoherence has negative effect on the steerability and quantum secret key rate of a bipartite state. • Quantum key rate can be preserved against the effect of decoherence using the technique of weak measurement. • The technique of weak measurements includes a weak measurement and its reversal. • For some strength of weak measurement and environmental interaction, the average secret key rate is improved.

  11. Modeling decoherence with qubits

    Science.gov (United States)

    Heusler, Stefan; Dür, Wolfgang

    2018-03-01

    Quantum effects like the superposition principle contradict our experience of daily life. Decoherence can be viewed as a possible explanation why we do not observe quantum superposition states in the macroscopic world. In this article, we use the qubit ansatz to discuss decoherence in the simplest possible model system and propose a visualization for the microscopic origin of decoherence, and the emergence of a so-called pointer basis. Finally, we discuss the possibility of ‘macroscopic’ quantum effects.

  12. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  13. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    Science.gov (United States)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  14. Resilience to decoherence of the macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    International Nuclear Information System (INIS)

    Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco

    2010-01-01

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  15. Decoherence control in quantum computing with simple chirped ...

    Indian Academy of Sciences (India)

    We show how the use of optimally shaped pulses to guide the time evolution of a system ('coherent control') can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton ...

  16. Decoherence of quantum excitation of even/odd coherent states in ...

    Indian Academy of Sciences (India)

    2The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran. ∗ .... approach to obtain the decoherence time (by evaluating the time-dependent .... Recall that, while Fokker–Planck equation deals with the evolution of the ...

  17. The Role of Quantum Decoherence in FRET.

    Science.gov (United States)

    Nelson, Philip C

    2018-02-16

    Resonance energy transfer has become an indispensable experimental tool for single-molecule and single-cell biophysics. Its physical underpinnings, however, are subtle: it involves a discrete jump of excitation from one molecule to another, and so we regard it as a strongly quantum-mechanical process. And yet its kinetics differ from what many of us were taught about two-state quantum systems, quantum superpositions of the states do not seem to arise, and so on. Although J. R. Oppenheimer and T. Förster navigated these subtleties successfully, it remains hard to find an elementary derivation in modern language. The key step involves acknowledging quantum decoherence. Appreciating that aspect can be helpful when we attempt to extend our understanding to situations in which Förster's original analysis is not applicable. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence

    International Nuclear Information System (INIS)

    Calarco, T.; Datta, A.; Fedichev, P.; Zoller, P.; Pazy, E.

    2003-01-01

    We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects and evaluate quantitatively its fidelity

  19. Decoherence in the Kane quantum computer

    International Nuclear Information System (INIS)

    Fowler, A.G.; Wellard, C.J.; Hollenberg, L.C.L.

    2002-01-01

    Full text: The Kane design for a quantum computer in the solid-state has recently received a great deal of attention, and is the main area of study in the Special Research Centre for Quantum Computer Technology. In this paper, the adiabatic CNOT gate, as proposed by Goan and Milburn, is simulated exactly for a range of pulse sequence profiles. In the absence of de-phasing, the CNOT gate operation time (semi-optimized) was found to be 26 micro-seconds with error probability of 5 x 10 -5 . Simulation of the CNOT gate in the presence of a coherence destroying environmental coupling as well as gate noise was subsequently carried out for a range of de-coherence rates, and the effect on gate fidelity determined

  20. Slowing Quantum Decoherence by Squeezing in Phase Space

    Science.gov (United States)

    Le Jeannic, H.; Cavaillès, A.; Huang, K.; Filip, R.; Laurat, J.

    2018-02-01

    Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to losses. When propagating through damping channels, these states quickly lose their nonclassical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.

  1. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: application to 1H NMR reversion experiments in nematic liquid crystals.

    Science.gov (United States)

    Segnorile, H H; Zamar, R C

    2013-10-21

    An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and

  2. Scheme for Quantum Computing Immune to Decoherence

    Science.gov (United States)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report

  3. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace.

    Science.gov (United States)

    Pyshkin, P V; Luo, Da-Wei; Jing, Jun; You, J Q; Wu, Lian-Ao

    2016-11-25

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

  4. Time dilation in quantum systems and decoherence

    International Nuclear Information System (INIS)

    Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav

    2017-01-01

    Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered. (paper)

  5. Decoherence, discord, and the quantum master equation for cosmological perturbations

    Science.gov (United States)

    Hollowood, Timothy J.; McDonald, Jamie I.

    2017-05-01

    We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.

  6. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    Science.gov (United States)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  7. How biological microtubules may avoid decoherence

    International Nuclear Information System (INIS)

    Hameroff, S.

    2005-01-01

    Full text: Entangled superpositions persisting for hundreds of milliseconds in protein assemblies such as microtubules (MTs) are proposed in biological functions, e.g. quantum computation relevant to consciousness in the Penrose-Hameroff 'Orch OR' model. Cylindrical polymers of the protein tubulin, MTs organize cell activities. The obvious question is how biological quantum states could avoid decoherence, e.g. in the brain at 37.6 degrees centigrade. Screening/sheelding: tubulin protein states/functions are governed by van der Waals London forces, quantum interactions among clouds of delocalizable electrons in nonpolar 'hydrophobic' intra-protein pockets screened from external van der Waals thermal interactions. Such pockets include amino acid resonance structures benzene and indole rings. (Anesthetic gases erase consciousness solely by interfering with London forces in hydrophobic pockets in various brain proteins). Hence tubulin states may act as superpositioned qubits also shielded at the MT level by counter-ion Debye plasma layers (due to charged C-termini tails on tubulin) and by water-ordering actin gels which embed MTs in a quasi-solid. Biological systems may also exploit thermodynamic gradients to give extremely low effective temperatures. Decoherence free subspaces: paradoxically, a system coupled strongly to its environment through certain degrees of freedom can effectively 'freeze' other degrees of freedom (quantum Zeno effect), enabling coherent superpositions and entanglement to persist. Metabolic energy supplied to MT collective dynamics (e.g. Froehlich coherence) can cause Bose-Einstein condenzation and counter decoherence as lasers avoid decoherence at room temperature. Topological quantum error correction: MT lattice structure reveals various helical winding paths through adjacent tubulins which follow the Fibonacci series. Propagation/interactions of quasi-particles along these paths may process information. As proposed by Kitaev (1997), various

  8. Indications of energetic consequences of decoherence at short times for scattering from open quantum systems

    Directory of Open Access Journals (Sweden)

    C. A. Chatzidimitriou-Dreismann

    2011-06-01

    Full Text Available Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutron Compton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3% than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2.

  9. The realism problem of quantum mechanics in view of the decoherence interpretation

    International Nuclear Information System (INIS)

    Messer, Joachim August

    2007-01-01

    Quantum mechanics in the conception, as it is today present, contains - what concerns its conceivable understanding and its interpretation - numerous paradoxa. The best known Copenhagen interpretation is critized and other interpretations, as the many-world interpretation and the modern, today mostly attended decoherence interpretation are put to this describingly on side. Axiomatic explanation attempts, like those from Mackey, Jauch, and Piron are analyzed and the measurement problem discussed from three ways of view: the introduction of a cut by Georg Suessmann, the scaling formalism from Klaus Hepp, and the philosophy from Bernulf Kanitschneider. Especially the critique given by Albert Einstein on the Bohr-Heisenberg Copenhagen interpretation and the completeness of a realistic quantum theory by the EPR thought experiment (called from Einstein, Podolsky, and Rosen) is more detailedly studied and extended to a holomorphic realism, in which the measurement quantities become visible as boundary values of a holomorphic function. This analytic continuation throws a new light on the body-soul parallelism, which exceeds the positions of Platon and Feigl. Beside the decoherence also the superselection rules, which are extensively discussed, are an example for a realistic state reduction - however the nonlocality of realistic quantum mechanics forces to a dualism of Higgs' symmetry breaking with local decoherence in the terrestrial laboratory. The position of a holomorphic barycentric realism is worked out by regress to the quantum field theory of Lehmann, Symanzik, and Zimmermann (LSZ) with its reduction formula. Quantum-cosmological implications, non-commutative geometry, K theory, and background field are also discussed. The newly designed knowledge theory of the holomorphic, barycentric realism - which in the classical limit goes over in a critical realism - forms also a bridge to a deepened humanism, which cannot be constructed from purely classical physics. As

  10. A review of the decoherent histories approach to the arrival time problem in quantum theory

    International Nuclear Information System (INIS)

    Yearsley, James M

    2011-01-01

    We review recent progress in understanding the arrival time problem in quantum mechanics, from the point of view of the decoherent histories approach to quantum theory. We begin by discussing the arrival time problem, focussing in particular on the role of the probability current in the expected classical solution. After a brief introduction to decoherent histories we review the use of complex potentials in the construction of appropriate class operators. We then discuss the arrival time problem for a particle coupled to an environment, and review how the arrival time probability can be expressed in terms of a POVM in this case. We turn finally to the question of decoherence of the corresponding histories, and we show that this can be achieved for simple states in the case of a free particle, and for general states for a particle coupled to an environment.

  11. Decoherence and thermalization of a pure quantum state in quantum field theory.

    Science.gov (United States)

    Giraud, Alexandre; Serreau, Julien

    2010-06-11

    We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.

  12. Triviality-quantum decoherence of quantum chromodynamics SU(∞) in the presence of an external strong white-noise electromagnetic field

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2004-01-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of a very strong external white-noise electromagnetic (strength) field within the context of QCD in the 't Hooft limit of a large number of colors

  13. A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-01-01

    The use of a relational time in quantum mechanics is a framework in which one promotes to quantum operators all variables in a system, and later chooses one of the variables to operate like a 'clock'. Conditional probabilities are computed for variables of the system to take certain values when the 'clock' specifies a certain time. This framework is attractive in contexts where the assumption of usual quantum mechanics of the existence of an external, perfectly classical clock, appears unnatural, as in quantum cosmology. Until recently, there were problems with such constructions in ordinary quantum mechanics with additional difficulties in the context of constrained theories like general relativity. A scheme we recently introduced to consistently discretize general relativity removed such obstacles. Since the clock is now an object subject to quantum fluctuations, the resulting evolution in time is not exactly unitary and pure states decohere into mixed states. Here we work out in detail the type of decoherence generated, and we find it to be of Lindblad type. This is attractive since it implies that one can have loss of coherence without violating the conservation of energy. We apply the framework to a simple cosmological model to illustrate how a quantitative estimate of the effect could be computed. For most quantum systems it appears to be too small to be observed, although certain macroscopic quantum systems could in the future provide a testing ground for experimental observation

  14. Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions

    Science.gov (United States)

    Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B.; Elbing, Mark; Mayor, Marcel; Bryce, Martin R.; Thoss, Michael; Weber, Heiko B.

    2012-08-01

    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

  15. Triviality - quantum decoherence of Fermionic quantum chromodynamics SU (Nc) in the presence of an external strong U (∞) flavored constant noise field

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2008-01-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of an external U (∞) flavor constant charged white noise reservoir. (author)

  16. Revisiting the quantum decoherence scenario as an explanation for the LSND anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bakhti, Pouya; Farzan, Yasaman [Institute for research in fundamental sciences (IPM),PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Schwetz, Thomas [Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,SE-10691 Stockholm (Sweden)

    2015-05-04

    We propose an explanation for the LSND anomaly based on quantum decoherence, postulating an exponential behavior for the decoherence parameters as a function of the neutrino energy. Within this ansatz decoherence effects are suppressed for neutrino energies above 200 MeV as well as around and below few MeV, restricting deviations from standard three-flavour oscillations only to the LSND energy range of 20–50 MeV. The scenario is consistent with the global data on neutrino oscillations, alleviates the tension between LSND and KARMEN, and predicts a null-result for MiniBooNE. No sterile neutrinos are introduced, conflict with cosmology is avoided, and no tension between short-baseline appearance and disappearance data arises. The proposal can be tested at planned reactor experiments with baselines of around 50 km, such as JUNO or RENO-50.

  17. Revisiting the quantum decoherence scenario as an explanation for the LSND anomaly

    International Nuclear Information System (INIS)

    Bakhti, Pouya; Farzan, Yasaman; Schwetz, Thomas

    2015-01-01

    We propose an explanation for the LSND anomaly based on quantum decoherence, postulating an exponential behavior for the decoherence parameters as a function of the neutrino energy. Within this ansatz decoherence effects are suppressed for neutrino energies above 200 MeV as well as around and below few MeV, restricting deviations from standard three-flavour oscillations only to the LSND energy range of 20–50 MeV. The scenario is consistent with the global data on neutrino oscillations, alleviates the tension between LSND and KARMEN, and predicts a null-result for MiniBooNE. No sterile neutrinos are introduced, conflict with cosmology is avoided, and no tension between short-baseline appearance and disappearance data arises. The proposal can be tested at planned reactor experiments with baselines of around 50 km, such as JUNO or RENO-50.

  18. PREFACE: DICE 2006—Quantum Mechanics between Decoherence and Determinism

    Science.gov (United States)

    Diósi, Lajos; Elze, Hans-Thomas; Vitiello, Giuseppe

    2007-06-01

    These proceedings are based on the Invited Lectures and Contributed Papers of the Third International Workshop on Decoherence, Information, Complexity and Entropy—DICE 2006, which was held at Castello di Piombino (Tuscany), 11 15 September 2006. They are meant to document the stimulating exchange of ideas at this interdisciplinary workshop and to share it with the wider scientific community. It successfully continued what was begun with DICE 20021 and followed by DICE 20042 uniting more than seventy participants from more than a dozen different countries worldwide. It has been a great honour and inspiration for all of us to have Professor G. 't Hooft (Nobel Prize for Physics 1999) from the Spinoza Institute and University of Utrecht with us, who presented the lecture `A mathematical theory for deterministic quantum mechanics' (included in this volume). Discussions under the wider theme `Quantum Mechanics between decoherence and determinism: new aspects from particle physics to cosmology' took place in the very pleasant and productive atmosphere at the Castello di Piombino, with a fluctuation of stormy weather only on the evening of the conference dinner. The program of the workshop was grouped according to the following topics: complex systems, classical and quantum aspects Lorentz symmetry, neutrinos and the Universe reduction, decoherence and entanglement quantum, gravity and spacetime -- emergent reality? quantum gravity/cosmology The traditional Public Opening Lecture was presented this time by E. Del Giudice (Milano), who captivated the audience with `Old and new views on the structure of matter and the special case of living matter' on the evening of the arrival day. The workshop has been organized by S. Boccaletti (Firenze), L. Diósi (Budapest), H.-T. Elze (Pisa, chair), L. Fronzoni (Pisa), J. Halliwell (London), and G. Vitiello (Salerno), with great help from our conference secretaries M. Pesce-Rollins (Siena) and L. Baldini (Pisa). Several institutions

  19. Bohmian histories and decoherent histories

    International Nuclear Information System (INIS)

    Hartle, James B.

    2004-01-01

    The predictions of the Bohmian and the decoherent (or consistent) histories formulations of the quantum mechanics of a closed system are compared for histories--sequences of alternatives at a series of times. For certain kinds of histories, Bohmian mechanics and decoherent histories may both be formulated in the same mathematical framework within which they can be compared. In that framework, Bohmian mechanics and decoherent histories represent a given history by different operators. Their predictions for the probabilities of histories of a closed system therefore generally differ. However, in an idealized model of measurement, the predictions of Bohmian mechanics and decoherent histories coincide for the probabilities of records of measurement outcomes. The formulations are thus difficult to distinguish experimentally. They may differ in their accounts of the past history of the Universe in quantum cosmology

  20. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems

    International Nuclear Information System (INIS)

    Hoerhammer, C.

    2007-01-01

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  1. Quantum Fisher information of the Greenberg-Horne-Zeilinger state in decoherence channels

    International Nuclear Information System (INIS)

    Ma Jian; Huang Yixiao; Wang Xiaoguang; Sun, C. P.

    2011-01-01

    Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2) rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels. The initial state is chosen to be a Greenberg-Horne-Zeilinger state of which the phase sensitivity can achieve the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.

  2. Quantum Fisher information of the Greenberg-Horne-Zeilinger state in decoherence channels

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jian; Huang Yixiao; Wang Xiaoguang [Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027 (China); Sun, C. P. [Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-08-15

    Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2) rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels. The initial state is chosen to be a Greenberg-Horne-Zeilinger state of which the phase sensitivity can achieve the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.

  3. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  4. Decoherence-induced transition from photon correlation to anti-correlation

    International Nuclear Information System (INIS)

    Xu, Q

    2014-01-01

    Decoherence tends to induce the quantum-to-classical transition, which leads to a crucial obstacle in the realization of reliable quantum information processing. Counterintuitively, we propose that the decoherence due to phase decay brings about the switch from photon correlation to anti-correlation. Stronger decoherence also gives rise to an enhancement of the transition from photon correlation to anti-correlation. This breaks the conventional correlation of strong decoherence with fast decorrelation. (letters)

  5. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    Science.gov (United States)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  6. Decoherence, environment-induced superselection, and classicality of a macroscopic quantum superposition generated by quantum cloning

    International Nuclear Information System (INIS)

    De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolo

    2009-01-01

    The high resilience to decoherence shown by a recently discovered macroscopic quantum superposition (MQS) generated by a quantum-injected optical parametric amplifier and involving a number of photons in excess of 5x10 4 motivates the present theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on |α> and N-photon maximally entangled states (NOON), in the perspective of the comprehensive theory of the subject by Zurek. In that perspective the concepts of 'pointer state' and 'environment-induced superselection' are applied to the new scheme.

  7. Applications of the Decoherence Formalism

    Science.gov (United States)

    Brun, Todd Andrew

    In this work the decoherence formalism of quantum mechanics is explored and applied to a number of interesting problems in quantum physics. The boundary between quantum and classical physics is examined, and demonstration made that quantum histories corresponding to classical equations of motion become more probable for a broad class of models, including linear and nonlinear models of Brownian motion. The link between noise, dissipation, and decoherence is studied. This work is then applied to systems which classically exhibit dissipative chaotic dynamics. A theory is explicated for treating these systems, and the ideas are applied to a particular model of the forced, damped Duffing oscillator, which is chaotic for certain parameter values. Differences between classical and quantum chaos are examined, particularly differences arising in the structure of fractal strange attractors, and the conceptual difficulties in framing standard notions of chaos in a quantum system. A brief discussion of previous work on quantum chaos is included, and the differences between Hamiltonian and dissipative chaos pointed out; a somewhat different interpretation of quantum chaos from the standard one is suggested. A class of histories for quantum systems, in phase space rather than configuration space, is studied. Different ways of representing projections in phase space are discussed, and expressions for the probability of phase space histories are derived; conditions for such histories to decohere are also estimated in the semiclassical limit.

  8. Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity

    International Nuclear Information System (INIS)

    Yi-Min, Wang; Yan-Li, Zhou; Lin-Mei, Liang; Cheng-Zu, Li

    2009-01-01

    We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity. Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation. The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer. The collective decoherence can be successfully avoided in our well-designed system. Moreover, GHZ state for logical qubits can also be easily produced in this system

  9. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles

    International Nuclear Information System (INIS)

    Grace, Matthew; Brif, Constantin; Rabitz, Herschel; Walmsley, Ian A; Kosut, Robert L; Lidar, Daniel A

    2007-01-01

    Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum evolution via optimal control, even when the system complexity is exacerbated by environmental coupling. It is found that the gate duration has an important effect on the control mechanism and resulting fidelity. An analysis of the sensitivity of the gate performance to random variations in the system parameters reveals a significant degree of robustness attained by the optimal control solutions

  10. Universal decoherence in solids.

    Science.gov (United States)

    Chudnovsky, Eugene M

    2004-03-26

    Symmetry implications for the decoherence of quantum oscillations of a two-state system in a solid are studied. When the oscillation frequency is small compared to the Debye frequency, the universal lower bound on the decoherence due to the atomic environment is derived in terms of the macroscopic parameters of the solid, with no unknown interaction constants.

  11. Decoherence dynamics of two charge qubits in vertically coupled quantum dots

    International Nuclear Information System (INIS)

    Ben Chouikha, W.; Bennaceur, R.; Jaziri, S.

    2007-01-01

    The decoherence dynamics of two charge qubits in a double quantum dot is investigated theoretically. We consider the quantum dynamics of two interacting electrons in a vertically coupled quantum dot driven by an external electric field. We derive the equations of motion for the density matrix, in which the presence of an electron confined in the double dot represents one qubit. A Markovian approach to the dynamical evolution of the reduced density matrix is adopted. We evaluate the concurrence of two qubits in order to study the effect of acoustic phonons on the entanglement. We also show that the disentanglement effect depends on the double dot parameters and increases with the temperature

  12. Instantaneous and dynamical decoherence

    Science.gov (United States)

    Polonyi, Janos

    2018-04-01

    Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.

  13. Quantum eraser and the decoherence time of a local measurement process

    International Nuclear Information System (INIS)

    Abranyos, Y.; Jakob, M.; Bergou, J.

    1998-01-01

    We propose an implementation of the quantum eraser, based on a recent experimental scheme by Eichmann et al. involving two four-level atoms. In our version a continuous broad band excitation field drives the two trapped atoms and information about which atom scattered the light is stored in the internal degrees of freedom of the atoms. Entanglement of the two atoms after the detection of the photon is intimately connected to the availability of this 'which path' information. We also show that the quantum eraser can be used to measure the decoherence time of a local measurement process. (author)

  14. NATO Advanced Research Workshop on Decoherence, Entanglement and Information Protection in Complex Quantum Systems

    CERN Document Server

    Akulin, V.M; Kurizki, G; Pellegrin, S

    2005-01-01

    This book is a collection of articles on the contemporary status of quantum mechanics, dedicated to the fundamental issues of entanglement, decoherence, irreversibility, information processing, and control of quantum evolution, with a view of possible applications. It has multidisciplinary character and is addressed at a broad readership in physics, computer science, chemistry, and electrical engineering. It is written by the world-leading experts in pertinent fields such as quantum computing, atomic, molecular and optical physics, condensed matter physics, and statistical physics.

  15. The influence of entanglement and decoherence on the quantum Stackelberg duopoly game

    International Nuclear Information System (INIS)

    Zhu Xia; Kuang, L-M

    2007-01-01

    In this paper, we investigate the influence of entanglement and decoherence on the quantum Stackelberg duopoly (QSD) game. It is shown that the first-mover advantage can be weakened or enhanced due to the existence of entanglement for the QSD game without decoherence. The influence of decoherence induced by the amplitude damping and the phase damping are explicitly studied in the formalism of Kraus operator representations. We show that the amplitude damping drastically changes the Nash equilibrium of the QSD game and the profits of the two players while the phase damping does not affect the Nash equilibrium and the profits of the two players. It is found that under certain conditions there exists a 'critical point' of the damping parameter for the amplitude damping environment. At the 'critical point' the two players have the same moves and payoffs. The QSD game can change from the first-mover advantage game into the follower-mover advantage game when the damping parameter varies from the left-hand-side regime of the 'critical point' to the right-hand-side regime

  16. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    International Nuclear Information System (INIS)

    Chang Yan; Zhang Shi-Bin; Yan Li-Li; Han Gui-Hua

    2015-01-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0′〉 state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0′〉. By using the |0′〉 state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping–pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. (paper)

  17. Decoherence of Flux Qubits Coupled to Electronic Circuits

    NARCIS (Netherlands)

    Wilhelm, F.K.; Storcz, M.J.; van der Wal, C.H.; Harmans, C.J.P.M.; Mooij, J.E.

    2003-01-01

    On the way to solid-state quantum computing, overcoming decoherence is the central issue. In this contribution, we discuss the modeling of decoherence of a superonducting flux qubit coupled to dissipative electronic circuitry. We discuss its impact on single qubit decoherence rates and on the

  18. Decoherence control in different environments

    International Nuclear Information System (INIS)

    Paavola, J.; Maniscalco, S.

    2010-01-01

    We investigate two techniques for controlling decoherence, focusing on the crucial role played by the environmental spectrum. We show how environments with different spectra lead to very different dynamical behaviors. Our study clearly proves that such differences must be taken into account when designing decoherence control schemes. The two techniques we consider are reservoir engineering and quantum Zeno control. We focus on a quantum harmonic oscillator initially prepared in a nonclassical state and derive analytically its non-Markovian dynamics in the presence of different bosonic thermal environments. On the one hand, we show how, by modifying the spectrum of the environment, it is possible to prolong or reduce the life of a Schroedinger cat state. On the other hand, we study the effect of nonselective energy measurements on the degradation of quantumness of initial Fock states. In this latter case, we see that the crossover between quantum Zeno and anti-Zeno effects, discussed by Maniscalco et al. [Phys. Rev. Lett. 97, 130402 (2006)], is highly sensitive to the details of the spectrum. In particular, for certain types of spectra, even very small variations of the system frequency may cause a measurement-induced acceleration of decoherence rather than its inhibition.

  19. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  20. The measurement problem in quantum mechanics: approximation to the phenomenon of decoherence by operational identities

    International Nuclear Information System (INIS)

    Usera, J.I.

    1996-01-01

    An approach based on bits and pieces of standard wisdom plus and operational quantum mechanical identity deduced by the author is presented here in order to convey arguments concerning the quantum theory of measurement and which betray a flavor against completive claims for quantum mechanics. Special emphasis is put on the phenomenon of decoherence. This phenomenon (which is experimentally verifiable) finds natural room within the formalism while the wave function collapse (which is not) is precluded. (Author)

  1. Probabilities in quantum cosmological models: A decoherent histories analysis using a complex potential

    International Nuclear Information System (INIS)

    Halliwell, J. J.

    2009-01-01

    In the quantization of simple cosmological models (minisuperspace models) described by the Wheeler-DeWitt equation, an important step is the construction, from the wave function, of a probability distribution answering various questions of physical interest, such as the probability of the system entering a given region of configuration space at any stage in its entire history. A standard but heuristic procedure is to use the flux of (components of) the wave function in a WKB approximation. This gives sensible semiclassical results but lacks an underlying operator formalism. In this paper, we address the issue of constructing probability distributions linked to the Wheeler-DeWitt equation using the decoherent histories approach to quantum theory. The key step is the construction of class operators characterizing questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival time problem in nonrelativistic quantum mechanics, we show that the appropriate class operators in quantum cosmology are readily constructed using a complex potential. The class operator for not entering a region of configuration space is given by the S matrix for scattering off a complex potential localized in that region. We thus derive the class operators for entering one or more regions in configuration space. The class operators commute with the Hamiltonian, have a sensible classical limit, and are closely related to an intersection number operator. The definitions of class operators given here handle the key case in which the underlying classical system has multiple crossings of the boundaries of the regions of interest. We show that oscillatory WKB solutions to the Wheeler-DeWitt equation give approximate decoherence of histories, as do superpositions of WKB solutions, as long as the regions of configuration space are sufficiently large. The corresponding probabilities coincide, in a semiclassical approximation, with standard heuristic procedures

  2. Quantum decoherence in electronic current flowing through carbon nanotubes induced by thermal atomic vibrations

    Science.gov (United States)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2018-06-01

    We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.

  3. Symposium on Decoherence and No-Signalling : Current Interpretational Problems of Quantum Theory

    CERN Document Server

    Wüthrich, Adrian; New vistas on old problems : recent approaches to the foundations of quantum mechanics

    2017-01-01

    Quantum theory has been a subject of interpretational debates ever since its inception. The Einstein-Podolsky-Rosen paradox, the empirical violation of Bell's inequalities, and recent activities to exploit quantum entanglement for technological innovation only exacerbate a long-standing philosophical debate. Despite no-signaling theorems and theories of decoherence, deep- rooted conflicts between special relativistic principles and observed quantum correlations as well as between definite measurement outcomes and quantum theoretical superpositions persist. This collection of papers, first presented at an international symposium at the University of Bern in 2011, highlights some recent approaches to the old problems of a philosophy of quantum mechanics. The authors address the issues from a variety of perspectives, ranging from variations of causal theory and system theoretic interpretations of the observer to an empirical test of whether entanglement itself can be entangled. The essays demonstrate that the di...

  4. Phonon-assisted relaxation and decoherence of singlet-triplet qubits in Si/SiGe quantum dots

    Directory of Open Access Journals (Sweden)

    Viktoriia Kornich

    2018-05-01

    Full Text Available We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.

  5. Enhancement of geometric phase by frustration of decoherence: A Parrondo-like effect

    Science.gov (United States)

    Banerjee, Subhashish; Chandrashekar, C. M.; Pati, Arun K.

    2013-04-01

    Geometric phase plays an important role in evolution of pure or mixed quantum states. However, when a system undergoes decoherence the development of geometric phase may be inhibited. Here we show that when a quantum system interacts with two competing environments there can be enhancement of geometric phase. This effect is akin to a Parrondo-like effect on the geometric phase which results from quantum frustration of decoherence. Our result suggests that the mechanism of two competing decoherence can be useful in fault-tolerant holonomic quantum computation.

  6. Decoherence recuperating fast environmental dynamics

    International Nuclear Information System (INIS)

    Cetinbas, Murat

    2010-01-01

    We examine the exact internal decoherence dynamics of a qubit in an isolated Josephson charge-qubit quantum computer in the presence of one- and two-body static internal imperfections. By help of open system dynamics quantifiers, i.e. purity, fidelity, covariance and Loschmidt echo, we distinguish between non-unitary and unitary components of internal decoherence dynamics and show that the non-unitary component consists of two processes: system-environment entanglement and incoherence. Our results indicate that the incoherence process is the major source of internal decoherence rather than system-environment entanglement. We find that strong one-body intra-environmental interactions, which generate fast environmental dynamics, result in a rapid suppression of decoherence induced by both system-environment entanglement and incoherence processes. We explain the mechanisms of suppression of decoherence for these two processes and discuss our results.

  7. Photon Subtraction by Many-Body Decoherence

    DEFF Research Database (Denmark)

    Murray, C. R.; Mirgorodskiy, I.; Tresp, C.

    2018-01-01

    We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple...... stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how...... this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability....

  8. Suppressing decoherence by preparing the environment

    International Nuclear Information System (INIS)

    Landon-Cardinal, Olivier; MacKenzie, Richard

    2013-01-01

    To protect a quantum system from decoherence due to interaction with its environment, we investigate the existence of initial states of the environment allowing for decoherence-free evolution of the system. For a class of models in which a two-state system and a dynamical environment interact through a Hamiltonian restricted to be a tensor product, we prove that such states exist if and only if the interaction and self-evolution Hamiltonians of the environment share an eigenstate. If decoherence by state preparation is not possible, we show that initial states minimizing decoherence result from a delicate compromise between the environment and interaction dynamics

  9. Continuous quantum error correction for non-Markovian decoherence

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Brun, Todd A.

    2007-01-01

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximately follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics

  10. Measuring and slowing decoherence in Electromagnetically induced transparency medium

    International Nuclear Information System (INIS)

    Shuker, M.; Firstenberg, O.; Sagi, Y.; Ben-Kish, A.; Fisher, A.; Ron, A.; Davidson, N.

    2005-01-01

    Full Text:Electromagnetically induced transparency is a unique light-matter interaction that exhibits extremely narrow-band spectroscopic features along with low absorption. Recent interest in this phenomenon is driven by its possible applications in quantum information (slow light, storage of light), atomic clocks and precise magnetometers. The Electromagnetically induced transparency phenomenon takes place when an atomic ensemble is driven to a coherent superposition of its ground state sub-levels by two phase-coherent radiation fields. A key parameter of the Electromagnetically induced transparency medium, that limits its applicability, is the coherence lifetime of this superposition (decoherence rate). We have developed a simple technique to measure decay rates within the ground state of an atomic ensemble, and specifically the decoherence rate of the Electromagnetically induced transparency coherent superposition. Detailed measurements were performed in a Rubidium vapor cell at 60 - 80 with 30 Torr of Neon buffer gas. We have found that the Electromagnetically induced transparency decoherence is dominated by spin-exchange collisions between Rubidium atoms. We discuss the sensitivity of various quantum states of the atomic ensemble to spin exchange decoherence, and find a set of quantum states that minimize this effect. Finally, we demonstrate a unique quantum state which is both insensitive to spin exchange decoherence and constitutes an Electromagnetically induced transparency state of the medium

  11. The effect of large decoherence on mixing time in continuous-time quantum walks on long-range interacting cycles

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, S; Radgohar, R, E-mail: shsalimi@uok.ac.i, E-mail: r.radgohar@uok.ac.i [Faculty of Science, Department of Physics, University of Kurdistan, Pasdaran Ave, Sanandaj (Iran, Islamic Republic of)

    2010-01-28

    In this paper, we consider decoherence in continuous-time quantum walks on long-range interacting cycles (LRICs), which are the extensions of the cycle graphs. For this purpose, we use Gurvitz's model and assume that every node is monitored by the corresponding point-contact induced by the decoherence process. Then, we focus on large rates of decoherence and calculate the probability distribution analytically and obtain the lower and upper bounds of the mixing time. Our results prove that the mixing time is proportional to the rate of decoherence and the inverse of the square of the distance parameter (m). This shows that the mixing time decreases with increasing range of interaction. Also, what we obtain for m = 0 is in agreement with Fedichkin, Solenov and Tamon's results [48] for cycle, and we see that the mixing time of CTQWs on cycle improves with adding interacting edges.

  12. Decoherence and infrared divergence

    Indian Academy of Sciences (India)

    and of quantum field theory provides only a few superselection rules, the most ... have been successfully used to construct heat bath models [5], and for ..... [11] J Kupsch, in Decoherence: theoretical, experimental, and conceptual problems.

  13. Energy barrier to decoherence

    International Nuclear Information System (INIS)

    Mizel, Ari; Mitchell, M. W.; Cohen, Marvin L.

    2001-01-01

    We propose a ground-state approach to realizing quantum computers. This scheme is time-independent and inherently defends against decoherence by possessing an energy barrier to excitation. We prove that our time-independent qubits can perform the same algorithms as their time-dependent counterparts. Advantages and disadvantages of the time-independent approach are described. A model involving quantum dots is provided for illustration

  14. The Birth and Death of Redundancy in Decoherence and Quantum Darwinism

    Science.gov (United States)

    Riedel, Charles; Zurek, Wojciech; Zwolak, Michael

    2012-02-01

    Understanding the quantum-classical transition and the identification of a preferred classical domain through quantum Darwinism is based on recognizing high-redundancy states as both ubiquitous and exceptional. They are produced ubiquitously during decoherence, as has been demonstrated by the recent identification of very general conditions under which high-redundancy states develop. They are exceptional in that high-redundancy states occupy a very narrow corner of the global Hilbert space; states selected at random are overwelming likely to exhibit zero redundancy. In this letter, we examine the conditions and time scales for the transition from high-redundancy states to zero-redundancy states in many-body dynamics. We identify sufficient condition for the development of redundancy from product states and show that the destruction of redundancy can be accomplished even with highly constrained interactions.

  15. Observing the Progressive Decoherence of the open-quote open-quote Meter close-quote close-quote in a Quantum Measurement

    International Nuclear Information System (INIS)

    Brune, M.; Hagley, E.; Dreyer, J.; Maitre, X.; Maali, A.; Wunderlich, C.; Raimond, J.M.; Haroche, S.

    1996-01-01

    A mesoscopic superposition of quantum states involving radiation fields with classically distinct phases was created and its progressive decoherence observed. The experiment involved Rydberg atoms interacting one at a time with a few photon coherent fields trapped in a high Q microwave cavity. The mesoscopic superposition was the equivalent of an open-quote open-quote atom+measuringapparatus close-quote close-quote system in which the open-quote open-quote meter close-quote close-quote was pointing simultaneously towards two different directions emdash a open-quote open-quote Schroedinger cat.close-quote close-quote The decoherence phenomenon transforming this superposition into a statistical mixture was observed while it unfolded, providing a direct insight into a process at the heart of quantum measurement. copyright 1996 The American Physical Society

  16. Decoherence of Topological Qubit in Linear Motions: Decoherence Impedance, Anti-Unruh and Information Backflow

    Science.gov (United States)

    Liu, Pei-Hua; Lin, Feng-Li

    2017-08-01

    In this work we study the decoherence of topological qubits in linear motions. The topological qubit is made of two spatially-separated Majorana zero modes which are the edge excitations of Kitaev chain [1]. In a previous work [2], it was shown by one of us and his collaborators that the decoherence of topological qubit is exactly solvable, moreover, topological qubit is robust against decoherence in the super-Ohmic environments. We extend the setup of [2] to consider the effect of motions on the decoherence of the topological qubits. Our results show the thermalization as expected by Unruh effect. Besides, we also find the so-called “anti-Unruh” phenomena which shows the rate of decoherence is anti-correlated with the acceleration in short-time scale. Moreover, we modulate the motion patterns of each Majorana modes and find information backflow and the preservation of coherence even with nonzero accelerations. This is the characteristics of the underlying non-Markovian reduced dynamics. We conclude that he topological qubit is in general more robust against decoherence than the usual qubits, and can be take into serious consideration for realistic implementation to have robust quantum computation and communication. This talk is based on our work in [3].

  17. Photoinduced localization and decoherence in inversion symmetric molecules

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Burkhard, E-mail: langer@gpta.de [Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany); Ueda, Kiyoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Al-Dossary, Omar M. [Physics Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Becker, Uwe [Physics Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2011-04-15

    Coherence of particles in form of matter waves is one of the basic properties of nature which distinguishes classical from quantum behavior. This is a direct consequence of the particle-wave dualism. It is the wave-like nature, which gives rise to coherence, whereas particle-like behavior results from decoherence. If two quantum objects are coherently coupled with respect to a particular variable, even over long distances, one speaks of entanglement. The study of entanglement is nowadays one of the most exciting research fields in physics with enormous impact on the most innovative development in information technology, the development of a future quantum computer. The loss of coherence by decoherence processes may occur due to momentum kicks or thermal heating. In this paper we report on a further decoherence process which occurs in dissociating inversion symmetric molecules due to the superposition of orthogonal symmetry states in the excitation along with freezing of the electron tunneling process afterwards.

  18. Principles of control for decoherence-free subsystems.

    Science.gov (United States)

    Cappellaro, P; Hodges, J S; Havel, T F; Cory, D G

    2006-07-28

    Decoherence-free subsystems (DFSs) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem theoretically exist, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFSs. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two physical qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.

  19. Quantifying decoherence in continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, A [Dipartimento di Fisica ' ER Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, Gruppo Collegato Salerno, Via S Allende, 84081 Baronissi, SA (Italy); Paris, M G A [Dipartimento di Fisica and INFM, Universita di Milano, Milan (Italy); Illuminati, F [Dipartimento di Fisica ' ER Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, Gruppo Collegato Salerno, Via S Allende, 84081 Baronissi, SA (Italy); De Siena, S [Dipartimento di Fisica ' ER Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, Gruppo Collegato Salerno, Via S Allende, 84081 Baronissi, SA (Italy)

    2005-04-01

    We present a detailed report on the decoherence of quantum states of continuous variable systems under the action of a quantum optical master equation resulting from the interaction with general Gaussian uncorrelated environments. The rate of decoherence is quantified by relating it to the decay rates of various, complementary measures of the quantum nature of a state, such as the purity, some non-classicality indicators in phase space, and, for two-mode states, entanglement measures and total correlations between the modes. Different sets of physically relevant initial configurations are considered, including one- and two-mode Gaussian states, number states, and coherent superpositions. Our analysis shows that, generally, the use of initially squeezed configurations does not help to preserve the coherence of Gaussian states, whereas it can be effective in protecting coherent superpositions of both number states and Gaussian wavepackets. (review article)

  20. Quantifying decoherence in continuous variable systems

    International Nuclear Information System (INIS)

    Serafini, A; Paris, M G A; Illuminati, F; De Siena, S

    2005-01-01

    We present a detailed report on the decoherence of quantum states of continuous variable systems under the action of a quantum optical master equation resulting from the interaction with general Gaussian uncorrelated environments. The rate of decoherence is quantified by relating it to the decay rates of various, complementary measures of the quantum nature of a state, such as the purity, some non-classicality indicators in phase space, and, for two-mode states, entanglement measures and total correlations between the modes. Different sets of physically relevant initial configurations are considered, including one- and two-mode Gaussian states, number states, and coherent superpositions. Our analysis shows that, generally, the use of initially squeezed configurations does not help to preserve the coherence of Gaussian states, whereas it can be effective in protecting coherent superpositions of both number states and Gaussian wavepackets. (review article)

  1. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka

    2013-01-01

    We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods...

  2. A simple necessary decoherence condition for a set of histories

    International Nuclear Information System (INIS)

    Scherer, Artur; Soklakov, Andrei N.; Schack, Ruediger

    2004-01-01

    Within the decoherent histories formulation of quantum mechanics, we investigate necessary conditions for decoherence of arbitrarily long histories. We prove that fine-grained histories of arbitrary length decohere for all classical initial states if and only if the unitary evolution preserves classicality of states (using a natural formal definition of classicality). We give a counterexample showing that this equivalence does not hold for coarse-grained histories

  3. The Measurement Problem: Decoherence and Convivial Solipsism

    Science.gov (United States)

    Zwirn, Hervé

    2016-06-01

    The problem of measurement is often considered an inconsistency inside the quantum formalism. Many attempts to solve (or to dissolve) it have been made since the inception of quantum mechanics. The form of these attempts depends on the philosophical position that their authors endorse. I will review some of them and analyze their relevance. The phenomenon of decoherence is often presented as a solution lying inside the pure quantum formalism and not demanding any particular philosophical assumption. Nevertheless, a widely debated question is to decide between two different interpretations. The first one is to consider that the decoherence process has the effect to actually project a superposed state into one of its classically interpretable component, hence doing the same job as the reduction postulate. For the second one, decoherence is only a way to show why no macroscopic superposed state can be observed, so explaining the classical appearance of the macroscopic world, while the quantum entanglement between the system, the apparatus and the environment never disappears. In this case, explaining why only one single definite outcome is observed remains to do. In this paper, I examine the arguments that have been given for and against both interpretations and defend a new position, the "Convivial Solipsism", according to which the outcome that is observed is relative to the observer, different but in close parallel to the Everett's interpretation and sharing also some similarities with Rovelli's relational interpretation and Quantum Bayesianism. I also show how "Convivial Solipsism" can help getting a new standpoint about the EPR paradox providing a way out of the seemingly unavoidable non-locality of quantum mechanics.

  4. Dynamical decoherence control of multi-partite systems

    International Nuclear Information System (INIS)

    Gordon, Goren

    2009-01-01

    A unified theory is given of dynamically modified decay and decoherence of field-driven multipartite systems. When this universal framework is applied to two-level systems or qubits experiencing either amplitude or phase noise due to their coupling to a thermal bath, it results in completely analogous formulae for the modified decoherence rates in both cases. The spectral representation of the modified decoherence rates underscores the main insight derived from this approach, namely, that the decoherence rate is the spectral overlap of the noise and modulation spectra. This allows us to come up with general recipes for modulation schemes for the optimal reduction of decoherence under realistic constraints. An extension of the treatment to multilevel and multipartite systems exploits intra-system symmetries to dynamically protect multipartite entangled states. Another corollary of this treatment is that entanglement, which is very susceptible to noise and can die, i.e., vanish at finite times, can be resuscitated by appropriate modulations prescribed by our universal formalism. This dynamical decoherence control is also shown to be advantageous in quantum computation setups, where control fields are applied concurrently with the gate operations to increase the gate fidelity. (phd tutorial)

  5. Spontaneous decoherence of coupled harmonic oscillators confined in a ring

    Science.gov (United States)

    Gong, ZhiRui; Zhang, ZhenWei; Xu, DaZhi; Zhao, Nan; Sun, ChangPu

    2018-04-01

    We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of freedoms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions. In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to degrade even without applying an external symmetry-breaking field or surrounding environment.

  6. Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin

    International Nuclear Information System (INIS)

    Ermann, Leonardo; Paz, Juan Pablo; Saraceno, Marcos

    2006-01-01

    We study the differences between the processes of decoherence induced by chaotic and regular environments. For this we analyze a family of simple models that contain both regular and chaotic environments. In all cases the system of interest is a ''quantum walker,'' i.e., a quantum particle that can move on a lattice with a finite number of sites. The walker interacts with an environment which has a D-dimensional Hilbert space. The results we obtain suggest that regular and chaotic environments are not distinguishable from each other in a (short) time scale t*, which scales with the dimensionality of the environment as t*∝log 2 (D). However, chaotic environments continue to be effective over exponentially longer time scales while regular environments tend to reach saturation much sooner. We present both numerical and analytical results supporting this conclusion. The family of chaotic evolutions we consider includes the so-called quantum multibaker map as a particular case

  7. One-way gates based on EPR, GHZ and decoherence-free states of W class

    International Nuclear Information System (INIS)

    Basharov, A.M.; Gorbachev, V.N.; Trubilko, A.I.; Yakovleva, E.S.

    2009-01-01

    The logical gates using quantum measurement as a primitive of quantum computation are considered. It is found that these gates achieved with EPR, GHZ and W entangled states have the same structure, allow encoding the classical information into states of quantum system and can perform any calculations. A particular case of decoherence-free W states is discussed as in this very case the logical gate is decoherence-free.

  8. Decoherence patterns of topological qubits from Majorana modes

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Chao, Sung-Po; Chou, Chung-Hsien; Lin, Feng-Li

    2014-01-01

    We investigate the decoherence patterns of topological qubits in contact with the environment using a novel way of deriving the open system dynamics, rather than using the Feynman–Vernon approach. Each topological qubit is made up of two Majorana modes of a 1D Kitaev chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of topological qubits which are weakly coupled to fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the case for non-topological qubits—which always decohere completely in all Ohmic-like environments—topological qubits decohere completely in Ohmic and sub-Ohmic environments but not in super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits, though they cannot prevent the qubit states from exhibiting decoherence in sub-Ohmic environments, can prevent thermalization turning the state into a Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments, and the time dependence of concurrence for two topological qubits. (paper)

  9. Teleportation of the one-qubit state in decoherence environments

    Energy Technology Data Exchange (ETDEWEB)

    Hu Mingliang, E-mail: mingliang0301@xupt.edu.cn, E-mail: mingliang0301@163.com [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710061 (China)

    2011-01-28

    We study standard quantum teleportation of a one-qubit state for the situation in which the channel is subject to decoherence, and where the evolution of the channel state is ruled by a master equation in the Lindblad form. A detailed calculation reveals that the quality of teleportation is determined by both the entanglement and the purity of the channel state, and only the optimal matching of them ensures the highest fidelity of standard quantum teleportation. Also our results demonstrated that the decoherence induces distortion of the Bloch sphere for the output state with different rates in different directions, which implies that different input states will be teleported with different fidelities.

  10. How decoherence affects the probability of slow-roll eternal inflation

    Science.gov (United States)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2017-07-01

    Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables—expectation values with respect to the different decohered branches of the wave function—and show that the evolution of modes on individual branches varies from branch to branch. Thus, single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.

  11. Sub-exponential spin-boson decoherence in a finite bath

    International Nuclear Information System (INIS)

    Wong, V.; Gruebele, M.

    2002-01-01

    We investigate the decoherence of a two-level system coupled to harmonic baths of 4-21 degrees of freedom, to baths with internal anharmonic couplings, and to baths with an additional 'solvent shell' (modes coupled to other bath modes, but not to the system). The discrete spectral densities are chosen to mimic the highly fluctuating spectral densities computed for real systems such as proteins. System decoherence is computed by exact quantum dynamics. With realistic parameter choices (finite temperature, reasonably large couplings), sub-exponential decoherence of the two-level system is observed. Empirically, the time-dependence of decoherence can be fitted by power laws with small exponents. Intrabath anharmonic couplings are more effective at smoothing the spectral density and restoring exponential dynamics, than additional bath modes or solvent shells. We conclude that at high temperature, the most important physical basis for exponential decays is anharmonicity of those few bath modes interacting most strongly with the system, not a large number of oscillators interacting with the system. We relate the current numerical simulations to models of anharmonically coupled oscillators, which also predict power law dynamics. The potential utility of power law decays in quantum computation and condensed phase coherent control are also discussed

  12. Decoherence approach to energy transfer and work done by slowly driven systems

    Science.gov (United States)

    Wang, Wen-ge

    2018-01-01

    A main problem, which is met when computing the energy transfer of or work done by a quantum system, comes from the fact that the system may lie in states with coherence in its energy eigenstates. As is well known, when the so-called environment-induced decoherence has happened with respect to a preferred basis given by the energy basis, no coherence exists among the energy basis and the energy change of the system can be computed in a definite way. I argue that one may make use of this property, in the search for an appropriate definition of quantum work for a total system that does not include any measuring apparatus. To show how this idea may work, in this paper, I study decoherence properties of a generic slowly driven system, which is weakly coupled to a huge environment whose main body is a complex quantum system. It is shown that decoherence may generically happen for such a system.

  13. Decoherence for a quantum memory in an ensemble of cold atoms

    International Nuclear Information System (INIS)

    Riedmatten, H. de; Chou, C.W.; Felinto, D.; Plyakov, S.; Kimble, H.J.

    2005-01-01

    Full text: Atomic ensembles are a promising candidate for various applications in quantum information science. In particular, Duan, Lukin Cirac and Zoller (DLCZ) have proposed a protocol allowing scalable long distance quantum communication using atomic ensembles and linear optics. The DLCZ protocol is a probabilistic scheme based upon the entanglement of atomic ensembles via the detection of single photons. The detection of a single photon in the forward scattered direction is uniquely correlated with a collective atomic excitation in the sample, due to a collective enhancement effect. This collective excitation can be in principle stored for a time up to the coherence time of the system, and then released by conversion into a photon. This quantum memory is mandatory for the DLCZ scheme to be scalable. Hence, the coherence time is a critical parameter for this system. Our initial steps towards the realization of the DLCZ protocol have been by way of observations of non-classical correlations between the emitted single photons and the collective atomic excitations. However, in all the experiments reported so far using cold atomic ensembles, the coherence times were extremely short (of the order of 100 ns), thus preventing to take advantage of the quantum memory. In this contribution we explore the cause of this rather fast decoherence process and present an experimental scheme to overcome this problem. First results show an improvement of more than one order of magnitude in the coherence time. Future work includes the entanglement of two spatially separated cold atomic ensembles. (author)

  14. Entanglement Evolution of Three-Qubit States under Local Decoherence

    International Nuclear Information System (INIS)

    Ma Xiaosan; Liu Gaosheng; Wang Anmin

    2010-01-01

    By using negativity as entanglement measure, we have investigated the effect of local decoherence from a non-Markovian environment on the time evolution of entanglement of three-qubit states including the GHZ state, the W state, and the Werner state. From the results, we find that the entanglement dynamics depends not only on the coupling strengths but also on the specific states of concern. Specifically, the entanglement takes different behaviors under weak or strong coupling and it varies with the quantum states under study. The entanglement of the GHZ state and the Werner state can be destroyed completely by the local decoherence, while the entanglement of the W state can survive through the local decoherence partially. (general)

  15. Quantum Darwinism in Quantum Brownian Motion

    Science.gov (United States)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2008-12-01

    Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  16. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments

    Science.gov (United States)

    Iotti, Rita Claudia; Rossi, Fausto

    2017-12-01

    Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment - employed to derive quantum-kinetic equations - in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime - typical of many state-of-the-art quantum devices - their impact is strongly reduced.

  17. Multiparticle entanglement under the influence of decoherence

    NARCIS (Netherlands)

    Gühne, O.; Bodoky, F.; Blaauboer, M.

    2008-01-01

    We present a method to determine the decay of multiparticle quantum correlations as quantified by the geometric measure of entanglement under the influence of decoherence. With this, we compare the robustness of entanglement in Greenberger-Horne-Zeilinger (GHZ), cluster, W, and Dicke states of four

  18. Cooperative spin decoherence and population transfer

    International Nuclear Information System (INIS)

    Genes, C.; Berman, P. R.

    2006-01-01

    An ensemble of multilevel atoms is a good candidate for a quantum information storage device. The information is encrypted in the collective ground state atomic coherence, which, in the absence of external excitation, is decoupled from the vacuum and therefore decoherence free. However, in the process of manipulation of atoms with light pulses (writing, reading), one inadvertently introduces a coupling to the environment, i.e., a source of decoherence. The dissipation process is often treated as an independent process for each atom in the ensemble, an approach which fails at large atomic optical depths where cooperative effects must be taken into account. In this paper, the cooperative behavior of spin decoherence and population transfer for a system of two, driven multilevel atoms is studied. Not surprisingly, an enhancement in the decoherence rate is found, when the atoms are separated by a distance that is small compared to an optical wavelength; however, it is found that this rate increases even further for somewhat larger separations for atoms aligned along the direction of the driving field's propagation vector. A treatment of the cooperative modification of optical pumping rates and an effect of polarization swapping between atoms is also discussed, lending additional insight into the origin of the collective decay

  19. Lessons on electronic decoherence in molecules from exact modeling

    Science.gov (United States)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  20. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  1. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems; Nicht-Markovsche Dynamik, Dekohaerenz und Verschraenkung in dissipativen Quantensystemen mit Anwendung in der Quanteninformationstheorie von Systemen kontinuierlicher Variablen

    Energy Technology Data Exchange (ETDEWEB)

    Hoerhammer, C.

    2007-11-26

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  2. Decoherence-full subsystems and the cryptographic power of a private shared reference frame

    International Nuclear Information System (INIS)

    Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W.

    2004-01-01

    We show that private shared reference frames can be used to perform private quantum and private classical communication over a public quantum channel. Such frames constitute a type of private shared correlation, distinct from private classical keys or shared entanglement, useful for cryptography. We present optimally efficient schemes for private quantum and classical communication given a finite number of qubits transmitted over an insecure channel and given a private shared Cartesian frame and/or a private shared reference ordering of the qubits. We show that in this context, it is useful to introduce the concept of a decoherence-full subsystem, wherein every state is mapped to the completely mixed state under the action of the decoherence

  3. Relevance of induced gauge interactions in decoherence

    International Nuclear Information System (INIS)

    Datta, D.P.

    1994-07-01

    Decoherence in quantum cosmology is shown to occur naturally in the presence of induced geometric gauge interactions associated with particle production. A new ''gauge'' - variant form of the semiclassical Einstein equations is also presented which makes the non-gravitating character of the vacuum polarization energy explicit. (author). 20 refs

  4. Quantum quincunx in cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Sanders, Barry C.; Bartlett, Stephen D.; Tregenna, Ben; Knight, Peter L.

    2003-01-01

    We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to Galton's quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical studies of quantum walks over orthogonal lattice states, we introduce quantum walks over nonorthogonal lattice states (specifically, coherent states on a circle) to demonstrate that the key features of a quantum walk are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a remarkable decrease in the position noise, or spread, with increasing decoherence

  5. Universal mechanisms of decoherence of qubit states in a SQUID

    Science.gov (United States)

    Kuklov, A. B.; Chudnovsky, E. M.

    2003-03-01

    Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations of the superconducting current in a SQUID [1]. The very fact that the current flows with respect to the ion lattice is shown to result in a decoherence via emission of the transverse sound at the oscillation frequency. For SQUIDs larger than the wavelength of the phonons, this effect can significantly limit the quality factor. The decohering effects of the external mechanical and magnetic noise are shown to be proportional to the total magnetic moment of the SQUID, making small SQUIDs less susceptible to the noise than large SQUIDs. Decoherence due to the emission of photons into the open space and in the presence of the metal shielding has been studied as well. Suggestions of experimental setups with low decoherence have been made. [1] E. M. Chudnovsky and A. B. Kuklov, arXiv:cond-mat/0211246.

  6. Unveiling the decoherence effect of noise on the entropic uncertainty relation and its control by partially collapsed operations

    Science.gov (United States)

    Chen, Min-Nan; Sun, Wen-Yang; Huang, Ai-Jun; Ming, Fei; Wang, Dong; Ye, Liu

    2018-01-01

    In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under open systems, and how to steer the uncertainty under different types of decoherence. Specifically, we develop the dynamical behaviors of the uncertainty of interest under two typical categories of noise; bit flipping and depolarizing channels. It has been shown that the measurement uncertainty firstly increases and then decreases with the growth of the decoherence strength in bit flipping channels. In contrast, the uncertainty monotonically increases with the increase of the decoherence strength in depolarizing channels. Notably, and to a large degree, it is shown that the uncertainty depends on both the systematic quantum correlation and the minimal conditional entropy of the observed subsystem. Moreover, we present a possible physical interpretation for these distinctive behaviors of the uncertainty within such scenarios. Furthermore, we propose a simple and effective strategy to reduce the entropic uncertainty by means of a partially collapsed operation—quantum weak measurement. Therefore, our investigations might offer an insight into the dynamics of the measurment uncertainty under decoherence, and be of importance to quantum precision measurement in open systems.

  7. The rise and fall of redundancy in decoherence and quantum Darwinism

    Science.gov (United States)

    Jess Riedel, C.; Zurek, Wojciech H.; Zwolak, Michael

    2012-08-01

    A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality—the fact that multiple observers can agree on the state of a subsystem after measuring just a small fraction of its environment—implies that the correlations found in nature between macroscopic systems and their environments are exceptional. Building on previous studies of quantum Darwinism showing that highly redundant branching states are produced ubiquitously during pure decoherence, we examine the conditions needed for the creation of branching states and study their demise through many-body interactions. We show that even constrained dynamics can suppress redundancy to the values typical of random states on relaxation timescales, and prove that these results hold exactly in the thermodynamic limit.

  8. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    Science.gov (United States)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  9. Dynamics of entanglement under decoherence in noninertial frames

    International Nuclear Information System (INIS)

    Shi Jia-Dong; Wu Tao; Song Xue-Ke; Ye Liu

    2014-01-01

    In this paper, we investigate the entanglement dynamics of a two-qubit entangled state coupled with its noisy environment, and plan to utilize weak measurement and quantum reversal measurement to study the entanglement dynamics under different decoherence channels in noninertial frames. Through the calculations and analyses, it is shown that the weak measurement can prevent entanglement from coupling to the amplitude damping channel, while the system is under the phase damping and flip channels. This protection protocol cannot prevent entanglement but will accelerate the death of entanglement. In addition, if the system is in the noninertial reference frame, then the effect of weak measurement will be weakened for the amplitude damping channel. Nevertheless, for other decoherence channels, the Unruh effect does not affect the quantum weak measurement, the only exception is that the maximum value of entanglement is reduced to √2/2 of the original value in the inertial frames. (general)

  10. Exciton-plasmon quantum metastates: self-induced oscillations of plasmon fields in the absence of decoherence in nanoparticle molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, S. M., E-mail: seyed.sadeghi@uah.edu [University of Alabama in Huntsville, Department of Physics and Nano and Mirco Device Center (United States)

    2016-02-15

    We investigate formation of unique quantum states (metastates) in quantum dot-metallic nanoparticle systems via self-induced coherent dynamics generated by interaction of these systems with a visible and an infrared laser fields. In such metastates, the quantum decoherence rates of the quantum dots can become zero and even negative while they start to rapidly change with time. Under these conditions, the energy dissipation rates and plasmon fields of the nanoparticle systems undergo undamped oscillations with gigahertz frequency, while the amplitudes of both visible and the infrared laser fields are considered to be time-independent. These dynamics also lead to variation of the plasmon absorption of the metallic nanoparticles between high and nearly zero values, forming electromagnetically induced transparency oscillations. We show that under these conditions, the effective transition energies and broadening of the quantum dots undergo oscillatory dynamics, highlighting the unique aspects of the metastates. These results extend the horizon for investigation of light-matter interaction in the presence of zero or negative polarization dephasing rates with strong time dependency.

  11. On reduction of the wave-packet, decoherence, irreversibility and the second law of thermodynamics

    International Nuclear Information System (INIS)

    Narnhofer, H.; Wreszinski, W.F.

    2014-01-01

    We prove a quantum version of the second law of thermodynamics: the (quantum) Boltzmann entropy increases if the initial (zero time) density matrix decoheres, a condition generally satisfied in Nature. It is illustrated by a model of wave-packet reduction, the Coleman–Hepp model, along the framework introduced by Sewell (2005) in his approach to the quantum measurement problem. Further models illustrate the monotonic-versus-non-monotonic behavior of the quantum Boltzmann entropy in time. As a last closely related topic, decoherence, which was shown by Narnhofer and Thirring (1999) to enforce macroscopic purity in the case of quantum K systems, is analyzed within a different class of quantum chaotic systems, viz. the quantum Anosov models as defined by Emch, Narnhofer, Sewell and Thirring (1994). A review of the concept of quantum Boltzmann entropy, as well as of some of the rigorous approaches to the quantum measurement problem within the framework of Schrödinger dynamics, is given, together with an overview of the C* algebra approach, which encompasses the relevant notions and definitions in a comprehensive way

  12. Quantum speed limits for Bell-diagonal states

    International Nuclear Information System (INIS)

    Han Wei; Jiang Ke-Xia; Zhang Ying-Jie; Xia Yun-Jie

    2015-01-01

    The lower bounds of the evolution time between two distinguishable states of a system, defined as quantum speed limit time, can characterize the maximal speed of quantum computers and communication channels. We study the quantum speed limit time between the composite quantum states and their target states in the presence of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exact expressions of the quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating the quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical decoherence to quantum decoherence. (paper)

  13. Decoherence and back reaction: The origin of the semiclassical Einstein equations

    International Nuclear Information System (INIS)

    Paz, J.P.; Sinha, S.

    1991-01-01

    Two basic properties defining classical behavior are ''decoherence'' and ''correlations between coordinates and momenta.'' We study how the correlations that define the semiclassical decohering histories of the relevant cosmological variables are affected by the interaction with an environment formed by unobserved (''irrelevant'') degrees of freedom. For some quantum cosmological models we analyze under what conditions the semiclassical coarse-grained histories obey the so-called semiclassical Einstein's equations (i.e., G μν =κ left-angle T μν right-angle). These equations are shown to be valid only as a description of adiabatic regions of histories for which the interference effects have been suppressed. We also discuss the problem related to the existence of divergences in the decoherence factor of various quantum cosmological models

  14. Life in an energy eigenstate: Decoherent histories analysis of a model timeless universe

    International Nuclear Information System (INIS)

    Halliwell, J.J.; Thorwart, J.

    2002-01-01

    Inspired by quantum cosmology, in which the wave function of the universe is annihilated by the total Hamiltonian, we consider the internal dynamics of a simple particle system in an energy eigenstate. Such a system does not possess a uniquely defined time parameter, and all physical questions about it must be posed without reference to time. We consider in particular the following question: what is the probability that the system's trajectory passes through a set of regions of configuration space without reference to time? We first consider the classical case, where the answer has a variety of forms in terms of a phase-space probability distribution function. We then consider the quantum case, and we analyze this question using the decoherent histories approach to quantum theory, adapted to questions which do not involve time. When the histories are decoherent, the probabilities approximately coincide with the classical case, with the phase-space probability distribution replaced by the Wigner function of the quantum state. For some initial states, decoherence requires an environment, and we compute the required influence functional and examine some of its properties. Special attention is given to the inner product used in the construction (the induced or Rieffel inner product), the construction of class operators describing the histories, and the extent to which reparametrization invariance is respected. Our results indicate that simple systems without an explicit time parameter may be quantized using the decoherent histories approach, with the expected classical limit extracted. The results support, for simple models, the usual heuristic proposals for the probability distribution function associated with a semiclassical wave function satisfying the Wheeler-DeWitt equation

  15. Quantum dissipation and decoherence of collective excitations in metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Weick, G.

    2006-09-22

    The treatment of the surface plasmon as a quantum particle provides a model system for the study of decoherence and quantum dissipation in confined nanoscopic systems, where the role of the electronic correlations is preponderant. Throughout this work we treat the metallic nanoparticle in the jellium approximation where the ionic structure is replaced by a continuous and homogeneous positive charge. The external laser field puts the center of mass into a coherent superposition of its ground and first excited state and thus creates a surface plasmon. The coupling between the center of mass and the relative coordinates causes decoherence and dissipation of this collective excitation. We have developed a theoretical formalism well adapted to the study of this dissipation, which is the reduced-density-matrix formalism. There are mainly two parameters which govern the surface plasmon dynamics: the decay rate of the plasmon, and the resonance frequency. For sizes smaller than 1 nm, presents oscillations as a function of the size. By means of a semiclassical formalism using Gutzwiller's trace formula for the density of states, we have shown that those oscillations are due to the correlations of the density of states of the particles and holes in the nanoparticle. If one considers a noble-metal nanoparticle in an inert matrix, we have shown that a naive application of the Kubo formula for the surface plasmon linewidth fails to reproduce the TDLDA numerical results, which are however consistent with experimental results. We have modified the Kubo theory in order to solve this discrepancy. We have shown, by extending our semiclassical theory to the nonlinear case, that the double plasmon is indeed well defined. We have calculated the lifetime of the double plasmon associated to this second-order effect. In addition to the width, we have also addressed the value of the resonance frequency. The classical electromagnetic Mie theory gives for the resonance frequency of the

  16. Controllable Subspaces of Open Quantum Dynamical Systems

    International Nuclear Information System (INIS)

    Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi

    2008-01-01

    This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.

  17. Invariant class operators in the decoherent histories analysis of timeless quantum theories

    International Nuclear Information System (INIS)

    Halliwell, J. J.; Wallden, P.

    2006-01-01

    The decoherent histories approach to quantum theory is applied to a class of reparametrization-invariant models whose state is an energy eigenstate. A key step in this approach is the construction of class operators characterizing the questions of physical interest, such as the probability of the system entering a given region of configuration space without regard to time. In nonrelativistic quantum mechanics these class operators are given by time-ordered products of projection operators. But in reparametrization-invariant models, where there is no time, the construction of the class operators is more complicated, the main difficulty being to find operators which commute with the Hamiltonian constraint (and so respect the invariance of the theory). Here, inspired by classical considerations, we put forward a proposal for the construction of such class operators for a class of reparametrization-invariant systems. They consist of continuous infinite temporal products of Heisenberg picture projection operators. We investigate the consequences of this proposal in a number of simple models and also compare with the evolving constants method. The formalism developed here is ultimately aimed at cosmological models described by a Wheeler-DeWitt equation, but the specific features of such models are left to future papers

  18. Noisy quantum game

    International Nuclear Information System (INIS)

    Chen Jingling; Kwek, L.C.; Oh, C.H.

    2002-01-01

    In a recent paper [D. A. Meyer, Phys. Rev. Lett. 82, 1052 (1999)], it has been shown that a classical zero-sum strategic game can become a winning quantum game for the player with a quantum device. Nevertheless, it is well known that quantum systems easily decohere in noisy environments. In this paper, we show that if the handicapped player with classical means can delay his action for a sufficiently long time, the quantum version reverts to the classical zero-sum game under decoherence

  19. Dissipation and decoherence in Brownian motion

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, Bruno [Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, Via Archirafi, 36, 90123 Palermo (Italy); Barnett, Stephen M [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2007-05-15

    We consider the evolution of a Brownian particle described by a measurement-based master equation. We derive the solution to this equation for general initial conditions and apply it to a Gaussian initial state. We analyse the effects of the diffusive terms, present in the master equation, and describe how these modify uncertainties and coherence length. This allows us to model dissipation and decoherence in quantum Brownian motion.

  20. Quantum information processing beyond ten ion-qubits

    International Nuclear Information System (INIS)

    Monz, T.

    2011-01-01

    Successful processing of quantum information is, to a large degree, based on two aspects: a) the implementation of high-fidelity quantum gates, as well as b) avoiding or suppressing decoherence processes that destroy quantum information. The presented work shows our progress in the field of experimental quantum information processing over the last years: the implementation and characterisation of several quantum operations, amongst others the first realisation of the quantum Toffoli gate in an ion-trap based quantum computer. The creation of entangled states with up to 14 qubits serves as basis for investigations of decoherence processes. Based on the realised quantum operations as well as the knowledge about dominant noise processes in the employed apparatus, entanglement swapping as well as quantum operations within a decoherence-free subspace are demonstrated. (author) [de

  1. Random unitary operations and quantum Darwinism

    International Nuclear Information System (INIS)

    Balaneskovic, Nenad

    2016-01-01

    We study the behavior of Quantum Darwinism (Zurek, Nature Physics 5, 181-188 (2009)) within the iterative, random unitary operations qubit-model of pure decoherence (Novotn'y et al, New Jour. Phys. 13, 053052 (2011)). We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system from the point of view of its environment, is not a generic phenomenon, but depends on the specific form of initial states and on the type of system-environment interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial initial states of environment that allow to store information about an open system of interest and its pointer-basis with maximal efficiency. Furthermore, we investigate the behavior of Quantum Darwinism after introducing dissipation into the iterative random unitary qubit model with pure decoherence in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)) and reconstruct the corresponding dissipative attractor space. We conclude that in Zurek's qubit model Quantum Darwinism depends on the order in which pure decoherence and dissipation act upon an initial state of the entire system. We show explicitly that introducing dissipation into the random unitary evolution model in general suppresses Quantum Darwinism (regardless of the order in which decoherence and dissipation are applied) for all positive non-zero values of the dissipation strength parameter, even for those initial state configurations which, in Zurek's qubit model and in the random unitary model with pure decoherence, would lead to Quantum Darwinism. Finally, we discuss what happens with Quantum Darwinism after introducing into the iterative random unitary qubit model with pure decoherence (asymmetric) dissipation and dephasing, again in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)), and reconstruct the corresponding

  2. Spin entanglement, decoherence and Bohm's EPR paradox.

    Science.gov (United States)

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  3. Decoherence dynamics of a charge qubit coupled to the noise bath

    International Nuclear Information System (INIS)

    Yang Qin-Ying; Liang Bao-Long; Wang Ji-Suo

    2013-01-01

    By virtue of the canonical quantization method, we present a quantization scheme for a charge qubit based on the superconducting quantum interference device (SQUID), taking the self-inductance of the loop into account. Under reasonable short-time approximation, we study the effect of decoherence in the ohmic case by employing the response function and the norm. It is confirmed that the decoherence time, which depends on the parameters of the circuit components, the coupling strength, and the temperature, can be as low as several picoseconds, so there is enough time to record the information

  4. Theory of decoherence in Bose-Einstein condensate interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, B J [ARC Centre for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia)

    2007-05-15

    A full treatment of decoherence and dephasing effects in BEC interferometry has been developed based on using quantum correlation functions for treating interferometric effects. The BEC is described via a phase space distribution functional of the Wigner type for the condensate modes and the positive P type for the non-condensate modes. Ito equations for stochastic condensate and non-condensate field functions replace the functional Fokker-Planck equation for the distribution functional and stochastic averages of field function products determine the quantum correlation functions.

  5. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  6. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    International Nuclear Information System (INIS)

    Thiel, C W; Macfarlane, R M; Cone, R L; Sun, Y; Böttger, T; Sinclair, N; Tittel, W

    2014-01-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3 H 6 to 3 H 4 optical transition of three thulium-doped crystals, Tm 3+ :YAG, Tm 3+ :LiNbO 3 and Tm 3+ :YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm 3+ :YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material. (paper)

  7. Decoherence and discrete symmetries in deformed relativistic kinematics

    Science.gov (United States)

    Arzano, Michele

    2018-01-01

    Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.

  8. Decoherence can relax cosmic acceleration

    International Nuclear Information System (INIS)

    Markkanen, Tommi

    2016-01-01

    In this work we investigate the semi-classical backreaction for a quantised conformal scalar field and classical vacuum energy. In contrast to the usual approximation of a closed system, our analysis includes an environmental sector such that a quantum-to-classical transition can take place. We show that when the system decoheres into a mixed state with particle number as the classical observable de Sitter space is destabilized, which is observable as a gradually decreasing Hubble rate. In particular we show that at late times this mechanism can drive the curvature of the Universe to zero and has an interpretation as the decay of the vacuum energy demonstrating that quantum effects can be relevant for the fate of the Universe.

  9. Decoherence can relax cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom)

    2016-11-11

    In this work we investigate the semi-classical backreaction for a quantised conformal scalar field and classical vacuum energy. In contrast to the usual approximation of a closed system, our analysis includes an environmental sector such that a quantum-to-classical transition can take place. We show that when the system decoheres into a mixed state with particle number as the classical observable de Sitter space is destabilized, which is observable as a gradually decreasing Hubble rate. In particular we show that at late times this mechanism can drive the curvature of the Universe to zero and has an interpretation as the decay of the vacuum energy demonstrating that quantum effects can be relevant for the fate of the Universe.

  10. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  11. Quantum information processing in nanostructures

    International Nuclear Information System (INIS)

    Reina Estupinan, John-Henry

    2002-01-01

    that several hundred single quantum bit rotations and controlled-NOT gates could be performed before decoherence of the excitonic states takes place. In addition, the exciton coherent dynamics of a coupled QD system confined within a semiconductor single mode microcavity is reported. It is shown that this system enables the control of exciton entanglement by varying the coupling strength between the optically-driven dot system and the microcavity. The exciton entanglement shows collapses and revivals for suitable amplitudes of the incident radiation field and dot-cavity coupling strengths. The results given here could offer a new approach for the control of decoherence mechanisms arising from entangled 'artificial molecules'. In addition to these ultrafast coherent optical control proposals, an approach for reliable implementation of quantum logic gates and long decoherence times in a QD system based on nuclear magnetic resonance (NMR) is given, where the nuclear resonance is controlled by the ground state 'magic number' transitions of few-electron QDs in an external magnetic field. The dynamical evolution of quantum registers of arbitrary length in the presence of environmentally-induced decoherence effects is studied in detail. The cases of quantum bits (qubits) coupling individually to different environments ('independent decoherence'), and qubits interacting collectively with the same reservoir ('collective decoherence') are analysed in order to find explicit decoherence functions for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: this sensitivity is a characteristic of both types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour--'recoherence'-- is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. The results lead to the

  12. Decoherence from a spin chain with Dzyaloshinskii—Moriya interaction

    International Nuclear Information System (INIS)

    Yan Yi-Ying; Qin Li-Guo; Tian Li-Jun

    2012-01-01

    We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky—Moriya interaction. In the case of a two-qubit with an initial pure state, quantum correlations decay to zero at the critical point of the environment in a very short time. In the case of a two-qubit with initial mixed state, it is found that quantum discord may get maximized due to the quantum critical behavior of the environment, while entanglement vanishes under the same condition. Besides, we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment. The effects of Dzyaloshinsky—Moriya interaction on quantum correlations are considered in the two cases. The decay of quantum correlations is always strengthened by Dzyaloshinsky—Moriya interaction

  13. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    ..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...

  14. Measurement and control of a mechanical oscillator at its thermal decoherence rate

    OpenAIRE

    Wilson, D. J.; Sudhir, V.; Piro, N.; Schilling, R.; Ghadimi, A.; Kippenberg, T. J.

    2014-01-01

    In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen highly successful applications in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. By contrast, the ability to stabilize the quantum state of a tangibly massive object, such as a nanomechanical oscillator, remains a difficult challenge: The main obstacle is environmental decoherence, which places s...

  15. A Perron-Frobenius Type of Theorem for Quantum Operations

    Science.gov (United States)

    Lagro, Matthew; Yang, Wei-Shih; Xiong, Sheng

    2017-10-01

    We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron-Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength 0 ≤ p ≤ 1. We obtain a quantum ergodic theorem for partially decoherent processes. We show that for 0 < p ≤ 1, the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.

  16. Decoherence and Landau-Damping

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  17. The quantum Levy walk

    International Nuclear Information System (INIS)

    Caceres, Manuel O; Nizama, Marco

    2010-01-01

    We introduce the quantum Levy walk to study transport and decoherence in a quantum random model. We have derived from second-order perturbation theory the quantum master equation for a Levy-like particle that moves along a lattice through scale-free hopping while interacting with a thermal bath of oscillators. The general evolution of the quantum Levy particle has been solved for different preparations of the system. We examine the evolution of the quantum purity, the localized correlation and the probability to be in a lattice site, all of them leading to important conclusions concerning quantum irreversibility and decoherence features. We prove that the quantum thermal mean-square displacement is finite under a constraint that is different when compared to the classical Weierstrass random walk. We prove that when the mean-square displacement is infinite the density of state has a complex null-set inside the Brillouin zone. We show the existence of a critical behavior in the continuous eigenenergy which is related to its non-differentiability and self-affine characteristics. In general, our approach allows us to study analytically quantum fluctuations and decoherence in a long-range hopping model.

  18. The essentials of quantum mechanics

    International Nuclear Information System (INIS)

    Omnes, R.

    2006-09-01

    This book is an introduction to quantum mechanics, the author explains the foundation, interpretation and today limits of this science. The consequences of quantum concepts are reviewed through the lens of recent experimental data. In that way, issues like wave-particle duality, uncertainty principle, decoherence, relationship with classical mechanics or the unicity of reality, issues that were difficult to grasp before, appear now clearer. The book has been divided into 8 chapters: 1) possibility and chance, 2) quantum formalism, 3) fundamental quantum concepts, 4) how to deal with quantum mechanics, 5) decoherence theory, 6) the quantum logic system, 7) the emergence of classical physics, and 8) quantum measurements. (A.C.)

  19. Spin geometry of entangled qubits under bilocal decoherence modes

    International Nuclear Information System (INIS)

    Durstberger, Katharina

    2008-01-01

    The Lindblad generators of the master equation define which kind of decoherence happens in an open quantum system. We are working with a two qubit system and choose the generators to be projection operators on the eigenstates of the system and unitary bilocal rotations of them. The resulting decoherence modes are studied in detail. Besides the general solutions we investigate the special case of maximally entangled states-the Bell singlet states. The results are depicted in the so-called spin geometry picture which allows to illustrate the evolution of the (nonlocal) correlations stored in a certain state. The question for which conditions the path traced out in the geometric picture depends only on the relative angle between the bilocal rotations is addressed

  20. Quantum transition and decoherence of levitating polaron on helium film thickness under an electromagnetic field

    Science.gov (United States)

    Kenfack, S. C.; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.

    2017-12-01

    We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.

  1. A quantum CISC compiler and scalable assembler for quantum computing on large systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulte-Herbrueggen, Thomas; Spoerl, Andreas; Glaser, Steffen [Dept. Chemistry, Technical University of Munich (TUM), 85747 Garching (Germany)

    2008-07-01

    Using the cutting edge high-speed parallel cluster HLRB-II (with a total LINPACK performance of 63.3 TFlops/s) we present a quantum CISC compiler into time-optimised or decoherence-protected complex instruction sets. They comprise effective multi-qubit interactions with up to 10 qubits. We show how to assemble these medium-sized CISC-modules in a scalable way for quantum computation on large systems. Extending the toolbox of universal gates by optimised complex multi-qubit instruction sets paves the way to fight decoherence in realistic Markovian and non-Markovian settings. The advantage of quantum CISC compilation over standard RISC compilations into one- and two-qubit universal gates is demonstrated inter alia for the quantum Fourier transform (QFT) and for multiply-controlled NOT gates. The speed-up is up to factor of six thus giving significantly better performance under decoherence. - Implications for upper limits to time complexities are also derived.

  2. Intrinsic decoherence theory applied to single C{sub 60} solid state transistors: Robustness in the transmission regimen

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.C., E-mail: cflores@uta.cl

    2016-03-06

    In relation to a given Hamiltonian and intrinsic decoherence, there are subspaces for which coherence remains robust. Robustness can be classified by the parameter ratios (integer, rational or irrational numbers) defining each subspace. Of particular novelty in this work is application to the single-C{sub 60} transistor where coherence becomes robust in the tunnel transmission regime. In this case, the intrinsic-decoherence parameter defining the theory is explicitly evaluated in good agreement with experimental data. Many of these results are expected to hold for standard quantum dots and mesoscopic devices. - Highlights: • Intrinsic decoherence and transport (mesoscopic). • Robustness condition face to decoherence. • Application to the single C{sub 60} solid state transistor. • Parameter determination based on experiments. • Other cases of robustness.

  3. Atoms, cavities and ''Schroedinger's cats''. The monsters and wonders of quantum mechanics

    International Nuclear Information System (INIS)

    Raimond, J.M.

    1997-01-01

    The decoherence effect appears at the border between quantum world and macroscopic reality when the superposition of quantum states collapses into one particular state. This article deals with an experiment made to study for the first time the decoherence phenomenon. Circular Rydberg atoms of rubidium and superconducting cavity are the tools used to seize the very moment when the quantum superposition vanishes. This experimental proof of decoherence allows to perceive the limitations of the applications of quantum physics to fields such as quantum computing. This kind of experiment could be used to test other properties of quantum systems. (A.C.)

  4. Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring

    International Nuclear Information System (INIS)

    Everitt, M.J.; Clark, T.D.; Stiffell, P.B.; Prance, R.J.; Prance, H.; Vourdas, A.; Ralph, J.F.

    2004-01-01

    In this paper we explore the quantum behavior of a superconducting quantum-interference device (SQUID) ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring

  5. Macroscopic tunneling, decoherence and noise-induced activation

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Fernando C; Monteoliva, Diana; Villar, Paula I [Departamento de Fisica Juan Jose Giambiagi, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2007-05-15

    We study the effects of the environment at zero temperature on tunneling in an open system described by a static double-well potential. We show that the evolution of the system in an initial Schroedinger cat state, can be summarized in terms of three main physical phenomena, namely decoherence, quantum tunneling and noise-induced activation. Using large-scale numerical simulations, we obtain a detailed picture of the main stages of the evolution and of the relevant dynamical processes.

  6. Probing nonstandard decoherence effects with solar and KamLAND neutrinos

    International Nuclear Information System (INIS)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.

    2007-01-01

    It has been speculated that quantum-gravity might induce a foamy space-time structure at small scales, randomly perturbing the propagation phases of free-streaming particles (such as kaons, neutrons, or neutrinos). Particle interferometry might then reveal nonstandard decoherence effects, in addition to standard ones (due to, e.g., finite source size and detector resolution.) In this work we discuss the phenomenology of such nonstandard effects in the propagation of electron neutrinos in the Sun and in the long-baseline reactor experiment KamLAND, which jointly provide us with the best available probes of decoherence at neutrino energies E∼few MeV. In the solar neutrino case, by means of a perturbative approach, decoherence is shown to modify the standard (adiabatic) propagation in matter through a calculable damping factor. By assuming a power-law dependence of decoherence effects in the energy domain (E n with n=0, ±1, ±2), theoretical predictions for two-family neutrino mixing are compared with the data and discussed. We find that neither solar nor KamLAND data show evidence in favor of nonstandard decoherence effects, whose characteristic parameter γ 0 can thus be significantly constrained. In the ''Lorentz-invariant'' case n=-1, we obtain the upper limit γ 0 -26 GeV at 95% C.L. In the specific case n=-2, the constraints can also be interpreted as bounds on possible matter density fluctuations in the Sun, which we improve by a factor of ∼2 with respect to previous analyses

  7. Tuning quantum measurements to control chaos.

    Science.gov (United States)

    Eastman, Jessica K; Hope, Joseph J; Carvalho, André R R

    2017-03-20

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.

  8. Decoherence in qubits due to low-frequency noise

    International Nuclear Information System (INIS)

    Bergli, J; Galperin, Y M; Altshuler, B L

    2009-01-01

    The efficiency of the future devices for quantum information processing will be limited mostly by the finite decoherence rates of the qubits. Recently, substantial progress was achieved in enhancing the time within which a solid-state qubit demonstrates coherent dynamics. This progress is based mostly on a successful isolation of the qubits from external decoherence sources. Under these conditions, the material-inherent sources of noise start to play a crucial role. In most cases, the noise that the quantum device demonstrates has a 1/f spectrum. This suggests that the environment that destroys the phase coherence of the qubit can be thought of as a system of two-state fluctuators, which experience random hops between their states. In this short review, the current state of the theory of the decoherence due to the qubit interaction with the fluctuators is discussed. The effect of such an environment on two different protocols of the qubit manipulations, free induction and echo signal, is described. It turns out that in many important cases the noise produced by the fluctuators is non-Gaussian. Consequently, the results of the interaction of the qubit with the fluctuators are not determined by the pair correlation function alone. We describe the effect of the fluctuators using the so-called spin-fluctuator model. Being quite realistic, this model allows one to exactly evaluate the qubit dynamics in the presence of one fluctuator. This solution is found, and its features, including non-Gaussian effects, are analyzed in detail. We extend this consideration to systems of large numbers of fluctuators, which interact with the qubit and lead to the 1/f noise. We discuss existing experiments on the Josephson qubit manipulation and try to identify non-Gaussian behavior.

  9. The Tacit 'Quantum' of Meeting the Aesthetic Sign; Contextualize, Entangle, Superpose, Collapse or Decohere.

    Science.gov (United States)

    Broekaert, Jan

    2018-01-01

    The semantically ambiguous nature of the sign and aspects of non-classicality of elementary matter as described by quantum theory show remarkable coherent analogy. We focus on how the ambiguous nature of the image, text and art work bears functional resemblance to the dynamics of contextuality , entanglement , superposition , collapse and decoherence as these phenomena are known in quantum theory. These quantumlike properties in linguistic signs have previously been identified in formal descritions of e.g. concept combinations and mental lexicon representations and have been reported on in the literature. In this approach the informationalized, communicated, mediatized conceptual configuration-of e.g. the art work-in the personal reflected mind behaves like a quantum state function in a higher dimensional complex space, in which it is time and again contextually collapsed and further cognitively entangled (Aerts et al. in Found Sci 4:115-132, 1999; in Lect Notes Comput Sci 7620:36-47, 2012). The observer-consumer of signs becomes the empowered 'produmer' (Floridi in The philosophy of information, Oxford University Press, Oxford, 2011) creating the cognitive outcome of the interaction, while loosing most of any 'classical givenness' of the sign (Bal and Bryson in Art Bull 73:174-208, 1991). These quantum-like descriptions are now developed here in four example aesthetic signs; the installation Mist room by Ann Veronica Janssens (2010), the installation Sections of a happy moment by David Claerbout (2010), the photograph The Falling Man by Richard Drew (New York Times, p. 7, September 12, 2001) and the documentary Huicholes. The Last Peyote Guardians by Vilchez and Stefani (2014). Our present work develops further the use of a previously developed quantum model for concept representation in natural language. In our present approach of the aesthetic sign, we extend to individual -idiosyncratic-observer contexts instead of socially shared group contexts, and as such

  10. Quantum Two Player Game in Thermal Environment.

    Directory of Open Access Journals (Sweden)

    Jerzy Dajka

    Full Text Available A two-player quantum game is considered in the presence of thermal decoherence. It is shown how the thermal environment modeled in terms of rigorous Davies approach affects payoffs of the players. The conditions for either beneficial or pernicious effect of decoherence are identified. The general considerations are exemplified by the quantum version of Prisoner Dilemma.

  11. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  12. Nonadiabatic corrections to a quantum dot quantum computer

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 1. Nonadiabatic corrections to a quantum dot quantum computer working in adiabatic limit. M Ávila ... The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the ...

  13. Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles

    Science.gov (United States)

    Zhong, Changchun

    Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first

  14. Quantum information

    International Nuclear Information System (INIS)

    Kilin, Sergei Ya

    1999-01-01

    A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)

  15. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    1999-05-31

    A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)

  16. Entanglement, decoherence and thermal relaxation in exactly solvable models

    International Nuclear Information System (INIS)

    Lychkovskiy, Oleg

    2011-01-01

    Exactly solvable models provide an opportunity to study different aspects of reduced quantum dynamics in detail. We consider the reduced dynamics of a single spin in finite XX and XY spin 1/2 chains. First we introduce a general expression describing the evolution of the reduced density matrix. This expression proves to be tractable when the combined closed system (i.e. open system plus environment) is integrable. Then we focus on comparing decoherence and thermalization timescales in the XX chain. We find that for a single spin these timescales are comparable, in contrast to what should be expected for a macroscopic body. This indicates that the process of quantum relaxation of a system with few accessible states can not be separated in two distinct stages - decoherence and thermalization. Finally, we turn to finite-size effects in the time evolution of a single spin in the XY chain. We observe three consecutive stages of the evolution: regular evolution, partial revivals, irregular (apparently chaotic) evolution. The duration of the regular stage is proportional to the number of spins in the chain. We observe a 'quiet and cold period' in the end of the regular stage, which breaks up abruptly at some threshold time.

  17. Quantum computers and quantum computations

    International Nuclear Information System (INIS)

    Valiev, Kamil' A

    2005-01-01

    This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)

  18. Relating quantum discord with the quantum dense coding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song; Zhang, Chi [China University of Mining and Technology, School of Sciences (China); Ye, Bin [China University of Mining and Technology, School of Information and Electrical Engineering (China)

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  19. Relating quantum discord with the quantum dense coding capacity

    International Nuclear Information System (INIS)

    Wang, Xin; Qiu, Liang; Li, Song; Zhang, Chi; Ye, Bin

    2015-01-01

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained

  20. Coherence protection in coupled quantum systems

    Science.gov (United States)

    Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.

    2018-02-01

    The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.

  1. Electron-phonon interaction in quantum transport through quantum dots and molecular systems

    Science.gov (United States)

    Ojeda, J. H.; Duque, C. A.; Laroze, D.

    2016-12-01

    The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.

  2. Transmission Coefficients for Chemical Reactions with Multiple States: Role of Quantum Decoherence

    Czech Academy of Sciences Publication Activity Database

    de la Lande, A.; Řezáč, Jan; Lévy, B.; Sanders, B. C.; Salahub, D. R.

    2011-01-01

    Roč. 133, č. 11 (2011), s. 3883-3894 ISSN 0002-7863 Institutional research plan: CEZ:AV0Z40550506 Keywords : decoherence * transition state theory * nonadiabatic reactions Subject RIV: CC - Organic Chemistry Impact factor: 9.907, year: 2011

  3. Entanglement and decoherence in high energy physics

    International Nuclear Information System (INIS)

    Bertlmann, R.

    2005-01-01

    Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)

  4. Decoherence of coupled Josephson charge qubits due to partially correlated low-frequency noise

    International Nuclear Information System (INIS)

    Hu, Yong; Zhou, Zheng-Wei; Cai, Jian-Ming; Guo, Guang-Can

    2007-01-01

    Josephson charge qubits are promising candidates for scalable quantum computing. However, their performances are strongly degraded by decoherence due to low-frequency background noise, typically with a 1/f spectrum. In this paper, we investigate the decoherence process of two Cooper pair boxes (CPBs) coupled via a capacitor. Going beyond the common and uncorrelated noise models and the Bloch-Redfield formalism of previous works, we study the coupled system's quadratic dephasing under the condition of partially correlated noise sources. Based on reported experiments and generally accepted noise mechanisms, we introduce a reasonable assumption for the noise correlation, with which the calculation of multiqubit decoherence can be simplified to a problem on the single-qubit level. For the conventional Gaussian 1/f noise case, our results demonstrate that the quadratic dephasing rates are not very sensitive to the spatial correlation of the noises. Furthermore, we discuss the feasibility and efficiency of dynamical decoupling in the coupled CPBs

  5. Dissipation Assisted Quantum Memory with Coupled Spin Systems

    Science.gov (United States)

    Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail

    2009-05-01

    Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.

  6. Equilibration and thermalization in finite quantum systems

    International Nuclear Information System (INIS)

    Yukalov, V I

    2011-01-01

    Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned

  7. Decoherence in quantum mechanics and quantum cosmology

    Science.gov (United States)

    Hartle, James B.

    1992-01-01

    A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.

  8. Quasiparticle-induced decoherence of microscopic two-level-systems in superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Zanker, Sebastian; Weiss, Georg; Ustinov, Alexey V. [PHI, KIT, Karlsruhe (Germany); Marthaler, Michael; Schoen, Gerd [TFP, KIT, Karlsruhe (Germany)

    2016-07-01

    Parasitic Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Al/AlOx/Al Josephson junction. If the TLS transition frequency lies within the 6-10 GHz range, we can coherently drive it by resonant microwave pulses and access its quantum state by utilizing the strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles (QPs), which diffuse from the superconducting Al electrodes into the oxide layer, may give rise to TLS energy loss and dephasing. Here, we probe the TLS-QP interaction using a reliable method of in-situ QP injection via an on-chip dc-SQUID that is pulse-biased beyond its switching current. The QP density is calibrated by measuring associated characteristic changes to the qubit's energy relaxation rate. We will present experimental data which show the QP-induced TLS decoherence in good agreement to theoretical predictions.

  9. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy

    Science.gov (United States)

    Chen, Zilin; Beierle, Peter; Batelaan, Herman

    2018-04-01

    The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.

  10. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jia-Xing; Hu, Yuan; Jin, Yu [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); Zhang, Guo-Feng, E-mail: gf1978zhang@buaa.edu.cn [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Software Development Environment, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026 (China)

    2016-04-07

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.

  11. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    International Nuclear Information System (INIS)

    Clarke, M L

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism). (paper)

  12. The off-resonant aspects of decoherence and a critique of the two-level approximation

    International Nuclear Information System (INIS)

    Savran, Kerim; Hakioglu, T; Mese, E; Sevincli, Haldun

    2006-01-01

    Conditions in favour of a realistic multilevelled description of a decohering quantum system are examined. In this regard the first crucial observation is that the thermal effects, contrary to the conventional belief, play a minor role at low temperatures in the decoherence properties. The system-environment coupling and the environmental energy spectrum dominantly affect the decoherence. In particular, zero temperature quantum fluctuations or non-equilibrium sources can be present and influential on the decoherence rates in a wide energy range allowed by the spectrum of the environment. A crucial observation against the validity of the two-level approximation is that the decoherence rates are found to be dominated not by the long time resonant but the short time off-resonant processes. This observation is demonstrated in two stages. Firstly, our zero temperature numerical results reveal that the calculated short time decoherence rates are Gaussian-like (the time dependence of the density matrix is led by the second time derivative at t = 0). Exact analytical results are also permitted in the short time limit, which, consistent with our numerical results, reveal that this specific Gaussian-like behaviour is a property of the non-Markovian correlations in the environment. These Gaussian-like rates have no dependence on any spectral parameter (position and the width of the spectrum) except, in totality, the spectral area itself. The dependence on the spectral area is a power law. Furthermore, the Gaussian-like character at short times is independent of the number of levels (N), but the numerical value of the decoherence rates is a monotonic function of N. In this context, we demonstrate that leakage, as a characteristic multilevel effect, is dominated by the non-resonant processes. The long time behaviour of decoherence is also examined. Since our spectral model allows Markovian environmental correlations at long times, the decoherence rates in this regime become

  13. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  14. Dissipation and decoherence in quantum systems

    International Nuclear Information System (INIS)

    Menskii, Mikhail B

    2003-01-01

    The theory of dissipative quantum systems and its relation to the quantum theory of continuous measurements are reviewed. Constructing a correct theory of a dissipative quantum system requires that the system's interaction with its environment (reservoir) be taken into account. Since information about the system is 'recorded' in the state of the reservoir, the quantum theory of continuous measurements can be used to account for the influence of the reservoir. If based on the use of restricted path integrals, this theory does not require an explicit reservoir model and is therefore much simpler technically. (reviews of topical problems)

  15. The realism problem of quantum mechanics in view of the decoherence interpretation; Das Realismus-Problem der Quantenmechanik angesichts der Dekohaerenz-Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Messer, Joachim August

    2007-07-01

    Quantum mechanics in the conception, as it is today present, contains - what concerns its conceivable understanding and its interpretation - numerous paradoxa. The best known Copenhagen interpretation is critized and other interpretations, as the many-world interpretation and the modern, today mostly attended decoherence interpretation are put to this describingly on side. Axiomatic explanation attempts, like those from Mackey, Jauch, and Piron are analyzed and the measurement problem discussed from three ways of view: the introduction of a cut by Georg Suessmann, the scaling formalism from Klaus Hepp, and the philosophy from Bernulf Kanitschneider. Especially the critique given by Albert Einstein on the Bohr-Heisenberg Copenhagen interpretation and the completeness of a realistic quantum theory by the EPR thought experiment (called from Einstein, Podolsky, and Rosen) is more detailedly studied and extended to a holomorphic realism, in which the measurement quantities become visible as boundary values of a holomorphic function. This analytic continuation throws a new light on the body-soul parallelism, which exceeds the positions of Platon and Feigl. Beside the decoherence also the superselection rules, which are extensively discussed, are an example for a realistic state reduction - however the nonlocality of realistic quantum mechanics forces to a dualism of Higgs' symmetry breaking with local decoherence in the terrestrial laboratory. The position of a holomorphic barycentric realism is worked out by regress to the quantum field theory of Lehmann, Symanzik, and Zimmermann (LSZ) with its reduction formula. Quantum-cosmological implications, non-commutative geometry, K theory, and background field are also discussed. The newly designed knowledge theory of the holomorphic, barycentric realism - which in the classical limit goes over in a critical realism - forms also a bridge to a deepened humanism, which cannot be constructed from purely classical physics. As

  16. The realism problem of quantum mechanics in view of the decoherence interpretation; Das Realismus-Problem der Quantenmechanik angesichts der Dekohaerenz-Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Messer, Joachim August

    2007-07-01

    Quantum mechanics in the conception, as it is today present, contains - what concerns its conceivable understanding and its interpretation - numerous paradoxa. The best known Copenhagen interpretation is critized and other interpretations, as the many-world interpretation and the modern, today mostly attended decoherence interpretation are put to this describingly on side. Axiomatic explanation attempts, like those from Mackey, Jauch, and Piron are analyzed and the measurement problem discussed from three ways of view: the introduction of a cut by Georg Suessmann, the scaling formalism from Klaus Hepp, and the philosophy from Bernulf Kanitschneider. Especially the critique given by Albert Einstein on the Bohr-Heisenberg Copenhagen interpretation and the completeness of a realistic quantum theory by the EPR thought experiment (called from Einstein, Podolsky, and Rosen) is more detailedly studied and extended to a holomorphic realism, in which the measurement quantities become visible as boundary values of a holomorphic function. This analytic continuation throws a new light on the body-soul parallelism, which exceeds the positions of Platon and Feigl. Beside the decoherence also the superselection rules, which are extensively discussed, are an example for a realistic state reduction - however the nonlocality of realistic quantum mechanics forces to a dualism of Higgs' symmetry breaking with local decoherence in the terrestrial laboratory. The position of a holomorphic barycentric realism is worked out by regress to the quantum field theory of Lehmann, Symanzik, and Zimmermann (LSZ) with its reduction formula. Quantum-cosmological implications, non-commutative geometry, K theory, and background field are also discussed. The newly designed knowledge theory of the holomorphic, barycentric realism - which in the classical limit goes over in a critical realism - forms also a bridge to a deepened humanism, which cannot be constructed from purely classical physics. As

  17. A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED, the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.

  18. Jets in QCD Media: Onset of Color Decoherence

    International Nuclear Information System (INIS)

    Mehtar-Tani, Y.; Salgado, C.A.; Tywoniuk, K.

    2011-01-01

    We report on recent studies of the phenomenon of color decoherence of jets in QCD media. The effect is most clearly observed in the radiation pattern of a quark-antiquark antenna, created in the same quantum state, traversing a dense color deconfined plasma. Multiple scattering with the medium color charges gradually destroys the coherence of the antenna. In the limit of opaque media this ultimately leads to independent radiation off the antenna constituents. Accordingly, radiation off the total charge vanishes implying a memory loss effect induced by the medium. (authors)

  19. Decoherence, entanglement, and chaos in the Dicke model

    International Nuclear Information System (INIS)

    Hou Xiwen; Hu Bambi

    2004-01-01

    The dynamical properties of quantum entanglement in the Dicke model without rotating-wave approximation are investigated in terms of the reduced-density linear entropy. The characteristic time of decoherence process in the early-time evolution is numerically obtained and it is shown that the characteristic time decreases as the coupling parameter increases. The mean entanglement, which is defined to be averaged over time, is employed to describe the influences of both quantum phase transition and corresponding classical chaos on the behavior of entanglement. For a given energy, initial conditions are taken to be minimum uncertainty wave packets centered at regular and chaotic regions of the classical phase space. It is shown that the entanglement has a distinct change at the quantum phase transition, and that the entanglement for regular initial conditions is smaller than that for chaotic ones in the case of weak coupling, while it fluctuates with small amplitude in strong coupling and for chaotic initial conditions

  20. An environment-mediated quantum deleter

    International Nuclear Information System (INIS)

    Srikanth, R.; Banerjee, Subhashish

    2007-01-01

    Environment-induced decoherence presents a great challenge to realizing a quantum computer. We point out the somewhat surprising fact that decoherence can be useful, indeed necessary, for practical quantum computation, in particular, for the effective erasure of quantum memory in order to initialize the state of the quantum computer. The essential point behind the deleter is that the environment, by means of a dissipative interaction, furnishes a contractive map towards a pure state. We present a specific example of an amplitude damping channel provided by a two-level system's interaction with its environment in the weak Born-Markov approximation. This is contrasted with a purely dephasing, non-dissipative channel provided by a two-level system's interaction with its environment by means of a quantum nondemolition interaction. We point out that currently used state preparation techniques, for example using optical pumping, essentially perform as quantum deleters

  1. Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian

    2007-01-01

    By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.

  2. Noise effects in a three-player prisoner's dilemma quantum game

    International Nuclear Information System (INIS)

    Ramzan, M; Khan, M K

    2008-01-01

    We study the three-player prisoner's dilemma game under the effect of decoherence and correlated noise. It is seen that the quantum player is always better off than the classical players. It is also seen that the game's Nash equilibrium does not change in the presence of correlated noise in contradiction to the effect of decoherence in the multiplayer case. Furthermore, it is shown that for maximum correlation the game does not behave as a noiseless game and the quantum player is still better off for all values of the decoherence parameter p which is not possible in the two-player case. In addition, the payoffs reduction due to decoherence is controlled by the correlated noise throughout the course of the game

  3. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    Science.gov (United States)

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  4. The Rabi Oscillation in Subdynamic System for Quantum Computing

    Directory of Open Access Journals (Sweden)

    Bi Qiao

    2015-01-01

    Full Text Available A quantum computation for the Rabi oscillation based on quantum dots in the subdynamic system is presented. The working states of the original Rabi oscillation are transformed to the eigenvectors of subdynamic system. Then the dissipation and decoherence of the system are only shown in the change of the eigenvalues as phase errors since the eigenvectors are fixed. This allows both dissipation and decoherence controlling to be easier by only correcting relevant phase errors. This method can be extended to general quantum computation systems.

  5. Neutrino induced decoherence and variation in nuclear decay rates

    International Nuclear Information System (INIS)

    Singleton, Douglas; Inan, Nader; Chiao, Raymond Y.

    2015-01-01

    Recent work has proposed that the interaction between ordinary matter and a stochastic gravitational background can lead to the decoherence of large aggregates of ordinary matter. In this work we point out that these arguments can be carried over to a stochastic neutrino background but with the Planck scale of the gravitational decoherence replaced by the weak scale. This implies that it might be possible to observe such neutrino induced decoherence on a small, microscopic system rather than a macroscopic system as is the case for gravitationally induced decoherence. In particular we suggest that neutrino decoherence could be linked with observed variations in the decay rates of certain nuclei. Finally we point out that this proposed neutrino induced decoherence can be considered the complement of the Mikheev–Smirnov–Wolfenstein (MSW) effect. - Highlights: • Review of decoherence arguments for matter moving in a stochastic gravitational background. • Application of these decoherence arguments to neutrinos and the weak interaction scale. • Suggestions of a connection between neutrino decoherence and variable nuclear decay rates. • Connection of neutron decoherence as the inverse of the MSW effect

  6. Nonadiabatic corrections to a quantum dot quantum computer ...

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... corrections in it. If the decoherence times of a quantum dot computer are ∼100 ns [J M Kikkawa and D D Awschalom, Phys. Rev. Lett. 80, 4313 (1998)] then the predicted number of one qubit gate (primitive) operations of the Loss–DiVincenzo quantum computer in such an interval of time must be >1010.

  7. Classical Limit and Quantum Logic

    Science.gov (United States)

    Losada, Marcelo; Fortin, Sebastian; Holik, Federico

    2018-02-01

    The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.

  8. Loss of quantum coherence from discrete quantum gravity

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-01-01

    We show that a recent proposal for the quantization of gravity based on discrete spacetime implies a modification of standard quantum mechanics that naturally leads to a loss of coherence in quantum states of the type discussed by Milburn. The proposal overcomes the energy conservation problem of previously proposed decoherence mechanisms stemming from quantum gravity. Mesoscopic quantum systems (as Bose-Einstein condensates) appear as the most promising testing grounds for an experimental verification of the mechanism. (letter to the editor)

  9. Numerical simulation of information recovery in quantum computers

    International Nuclear Information System (INIS)

    Salas, P.J.; Sanz, A.L.

    2002-01-01

    Decoherence is the main problem to be solved before quantum computers can be built. To control decoherence, it is possible to use error correction methods, but these methods are themselves noisy quantum computation processes. In this work, we study the ability of Steane's and Shor's fault-tolerant recovering methods, as well as a modification of Steane's ancilla network, to correct errors in qubits. We test a way to measure correctly ancilla's fidelity for these methods, and state the possibility of carrying out an effective error correction through a noisy quantum channel, even using noisy error correction methods

  10. Quantum nature of edge magnetism in graphene.

    Science.gov (United States)

    Golor, Michael; Wessel, Stefan; Schmidt, Manuel J

    2014-01-31

    It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the width of a nanoribbon determines whether the edge magnetism is on the classical side, on the quantum side, or in between. In the classical regime, decoherence is dominant and leads to static spin polarizations at the ribbon edges, which are well described by mean-field theories. The quantum Zeno effect is identified as the basic mechanism which is responsible for the spin polarization and thereby enables the application of graphene in spintronics. On the quantum side, however, the spin polarization is destroyed by dynamical processes. The great tunability of graphene magnetism thus offers a viable route for the study of the quantum-classical crossover.

  11. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Entangled states decoherence in coupled molecular spin clusters

    Science.gov (United States)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  13. Quantum computing with incoherent resources and quantum jumps.

    Science.gov (United States)

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  14. Single-electron quantum tomography in quantum Hall edge channels

    International Nuclear Information System (INIS)

    Grenier, Ch; Degiovanni, P; Herve, R; Bocquillon, E; Parmentier, F D; Placais, B; Berroir, J M; Feve, G

    2011-01-01

    We propose a quantum tomography protocol to measure single-electron coherence in quantum Hall edge channels, and therefore access for the first time the wavefunction of single-electron excitations propagating in ballistic quantum conductors. Its implementation would open the way to quantitative studies of single-electron decoherence and would provide a quantitative tool for analyzing single- to few-electron sources. We show how this protocol could be implemented using ultrahigh-sensitivity noise measurement schemes.

  15. Effect of the time-dependent coupling on a superconducting qubit-field system under decoherence: Entanglement and Wehrl entropy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk [Mathematics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Berrada, K. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh (Saudi Arabia); Eleuch, H. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Department of Physics, Université de Montréal, 2900 boul. douard-Montpetit, Montreal, QC, H3T 1J4 (Canada)

    2015-10-15

    The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.

  16. New perspectives on phenomenological decoherence

    International Nuclear Information System (INIS)

    Melo, Fernando Vaz de; Guzzo, Marcelo Moraes; Peres, Orlando Luis Goulart

    2001-01-01

    Decoherence showed to be a powerful tool in helping to solve the atmospheric Neutrino problem. However a complete analysis was not yet done. In this work we present all the possibilities concerning phenomenological decoherence linked to Neutrino 'problem'. Its possibilities and differences are stressed out in a effort to clarify the whole phenomena. (author)

  17. Small-scale quantum information processing with linear optics

    International Nuclear Information System (INIS)

    Bergou, J.A.; Steinberg, A.M.; Mohseni, M.

    2005-01-01

    Full text: Photons are the ideal systems for carrying quantum information. Although performing large-scale quantum computation on optical systems is extremely demanding, non scalable linear-optics quantum information processing may prove essential as part of quantum communication networks. In addition efficient (scalable) linear-optical quantum computation proposal relies on the same optical elements. Here, by constructing multirail optical networks, we experimentally study two central problems in quantum information science, namely optimal discrimination between nonorthogonal quantum states, and controlling decoherence in quantum systems. Quantum mechanics forbids deterministic discrimination between nonorthogonal states. This is one of the central features of quantum cryptography, which leads to secure communications. Quantum state discrimination is an important primitive in quantum information processing, since it determines the limitations of a potential eavesdropper, and it has applications in quantum cloning and entanglement concentration. In this work, we experimentally implement generalized measurements in an optical system and demonstrate the first optimal unambiguous discrimination between three non-orthogonal states with a success rate of 55 %, to be compared with the 25 % maximum achievable using projective measurements. Furthermore, we present the first realization of unambiguous discrimination between a pure state and a nonorthogonal mixed state. In a separate experiment, we demonstrate how decoherence-free subspaces (DFSs) may be incorporated into a prototype optical quantum algorithm. Specifically, we present an optical realization of two-qubit Deutsch-Jozsa algorithm in presence of random noise. By introduction of localized turbulent airflow we produce a collective optical dephasing, leading to large error rates and demonstrate that using DFS encoding, the error rate in the presence of decoherence can be reduced from 35 % to essentially its pre

  18. Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence

    CERN Document Server

    Orszag, Miguel

    2016-01-01

    This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to...

  19. Ehrenfest dynamics is purity non-preserving: A necessary ingredient for decoherence

    International Nuclear Information System (INIS)

    Alonso, J. L.; Clemente-Gallardo, J.; Cuchí, J. C.

    2012-01-01

    We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)]. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along with the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamics makes a system with more than one classical trajectory, and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space D, and on the number of classical trajectories N of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.

  20. Effects of Ultrafast Molecular Rotation on Collisional Decoherence

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Hepburn, John W.; Milner, Valery

    2014-07-01

    Using an optical centrifuge to control molecular rotation in an extremely broad range of angular momenta, we study coherent rotational dynamics of nitrogen molecules in the presence of collisions. We cover the range of rotational quantum numbers between J=8 and J =66 at room temperature and study a crossover between the adiabatic and nonadiabatic regimes of rotational relaxation, which cannot be easily accessed by thermal means. We demonstrate that the rate of rotational decoherence changes by more than an order of magnitude in this range of J values and show that its dependence on J can be described by a simplified scaling law.

  1. Generalized shortcuts to adiabaticity and enhanced robustness against decoherence

    Science.gov (United States)

    Santos, Alan C.; Sarandy, Marcelo S.

    2018-01-01

    Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.

  2. Electrical control of single hole spins in nanowire quantum dots

    NARCIS (Netherlands)

    Pribiag, V.S.; Nadj-Perge, S.; Frolov, S.M.; Berg, J.W.G.; Weperen, van I.; Plissard, S.R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.

    2013-01-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits)1. Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable

  3. Experimental metaphysics2 : The double standard in the quantum-information approach to the foundations of quantum theory

    Science.gov (United States)

    Hagar, Amit

    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.

  4. Quantum-holographic and classical Hopfield-like associative nnets: implications for modeling two cognitive modes of consciousness

    Science.gov (United States)

    Rakovic, D.; Dugic, M.

    2005-05-01

    Quantum bases of consciousness are considered with psychosomatic implications of three front lines of psychosomatic medicine (hesychastic spirituality, holistic Eastern medicine, and symptomatic Western medicine), as well as cognitive implications of two modes of individual consciousness (quantum-coherent transitional and altered states, and classically reduced normal states) alongside with conditions of transformations of one mode into another (considering consciousness quantum-coherence/classical-decoherence acupuncture system/nervous system interaction, direct and reverse, with and without threshold limits, respectively) - by using theoretical methods of associative neural networks and quantum neural holography combined with quantum decoherence theory.

  5. Adiabatic Quantum Computing

    Science.gov (United States)

    Landahl, Andrew

    2012-10-01

    Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with

  6. Interpreting quantum coherence through a quantum measurement process

    Science.gov (United States)

    Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.

    2017-11-01

    Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.

  7. Group Theoretical Approach for Controlled Quantum Mechanical Systems

    National Research Council Canada - National Science Library

    Tarn, Tzyh-Jong

    2007-01-01

    The aim of this research is the study of controllability of quantum mechanical systems and feedback control of de-coherence in order to gain an insight on the structure of control of quantum systems...

  8. Transfer of an unknown quantum state, quantum networks, and memory

    International Nuclear Information System (INIS)

    Biswas, Asoka; Agarwal, G.S.

    2004-01-01

    We present a protocol for transfer of an unknown quantum state. The protocol is based on a two-mode cavity interacting dispersively in a sequential manner with three-level atoms in the Λ configuration. We propose a scheme for quantum networking using an atomic channel. We investigate the effect of cavity decoherence in the entire process. Further, we demonstrate the possibility of an efficient quantum memory for arbitrary superposition of two modes of a cavity containing one photon

  9. Mechanisms of relaxation and spin decoherence in nanomagnets

    Science.gov (United States)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  10. Decohering histories and open quantum systems

    International Nuclear Information System (INIS)

    Chisolm, Eric D

    2009-01-01

    I briefly review the 'decohering histories' or 'consistent histories' formulation of quantum theory, due to Griffiths, Omnes, and Gell-Mann and Hartle (and the subject of my graduate work with George Sudarshan). I also sift through the many meanings that have been attached to decohering histories, with an emphasis on the most basic one: Decoherence of appropriate histories is needed to establish that quantum mechanics has the correct classical limit. Then I will describe efforts to find physical mechanisms that do this. Since most work has focused on density matrix versions of decoherence, I'll consider the relation between the two formulations, which historically has not been straightforward. Finally, I'll suggest a line of research that would use recent results by Sudarshan to illuminate this aspect of the classical limit of quantum theory.

  11. Unbound states in quantum heterostructures

    Directory of Open Access Journals (Sweden)

    Ferreira R

    2006-01-01

    Full Text Available AbstractWe report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.

  12. Controlling open quantum systems: tools, achievements, and limitations

    International Nuclear Information System (INIS)

    Koch, Christiane P

    2016-01-01

    The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions. (topical review)

  13. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  14. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    Science.gov (United States)

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  15. Quantum dynamics characteristic and the flow of information for an open quantum system under relativistic motion

    Science.gov (United States)

    Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu

    2018-03-01

    In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.

  16. Quantum dynamics of spin qubits in optically active quantum dots

    International Nuclear Information System (INIS)

    Bechtold, Alexander

    2017-01-01

    The control of solid-state qubits for quantum information processing requires a detailed understanding of the mechanisms responsible for decoherence. During the past decade a considerable progress has been achieved for describing the qubit dynamics in relatively strong external magnetic fields. However, until now it has been impossible to experimentally test many theoretical predictions at very low magnetic fields and uncover mechanisms associated with reduced coherence times of spin qubits in solids. In particular, the role of the quadrupolar coupling of nuclear spins in this process is to date poorly understood. In the framework of this thesis, a spin memory device is utilized to optically prepare individual electron spin qubits in a single InGaAs quantum dot. After storages over timescales extending into the microsecond range the qubit��s state is read out to monitor the impact of the environment on it the spin dynamics. By performing such pump-probe experiments, the dominant electron spin decoherence mechanisms are identified in a wide range of external magnetic fields (0-5 T) and lattice temperatures of ∝10 K. The results presented in this thesis show that, without application of external magnetic fields the initially orientated electron spin rapidly loses its polarization due to precession around the fluctuating Overhauser field with a dispersion of 10.5 mT. The inhomogeneous dephasing time associated with these hyperfine mediated dynamics is of the order of T * 2 =2 ns. Over longer timescales, an unexpected stage of central spin relaxation is observed, namely the appearance of a second feature in the relaxation curve around T Q =750 ns. By comparison with theoretical simulations, this additional decoherence channel is shown to arise from coherent dynamics in the nuclear spin bath itself. Such coherent dynamics are induced by a quadrupolar coupling of the nuclear spins to the strain induced electric field gradients in the quantum dot. These processes

  17. Quantum erasers and probing classifications of entanglement via nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Teklemariam, G.; Fortunato, E.M.; Pravia, M.A.; Sharf, Y.; Havel, T.F.; Cory, D.G.; Bhattaharyya, A.; Hou, J.

    2002-01-01

    We report the implementation of two- and three-spin quantum erasers using nuclear magnetic resonance (NMR). Quantum erasers provide a means of manipulating quantum entanglement, an important resource for quantum information processing. Here, we first use a two-spin system to illustrate the essential features of quantum erasers. The extension to a three-spin 'disentanglement eraser' shows that entanglement in a subensemble can be recovered if a proper measurement of the ancillary system is carried out. Finally, we use the same pair of orthogonal decoherent operations used in quantum erasers to probe the two classes of entanglement in tripartite quantum systems: the Greenberger-Horne-Zeilinger state and the W state. A detailed presentation is given of the experimental decoherent control methods that emulate the loss of phase information in strong measurements, and the use of NMR decoupling techniques to implement partial trace operations

  18. Quantum theory of the classical: quantum jumps, Born's Rule and objective classical reality via quantum Darwinism.

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2018-07-13

    The emergence of the classical world from the quantum substrate of our Universe is a long-standing conundrum. In this paper, I describe three insights into the transition from quantum to classical that are based on the recognition of the role of the environment. I begin with the derivation of preferred sets of states that help to define what exists-our everyday classical reality. They emerge as a result of the breaking of the unitary symmetry of the Hilbert space which happens when the unitarity of quantum evolutions encounters nonlinearities inherent in the process of amplification-of replicating information. This derivation is accomplished without the usual tools of decoherence, and accounts for the appearance of quantum jumps and the emergence of preferred pointer states consistent with those obtained via environment-induced superselection, or einselection The pointer states obtained in this way determine what can happen-define events-without appealing to Born's Rule for probabilities. Therefore, p k =| ψ k | 2 can now be deduced from the entanglement-assisted invariance, or envariance -a symmetry of entangled quantum states. With probabilities at hand, one also gains new insights into the foundations of quantum statistical physics. Moreover, one can now analyse the information flows responsible for decoherence. These information flows explain how the perception of objective classical reality arises from the quantum substrate: the effective amplification that they represent accounts for the objective existence of the einselected states of macroscopic quantum systems through the redundancy of pointer state records in their environment-through quantum Darwinism This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  19. Super-activating Quantum Memory with Entanglement

    OpenAIRE

    Guan, Ji; Feng, Yuan; Ying, Mingsheng

    2017-01-01

    Noiseless subsystems were proved to be an efficient and faithful approach to preserve fragile information against decoherence in quantum information processing and quantum computation. They were employed to design a general (hybrid) quantum memory cell model that can store both quantum and classical information. In this Letter, we find an interesting new phenomenon that the purely classical memory cell can be super-activated to preserve quantum states, whereas the null memory cell can only be...

  20. Quantum correlation of high dimensional system in a dephasing environment

    Science.gov (United States)

    Ji, Yinghua; Ke, Qiang; Hu, Juju

    2018-05-01

    For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.

  1. Quantum computing and probability.

    Science.gov (United States)

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  2. Quantum computing and probability

    International Nuclear Information System (INIS)

    Ferry, David K

    2009-01-01

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction. (viewpoint)

  3. Quantum logic between remote quantum registers

    Science.gov (United States)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  4. Onset of color decoherence for soft gluon radiation in a medium

    Science.gov (United States)

    Mehtar-Tani, Y.; Salgado, C. A.; Tywoniuk, K.

    2011-12-01

    We report on recent studies of the phenomenon of color decoherence in jets in QCD media. The effect is most clearly observed in the radiation pattern of a quark-antiquark antenna, created in the same quantum state, traversing a dense color deconfined plasma. Multiple scattering with the medium color charges gradually destroys the coherence of the antenna. In the limit of opaque media, this ultimately leads to independent radiation off the antenna constituents. Accordingly, radiation off the total charge vanishes implying a memory loss effect induced by the medium.

  5. Decohering histories and open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Chisolm, Eric D, E-mail: echisolm@lanl.go [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-11-01

    I briefly review the 'decohering histories' or 'consistent histories' formulation of quantum theory, due to Griffiths, Omnes, and Gell-Mann and Hartle (and the subject of my graduate work with George Sudarshan). I also sift through the many meanings that have been attached to decohering histories, with an emphasis on the most basic one: Decoherence of appropriate histories is needed to establish that quantum mechanics has the correct classical limit. Then I will describe efforts to find physical mechanisms that do this. Since most work has focused on density matrix versions of decoherence, I'll consider the relation between the two formulations, which historically has not been straightforward. Finally, I'll suggest a line of research that would use recent results by Sudarshan to illuminate this aspect of the classical limit of quantum theory.

  6. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    Science.gov (United States)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  7. The case for biological quantum computer elements

    Science.gov (United States)

    Baer, Wolfgang; Pizzi, Rita

    2009-05-01

    An extension to vonNeumann's analysis of quantum theory suggests self-measurement is a fundamental process of Nature. By mapping the quantum computer to the brain architecture we will argue that the cognitive experience results from a measurement of a quantum memory maintained by biological entities. The insight provided by this mapping suggests quantum effects are not restricted to small atomic and nuclear phenomena but are an integral part of our own cognitive experience and further that the architecture of a quantum computer system parallels that of a conscious brain. We will then review the suggestions for biological quantum elements in basic neural structures and address the de-coherence objection by arguing for a self- measurement event model of Nature. We will argue that to first order approximation the universe is composed of isolated self-measurement events which guaranties coherence. Controlled de-coherence is treated as the input/output interactions between quantum elements of a quantum computer and the quantum memory maintained by biological entities cognizant of the quantum calculation results. Lastly we will present stem-cell based neuron experiments conducted by one of us with the aim of demonstrating the occurrence of quantum effects in living neural networks and discuss future research projects intended to reach this objective.

  8. Decoherence of histories and hydrodynamic equations for a linear oscillator chain

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    2003-01-01

    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities

  9. Quantum Computations: Fundamentals and Algorithms

    International Nuclear Information System (INIS)

    Duplij, S.A.; Shapoval, I.I.

    2007-01-01

    Basic concepts of quantum information theory, principles of quantum calculations and the possibility of creation on this basis unique on calculation power and functioning principle device, named quantum computer, are concerned. The main blocks of quantum logic, schemes of quantum calculations implementation, as well as some known today effective quantum algorithms, called to realize advantages of quantum calculations upon classical, are presented here. Among them special place is taken by Shor's algorithm of number factorization and Grover's algorithm of unsorted database search. Phenomena of decoherence, its influence on quantum computer stability and methods of quantum errors correction are described

  10. Quantum mechanics. A modern and concise introductory course. 2. rev. ed.

    International Nuclear Information System (INIS)

    Bes, D.R.

    2007-01-01

    Starting from basic principles, the book systematically covers both Heisenberg and Schroedinger realizations of quantum mechanics (in this order). The material traditionally presented in quantum textbooks is illustrated with applications which are (or will become) cornerstones of future technologies. The emphasis in the matrix formulation focus the attention on the spin, the most important quantum observable, and paves the way to chapters on quantum information (including crytography, teleportation and computation), on recent tests of quantum physics and on decoherence. Additions and changes found in the second edition include; a more friendly presentation to Hilbert spaces; more practical applications e.g. scanning tunneling microscope (potential barrier); quantum dots (single-particle states in semiconductors); lasers and masers (induced emission); real experiments that have recently provided a qualitative change in the foundations of quantum physics; and an outline of the density matrix formalism as applied to a simple model of decoherence. (orig.)

  11. Quantum games with correlated noise

    International Nuclear Information System (INIS)

    Nawaz, Ahmad; Toor, A H

    2006-01-01

    We analyse quantum games with correlated noise through a generalized quantization scheme. Four different combinations on the basis of entanglement of initial quantum state and the measurement basis are analysed. It is shown that the quantum player only enjoys an advantage over the classical player when both the initial quantum state and the measurement basis are in entangled form. Furthermore, it is shown that for maximum correlation the effects of decoherence diminish and it behaves as a noiseless game

  12. Quantum mechanics. A modern and concise introductory course. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Bes, Daniel R. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2012-07-01

    The presentation in the new edition of this well-reviewed textbook is clear and goes to the core of the questions. The balance between principles, concepts and applications is optimal. The material presented is touching active areas of physics. Supplies new views on decoherence, entanglement and path integral formulation of quantum mechanics. Gives background needed to understand quantum cryptography, teleportation and computation. Starting from basic principles, the book covers a wide variety of topics, ranging from Heisenberg, Schroedinger, second quantization, density matrix and path integral formulations of quantum mechanics, to applications that are (or will be) corner stones of present and future technologies. The emphasis is on spin waves, quantum information, recent tests of quantum physics and decoherence. The book provides a large amount of information without unbalancing the flow of the main ideas by laborious detail.

  13. Quantum mechanics. A modern and concise introductory course. 3. ed.

    International Nuclear Information System (INIS)

    Bes, Daniel R.

    2012-01-01

    The presentation in the new edition of this well-reviewed textbook is clear and goes to the core of the questions. The balance between principles, concepts and applications is optimal. The material presented is touching active areas of physics. Supplies new views on decoherence, entanglement and path integral formulation of quantum mechanics. Gives background needed to understand quantum cryptography, teleportation and computation. Starting from basic principles, the book covers a wide variety of topics, ranging from Heisenberg, Schroedinger, second quantization, density matrix and path integral formulations of quantum mechanics, to applications that are (or will be) corner stones of present and future technologies. The emphasis is on spin waves, quantum information, recent tests of quantum physics and decoherence. The book provides a large amount of information without unbalancing the flow of the main ideas by laborious detail.

  14. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  15. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  16. Experimental decoherence in molecule interferometry

    International Nuclear Information System (INIS)

    Hackermueller, L.; Hornberger, K.; Stibor, A.; Zeilinger, A.; Arndt, M.; Kiesewetter, G.

    2005-01-01

    Full text: We present three mechanisms of decoherence that occur quite naturally in matter wave interferometer with large molecules. One way molecules can lose coherence is through collision with background gas particles. We observe a loss of contrast with increasing background pressure for various types of gases. We can understand this phenomenon quantitatively with a new model for collisional decoherence which corrects older models by a factor of 2 π;. The second experiment studies the thermal emission of photons related to the high internal energy of the interfering molecules. When sufficiently many or sufficiently short photons are emitted inside the interferometer, the fringe contrast is lost. We can continuously vary the temperature of the molecules and compare the loss of contrast with a model based on decoherence theory. Again we find good quantitative agreement. A third mechanism that influences our interference pattern is dephasing due to vibrations of the interference gratings. By adding additional vibrations we study this effect in more detail. (author)

  17. Changing quantum reference frames

    OpenAIRE

    Palmer, Matthew C.; Girelli, Florian; Bartlett, Stephen D.

    2013-01-01

    We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects includ...

  18. Controllable quantum information network with a superconducting system

    International Nuclear Information System (INIS)

    Zhang, Feng-yang; Liu, Bao; Chen, Zi-hong; Wu, Song-lin; Song, He-shan

    2014-01-01

    We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale

  19. Quantum physics with neutrons

    International Nuclear Information System (INIS)

    Durstberger, K.; Hasegawa, Y.; Klepp, J.; Sulyok, G.; Rauch, H.

    2008-01-01

    Full text: Fundamental quantum properties like quantum coherence and entanglement are among the most interesting features of quantum mechanics. The physical system of interest is the (massive) neutron subjected to interferometric and polarimetric measurements. Neutrons are proper objects for a study of quantum mechanical behavior: they allow for rather easy experimental control and the neutron spin is the simplest two-level system with easy manipulation by magnetic fields. In combination with interferometric measurements the system has enough intrinsic richness to show interesting quantum features such as entanglement. The coupling of the neutron to an external magnetic field allows for selective manipulations of the spinor quantum states. This can be used, on the one hand, to create entangled states where the entanglement occurs between different degrees of freedom (e.g. spin and path) and, on the other hand, one can introduce dephasing and decoherence by varying magnetic fields. We investigate different kinds of entanglement for the neutron system and mechanisms for decoherence and dephasing. We discuss weak measurements and their realization for neutrons where information about the system can be revealed without disturbing the system too much. Beyond the theoretical work we develop experimental strategies to check the results directly in suitably designed experiments. The experimental work is done at the Institute Laue-Langvine (ILL) in Grenoble, France. (author)

  20. Spacetime coarse grainings in nonrelativistic quantum mechanics

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1991-01-01

    Sum-over-histories generalizations of nonrelativistic quantum mechanics are explored in which probabilities are predicted, not just for alternatives defined on spacelike surfaces, but for alternatives defined by the behavior of spacetime histories with respect to spacetime regions. Closed, nonrelativistic systems are discussed whose histories are paths in a given configuration space. The action and the initial quantum state are assumed fixed and given. A formulation of quantum mechanics is used which assigns probabilities to members of sets of alternative coarse-grained histories of the system, that is, to the individual classes of a partition of its paths into exhaustive and exclusive classes. Probabilities are assigned to those sets which decohere, that is, whose probabilities are consistent with the sum rules of probability theory. Coarse graining by the behavior of paths with respect to regions of spacetime is described. For example, given a single region, the set of all paths may be partitioned into those which never pass through the region and those which pass through the region at least once. A sum-over-histories decoherence functional is defined for sets of alternative histories coarse-grained by spacetime regions. Techniques for the definition and effective computation of the relevant sums over histories by operator-product formulas are described and illustrated by examples. Methods based on Euclidean stochastic processes are also discussed and illustrated. Models of decoherence and measurement for spacetime coarse grainings are described. Issues of causality are investigated. Such spacetime generalizations of nonrelativistic quantum mechanics may be useful models for a generalized quantum mechanics of spacetime geometry

  1. Decoherence and absorption of Er3+:KTiOPO4 (KTP) at 1.5 μm

    International Nuclear Information System (INIS)

    Böttger, Thomas; Thiel, C.W.; Sun, Y.; Macfarlane, R.M.; Cone, R.L.

    2016-01-01

    We present results of laser absorption spectroscopy and two-pulse photon echo decoherence measurements on the lowest 4 I 15/2 to lowest 4 I 13/2 transition in Er 3+ : KTiOPO 4 (KTP—potassium titanyl phosphate) for the optical transition located at 1537.238 nm. This transition was found to have an inhomogeneous absorption linewidth of 950 MHz and pronounced polarization dependence. Two-pulse photon echo decay measurements as a function of applied magnetic field strength at 1.9 K revealed a narrow homogeneous linewidth of 2.5 kHz at 0.2 T that increased to 5.8 kHz at 1.2 T and then decreased to 1.6 kHz at 4.5 T. This behavior was successfully described by decoherence due to Er 3+ –Er 3+ magnetic dipole interactions. Significant superhyperfine coupling of Er 3+ spins to the nuclear moments of ions in the host lattice was observed, modulating the photon echo decay at low magnetic fields and limiting the effective homogenous linewidth at high fields. Combined with the well-established potential of KTP for fabrication of high-quality optical waveguides and integrated non-linear frequency conversion, our results suggest that Er 3+ :KTP is a promising material system for practical spectral hole burning, signal processing, and quantum information applications. - Highlights: • Bulk Er 3+ :KTP has dominant Er 3+ site at 1537.238 nm with Γ inh of 950 MHz and T 1 of 16.9 ms. • Two-pulse photon echoes revealed magnetic field dependent kHz-wide homogeneous linewidth. • Decoherence modeled using direct-phonon driven Er 3+ –Er 3+ magnetic dipole-dipole interactions. • Evidence of superhyperfine coupling of Er 3+ spins to nuclear moments of host ions. • Er 3+ :KTP is a promising material system for quantum memory and signal processing applications.

  2. Spacetime alternatives in the quantum mechanics of a relativistic particle

    International Nuclear Information System (INIS)

    Whelan, J.T.

    1994-01-01

    Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities

  3. 'quantumness' measures in the decohering harmonic oscillator

    Indian Academy of Sciences (India)

    We studied the behaviour under decoherence of four different measures of the distance between quantum states and classical states for the harmonic oscillator coupled to a linear Markovian bath. Three of these are relative measures, using different definitions of the distance between the given quantum states and the set of ...

  4. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  5. Generalized quantum theory of recollapsing homogeneous cosmologies

    International Nuclear Information System (INIS)

    Craig, David; Hartle, James B.

    2004-01-01

    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic 'J·dΣ' rule of quantum cosmology, as well as a generalization of this rule to generic initial states

  6. Quantum open system theory: bipartite aspects.

    Science.gov (United States)

    Yu, T; Eberly, J H

    2006-10-06

    We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of bipartite open quantum systems contains elements not previously encountered in quantum noise physics. While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate that it breaks down for bipartite coherence of even the simplest composite systems.

  7. Decoherence of topological qubit in linear and circular motions: decoherence impedance, anti-Unruh and information backflow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei-Hua; Lin, Feng-Li [Department of Physics, National Taiwan Normal University,No. 88, Sec. 4, Ting-Chou Rd., Taipei 116, Taiwan (China)

    2016-07-18

    In this paper, we consider the decoherence patterns of a topological qubit made of two Majorana zero modes in the generic linear and circular motions in the Minkowski spacetime. We show that the reduced dynamics is exact without Markov approximation. Our results imply that the acceleration will cause thermalization as expected by Unruh effect. However, for the short-time scale, we find the rate of decoherence is anti-correlated with the acceleration, as kind of decoherence impedance. This is in fact related to the “anti-Unruh' phenomenon previously found by studying the transition probability of Unruh-DeWitt detector. We also obtain the information backflow by some time modulations of coupling constant or acceleration, which is a characteristic of the underlying non-Markovian reduced dynamics. Moreover, by exploiting the nonlocal nature of the topological qubit, we find that some incoherent accelerations of the constituent Majorana zero modes can preserve the coherence instead of thermalizing it.

  8. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    Directory of Open Access Journals (Sweden)

    Dejan Raković

    2014-01-01

    Full Text Available In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semiclassically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well.

  9. Error Mitigation for Short-Depth Quantum Circuits

    Science.gov (United States)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  10. Quantum control of topological defects in magnetic systems

    Science.gov (United States)

    Takei, So; Mohseni, Masoud

    2018-02-01

    Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .

  11. Decoherence in Sub-Systems of an Isolated System and the Disappearance of Quantum Multiverse

    OpenAIRE

    Ishikawa, Takuji

    2016-01-01

    This study was started to know mysterious classicality of nuclei. Using three particles model without external environments, it is found that decisions of respective state of three particles by decoherence are not simultaneous. Furthermore, in this model, wave function of total three body system collapses spontaneously without any external environments. Therefore we may able to insist that a wavefunction of our universe has already collapsed spontaneously without any external observer, becaus...

  12. Reconciling results of LSND, MiniBooNE and other experiments with soft decoherence

    CERN Document Server

    Farzan, Yasaman; Smirnov, Alexei Yu

    2008-01-01

    We propose an explanation of the LSND signal via quantum-decoherence of the mass states, which leads to damping of the interference terms in the oscillation probabilities. The decoherence parameters as well as their energy dependence are chosen in such a way that the damping affects only oscillations with the large (atmospheric) $\\Delta m^2$ and rapidly decreases with the neutrino energy. This allows us to reconcile the positive LSND signal with MiniBooNE and other null-result experiments. The standard explanations of solar, atmospheric, KamLAND and MINOS data are not affected. No new particles, and in particular, no sterile neutrinos are needed. The LSND signal is controlled by the 1-3 mixing angle $\\theta_{13}$ and, depending on the degree of damping, yields $0.0014 < \\sin^2\\theta_{13} < 0.034$ at $3\\sigma$. The scenario can be tested at upcoming $\\theta_{13}$ searches: while the comparison of near and far detector measurements at reactors should lead to a null-result a positive signal for $\\theta_{13...

  13. Symmetry and history quantum theory: An analog of Wigner close-quote s theorem

    International Nuclear Information System (INIS)

    Schreckenberg, S.

    1996-01-01

    The basic ingredients of the open-quote open-quote consistent histories close-quote close-quote approach to quantum theory are a space UP of open-quote open-quote history propositions close-quote close-quote and a space D of open-quote open-quote decoherence functionals.close-quote close-quote In this article we consider such history quantum theories in the case where UP is given by the set of projectors P(V) on some Hilbert space V. We define the notion of a open-quote open-quote physical symmetry of a history quantum theory close-quote close-quote (PSHQT) and specify such objects exhaustively with the aid of an analog of Wigner close-quote s theorem. In order to prove this theorem we investigate the structure of D, define the notion of an open-quote open-quote elementary decoherence functional,close-quote close-quote and show that each decoherence functional can be expanded as a certain combination of these functionals. We call two history quantum theories that are related by a PSHQT open-quote open-quote physically equivalent close-quote close-quote and show explicitly, in the case of history quantum mechanics, how this notion is compatible with one that has appeared previously. copyright 1996 American Institute of Physics

  14. Study of temporal quantum correlations in decohering B and K meson systems

    Science.gov (United States)

    Naikoo, Javid; Alok, Ashutosh Kumar; Banerjee, Subhashish

    2018-03-01

    In this work we study temporal quantum correlations, quantified by Leggett-Garg (LG) and LG-type inequalities, in the B and K meson systems. We use the tools of open quantum systems to incorporate the effect of decoherence which is quantified by a single phenomenological parameter. The effect of C P violation is also included in our analysis. We find that the LG inequality is violated for both B and K meson systems, the violation being most prominent in the case of K mesons and least for Bs system. Since the systems with no coherence do not violate LGI, incorporating decoherence is expected to decrease the extent of violation of LGI and is clearly brought out in our results. We show that the expression for the LG functions depends upon an additional term, apart from the experimentally measurable meson transition probabilities. This term vanishes in the limit of zero decoherence. On the other hand, the LG-type parameter can be directly expressed in terms of transition probabilities, making it a more appropriate observable for studying temporal quantum correlations in neutral meson systems.

  15. Decoherence suppression of tripartite entanglement in non-Markovian environments by using weak measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhi-yong [School of Physics & Material Science, Anhui University, Hefei 230039 (China); School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); He, Juan, E-mail: juanhe78@163.com [School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230039 (China)

    2017-02-15

    A feasible scheme for protecting the Greenberger–Horne–Zeilinger (GHZ) entanglement state in non-Markovian environments is proposed. It consists of prior weak measurement on each qubit before the interaction with decoherence environments followed by post quantum measurement reversals. It is shown that both the fidelity and concurrence of the GHZ state can be effectively improved. Meanwhile, we also verified that our scenario can enhance tripartite nonlocality remarkably. In addition, the result indicates that the larger the weak measurement strength, the better the effectiveness of the scheme with the lower success probability.

  16. A general theoretical framework for decoherence in open and closed systems

    International Nuclear Information System (INIS)

    Castagnino, Mario; Fortin, Sebastian; Laura, Roberto; Lombardi, Olimpia

    2008-01-01

    A general theoretical framework for decoherence is proposed, which encompasses formalisms originally devised to deal just with open or closed systems. The conditions for decoherence are clearly stated and the relaxation and decoherence times are compared. Finally, the spin-bath model is developed in detail from the new perspective

  17. Redundant information encoding in QED during decoherence

    Science.gov (United States)

    Tuziemski, J.; Witas, P.; Korbicz, J. K.

    2018-01-01

    Broadly understood decoherence processes in quantum electrodynamics, induced by neglecting either the radiation [L. Landau, Z. Phys. 45, 430 (1927), 10.1007/BF01343064] or the charged matter [N. Bohr and L. Rosenfeld, K. Danske Vidensk. Selsk, Math.-Fys. Medd. XII, 8 (1933)], have been studied from the dawn of the theory. However, what happens in between, when a part of the radiation may be observed, as is the case in many real-life situations, has not been analyzed yet. We present such an analysis for a nonrelativistic, pointlike charge and thermal radiation. In the dipole approximation, we solve the dynamics and show that there is a regime where, despite the noise, the observed field carries away almost perfect and hugely redundant information about the charge momentum. We analyze a partial charge-field state and show that it approaches a so-called spectrum broadcast structure.

  18. Simulation of n-qubit quantum systems. III. Quantum operations

    Science.gov (United States)

    Radtke, T.; Fritzsche, S.

    2007-05-01

    During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems

  19. Quantum algorithm for simulating the dynamics of an open quantum system

    International Nuclear Information System (INIS)

    Wang Hefeng; Ashhab, S.; Nori, Franco

    2011-01-01

    In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master equation. The master equation is derived using knowledge of some basic properties of the system, the environment, and their interaction: One basically needs to know the operators through which the system couples to the environment and the spectral density of the environment. For a large system, it could become prohibitively difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies and with properly designed coupling to the system qubits. The parameters used in the simulation are easily derived from the parameters of the system + environment Hamiltonian. The algorithm is designed to simulate Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence a single ancilla qubit could be sufficient to represent the entire environment, in principle.

  20. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    Science.gov (United States)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  1. Entangled photons and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhensheng, E-mail: yuanzs@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Bao Xiaohui [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Lu Chaoyang; Zhang Jun; Peng Chengzhi [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan Jianwei, E-mail: pan@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany)

    2010-12-15

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  2. Entangled photons and quantum communication

    International Nuclear Information System (INIS)

    Yuan Zhensheng; Bao Xiaohui; Lu Chaoyang; Zhang Jun; Peng Chengzhi; Pan Jianwei

    2010-01-01

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  3. Preservation of quantum states via a super-Zeno effect on ensemble quantum computers

    International Nuclear Information System (INIS)

    Ting-Ting, Ren; Jun, Luo; Xian-Ping, Sun; Ming-Sheng, Zhan

    2009-01-01

    Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuclear magnetic resonance techniques. Using inverting radiofrequency pulses and delicately selecting time intervals between two pulses, we suppress the effect of decoherence of quantum states. We observe that preservation of the quantum state |11) with the super-Zeno effect is three times more efficient than the ordinary one with the standard Zeno effect. (general)

  4. Enhancing robustness of multiparty quantum correlations using weak measurement

    International Nuclear Information System (INIS)

    Singh, Uttam; Mishra, Utkarsh; Dhar, Himadri Shekhar

    2014-01-01

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol

  5. Enhancing robustness of multiparty quantum correlations using weak measurement

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Mishra, Utkarsh, E-mail: utkarsh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2014-11-15

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.

  6. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    Science.gov (United States)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  7. Uhlmann's geometric phase in presence of isotropic decoherence

    International Nuclear Information System (INIS)

    Tidstroem, Jonas; Sjoeqvist, Erik

    2003-01-01

    Uhlmann's mixed state geometric phase [Rep. Math. Phys. 24, 229 (1986)] is analyzed in the case of a qubit affected by isotropic decoherence treated in the Markovian approximation. It is demonstrated that this phase decreases rapidly with increasing decoherence rate and that it is most fragile to weak decoherence for pure or nearly pure initial states. In the unitary case, we compare Uhlmann's geometric phase for mixed states with that occurring in standard Mach-Zehnder interferometry [Phys. Rev. Lett. 85, 2845 (2000)] and show that the latter is more robust to reduction in the length of the Bloch vector. We also describe how Uhlmann's geometric phase in the present case could in principle be realized experimentally

  8. Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Lopez-Pavon, Jacobo [CERN; Martinez-Soler, Ivan [Madrid, IFT; Nunokawa, Hiroshi [Rio de Janeiro, Pont. U. Catol.

    2018-03-12

    We revisit neutrino oscillations in matter considering the open quantum system framework which allows to introduce possible decoherence effects generated by New Physics in a phenomenological manner. We assume that the decoherence parameters $\\gamma_{ij}$ may depend on the neutrino energy, as $\\gamma_{ij}=\\gamma_{ij}^{0}(E/\\text{GeV})^n$ $(n = 0,\\pm1,\\pm2) $. The case of non-uniform matter is studied in detail, both within the adiabatic approximation and in the more general non-adiabatic case. In particular, we develop a consistent formalism to study the non-adiabatic case dividing the matter profile into an arbitrary number of layers of constant densities. This formalism is then applied to explore the sensitivity of IceCube and DeepCore to this type of effects. Our study is the first atmospheric neutrino analysis where a consistent treatment of the matter effects in the three-neutrino case is performed in presence of decoherence. We show that matter effects are indeed extremely relevant in this context. We find that IceCube is able to considerably improve over current bounds in the solar sector ($\\gamma_{21}$) and in the atmospheric sector ($\\gamma_{31}$ and $\\gamma_{32}$) for $n=0,1,2$ and, in particular, by several orders of magnitude (between 3 and 9) for the $n=1,2$ cases. For $n=0$ we find $\\gamma_{32},\\gamma_{31}< 4.0\\cdot10^{-24} (1.3\\cdot10^{-24})$ GeV and $\\gamma_{21}<1.3\\cdot10^{-24} (4.1\\cdot10^{-24})$ GeV, for normal (inverted) mass ordering.

  9. Dealing with quantum weirdness: Holism and related issues

    International Nuclear Information System (INIS)

    Elby, A.R.

    1995-12-01

    Various issues are discussed in interpretation of quantum mechanics. All these explorations point toward the same conclusion, that some systems are holistically connected, i.e., some composite systems have properties that cannot, even in principle, be reduced to the properties of its subsystems. This is argued to be the central metaphysical lesson of quantum theory; this will remain pertinent even if quantum mechanics gets replaced by a superior theory. Chap. 2 discusses nonlocality and rules out hidden-variable theories that approximately reproduce the perfect correlations of quantum mechanics, as well as theories that obey locality conditions weaker than those needed to derive Bell's inequality. Chap. 3 shows that SQUID experiments can rule out non-invasive measurability if not macrorealism. Chap. 4 looks at interpretational issues surrounding decoherence, the dissipative interaction between a system and its environment. Decoherence klcan help ''modal'' interpretations pick out the desired ''preferred'' basis. Chap. 5 explores what varieties of causation can and cannot ''explain'' EPR correlations. Instead of relying on ''watered down'' causal explanations, we should instead develop new, holistic explanatory frameworks

  10. The pointer basis and the feedback stabilization of quantum systems

    International Nuclear Information System (INIS)

    Li, L; Chia, A; Wiseman, H M

    2014-01-01

    The dynamics for an open quantum system can be ‘unravelled’ in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states are pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere (Atkins et al 2005 Europhys. Lett. 69 163) that the ‘pointer basis’ as introduced by Zurek et al (1993 Phys. Rev. Lett. 70 1187), should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case. (paper)

  11. Molecular Magnets for Quantum Computation

    Science.gov (United States)

    Kuroda, Takayoshi

    2009-06-01

    We review recent progress in molecular magnets especially in the viewpoint of the application for quantum computing. After a brief introduction to single-molecule magnets (SMMs), a method for qubit manipulation by using non-equidistant spin sublevels of a SMM will be introduced. A weakly-coupled dimer of two SMMs is also a candidate for quantum computing, which shows no quantum tunneling of magnetization (QTM) at zero field. In the AF ring Cr7Ni system, the large tunnel splitting is a great advantage to reduce decoherence during manipulation, which can be a possible candidate to realize quantum computer devices in future.

  12. Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving.

    Science.gov (United States)

    Chen, Ye-Hong; Xia, Yan; Song, Jie; Chen, Qing-Qin

    2015-10-28

    Berry's approach on "transitionless quantum driving" shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the result proves that the scheme is fast and robust against decoherence and operational imperfection.

  13. Decoherence, determinism and chaos

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is 'deterministic'. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of 'test-particle' is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as 'particles' or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a 'scale invariance bounded from below' by measurement accuracy, then Tanimura's generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of 'particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated

  14. An information theory model for dissipation in open quantum systems

    Science.gov (United States)

    Rogers, David M.

    2017-08-01

    This work presents a general model for open quantum systems using an information game along the lines of Jaynes’ original work. It is shown how an energy based reweighting of propagators provides a novel moment generating function at each time point in the process. Derivatives of the generating function give moments of the time derivatives of observables. Aside from the mathematically helpful properties, the ansatz reproduces key physics of stochastic quantum processes. At high temperature, the average density matrix follows the Caldeira-Leggett equation. Its associated Langevin equation clearly demonstrates the emergence of dissipation and decoherence time scales, as well as an additional diffusion due to quantum confinement. A consistent interpretation of these results is that decoherence and wavefunction collapse during measurement are directly related to the degree of environmental noise, and thus occur because of subjective uncertainty of an observer.

  15. Quantum Transduction with Adaptive Control

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-01

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  16. Quantum Transduction with Adaptive Control.

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  17. Decoherence effect on quantum-memory-assisted entropic uncertainty relations

    Science.gov (United States)

    Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-01-01

    Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

  18. The role of positronium decoherence in positron annihilation in matter

    International Nuclear Information System (INIS)

    Pietrow, M.; Slomski, P.

    2011-01-01

    A small difference between the energies of the para-positronium (p-Ps) and ortho-positronium (o-Ps) states suggests the possibility of the superposition of p-Ps and o-Ps during the formation of positronium (Ps) from pre-Ps, terminating its migration in the matter in a void. It is shown that such a superposition decoheres in the basis of p-Ps and o-Ps. The decoherence time scale estimated here motivates a correction in the precise analysis of the positron annihilation lifetime spectra. More generally, the superposited Ps state should contribute to the theory of the evolution of positronium in matter. -- Highlights: → Decoherence time decrease exponentially with the number of e - interacting with Ps. → Time scale of the decoherence motivates correction in decomposition of PALS spectra. → We showed the way of modification for formulas used for PALS spectra decomposition. → The superposited Ps should contribute to the positronium in matter evolution theory. → We examined the magnetisation influence to be expected on the process of decoherence.

  19. A Simple Example of ``Quantum Darwinism'': Redundant Information Storage in Many-Spin Environments

    Science.gov (United States)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2005-11-01

    As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed in the environment is essential for the emergence of "the classical" from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system's state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of "the fittest information" (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment's role in the quantum-classical transition beyond the traditional paradigm of decoherence.

  20. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  1. Ultrafast optical control of individual quantum dot spin qubits.

    Science.gov (United States)

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  2. Quantum Interference and Selectivity through Biological Ion Channels.

    Science.gov (United States)

    Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin

    2017-01-30

    The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17-53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference.

  3. Multiple-Quantum Transitions and Charge-Induced Decoherence of Donor Nuclear Spins in Silicon

    Science.gov (United States)

    Franke, David P.; Pflüger, Moritz P. D.; Itoh, Kohei M.; Brandt, Martin S.

    2017-06-01

    We study single- and multiquantum transitions of the nuclear spins of an ensemble of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of light and bias voltage pulses. To determine the coherence times of superpositions of all orders in the 4-dimensional Hilbert space, we use a phase-cycling technique and find that, when electrical effects were allowed to decay, these times scale as expected for a fieldlike decoherence mechanism such as the interaction with surrounding Si 29 nuclear spins.

  4. Can decoherence make quantum theories unfalsifiable? Understanding the quantum-to-classical transition without it

    International Nuclear Information System (INIS)

    Oriols, X.

    2016-01-01

    Exact predictions for most quantum systems are computationally inaccessible. This is the so-called many body problem, which is present in most common interpretations of quantum mechanics. Therefore, predictions of natural quantum phenomena have to rely on some approximations (assumptions or simplifications). In the literature, there are different types of approximations, ranging from those whose justification is basically based on theoretical developments to those whose justification lies on the agreement with experiments. This last type of approximations can convert a quantum theory into an “unfalsifiable” quantum theory, true by construction. On the practical side, converting some part of a quantum theory into an “unfalsifiable” one ensures a successful modeling (i.e. compatible with experiments) for quantum engineering applications. An example of including irreversibility and dissipation in the Bohmian modeling of open systems is presented. On the ontological level, however, the present-day foundational problems related to controversial quantum phenomena have to avoid (if possible) being contaminated by the unfalsifiability originated from the many body problem. An original attempt to show how the Bohmian theory itself (minimizing the role of many body approximations) explains the transitions from a microscopic quantum system towards a macroscopic classical one is presented. (paper)

  5. Non-Markovianity hinders Quantum Darwinism

    Science.gov (United States)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  6. Methods of approaching decoherence in the flavor sector due to space-time foam

    Science.gov (United States)

    Mavromatos, N. E.; Sarkar, Sarben

    2006-08-01

    In the first part of this work we discuss possible effects of stochastic space-time foam configurations of quantum gravity on the propagation of “flavored” (Klein-Gordon and Dirac) neutral particles, such as neutral mesons and neutrinos. The formalism is not the usually assumed Lindblad one, but it is based on random averages of quantum fluctuations of space-time metrics over which the propagation of the matter particles is considered. We arrive at expressions for the respective oscillation probabilities between flavors which are quite distinct from the ones pertaining to Lindblad-type decoherence, including in addition to the (expected) Gaussian decay with time, a modification to oscillation behavior, as well as a power-law cutoff of the time-profile of the respective probability. In the second part we consider space-time foam configurations of quantum-fluctuating charged-black holes as a way of generating (parts of) neutrino mass differences, mimicking appropriately the celebrated Mikheyev-Smirnov-Wolfenstein (MSW) effects of neutrinos in stochastically fluctuating random media. We pay particular attention to disentangling genuine quantum-gravity effects from ordinary effects due to the propagation of a neutrino through ordinary matter. Our results are of interest to precision tests of quantum-gravity models using neutrinos as probes.

  7. A scalable quantum computer with ions in an array of microtraps

    Science.gov (United States)

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  8. Entropy Exchange in Coupled Field-Superconducting Charge Qubit System with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Jian; ZOU Jian

    2006-01-01

    Based on the intrinsic decoherence effect, partial entropy properties of a super conducting charge qubitinside a single-mode cavity field is investigated, and entropy exchange which is recently regarded as a kind of anti-correlated behavior of the entropy between subsystems is explored. Our results show that although the intrinsic decoherenceleads to an effective irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator and has an apparently influence on the partial entropy of two individual subsystems, it does not effect the entropy exchange between the two subsystems.

  9. Hamiltonian quantum simulation with bounded-strength controls

    International Nuclear Information System (INIS)

    Bookatz, Adam D; Wocjan, Pawel; Viola, Lorenza

    2014-01-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed. (papers)

  10. Experimental motivation and empirical consistency in minimal no-collapse quantum mechanics

    International Nuclear Information System (INIS)

    Schlosshauer, Maximilian

    2006-01-01

    We analyze three important experimental domains (SQUIDs, molecular interferometry, and Bose-Einstein condensation) as well as quantum-biophysical studies of the neuronal apparatus to argue that (i) the universal validity of unitary dynamics and the superposition principle has been confirmed far into the mesoscopic and macroscopic realm in all experiments conducted thus far; (ii) all observed 'restrictions' can be correctly and completely accounted for by taking into account environmental decoherence effects; (iii) no positive experimental evidence exists for physical state-vector collapse; (iv) the perception of single 'outcomes' is likely to be explainable through decoherence effects in the neuronal apparatus. We also discuss recent progress in the understanding of the emergence of quantum probabilities and the objectification of observables. We conclude that it is not only viable, but moreover compelling to regard a minimal no-collapse quantum theory as a leading candidate for a physically motivated and empirically consistent interpretation of quantum mechanics

  11. Controlling open quantum systems: Tools, achievements, and limitations

    OpenAIRE

    Koch, Christiane P.

    2016-01-01

    The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge to preserve the relevant nonclassical features at the level of device operation. A major obstacle is decoherence which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence...

  12. Minimum decoherence cat-like states in Gaussian noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, A [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, G C Salerno, Via S Allende, 84081 Baronissi, SA (Italy); De Siena, S [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, G C Salerno, Via S Allende, 84081 Baronissi, SA (Italy); Illuminati, F [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, G C Salerno, Via S Allende, 84081 Baronissi, SA (Italy); Paris, M G A [ISIS ' A Sorbelli' , I-41026 Pavullo nel Frignano, MO (Italy)

    2004-06-01

    We address the evolution of cat-like states in general Gaussian noisy channels, by considering superpositions of coherent and squeezed coherent states coupled to an arbitrarily squeezed bath. The phase space dynamics is solved and decoherence is studied, keeping track of the purity of the evolving state. The influence of the choice of the state and channel parameters on purity is discussed and optimal working regimes that minimize the decoherence rate are determined. In particular, we show that squeezing the bath to protect a non-squeezed cat state against decoherence is equivalent to orthogonally squeezing the initial cat state while letting the bath be phase insensitive.

  13. Minimum decoherence cat-like states in Gaussian noisy channels

    International Nuclear Information System (INIS)

    Serafini, A; De Siena, S; Illuminati, F; Paris, M G A

    2004-01-01

    We address the evolution of cat-like states in general Gaussian noisy channels, by considering superpositions of coherent and squeezed coherent states coupled to an arbitrarily squeezed bath. The phase space dynamics is solved and decoherence is studied, keeping track of the purity of the evolving state. The influence of the choice of the state and channel parameters on purity is discussed and optimal working regimes that minimize the decoherence rate are determined. In particular, we show that squeezing the bath to protect a non-squeezed cat state against decoherence is equivalent to orthogonally squeezing the initial cat state while letting the bath be phase insensitive

  14. Understand quantum mechanics

    International Nuclear Information System (INIS)

    Omnes, R.

    2000-01-01

    The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)

  15. Decoherence suppression of excitons by bang-bang control

    International Nuclear Information System (INIS)

    Kishimoto, T.; Hasegawa, A.; Mitsumori, Y.; Ishi-Hayase, J.; Sasaki, M.; Minami, F.

    2007-01-01

    We report the demonstration of decoherence control of excitons on a layered compound semiconductor GaSe by using successive three femtosecond pulses, i.e., the six-wave mixing configuration. The second pulse acts as a π pulse which reverses the time evolution of non-Markovian dynamics. By changing the pulse interval conditions, we confirmed for the first time the suppression of exciton decoherence by π pulse irradiation

  16. Coherence and decoherence in the interaction of light with atoms

    Science.gov (United States)

    Carmichael, H. J.

    1997-12-01

    Amplification without population inversion in a resonant V-type atomic medium is analyzed using the theory of quantum trajectories. A global view of the dynamics underlying the amplification is provided by a quantum stochastic process governing an interplay between coherence and decoherence. The quantum trajectories decompose into distinct ``gain cycles'' and ``loss cycles'' which determine, respectively, the emission and absorption spectra that might be calculated from perturbation theory. Two methods for calculating net gain are developed, motivated by complementary views of the exchange of energy between an atom and a probe field. One time averages the energy radiated continuously by the induced dipole, while the other determines probabilities for discontinuous energy exchange through the emission and absorption of individual quanta. In the latter case, the emission and absorption probabilities are evaluated as sums over probabilities for classical records that define the unobservable exchange of a quantum with the probe field in terms of observable scattering events. Quantum trajectories for a V-type medium driven by a coherent field are compared with those for a medium driven incoherently. Two relationships which connect amplification to population inversion in the latter case are shown to be lacking in the former; hence the possibility for amplification without population inversion arises from the following: (1) a decoupling of the rate of gain-cycle (loss-cycle) initiation from the time-averaged population in the initial state for gain (loss), and (2) loss of the symmetry that the final state for emission be the initial state for absorption and vice versa. The specific influences of these general observations vary from model to model. The details are worked out for the resonant V-type medium, where the quantum trajectory analysis sheds light on the meaning of ``without population inversion'' and ``cancellation of absorption by quantum interference.''

  17. Emergence of a classical Universe from quantum gravity and cosmology.

    Science.gov (United States)

    Kiefer, Claus

    2012-09-28

    I describe how we can understand the classical appearance of our world from a universal quantum theory. The essential ingredient is the process of decoherence. I start with a general discussion in ordinary quantum theory and then turn to quantum gravity and quantum cosmology. There is a whole hierarchy of classicality from the global gravitational field to the fluctuations in the cosmic microwave background, which serve as the seeds for the structure in the Universe.

  18. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  19. Quantum key distribution with two-segment quantum repeaters

    Energy Technology Data Exchange (ETDEWEB)

    Kampermann, Hermann; Abruzzo, Silvestre; Bruss, Dagmar [Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2014-07-01

    Quantum repeaters represent one possible way to achieve long-distance quantum key distribution. One way of improving the repeater rate and decreasing the memory coherence time is the usage of multiplexing. Motivated by the experimental fact that long-range connections are practically demanding, we extend the analysis of the quantum repeater multiplexing protocol to the case of short-range connections. We derive formulas for the repeater rate and we show that short-range connections lead to most of the benefits of a full-range multiplexing protocol. A less demanding QKD-protocol without quantum memories was recently introduced by Lo et al. We generalize this measurement-device-independent quantum key Distribution protocol to the scenario where the repeater Station contains also heralded quantum memories. We assume either single-photon sources or weak coherent pulse sources plus decay states. We show that it is possible to significantly outperform the original proposal, even in presence of decoherence of the quantum memory. We give formulas in terms of device imperfections i.e., the quantum bit error rate and the repeater rate.

  20. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yujie; Dai, Yue [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Shi, Yu [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Fudan University, Collaborative Innovation Center of Advanced Microstructures, Shanghai (China)

    2017-09-15

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  1. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    International Nuclear Information System (INIS)

    Li, Yujie; Dai, Yue; Shi, Yu

    2017-01-01

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  2. Compatible quantum theory

    International Nuclear Information System (INIS)

    Friedberg, R; Hohenberg, P C

    2014-01-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The

  3. Quantum computing with defects in diamond

    International Nuclear Information System (INIS)

    Jelezko, F.; Gaebel, T.; Popa, I.; Domhan, M.; Wittmann, C.; Wrachtrup, J.

    2005-01-01

    Full text: Single spins in semiconductors, in particular associated with defect centers, are promising candidates for practical and scalable implementation of quantum computing even at room temperature. Such an implementation may also use the reliable and well known gate constructions from bulk nuclear magnetic resonance (NMR) quantum computing. Progress in development of quantum processor based on defects in diamond will be discussed. By combining optical microscopy, and magnetic resonance techniques, the first quantum logical operations on single spins in a solid are now demonstrated. The system is perspective for room temperature operation because of a weak dependence of decoherence on temperature (author)

  4. Conservation laws in the quantum mechanics of closed systems

    International Nuclear Information System (INIS)

    Hartle, J.B.; Laflamme, R.; Marolf, D.

    1995-01-01

    We investigate conservation laws in the quantum mechanics of closed systems and begin by reviewing an argument that exact decoherence implies the exact conservation of quantities that commute with the Hamiltonian. However, we also show that decoherence limits the alternatives that can be included in sets of histories that assess the conservation of these quantities. In the case of charge and energy, these limitations would be severe were these quantities not coupled to a gauge field. However, for the realistic cases of electric charge coupled to the electromagnetic field and mass coupled to spacetime curvature, we show that when alternative values of charge and mass decohere they always decohere exactly and are exactly conserved. Further, while decohering histories that describe possible changes in time of the total charge and mass are also subject to the limitations mentioned above, we show that these do not, in fact, restrict physical alternatives and are therefore not really limitations at all

  5. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  6. Quantum Interference and Coherence Theory and Experiments

    CERN Document Server

    Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.

  7. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  8. Phonon-assisted decoherence and tunneling in quantum dot molecules

    DEFF Research Database (Denmark)

    Grodecka-Grad, Anna; Foerstner, Jens

    2011-01-01

    processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...

  9. Decoherence dynamics in interferometry with one-dimensional bose-einstein condensates

    DEFF Research Database (Denmark)

    Schumm, Thorsten; Hofferberth, Sebastian; Schmiedmayer, Jörg

    2007-01-01

    in the interference pattern and allow a quantization of the decoherence process with time. For the uncoupled system we ultimately recover individual phase fluctuating condensates, whereas finite tunnel coupling counteracts the decoherence and leads to an equilibrium characterized by a finite coherence length...

  10. Quantum algorithms and quantum maps - implementation and error correction

    International Nuclear Information System (INIS)

    Alber, G.; Shepelyansky, D.

    2005-01-01

    Full text: We investigate the dynamics of the quantum tent map under the influence of errors and explore the possibilities of quantum error correcting methods for the purpose of stabilizing this quantum algorithm. It is known that static but uncontrollable inter-qubit couplings between the qubits of a quantum information processor lead to a rapid Gaussian decay of the fidelity of the quantum state. We present a new error correcting method which slows down this fidelity decay to a linear-in-time exponential one. One of its advantages is that it does not require redundancy so that all physical qubits involved can be used for logical purposes. We also study the influence of decoherence due to spontaneous decay processes which can be corrected by quantum jump-codes. It is demonstrated how universal encoding can be performed in these code spaces. For this purpose we discuss a new entanglement gate which can be used for lowest level encoding in concatenated error-correcting architectures. (author)

  11. Ultra-fast relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers

    Science.gov (United States)

    Mannouch, Jonathan R.; Barford, William; Al-Assam, Sarah

    2018-01-01

    The exciton relaxation dynamics of photoexcited electronic states in poly(p-phenylenevinylene) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom is accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: (1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. (2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. (3) Exciton density localization is driven by the external dissipation, arising from "wavefunction collapse" occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.

  12. One-step implementation of the Toffoli gate via quantum Zeno dynamics

    International Nuclear Information System (INIS)

    Shao Xiaoqiang; Wang Hongfu; Chen Li; Zhang Shou; Yeon, Kyu-Hwang

    2009-01-01

    Based on the quantum Zeno dynamics, we present a scheme for one-step implementation of a Toffoli gate via manipulating three rf superconducting quantum interference device (SQUID) qubits to resonantly interact with a superconducting cavity. The effects of decoherence such as spontaneous emission and the loss of cavity are also considered.

  13. Robust adiabatic approach to optical spin entangling in coupled quantum dots

    International Nuclear Information System (INIS)

    Gauger, Erik M; Benjamin, Simon C; Lovett, Brendon W; Nazir, Ahsan; Stace, Thomas M

    2008-01-01

    Excitonic transitions offer a possible route to ultrafast optical spin manipulation in coupled nanostructures. We perform here a detailed study of the three principal exciton-mediated decoherence channels for optically controlled electron spin qubits in coupled quantum dots: radiative decay of the excitonic state, exciton-phonon interactions, and Landau-Zener transitions between laser-dressed states. We consider a scheme for producing an entangling controlled-phase gate on a pair of coupled spins which, in its simplest dynamic form, renders the system subject to fast decoherence rates associated with exciton creation during the gating operation. In contrast, we show that an adiabatic approach employing off-resonant laser excitation allows us to suppress all sources of decoherence simultaneously, significantly increasing the fidelity of operations at only a relatively small gating time cost. We find that controlled-phase gates accurate to one part in 10 2 can realistically be achieved with the adiabatic approach, whereas the conventional dynamic approach does not appear to support a fidelity suitable for scalable quantum computation. Our predictions could be demonstrated experimentally in the near future

  14. Quantum noise for Faraday light–matter interfaces

    DEFF Research Database (Denmark)

    Vasliyev, D.V.; Hammerer, K.; Korolev, N.

    2012-01-01

    In light–matter interfaces based on the Faraday effect, quite a number of quantum information protocols have been successfully demonstrated. In order to further increase the performance and fidelities achieved in these protocols, a deeper understanding of the relevant noise and decoherence...

  15. Anisotropy dissipation in quantum cosmology

    International Nuclear Information System (INIS)

    Calzetta, E.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina)

    1991-01-01

    We study the issue of decoherence and dissipation in the wave function of the Universe for a Bianchi type-I universe with classical and quantum matter. We obtain a coarse-grained description by tracing over the matter degrees of freedom. Provided that for small universes the wave function of the universe is concentrated on a neighborhood of the isotropic configuration, then the coarse-grained density matrix of the universe will show an even more marked peak around isotropy for large universes. In this sense we can say that, while decoherence makes the reduced density matrix of the universe diagonal, dissipation causes the universe to be isotropic with a high probability for large radii

  16. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  17. Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier

    International Nuclear Information System (INIS)

    Oh, Seongshik; Cicak, Katarina; Kline, Jeffrey S.; Sillanpaeae, Mika A.; Osborn, Kevin D.; Whittaker, Jed D.; Simmonds, Raymond W.; Pappas, David P.

    2006-01-01

    Quantum computing based on Josephson junction technology is considered promising due to its scalable architecture. However, decoherence is a major obstacle. Here, we report evidence for improved Josephson quantum bits (qubits) using a single-crystal Al 2 O 3 tunnel barrier. We have found an ∼80% reduction in the density of the spectral splittings that indicate the existence of two-level fluctators (TLFs) in amorphous tunnel barriers. The residual ∼20% TLFs can be attributed to interfacial effects that may be further reduced by different electrode materials. These results show that decoherence sources in the tunnel barrier of Josephson qubits can be identified and eliminated

  18. Simulation of a quantum NOT gate for a single qutrit system

    Indian Academy of Sciences (India)

    In order to achieve a quantum NOT gate for a single qutrit, the respective Schrödinger equation is solved numerically within a two-photon rotating wave approximation. For small values of one-photon detuning, there appear decoherence effects. Meanwhile, for large values of onephoton detuning, an ideal quantum NOT gate ...

  19. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  20. The quantum world philosophical debates on quantum physics

    CERN Document Server

    Zwirn, Hervé

    2017-01-01

    In this largely nontechnical book, eminent physicists and philosophers address the philosophical impact of recent advances in quantum physics. These are shown to shed new light on profound questions about realism, determinism, causality or locality. The participants contribute in the spirit of an open and honest discussion, reminiscent of the time when science and philosophy were inseparable. After the editors’ introduction, the next chapter reveals the strangeness of quantum mechanics and the subsequent discussions examine our notion of reality. The spotlight is then turned to the topic of decoherence. Bohm’s theory is critically examined in two chapters, and the relational interpretation of quantum mechanics is likewise described and discussed. The penultimate chapter presents a proposal for resolving the measurement problem, and finally the topic of loop quantum gravity is presented by one of its founding fathers, Carlo Rovelli. The original presentations and discussions on which this volume is based t...

  1. Finite-time quantum-to-classical transition for a Schroedinger-cat state

    International Nuclear Information System (INIS)

    Paavola, Janika; Hall, Michael J. W.; Paris, Matteo G. A.; Maniscalco, Sabrina

    2011-01-01

    The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schroedinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality measures, the Schroedinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a ''sudden death''. In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.

  2. New progress of fundamental aspects in quantum mechanics

    International Nuclear Information System (INIS)

    Sun Changpu

    2001-01-01

    The review recalls the conceptual origins of various interpretations of quantum mechanics. With the focus on quantum measurement problems, new developments of fundamental quantum theory are described in association with recent experiments such as the decoherence process in cavity quantum electrodynamics 'which-way' detection using the Bragg scattering of cold atoms, and quantum interference using the small quantum system of molecular C 60 . The fundamental problems include the quantum coherence of a macroscopic object, the von Neumann chain in quantum measurement, the Schroedinger cat paradox, et al. Many land math experiments have been accomplished with possible important applications in quantum information. The most recent research on the new quantum theory by G.'t Hooft is reviewed, as well as future prospects of quantum mechanics

  3. An introduction to: the quantum world

    International Nuclear Information System (INIS)

    Le Bellac, M.

    2010-01-01

    Quantum physics has entered our daily life since it has allowed the invention of transistors and lasers. Now quantum engineering produces atomic clocks, semi-conductors, laser diodes and Led. This book is a popularization work on the quantum world, it introduces not only the basic principles but also explains its applications. 10 chapters compose this book each one illustrating a particular feature or an application as follows: chapter 1) the superposition principle, chapter 2) application to cryptography, chapter 3) Einstein's interpretation versus Bohr's, chapter 4) Heisenberg's inequalities and energy levels, chapters 5) and 6) the collective effects of quantum particles: applications to atom cooling and semi-conductors, chapter 7) relativity and quantum physics, chapter 8) quantum computers, chapter 9) quantum decoherence phenomenon and chapter 10) new interpretations of quantum physics. (A.C.)

  4. Quantum correlation versus Bell-inequality violation under the amplitude damping channel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, WenChao; Xu, Shuai; Shi, Jiadong; Ye, Liu, E-mail: yeliu@ahu.edu.cn

    2015-11-06

    We investigate the quantum correlations including quantum discord and entanglement under the amplitude damping channel. Our analysis results indicate that although the entanglement of initial state is degraded due to decoherence, the distribution trend of entanglement is not to be affected. Moreover, we find that the survival time for entanglement is much longer than for the Bell inequality violation, i.e., as time goes on the Bell inequality violation of final state may be not satisfied while the final state still remains entangled. Especially, although quantum entanglement and quantum discord all decrease under the amplitude damping channel, quantum discord (QD) is reduced significantly slower than entanglement. Therefore, the quantum discord is more robust against amplitude damping in comparison to entanglement measures. Furthermore, we also find that there are mixed states having quantum discord higher than that for pure states for a given degree of Bell's inequality violation. This means that the manipulation of nonclassical correlations via a pure state can result in a larger loss of quantum discord than that via a mixed state. - Highlights: • Entanglement distribution trend is not be affected by the decoherent. • The survival time for entanglement is much longer than for the Bell inequality violation. • The quantum discord is more robust against amplitude damping in comparison entanglement measures.

  5. Decoherence and absorption of Er{sup 3+}:KTiOPO{sub 4} (KTP) at 1.5 μm

    Energy Technology Data Exchange (ETDEWEB)

    Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics & Astronomy, University of San Francisco, 2130 Fulton St., San Francisco, CA 94117 (United States); Thiel, C.W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Sun, Y. [Deptartment of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Macfarlane, R.M. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (United States); Cone, R.L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-01-15

    We present results of laser absorption spectroscopy and two-pulse photon echo decoherence measurements on the lowest {sup 4}I{sub 15/2} to lowest {sup 4}I{sub 13/2} transition in Er{sup 3+}: KTiOPO{sub 4} (KTP—potassium titanyl phosphate) for the optical transition located at 1537.238 nm. This transition was found to have an inhomogeneous absorption linewidth of 950 MHz and pronounced polarization dependence. Two-pulse photon echo decay measurements as a function of applied magnetic field strength at 1.9 K revealed a narrow homogeneous linewidth of 2.5 kHz at 0.2 T that increased to 5.8 kHz at 1.2 T and then decreased to 1.6 kHz at 4.5 T. This behavior was successfully described by decoherence due to Er{sup 3+}–Er{sup 3+} magnetic dipole interactions. Significant superhyperfine coupling of Er{sup 3+} spins to the nuclear moments of ions in the host lattice was observed, modulating the photon echo decay at low magnetic fields and limiting the effective homogenous linewidth at high fields. Combined with the well-established potential of KTP for fabrication of high-quality optical waveguides and integrated non-linear frequency conversion, our results suggest that Er{sup 3+}:KTP is a promising material system for practical spectral hole burning, signal processing, and quantum information applications. - Highlights: • Bulk Er{sup 3+}:KTP has dominant Er{sup 3+} site at 1537.238 nm with Γ{sub inh} of 950 MHz and T{sub 1} of 16.9 ms. • Two-pulse photon echoes revealed magnetic field dependent kHz-wide homogeneous linewidth. • Decoherence modeled using direct-phonon driven Er{sup 3+}–Er{sup 3+} magnetic dipole-dipole interactions. • Evidence of superhyperfine coupling of Er{sup 3+} spins to nuclear moments of host ions. • Er{sup 3+}:KTP is a promising material system for quantum memory and signal processing applications.

  6. Two-qubit quantum computing in a projected subspace

    International Nuclear Information System (INIS)

    Bi Qiao; Ruda, H.E.; Zhan, M.S.

    2002-01-01

    A formulation for performing quantum computing in a projected subspace is presented, based on the subdynamical kinetic equation (SKE) for an open quantum system. The eigenvectors of the kinetic equation are shown to remain invariant before and after interaction with the environment. However, the eigenvalues in the projected subspace exhibit a type of phase shift to the evolutionary states. This phase shift does not destroy the decoherence-free (DF) property of the subspace because the associated fidelity is 1. This permits a universal formalism to be presented--the eigenprojectors of the free part of the Hamiltonian for the system and bath may be used to construct a DF projected subspace based on the SKE. To eliminate possible phase or unitary errors induced by the change in the eigenvalues, a cancellation technique is proposed, using the adjustment of the coupling time, and applied to a two-qubit computing system. A general criteria for constructing a DF-projected subspace from the SKE is discussed. Finally, a proposal for using triangulation to realize a decoherence-free subsystem based on SKE is presented. The concrete formulation for a two-qubit model is given exactly. Our approach is general and appears to be applicable to any type of decoherence

  7. Optical decoherence and persistent spectral hole burning in Er3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Macfarlane, R.M.; Boettger, T.; Sun, Y.; Cone, R.L.; Babbitt, W.R.

    2010-01-01

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er 3+ :LiNbO 3 . Effects of spectral diffusion due to interactions between Er 3+ ions and between the Er 3+ ion and 7 Li and 93 Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  8. Quantum Biology at the Cellular Level - elements of the research program

    OpenAIRE

    Bordonaro, Michael; Ogryzko, Vasily

    2013-01-01

    Quantum Biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (Quantum Biology at Cellular Level), a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. Key words. decoherence, macroscopic superpositions, basis-dependence, formal superposition, non-classical correlations,...

  9. On the consistent effect histories approach to quantum mechanics

    International Nuclear Information System (INIS)

    Rudolph, O.

    1996-01-01

    A formulation of the consistent histories approach to quantum mechanics in terms of generalized observables (POV measures) and effect operators is provided. The usual notion of open-quote open-quote history close-quote close-quote is generalized to the notion of open-quote open-quote effect history.close-quote close-quote The space of effect histories carries the structure of a D-poset. Recent results of J. D. Maitland Wright imply that every decoherence functional defined for ordinary histories can be uniquely extended to a bi-additive decoherence functional on the space of effect histories. Omngrave es close-quote logical interpretation is generalized to the present context. The result of this work considerably generalizes and simplifies the earlier formulation of the consistent effect histories approach to quantum mechanics communicated in a previous work of this author. copyright 1996 American Institute of Physics

  10. Decoherence and quantum walks: Anomalous diffusion and ballistic tails

    International Nuclear Information System (INIS)

    Prokof'ev, N. V.; Stamp, P. C. E.

    2006-01-01

    The common perception is that strong coupling to the environment will always render the evolution of the system density matrix quasiclassical (in fact, diffusive) in the long time limit. We present here a counterexample, in which a particle makes quantum transitions between the sites of a d-dimensional hypercubic lattice while strongly coupled to a bath of two-level systems that 'record' the transitions. The long-time evolution of an initial wave packet is found to be most unusual: the mean square displacement of the particle density matrix shows long-range ballistic behavior, with 2 >∼t 2 , but simultaneously a kind of weakly localized behavior near the origin. This result may have important implications for the design of quantum computing algorithms, since it describes a class of quantum walks

  11. Characterization of Unruh channel in the context of open quantum systems

    International Nuclear Information System (INIS)

    Banerjee, Subhashish; Alok, Ashutosh Kumar; Omkar, S.; Srikanth, R.

    2017-01-01

    In this work, we study an important facet of field theories in curved spacetime, viz. the Unruh effect, by making use of ideas of statistical mechanics and quantum foundations. Aspects of decoherence and dissipation, natural artifacts of open quantum systems, along with foundational issues such as the trade-off between coherence and mixing as well as various aspects of quantum correlations are investigated in detail for the Unruh effect. We show how the Unruh effect can be quantified mathematically by the Choi matrix approach. We study how environmentally induced decoherence modifies the effect of the Unruh channel. The differing effects of a dissipative or non-dissipative environment are noted. Further, useful parameters characterizing channel performance such as gate and channel fidelity are applied here to the Unruh channel, both with and without external influences. Squeezing, which is known to play an important role in the context of particle creation, is shown to be a useful resource in a number of scenarios.

  12. Microscopic derivation of open quantum Brownian motion: a particular example

    International Nuclear Information System (INIS)

    Sinayskiy, Ilya; Petruccione, Francesco

    2015-01-01

    The microscopic derivation of a new type of Brownian motion, namely open quantum Brownian motion (OQBM) is presented. The quantum master equation for OQBM is derived for a weakly driven system interacting with a decoherent environment. Examples of the dynamics for initial Gaussian and non-Gaussian distributions are presented. Both examples demonstrate convergence of the OQBM dynamics to Gaussian distributions. (topical article)

  13. Quantum computing based on space states without charge transfer

    International Nuclear Information System (INIS)

    Vyurkov, V.; Filippov, S.; Gorelik, L.

    2010-01-01

    An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.

  14. Dynamics of Quantum Entanglement in Reservoir with Memory Effects

    International Nuclear Information System (INIS)

    Hao Xiang; Sha Jinqiao; Sun Jian; Zhu Shiqun

    2012-01-01

    The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants. (general)

  15. The effect of chromatic decoherence on transverse injection oscillation damping

    International Nuclear Information System (INIS)

    Jackson, G.P.

    1993-01-01

    In order to eliminate or reduce transverse emittance growth during transfers between accelerators, transverse damper systems are used to eliminate residual dipole oscillations before phase space dilution takes place. In transfers where the target accelerator has high chromaticity or the beam has a large momentum spread, phase space dilution due to chromatic decoherence can take place on a scale short compared to the damping time of the transverse injection oscillation damper. The effect of the damper on the beam phase space is not clear while the coherent oscillation is suppressed by this decoherence. The purpose of this paper is to quantify the effectiveness of dampers at eliminating emittance blowup at transfers in the presence of chromatic decoherence

  16. Quantum mechanics for pedestrians

    CERN Document Server

    Pade, Jochen

    2014-01-01

    This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in detail current issues such as interaction-free quantum measurements, neutrino oscillations, various topics in the field of quantum information as well as fundamental problems and epistemological questions, such as the measurement problem, entanglement, Bell's inequality, decoherence, and the realism debate. A chapter on current interpretations of quantum mechanics concludes the book. To develop quickly and clearly the main principles of quantum mechanics and its mathematical formulation, there is a systematic change between wave mechanics and algebraic representation in the first chapters. The required mathematical tools are introduced step by step. Moreover, the appendix coll...

  17. Quantum chaos in atom optics

    International Nuclear Information System (INIS)

    D'Arcy, Michael Brendan

    2002-01-01

    This thesis presents an account of experimental and numerical investigations of two quantum systems whose respective classical analogues are chaotic. These are the δ-kicked rotor, a paradigm in classical chaos theory, and the novel δ-kicked accelerator, created by application of a constant external acceleration or torque to the rotor. The experimental realisation of these systems has been achieved by the exposure of laser-cooled caesium atoms to approximate δ-kicks from a pulsed, high-intensity, vertical standing wave of laser light. Gravity's effect on the atoms can be controlled by appropriate shifting of the profile of the standing wave. Numerical simulations of the systems are based on a diffractive model of the potential's effect. Each system's dynamics are characterised by the final form of the momentum distribution and the dependence of the atoms' mean kinetic energy on the number and time period of the δ-kicks. The phenomena of dynamical localisation and quantum resonances in the δ-kicked rotor, which have no counterparts in the system's classical analogue, are observed and investigated. Similar experiments on the δ-kicked accelerator reveal the striking phenomenon of the quantum accelerator mode, in which a large momentum is transferred to a substantial fraction of the atomic ensemble. This feature, absent in the system's classical analogue, is characterised and an analytic explanation is presented. The effect on each quantum system of decoherence, introduced through spontaneous emission in the atoms, is examined and comparison is made with the results of classical simulations. While having little effect on the classical systems, the level of decoherence used is found to degrade quantum signatures of behaviour. Classical-like behaviour is, to some extent, restored, although significant quantum features remain. Possible applications of the quantum accelerator mode are discussed. These include use as a tool in atom optics and interferometry, a

  18. Geometric picture of quantum discord for two-qubit quantum states

    International Nuclear Information System (INIS)

    Shi Mingjun; Jiang Fengjian; Sun Chunxiao; Du Jiangfeng

    2011-01-01

    Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find an analytical expression for quantum discord is an intractable task. Exact results are known only for very special states, namely two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results on X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytical results on quantum discord have not yet been obtained. Based on the support of numerical computations, some conjectures are proposed to help us establish the geometric picture. We find that the geometric picture for these states has an intimate relationship with that for X states. Thereby, in some cases, analytical expressions for classical correlations and quantum discord can be obtained.

  19. Application of quantum Darwinism to a structured environment

    Science.gov (United States)

    Pleasance, Graeme; Garraway, Barry M.

    2017-12-01

    Quantum Darwinism extends the traditional formalism of decoherence to explain the emergence of classicality in a quantum universe. A classical description emerges when the environment tends to redundantly acquire information about the pointer states of an open system. In light of recent interest, we apply the theoretical tools of the framework to a qubit coupled with many bosonic subenvironments. We examine the degree to which the same classical information is encoded across collections of (i) complete subenvironments and (ii) residual "pseudomode" components of each subenvironment, the conception of which provides a dynamic representation of the reservoir memory. Overall, significant redundancy of information is found as a typical result of the decoherence process. However, by examining its decomposition in terms of classical and quantum correlations, we discover classical information to be nonredundant in both cases i and ii. Moreover, with the full collection of pseudomodes, certain dynamical regimes realize opposite effects, where either the total classical or quantum correlations predominantly decay over time. Finally, when the dynamics are non-Markovian, we find that redundant information is suppressed in line with information backflow to the qubit. By quantifying redundancy, we concretely show it to act as a witness to non-Markovianity in the same way as the trace distance does for nondivisible dynamical maps.

  20. Quantum Brownian motion in a bath of parametric oscillators: A model for system-field interactions

    International Nuclear Information System (INIS)

    Hu, B.L.; Matacz, A.

    1994-01-01

    The quantum Brownian motion paradigm provides a unified framework where one can see the interconnection of some basic quantum statistical processes such as decoherence, dissipation, particle creation, noise, and fluctuation. The present paper continues the investigation begun in earlier papers on the quantum Brownian motion in a general environment via the influence functional formalism. Here, the Brownian particle is coupled linearly to a bath of the most general time-dependent quadratic oscillators. This bath of parametric oscillators minics a scalar field, while the motion of the Brownian particle modeled by a single oscillator could be used to depict the behavior of a particle detector, a quantum field mode, or the scale factor of the Universe. An important result of this paper is the derivation of the influence functional encompassing the noise and dissipation kernels in terms of the Bogolubov coefficients, thus setting the stage for the influence functional formalism treatment of problems in quantum field theory in curved spacetime. This method enables one to trace the source of statistical processes such as decoherence and dissipation to vacuum fluctuations and particle creation, and in turn impart a statistical mechanical interpretation of quantum field processes. With this result we discuss the statistical mechanical origin of quantum noise and thermal radiance from black holes and from uniformly accelerated observers in Minkowski space as well as from the de Sitter universe discovered by Hawking, Unruh, and Gibbons and Hawking. We also derive the exact evolution operator and master equation for the reduced density matrix of the system interacting with a parametric oscillator bath in an initial squeezed thermal state. These results are useful for decoherence and back reaction studies for systems and processes of interest in semiclassical cosmology and gravity. Our model and results are also expected to be useful for related problems in quantum optics

  1. The quantum dynamics of two qubits inside two distant microcavities connected via a single-mode optical fiber

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha; Duong, Hai Trieu

    2010-01-01

    For application to studying the transmission of quantum information, also called quantum communication, between two identical qubits placed inside two identical single-mode microcavities connected via a single-mode optical fiber, the time evolution of this system is investigated. In the Markovian approximation, the von Neumann equation for its reduced density matrix contains a completely positive linear operator called the Liouvillian operator describing the decoherence of this system due to its interaction with the environment. By using the Linblad formula for the Liouvillian operator, a system of rate equations can be derived. In the special case of resonance between the energy difference of two states in each qubit and the energy of the fiber mode, the rate equations for the system excited up to the first level are solved in first order approximation with respect to the decoherence constants. It is shown that when there is no decoherence, the perfect quantum state transmission between two qubits can take place if the physical parameters of the system satisfy definite conditions. A possible extension to studying the system excited to high energy states is also discussed

  2. Quantum opto-mechanics with micromirrors : combining nano-mechanics with quantum optics

    International Nuclear Information System (INIS)

    Groeblacher, S.

    2010-01-01

    This work describes more than four years of research on the effects of the radiation-pressure force of light on macroscopic mechanical structures. The basic system studied here is a mechanical oscillator that is highly reflective and part of an optical resonator. It interacts with the optical cavity mode via the radiation-pressure force. Both the dynamics of the mechanical oscillation and the properties of the light field are modified through this interaction. In our experiments we use quantum optical tools (such as homodyning and down-conversion) with the goal of ultimately showing quantum behavior of the mechanical center of mass motion. In this thesis we present several experiments that pave the way towards this goal and when combined should allow the demonstration of the envisioned quantum phenomena, including entanglement, teleportation and Schroeodinger cat states. The study of quantum behavior of truly macroscopic systems is a long outstanding goal, which will help to answer some of the most fundamental questions in quantum physics today: Why is the world around us classical and not quantum? Is there a size- or mass-limit to systems for them to behave according to quantum mechanics? Is quantum theory complete or do we have to extend it to include mechanisms such as decoherence? Can we use the quantum nature of macroscopic objects to, for example, improve the measurement precision of classical apparatuses? The experiments discussed in this thesis include the very first passive radiation-pressure cooling of a mechanical oscillator in a cryogenic optical resonator, as well as the experimental demonstration of radiation-pressure cooling close to the mechanical quantum ground state. Cooling of the mechanical motion is an important pre-condition for observing quantum effects of the mechanical oscillator. In another experiment, we have demonstrated that we are able to enter the strong-coupling regime of the optomechanical system a regime where coherent energy

  3. ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings

    International Nuclear Information System (INIS)

    Rodolfo, B.

    1999-01-01

    These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non-disturbing and Schroedinger-cat-like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy, Science and Technology database

  4. Jets in QCD media: From color coherence to decoherence

    International Nuclear Information System (INIS)

    Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2012-01-01

    We investigate soft gluon radiation off a quark-antiquark antenna in both color singlet and octet configurations traversing a dense medium. We demonstrate that, in both cases, multiple scatterings lead to a gradual decoherence of the antenna radiation as a function of the medium density. In particular, in the limit of a completely opaque medium, total decoherence is obtained, i.e., the quark and the antiquark radiate as independent emitters in vacuum, thus losing memory of their origin.

  5. A Rout to Protect Quantum Gates constructed via quantum walks from Noises.

    Science.gov (United States)

    Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan

    2018-05-08

    The continuous-time quantum walk on a one-dimensional graph of odd number of sites with an on-site potential at the center is studied. We show that such a quantum-walk system can construct an X-gate of a single qubit as well as a control gate for two qubits, when the potential is much larger than the hopping strength. We investigate the decoherence effect and find that the coherence time can be enhanced by either increasing the number of sites on the graph or the ratio of the potential to the hopping strength, which is expected to motivate the design of the quantum gate with long coherence time. We also suggest several experimental proposals to realize such a system.

  6. Decoherence plus spontaneous symmetry breakdown generate the ''ohmic'' view of the state-vector collapse

    International Nuclear Information System (INIS)

    Ne'eman, Y.; Univ. of Texas, Austin, TX

    1993-06-01

    The collapse of the state-vector is described as a phase transition due to three features. First, there is the atrophying of indeterminacy for macroscopic objects -- including the measurement apparatus. Secondly, there is the environment decohering mechanism, as described by Zeh, Joos and others -- dominant in macroscopic objects. As a result, the classical background, an input in the Copenhagen prescriptions, is generated as an ''effective'' picture, similar to the ''effective'' introduction of Ohmic resistance or of thermodynamical variables, when going from the micro to the macroscopic; in this case, the collectivized substrate is provided by the multiplicity of photon scatterings, etc., on top of the effect of the large number of particles in macroscopic objects. Thirdly, there is the Everett ''branching'', i.e. the materialization of one of the now decoherent states, accompanied by the destruction of the other branches. By definition, quantum indeterminancy represents a symmetry; in a measurement, or in a branching, this symmetry is broken ''spontaneously'', involving a Ginzburg-Landau type potential with asymmetric minima, thus concretizing the quantum ''dice'' without the burden of ''many worlds''. The authors review and systematize the various phase transitions relating quantum to classical phenomena

  7. Comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations

    International Nuclear Information System (INIS)

    Qasimi, Asma Al-; James, Daniel F. V.

    2011-01-01

    Measurements of quantum systems disturb their states. To quantify this nonclassical characteristic, Zurek and Ollivier [Phys. Rev. Lett. 88, 017901 (2001)] introduced the quantum discord, a quantum correlation that can be nonzero even when entanglement in the system is zero. Discord has aroused great interest as a resource that is more robust against the effects of decoherence and offers the exponential speed-up of certain computational algorithms. Here, we study general two-level bipartite systems and give general results on the relationship between discord, entanglement, and linear entropy. We also identify the states for which discord takes a maximal value for a given entropy or entanglement, thus placing strong bounds on entanglement-discord and entropy-discord relations. We find out that although discord and entanglement are identical for pure states, they differ when generalized to mixed states as a result of the difference in the method of generalization.

  8. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  9. Quantum measurements without Schroedinger cat states

    International Nuclear Information System (INIS)

    Spehner, D; Haake, F

    2007-01-01

    We report and give an alternative derivation of some results on a model for a quantum measurement studied in [1]. The measured microscopic system is coupled to the position of a macroscopic pointer, which itself interacts with its environment via its momentum. The entanglement between the system and the pointer produced by their mutual interaction is simultaneous with the decoherence of distinct pointer readings resulting from leakage of information to the environment. After a discussion on the various time scales in the model we calculate the matrix elements of the system-pointer density operator between eigenstates of the measured observable with distinct eigenvalues. In general, the decay with time of these coherences is neither exponential nor gaussian. We determine the decoherence (decay) time in terms of the strength of the system-pointer and pointer-environment couplings. This decoherence time does not depend upon the details of the pointer-bath coupling as soon as it is smaller than the bath correlation time (non-Markov regime). In contrast, in the Markov regime it depends strongly on whether this coupling is Ohmic or super-Ohmic

  10. Quantum measurements without Schroedinger cat states

    Energy Technology Data Exchange (ETDEWEB)

    Spehner, D [Institut Fourier, 100 rue des Maths, 38402 Saint-Martin d' Heres (France); Haake, F [Fachbereich Physik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)

    2007-10-15

    We report and give an alternative derivation of some results on a model for a quantum measurement studied in [1]. The measured microscopic system is coupled to the position of a macroscopic pointer, which itself interacts with its environment via its momentum. The entanglement between the system and the pointer produced by their mutual interaction is simultaneous with the decoherence of distinct pointer readings resulting from leakage of information to the environment. After a discussion on the various time scales in the model we calculate the matrix elements of the system-pointer density operator between eigenstates of the measured observable with distinct eigenvalues. In general, the decay with time of these coherences is neither exponential nor gaussian. We determine the decoherence (decay) time in terms of the strength of the system-pointer and pointer-environment couplings. This decoherence time does not depend upon the details of the pointer-bath coupling as soon as it is smaller than the bath correlation time (non-Markov regime). In contrast, in the Markov regime it depends strongly on whether this coupling is Ohmic or super-Ohmic.

  11. Postquench prethermalization in a disordered quantum fluid of light

    Science.gov (United States)

    Larré, Pierre-Élie; Delande, Dominique; Cherroret, Nicolas

    2018-04-01

    We study the coherence of a disordered and interacting quantum light field after propagation along a nonlinear optical fiber. Disorder is generated by a cross-phase modulation with a randomized auxiliary classical light field, while interactions are induced by self-phase modulation. When penetrating the fiber from free space, the incoming quantum light undergoes a disorder and interaction quench. By calculating the coherence function of the transmitted quantum light, we show that the decoherence induced by the quench spreads in a light-cone fashion in the nonequilibrium many-body quantum system, leaving the latter prethermalize with peculiar features originating from disorder.

  12. Isotope-based quantum information

    CERN Document Server

    G Plekhanov, Vladimir

    2012-01-01

    The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial...

  13. Macroscopic quantum phenomena from the large N perspective

    International Nuclear Information System (INIS)

    Chou, C H; Hu, B L; Subasi, Y

    2011-01-01

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori

  14. The classical limit of non-integrable quantum systems, a route to quantum chaos

    International Nuclear Information System (INIS)

    Castagnino, Mario; Lombardi, Olimpia

    2006-01-01

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state

  15. The classical limit of non-integrable quantum systems, a route to quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)

    2006-05-15

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.

  16. A quantum measure of the multiverse

    International Nuclear Information System (INIS)

    Vilenkin, Alexander

    2014-01-01

    It has been recently suggested that probabilities of different events in the multiverse are given by the frequencies at which these events are encountered along the worldline of a geodesic observer (the ''watcher''). Here I discuss an extension of this probability measure to quantum theory. The proposed extension is gauge-invariant, as is the classical version of this measure. Observations of the watcher are described by a reduced density matrix, and the frequencies of events can be found using the decoherent histories formalism of Quantum Mechanics (adapted to open systems). The quantum watcher measure makes predictions in agreement with the standard Born rule of QM

  17. A quantum measure of the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2014-05-01

    It has been recently suggested that probabilities of different events in the multiverse are given by the frequencies at which these events are encountered along the worldline of a geodesic observer (the ''watcher''). Here I discuss an extension of this probability measure to quantum theory. The proposed extension is gauge-invariant, as is the classical version of this measure. Observations of the watcher are described by a reduced density matrix, and the frequencies of events can be found using the decoherent histories formalism of Quantum Mechanics (adapted to open systems). The quantum watcher measure makes predictions in agreement with the standard Born rule of QM.

  18. Quantum physics of nature. Theory, experiment and interpretation. in collaboration with 6th European QIPC workshop. General Information, program, abstracts

    International Nuclear Information System (INIS)

    Arndt, M.; Aspelmeyer, M.; Brukner, C.; Weihs, G.; Jennewein, T.; Schmiedmayer, J.; Weinfurter, H.; Zukowski, M.

    2005-01-01

    Quantum information processing and communication is one of the of the key research areas within the European community. Therefore these two events were dedicated to present the advances in this area. Papers dealing with topics such as atom-photon entanglement, matter waves and quantum gases, decoherence, photonic entanglement, solid state quantum physics, cooling and trapping of atoms and molecules, quantum communication, quantum computation, quantum information and quantum cryptography were addressed. (nevyjel)

  19. Dual-probe decoherence microscopy: probing pockets of coherence in a decohering environment

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Müller, Clemens; Marthaler, Michael; Schön, Gerd

    2012-01-01

    We study the use of a pair of qubits as a decoherence probe of a nontrivial environment. This dual-probe configuration is modelled by three two-level systems (TLSs), which are coupled in a chain in which the middle system represents an environmental TLS. This TLS resides within the environment of the qubits and therefore its coupling to perturbing fluctuations (i.e. its decoherence) is assumed much stronger than the decoherence acting on the probe qubits. We study the evolution of such a tripartite system including the appearance of a decoherence-free state (dark state) and non-Markovian behaviour. We find that all parameters of this TLS can be obtained from measurements of one of the probe qubits. Furthermore, we show the advantages of two qubits in probing environments and the new dynamics imposed by a TLS that couples to two qubits at once. (paper)

  20. Quantum information processing : science & technology.

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Rebecca; Carroll, Malcolm S.; Tarman, Thomas David

    2010-09-01

    Qubits demonstrated using GaAs double quantum dots (DQD). The qubit basis states are the (1) singlet and (2) triplet stationary states. Long spin decoherence times in silicon spurs translation of GaAs qubit in to silicon. In the near term the goals are: (1) Develop surface gate enhancement mode double quantum dots (MOS & strained-Si/SiGe) to demonstrate few electrons and spin read-out and to examine impurity doped quantum-dots as an alternative architecture; (2) Use mobility, C-V, ESR, quantum dot performance & modeling to feedback and improve upon processing, this includes development of atomic precision fabrication at SNL; (3) Examine integrated electronics approaches to RF-SET; (4) Use combinations of numerical packages for multi-scale simulation of quantum dot systems (NEMO3D, EMT, TCAD, SPICE); and (5) Continue micro-architecture evaluation for different device and transport architectures.

  1. Experimental all-optical one-way quantum computing

    International Nuclear Information System (INIS)

    Prevedel, R.

    2009-01-01

    strategy space, as they can also choose between superposition of classical input states while their choices get entangled. Evaluating the payoff function of this game for different strategy sets, we were able to experimentally show that the so-called 'dilemma', that occurs in the classical version of this game, can be resolved in the quantum domain. unfortunately, one of the main obstacles on the road towards the realization of large-scale quantum computers is decoherence, the ubiquitous loss of information encoded in a quantum system due to its uncontrollable interaction with an environment. One possible approach to overcome this challenge is to perform the computation in a so-called decoherence-free subspace (DFS). Building up on previous work on concepts of DFS we have been able to theoretically adapt these concepts to the model of one-way quantum computing. This allowed us to demonstrate for the first time the decoherence-free execution of a one-way quantum computing protocol while the photons were exposed to severe phase-damping noise. Remarkable protection of information was accomplished, delivering nearly ideal outcomes. Although the experiments presented in this thesis are proof-of-principle they are of great significance in the field of QIP and will hopefully pave the way for ever more exciting inventions and experimental demonstrations in the future. (author) [de

  2. Decoherence, matter effect, and neutrino hierarchy signature in long baseline experiments

    Science.gov (United States)

    Coelho, João A. B.; Mann, W. Anthony

    2017-11-01

    Environmental decoherence of oscillating neutrinos of strength Γ =(2.3 ±1.1 )×10-23 GeV can explain how maximal θ23 mixing observed at 295 km by T2K appears to be nonmaximal at longer baselines. As shown recently by R. Oliveira, the Mikheyev-Smirnov-Wolfenstein matter effect for neutrinos is altered by decoherence: in normal (inverted) mass hierarchy, a resonant enhancement of νμ(ν¯ μ)→νe(ν¯ e) occurs for 6 decoherence at the rated strength may be detectable as an excess of charged-current νe events in the full νμ exposures of MINOS + and OPERA.

  3. Materials Frontiers to Empower Quantum Computing

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarrao, John Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richardson, Christopher [Laboratory for Physical Sciences, College Park, MD (United States)

    2015-06-11

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.

  4. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    variations of ion traps, including (1) the cylindrically symmetric 3D ring trap; (2) the linear trap with a combination of cavity QED; (#) the symmetric...concepts of quantum information. The major demonstration has been the test of a Bell inequality as demonstrated by Rowe et al. [50] and a decoherence...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic- parabolic

  5. Twenty-first century quantum mechanics Hilbert space to quantum computers mathematical methods and conceptual foundations

    CERN Document Server

    Fano, Guido

    2017-01-01

    This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used to construct spinors, and on conceptual problems associated with measurement, superposition, and decoherence in quantum systems. Here, due attention is paid to Bell’s inequality and the possible existence of hidden variables. Finally, progression toward quantum computation is examined in detail: if quantum computers can be made practicable, enormous enhancements in computing power, artificial intelligence, and secure communication will result...

  6. Decoherence control mechanisms of a charged magneto-oscillator in contact with different environments

    Science.gov (United States)

    Rajesh, Asam; Bandyopadhyay, Malay; Jayannavar, Arun M.

    2017-12-01

    In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J (ω)), and also on different system and reservoir parameters, e.g., external magnetic field (rc), confinement length (r0), temperature (T), cut-off frequency of reservoir spectrum (ωcut), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., rc, r0, T and τ.

  7. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  8. Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection

    International Nuclear Information System (INIS)

    Yelin, S.F.; Hemmer, P.R.

    2002-01-01

    A novel class of coherent nonlinear optical phenomena, involving induced transparency in semiconductor quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells

  9. Quantum trajectory approach to the geometric phase: open bipartite systems

    International Nuclear Information System (INIS)

    Yi, X X; Liu, D P; Wang, W

    2005-01-01

    Through the quantum trajectory approach, we calculate the geometric phase acquired by a bipartite system subjected to decoherence. The subsystems that compose the bipartite system interact with each other and then are entangled in the evolution. The geometric phase due to the quantum jump for both the bipartite system and its subsystems is calculated and analysed. As an example, we present two coupled spin-1/2 particles to detail the calculations

  10. Trapped-ion quantum logic gates based on oscillating magnetic fields

    Science.gov (United States)

    Ospelkaus, Christian; Langer, Christopher E.; Amini, Jason M.; Brown, Kenton R.; Leibfried, Dietrich; Wineland, David J.

    2009-05-01

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing. With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ions and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering decoherence, a fundamental source of decoherence in laser-mediated gates. A potentially beneficial environment for the implementation of such schemes is a cryogenic ion trap, because small length scale traps with low motional heating rates can be realized. A cryogenic ion trap experiment is currently under construction at NIST.

  11. Dynamics of Entropy in Quantum-like Model of Decision Making

    Science.gov (United States)

    Basieva, Irina; Khrennikov, Andrei; Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu

    2011-03-01

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices. By using this equilibrium point Alice determines her mixed (i.e., probabilistic) strategy with respect to Bob. Thus our model is a model of thinking through decoherence of initially pure mental state. Decoherence is induced by interaction with memory and external environment. In this paper we study (numerically) dynamics of quantum entropy of Alice's state in the process of decision making. Our analysis demonstrates that this dynamics depends nontrivially on the initial state of Alice's mind on her own actions and her prediction state (for possible actions of Bob.)

  12. Optical decoherence and persistent spectral hole burning in Er{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Macfarlane, R.M. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); IBM Almaden Research Center, San Jose, CA 95120 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Cone, R.L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er{sup 3+}:LiNbO{sub 3}. Effects of spectral diffusion due to interactions between Er{sup 3+} ions and between the Er{sup 3+} ion and {sup 7}Li and {sup 93}Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  13. Quantum communication in spin star configuration

    International Nuclear Information System (INIS)

    Deng Hongliang; Fang Ximing

    2008-01-01

    This paper considers a generalized spin star system which can be solved exactly, with the central spin-½ system embedded in an outer ring of N spin-½ particles(denoted as spin bath). In this model, in addition to the central-outer interaction, each pair of nearest neighbour of the bath interacts within themselves. The general expressions of the eigenstates as well as the eigenvalues of the model are derived with the use of the symmetries of system. It analyses the quantum state transfer and the dynamical behaviour of entanglement created during quantum communication. It also analyses the efficiency of the configuration regarded as quantum phase covariant clone or decoherence model. Some interesting results are discovered concerning the properties of quantum communication in this model

  14. Quantum state propagation in linear photonic bandgap structures

    Czech Academy of Sciences Publication Activity Database

    Severini, S.; Tricca, S.; Sibilia, C.; Peřina, Jan

    2004-01-01

    Roč. 6, - (2004), s. 110-114 ISSN 1464-4266 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : photonic crystals * coupled mode theory * decoherence * quantum states propagation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.746, year: 2004

  15. Quantum coherence dynamics of a three-level atom in a two-mode field

    International Nuclear Information System (INIS)

    Solovarov, N. K.

    2008-01-01

    The correlated dynamics of a three-level atom resonantly coupled to an electromagnetic cavity field is calculated (Λ, V, and L models). A diagrammatic representation of quantum dynamics is proposed for these models. As an example, Λ-atom dynamics is examined to demonstrate how the use of conventional von Neumann's reduction leads to internal decoherence (disentanglement-induced decoherence) and to the absence of atomic coherence under multiphoton excitation. The predicted absence of atomic coherence is inconsistent with characteristics of an experimentally observed atom-photon entangled state. It is shown that the correlated reduction of a composite quantum system proposed in [18] qualitatively predicts the occurrence and evolution of atomic coherence under multiphoton excitation if a seed coherence is introduced into any subsystem (the atom or a cavity mode)

  16. Repeated interactions in open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  17. Physics-based mathematical models for quantum devices via experimental system identification

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, S G; Oi, D K L; Devitt, S J [Department of Applied Maths and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA (United Kingdom); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: sgs29@cam.ac.uk

    2008-03-15

    We consider the task of intrinsic control system identification for quantum devices. The problem of experimental determination of subspace confinement is considered, and simple general strategies for full Hamiltonian identification and decoherence characterization of a controlled two-level system are presented.

  18. Quantum Control of Open Systems and Dense Atomic Ensembles

    Science.gov (United States)

    DiLoreto, Christopher

    Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated

  19. Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes

    Science.gov (United States)

    Hu, Xuedong; You, J. Q.; Nori, Franco

    2005-03-01

    Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we discuss an encoding approachootnotetextJ.Q. You, X.Hu, and F. Nori, cond-mat/0407423. to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states, for which we calculate the dephasing and relaxation rates using a master equation approach. Our results show that the inter-box Coulomb correlation can significantly suppress decoherence of this two-level system by reducing the strength of the system-environment interaction, making it a promising candidate as a logical qubit, encoded using two CPBs.

  20. Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    YAN Xue-Qun; SHAO Bin; ZOU Jian

    2007-01-01

    We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.

  1. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M [Grupo de Optica e Informacion Cuantica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: rdguerrerom@unal.edu.co, E-mail: rrreyg@unal.edu.co, E-mail: kmfonsecar@unal.edu.co

    2009-03-13

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model.

  2. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    International Nuclear Information System (INIS)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M

    2009-01-01

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model

  3. An Invitation to the Mathematics of Topological Quantum Computation

    International Nuclear Information System (INIS)

    Rowell, E C

    2016-01-01

    Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials. (paper)

  4. Relationship between quantum walks and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.

    2010-01-01

    Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.

  5. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, Heike

    2012-07-04

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  6. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    International Nuclear Information System (INIS)

    Schwager, Heike

    2012-01-01

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  7. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information

    International Nuclear Information System (INIS)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2006-01-01

    We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states for a model universe consisting of one system and many environments: the first consisting of arbitrary states, and the second consisting of 'singly branching' states consistent with a simple decoherence model. Typical states from the random ensemble do not store information about the system redundantly, but information stored in branching states has a redundancy proportional to the environment's size. We compute the specific redundancy for a wide range of model universes, and fit the results to a simple first-principles theory. Our results show that the presence of redundancy divides information about the system into three parts: classical (redundant); purely quantum; and the borderline, undifferentiated or 'nonredundant', information

  8. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information

    Science.gov (United States)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2006-06-01

    We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states for a model universe consisting of one system and many environments: the first consisting of arbitrary states, and the second consisting of “singly branching” states consistent with a simple decoherence model. Typical states from the random ensemble do not store information about the system redundantly, but information stored in branching states has a redundancy proportional to the environment’s size. We compute the specific redundancy for a wide range of model universes, and fit the results to a simple first-principles theory. Our results show that the presence of redundancy divides information about the system into three parts: classical (redundant); purely quantum; and the borderline, undifferentiated or “nonredundant,” information.

  9. Preparation of three- and four-qubit decoherence-free states via Zeno-like measurements

    International Nuclear Information System (INIS)

    Shao, Xiao-Qiang; Zhang, Shou; Zhao, Yong-Fang; Chen, Li; Yeon, Kyu-Hwang

    2010-01-01

    Enlightened by the idea of purification through Zeno-like measurements (Nakazato et al 2003 Phys. Rev. Lett. 90 060401), we propose a scheme for generating three- and four-qubit decoherence-free states with respect to collective amplitude damping. The whole system is in a star configuration of a spin network and the outer spin qubits construct the decoherence-free state via measuring the state of central spin qubit at intervals of τ repeatedly. An interesting feature is found: namely, that in order to prepare the three-qubit decoherence-free state successfully, the value of τ for the projected time-evolution operator must be set definitely, while this restrictive condition is relaxed for achieving the four-qubit decoherence-free state. The simulation results reveal that the fidelity approaches one asymptotically, and the corresponding success probability reaches a stable value by increasing the number of measurements N.

  10. Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine

    Science.gov (United States)

    Lin, Jin-Zhong

    2018-05-01

    We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.

  11. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  12. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  13. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    Science.gov (United States)

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.

  14. Philosophical perspectives on quantum chaos: Models and interpretations

    Science.gov (United States)

    Bokulich, Alisa Nicole

    2001-09-01

    The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and

  15. Macroscopic quantum systems and gravitational phenomena

    International Nuclear Information System (INIS)

    Pikovski, I.

    2014-01-01

    Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author) [de

  16. Deconstructing quantum decoherence in atmospheric turbulence

    CSIR Research Space (South Africa)

    Roux, FS

    2012-06-01

    Full Text Available )Ep(r1)E∗q (r2) × [ 1− dzD0(r1 − r2)2 ] d2r1 d2r2 – p. 16/35 Evolution equation ∂zρmn(z) = − 1 2 ∑ pq ρpq(z) ∫ E∗m(r1)En(r2) ×Ep(r1)E∗q (r2)D0(r1 − r2) d2r1 d2r2 = ∑ pq Tmnpq ρpq(z) 1. Extend to bi-partite case 2. Solve the equation to find ρ 3... ... – p. 19/35 Positivity of the IPE Infinitesimal propagation as a quantum operation: ρ(z + dz) = dU ρ(z) dU † where dU = U(z → z + dz) Ensemble averaging: ρ(z + dz) = N ∑ n 1 N dUn ρ(z) dU † n where dUn — infinitesimal propagation through different...

  17. Entanglement and Teleportation of Pair Cat States in Amplitude Decoherence Channel

    International Nuclear Information System (INIS)

    Xu Hangshi; Xu Jingbo

    2009-01-01

    The dynamic behavior of the entanglement for the pair cat states in the amplitude decoherence channel is studied by adopting the entanglement of formation determined by the concurrence. Then, we consider the teleportation by using joint measurements of the photon-number sum and phase difference with the pair cat states as an entangle resource and discuss the influence of amplitude decoherence on the mean fidelity of the teleportation.

  18. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.

    2017-10-01

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  19. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    Science.gov (United States)

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  20. Revival and robustness of Bures distance discord under decoherence channels

    International Nuclear Information System (INIS)

    Shi, Jia-dong; Wang, Dong; Ma, Yang-cheng; Ye, Liu

    2016-01-01

    In this paper, we demonstrate the revival and robustness of Bures distance discord in comparison with entanglement under local decoherent evolutions. The results show that in depolarizing channel Bures distance discord revives after a dark point of time, while entanglement will damp into death without revival. In addition, in hybrid channel the declining initial condition can enable Bures distance discord to decay more smoothly within a limited time, but speed up the death of entanglement. In this sense, Bures distance discord is typically more robust against decoherence than entanglement. Furthermore, we also provide a geometric interpretation concerning these phenomena. - Highlights: • Bures distance discord is more robust against decoherence than entanglement. • Bures distance discord revives after a dark point of time, while entanglement damps to death. • The initial condition enables Bures distance discord to damp smoothly, but it speeds up the death of entanglement. • A geometric interpretation concerning these phenomena has been provided.

  1. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  2. Simulation of quantum dynamics with integrated photonics

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  3. Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Huelga, Susana F

    2014-01-01

    Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)

  4. Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility

    Science.gov (United States)

    Zangara, Pablo R.; Pastawski, Horacio M.

    2017-03-01

    If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in

  5. Decoherence of superposition states in trapped ions

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available This paper investigates the decoherence of superpositions of hyperfine states of 9Be+ ions due to spontaneous scattering of off-resonant light. It was found that, contrary to conventional wisdom, elastic Raleigh scattering can have major...

  6. Quantum coding with finite resources

    Science.gov (United States)

    Tomamichel, Marco; Berta, Mario; Renes, Joseph M.

    2016-01-01

    The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995

  7. Self-assembling hybrid diamond–biological quantum devices

    International Nuclear Information System (INIS)

    Albrecht, A; B Plenio, M; Koplovitz, G; Yochelis, S; Paltiel, Y; Retzker, A; Nevo, Y; Shoseyov, O; Jelezko, F; Porath, D

    2014-01-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio–nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications. (papers)

  8. Self-assembling hybrid diamond-biological quantum devices

    Science.gov (United States)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  9. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    Science.gov (United States)

    Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2018-04-01

    Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  10. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    Directory of Open Access Journals (Sweden)

    S. Touzard

    2018-04-01

    Full Text Available Manipulating the state of a logical quantum bit (qubit usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  11. Decoherence effect in neutrinos produced in microquasar jets

    Science.gov (United States)

    Mosquera, M. E.; Civitarese, O.

    2018-04-01

    We study the effect of decoherence upon the neutrino spectra produced in microquasar jets. In order to analyse the precession of the polarization vector of neutrinos we have calculated its time evolution by solving the corresponding equations of motion, and by assuming two different scenarios, namely: (i) the mixing between two active neutrinos, and (ii) the mixing between one active and one sterile neutrino. The results of the calculations corresponding to these scenarios show that the onset of decoherence does not depends on the activation of neutrino-neutrino interactions when realistic values of the coupling are used in the calculations. We discuss also the case of neutrinos produced in windy microquasars and compare the results which those obtained with more conventional models of microquasars.

  12. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit.

    Science.gov (United States)

    Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J; Saito, Shiro

    2015-10-23

    Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

  13. Quantum measurement of coherent tunneling between quantum dots

    International Nuclear Information System (INIS)

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  14. Robust Learning Control Design for Quantum Unitary Transformations.

    Science.gov (United States)

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  15. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    Science.gov (United States)

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high

  16. Combating dephasing decoherence by periodically performing tracking control and projective measurement

    International Nuclear Information System (INIS)

    Zhang Ming; Dai Hongyi; Xi Zairong; Xie Hongwei; Hu Dewen

    2007-01-01

    We propose a scheme to overcome phase damping decoherence by periodically performing open loop tracking control and projective measurement. Although it is impossible to stabilize a qubit subject to Markovian dynamics only by open loop coherent control, one can attain a 'softened' control goal with the help of periodical projective measurement. The 'softened' control objective in our scheme is to keep the state of the controlled qubit to stay near a reference pure state with a high probability for a sufficiently long time. Two suboptimal control problems are given in the sense of trace distance and fidelity, respectively, and they are eventually reduced to the design of a period T. In our scheme, one can choose the period T as long as possible if the 'softened' control goal is attained. This is in contrast to the observation that quantum Zeno effect takes place only if measurements are performed in a very frequent manner, i.e., the period T must be extremely small

  17. Quantum physics an introduction based on photons

    CERN Document Server

    Lvovsky, A I

    2018-01-01

    This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence – concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. The book uses a mathematically simple physical system – photon polarization – as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality. The author adopts a Socratic pedagogy: The student is guided to develop the machinery of quantum physics independently by solving sets of carefully ...

  18. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian; Shao Bin; Zou Jian

    2009-01-01

    In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.

  19. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    International Nuclear Information System (INIS)

    Jian, Zhang; Bin, Shao; Jian, Zou

    2009-01-01

    In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing. (classical areas of phenomenology)

  20. Quantum Mechanics A Modern and Concise Introductory Course

    CERN Document Server

    Bes, Daniel R

    2007-01-01

    Starting from basic principles, the book systematically covers both Heisenberg and Schrödinger realizations of quantum mechanics (in this order). The material traditionally presented in quantum textbooks is illustrated with applications which are (or will become) cornestones of future technologies. The emphasis in the matrix formulation focus the atention on the spin, the most important quantum observable, and paves the way to chapters on quantum information (including crytography, teleportation and computation), on recent tests of quantum physics and on decoherence. Additions and changes found in the second edition include; a more friendly presentation to Hilbert spaces; more practical applications e.g. scanning tunneling microscope (potential barrier); quantum dots (single-particle states in semiconductors); lasers and masers (induced emission); real experiments that have recently provided a qualitative change in the foundations of quantum physics; and an outline of the density matrix formalism as applied ...

  1. Mechanisms of decoherence in electron microscopy.

    Science.gov (United States)

    Howie, A

    2011-06-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Mechanisms of decoherence in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Howie, A., E-mail: ah30@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-06-15

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed.

  3. Mechanisms of decoherence in electron microscopy

    International Nuclear Information System (INIS)

    Howie, A.

    2011-01-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed.

  4. General-purpose parallel simulator for quantum computing

    International Nuclear Information System (INIS)

    Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper

  5. Chaos. Possible underpinnings for quantum mechanics?

    International Nuclear Information System (INIS)

    McHarris, Wm.C.

    2004-01-01

    Alternative, parallel explanations for a number of counter-intuitive concepts connected with the foundations of quantum mechanics can be constructed in terms of nonlinear dynamics. These include ideas as diverse as the statistical exponential decay law and spontaneous symmetry breaking to decoherence itself and the inference from violations of Bell's inequality that local reality is ruled out in hidden variable extensions of quantum mechanics. Such alternative explanations must not be taken as demonstrations of nonlinear underpinnings for quantum mechanics, but they do raise the possibility of their existence. In this article I delve a bit into ideas connected with the exponential decay law and with Bell's inequality as demonstrations. Then an investigation of the Klein-Gordon equation shows that it should not come as a complete surprise that quantum mechanics just might contain fundamental nonlinearities. (author)

  6. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    Science.gov (United States)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In

  7. Storing quantum information in XXZ spin rings with periodically time-controlled interactions

    International Nuclear Information System (INIS)

    Giampaolo, S M; Illuminati, F; Mazzarella, G

    2005-01-01

    We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits

  8. Storing quantum information in XXZ spin rings with periodically time-controlled interactions

    Energy Technology Data Exchange (ETDEWEB)

    Giampaolo, S M; Illuminati, F; Mazzarella, G [Dipartimento di Fisica ' E. R. Caianiello' , Universita di Salerno, INFM UdR di Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, 84081 Baronissi, SA (Italy)

    2005-10-01

    We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits.

  9. Multiparticle quantum superposition and stimulated entanglement by parity selective amplification of entangled states

    International Nuclear Information System (INIS)

    Martini, F. de; Giuseppe, G. di

    2001-01-01

    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement. (orig.)

  10. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    Science.gov (United States)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  11. Quantum coherence and entanglement control for atom-cavity systems

    Science.gov (United States)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  12. Particle trapping induced by the interplay between coherence and decoherence

    International Nuclear Information System (INIS)

    Yi Sangyong; Choi, Mahn-Soo; Kim, Sang Wook

    2009-01-01

    We propose a novel scheme to trap a particle based on a delicate interplay between coherence and decoherence. If the decoherence occurs as a particle is located in the scattering region and subsequently the appropriate destructive interference takes place, the particle can be trapped in the scattering area. We consider two possible experimental realizations of such trapping: a ring attached to a single lead and a ring attached to two leads. Our scheme has nothing to do with a quasi-bound state of the system, but has a close analogy with the weak localization phenomena in disordered conductors.

  13. Proceedings of Waseda international symposium on fundamental physics. New perspectives in quantum physics

    International Nuclear Information System (INIS)

    Ohba, Ichiro; Aizawa, Yoji; Daishido, Tsuneaki; Kurihara, Susumu; Maeda, Kei-ichi; Nakazato, Hiromichi; Tasaki, Shuichi; Yuasa, Kazuya

    2003-11-01

    Waseda International Symposium on Fundamental Physics - New Perspectives in Quantum Physics - was held on November 12-15, 2002 at International Conference Hall (IBUKA HALL), Waseda University, Tokyo, Japan. This symposium was organized to provide an opportunity to verify fundamental physics attainments and to discuss new prospectives in quantum physics in the 21st century. These themes of the symposium were reexamined from all aspects in terms of important key words of the symposium, fundamental quantum theory, quantum coherence and decoherence, quantum chaos, time symmetry breaking, Bose-Einstein condensation and quantum information and computation. Separate abstracts were presented for 12 of the papers in this report. The remaining 40 were considered outside the subject scope of INIS. (J.P.N.)

  14. Blind Quantum Signature with Controlled Four-Particle Cluster States

    Science.gov (United States)

    Li, Wei; Shi, Jinjing; Shi, Ronghua; Guo, Ying

    2017-08-01

    A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.

  15. Entropy of open quantum systems and the Poisson distribution

    International Nuclear Information System (INIS)

    Bashkirov, A.G.; Sukhanov, A.D.

    2000-01-01

    The entropy of the harmonic oscillator and the Klein-Gordan-Fock quantum field with a static source, located in a coherent state, is considered. The expressions for the entropy in both cases coincide with the accuracy up to the numerical multiplier with the entropy for a black hole. Such a coincidence along with the known property of the gravitational field to provide for a decoherence of the quantum system, placed therein, makes it possible to suppose that the vacuum in the black hole vicinity is in a coherent state [ru

  16. A small trapped-ion quantum register

    International Nuclear Information System (INIS)

    Kielpinski, D

    2003-01-01

    We review experiments performed at the National Institute of Standards and Technology on entanglement, Bell's inequality and decoherence-free subspaces (DFSs) in a quantum register of trapped 9 Be + ions. The group of Dr David Wineland has demonstrated entanglement of up to four ions using the technique of Molmer and Sorensen. This method produces the state (|↓↓> + |↑↑>)/√2 for two ions and the state (|↓↓↓↓> + |↑↑↑↑>)/√2 for four ions. The entanglement was generated deterministically in each shot of the experiment. Measurements on the two-ion entangled state violate Bell's inequality at the 8σ level. Because of the high detector efficiency of the apparatus, this experiment closes the detector loophole for Bell's inequality measurements for the first time. This measurement is also the first violation of Bell's inequality by massive particles that does not implicitly assume results from quantum mechanics. The group also demonstrated measurement of an interferometric phase with precision better than the shot-noise limit using a two-ion entangled state. A large-scale version of this scheme could improve the signal-to-noise ratio of atomic clocks by orders of magnitude. Further experiments demonstrated reversible encoding of an arbitrary qubit, originally contained in one ion, into a DFS of two ions. The DFS-encoded qubit resists applied collective dephasing noise and retains coherence under ambient conditions 3.6 times longer than does an unencoded qubit. The encoding method, which uses single-ion gates and the two-ion entangling gate, demonstrates all the elements required for two-qubit universal quantum logic. Finally, we describe an architecture for a large-scale ion trap quantum computer. By performing logic gates on small numbers of ions trapped in separate regions of the array, we take advantage of existing techniques for manipulating small trapped-ion quantum registers while enabling massively parallel gate operation. Encoding the

  17. Active measurement-based quantum feedback for preparing and stabilizing superpositions of two cavity photon number states

    Science.gov (United States)

    Berube-Lauziere, Yves

    The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.

  18. Graphene quantum interference photodetector

    Directory of Open Access Journals (Sweden)

    Mahbub Alam

    2015-03-01

    Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  19. Quantum computer games: Schrödinger cat and hounds

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2012-05-01

    The quantum computer game 'Schrödinger cat and hounds' is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. 'Schrödinger cat and hounds' demonstrates the effects of superposition, destructive and constructive interference, measurements and entanglement. More advanced concepts, like particle-wave duality and decoherence, can also be taught using the game as a model. The game that has an optimal solution in the classical version, can have many different solutions and a new balance of powers in the quantum world. Game-aided lectures were given to high-school students which showed that it is a valid and entertaining teaching platform.

  20. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Li Pengbo; Li Fuli

    2011-01-01

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.