Neubert, Matthias
1996-01-01
Quantum chromodynamics (QCD) is the fundamental theory of the strong interactions. It is local, non-abelian gauge theory descripting the interactions between quarks and gluons, the constituents of hadrons. In these lectures, the basic concepts and ph will be introduced in a pedagogical way. Topics will include : asymptotically free partons, colour and confinement ; non-abelian gauge invariance and quantization ; the running coupling constant ; deep-inelastic scattering and scaling violations ; th chiral and heavy-quark symmetries. Some elementary knowledge of field theory, abelian gauge invariance and Feynman diagrams will be helpful in following the course.
International Nuclear Information System (INIS)
Mosher, A.
1980-01-01
The symposium included lectures covering both the elements and the experimental tests of the theory of quantum chromdynamics. A three day topical conference was included which included the first results from PETRA as well as the latest reports from CERN, Fermilab, and SPEAR experiments. Twenty-one items from the symposium were prepared separately for the data base
Applications of quantum chromodynamics
International Nuclear Information System (INIS)
Field, R.D.
1979-01-01
Perturbative application of the theory of Quantum Chromodynamics (QCQ) are examined and compared with experimental data. Particular emphasis is placed on understanding the similarities and differences between the QCD results and the expectations of the naive parton model
Lectures on quantum chromodynamics
Smilga, Andrei
2001-01-01
Quantum chromodynamics is the fundamental theory of strong interactions. It is a physical theory describing Nature. Lectures on Quantum Chromodynamics concentrates, however, not on the phenomenological aspect of QCD; books with comprehensive coverage of phenomenological issues have been written. What the reader will find in this book is a profound discussion on the theoretical foundations of QCD with emphasis on the nonperturbative formulation of the theory: What is gauge symmetry on the classical and on the quantum level? What is the path integral in field theory? How to define the path integ
Introduction to quantum chromodynamics
International Nuclear Information System (INIS)
Shellard, R.C.
1983-06-01
A pedagogical over view of Quantum Chromodynamics, emphasying its pertubative as well as its non pertubative aspects is given. The renormalization group; aplications of QCD to parton models, gauge theories in a lattice, instantons and the theta angle and problems associated to chiral symmetry breaking are studied. (Author) [pt
Charmonium and quantum chromodynamics
Vainshtein, A I; Zakharov, V I; Novikov, V A; Okun, Lev Borisovich; Shifman, M A
1977-01-01
The properties of levels of charmonium-the bound system consisting of the charmed quark c and antiquark c-are considered. A brief review is given of the experimental data on the different levels of charmonium, and the classification of the states and their decays are discussed. Of the latter, radiative transitions between levels and the annihilation of levels of charmonium to give photons (or lepton pairs) and also light hadrons ( pi , eta and K mesons), are paid the most attention. Such decays have fundamental significance, inasmuch as they are connected in the most direct manner with the properties of quarks and their interactions. The theoretical foundation of the review is quantum chromodynamics-the theory of the interaction of colored quarks and gluons. The review contains the results of calculations performed in the framework of quantum chromodynamics and pertaining to the annihilation decays of charmonium levels and also to other phenomena: photoproduction of charmed particles, leptonic decays of charm...
Perturbative quantum chromodynamics
1989-01-01
This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere. Contents: Factorization of Hard Processes in QCD (J C Collins, D E Soper & G Sterman); Exclusive Processes in Quantum Chromodynamics (S J Brodsky & G P Lepage); Coherence and Physics of QCD Jets (Yu L Dokshitzer, V A Khoze & S I Troyan); Pomeron in Qu
Perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Radyushkin, A.V.
1987-01-01
The latest achievements in perturbative quantum chromodynamics (QCD) relating to the progress in factorization of small and large distances are presented. The following problems are concerned: Development of the theory of Sudakov effects on the basis of mean contour formalism. Development of nonlocal condensate formalism. Calculation of hadron wave functions and hadron distribution functions using QCD method of sum rules. Development of the theory of Regge behaviour in QCD, behaviour of structure functions at small x. Study of polarization effects in hadron processes with high momentum transfer
Perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Reya, E.
1979-12-01
The author gives an introductory lecture into quantum chromodynamics. After a general introduction into the concept of color and a presentation of the QCD Lagrangian the renormalization group and the effective coupling constant are introduced. Then the calculation of deep inelastic lepton-nucleon scattering, scaling violations, factorization at parton distribution, hadronic production of massive lepton pairs and heavy quark flavours, semi-inclusive processes, high-psub(T) reactions, the total hadronic e + e - cross sections, and jets in e + e - annihilation is described. (HSI)
Quantum chromodynamics with advanced computing
International Nuclear Information System (INIS)
Kronfeld, A S
2008-01-01
We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists
Perturbative tests of quantum chromodynamics
International Nuclear Information System (INIS)
Michael, C.
1978-01-01
A review is given of perturbation theory results for quantum chromodynamics and of tests in deep inelastic lepton scattering, electron-positron annihilation, hadronic production of massive dileptons and hadronic large-momentum-transfer processes. (author)
Experimental tests of quantum chromodynamics
International Nuclear Information System (INIS)
Dorfan, J.
1987-04-01
Experimental tests of quantum chromodynamics are discussed in the e + e - continuum, in pp and anti p p collisions, in measurements of α/sub s/ from Υ decays, in deep inelastic lepton scattering, and in the measurement of the photon structure function. A large body of data relating to the testing of quantum chromodynamics is reviewed, showing qualitative agreement between the data from a wide range of processes and QCD. 66 refs., 79 figs
Elements of quantum chromodynamics
International Nuclear Information System (INIS)
Bjorken, J.D.
1979-01-01
The subject of quantum chromodynamics is discussed at length. The introduction motivates the exposition and points out the analogies between QCD and QED. Then, after some assumptions about the nature of QCD, a description is given of what the solution of the theory should look like for three stages of complexity: pure QCD with no fermions or other sources, introduction of superheavy quarks, introduction of the light quarks (u, d, s) with vacuum polarization and pair creation. Next, canonical quantization of QCD by use of a Hamiltonian formulation (in A 0 = 0 gauge) is considered; gauge ambiguities, theta vacua, instantons, etc., are encountered. Then the properties of the three stages noted above are discussed in much greater detail. These follow descriptions of the confinement problem and various approaches to it, as well as of more radical alternatives to QCD, such as the string model or the Pati-Salam program. Included in the summary is an assessment of the current situation. 101 references, 23 figures, 2 tables
Quantum chromodynamics and hadron jets
International Nuclear Information System (INIS)
Dokshitser, Y.L.; Dyakonov, D.I.
1979-07-01
These lectures are devoted to the description of the various properties of hard scattering processes with the participation of hadrons in the framework of Quantum Chromodynamics. We discuss in detail the validity and region of applicability of perturbation theory applied to hadron processes. Particular attention is paid to the question of the structure of quark and gluon jets produced in hard processes (as an example, e + e - annihilation into hadrons). In addition to giving a pedagogical review, we also present new results. (orig.)
New perspectives in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1993-07-01
In these lectures I will discuss three central topics in quantum chromodynamics: (1) the use of light cone quantization and Fock space methods to determine the long and short-distance structure of quark and gluon distributions within hadrons; (2) the role of spin, heavy quarks, and nuclei in unraveling fundamental phenomenological features of QCD; and (3) a new approach to understanding the scale and scheme dependence of perturbative QCD predictions
Quantum Chromodynamic at finite temperature
International Nuclear Information System (INIS)
Magalhaes, N.S.
1987-01-01
A formal expression to the Gibbs free energy of topological defects of quantum chromodynamics (QCD)by using the semiclassical approach in the context of field theory at finite temperature and in the high temperature limit is determined. This expression is used to calculate the free energy of magnetic monopoles. Applying the obtained results to a method in which the free energy of topological defects of a theory may indicate its different phases, its searched for informations about phases of QCD. (author) [pt
Some observations on quantum chromodynamics
International Nuclear Information System (INIS)
t Hooft, G.
1977-01-01
In this treatment of quantum chromodynamics it is argued that the formal series in the coupling constant g diverges badly for all values of g. Due to the renormalization group the series has a direct physical interpretation as an asymptotic expansion for very large (Euclidean) momenta. Although the expansion diverges, the question is whether in combination with physical requirements such as unitarity and causality it does nontheless define a theory uniquely and whether in principle the divergent series can be replaced by a convergent one, no matter how complicated. After a definition of the theory, the complex coupling constant plane for the massless theory and the Borel summation are considered. 14 references
Charm photoproduction and quantum chromodynamics
International Nuclear Information System (INIS)
Novikov, V.A.; Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.
1977-01-01
It is shown that charm photoproduction can be consistently described within asymptotically free field theory. Quantum chromodynamics is used to derive sum rules for the total cross section sigmasub(c)sup(γ) which includes both production of mesons with hidden charm (J/PIS, PIS' and so on) and of charmed particles (pairs DantiD, FantiF and so on). An estimate of sigmasub(c)sup(γ) as a function of energy is given and fast growth is discovered up to energies approximately 1000 GeV. In this energy range sigmasub(c)sup(γ) turns out to be equal to several microbarns. It is argued that measurements of charm photoproduction would give the most direct information on the gluon distribution within a nucleon. All the results are generalized to production of heavier particles containing new quarks. In particular, a simple rescaling law is derived connecting the cross sections for charm and beauty
Light front quantum chromodynamics: Towards phenomenology
Indian Academy of Sciences (India)
Light front dynamics; quantum chromodynamics; deep inelastic scattering. PACS Nos 11.10. ... What makes light front dynamics appealing from high energy phenomenology point of view? .... given in terms of Poincarй generators by. MВ = W P ...
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Relativistic nuclear physics and quantum chromodynamics. Abstracts
International Nuclear Information System (INIS)
1994-01-01
The data of investigations on problems of high energy physics are given. Special attention pays to quantum chromodynamics at large distances, cumulative processes, multiquark states and relativistic nuclear collisions
Quantum chromodynamics on the lattice
International Nuclear Information System (INIS)
Kovacs, T.G.; Pittler, F.
2012-01-01
Complete text of publication follows. Quantum chromodynamics (QCD) is the generally accepted theory of the strong interactions that bind quarks into hadrons like the proton and the neutron. The only systematic way of computing low-energy observables starting from the theory is to discretize it on a space-time lattice and perform large-scale Monte Carlo numerical simulations. In the past years lattice QCD did not only provide more and more precise numerical data to be compared to experimental data but also contributed to a better intuitive understanding of the phenomena occurring in strongly interacting systems. One of the most interesting of these phenomena is the transition of ordinary strongly interacting matter to the so called quark-gluon plasma phase occurring at high temperature and already observed in heavy ion collisions. Quarks that are all confined into hadrons at low temperature become liberated above the critical temperature characterizing the transition. At the same time the chiral symmetry that is spontaneously broken at low temperatures also gets restored. Chiral symmetry is intimately connected to the density of low-lying quark states. At low temperature these states are known to follow Wigner-Dyson random matrix statistics. This has been successfully exploited to compute the parameters of the effective chiral Lagrangian describing strongly interacting systems in the low energy limit. In contrast, up to a few years ago there was no generally accepted understanding of the statistical properties of lowlying quark states above the critical temperature. We showed that in simplified models of QCD the low quark eigenmodes obey Poisson statistics that gradually crosses over to Wigner-Dyson statistics higher up in the spectrum. This also implies that the low modes are highly localized which can have significant physical consequences. In this year, for the first time we could verify Poisson statistics for the low quark modes in full dynamical QCD without any
Meson spectroscopy, quark mixing and quantum chromodynamics
International Nuclear Information System (INIS)
Filippov, A.T.
1979-01-01
A semiphenomenological theory of mass spectrum for mesons, consisting of a quark-antiquark pair, is presented. Relativistic kinematical effects of the quark mass differences, the SU(3)-symmetry breaking in slopes of the Regge trajectories and in radially excited states are taken into account. The OZI-rule breaking is taken into account by means of the mixing matrix for the quark wave functions, whose form is suggested by the quantum chromodynamics. A simple extrapolation of expression, given by the quantum chromodynamics from the ''asymptotic freedom'' region to the ''infrared slavery'' region is proposed to describe the dependence of the mixing parameters on the meson masses. To calculate masses and mixing angles for pseudoscalar mesons a condition is proposed that the pion mass is minimal. In this situation the eta-meson mass is near the maximal value. The predictions of the theory for masses and mixing angles of the mesons are in good agreement with the experiment
Quantum chromodynamics, chiral symmetry and bag models
International Nuclear Information System (INIS)
Soyeur, M.
1983-08-01
This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models
Synthesis of quantum chromodynamics and nuclear physics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1980-08-01
The asymptotic freedom behavior of quantum chromodynamics allows the rigorous calculation of hadronic and nuclear amplitudes at short distances by perturbative methods. The implications of QCD for large-momentum-transfer nuclear form factors and scattering processes, as well as for the structure of nuclear wave functions and nuclear interactions at short distances, are discussed. The necessity for color-polarized internal nuclear states is also discussed. 6 figures
Quantum chromodynamics at large distances
International Nuclear Information System (INIS)
Arbuzov, B.A.
1987-01-01
Properties of QCD at large distances are considered in the framework of traditional quantum field theory. An investigation of asymptotic behaviour of lower Green functions in QCD is the starting point of the approach. The recent works are reviewed which confirm the singular infrared behaviour of gluon propagator M 2 /(k 2 ) 2 at least under some gauge conditions. A special covariant gauge comes out to be the most suitable for description of infrared region due to absence of ghost contributions to infrared asymptotics of Green functions. Solutions of Schwinger-Dyson equation for quark propagator are obtained in this special gauge and are shown to possess desirable properties: spontaneous breaking of chiral invariance and nonperturbative character. The infrared asymptotics of lower Green functions are used for calculation of vacuum expectation values of gluon and quark fields. These vacuum expectation values are obtained in a good agreement with the corresponding phenomenological values which are needed in the method of sum rules in QCD, that confirms adequacy of the infrared region description. The consideration of a behaviour of QCD at large distances leads to the conclusion that at contemporary stage of theory development one may consider two possibilities. The first one is the well-known confinement hypothesis and the second one is called incomplete confinement and stipulates for open color to be observable. Possible manifestations of incomplete confinement are discussed
Jet invariant mass in quantum chromodynamics
International Nuclear Information System (INIS)
Clavelli, L.
1979-03-01
We give heuristic argument that a new class of observable related to the invariant mass of jets in e + e - annihilation is infrared finite to all orders of perturbation theory in Quantum Chromodynamics. We calculate the lowest order QCD predictions for the mass distribution as well as for the double differential cross section to produce back to back jets of invariant mass M 1 and M 2 . The resulting cross sections are quite different from that expected in simple hadronic fireball models and should provide experimentally accessible tests of QCD. (orig.) [de
On one approximation in quantum chromodynamics
International Nuclear Information System (INIS)
Alekseev, A.I.; Bajkov, V.A.; Boos, Eh.Eh.
1982-01-01
Form of a complete fermion propagator near the mass shell is investigated. Considered is a nodel of quantum chromodynamics (MQC) where in the fermion section the Block-Nordsic approximation has been made, i. e. u-numbers are substituted for ν matrices. The model was investigated by means of the Schwinger-Dyson equation for a quark propagator in the infrared region. The Schwinger-Dyson equation was managed to reduce to a differential equation which is easily solved. At that, the Green function is suitable to represent as integral transformation
Quantum chromodynamics as dynamics of loops
International Nuclear Information System (INIS)
Makeenko, Yu.; Migdal, A.A.
1980-01-01
The problem of a possibility of reformulating quantum chromodynamics (QCD) in terms of colourless composite fields instead of coloured quarks and gluons is considered. The role of such fields is played by the gauge invariant loop functionals. The Shwinger equations of motion is derived in the loop space which completely describe dynamics of the loop fields. New manifestly gauge invariant diagram technique in the loop space is developed. These diagrams reproduce asymptotic freedom in the ultraviolet range and are consistent with the confinement law in the infrared range
Phenomenological applications of perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Zahir, M.S.Z.
1981-01-01
In this thesis, three diffrent topics in high energy particle physics are investigated each of which is a case of theoretical and phenomenological application of perturbative Quantum Chromodynamics. The first topic is addressed to the structure of nucleons as probed in deep-inelastic lepton-nucleon scattering. Since, at present, meaningful calculations in Quantum Chromodynamics (QCD) can be done only for short distances or large momentum transfers, phenomenological applications of QCD to the full hadronic processes many a time require additional model dependent procedures. In this thesis, the structure functions of the nucleon in the framework of the valon model in which a nucleon is assumed to be a bound state of three valence quark clusters (valons) are analyzed. In the second topic the production of massive dimuons at large transverse momentum in Drell-Yan process is analyzed where it is believed that the dimuons acquire large transverse momentum through the emission or absorption of hard gluons. Following a model independent formalism, in this thesis, the lowest order QCD contributions to the structure functions in lepton-pair production are calculated and it is shown that there exist sum rules connecting the four sructure functions to be satisfied at zero rapidity and large transverse momentum of the muon-pair for similar interacting hadrons. In the third topic a discussion is given on how high energy photons can replace hadrons in new lepton-pair production process
Clothed Particles in Quantum Electrodynamics and Quantum Chromodynamics
Directory of Open Access Journals (Sweden)
Shebeko Alexander
2016-01-01
Full Text Available The notion of clothing in quantum field theory (QFT, put forward by Greenberg and Schweber and developed by M. Shirokov, is applied in quantum electrodynamics (QED and quantum chromodynamics (QCD. Along the guideline we have derived a novel analytic expression for the QED Hamiltonian in the clothed particle representation (CPR. In addition, we are trying to realize this notion in QCD (to be definite for the gauge group SU(3 when drawing parallels between QCD and QED.
Quantum chromodynamics in few-nucleon systems
International Nuclear Information System (INIS)
Brodsky, S.J.
1983-10-01
One of the most important implications of quantum chromodynamics (QCD) is that nuclear systems and forces can be described at a fundamental level. The theory provides natural explanations for the basic features of hadronic physics: the meson and baryon spectra, quark statistics, the structure of the weak and electromagnetic currents of hadrons, the scale-invariance of hadronic interactions at short distances, and evidently, color (i.e., quark and gluon) confinement at large distances. Many different and diverse tests have confirmed the basic predictions of QCD; however, since tests of quark and gluon interactions must be done within the confines of hadrons there have been few truly quantitative checks. Nevertheless, it appears likely that QCD is the fundamental theory of hadronic and nuclear interactions in the same sense that QED gives a precise description of electrodynamic interctions. Topics discussed include exclusive processes in QCD, the deuteron in QCD, reduced nuclear amplitudes, and limitations of traditional nuclear physics. 32 references
Introduction to non-perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Pene, O.
1995-01-01
Quantum chromodynamics is considered to be the theory of strong interaction. The main peculiarity of this theory is that its asymptotic states (hadrons) are different from its elementary fields (quarks and gluons). This property plays a great part in any physical process involving small momentum-energy transfers. In such a range perturbative methods are no longer allowed. This work focuses on other tools such as QCD symmetry, the quark model, Green functions and the sum rules. To get hadron characteristics numerically, QCD on lattices is used but only in the case of simple process involving no more than one hadron in the initial and final states because of the complexity of the Green function. Some examples using a Monte-Carlo simulation are given. (A.C.)
Is quantum chromodynamics effectively perturbative everywhere
International Nuclear Information System (INIS)
Misra, S.P.; Pati, J.C.
1980-07-01
We have examined the possibility that QCD processes may be well represented effectively by the Born terms even in the infra-red regime. This appears to be possible if we take not only the running coupling constant but also the running quark and gluon masses in the liberated version of quantum chromodynamics. These running masses appear to suppress the higher order loop corrections compared to the Born diagram even when the running coupling constant increases in the infra-red regime. An explicit interpolating form of the running coupling constant from the ultraviolet to the infra-red regime proposed recently is examined in the context of renormalization group equation. The corresponding β function has an essential singularity at g=0, which suggests the non-perturbative nature of the solutions. (author)
Novel nuclear phenomena in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1987-08-01
Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs
Quantum chromodynamics and the dynamics of hadrons
International Nuclear Information System (INIS)
Brodsky, S.J.
1979-03-01
The application of perturbative quantum chromodynamics to the dynamics of hadrons at short distance is reviewed, with particular emphasis on the role of the hadronic bound state. A number of new applications are discussed, including the modification to QCD scaling violations in structure functions due to hadronic binding; a discussion of coherence and binding corrections to the gluon and sea-quark distributions; QCD radiative corrections to dimensional counting rules for exclusive processes and hadronic form factors at large momentum transfer; generalized counting rules for inclusive processes; the special role of photon-induced reactions in QCD, especially applications to jet production in photon-photon collisions, and photon production at large transverse momentum. Also presented is a short review of the central problems in large P/sub T/ hadronic reactions and the distinguishing characteristics of gluon and quark jets. 163 references
Lattice gauge theory approach to quantum chromodynamics
International Nuclear Information System (INIS)
Kogut, J.B.
1983-01-01
The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed
Hadron masses in quantum chromodynamics on the transverse lattice
International Nuclear Information System (INIS)
Bardeen, W.A.; Pearson, R.B.; Rabinovici, E.
1979-09-01
Calculational methods are formulated for the transverse lattice version of quantum chromodynamics. These methods are used to study the low lying spectrum of gluon bound states in the pure Yang-Mills theory. 15 references
Developments in lattice quantum chromodynamics for matter at high ...
Indian Academy of Sciences (India)
2015-05-06
May 6, 2015 ... Lattice quantum chromodynamics; finite density; sign problem. PACS Nos 11.15. ... Lattice QCD relies on importance sampling assigning a real ..... conjectured that a single saddle point (e.g. the perturbative one) suffices [53].
Decoupling of heavy quarks in quantum chromodynamics
International Nuclear Information System (INIS)
Bernreuther, W.
1983-01-01
Decoupling of heavy quarks in quantum chromodynamics (QCD) defined by mass-independent renormalization is investigated. The structure of the relations between the parameters of f flavour QCD below a heavy-quark threshold is discussed to all orders in the loop expansion, and the relations are computed to two-loop approximation for the minimal subtraction schemes (MS) and to one-loop approximation for some Weinberg schemes. These matching relations can be used to systematically determine the renormalization group (RG)-invariant parameters of the effective theory in terms of the RG-invariant parameters of the theory which includes the heavy quark, or vice versa. For MS scheme the connection between Λ/sub f/-1 and Λ/sub f/ to two and three loops is given as well as the two-loop connection between the RG-invariant mass parameters of the f-1 and f flavour theory. The effect of heavy quarks on the evolution of the QCQ coupling is of significance for present QCD phenomenology based on next-to-leading-order perturbation theory. This is illustrated with a few examples within the MS scheme
Functional renormalization group methods in quantum chromodynamics
International Nuclear Information System (INIS)
Braun, J.
2006-01-01
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Small parameters in infrared quantum chromodynamics
Peláez, Marcela; Reinosa, Urko; Serreau, Julien; Tissier, Matthieu; Wschebor, Nicolás
2017-12-01
We study the long-distance properties of quantum chromodynamics in the Landau gauge in an expansion in powers of the three-gluon, four-gluon, and ghost-gluon couplings, but without expanding in the quark-gluon coupling. This is motivated by two observations. First, the gauge sector is well described by perturbation theory in the context of a phenomenological model with a massive gluon. Second, the quark-gluon coupling is significantly larger than those in the gauge sector at large distances. In order to resum the contributions of the remaining infinite set of QED-like diagrams, we further expand the theory in 1 /Nc, where Nc is the number of colors. At leading order, this double expansion leads to the well-known rainbow approximation for the quark propagator. We take advantage of the systematic expansion to get a renormalization-group improvement of the rainbow resummation. A simple numerical solution of the resulting coupled set of equations reproduces the phenomenology of the spontaneous chiral symmetry breaking: for sufficiently large quark-gluon coupling constant, the constituent quark mass saturates when its valence mass approaches zero. We find very good agreement with lattice data for the scalar part of the propagator and explain why the vectorial part is poorly reproduced.
Functional renormalization group methods in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Braun, J.
2006-12-18
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Interactions of heavy quarks in quantum chromodynamics
International Nuclear Information System (INIS)
Dine, M.
1978-01-01
The interactions of heavy quarks in quantum chromodynamics (QCD) are analyzed in detail. The problem of extracting instantaneous interaction potentials from quantum field theory is first reviewed, in the context of simple models. How such a potential for a fermion-antifermion system may be extracted is indicated. After a review of the quantization of non-Abelian gauge theories in Coulomb gauge, the interaction of a heavy quark-antiquark (Q anti Q) pair is considered. A Ward identity relating the Coulomb-gluon-fermion vertex to the fermion self-energy is derived. This identity is used to prove the mass independence of the static potential. The potential is shown to be infrared finite through two loops, and its general structure in perturbation theory is indicated. At three loops, divergences associated with long-lived intermediate states appear. A method to resolve this problem for static sources is given, but the result cannot readily be identified as a potential appropriate to the description of a Q anti Q bound state. This problem is discussed in detail. Then the spin-dependent interactions in these systems are analyzed. It is shown that the spin-dependent potentials depend in a nontrivial way on the quark mass. The phenomenological implications of these results are considered. In conclusion, the implications of the results for nonperturbative attacks on the potential problem are discussed. The importance of source-field correlations is stressed. The limitations of schemes introduced recently to compute spin-dependent forces due to instantons are illustrated
Spectral functions in quantum chromodynamics and applications
International Nuclear Information System (INIS)
Tran, M.D.
1981-01-01
The longitudinal and transverse spectral functions for arbitrary conserved and non-conserved vector and axial vector currents of massive quarks are calculated to first order in α/sub s/ and exact analytical expressions are given. As an intermediate step the form factors to the same order in α/sub s/ are determined. A remarkably simple result for the combination of the spectral functions corresponding to the Weinberg's first sum rule is derived. It behaves asymptotically like α/sub s/s 2 thus ensuring the convergence of the sum rule. The Weinberg's second sum rule is shown to fail to hold, a new sum rule is then proposed to replace the original one. The current algebra calculation of the pion electromagnetic mass difference is reexamined in the light of quantum chromodynamics. The old analysis cannot be upheld because of the failure of the Weinberg's second sum rule. After a modification based on Dashen's theorem, the proposed sum rule then can be used to obtain a mass difference close to experimental value. Using the derived QCD corrected spectral functions on finite Q 2 sum rules, the current couplings of the five low-lying mesons π, rho, K, K*, A 1 are computed. For values of quark masses m/sub u/ = m/sub d/ = 0.25 GeV, m/sub s/ = 0.4 GeV and of the QCD scale parameter Λ = 0.5 GeV, a striking agreement with experiment is obtained. We investigate decay properties of the intermediate vector bosons Z, W. Gluonic corrections to hadronic decay modes are calculated with the account of quark mass effect. Implications of the results for decay widths, branching ratios are examined. The ratio R of reaction e + e - → hadrons is calculated to first order in α/sub s/, the quark mass effect is shown to be important
Quasi-particles and quantum condensate in the Quantum Chromodynamics
International Nuclear Information System (INIS)
Herrmann, J.
1987-01-01
The non-perturbative structure of Quantum Chromodynamics is investigated with the help of a generalisation of the formalism of Green's functions according to Gorkow and Nambu's studies in the theory of superconductivity methods. Taking into account the existence of the gluon condensation, the self-energy of the gluon-quasi-particles in the form of integral-equations is calculated with the help of modified rules for Feynman diagrams. The form of these equations implies the existence of particular solutions with an energy gap in the spectrum of the quasi-particles and a phase transition at a critical momentum. (author)
Higher order corrections in perturbative quantum chromodynamics
Indian Academy of Sciences (India)
Since the discovery of asymptotic freedom in non-abelian gauge field theories, like quan- tum chromodynamics (QCD), many perturbative calculations have been performed to ..... The integral above appears in the partial integration with respect to the momentum. &½ of the expression below (see figure 2). ¼. Т&½. ґѕπµТ.
U matrix construction for Quantum Chromodynamics through Dirac brackets
International Nuclear Information System (INIS)
Santos, M.A. dos.
1987-09-01
A procedure for obtaining the U matrix using Dirac brackets, recently developed by Kiefer and Rothe, is applied for Quantum Chromodynamics. The correspondent interaction Lagrangian is the same obtained by Schwinger, Christ and Lee, using independent methods. (L.C.J.A.)
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
Energy Technology Data Exchange (ETDEWEB)
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-11-07
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
Predictions of quantum chromodynamics of the second order
International Nuclear Information System (INIS)
Kounnas, M.C.
1981-12-01
The model of partons is generalized. Proof of factorization in the region of the large moments of transfer, higher-order corrections in a scalar theory, in non-abelian gauge theories, for single transitions, higher-order effects for structure and fragmentation functions in quantum chromodynamics, analytical solution in the space of the X's are presented [fr
Form factors and charge radii in a quantum chromodynamics ...
Indian Academy of Sciences (India)
tic form factors and charge radii of D, Ds,B,Bs and Bc mesons in a quantum chromodynamics. (QCD)-inspired ... as pointed out in [12,13], one can expect a similar success here too. .... 0 were large and the formalism failed to account for large ...
Lattice quantum chromodynamics equation of state: A better ...
Indian Academy of Sciences (India)
Lattice gauge theory; quantum chromodynamics; finite temperature field theory. ... to a previously underappreciated feature of the plasma phase – that it is far from being a ... setting P = 0 just below Tc and the numerical integration errors. ...... for different temperatures, both above and below Tc. We draw attention to the.
Quantum chromodynamics effects in electroweak and Higgs physics
Indian Academy of Sciences (India)
Several examples of the often intricate effects of higher-order quantum chromodynamics (QCD) corrections on predictions for hadron-collider observables, are discussed, using the production of electroweak gauge boson and the Standard Model Higgs boson as examples. Particular attention is given to the interplay of QCD ...
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
International Nuclear Information System (INIS)
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-01-01
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
Photon pairs: Quantum chromodynamics continuum and the Higgs ...
Indian Academy of Sciences (India)
is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC. Keywords. Higgs; photon pairs; quantum chromodynamics. PACS Nos 12.15.Ji; 12.38.Cy; 13.85.
Appropriate definition of the scale parameter Λ in quantum chromodynamics
International Nuclear Information System (INIS)
Monsay, E.; Rosenzweig, C.
1981-01-01
Even after we have chosen a specific definition of the quantum-chromodynamic coupling constant (e.g., modified minimal subtraction or momentum-space subtraction) we are free to choose a definition of Λ when we expand the coupling constant in powers of (lnQ 2 /Λ 2 ) -1 . We discuss in detail a particular definition suggested by Abbott and argue that this definition does seem to provide an attractive means of fixing Λ
Introduction to quantum chromodynamics (QCD) and the physics of jets
International Nuclear Information System (INIS)
Billoire, Alain; Napoly, Olivier.
1980-12-01
These lecture notes constitute an introduction to Quantum Chromodynamics (QCD), theory of strong interactions. After an elementary presentation of the essential theoretical tools (Lagrangian, renormalization group) and of their consequences for QCD (asymptotic freedom, scaling invariance), we use these to study jets in e + e - annihilation. We thus deal with the problem of infrared divergences and, finally, with the one of the indirect experimental detection of the gluon [fr
Progress toward the effective Quantum Chromodynamic Lagrangian from symmetry considerations
International Nuclear Information System (INIS)
Salomone, A.N.
1982-01-01
The properties of an effective Lagrangian which satisfies both the axial and trace anomaly equations of Quantum Chromodynamics are investigated both from the theoretical and phenomenological points of view. The model Lagrangian requires that chiral symmetry be broken spontaneously. The non-linear approximation of the model illuminates eta-glue duality or mixing. The phase transition behavior of the model of Quantum Chromodynamics can be studied as the numbers of flavors and the vacuum angle are varied by analyzing a simple mechanical analog. The analog of the model is similar to the massive Schwinger model. The possibility of a physical scalar glue state is discussed and it is shown that it is characterized by a pronounced eta to two glue decay width. A nonperturbative Quantum Chromodynamic vacuum is seen to follow directly from satisfying the trace anomaly. The quark matter meson, eta, is at least as prominent as the glueball, iota, in the gluon dominated reaction psi to gamma plus anything. An associated large breaking of flavor SU(3) is shown to be ameliorated as the model is made more realistic by lowering scalar meson masses from infinity. The pi delta decay of the iota (1440) can be reasonably well estimated without the need of introducing any new parameters
Quantum chromodynamics: A theory of the nuclear force
International Nuclear Information System (INIS)
Craigie, N.S.
1980-06-01
A brief outline is given of a possible theory of the nuclear force and the strong interactions between elementary particles, which is supposed responsible for nuclear matter. The theory is known as quantum chromodynamics because of its association with a new kind of nuclear charge called colour and its resemblance to quantum electrodynamics. Early ideas on the nuclear force and the emergence of the quark model and the QCD Lagrangian are described first. Then properties of this theory and the problem of quark confinement, the perturbative phase of QCD, and the non-perturbative or confinement phase of QCD and the description of hadrons and their interactions are discussed
Dynamical fermions in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Szabo, Kalman
2007-07-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Dynamical fermions in lattice quantum chromodynamics
International Nuclear Information System (INIS)
Szabo, Kalman
2007-01-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Light-cone quantization of quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Pauli, H.C.
1991-06-01
We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, ''discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism
Light-cone quantization of quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Pauli, H.C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))
1991-06-01
We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism.
Quantum chromodynamics near the confinement limit
International Nuclear Information System (INIS)
Quigg, C.
1985-09-01
These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means for going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment
Local gauge symmetry and confinement in quantum chromodynamics
International Nuclear Information System (INIS)
Bardeen, W.A.; Pearson, R.B.
1977-01-01
The nonabelian color gauge theory of quarks and gluons has been proposed as the basis for fundamental theory of hadrons. The features of this theory (quantum chromodynamics) are considered which lead to confinement. A transverse lattice formulation of the theory is also discussed, which is used as a basis for calculation of properties of the hadron bound states. The theory is quantized by eliminating the longitudinal degrees of freedom in favour of coulomb potential. Hadrons are formed as bound states of quarks and the symmetric phase gluons
Scalar quantum chromodynamics in two dimensions and the parton model
International Nuclear Information System (INIS)
Shei, S.S.; Tsao, H.-S.
1978-01-01
SU(N) scalar quantum chromodynamics is studied in two space-time dimensions in the large-N limit. This is the model of color gauge fields interacting with scalar quarks. It is found that the consensual properties of four-dimensional QCD, i.e. infrared slavery, quark confinement, the charmonium picture. etc, are all realized. Moreover, the current in this model mimics nicely the behaviour of the current in four-dimensional QCD, in contrast to the original model of 't Hooft. (Auth.)
Foundations of quantum chromodynamics: Perturbative methods in gauge theories
International Nuclear Information System (INIS)
Muta, T.
1986-01-01
This volume develops the techniques of perturbative QCD in great detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge field theories. Examples and exercises are provided to amplify the discussions on important topics. Contents: Introduction; Elements of Quantum Chromodynamics; The Renormalization Group Method; Asymptotic Freedom; Operator Product Expansion Formalism; Applications; Renormalization Scheme Dependence; Factorization Theorem; Further Applications; Power Corrections; Infrared Problem. Power Correlations; Infrared Problem
Scalar quantum chromodynamics in two dimensions and parton model
International Nuclear Information System (INIS)
Shei, S.S.; Tsao, H.S.
1977-05-01
The SU(N) scalar quantum chromodynamics in two space-time dimensions in the large N limit are studied. This is the model of color gauge fields interacting with scalar quarks. It is found that the consensual properties of the four dimensional QCD, i.e., the infrared slavery, quark confinement, the charmonium picture etc. are all realized. Moreover, the current in this model mimics nicely the behaviors of current in the four dimensional QCD, in contrast to the original model of 't Hooft
Quantum electrical and chromodynamics treated through Thompson's approach
International Nuclear Information System (INIS)
Nassif, Claudio; Silva, P.R.
2006-09-01
In this work we apply Thompson's method (of the dimensions and scales) to study some features of the Quantum Electro and Chromodynamics. This heuristic method can be considered as a simple and alternative way to the Renormalisation Group (R.G.) approach and when applied to QED-Lagrangian is able to obtain in a first approximation both the running coupling constant behavior of α(μ) and the mass m(μ). The calculations are evaluated just at d c = 4, where d c is the upper critical dimension of the problem, so that we obtain the logarithmic behavior both for the coupling α and the excess of mass Δm on the energy scale μ. Although our results are well-known in the vast literature of field theories, the advantage of Thompson's method, beyond its simplicity is that it is able to extract directly from QED-Lagrangian the physical (finite) behavior of α(μ) and m(μ), bypassing hard problems of divergences which normally appear in the conventional renormalisation schemes applied to field theories like QED. Quantum Chromodynamics (QCD) is also treated by the present method in order to obtain the quark condensate value. Besides this, the method is also able to evaluate the vacuum pressure at the boundary of the nucleon. This is done by assuming a step function behavior for the running coupling constant of the QCD, which fits nicely to some quantities related to the strong interaction evaluated through the MIT-bag model. (author)
Quarks and gluons in the phase diagram of quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Welzbacher, Christian Andreas
2016-07-14
In this dissertation we study the phase diagram of strongly interacting matter by approaching the theory of quantum chromodynamics in the functional approach of Dyson-Schwinger equations. With these quantum (field) equations of motions we calculate the non-perturbative quark propagator within the Matsubara formalism. We built up on previous works and extend the so-called truncation scheme, which is necessary to render the infinite tower of Dyson-Schwinger equations finite and study phase transitions of chiral symmetry and the confinement/deconfinement transition. In the first part of this thesis we discuss general aspects of quantum chromodynamics and introduce the Dyson-Schwinger equations in general and present the quark Dyson-Schwinger equation together with its counterpart for the gluon. The Bethe-Salpeter equation is introduced which is necessary to perform two-body bound state calculations. A view on the phase diagram of quantum chromodynamics is given, including the discussion of order parameter for chiral symmetry and confinement. Here we also discuss the dependence of the phase structure on the masses of the quarks. In the following we present the truncation and our results for an unquenched N{sub f} = 2+1 calculation and compare it to previous studies. We highlight some complementary details for the quark and gluon propagator and discus the resulting phase diagram, which is in agreement with previous work. Results for an equivalent of the Columbia plot and the critical surface are discussed. A systematically improved truncation, where the charm quark as a dynamical quark flavour is added, will be presented in Ch. 4. An important aspect in this investigation is the proper adjustment of the scales. This is done by matching vacuum properties of the relevant pseudoscalar mesons separately for N{sub f} = 2+1 and N f = 2+1+1 via a solution of the Bethe-Salpeter equation. A comparison of the resulting N{sub f} = 2+1 and N{sub f} = 2+1+1 phase diagram indicates
Hadronic distributions and correlations at 'small x' in quantum chromodynamics
International Nuclear Information System (INIS)
Perez Ramos, R.
2006-09-01
We exactly calculate the double and simple inclusive transverse momentum (kt) distributions and the 2-particle momentum correlations inside high energy hadronic jets at the Modified Leading Logarithmic Approximation (MLLA) of Quantum Chromodynamics. We first obtain the exact solution of the evolution equations at 'small x', which we calculate at the so called 'limiting spectrum'. We then generalize this approximation by performing the steepest descent evaluation. Our predictions are in good agreement with data from Tevatron and improve those which have been obtained in the past. The comparison with forthcoming data (Tevatron, LHC) will further test the hypothesis of Local Hadron Parton Duality, and the eventual need to incorporate next-MLLA corrections. (authors)
Current-Current Interactions, Dynamical Symmetry - and Quantum Chromodynamics.
Neuenschwander, Dwight Edward, Jr.
Quantum Chromodynamics with massive gluons (gluon mass (TBOND) xm(,p)) in a contact-interaction limit called CQCD (strong coupling g (--->) (INFIN); x (--->) (INFIN)), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. (1) Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x('2) slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g('2)/x('2) << 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry -breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.
Discussion of Various Susceptibilities within Thermal and Dense Quantum Chromodynamics
International Nuclear Information System (INIS)
Xu Shu-Sheng; Shi Yuan-Mei; Yang You-Chang; Cui Zhu-Fang; Zong Hong-Shi
2015-01-01
It is commonly accepted that the system undergoes a crossover at high temperature and low chemical potential beyond the chiral limit case, and the properties of the crossover region are important for researchers to understand the nature of strong interacting matters of quantum chromodynamics (QCD). Since at present there is no exact order of parameters of the phase transitions beyond the chiral limit, QCD susceptibilities are widely used as indicators. In this work various susceptibilities are discussed in the framework of Dyson–Schwinger equations. The results show that different kinds of susceptibilities give the same critical end point, which is the bifurcation point of the crossover region and the first order phase transition line of QCD. Nevertheless, different pseudocritical points are found in the temperature axis. We think that defining a critical band is more suitable in the crossover region. (paper)
Machine learning action parameters in lattice quantum chromodynamics
Shanahan, Phiala E.; Trewartha, Daniel; Detmold, William
2018-05-01
Numerical lattice quantum chromodynamics studies of the strong interaction are important in many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. The high information content and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.
Measuring the scale parameter of quantum chromodynamics at CHEER
International Nuclear Information System (INIS)
Krauss, L.M.
1981-01-01
The possibility of measuring the scale parameter of quantum chromodynamics, Λsub(s), at CHEER is discussed. Rationale for the measurement of this quantity are given, along with a discussion of the theoretical difficulties involved. The meaurement of the Q 2 dependence of structure functions and their moments, and methods of measuring αsub(s) and its Q 2 evolution, are discussed, and arguments are given for the advantages and disadvantages of going to high Q 2 values at CHEER. It is concluded that while sensitivity to Λ is lowered at high Q 2 , CHEER will, in principle, be able to provide the first clean measurements of Λ, free from almost all the theoretical confusion involved in interpretations of present data
Solving quantum chromodynamics by discretized light-cone quantization
International Nuclear Information System (INIS)
Pauli, H.C.
1996-01-01
An effective theory for quantum chromodynamics (QCD) is derived analytically and nonperturbatively from the canonical Lagrangian for QCD in three space and one time dimension. The full light-cone QCD-Hamiltonian is mapped identically onto an effective Hamiltonian which acts only in the q anti q-space. A vertex coupling function is resumed to all orders and after renormalization should become the running coupling constant. The final equations are of surprizing simplicity, and are numerically solvable on a small computer. The prescription is given how to derive from these solutions the probability amplitudes for arbitrary gluon and quark-anti-quark composition by quadratures. The method is based on discretized light-cone quantization and the new method of iterated resolvents. The procedure is applicable also to other many-body theories, but the present work specializes to the general aspects of QCD. (orig.)
Strong interactions and quantum chromodynamics at the leading logarithm approximation
International Nuclear Information System (INIS)
Mantrach, A.
1982-11-01
This thesis is a contribution to the study of Quantum Chromodynamics (QCD) at the leading logarithm approximation (LLA). We have used the interpretation of the LLA in terms of the generalized parton model to propose tests of elementary processes of QCD in large transverse momentum photoproduction reactions. We have used the LLA to sum gluon radiation effects induced in high energy hadronic reactions. We have obtained this way a rise of the nucleon-nucleon total cross section of 15 mb from 60 GeV to 540 GeV. We have exploited the existence of a preconfinement transition in the LLA to study scaling violations in the framework of the dual parton model [fr
Two-photon collisions and short-distance tests of quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1978-12-01
The physics of two-photon collisions in e +- storage rings is reviewed with emphasis on the predictions of perturbative quantum chromodynamics for high transverse momentum reactions. It is noted that because of the remarkable scaling properties predicted by the theory, two-photon collisions may be proved one of the cleanest tests of the quantum chromodynamics picture of short distance hadron dynamics. In order to contrast these predictions for photon-induced reactions with those for incident hadrons, predictions from quantum chromodynamics for hadron structure functions and form factors at large momentum transfer are also discussed. 55 references
Properties of quark matter governed by quantum chromodynamics. Pt. 2
International Nuclear Information System (INIS)
Soni, V.
1983-01-01
Renormalization schemes are examined (in the Coulomb gauge) for quantum chromodynamics in the presence of quark matter. We demand that the effective coupling constant for all schemes become congruent with the vacuum QCD running coupling constant as the matter chemical potential, μ, goes to zero. Also, to enable us to standardize with the vacuum QCD running coupling constant at some asymptotic momentum transfer, vertical strokep 0 vertical stroke, we keep μ 0 vertical stroke, to ensure that the matter contribution is negligible at this point. This means all schemes merge with vacuum QCD at vertical strokep 0 vertical stroke and beyond. Two renormalization group invariants are shown to emerge: (I) the effective or invariant charge, gsub(inv) 2 , which is, however, scheme dependent and (II) g 2 (M)/S(M), where S(M) - 1 is the Coulomb propagator, which is scheme independent. The only scheme in which gsub(inv) 2 is scheme independent and identical to g 2 (M)/S(M) is the screened charged scheme (previous paper) characterised by the normalization of the entire Green function, S - 1 , to unity. We conclude that this is the scheme to be used if one wants to identify with the experimental effective coupling in perturbation theory. However, if we do not restrict to perturbation theory all schemes should be allowed. Although we discuss matter QCD in the Coulomb gauge, the above considerations are quite general to gauge theories in the presence of matter. (orig.)
High energy deep inelastic scattering in perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Wallon, S.
1996-01-01
In this PhD thesis, we deal with high energy Deep Inelastic Scattering in Perturbative Quantum Chromodynamics (QCD). In this work, two main topics are emphasized: The first one deals with dynamics based on perturbative renormalization group, and on perturbative Regge approaches. We discuss the applicability of these predictions, the possibility of distinguishing them in the HERA experiments, and their unification. We prove that the perturbative Regge dynamic can be successfully applied to describe the HERA data. Different observables are proposed for distinguishing these two approaches. We show that these two predictions can be unified in a system of equations. In the second one, unitarization and saturation problems in high energy QCD are discussed. In the multi-Regge approach, equivalent to the integrable one-dimensional XXX Heisenberg spin chain, we develop methods in order to solve this system, based on the Functional Bethe Ansatz. In the dipole model context, we propose a new formulation of unitarity and saturation effects, using Wilson loops. (author)
Feynman rules of quantum chromodynamics inside a hadron
International Nuclear Information System (INIS)
Lee, T.D.
1979-01-01
We start from quantum chromodynamics in a finite volume of linear size L and examine its color-dielectric constant kappa/sub L/, especially the limit kappa/sub infinity/ as L → infinity. By choosing as our standard kappa/sub L/ = 1 when L = some hadron size R, we conclude that kappa/sub infinity/ must be -2 α where α is the fine-structure constant of QCD inside the hadron. A permanent quark confinement corresponds to the limit kappa/sub infinity/ = 0. The hadrons are viewed as small domain structures (with color-dielectric constant = 1) immersed in a perfect, or nearly perfect, color-dia-electric medium, which is the vacuum. The Feynman rules of QCD inside the hadron are derived; they are found to depend on the color-dielectric constant kappa/sub infinity/ of the vacuum that lies outside. We show that, when kappa/sub infinity/ → 0, the mass of any color-nonsinglet state becomes infinity, but for color-singlet states their masses and scattering amplitudes remain finite. These new Feynman rules also depend on the hadron size R. Only at high energy and large four-momentum transfer can such R dependence be neglected and, for color-singlet states, these new rules be reduced to the usual ones
Condensates in quantum chromodynamics and the cosmological constant
Brodsky, Stanley J.; Shrock, Robert
2011-01-01
Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.
Perturbative quantum chromodynamic analysis of deep inelastic scattering
International Nuclear Information System (INIS)
Herrod, R.T.
1982-01-01
This is an account of the field theoretic description of the deep inelastic scattering of leptons from nucleons. Starting from simple parton model description, using the assumption of an SU(3) colour confining field theory, for the quarks comprising hadronic matter, the well known prediction of Bjorken scaling is obtained. Field theoretic predictions for deviations from Bjorken scaling are formally introduced, with particular reference to quantum chromodynamics (QCD). This treatment is purely perturbative, although the renormalisation group is used to improve convergence. Scaling violations at both leading order, and next-to-leading order are discussed, and it is shown how these lead to predictions regarding the dependence of the moments of observable structure functions, on the square of the 4-momentum transferred (Q 2 ). Evolution equations for the moments of structure functions are then derived. The intuitive approach of Altarelli and Parisi (AP), which leads to predictions for the Q 2 dependence of the structure functions themselves, is introduced. The corresponding equations are derived to next-to-leading order. The results of an extensive analysis of current data are presented.. Both weak and electromagnetic structure functions are compared with the predictions of leading order, and higher order formulae. Methods for incorporating heavy quark flavours into the AP equations are discussed. (author)
Statistical mechanics view of quantum chromodynamics: Lattice gauge theory
International Nuclear Information System (INIS)
Kogut, J.B.
1984-01-01
Recent developments in lattice gauge theory are discussed from a statistial mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of QCD will be discussed and a few remarks concerning future directions of the field will be made
Factorization of exclusive processes in perturbative quantum-chromodynamics
International Nuclear Information System (INIS)
Segond, M.
2007-12-01
The work carried out in this thesis presents various theoretical and phenomenological studies of the exclusive production of longitudinally polarized neutral vector rho mesons in virtual photons collisions, within the framework of quantum-chromodynamics (QCD). The virtuality of the photons makes it possible to locate our approach in the perturbative area of the theory. The kinematical regimes considered allow the use of varied theoretical tools which reveal various properties of factorization of the scattering amplitude: two types of collinear factorization (at short distance) for this process are discussed in chapter 1, revealing - according to the polarization of the virtual photons and the kinematical limit considered- Generalized Distribution Amplitudes (GDA) or Transition Distribution Amplitudes (TDA), tools commonly used in the description of exclusive processes. We introduce into the Chapter 2 in a self-consistent way, the foundations of the BFKL (Balitskii, Fadin, Kuraev and Lipatov) formalism valid within the high energy limit (Regge limit) of QCD, for its phenomenological use detailed in Chapter 3: the scattering amplitude of the process is described in this formalism by exploiting the factorization in the two-dimensional transverse momentum space, or kT-factorization. We predict the value of the cross section of the process at Born order of the BFKL resummation and we discuss its possible observation at the future international linear collider (ILC). We consider also the differential cross sections of the process without momentum transfer with complete BFKL evolution at the order of the leading logarithms (Leading-Order) and also at the Next-to-Leading-Order to establish a fine test of this process with hard BFKL Pomeron exchange, observable at the future ILC. (author)
Lattice quantum chromodynamics and properties of the nucleon
International Nuclear Information System (INIS)
Baron, R.
2009-09-01
The goal of this thesis is to compute from first principles nucleon properties, starting from the microscopic theory of strong interaction, quantum chromodynamics (QCD). This theory, whose degrees of freedom are quarks and gluons, has been well tested in high energy experiments thanks to asymptotic freedom, the fact that interaction cancels at short distances, which allows the use of the perturbative theory. To predict properties which involve long distances, like masses or current distributions, one needs an exact treatment of the theory. It uses a four-dimensional lattice on which the theory is discretized and quantum observables are computed through path integral techniques, as explained in chapters 2 and 3. In chapter 4 we discuss problems faced when fermions are taken into account and we present the choice for our computations: a discretization in a 'Wilson' manner plus an additional twisted mass. Its advantage is to remove discretization effects of the order of the lattice spacing provided one parameter is tuned. The numerical evaluation of path integrals is done by Monte Carlo methods with importance sampling. The 'Hybrid Monte Carlo' algorithm, based on molecular dynamics, is presented in chapter 5 together with a method to solve large sparse linear systems necessary to compute observables. This chapter also describes computer science details of the problem which are the use of massive parallel processing and some characteristics of computers used. In chapter 6 we explain how the production of representative samples of gauge configuration is performed. This step and its control is an important part of the work done during this thesis. The last two chapters are devoted to the computation of observables and to the presentation of results. The main technical difficulty which is to solve for quark propagators has been performed by using available processor farms at their best. A good part of this work has been focused on this. To conclude we comment on the
Multi-Hadron Observables from Lattice Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Hansen, Maxwell [Univ. of Washington, Seattle, WA (United States)
2014-01-01
We describe formal work that relates the nite-volume spectrum in a quantum eld theory to scattering and decay amplitudes. This is of particular relevance to numerical calculations performed using Lattice Quantum Chromodynamics (LQCD). Correlators calculated using LQCD can only be determined on the Euclidean time axis. For this reason the standard method of determining scattering amplitudes via the Lehmann-Symanzik-Zimmermann reduction formula cannot be employed. By contrast, the nite-volume spectrum is directly accessible in LQCD calculations. Formalism for relating the spectrum to physical scattering observables is thus highly desirable. In this thesis we develop tools for extracting physical information from LQCD for four types of observables. First we analyze systems with multiple, strongly-coupled two-scalar channels. Here we accommodate both identical and nonidentical scalars, and in the latter case allow for degenerate as well as nondegenerate particle masses. Using relativistic eld theory, and summing to all orders in perturbation theory, we derive a result relating the nite-volume spectrum to the two-to-two scattering amplitudes of the coupled-channel theory. This generalizes the formalism of Martin L uscher for the case of single-channel scattering. Second we consider the weak decay of a single particle into multiple, coupled two-scalar channels. We show how the nite-volume matrix element extracted in LQCD is related to matrix elements of asymptotic two-particle states, and thus to decay amplitudes. This generalizes work by Laurent Lellouch and Martin L uscher. Third we extend the method for extracting matrix elements by considering currents which insert energy, momentum and angular momentum. This allows one to extract transition matrix elements and form factors from LQCD. Finally we look beyond two-particle systems to those with three-particles in asymptotic states. Working again to all orders in relativistic eld theory, we derive a relation between the
Murray Gell-Mann, the Eightfold Way, Quarks, and Quantum Chromodynamics
. Professor Gell-Mann's "eightfold way" theory brought order to the chaos created by the discovery , Professor Gell-Mann received the Nobel Prize in physics for his work on the theory of elementary particles later constructed the quantum field theory of quarks and gluons, called "quantum chromodynamics
Stochastic methods for the fermion determinant in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Finkenrath, Jacob Friedrich
2015-02-17
In this thesis, algorithms in lattice quantum chromodynamics are presented by developing and using stochastic methods for fermion determinant ratios. For that an integral representation is proved which can be used also for non hermitian matrices. The stochastic estimation or the Monte Carlo integration of this integral representation introduces stochastic fluctuations which are controlled by using Domain Decomposition of the Dirac operator and introducing interpolation techniques. Determinant ratios of the lattice fermion operator, here the Wilson Dirac operator, are needed for corrections of the Boltzmann weight. These corrections have interesting applications e.g. in the mass by using mass reweighting. It will be shown that mass reweighting can be used e.g. to improve extrapolation in the light quark mass towards the chiral or physical point or to introduce an isospin breaking by splitting up the mass of the light quark. Furthermore the extraction of the light quark masses will be shown by using dynamical 2 flavor CLS ensembles. Stochastic estimation of determinant ratios can be used in Monte Carlo algorithms, e.g. in the Partial Stochastic Multi Step algorithm which can sample two mass-degenerate quarks. The idea is to propose a new configuration weighted by the pure gauge weight and including afterwards the fermion weight by using Metropolis accept-reject steps. It is shown by using an adequate interpolation with relative gauge fixing and a hierarchical filter structure that it is possible to simulate moderate lattices up to (2.1 fm){sup 4}. Furthermore the iteration of the pure gauge update can be increased which can decouple long autocorrelation times from the weighting with the fermions. Moreover a novel Hybrid Monte Carlo algorithm based on Domain Decomposition and combined with mass reweighting is presented. By using Domain Decomposition it is possible to split up the mass term in the Schur complement and the block operators. By introducing a higher mass
Hadron-hadron potentials from lattice quantum chromodynamics
International Nuclear Information System (INIS)
Rabitsch, K.
1997-10-01
Problems in nuclear physics generally involve several nucleons due to the composite structure of the atomic nucleus. To study such systems one has to solve the Schroedinger equation and therefore has to know a nucleon-nucleon potential. Experimental data and theoretical considerations indicate that nucleons consist of constituent particles, called quarks. Today, Quantum Chromodynamics (QCD) is believed to be the fundamental theory of strong interactions. Consequently, one should try to understand the nucleon-nucleon interaction from first principles of QCD. At nucleonic distances the strong coupling constant is large. Thus, a perturbative treatment of QCD low energy phenomena is not adequate. However, the formulation of QCD on a four-dimensional Euclidean lattice (lattice QCD) makes it possible to address the nonperturbative aspects of the theory. This approach has already produced valuable results. For example, the confinement of quarks in a nucleon has been demonstrated, and hadron masses have been calculated In this thesis various methods to extract the hadron-hadron interactions from first principles of lattice QCD are presented. One possibility is to consider systems of two static hadrons. A comparison of results in pure gluonic vacuum and with sea quarks is given for both the confinement and the deconfinement phase of QCD. Numerical simulations yield attractive potentials in the overlap region of the hadrons for all considered systems. In the deconfinement phase the resulting potentials are shallower reflecting the dissolution of the hadrons. A big step towards the simulation of realistic two-hadron systems on the lattice is the consideration of mesons consisting of dynamic valence quarks. This is done for the two most important fermionic discretization schemes in the pure gluonic vacuum. A calculation in coordinate space utilizing Kogut-Susskind fermions for the valence quarks yields meson-meson potentials with a long ranged interaction, an intermediate
Quantum chromodynamic quark model study of hadron and few hadron systems
International Nuclear Information System (INIS)
Ji, Chueng-Ryong.
1990-10-01
This report details research progress and results obtained during the five month period July 1, 1990 to November 30, 1990. The research project, entitled ''Quantum Chromodynamic Quark Model Study of Hadron and Few Hadron Systems,'' is supported by grant FG05-90ER40589 between North Carolina State University and the United States Department of Energy. This is a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. The new, significant research results are briefly summarized in the following sections
Radiative E1-decay of charmonium 1P1 level within sum rules of quantum chromodynamics
International Nuclear Information System (INIS)
Martynenko, A.P.
1991-01-01
Analysis of radiative decay of 1 P 1 → 1 S 0 + γ charmonium within sum rules of quantum chromodynamics was conducted. The sum rule, taking account of gluon exponential correction, was obtained, and width of Χ → η c + γ decay was calculated
Exclusive processes and the exclusive-inclusive connection in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1979-03-01
An outline of a new analysis of exclusive processes and quantum chromodynamics is presented. The main elements of this work involve a consistent Fock space decomposition of the hadronic wave function, plus evolution equations for wave functions which allow an exact evaluation of hadronic matrix elements in the asymptotic short distance limit. 77 references
Parton densities in quantum chromodynamics gauge invariance, path-dependence and Wilson lines
Cherednikov, Igor O
2016-01-01
The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and loops in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), ab initio techniques are developed and practical tools for their implementation presented. An emphasis is put on their renormalization and on implications on processes observable at experimental facilities.
International Nuclear Information System (INIS)
Botelho, Luiz C.L.
2008-01-01
We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of an external U (∞) flavor constant charged white noise reservoir. (author)
Energy correlations in perturbative quantum chromodynamics: a conjecture for all orders
International Nuclear Information System (INIS)
Basham, C.L.; Brown, L.S.; Ellis, S.D.; Love, S.T.
1979-01-01
The hadronic energy produced in high-energy electron-positron annihilation has an angular correlation which can be computed by the asymptotically free perturbation theory of quantum chromodynamics. In finite orders, the correlation is not well behaved as the detectors become anti-collinear. The leading behaviour has been calculated to fourth order and an exponential expression for the sum of all orders is discussed. This expression obeys a non-trivial sum rule which lends support for its validity. (Auth.)
Cavity quantum chromodynamics in the presence of a classical background field
International Nuclear Information System (INIS)
Gavin, E.J.O.; Viollier, R.D.
1988-01-01
The QCD (quantum chromodynamics) Lagrange density is constructed in which the gluon field has a classical part, using the background field gauge. The conserved currents deriving from the symmetries of this theory are given and used to define boundary conditions on the field operators on the surface of a spherical, static cavity. The field operators are expanded in terms of a complete set of cavity modes that satisfy the boundary conditions and the field equations in the Dirac picture. 13 refs
Quantum chromodynamics and the derivation of a microscopic theory of the nucleus
International Nuclear Information System (INIS)
Sliv, L.A.; Strikman, M.I.; Frankfurt, L.L.
1985-01-01
The progress which has already been made in the construction of a microscopic theory of the nucleus on the basis of quantum chromodynamics, the problems remaining, and the outlook for future progress are analyzed. The problem of nuclear forces, the role played by a high-momentum component in the nuclear wave function, and the role played by relativistic effects in various hard nuclear processes are discussed
Spectral function sum rules in quantum chromodynamics. I. Charged currents sector
International Nuclear Information System (INIS)
Floratos, E.G.; Narison, Stephan; Rafael, Eduardo de.
1978-07-01
The Weinberg sum rules of the algebra of currents are reconsidered in the light of quantum chromodynamics (QCD). The authors derive new finite energy sum rules which replace the old Weinberg sum rules. The new sum rules are convergent and the rate of convergence is explicitly calculated in perturbative QCD at the one loop approximation. Phenomenological applications of these sum rules in the charged current sector are also discussed
Strong coupling 1/Nsub(c) expansion in the gluonic sector of lattice quantum chromodynamics
International Nuclear Information System (INIS)
Engels, J.; Montvay, I.
1980-01-01
The vacuum state of gluonic quantum chromodynamics on the lattice is determined up to fifth order in a 1/Nsub(c) expansion (Nsub(c) = number of colours). The vacuum expectation value of the gluon field squared Fsub(aμv)Fsub(a)sup(μv) is deduced. The quark-antiquark and gluon-gluon potential is calculated in the same limit up to the 1/N 3 sub(c) order. (orig.)
Quantum Chromodynamics and nuclear physics at extreme energy density
International Nuclear Information System (INIS)
Mueller, B.
1993-01-01
This report discusses research in the following topics: Hadron structure physics; relativistic heavy ion collisions; finite- temperature QCD; real-time lattice gauge theory; and studies in quantum field theory
Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines
International Nuclear Information System (INIS)
Cherednikov, Igor O.
2017-01-01
The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.
Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor O. [Antwerpen Univ. (Belgium). Dept. Fysica; Veken, Frederik F. van der [CERN, Geneva (Switzerland)
2017-05-01
The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.
Quantum chromodynamics as effective theory of quarks and composite gluons
International Nuclear Information System (INIS)
Fuss, T.
2004-01-01
The dynamics of quarks is described by a nonperturbatively regularized NJL model which is canonically quantized and fulfil a probability interpretation. The quantum field theory of this model is formulated in a functional space. The wave functions of the quarks and gluons are calculated as eigenstates of Hard-Core equations and the gluons are considered as relativistic bound states of colored quark-antiquark pairs. The effective dynamics of the quarks and gluons is derived from weak mapping in functional space. This leads to the functional formulation of the phenomenological SU(3) local gauge invariant quark-gluon equations in temporal gauge. This means that the local gauge symmetry is a dynamical effect resulting from the quark model
Quarks, QCD [quantum chromodynamics] and the real world of experimental data
International Nuclear Information System (INIS)
Lipkin, H.J.
1987-07-01
The experimental evidence that supports quantum chromodynamics as the theory that describes how the quarks interact is briefly discussed. The indications of the existence of quarks are reviewed, and calculation of hadron masses is discussed. Additional evidence of hadron substructure as seen in the antiproton is reviewed. Arguments for the existence of color as the ''charge'' carried by quarks by which they interact are given. Hadron masses and the hyperfine interaction are presented, followed by more exotic quark systems and a study of multiquark systems. Weak interactions in the quark model are discussed
International Nuclear Information System (INIS)
Randriamisy, H.D.E.
2014-01-01
Nowadays, the study of scattering and production of particles occupies an important place in subatomic physics research. The main ongoing experiments concern high-energy scattering in the colliders, the scattering theory based on quantum field theory is used for the theoretical study. The work presented in this thesis is located in this framework, in fact it concerns a study on the scattering theory and Perturbative Quantum Chromodynamics. We used the path integral formalism of quantum field theory and perturbation theory. As we considered the higher order corrections in perturbative developments, the renormalization theory with the method of dimensional regularization was also used. As an application, the case of the Top quark production was considered. As main results, we can quote the obtention of the cross section of quark-antiquark top pair production up to second order. [fr
International Nuclear Information System (INIS)
Carson, L.J.
1980-01-01
Quantum chromodynamics (QCD) is currently our only candidate for a theory of strong-interaction dynamics. But the evidence for it is very scanty. Indeed, QCD has only been experimentally verified in its predictions of scaling violation in deep inelastic neutrino scattering. Yet, research continues on QCD because it is based on a beautiful idea, namely the incorporation of observed particle symmetries via local gauge invariance. Nevertheless QCD, a quantum field theory in 3 + 1 dimensions is still without solution. The sheer difficulty in solving the full quantum problem has led some to various approximations, in the hopes of shedding light on the structure of the theory. (orig./FKS)
Simulations of non-relativistic quantum chromodynamics at strong and weak coupling
Shakespeare, Norman Harold
In this thesis heavy quarks are investigated using lattice nonrelativistic quantum chromodynamics (NRQCD). Two major research works are presented. In the first major work, simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed at both leading and next-to-leading order in the relativistic expansion, using a large number of lattice spacings. A detailed comparison between mean-link and average plaquette tadpole renormalization schemes is undertaken with a number of features favouring the use of mean-links. These include much better scaling behavior of the hyperfine splittings and smaller relativistic corrections to the spin splittings. Signs of a breakdown in the NRQCD expansion are seen when the bare quark mass, in lattice units, falls below about one. In the second work, coefficients for the perturbative expansion of the static quark self energy are extracted from Monte Carlo simulations in the perturbative region of lattice quantum chromodynamics (QCD). A very large systematic study resulted in a major extension of existing methods. Twisted boundary conditions are used to eliminate the effects of zero modes and to suppress tunneling between the degenerate Z3 vacua. The Monte Carlo results are in excellent agreement with analytic perturbation theory, which is known through second order. New results for the third order coefficient are reported. Preliminary work is reported on quark propagators which will be used to measure second order mass renormalizations for NRQCD fermions.
Quantum chromodynamic quark model study of hadron and few hadron systems
International Nuclear Information System (INIS)
Ji, Chueng-Ryong.
1991-05-01
This report details research progress and results obtained during the one year period December 1, 1990 to November 30, 1991. The research project, entitled ''Quantum Chromodynamic Quark Model Study of Hadron and Few Hadron Systems,'' is supported by grant FG05-90ER40589 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the principal investigator, Professor Chueng-Ryong Ji, has conducted a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. This principal investigator has devoted 50% of his time during the academic year and 100% of his time in the summer. This percent effort will continue for the remaining period of the grant. The new, significant research results are briefly summarized in the following sections. Recent progress has been reported in the renewal/continuation grant proposal just submitted to the Department of Energy. Finally, full, detailed descriptions of completed work can be found in the project publications which are listed at the end of this progress report
Martinelli, Guido
1994-01-01
1, Hadrons as bound states of quarks and gluons. 2, Quark models, confinement and asymptotic freedom. 3, The parton model; Deep Inelastic Scattering (DIS) process. 4, The parton model and QCD. 5) Phenomenology of the parton model; muon and neutrino DIS, structure functions and parton distributions. 6) W and Z production at Colliders. 7) Weak decays and strong interactions. 8) Heavy flavours effective theories and QCD. 9) Non-perturbative QCD.
Leutwyler, Heinrich
1995-01-01
1: Hadrons as bound states of quarks.Flavour and colour. 2: Gauge fields and the forces they generate. 3: Perturbation theory,asymptotic freedom,stength of the strong interaction. 4: Lattice formulation,confinement,flavour symmetries,anomalies. 5: Spontaneous symmetry breakdown,quark masses.
The black book of quantum chromodynamics a primer for the LHC era
Campbell, John; Krauss, Frank
2018-01-01
The Black Book of Quantum Chromodynamics is an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The book offers the reader an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier. It assumes a working knowledge of quantum field theory at the level of introductory textbooks used for advanced undergraduate or in standard postgraduate lectures. The book expands this knowledge with an intuitive understanding of relevant physical concepts, an introduction to modern techniques, and their application to the phenomenology of the strong interaction at the highest energies. Aimed at graduate students and researchers, it also serves as a comprehensive reference for LHC experimenters and theorists. This book offers an exhaustive presentation of the technologies developed and used by practitioners in the field of fixed-order perturbation theory and an overview of re...
Adams, Allan; Carr, Lincoln D.; Schafer, Thomas; Steinberg, Peter; Thomas, John E.
2012-01-01
Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These sy...
Gauge invariant description of heavy quark bound states in quantum chromodynamics
International Nuclear Information System (INIS)
Moore, S.E.
1980-08-01
A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A 0 = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube
International Nuclear Information System (INIS)
Ji, C.R.
1999-01-01
This report details research progress and results obtained during the entire period of the research project. In compliance with grant requirements the Principal Investigator, Professor Chueng-Ryong Ji, has conducted a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. This Principal Investigator has devoted 50% of his time during the academic year and 100% of his time in the summer. This percent effort has continued during the entire period of the grant. The new, significant research results are briefly summarized in this report. Finally, full, detailed descriptions of completed work can be found in the project publications which are listed at the end of this technical report
Introduction to non-perturbative quantum chromodynamics; Introduction a QCD non perturbatif
Energy Technology Data Exchange (ETDEWEB)
Pene, O. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies
1995-12-31
Quantum chromodynamics is considered to be the theory of strong interaction. The main peculiarity of this theory is that its asymptotic states (hadrons) are different from its elementary fields (quarks and gluons). This property plays a great part in any physical process involving small momentum-energy transfers. In such a range perturbative methods are no longer allowed. This work focuses on other tools such as QCD symmetry, the quark model, Green functions and the sum rules. To get hadron characteristics numerically, QCD on lattices is used but only in the case of simple process involving no more than one hadron in the initial and final states because of the complexity of the Green function. Some examples using a Monte-Carlo simulation are given. (A.C.) 39 refs.
An equation-of-state-meter of quantum chromodynamics transition from deep learning.
Pang, Long-Gang; Zhou, Kai; Su, Nan; Petersen, Hannah; Stöcker, Horst; Wang, Xin-Nian
2018-01-15
A primordial state of matter consisting of free quarks and gluons that existed in the early universe a few microseconds after the Big Bang is also expected to form in high-energy heavy-ion collisions. Determining the equation of state (EoS) of such a primordial matter is the ultimate goal of high-energy heavy-ion experiments. Here we use supervised learning with a deep convolutional neural network to identify the EoS employed in the relativistic hydrodynamic simulations of heavy ion collisions. High-level correlations of particle spectra in transverse momentum and azimuthal angle learned by the network act as an effective EoS-meter in deciphering the nature of the phase transition in quantum chromodynamics. Such EoS-meter is model-independent and insensitive to other simulation inputs including the initial conditions for hydrodynamic simulations.
Parallelizing the QUDA Library for Multi-GPU Calculations in Lattice Quantum Chromodynamics
International Nuclear Information System (INIS)
Babich, Ronald; Clark, Michael; Joo, Balint
2010-01-01
Graphics Processing Units (GPUs) are having a transformational effect on numerical lattice quantum chromodynamics (LQCD) calculations of importance in nuclear and particle physics. The QUDA library provides a package of mixed precision sparse matrix linear solvers for LQCD applications, supporting single GPUs based on NVIDIA's Compute Unified Device Architecture (CUDA). This library, interfaced to the QDP++/Chroma framework for LQCD calculations, is currently in production use on the '9g' cluster at the Jefferson Laboratory, enabling unprecedented price/performance for a range of problems in LQCD. Nevertheless, memory constraints on current GPU devices limit the problem sizes that can be tackled. In this contribution we describe the parallelization of the QUDA library onto multiple GPUs using MPI, including strategies for the overlapping of communication and computation. We report on both weak and strong scaling for up to 32 GPUs interconnected by InfiniBand, on which we sustain in excess of 4 Tflops.
International Nuclear Information System (INIS)
Frishman, Y.; Zakrewski, W.J.
1989-07-01
We derive explicit expressions for the masses and the binding energies of k-baryons states in two dimensional (one space and one time) Quantum Chromodynamics (QCD(2)). The expressions are given using the parameters n 1 ,n 2 ,...,nN f -1 which characterize the representation of SU(N f ), where N f is the number of flavours, in terms of its Young tableau description. We find that the difference between the mass of the k-baryon state and the sum of masses of any combination of its constituents, is independent of the value N f (ie the number of flavors). These results hold within a certain bosonized form of QCD(2) and within the strong coupling limit of (G/m) → ∞, where G is the gauge coupling constant and m the quark mass. (authors)
Parallelizing the QUDA Library for Multi-GPU Calculations in Lattice Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Ronald Babich, Michael Clark, Balint Joo
2010-11-01
Graphics Processing Units (GPUs) are having a transformational effect on numerical lattice quantum chromodynamics (LQCD) calculations of importance in nuclear and particle physics. The QUDA library provides a package of mixed precision sparse matrix linear solvers for LQCD applications, supporting single GPUs based on NVIDIA's Compute Unified Device Architecture (CUDA). This library, interfaced to the QDP++/Chroma framework for LQCD calculations, is currently in production use on the "9g" cluster at the Jefferson Laboratory, enabling unprecedented price/performance for a range of problems in LQCD. Nevertheless, memory constraints on current GPU devices limit the problem sizes that can be tackled. In this contribution we describe the parallelization of the QUDA library onto multiple GPUs using MPI, including strategies for the overlapping of communication and computation. We report on both weak and strong scaling for up to 32 GPUs interconnected by InfiniBand, on which we sustain in excess of 4 Tflops.
International Nuclear Information System (INIS)
Muzinich, I.J.
1980-01-01
The quark model of hadrons, when all constituents and gluons are included, has the possibility of accommodating not only what are conventionally accepted quark model states but also exotics of various kinds and eventually nuclei themselves. Recently, a considerable theoretical framework has evolved around quarks and gluons known as quantum chromodynamics. This theory is still at a primitive level as far as our ability to perform calculations. However, it is the only possible field theory that contains any hope of understanding both quark freedom at high energies and their strong binding within hadrons. I present a possible viewpoint on how both features could be true without apparent conflict. I also make some speculation on the nature of the perturbation expansion in such a world. What these speculations lack in originally I hope is compensated for by clarity
International Nuclear Information System (INIS)
Botelho, Luiz C.L.
2004-01-01
We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of a very strong external white-noise electromagnetic (strength) field within the context of QCD in the 't Hooft limit of a large number of colors
Quantum electrical and chromodynamics treated through Thompson's approach
Energy Technology Data Exchange (ETDEWEB)
Nassif, Claudio [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: cnassifCBPF@yahoo.com.br; Silva, P.R. [Minas Gerais Univ. (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Fisica]. E-mail: prsilva@fisica.ufmg.br
2006-09-15
In this work we apply Thompson's method (of the dimensions and scales) to study some features of the Quantum Electro and Chromodynamics. This heuristic method can be considered as a simple and alternative way to the Renormalisation Group (R.G.) approach and when applied to QED-Lagrangian is able to obtain in a first approximation both the running coupling constant behavior of {alpha}({mu}) and the mass m({mu}). The calculations are evaluated just at d{sub c} = 4, where d{sub c} is the upper critical dimension of the problem, so that we obtain the logarithmic behavior both for the coupling {alpha} and the excess of mass {delta}m on the energy scale {mu}. Although our results are well-known in the vast literature of field theories, the advantage of Thompson's method, beyond its simplicity is that it is able to extract directly from QED-Lagrangian the physical (finite) behavior of {alpha}({mu}) and m({mu}), bypassing hard problems of divergences which normally appear in the conventional renormalisation schemes applied to field theories like QED. Quantum Chromodynamics (QCD) is also treated by the present method in order to obtain the quark condensate value. Besides this, the method is also able to evaluate the vacuum pressure at the boundary of the nucleon. This is done by assuming a step function behavior for the running coupling constant of the QCD, which fits nicely to some quantities related to the strong interaction evaluated through the MIT-bag model. (author)
Study of the meson mass spectroscopy with a potential model inspired in the quantum chromodynamics
International Nuclear Information System (INIS)
Bernardini, Alex Eduardo de
2001-01-01
Since the discovery of QCD (Quantum Chromodynamics), there have been remarkable technical achievements in perturbative calculations applied to hadrons. However, it is difficult to use QCD directly to compute hadronic properties. In this context, phenomenological potential models have provided extremely satisfactory results on description of ordinary hadrons, more specifically about quark-antiquark bound states (mesons). In this work we propose and study the main aspects in the construction of a potential model and search a generalized description of meson spectroscopy, with emphasis in heavy quark bound states. We analyze important aspects in the choice of the treatment in good agreement with the dynamics of interacting particles, attempting to relativistic aspects as well as to the possibilities of nonrelativistic approximation analysis. Initially the 'soft QCD' is employed to determine effective potential terms establishing the asymptotic Coulomb term from one gluon exchange approximation. At the same time, a linear confinement term is introduced in accordance with QCD and phenomenological prescription. We perform the calculations of mass spectroscopy for particular sets of mesons and we verify whether the potential model could be extended to calculating the electronic transition rate (Γ(q q-bar → e - e + )). Finishing, we discuss the real physical possibilities of development of a generalized potential model (all quark flavors), its possible advantages relative to experimental parametrization, complexity in numerical calculations and in the description of physical reality in agreement with a quantum field theory (QCD). (author)
International Nuclear Information System (INIS)
Hagiwara, K.
1982-01-01
It is argued that the 't Hooft transformation of the running coupling constant, in which the two-loop renormalization group (RG) function becomes exact, will be useful in the framework of perturbative quantum chromodynamics at least to three-loop order. On the other hand, the coupling constant expansion obtained by the Adler transformation, in which the RG equation takes its one-loop form, may suffer from large corrections in a finite order. (orig.)
Searching for new physics at the frontiers with lattice quantum chromodynamics.
Van de Water, Ruth S
2012-07-01
Numerical lattice-quantum chromodynamics (QCD) simulations, when combined with experimental measurements, allow the determination of fundamental parameters of the particle-physics Standard Model and enable searches for physics beyond-the-Standard Model. We present the current status of lattice-QCD weak matrix element calculations needed to obtain the elements and phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and to test the Standard Model in the quark-flavor sector. We then discuss evidence that may hint at the presence of new physics beyond the Standard Model CKM framework. Finally, we discuss two opportunities where we expect lattice QCD to play a pivotal role in searching for, and possibly discovery of, new physics at upcoming high-intensity experiments: rare decays and the muon anomalous magnetic moment. The next several years may witness the discovery of new elementary particles at the Large Hadron Collider (LHC). The interplay between lattice QCD, high-energy experiments at the LHC, and high-intensity experiments will be needed to determine the underlying structure of whatever physics beyond-the-Standard Model is realized in nature. © 2012 New York Academy of Sciences.
Temperature dependence of the CP/sup N-1/ model and the analogy with quantum chromodynamics
International Nuclear Information System (INIS)
Actor, A.
1985-01-01
The two-dimensional CP/sup N-1/ model - a simple field-theoretic analogue of four-dimensional quantum chromodynamics (QCD) - is analysed and reviewed. The major themes are the temperature dependence of the CP/sup N-1/ model, and the analogy between CP/sup N-1/ and QCD. A detailed treatment of the 1/N approximation of the CP/sup N-1/ model is given. The main results emerging from this approximation are discussed at length. These are: asymptotic freedom, dimensional transmutation, confinement and topological charge nonquantization at zero temperature T = 0, screening and topological charge quantization at finite temperature T. The analogy with QCD is explained in detail. A new, qualitative, analysis of the CP/sup N-1/ model at finite temperature is introduced. This approach exploits the conformal invariance of the model to 'heat' an arbitrary CP/sup N-1/ field from T = 0 to finite temperature. This is achieved by conformal-transforming the flat Euclidean space-time of the T = 0 theory to the cylindrical space-time of the finite temperature theory. (author)
Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics
International Nuclear Information System (INIS)
Neuenschwander, D.E. Jr.
1983-01-01
Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g→infinity; x→infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x 2 much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g 2 /x 2 much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed
Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Neuenschwander, D.E. Jr.
1983-01-01
Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.
The application of light-cone quantization to quantum chromodynamics in one-plus-one dimensions
International Nuclear Information System (INIS)
Hornbostel, K.J.
1988-12-01
Formal and computational aspects of light cone quantization are studied by application to quantum chromodynamics (QCD) in one spatial plus one temporal dimension. This quantization scheme, which has been extensively applied to perturbative calculations, is shown to provide an intuitively appealing and numerically tractable approach to non-perturbative computations as well. In the initial section, a light-cone quantization procedure is developed which incorporates fields on the boundaries. This allows for the consistent treatment of massless fermions and the construction of explicitly conserved momentum and charge operators. The next section, which comprises the majority of this work, focuses on the numerical solution of the light-cone Schrodinger equation for bound states. The state space is constructed and the Hamiltonian is evaluated and diagonalized by computer for arbitrary number of colors, baryon number and coupling constant strength. As a result, the full spectrum of mesons and baryons and their associated wavefunctions are determined. These results are compared with those which exist from other approaches to test the reliability of the method. The program also provides a preliminary test for the feasibility of, and an opportunity to develop approximation schemes for, an attack on three-plus-one dimensional QCD. Finally, analytic results are presented which include a discussion of integral equations for wavefunctions and their endpoint behavior. Solutions for hadronic masses and wavefunctions in the limits of both large and small quark mass are discussed. 49 refs., 32 figs., 10 tabs
Detailed quantum-chromodynamic predictions for high-p/sub T/ processes
Owens, J F; Reya, E
1978-01-01
High-p/sub T/ single-particle inclusive cross section calculations are presented for the CERN ISR and ISABELLE energy ranges, taking into account all lowest-order hard-scattering subprocesses required by quantum chromodynamics (QCD). The input quark and gluon distribution and fragmentation functions were determined from analyses of deep- inelastic lepton data and were subject to various theoretical constraints such as sum rules and SU(3) symmetry. The authors thoroughly discuss the effects of the individual contributions from fermionic and gluonic subprocesses, as well as those effects stemming from QCD scaling violations in parton distributions and/or fragmentation functions. In particular, the inclusion of the large elastic gluon-gluon and gluon-quark scattering terms has a profound effect on both the normalization and the p/sub T/ dependence of the predictions. The p/sub T/ and theta dependences of single- pi /sup 0/ production are shown to be in good agreement with available data in the region p/sub T/>or...
Boku, Taisuke; Ishikawa, Ken-Ichi; Kuramashi, Yoshinobu; Meadows, Lawrence
2017-01-01
Lattice Quantum Chromodynamics (Lattice QCD) is a quantum field theory on a finite discretized space-time box so as to numerically compute the dynamics of quarks and gluons to explore the nature of subatomic world. Solving the equation of motion of quarks (quark solver) is the most compute-intensive part of the lattice QCD simulations and is one of the legacy HPC applications. We have developed a mixed-precision quark solver for a large Intel Xeon Phi (KNL) system named "Oakforest-PACS", empl...
Chiral chains for lattice quantum chromodynamics at N/sub c/=infinity
International Nuclear Information System (INIS)
Brower, R.C.; Rossi, P.; Tan, C.
1981-01-01
We study chiral fields [U/sub i/ in the group U(N)] on a periodic lattice (U/sub i/=U/sub i/+L), with action S1/=(g-italic 2 )Σ/sup L//sub l/=1Tr(U/sub l/U/sup //sub l/+1+ U/sup //sub l/U/sub l/+1), as prototypes for lattice gauge theories [quantum chromodynamics (QCD)] at N/sub c/=infinity. Indeed, these chiral chains are equivalent to gauge theories on the surface of an L-faced polyhedron (e.g., L=4 is a tetrahedron, L=6 is the cube, and L=infinity is two-dimensional QCD). The one-link Schwinger-Dyson equation of Brower and Nauenberg, which gives the square of the transfer matrix, is solved exactly for all N. From the large-N solution, we solve exactly the finite chains for L=2, 3, 4, and infinity, on the weak-coupling side of the Gross-Witten singularity, which occurs at β=(g-italic 2 N) -1 =1/4, 1/3, π/8, and 1/2, respectively. We carry out weak and strong perturbation expansions at N/sub c/=infinity to estimate the singular part for all L, and to show confinement (as g 2 N→infinity) and asymptotic freedom (g 2 N→0) in the Migdal β function for QCD. The stability of the location of the Gross-Witten singularity for different-size lattices (L) suggests that QCD at N/sub c/=infinity enjoys this singularity in the transition region from strong to weak coupling
Phenomenology of the proton and the nucleus through hard processes in quantum chromodynamics
International Nuclear Information System (INIS)
Gousset, T.
2005-01-01
My scientific domain is the phenomenology of the non-perturbative quantum chromodynamics (QCD). In the introduction I quickly present the history of QCD since its establishing in the seventies. The first chapter is dedicated to the achievements of the last decade concerning first the hard electroproduction at low impulse transfer in electron-proton reactions and secondly the search for the quark-gluon plasma in ultra-relativistic heavy ion reactions with the help of hard probes. In the second chapter I detail the hard electroproduction reactions with the aim of explaining their factorization in a sub-process including partons and whose amplitude can be computed in the theory of perturbations. Generalized parton distributions, that describe the transition from hadrons to partons could be useful to get more information on hadronic wave functions. Experimental implications are reviewed. The third chapter is dedicated to the J/ψ production in proton-nucleus collisions. J/ψ and the quarkonium family offer, thanks to their easy identification a useful tool to shed light on different sides of QCD such as the production of heavy quarks or the existence of the quark-gluon plasma. In the last chapter I present my last works that concern first the nuclear effects that appear in proton-nucleus collisions when we want to describe the relationship between the production cross-section of a particle and the value of the transverse momentum of the particle, and secondly the observation through radio-detection of big showers due to the interaction with the atmosphere of an ultra-high energy cosmic ray [fr
Measurement of the lepton τ spectral functions and applications to quantum chromodynamic
International Nuclear Information System (INIS)
Hoecker, A.
1997-01-01
This thesis presents measurements of the τ vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e + e - annihilation. A combined fit of the pion form factor from τ decays and e + e - data is performed using different parametrizations. The mass and the width of the ρ ± (770) and the ρ 0 (770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M ρ ± (770) - M ρ 0 (770) =(0.0±1.0) MeV/c 2 and Γ ρ ± (770) - Γ ρ 0 (770) =(0.1 ± 1.9) MeV/c 2 . Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be α E =(2.68±0.91) x 10 -4 fm 3 . The τ vector and axial-vector hadronic widths and certain spectral moments are exploited to measure α s and non-perturbative contributions at the τ mass scale. The best, and experimentally and theoretically most robust, determination of α s (M τ ) is obtained from the inclusive (V + A) fit that yields α s (M τ )= 0.348±0.017 giving α s (M Z )=0.1211 ± 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the τ hadronic width to masses smaller that the τ mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6.9±0.5. The vector spectral functions are used to improve the precision of the experimental determination of the hadronic contribution to the anomalous magnetic moment of the muon a μ =(g - 2)/2 and to the running of the QED
International Nuclear Information System (INIS)
Hazarika, Bhaskar Jyoti; Choudhury, D.K.
2015-01-01
We use variationally improved perturbation theory (VIPT) for calculating the elastic form factors and charge radii of D, D s , B, B s and B c mesons in a quantum chromodynamics (QCD)-inspired potential model. For that, we use linear-cum-Coulombic potential and opt the Coulombic part first as parent and then the linear part as parent. The results show that charge radii and form factors are quite small for the Coulombic parent compared to the linear parent. Also, the analysis leads to a lower as well as upper bounds on the four-momentum transfer Q 2 , hinting at a workable range of Q 2 within this approach, which may be useful in future experimental analyses. Comparison of both the options shows that the linear parent is the better option. (author)
Hülsing, Tobias
Quantum chromodynamics, QCD, the theory of the strong interaction is split into two regimes. Scattering processes of the proton constituents, the partons, with a high momentum transfer $Q^2$ can be calculated and predicted with perturbative calculations. At low momentum transfers between the scattering particles perturbation theory is not applicable anymore, and phenomenological methods are used to describe the physics in this regime. The ATLAS experiment at the Large Hadron Collider, LHC, provides the possibility to analyze QCD processes at both ends of the momentum scale. Two measurements are presented in this thesis, emphasizing one of the two regimes each: The measurement of charged-particle event shape variables in inelastic proton–proton collisions at a center-of-mass energy of $\\sqrt{s}$ = 7 TeV analyses the transverse momentum flow and structure of hadronic events. Due to the, on average, low momentum transfer, predictions of these events are mainly driven by non-perturbative models. Three event sha...
International Nuclear Information System (INIS)
Laidet, J.
2013-01-01
As the value of the longitudinal momentum carried by partons in a ultra-relativistic hadron becomes small, one observes a growth of their density. When the parton density becomes close to a value of order 1/α s , it does not grow any longer, it saturates. These high density effects seem to be well described by the Color Glass Condensate effective field theory. On the experimental side, the LHC provides the best tool ever for reaching the saturated phase of hadronic matter. For this reason saturation physics is a very active branch of QCD during these past and coming years since saturation theories and experimental data can be compared. I first deal with the phenomenology of the proton-lead collisions performed in winter 2013 at the LHC and whose data are about to be available. I compute the di-gluon production cross-section which provides the simplest observable for funding quantitative evidences of saturation in the kinematic range of the LHC. I also discuss the limit of the strongly correlated final state at large transverse momenta and by the way, generalize parton distribution to dense regime. The second main topic is the quantum evolution of the quark and gluon spectra in nucleus-nucleus collisions having in mind the proof of its universal character. This result is already known for gluons and here I detail the calculation carefully. For quarks universality has not been proved yet but I derive an intermediate leading order to next-to leading order recursion relation which is a crucial step for extracting the quantum evolution. Finally I briefly present an independent work in group theory. I detail a method I used for computing traces involving an arbitrary number of group generators, a situation often encountered in QCD calculations. (author) [fr
Color transparency and the structure of the proton in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1989-06-01
Many anomalies suggest that the proton itself is a much more complex object than suggested by simple non-relativistic quark models. Recent analyses of the proton distribution amplitude using QCD sum rules points to highly-nontrivial proton structure. Solutions to QCD in one-space and one-time dimension suggest that the momentum distributions of non-valence quarks in the hadrons have a non-trivial oscillatory structure. The data seems also to be suggesting that the ''intrinsic'' bound state structure of the proton has a non-negligible strange and charm quark content, in addition to the ''extrinsic'' sources of heavy quarks created in the collision itself. As we shall see in this lecture, the apparent discrepancies with experiment are not so much a failure of QCD, but rather symptoms of the complexity and richness of the theory. An important tool for analyzing this complexity is the light-cone Fock state representation of hadron wavefunctions, which provides a consistent but convenient framework for encoding the features of relativistic many-body systems in quantum field theory. 121 refs., 44 figs., 1 tab
Quantum Chromodynamics (abstract only)
Hooft, G. 't
2000-01-01
The strong interactions were the last of the fundamental forces in the twentieth century to be fully understood in terms of basic and fundamental equations. Shortly after the discovery of the renormalizable non-Abelian gauge theories that unified the electroweak forces, it was realized that the
Lattice Quantum Chromodynamics
Sachrajda, C T
2016-01-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattice quantum chromodynamics
International Nuclear Information System (INIS)
Hassenfratz, P.
1983-01-01
It is generally accepted that relativistic field theory is relevant in high energy physics. It is also recognized that even in QCD, which is asymptotically free, the scope of perturbation theory is very limited. Despite the tremendous theoretical and experimental effort to study scaling, scaling violations, e + e - , lepton pair creation, jets, etc., the answer to the question whether and to what extent is QCD the theory of strong interactions is vague. At present-day energies it is difficult to disentangle perturbative and non-perturbative effects. The author states that QCD must be understood and that quantitative non-perturbative methods are needed. He states that the lattice formulation of field theories is a promising approach to meeting this need and discusses the formulation in detail in this paper
Beyond standard quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1995-09-01
Despite the many empirical successes of QCD, there are a number of intriguing experimental anomalies that have been observed in heavy flavor hadroproduction, in measurements of azimuthal correlations in deep inelastic processes, and in measurements of spin correlations in hadronic reactions. Such phenomena point to color coherence and multiparton correlations in the hadron wavefunctions and physics beyond standard leading twist factorization. Two new high precision tests of QCD and the Standard Model are discussed: classical polarized photoabsorption sum rules, which are sensitive to anomalous couplings and composite structure, and commensurate scale relations, which relate physical observables to each other without scale or scheme ambiguity. The relationship of anomalous couplings to composite structure is also discussed
Perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1979-12-01
The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e + e - →had//sigma/sub e + e - →μ + μ - /, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures
Testing quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1982-09-01
The difficulties in isolating specific QCD mechanisms which control hadronic phenomena, and the complications in obtaining quantitative tests of QCD are discussed. A number of novel QCD effects are reviewed, including heavy quark and higher twist phenomena, initial and final state interactions, direct processes, multiparticle collisions, color filtering, and nuclear target effects. The importance of understanding hadron production at the amplitude level is stressed
Some views about chromodynamics
International Nuclear Information System (INIS)
Pilon, E.
1995-01-01
The first lesson recalls some basis of quantum chromodynamics (QCD). Particularly the Lagrangian density and the Feynman laws are described. The second lesson presents the problem of renormalization and the notion of efficient coupling. The important property of asymptotic freedom of QCD is detailed. The third lesson gives a schematic classification of processes involved in hadronic physics with high energy-momentum transfer. Scale invariance and its breakdown by using leading log method is presented and leads to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations. The fourth and last lesson paves the way to use the factorization method beyond the leading logs in the case of hadron-hadron collision within the frame of leading twist. Some ideas about comparisons between semi-analytical calculations and Monte-Carlo simulations are given. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Deta, U. A., E-mail: utamaalan@yahoo.co.id [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia and Physics Department, State University of Surabaya, Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 (Indonesia)
2014-09-30
The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.
International Nuclear Information System (INIS)
Mueller, B.; Springer, R.P.
1994-01-01
This report briefly discusses the following topics: quark-gluon plasma and high-energy collisions; hadron structure and chiral dynamics; nonperturbative studies and nonabelian gauge theories; and studies in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Marquet, C
2006-09-15
When probing small distances inside a hadron, one can resolve its partonic constituents: quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This substructure reveals itself in hadronic collisions characterized by a large momentum transfer: in such collisions, a hadron acts like a collection of partons whose interactions can be described in QCD. In a collision at moderate energy, a hadron looks dilute and the partons interact incoherently. As the collision energy increases, the parton density inside the hadron grows. Eventually, at some energy much bigger than the momentum transfer, one enters the saturation regime of QCD: the gluon density has become so large that collective effects are important. We introduce a formalism suitable to study hadronic collisions in the high-energy limit in QCD, and the transition to the saturation regime. In this framework, we derive known results that are needed to present our personal contributions and we compute different cross-sections in the context of hard diffraction and particle production. We study the transition to the saturation regime as given by the Balitsky-Kovchegov equation. In particular we derive properties of its solutions.We apply our results to deep inelastic scattering and show that, in the energy range of the HERA collider, the predictions of high-energy QCD are in good agreement with the data. We also consider jet production in hadronic collisions and discuss the possibility to test saturation at the Large Hadron Collider. (author)
Underlying theory based on quaternions for Alder's algebraic chromodynamics
International Nuclear Information System (INIS)
Horwitz, L.P.; Biedenharn, L.C.
1981-01-01
It is shown that the complex-linear tensor product for quantum quaternionic Hilbert (module) spaces provides an algebraic structure for the non-local gauge field in Adler's algebraic chromodynamics for U
Institute of Scientific and Technical Information of China (English)
XIONG Wen-Yuan; HU Zhao-Hui; WANG Xin-Wen; ZHOU Li-Juan; XIA Li-Xin; MA Wei-Xing
2008-01-01
Based on analysis of scattering matrix S, and its properties such as analyticity, unitarity, Lorentz invariance, and crossing symmetry relation, the Regge theory was proposed to describe hadron-hadron scattering at high energies before the advent of QCD, and correspondingly a Reggeon concept was born as a mediator of strongly interaction. This theory serves as a successful approach and has explained a great number of experimental data successfully, which proves that the Regge theory can be regarded as a basic theory of hadron interaction at high energies and its validity in many applications. However, as new experimental data come out, we have some difficulties in explaining the data. The new experimental total cross section violates the predictions of Regge theory, which shows that Regge formalism is limited in its applications to high energy data. To understand new experimental measurements, a new exchange theory was consequently born and its mediator is called Pomeron, which has vacuum quantum numbers. The new theory named as Pomeron exchange theory which reproduces the new experimental data of diffractive processes successfully. There are two exchange mediators: Reggeon and Pomeron. Reggeon exchange theory can only produce data at the relatively lower energy region, while Pomeron exchange theory fits the data only at higher-energy region, separately. In order to explain the data in the whole energy region, we propose a Reggeon-Pomeron model to describe high-energy hadron-hadron scattering and other diffractive processes. Although the Reggeon-Pomeron model is successful in describing high-energy hadron-hadron interaction in the whole energy region, it is a phenomenological model After the advent of QCD, people try to reveal the mystery of the phenomenological theory from QCD since hadron-hadron processes is a strong interaction, which is believed to be described by QCD. According to this point of view, we study the QCD nature of Reggeon and Pomeron. We claim
Polarization phenomena in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1994-03-01
The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g A on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x bj ; (b) consequences of the principle of hadron helicity retention in high x F inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. He also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F . The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron
Working Group Report: Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Campbell, J. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2013-10-18
This is the summary report of the energy frontier QCD working group prepared for Snowmass 2013. We review the status of tools, both theoretical and experimental, for understanding the strong interactions at colliders. We attempt to prioritize important directions that future developments should take. Most of the efforts of the QCD working group concentrate on proton-proton colliders, at 14 TeV as planned for the next run of the LHC, and for 33 and 100 TeV, possible energies of the colliders that will be necessary to carry on the physics program started at 14 TeV. We also examine QCD predictions and measurements at lepton-lepton and lepton-hadron colliders, and in particular their ability to improve our knowledge of strong coupling constant and parton distribution functions.
Quantum chromodynamics at hadron colliders
Indian Academy of Sciences (India)
From a theoretical point of view, it is a gauge field theory featuring asymptotic ... pQCD tenets are the universality of the infrared (IR) behaviour, the cancellation of ... investigation is being planned also through the Drell–Yan production of vector.
Testing quantum chromodynamics in electroproduction
International Nuclear Information System (INIS)
Brodsky, S.J.
1987-05-01
The exclusive channels in electroproduction are discussed. The study of color transparency, the formation zone, and other novel aspects of QCD by measuring exclusive reactions inside nuclear targets is covered. Diffractive electroproduction channels are discussed, and exclusive nuclear processes in QCD are examined. Non-additivity of nuclear structure functions (EMC effect) is also discussed, as well as jet coalescence in electroproduction
Glueball masses in quantum chromodynamics
International Nuclear Information System (INIS)
Luo Xiangqian; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou; Chen Qizhou; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou; Guo Shuohong; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou; Fang Xiyan; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou; Liu Jinming; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou
1996-01-01
We review the recent glueball mass calculations using an efficient method for solving the Schroedinger equation order by order with a scheme preserving the continuum limit. The reliability of the method is further supported by new accurate results for (1+1)-dimensional σ models and (2+1)-dimensional non-abelian models. We present first and encouraging data for the glueball masses in 3+1 dimensional QCD. (orig.)
Working group report: Quantum chromodynamics
Indian Academy of Sciences (India)
3NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands. 4Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 ... tant to extend the resummation framework to polarised process to look at polarised.
Lattice Methods for Quantum Chromodynamics
DeGrand, Thomas
2006-01-01
Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology. This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually do
Exclusive processes in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1981-06-01
Large momentum transfer exclusive processes and the short distance structure of hadronic wave functions can be systematically analyzed within the context of perturbative QCD. Predictions for meson form factors, two-photon processes γγ → M anti M, hadronic decays of heavy quark systems, and a number of other related QCD phenomena are reviewed
Polarization phenomena in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J. [Stanford Univ., CA (United States)
1994-12-01
The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.
Quantum chromodynamics at high energy
Kovchegov, Yuri V
2012-01-01
Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.
New results in quantum chromodynamics
International Nuclear Information System (INIS)
Gustafson, Goesta.
1990-01-01
Recent developments in QCD are discussed in particular how the dipole formalism and a recently proposed multiplicity measure can be used as efficient tools to study the properties of the QCD shower evolution. The focus is on applications to e + e - -annihilation into hadrons
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
I will begin with a lightning quick overview of the basic lattice gauge theory and then go on to .... The Monte Carlo technique to evaluate C(t), or the expectation value of any other observable ... x }occurs with a probability proportional to. 890.
Testing Quantum Chromodynamics with Antiprotons
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.
2004-10-21
The antiproton storage ring HESR to be constructed at GSI will open up a new range of perturbative and nonperturbative tests of QCD in exclusive and inclusive reactions. I discuss 21 tests of QCD using antiproton beams which can illuminate novel features of QCD. The proposed experiments include the formation of exotic hadrons, measurements of timelike generalized parton distributions, the production of charm at threshold, transversity measurements in Drell-Yan reactions, and searches for single-spin asymmetries. The interactions of antiprotons in nuclear targets will allow tests of exotic nuclear phenomena such as color transparency, hidden color, reduced nuclear amplitudes, and the non-universality of nuclear antishadowing. The central tool used in these lectures are light-front Fock state wavefunctions which encode the bound-state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions. QCD becomes scale free and conformally symmetric in the analytic limit of zero quark mass and zero {beta} function. This ''conformal correspondence principle'' determines the form of the expansion polynomials for distribution amplitudes and the behavior of non-perturbative wavefunctions which control hard exclusive processes at leading twist. The conformal template also can be used to derive commensurate scale relations which connect observables in QCD without scale or scheme ambiguity. The AdS/CFT correspondence of large N{sub C} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has important implications for hadron phenomenology in the conformal limit, including the nonperturbative derivation of counting rules for exclusive processes and the behavior of structure functions at large x{sub bj}. String/gauge duality also predicts the QCD power-law fall-off of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. I also review recent work which shows that the diffractive component of deep inelastic scattering, single spin asymmetries, as well as nuclear shadowing and antishadowing, cannot be computed from the LFWFs of hadrons in isolation.
Working group report: Quantum chromodynamics
Indian Academy of Sciences (India)
variance, mass factorisation and Sudakov resummation of QCD amplitudes as the guiding principles. ... The symbol 'C' means convolution. Here we .... As colliders cross new energy and luminosity frontiers, there will be opportunity to test the ...
Two topics in quantum chromodynamics
International Nuclear Information System (INIS)
Bjorken, J.D.
1989-12-01
The two topics are (1) estimates of perturbation theory coefficients for R(e + e - → hadrons), and (2) the virtual-photon structure function, with emphasis on the analytic behavior in its squared mass. 20 refs., 4 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Hoecker, A [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire; [Universite de Paris Sud, 91 - Orsay (France)
1997-04-18
This thesis presents measurements of the {tau} vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e{sup +}e{sup -} annihilation. A combined fit of the pion form factor from {tau} decays and e{sup +}e{sup -} data is performed using different parametrizations. The mass and the width of the {rho}{sup {+-}}(770) and the {rho}{sup 0}(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M{sub {rho}{sup {+-}}{sub (770)} - M{sub {rho}{sup 0}}{sub (770)}=(0.0{+-}1.0) MeV/c{sup 2} and {gamma}{sub {rho}{sup {+-}}{sub (770)} - {gamma}{sub {rho}{sup 0}}{sub (770)}=(0.1 {+-} 1.9) MeV/c{sup 2}. Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be {alpha}{sub E}=(2.68{+-}0.91) x 10{sup -4} fm{sup 3}. The {tau} vector and axial-vector hadronic widths and certain spectral moments are exploited to measure {alpha}{sub s} and non-perturbative contributions at the {tau} mass scale. The best, and experimentally and theoretically most robust, determination of {alpha}{sub s}(M{sub {tau}}) is obtained from the inclusive (V + A) fit that yields {alpha}{sub s}(M{sub {tau}})= 0.348{+-}0.017 giving {alpha}{sub s}(M{sub Z})=0.1211 {+-} 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the {tau} hadronic width to masses smaller that the {tau} mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6
International Nuclear Information System (INIS)
Isgur, N.
1981-01-01
Many of the phenomenological difficulties of the non-relativistic quark model for baryons are overcome when some current prejudices from chromodynamics about quark forces are imposed. The effects of flavour independent confinement, symmetry breaking through quark masses, and colour hyperfine interactions are most prominent, leading to a satisfactory understanding of both the spectroscopy of low-lying baryons and of the signs and magnitudes of baryon couplings. The previously worrisome absence in partial wave analyses of a large number of the states expected in the nonrelativistic quark model is explained in terms of decouplings of the resonances from their elastic channels
Energy Technology Data Exchange (ETDEWEB)
Perez Ramos, R
2006-09-15
We exactly calculate the double and simple inclusive transverse momentum (kt) distributions and the 2-particle momentum correlations inside high energy hadronic jets at the Modified Leading Logarithmic Approximation (MLLA) of Quantum Chromodynamics. We first obtain the exact solution of the evolution equations at 'small x', which we calculate at the so called 'limiting spectrum'. We then generalize this approximation by performing the steepest descent evaluation. Our predictions are in good agreement with data from Tevatron and improve those which have been obtained in the past. The comparison with forthcoming data (Tevatron, LHC) will further test the hypothesis of Local Hadron Parton Duality, and the eventual need to incorporate next-MLLA corrections. (authors)
Classical algebraic chromodynamics
International Nuclear Information System (INIS)
Adler, S.L.
1978-01-01
I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex Eduardo de
2001-07-01
Since the discovery of QCD (Quantum Chromodynamics), there have been remarkable technical achievements in perturbative calculations applied to hadrons. However, it is difficult to use QCD directly to compute hadronic properties. In this context, phenomenological potential models have provided extremely satisfactory results on description of ordinary hadrons, more specifically about quark-antiquark bound states (mesons). In this work we propose and study the main aspects in the construction of a potential model and search a generalized description of meson spectroscopy, with emphasis in heavy quark bound states. We analyze important aspects in the choice of the treatment in good agreement with the dynamics of interacting particles, attempting to relativistic aspects as well as to the possibilities of nonrelativistic approximation analysis. Initially the 'soft QCD' is employed to determine effective potential terms establishing the asymptotic Coulomb term from one gluon exchange approximation. At the same time, a linear confinement term is introduced in accordance with QCD and phenomenological prescription. We perform the calculations of mass spectroscopy for particular sets of mesons and we verify whether the potential model could be extended to calculating the electronic transition rate ({gamma}(q q-bar {yields} e{sup -}e{sup +})). Finishing, we discuss the real physical possibilities of development of a generalized potential model (all quark flavors), its possible advantages relative to experimental parametrization, complexity in numerical calculations and in the description of physical reality in agreement with a quantum field theory (QCD). (author)
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex Eduardo de
2001-07-01
Since the discovery of QCD (Quantum Chromodynamics), there have been remarkable technical achievements in perturbative calculations applied to hadrons. However, it is difficult to use QCD directly to compute hadronic properties. In this context, phenomenological potential models have provided extremely satisfactory results on description of ordinary hadrons, more specifically about quark-antiquark bound states (mesons). In this work we propose and study the main aspects in the construction of a potential model and search a generalized description of meson spectroscopy, with emphasis in heavy quark bound states. We analyze important aspects in the choice of the treatment in good agreement with the dynamics of interacting particles, attempting to relativistic aspects as well as to the possibilities of nonrelativistic approximation analysis. Initially the 'soft QCD' is employed to determine effective potential terms establishing the asymptotic Coulomb term from one gluon exchange approximation. At the same time, a linear confinement term is introduced in accordance with QCD and phenomenological prescription. We perform the calculations of mass spectroscopy for particular sets of mesons and we verify whether the potential model could be extended to calculating the electronic transition rate ({gamma}(q q-bar {yields} e{sup -}e{sup +})). Finishing, we discuss the real physical possibilities of development of a generalized potential model (all quark flavors), its possible advantages relative to experimental parametrization, complexity in numerical calculations and in the description of physical reality in agreement with a quantum field theory (QCD). (author)
Hermitian relativity, chromodynamics and confinement
International Nuclear Information System (INIS)
Treder, H.J.
1983-01-01
The extension of the Riemann metrics of General Relativity to the complex domain (substitution of the symmetry conditions for the fundamental tensor, the affinity and the Ricci curvature by the conditions of hermicity) leads to a 'Generalized Theory of Gravity' (Einstein) describing the Newton-Einstein gravodynamics combined with the chromodynamics of quarks. The interaction of gravodynamics and chromodynamics implied by the Einstein-Schroedinger field equations of the hermitian relativity theory enforces the 'confinement'. The 'confinement' prevents the gravitational potential from divergence which would result in the lack of a Riemann space-time metric
Signatures of chromodynamics in hadron collisions
International Nuclear Information System (INIS)
Halzen, F.
1979-01-01
The quantum chromodynamics (QCD) describes the interaction of the parton constituents of hadrons (quarks and gluons) via eight colored photons (gluons) interacting with the quarks, and unlike the photons, with each other. The simple picture of Drell-Yan model has made surprising success. The marriage of the old fashion Drell-Yan parton model with QCD has not only made its phenomenological success in the study of lepton pair production, but has allowed to study quantitatively the gluon correction to the model. Information from beam dump and emulsion experiments on charm production is compared with the typical QCD diagram. The results indicate some possible non-perturbative contribution to the photon- and hadron-production of heavy quarks. The definite features of dilepton as well as large transverse momentum data are direct signature of gluons. (Kato, T.)
Nuclear chromodynamics: applications of QCD to relativistic multiquark systems
International Nuclear Information System (INIS)
Brodsky, S.J.; Ji, C.R.
1984-07-01
We review the applications of quantum chromodynamics to nuclear multiquark systems. In particular, predictions are given for the deuteron reduced form factor in the high momentum transfer region, hidden color components in nuclear wavefunctions, and the short distance effective force between nucleons. A new antisymmetrization technique is presented which allows a basis for relativistic multiquark wavefunctions and solutions to their evolution to short distances. Areas in which conventional nuclear theory conflicts with QCD are also briefly reviewed. 48 references
Gauge field condensation in geometric quantum chromodynamics
International Nuclear Information System (INIS)
Guendelman, E.I.
1991-09-01
In odd number of dimensions, it is possible to construct general covariant gauge theories, where the metric is not an independent variable, but local function of the gauge fields. Starting from standardly defined gauge theory, upon functional integration of some variables, we could end up with such moodels. For models with SU(2) and SU(3) symmetry in three dimensions, gauge field condensation take place in the vacuum, which is nevertheless homogeneous and isotropic up to a gauge transformation, provided the space is flat. Introducing Higgs fields that spontaneously break the gauge symmetry, we get a breakdown of the homogenity and isotropy of the vacuum. Finally, we discuss how some of this ideas can be generalized to four and other even dimensions. (author)
Experimental studies of the quantum chromodynamics phase ...
Indian Academy of Sciences (India)
2015-05-06
BES) ... Experimental studies of the QCD phase diagram at the STAR experiment .... However, the observed difference between v2 of particles and antiparticles could .... The grey band at the right corresponds to systematic.
Masses of light quarks in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Hubschmid, W; Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
1982-12-28
We try to determine light quark masses by considering sum rules for the vacuum expectation value of the time-ordered correlation function of two divergences of the axial vector current. The evaluation is carried out at momenta high enough for the non-perturbative contributions to be negligible. We find that the average mass of the up and down quark at a momentum of 1 GeV lies between 3.3 and 7.9 MeV while that for the strange quark lies between 84 and 212 MeV. The ranges of values reflect predominantly the uncertainty in the absorptive part in the low energy region (approx. <= 1.7 GeV).
Spin effects in perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1980-12-01
The spin dependence of large momentum transfer exclusive and inclusive reactions can be used to test the gluon spin and other basic elements of QCD. In particular, exclusive processes including hadronic decays of heavy quark resonances have the potential of isolating QCD hard scattering subprocesses in situations where the helicities of all the interacting constituents are controlled. The predictions can be summarized in terms of QCD spin selection rules. The calculation of magnetic moment and other hadronic properties in QCD are mentioned
Advancements in simulations of lattice quantum chromodynamics
International Nuclear Information System (INIS)
Lippert, T.
2008-01-01
An introduction to lattice QCD with emphasis on advanced fermion formulations and their simulation is given. In particular, overlap fermions will be presented, a quite novel fermionic discretization scheme that is able to exactly preserve chiral symmetry on the lattice. I will discuss efficiencies of state-of-the-art algorithms on highly scalable supercomputers and I will show that, due to many algorithmic improvements, overlap simulations will soon become feasible for realistic physical lattice sizes. Finally I am going to sketch the status of some current large scale lattice QCD simulations. (author)
High-density limit of quantum chromodynamics
International Nuclear Information System (INIS)
Alvarez, E.
1983-01-01
By means of a formal expansion of the partition function presumably valid at large baryon densities, the propagator of the quarks is expressed in terms of the gluon propagator. This result is interpreted as implying that correlations between quarks and gluons are unimportant at high enough density, so that a kind of mean-field approximation gives a very accurate description of the physical system
Quantum chromodynamics (QCD) and collider physics
International Nuclear Information System (INIS)
Ellis, R.K.; Stirling, W.J.
1990-01-01
This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks
Lattice quantum chromodynamics with approximately chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Conformally covariant composite operators in quantum chromodynamics
International Nuclear Information System (INIS)
Craigie, N.S.; Dobrev, V.K.; Todorov, I.T.
1983-03-01
Conformal covariance is shown to determine renormalization properties of composite operators in QCD and in the C 6 3 -model at the one-loop level. Its relevance to higher order (renormalization group improved) perturbative calculations in the short distance limit is also discussed. Light cone operator product expansions and spectral representations for wave functions in QCD are derived. (author)
Connections between quantum chromodynamics and condensed
Indian Academy of Sciences (India)
Using examples we discuss some of the connections between the two ﬁelds and show how progress can be made by exploiting this connection. Some of the challenges that remain in ... Current Issue : Vol. 90, Issue 6. Current Issue Volume 90 ...
Phenomenology of heavy quarkonia and quantum chromodynamics
International Nuclear Information System (INIS)
Schmitz, S.J.A.
1986-01-01
Heavy quarkonia, the c anti c, b anti b, and soon to be discovered t anti t families of states, are studied in the framework of potential theory. The earlier proposed, flavor independent Riverside potential is fit to masses of c anti c and b anti b states and their electronic widths are calculated. An unusual feature of the potential is the use of a parameter b which controls the small r or asymptotic freedom behavior and which can be related to the QCD scale parameters Λ/MS. This parameter b is virtually undetermined by the c anti c and b anti b spectra, merely excluding the range b < 4 or Λ/MS ≤ 120 MeV and slightly favoring Λ/MS ≅ 250 MeV. It is shown how even minimal information on the t anti t states will restrict the Λ/MS value to a range of the order of 50 MeV. A recent Lattice Gauge potential shows a remarkable closeness to the phenomenological approach. In view of the approximations involved, the difference between the two potentials is small. This difference is investigated in terms of the strong coupling constant α which can be extracted from both potentials. In the main r regime the Lattice Gauge α is markedly smaller than the phenomenological one. It is shown that the absence of intermediate, virtual quark loops in the Lattice Gauge calculation, i.e. the so-called quenched approximation, accounts for at least some and possibly most of that difference. Overall, the phenomenology of heavy quarkonia as studied in this work is in no conflict with QCD
Quantum chromodynamics studies at LEP2
Indian Academy of Sciences (India)
swaban swaban
Studies of the annihilation process at LEP2 have given rise to results on jet rate, event ..... The electroweak theory explain the data at all these energies. .... like (a) smooth suppression of hadron-like and point-like 7 interaction, (b) dual parton.
Heavy quark production in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1986-09-01
For very heavy quark masses, the inclusive hadronic production of hadron pairs containing heavy quarks is predicted to be governed by QCD fusion subprocesses. For intermediate mass scales other QCD mechanisms can be important including higher-twist intrinsic contributions and low relative velocity enchancements, possibly accounting for the anomalies observed in charm hadroproduction, such as the nuclear number dependence, the longitudinal momentum distributions, and beam flavor dependence. We also discuss scaling laws for exclusive processes involving heavy quarks and diffractive excitation into heavy quark systems
Quantum chromodynamics as dynamics of loops
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Migdal, A.A.
1981-01-01
QCD is entirely reformulated in terms of white composite fields - the traces of the loop products. The 1/N expansion turns out to be the WKB (Hartree-Fock) approximation for these fields. The 'classical' equation describing the N = infinite case is reduced tp a bootstrap form. New, manifestly gauge-invariant perturbation theory in the loop space, reproducing asymptotic freedom, is developed by iterations of this equation. The area law appears to be a self-consistent solution at large loops. (orig.)
On de-globalization in quantum chromodynamics
Indian Academy of Sciences (India)
classic Sterman-Weinberg jet definition to currently studied event shapes and rapidity gap observables. ... shapes, rapidity gap observables, jet fractions defined through cone-type algorithms, .... area of research in QCD. Reference. [1] We use ...
From moments to functions in quantum chromodynamics
International Nuclear Information System (INIS)
Bluemlein, Johannes; Klein, Sebastian; Kauers, Manuel; Schneider, Carsten
2009-02-01
Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)
Quantum chromodynamics results from HERA and JLAB
Indian Academy of Sciences (India)
coverage of various experiments in the x−Q2 plane is indicated in figure 1. ... Recent measurements of electron–proton and electron–nucleus collisions at high ener- gies are ... corresponding to a centre-of-mass energy per nucleon of 7.2 GeV.
Heavy-quark physics in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1991-04-01
Heavy quarks can expose new symmetries and novel phenomena in QCD not apparent in ordinary hadronic systems. In these lectures I discuss the use of effective-Lagrangian and light-cone Fock methods to analyze exclusive heavy hadron decays such as Υ → p bar p and B → ππ, and also to derive effective Schroedinger and Dirac equations for heavy quark systems. Two contributions to the heavy quark structure functions of the proton and other light hadrons are identified: an ''extrinsic'' contribution associated with leading twist QCD evolution of the gluon distribution, and a higher twist ''intrinsic'' contribution due to the hardness of high-mass fluctuations of multi-gluon correlations in hadronic wavefunctions. A non-perturbative calculation of the heavy quark distribution of a meson in QCD in one space and one time is presented. The intrinsic higher twist contributions to the pion and proton structure functions can dominate the hadronic production of heavy quark systems at large longitudinal momentum fraction x F and give anomalous contributions to the quark structure functions of ordinary hadrons at large x bj . I also discuss a number of ways in which heavy quark production in nuclear targets can test fundamental QCD phenomena and provide constraints on hadronic wavefunctions. The topics include color transparency, finite formation time, and predictions for charm production at threshold, including nuclear-bound quarkonium. I also discuss a number of QCD mechanisms for the suppression of J/ψ and Υ production in nuclear collisions, including gluon shadowing, the peripheral excitation of intrinsic heavy quark components at large x F , and the coalescence of heavy quarks with co-moving spectators at low x F
Case studies in perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Berger, E.L.
1979-09-01
A few aspects of QCD are discussed, beginning with a discussion of the ingredients of QCD and their observational basis. A pedagogical treatment of scaling violations is presented and the argument is presented that while entirely consistent with QCD, the phenomenological situation is clouded by the potentially crucial role of higher twist effects in the theory. Some explicit calculations of higher twist effects are presented
Calculations in external fields in quantum chromodynamics
International Nuclear Information System (INIS)
Novikov, V.A.; Shifman, M.A.; Vairshtejn, A.I.; Zakharov, V.I.
1983-01-01
The technique of calculation of operator expansion coefficients is reviewed. The main emphasis is put on gluon operators which appear in expansion of n-point functions induced by colourless quark currents. Two convenient schemes are discussed in detail: the abstract operator method and the method based on the Fock-Schwinger gauge for the vacuum gluon field. A large number of instructive examples important from the point of view of physical applications is considered
Lattice quantum chromodynamics with approximately chiral fermions
International Nuclear Information System (INIS)
Hierl, Dieter
2008-05-01
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Canonical ensembles and nonzero density quantum chromodynamics
International Nuclear Information System (INIS)
Hasenfratz, A.; Toussaint, D.
1992-01-01
We study QCD with nonzero chemical potential on 4 4 lattices by averaging over the canonical partition functions, or sectors with fixed quark number. We derive a condensed matrix of size 2x3xL 3 whose eigenvalues can be used to find the canonical partition functions. We also experiment with a weight for configuration generation which respects the Z(3) symmetry which forces the canonical partition function to be zero for quark numbers that are not multiples of three. (orig.)
Novel spin effects in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1993-02-01
This report discusses a number of interesting hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. These include constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton; the principle of hadron helicity retention in high x F inclusive reactions; predictions based on total hadron helicity conservation in high momentum transfer exclusive reactions; the dependence of nuclear structure functions and shadowing on virtual photon polarization; and general constraints on the magnetic moment of hadrons. I also will discuss the implications of several measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F
Scaling violations and perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Barbieri, R.; d'Emilio, E.; Caneschi, L.; Curci, G.
1979-01-01
The authors try to understand the meaning of the recent data on scaling violations of the moments of the structure function F 3 measured in γ and anti γ deep inelastic scattering, and their relevance as a test of QCD. This is done by reducing to the minimum the theoretical machinery and prejudices and stressing the perturbative nature of the problem. This leads to a definition of the perturbation coupling constant αsub(s) (Q = 2.5 GeV) = 0.61 +- 0.06, in terms of which the corrective terms for all quantities computed so far turn out to be relatively small. (Auth.)
Constraining neutron star matter with Quantum Chromodynamics
Kurkela, Aleksi; Schaffner-Bielich, Jurgen; Vuorinen, Aleksi
2014-01-01
In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount --- or even presence --- of quark matter inside the stars.
From moments to functions in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes; Klein, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Kauers, Manuel; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2009-02-15
Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)
Radiative transitions in quarkonjum and quantum chromodynamics
International Nuclear Information System (INIS)
Khodjamirian, A.Yu.
1980-01-01
A new approach to the radiative transitions in quarkonium (c, anti c, b anti b, ...) based on the asymptotic freedom of QCD and on the analyticity is proposed. This approach consists in derivation of dispersion sum rules relating the transition amplitudes with triangle quark diagrams. In this way, a possibility emerges to estimate these amplitudes in a model-independent way. The sum rules are obtained in zeroth order of QCD for transitions between C-even levels 0 ++ , 1 ++ , 2 ++ , 0 -+ and vector (1 -- ) levels. The influence of gluon corrections is discussed and the optimum moments of sum rules are chosen for which these corrections are expected to be at the level of O(αsub(s)) approximately 20%. The widths of radiative transitions in charmonium calculated by means of sum rules turn out to be in agreement with available experimental data. The estimates for analogous transitions in b-quarkonium are also presented. The suggested approach is compared with nonrelativistic models of radiative transitions [ru
Some views about chromodynamics; Quelques elements de chromodynamique
Energy Technology Data Exchange (ETDEWEB)
Pilon, E. [Ecole Nationale Superieure Agronomique, 31 - Toulouse (France)]|[Ecole Nationale Superieure, LAPP, 74 - Annecy-le-Vieux (France)
1995-12-31
The first lesson recalls some basis of quantum chromodynamics (QCD). Particularly the Lagrangian density and the Feynman laws are described. The second lesson presents the problem of renormalization and the notion of efficient coupling. The important property of asymptotic freedom of QCD is detailed. The third lesson gives a schematic classification of processes involved in hadronic physics with high energy-momentum transfer. Scale invariance and its breakdown by using leading log method is presented and leads to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations. The fourth and last lesson paves the way to use the factorization method beyond the leading logs in the case of hadron-hadron collision within the frame of leading twist. Some ideas about comparisons between semi-analytical calculations and Monte-Carlo simulations are given. (A.C.) 55 refs.
Color-charge algebras in Adler's chromodynamics
International Nuclear Information System (INIS)
Cvitanovic, P.; Gonsalves, R.J.; Neville, D.E.
1978-01-01
We show that the color-charge algebra in the three-quark sector generated by the matrices of the fundamental representation of U(n) does not have the trace properties required in Adler's extension of chromodynamics. We also discuss a diagrammatic representation of algebras generated by quark and antiquark charges in general, and an embedding of the N-quark algebra in the symmetric group S/sub N/+1
Lattice analysis of SU(2) chromodynamics with light quarks
International Nuclear Information System (INIS)
Laermann, E.
1986-01-01
I report on the Monte-Carlo simulation of a SU(2) lattice gauge theory which includes dynamical Kogut-Susskind quarks. On a 16*8 3 lattice the masses of ρ and π mesons are studied, the condensate measuring the chiral symmetry breaking determined, and the potential between static quarks measured. Extrapolations to vanishing quark mass yield a finite ρ mass but a value for the π mass which is compatible with zero, as well as a result different from zero for the quark condensate in accordance with the spontaneous breaking of the chiral symmetry of massless non-Abelian gauge theories. The shape of the q-anti q potential equals the pure gauge potential for small to intermediate distances. However at large distances (σ(fm)) deviations from the linear increase are indicated as they are expected due to the breakup of the flux tube between heavy quarks because of spontaneous quark-pair production. For all numerical calculations it is common that they favor a value for the scale parameter Λsub(anti Manti S)(N F =4) of quantum chromodynamics which is smaller than in the pure gauge field theory. (orig.) [de
Two aspects of the quantum chromodynamics' transition at finite temperature
International Nuclear Information System (INIS)
Zhang, Bo
2011-01-01
This thesis concerns two aspects of the relation between chiral symmetry breaking and confinement. The first aspect is the relations between different topological objects. The relation between monopoles and center vortices and the relation between instantons and monopoles are well established, in this thesis, we explore the relation between instantons (of finite temperature, called calorons) and center vortices in SU(2) and SU(3) gauge theory in Chapter 3 and Chapter 4, respectively. The second aspect is about the order parameters. The dual condensate introduced by E. Bilgici et al. is a novel observable that relates the order parameter of chiral symmetry breaking (chiral condensate) and confinement (Polyakov loop). In this thesis, we investigate the dual condensate on dynamical staggered fermions and explore a new dual operator: the dual quark density in Chapter 5.
Precision tests of quantum chromodynamics and the standard model
International Nuclear Information System (INIS)
Brodsky, S.J.; Lu, H.J.
1995-06-01
The authors discuss three topics relevant to testing the Standard Model to high precision: commensurate scale relations, which relate observables to each other in perturbation theory without renormalization scale or scheme ambiguity, the relationship of compositeness to anomalous moments, and new methods for measuring the anomalous magnetic and quadrupole moments of the W and Z
Processes with large Psub(T) in the quantum chromodynamics
International Nuclear Information System (INIS)
Slepchenko, L.A.
1981-01-01
Necessary data on deep inelastic processes and processes of hard collision of hadrons and their interpretation in QCD are stated. Low of power reduction of exclusive and inclusive cross sections at large transverse momenta, electromagnetic and inelastic (structural functions) formfactors of hadrons have been discussed. When searching for a method of taking account of QCD effects scaling disturbance was considered. It is shown that for the large transverse momenta the deep inelastic l-h scatterina is represented as the scattering with a compound system (hadron) in the pulse approximation. In an assumption of a parton model obtained was a hadron cross section calculated through a renormalized structural parton function was obtained. Proof of the factorization in the principal logarithmic approximation of QCD has been obtained by means of a quark-gluon diagram technique. The cross section of the hadron reaction in the factorized form, which is analogous to the l-h scattering, has been calculated. It is shown that a) the diagram summing with the gluon emission generates the scaling disturbance in renormalized structural functions (SF) of quarks and gluons and a running coupling constant arises simultaneously; b) the disturbance character of the Bjorken scaling of SF is the same as in the deep inelasic lepton scattering. QCD problems which can not be solved within the framework of the perturbation theory, are discussed. The evolution of SF describing the bound state of a hadron and the hadron light cone have been studied. Radiation corrections arising in two-loop and higher approximations have been evaluated. QCD corrections for point-similar power asymptotes of processes with high energies and transfers of momenta have been studied on the example of the inclusive production of quark and gluon jets. Rules of the quark counting of anomalous dimensionalities of QCD have been obtained. It is concluded that the considered limit of the inclusive cross sections is close to conditions of cosmic ray experiments at psub(T) [ru
V = 1 super quantum chromodynamics and fractional branes
Indian Academy of Sciences (India)
The orbifold group acts on the directions x4,...,x9 transverse to the world-volume of the stack of the N D3-branes. The Z2 group is characterized by two elements 1, h , with h2 = 1, hence the four elements of the tensor product Z2 ¢Z2 are easily obtained. The non-trivial elements act on the complex vector z = (z1 = x4 + ix5, ...
Covariance problem in two-dimensional quantum chromodynamics
International Nuclear Information System (INIS)
Hagen, C.R.
1979-01-01
The problem of covariance in the field theory of a two-dimensional non-Abelian gauge field is considered. Since earlier work has shown that covariance fails (in charged sectors) for the Schwinger model, particular attention is given to an evaluation of the role played by the non-Abelian nature of the fields. In contrast to all earlier attempts at this problem, it is found that the potential covariance-breaking terms are identical to those found in the Abelian theory provided that one expresses them in terms of the total (i.e., conserved) current operator. The question of covariance is thus seen to reduce in all cases to a determination as to whether there exists a conserved global charge in the theory. Since the charge operator in the Schwinger model is conserved only in neutral sectors, one is thereby led to infer a probable failure of covariance in the non-Abelian theory, but one which is identical to that found for the U(1) case
Strangeness of the nucleon from lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, Martha; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, Giannis; Vaquero, Alejandro [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Collaboration: ETM Collaboration
2013-10-15
We present a non-perturbative calculation of the strangeness of the nucleon y{sub N} within the framework of lattice QCD. This observable is known to be an important cornerstone to interpret results from direct dark matter detection experiments. We perform a lattice computation for y{sub N} with an analysis of systematic effects originating from discretization, finite size, chiral extrapolation and excited state effects leading to a value of y{sub N}=0.135(46) which turns out to be rather small. As a main result of our work, we demonstrate that the error for y{sub N} is dominated by systematic uncertainties.
Form factors and charge radii in a quantum chromodynamics ...
Indian Academy of Sciences (India)
... parent compared to the linear parent. Also, the analysis leads to a lower as well as upper bounds on the four-momentum transfer 2, hinting at a workable range of 2 within this approach, which may be useful in future experimental analyses. Comparison of both the options shows that the linear parent is the better option.
Quantum chromodynamics effects in electroweak and Higgs physics
Indian Academy of Sciences (India)
background, and instead an excess of events over SM predictions in the tail of a .... bin, this division allows each exclusive jet bin to be optimized independently to ... cross-section and the 1-jet inclusive cross-section have independent per-.
Quantum chromodynamics with infinite number of vector mesons
International Nuclear Information System (INIS)
Geshkenbejn, B.V.
1988-01-01
Families of vector mesons Ρ,Ψ,Υ, contain an infinite number of resonances with gradually increasing widths are considered. The asymptotic freedom requirement involves a relationship between the electric width of k-th resonance and its mass M k derivative over the number k. It is shown that for the families of Ψ and Υ mesons the moment from experimental function R(s) is equal to the sum of the moment from a bare quark loop and the edge term which stems from replacing of summation by integration. These equalities are fulfilled up to 1% for 60 moments in the Ψ-meson family and up to 2% for 96 moments in the Υ-meson family. The electronic widths of the resonances and the Ρ-meson mass are calculated. 7 refs
Mechanical analog for a quantum-chromodynamic phase transition
International Nuclear Information System (INIS)
Salomone, A.; Schechter, J.
1982-01-01
A simple mechanical model involving a pendulum and a spring is shown to give the same phase-transition behavior as that of either the effective chiral Lagrangian for one-flavor QCD or the massive Schwinger model. This model, which also has been studied in catastrophe theory, permits us to get a nice understanding of what at first appears to be a complicated system. We also construct and analyze a mechanical analog model for the two-flavor case. The latter has a similar behavior, in general, but does present some interesting new features. With this experience under our belts we are able to straightforwardly analyze the situation with an arbitrary number of flavors. We also discuss what the zero-flavor (i.e., pure QCD) limit of the effective Lagrangian should look like and give a formula for the ground-state energy as a function of the instanton angle theta. A number of other questions related to the QCD effective Lagrangian are investigated
Operator expansion in quantum chromodynamics beyond perturbation theory
International Nuclear Information System (INIS)
Novikov, V.A.; Shifman, M.A.; Vainshtejn, A.I.; Zakharov, V.I.
1980-01-01
The status of operator expansion at short distances is descussed within the frameworks of nonperturbatue QCD. The question of instanton effects is investigated in various aspects. Two-point functions induced by the gluonic currents are considered. It is shown that certain gluonic correlations vanish in the field of definite duality. It is proved that there does exist a very special relation between the expansion coefficients required by consistancy between instanton calculations and the general operator expansion. At last a certain modification of the naive version of operator expansion is proposed, which allows one to go beyond the critical power and construct, if necessary, an infinite series
Quantum chromodynamics as the sequential fragmenting with inactivation
International Nuclear Information System (INIS)
Botet, R.
1996-01-01
We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors)
Quantum chromodynamics as the sequential fragmenting with inactivation
Energy Technology Data Exchange (ETDEWEB)
Botet, R. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)
1996-12-31
We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors). 15 refs.
Quantum chromodynamics and hadronic interactions at short distances
International Nuclear Information System (INIS)
Brodsky, S.J.; Huang, T.; Lepage, G.P.
1982-01-01
The main purpose of this lecture is to begin to extend QCD phenomenology by taking into account the physics of hadronic wavefunctions. The eventual goal is to obtain a parametrization of the wavefunctions which will bridge the gap between the non-perturbative and perturbative aspects of QCD. The lack of knowledge of hadronic matrix elements is the main difficulty in computing and normalizing dynamical higher twist contributions for many processes
Large-Nc quantum chromodynamics and harmonic sums
Indian Academy of Sciences (India)
2012-06-08
Jun 8, 2012 ... This has led us to consider a class of analytic number theory .... The self-energy function LR(Q2) in the chiral limit vanishes order by order in QCD ... the 1/Nc expansion, the Goldstone loop corrections are subleading and, ...
A statistical model of structure functions and quantum chromodynamics
International Nuclear Information System (INIS)
Mac, E.; Ugaz, E.; Universidad Nacional de Ingenieria, Lima
1989-01-01
We consider a model for the x-dependence of the quark distributions in the proton. Within the context of simple statistical assumptions, we obtain the parton densities in the infinite momentum frame. In a second step lowest order QCD corrections are incorporated to these distributions. Crude, but reasonable, agreement with experiment is found for the F 2 , valence and q, anti q distributions for x> or approx.0.2. (orig.)
The Conformal Template and New Perspectives for Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC
2007-03-06
Conformal symmetry provides a systematic approximation to QCD in both its perturbative and nonperturbative domains. One can use the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. For example, there is an exact correspondence between the fifth-dimensional coordinate of AdS space and a specific impact variable which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. One can also use conformal symmetry as a template for perturbative QCD predictions where the effects of the nonzero beta function can be systematically included in the scale of the QCD coupling. This leads to fixing of the renormalization scale and commensurate scale relations which relate observables without scale or scheme ambiguity. The results are consistent with the renormalization group and the analytic connection of QCD to Abelian theory at N{sub C} {yields} 0. I also discuss a number of novel phenomenological features of QCD. Initial- and .nal-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, di.ractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, nonperturbative antisymmetric sea quark distributions, anomalous heavy quark e.ects, and the unexpected effects of direct higher-twist processes.
Numerical calculation of hadron masses in lattice quantum chromodynamics
International Nuclear Information System (INIS)
Montvay, I.
1985-07-01
Recent numerical Monte Carlo simulations of the hadron spectrum are reviewed. After a general introduction, different ways of calculating the hadron masses in the ''quenched approximation'' (i.e. neglecting virtual quark loops) are described and the latest results are summarized. The pseudofermion method and the iterative hopping expansion method for the introduction of dynamical quarks is discussed, and the first results about the hadron spectrum including the effect of virtual quark loops are reviewed. A separate section is devoted to the discussion of the questions related to scaling with dynamical quarks. (orig./HSI)
Two-photon exclusive processes in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1986-07-01
QCD predictions for γγ annihilation into single mesons, meson pairs, and baryon pairs are reviewed. Two-photon exclusive processes provide the most sensitive and practical measure of the distribution amplitudes, and thus a critical confrontation between QCD and experiment. Both the angular distribution and virtual photon mass dependence of these amplitudes are sensitive to the shapes of the phi (chi, Q). Novel effects involving the production of qq anti q anti q states at threshold are also discussed, and a new method is presented for systematically incorporating higher-order QCD corrections in γγ reactions
Studies of quantum chromodynamics with the ALEPH detector
Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lohse, T; Lutters, G; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Becker, U; Buchmüller, O L; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Barczewski, T; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmidt, H; Steeg, F; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Dawson, I; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1998-01-01
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Two-photon exclusive processes in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J.
1986-07-01
QCD predictions for ..gamma gamma.. annihilation into single mesons, meson pairs, and baryon pairs are reviewed. Two-photon exclusive processes provide the most sensitive and practical measure of the distribution amplitudes, and thus a critical confrontation between QCD and experiment. Both the angular distribution and virtual photon mass dependence of these amplitudes are sensitive to the shapes of the phi (chi, Q). Novel effects involving the production of qq anti q anti q states at threshold are also discussed, and a new method is presented for systematically incorporating higher-order QCD corrections in ..gamma gamma.. reactions.
Analysis of hard inclusive processes in quantum chromodynamics
International Nuclear Information System (INIS)
Radyushkin, A.V.
1983-01-01
An approach to the investigation of hard processes in QCD based on a regular usage of α-representation analysis of Feynman diagram asymptotics is described. Analysis is examplified by two simplest inclusive processes: E + e - annihilation into hadrons and deep inelastic lepton-hadron scattering. The separation procedure of factorization of contributions stipulated by short- and long-range particle interactions is reported. The relation between expansion operators and methods based on direct analysis of diagrams as well as between theoretical field approaches and the parton model is discussed. Specific features of factorization of short- and long-range contributions in non-Abelian gauge theories are investigated
Working group report: Quantum chromodynamics sub-group
Indian Academy of Sciences (India)
with some exercises can be found in [1]. Another main ... be found in [2]. There were two plenary talks: (1) Non-collinearity in high energy scattering .... Soft gluon effects can be controlled at the perturbative level through resumma- tions, and ...
Unusual initial and final state effects in quantum chromodynamics
International Nuclear Information System (INIS)
Nelson, C.A.
1990-12-01
We have constructed fundamental test which can be used to probe discrete symmetries, and their possible violations, in the required ''new physics'' beyond the standard model. In a recent paper for applications at an e + e - collider, we have proposed a simple test for ''maximal P -- maximal C'' violation in the Z degree → τ 1 - τ 1 + coupling. For τ minus-plus → π minus-plus ν, for example, this test is based on an azimuthal correlation function I(φ e , φ) where the azimuthal angles are defined relative to the final π 1 - . For e - e + collisions in the Γ or J/Ψ regions, I(φ e , φ) can be used to test for a complex phase in the γ* → τ - τ + coupling. In other research programs, we are continuing to investigate our proposal that partons be identified with nearly degenerate, coherent quark-gluon ''jet'' states, and have proven a completeness relation for the q-analogue of the unusual coherent states
Fermions in light front transverse lattice quantum chromodynamics
Indian Academy of Sciences (India)
Ur(x-aˆr)]}. (3). After eliminating the constraint fields we arrive at the transverse lattice Hamiltonian. P. =P. 1 +P. 2 ,. (4) where P. 1 arises from the elimination of ψ (hence sensitive to how fermions are put on the transverse lattice) and P. 2 contains Wilson plaquette term and the terms arising from the elimination of A . Explicitly.
Double-beta decay processes from lattice quantum chromodynamics
Davoudi, Zohreh; Tiburzi, Brian; Wagman, Michael; Winter, Frank; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Savage, Martin; Shanahan, Phiala; Nplqcd Collaboration
2017-09-01
While an observation of neutrinoless double-beta decay in upcoming experiments will establish that the neutrinos are Majorana particles, the underlying new physics responsible for this decay can only be constrained if the theoretical predictions of the rate are substantially refined. This talk demonstrates the roadmap in connecting the underlying high-scale theory to the corresponding nuclear matrix elements, focusing mainly on the nucleonic matrix elements in the simplest extension of Standard Model in which a light Majorana neutrino is mediating the process. The role of lattice QCD and effective field theory in this program, in particular, the prospect of a direct matching of the nn to pp amplitude to lattice QCD will be discussed. As a first step towards this goal, the results of the first lattice QCD calculation of the relevant matrix element for neutrinofull double-beta decay will be presented, albeit with unphysical quark masses, along with important lessons that could impact the calculations of nuclear matrix elements involved in double-beta decays of realistic nuclei.
Photon pairs: Quantum chromodynamics continuum and the Higgs ...
Indian Academy of Sciences (India)
Resummation is needed to obtain reliable predictions in the range of transverse momentum where the cross-section is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson ...
Chiral phase transitions in quantum chromodynamics at finite ...
Indian Academy of Sciences (India)
at finite temperature: Hard-thermal-loop resummed ... (ii) To closely estimate the dominant temperature effects, we focus on studying the DS equation being .... method is useful so long as the convergence of the iteration is guaranteed. At each ...
The Conformal Template and New Perspectives for Quantum Chromodynamics
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2007-01-01
Conformal symmetry provides a systematic approximation to QCD in both its perturbative and nonperturbative domains. One can use the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. For example, there is an exact correspondence between the fifth-dimensional coordinate of AdS space and a specific impact variable which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. One can also use conformal symmetry as a template for perturbative QCD predictions where the effects of the nonzero beta function can be systematically included in the scale of the QCD coupling. This leads to fixing of the renormalization scale and commensurate scale relations which relate observables without scale or scheme ambiguity. The results are consistent with the renormalization group and the analytic connection of QCD to Abelian theory at N C → 0. I also discuss a number of novel phenomenological features of QCD. Initial- and .nal-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, di.ractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, nonperturbative antisymmetric sea quark distributions, anomalous heavy quark e.ects, and the unexpected effects of direct higher-twist processes
Problems at the interface between perturbative and nonperturbative quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Bodwin, G.T.; Lepage, G.P.
1983-06-01
Predictions based on perturbative QCD rest on three premises: (1) that hadronic interactions become weak in strength at small invariant separation; (2) that the perturbative expansion in α/sub s/(Q) is well-defined; and (3) factorization: all effects of collinear singularities, confinement, nonperturbative interactions, and bound state dynamics can be isolated at large momentum transfer in terms of structure functions, fragmentation functions, or in the case of exclusive processes, distribution amplitudes. The assumption that the perturbative expansion for hard scattering amplitudes converges has certainly not been demonstrated; in addition, there are serious ambiguities concerning the choice of renormalization scheme and scale choice Q 2 for the expansion in α/sub s/(Q 2 ). We will discuss a new procedure to at least partly rectify the latter problem. In the case of exclusive processes, the factorization of hadronic amplitudes at large momentum transfer in the form of distribution amplitudes convoluted with hard scattering quark-gluon subprocess amplitudes can be demonstrated systematically to all orders in α/sub s/(Q 2 ). In the case of inclusive reactions, factorization remains an ansatz; general all-orders proofs do not exist because of the complications of soft initial state interactions for hadron-induced processes; thus far factorization has only been verified to two loops beyond lowest order in a regime where the applicability of perturbation theory is in doubt. However, we shall show that a necessary condition for the validity of factorization in inclusive reactions is that the momentum transfer must be large compared to the (rest frame) length of the target. We review the present status of the factorization ansatz. 52 references
Large-Nc quantum chromodynamics and harmonic sums
Indian Academy of Sciences (India)
In the large- limit of QCD, two-point functions of local operators become harmonic sums. I review some properties which follow from this fact and which are relevant for phenomenological applications. This has led us to consider a class of analytic number theory functions as toy models of large- QCD which also is ...
Sum rules and exclusive processes in quantum chromodynamics
International Nuclear Information System (INIS)
Radyushkin, A.V.
1983-01-01
A brief review of results of analyzing hadron form factors is presented. The analysis of hardron form factors was conducted by the method of QCD sum rules. The method is based on the concept of quark-hadron duality. Correlation of calculation results with available experimental data was performed. The conclusion is made that it is sufficient to consider only the contribution of the simplest diagrams which don't contain gluon exchanges in order to describe experimental data on pion, proton and neutron form factors
The critical point of quantum chromodynamics through lattice and ...
Indian Academy of Sciences (India)
The Padé approximants are the rational functions. PL. M (z) = .... Deviations from a smooth behaviour near the critical point are visible in these extrap- ... see that there is evidence, albeit statistically not very significant, that the kurtosis changes.
Meson bound states and inclusive hardon scattering in quantum chromodynamics
International Nuclear Information System (INIS)
Beavis, D.R.
1980-01-01
In the first part we study the charmonium and UPSILON systems with a simple Coulomb plus linear potential. The parameters of the potential are determined by the charmonium states other than 1 S 0 states. We successfully predict that the states X(2830) and x(3450) are not the 1 S 0 partners of J/psi and psi'. The same effective potential also gives a good description of the UPSILON system. The Lorentz nature of the confinement potential is determined to be an equal mixture of vector and scalar. In the second part we extend a method for obtaining bound states and wavefunctions for relativistic confined systems. The important aspect of this treatment is the input of the asymptotic expansion of the two-point functions. We test the bound state approximation for a system defined by an equivalent potential V(r) = lambda 2 tanh 2 (g 2 r/lambda). Excellent results are obtained, even though a threshold is present. Finally, in the third section, we analyze the 100 GeV/c π - p→π 0 X data of Barnes et al. for moderate t, 1.5 less than or equal to -t less than or equal to 4.0 (GeV/c) 2 with the constituent scattering models. We obtain very good agreement in normalization and the x and t behavior of dsigma/dtdx using the FF1 model. The analysis of π - p→etaX gives additional support to this interpretation. The predictions of perturbative QCD and FF1 for π - p→π 0 X are given
Equation of motion for string operators in quantum chromodynamics
International Nuclear Information System (INIS)
Suura, H.
1979-04-01
I derive from the QCD Lagrangian differential laws describing motions and interactions of an infinite set of string operators - locally gaugeinvariant color-singlet operators. By truncating the set, I obtain a q-anti q wave equation with a confinement potential, and also a jet-fragmentation equation which describes splitting of a q-anti q string and creation of I = O vector mesons. I argue for the validity of the perturbative treatment of the string operators. (orig.) [de
Results on nucleon structure functions in quantum chromodynamics
International Nuclear Information System (INIS)
Martin, F.
1979-01-01
Gluon bremsstrahlung processes inside the nucleon are investigated using the standard renormalization-group analysis. A new method of inverting the moments is applied which leads to analytic results for the parton distributions near x = 1 and x = 0. The nucleon is considered as a bound state of three quarks subsequently ''renormalized'' by gluon bremsstrahlung and quark-antiquark pair production. An ''unrenormalized'' valance quark distribution peaked at x = 1/3, with a width related to the nucleon radius, leads to good agreement with deep-inelastic data. However, the gluon distribution obtained seems too steep near x = 0
Quantum chromodynamics phase transition in the early Universe ...
Indian Academy of Sciences (India)
... quark nuggets have been calculated and it has been found that there are sizeable number of quark nuggets in the stable sector. The nuggets can clump and form bigger objects in the mass range of 0.0003 M ⊙ to 0.12 M ⊙ . It has been discussed that these bigger objects can be possible candidates for cold dark matter.
Quarks-bags phase transition in quantum chromodynamics
International Nuclear Information System (INIS)
Gorenshtejn, M.I.
1981-01-01
Phase transitions in the quark-gluon plasma are considered at finite temperatures and chemical potentials. A phenomenological account for a complicated structure of the QCD vacuum results in the necessity to use the formalism of isobaric ensembles to describe the system. The phase transition curve separating the regions of the quark-gluon plasma and the hadronic bag phase in the μT plane is calculated [ru
Bag-model quantum chromodynamics for hyperons at low energy
International Nuclear Information System (INIS)
Weber, H.J.; Maslow, J.N.
1980-01-01
In a non-perturbative bag model framework, gluon exchange which mediates quark exchange scattering in conjunction with quark interchange is shown to be the basis of the OBE interactions of hyperons at low energy. (orig.)
Testing quantum chromodynamics in anti-proton reactions
International Nuclear Information System (INIS)
Brodsky, S.J.
1987-10-01
An experimental program with anti-protons at intermediate energy can serve as an important testing ground for QCD. Detailed predictions for exclusive cross sections at large momentum transfer based on perturbative QCD and the QCD sum rule form of the proton distribution amplitude are available for anti p p → γγ for both real and virtual photons. Meson-pair and lepton-pair final states also give sensitive tests of the theory. The production of charmed hadrons in exclusive anti p p channels may have a non-negligible cross section. Anti-proton interactions in a nucleus, particularly J/psi production, can play an important role in clarifying fundamental QCD issues, such as color transparency, critical length phenomena, and the validity of the reduced nuclear amplitude phenomenology
Tests of perturbative quantum chromodynamics in photon-photon collisions
International Nuclear Information System (INIS)
Brodsky, S.J.
1979-01-01
The production of hadrons in the collision of two photons via the process e + e - → e + e - X can provide an ideal laboratory for testing many of the features of the photon's hadronic interactions, especially its short-distance aspects. That part of two-photon physics which is particularly relevant to tests of perturbative QCD is reviewed here. 6 figures
Quantum chromodynamics and deep inelastic e - N scattering at TRISTAN
International Nuclear Information System (INIS)
Muta, Taizo
1979-04-01
An introductory survey is given on the formulation of QCD in deep inelastic lepton-hadron scatterings. Typical predictions of QCD are presented in the kinematical region of TRISTAN, including detailed descriptions of the scaling violation, QCD correction to the current algebra sum rules, problem of quark masses and higher order effects. Some suggestions for experiments at TRISTAN are made. (author)
Bose form of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Baluni, V [Institute for Advanced Study, Princeton, NJ (USA); Stanford Linear Accelerator Center, CA (USA))
1980-03-01
By means of a special choice of gauge QCD/sub 2/(SU(N)) with one flavor of quarks is recast into the Bose form. Weak (g < m) and strong (g > m) coupling regimes are studied. The former is shown to be the SU(N)-symmetric confining phase in which bound states possess stringlike configurations with strings being represented by electric vortex lines; the ordinary mesons and baryons appear as longitudinal modes of electric strings. The strong coupling regime describes the Higgs phase with the residual symmetry (U(1))/sup N-1/ S/sub N/ where the left and right factors are the maximal abelian subgroup of SU(N) and the permutation group of N quarks, respectively; the particle spectrum consists of S/sub N/ multiplets adn the (U(1))/sup N-1/ charges are trapped.
Vector current scattering in two dimensional quantum chromodynamics
International Nuclear Information System (INIS)
Fleishon, N.L.
1979-04-01
The interaction of vector currents with hadrons is considered in a two dimensional SU(N) color gauge theory coupled to fermions in leading order in an N -1 expansion. After giving a detailed review of the model, various transition matrix elements of one and two vector currents between hadronic states were considered. A pattern is established whereby the low mass currents interact via meson dominance and the highly virtual currents interact via bare quark-current couplings. This pattern is especially evident in the hadronic contribution to inelastic Compton scattering, M/sub μν/ = ∫ dx e/sup iq.x/ , which is investigated in various kinematic limits. It is shown that in the dual Regge region of soft processes the currents interact as purely hadronic systems. Modification of dimensional counting rules is indicated by a study of a large angle scattering analog. In several hard inclusive nonlight cone processes, parton model ideas are confirmed. The impulse approximation is valid in a Bjorken--Paschos-like limit with very virtual currents. A Drell--Yan type annihilation mechanism is found in photoproduction of massive lepton pairs, leading to identification of a parton wave function for the current. 56 references
Form factors and charge radii in a quantum chromodynamics ...
Indian Academy of Sciences (India)
Author Affiliations. Bhaskar Jyoti Hazarika1 D K choudhury1 2. Centre for Theoretical Studies, Pandu College, Guwahati 781 012, India; Department of Physics, Gauhati University, Guwahati 781 014, India ...
Chromodynamics of cooperation in finite populations.
Directory of Open Access Journals (Sweden)
Arne Traulsen
2007-03-01
Full Text Available The basic idea of tag-based models for cooperation is that individuals recognize each other via arbitrary signals, so-called tags. If there are tags of different colors, then cooperators can always establish new signals of recognition. The resulting "chromodynamics" is a mechanism for the evolution of cooperation. Cooperators use a secret tag until they are discovered by defectors who then destroy cooperation based on this tag. Subsequently, a fraction of the population manages to establish cooperation based on a new tag.We derive a mathematical description of stochastic evolutionary dynamics of tag-based cooperation in populations of finite size. Benefit and cost of cooperation are given by b and c. We find that cooperators are more abundant than defectors if b/c > 1+2u/v, where u is the mutation rate changing only the strategy and v is the mutation rate changing strategy and tag. We study specific assumptions for u and v in two genetic models and one cultural model.In a genetic model, tag-based cooperation only evolves if a gene encodes both strategy and tag. In a cultural model with equal mutation rates between all possible phenotypes (tags and behaviors, the crucial condition is b/c > (K+1/(K-1, where K is the number of tags. A larger number of tags requires a smaller benefit-to-cost ratio. In the limit of many different tags, the condition for cooperators to have a higher average abundance than defectors becomes b > c.
Workshop on nuclear chromodynamics: Quarks and gluons in particles and nuclei
International Nuclear Information System (INIS)
Brodsky, S.; Moniz, E.
1985-01-01
The assertion that quantum chromodynamics (QCD) is the correct theory describing strong interaction phenomena has, largely by repetition, become rather non-controversial. It is likely even true. However, whether or not it is correct in detail, the experimentally supported realization that colored quarks and gluons are the elementary degrees of freedom, that asymptotic freedom makes short distance phenomena rather ''simple'' to understand, and that color is confined on the hadronic length scale of -- 1 fm has led to a profound change in the character of our attempts to understand the structure and interactions of both hadrons and nuclei. Many of the most important issued in particle physics and in nuclear physics are now seen to be intimately connected. An understanding of the validity and limits of effective theories based upon hadron degrees of freedom, so phenomenologically successful in describing a host of low energy phenomena, is coming into focus. The existence of new forms of matter grounded in the hidden color degree of freedom is predicted. These considerations form the subject of nuclear chromodynamics (NCD). The subject is far from mature and is developing rapidly
Chiral-symmetry breakdown in large-N chromodynamics
International Nuclear Information System (INIS)
Coleman, S.; Witten, E.
1980-01-01
Chromodynamics with n flavors of massless quarks is invariant under chiral U(n) x U(n). It is shown that in the limit of a large number of colors, under reasonable assumptions, this symmetry group must spontaneously break down to diagonal U
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1989-01-01
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
2012-11-19
we mean that we cannot describe a system by working perturbatively from non-interacting particles or quasiparticles. In the case of electrons in...typically about 100µm in size, and is deformed by harmonic trapping fields into prolate or oblate forms, commonly called a cigar or a pancake. In the...metals, the electron outside the closed shell. For instance, 6Li has a nuclear spin of 1 and one unpaired electron . The two lowest hyperfine 11
Nuclear chromodynamics is not the colorization of nuclear physics
International Nuclear Information System (INIS)
Sivers, D.
1988-01-01
The successful description of nuclei in terms of nucleons, deltas and mesons provides an enormous challenge to QCD. It compels us to pursue our theoretical understanding of chromodynamics into the realm of multiple color singlets in order to examine the concept of color saturation. To pursue this theme, we examine the idea of nuclear transparency in the light of models for confinement and describe the formulation of lattice simulations sensitive to exchange forces. 22 refs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Ecker, Gerhard [Wien Univ. (Austria). Fakultaet fuer Physik
2017-07-01
The following topics are dealt with: Physics around 1900, the way to quantum mechanics, quantum field theory with quantum electrodynamics as prototype, the crisis of quantum field theory, from the beta decay to the electroweak gauge theory, quantum chromodynamics as quantum field theory of the strong nuclear force, the standard model of the fundamental interactions, physics beyond the standard model. (HSI)
Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms
2008-11-01
Hubbard model. The SU(3) Hubbard model has been proposed as a model system for studying different phases of matter expected to occur in quantum...chromodynamics (QCD): the color superconducting phase and the formation of baryons . Our initial investigations have focused on understanding three-body...density quark matter described by quantum chromodynamics . We have been investigating the stability of the 3-state Fermi gas with respect to decay due
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Topics in nuclear chromodynamics: Color transparency and hadronization in the nucleus
International Nuclear Information System (INIS)
Brodsky, S.J.
1988-03-01
The nucleus plays two complimentary roles in quantum chromodynamics: (1) A nuclear target can be used as a control medium or background field to modify or probe quark and gluon subprocesses. Some novel examples are color transparency, the predicted transparency of the nucleus to hadrons participating in high momentum transfer exclusive reactions, and formation zone phenomena, the absence of hard, collinear, target-induced radiation by a quark or gluon interacting in a high momentum transfer inclusive reaction if its energy is large compared to a scale proportional to the length of the target. (Soft radiation and elastic initial state interactions in the nucleus still occur.) Coalescence with co-moving spectators is discussed as a mechanism which can lead to increased open charm hadroproduction, but which also suppresses forward charmonium production (relative to lepton pairs) in heavy ion collisions. Also discussed are some novel features of nuclear diffractive amplitudes--high energy hadronic or electromagnetic reactions which leave the entire nucleus intact and give nonadditive contributions to the nuclear structure function at low /kappa cur//sub Bj/. (2) Conversely, the nucleus can be studied as a QCD structure. At short distances, nuclear wave functions and nuclear interactions necessarily involve hidden color, degrees of freedom orthogonal to the channels described by the usual nucleon or isobar degrees of freedom. At asymptotic momentum transfer, the deuteron form factor and distribution amplitude are rigorously calculable. One can also derive new types of testable scaling laws for exclusive nuclear amplitudes in terms of the reduced amplitude formalism
Quantum Theory of Fields. Progress Report
International Nuclear Information System (INIS)
Gupta, S. N.
1996-01-01
During the period covered by this progress report, they have published the following three research papers: (1) B c spectroscopy in a quantum-chromodynamic potential model; (2) Gauge-boson scattering signals at the CERN LHC; and (3) Relativistic two-photon and two-gluon decay rates of heavy quarkonia
International Nuclear Information System (INIS)
Becher, P.; Joos, H.
1977-07-01
It is the aim of the main part of these lectures to show how most of the expected dynamical properties of quantum chromodynamics are realised in 1+1 dimensional quantum electrodynamics. Asymptotic freedom, the infrared limit, quark confinement and bag approximation are discussed in detail. (BJ) [de
International Nuclear Information System (INIS)
Serot, B.D.
1992-01-01
It is therefore essential to develop reliable nuclear models that go beyond the traditional non-relativistic many-body framework. The arguments for renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. The Walecka model, which contains neutrons, protons, and neutral scalar and vector mesons, is considered first as a simple example. The development is based on the relativistic mean-field and Hartree approximations, and their application to infinite matter and atomic nuclei. Some successes of this model are discussed, such as the nuclear equation of state, the derivation of the shell model, the prediction of nuclear properties throughout the periodic table, and the inclusion of zero-point vacuum corrections. The important concepts of Lorentz covariance and self-consistency are emphasized and the new dynamical features that arise in a relativistic many-body framework are highlighted. The computation of isoscalar magnetic moments is presented as an illustrative example. Calculations beyond the relativistic mean-field and Hartree approximations (for example, Dirac-Hartree-Fock and Dirac-Brueckner) are considered next, as well as recent efforts to incorporate the full role of the quantum vacuum in a consistent fashion. An extended model containing isovector pi and rho mesons is then developed; the dynamics is based on the chirally invariant linear sigma model. The difficulties in constructing realistic chiral descriptions of nuclear matter and nuclei are analysed, and the connection between the sigma model and the Walecka model is established. Finally, the relationship between quantum hadrodynamics and quantum chromodynamics is briefly addressed. (Author)
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
The BlueGene/L Supercomputer and Quantum ChromoDynamics
International Nuclear Information System (INIS)
Vranas, P; Soltz, R
2006-01-01
In summary our update contains: (1) Perfect speedup sustaining 19.3% of peak for the Wilson D D-slash Dirac operator. (2) Measurements of the full Conjugate Gradient (CG) inverter that inverts the Dirac operator. The CG inverter contains two global sums over the entire machine. Nevertheless, our measurements retain perfect speedup scaling demonstrating the robustness of our methods. (3) We ran on the largest BG/L system, the LLNL 64 rack BG/L supercomputer, and obtained a sustained speed of 59.1 TFlops. Furthermore, the speedup scaling of the Dirac operator and of the CG inverter are perfect all the way up to the full size of the machine, 131,072 cores (please see Figure II). The local lattice is rather small (4 x 4 x 4 x 16) while the total lattice has been a lattice QCD vision for thermodynamic studies (a total of 128 x 128 x 256 x 32 lattice sites). This speed is about five times larger compared to the speed we quoted in our submission. As we have pointed out in our paper QCD is notoriously sensitive to network and memory latencies, has a relatively high communication to computation ratio which can not be overlapped in BGL in virtual node mode, and as an application is in a class of its own. The above results are thrilling to us and a 30 year long dream for lattice QCD
Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Savage, Martin J. [Univ. of Washington, Seattle, WA (United States)
2017-03-24
This project was part of a coordinated software development effort which the nuclear physics lattice QCD community pursues in order to ensure that lattice calculations can make optimal use of present, and forthcoming leadership-class and dedicated hardware, including those of the national laboratories, and prepares for the exploitation of future computational resources in the exascale era. The UW team improved and extended software libraries used in lattice QCD calculations related to multi-nucleon systems, enhanced production running codes related to load balancing multi-nucleon production on large-scale computing platforms, and developed SQLite (addressable database) interfaces to efficiently archive and analyze multi-nucleon data and developed a Mathematica interface for the SQLite databases.
Towards an effective bilocal theory from quantum chromodynamics in a background field
International Nuclear Information System (INIS)
Magpantay, J.A.
1983-01-01
Using the path integral, we show how we can get background gauge-invariant bilocals (to be identified with mesons) from QCD in a nontrivial ground state. We discuss in this paper mainly the formal manipulations, especially how to deal with the zero modes
Renormalization scheme-dependence of perturbative quantum chromodynamics corrections to quarkonia
International Nuclear Information System (INIS)
Dentamaro, A.V.
1985-05-01
QCD radiative corrections to physical quantities are studied using Stevenson's principle of minimal sensitivity (PMS) to define the renormalization. We examine several naive potentials (Cornell group, power law and logarithmic), as well as the more sophisticated Richardson model in order to determine the spectra for the non-relativistic heavy charmonium and bottomonium systems. Predictions are made for the values of hyperfine splittings, leptonic and hadronic decay widths and E1 transition rates for these families of mesons. It is shown that good agreement with experimental data may be achieved by using a constant value of Λ/sub QCD/, which is determined by the PMS scheme and the potential model
Vector mesons in meson-baryon scattering and large-N{sub c} quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Fuhrmann, Hans-Friedrich
2016-02-11
We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N{sub c} QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N{sub c} is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J{sup P}=(1)/(2){sup +})- and (J{sup P}=(3)/(2){sup +})-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N{sub c} QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N{sub c} the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N{sub c} was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non-vanishing spin. In particular we considered the vector meson photoproduction off the nucleon as it is currently studied by e.g. Jude (2015), Wilson (2015) or Sokhoyan (2015). A decomposition of on-shell production amplitudes into covariant partial wave amplitudes which are both free from kinematical constraints and compatible with the microcausality condition was achieved. A Mathematica code using the FeynCalc package was written and applied to some tree-level contact terms and s-, u- and t-channel processes.
Low-energy effective models for two-flavor quantum chromodynamics and the universality hypothesis
International Nuclear Information System (INIS)
Grahl, Mara
2014-01-01
Our thesis is centered around the question of which order the chiral phase transition of two-flavor QCD is. First of all we outline several general aspects of phase transitions which are of central importance for the understanding of the RG approach towards them. Our focus lies on reviewing the universality hypothesis, a crucial ingredient when it comes to the construction of effective theories for order parameters, the credibility of which often heavily depends on universality arguments. We finish the chapter with an attempt to formulate the latter more precisely than usually done. The next chapter discusses the chiral phase transition from a general point of view. We supplement well-known facts with a detailed discussion of the so-called O(4) conjecture. Thereafter we introduce the nonperturbative method we use, the FRG method. Furthermore, we discuss the relation between effective models for QCD and the underlying fundamental theory making use of the FRG perspective. The next chapter is concerned with a mathematical subject indispensable for our approach towards the study of phase transitions, namely the systematic construction of polynomial invariants characterizing a given symmetry. With this thesis we point out its relevance in the context of high-energy physics. We present a simple, but novel, brute-force algorithm to effectively construct invariants of a given polynomial order. The next chapter is devoted to RG studies of several dimensionally reduced theories which are capable to either predict or to rule out the possible existence of a second-order phase transition. Of main interest for us is the linear sigma model, particularly in presence of the axial anomaly. It turns out that the fixed-point structure of the latter is rather complicated, requiring a deeper understanding of the underlying method and its preconditions. This leads us to a careful analysis of the fixed-point structure of several models, which is of great benefit for our review of the universality hypothesis and has several spin-off effects. For example, in the course of studying the influence of vector and axial-vector mesons we encounter a new universality class, which might be more relevant in other areas where chirality plays a role. Some important questions, however, cannot be addressed in the framework of dimensionally reduced theories where the explicit dependence of temperature has been eliminated. We are therefore pushed towards FRG studies where the temperature is kept as an explicit variable. We note that a great part of our work consisted in finding our own implementations of suitable algorithms to solve the encountered partial differential equations numerically. Then our main goal, the application to effective models for QCD, is discussed.
A model of unified quantum chromodynamics and Yang-Mills gravity
Institute of Scientific and Technical Information of China (English)
HSU Jong-Ping
2012-01-01
Based on a generalized Yang-Mills framework,gravitational and strong interactions can be unified in analogy with the unification in the clectroweak theory.By gauging T(4) × [SU(3)]color in fiat space-time,we have a unified model of chromo-gravity with a new tensor gauge field,which couples universally to all gluons,quarks and anti-quarks.The space-time translational gauge symmetry assures that all wave equations of quarks and gluons reduce to a Hamilton-Jacobi equation with the same ‘effective Riemann metric tensors' in the geometric-optics (or classical) limit.The emergence of effective metric tensors in the classical limit is essential for the unified model to agree with experiments.The unified model suggests that all gravitational,strong and electroweak interactions appear to be dictated by gauge symmetries in the generalized Yang-Mills framework.
A model of confinement for quantum chromodynamics in 2+1 dimensions
International Nuclear Information System (INIS)
Silva Filho, A.C. da.
1986-01-01
A dieletric mechanism of QCD in 2 + 1 dimensions is studied. This model yields confinement of two opposite color charges which are infinitely massive, via a linear potential. A functional expression for the dielectric parameter ε and studied analitical and numerical the resulting constitutive equations is obtained. A perturbative approach of these yields the non-leading contributions to the asymptotic potential as well for the boundary of the confinement domain. The results obtained for the transversal width of the confinement domain, considering large separations R of color charges, indicate that increases like R 2/3 , behavior which differs from the one suggested by the string models. (author) [pt
Infrared behavior of the effective coupling in quantum chromodynamics: A non-perturbative approach
International Nuclear Information System (INIS)
Bar-Gadda, U.
1980-01-01
In this paper we examine a different viewpoint, based on a self-consistent approach. This means that rather than attempting to identify any particular physical mechanism as dominating the QCD vacuum state we use the non-perturbative Schwinger-Dyson equations and Slavnov-Taylor identities of QCD as well as the renormalization group equation to obtain the self-consistent behavior of the effective coupling in the infrared region. We show that the infrared effective coupling behavior anti g(q 2 /μ 2 , gsub(R)(μ)) = (μ 2 /q 2 )sup(lambda/2)gsub(R)(μ) in the infrared limit q 2 /μ 2 → 0, where μ 2 is the euclidean subtraction point; lambda = 1/2(d - 2), where d is the space-time dimension, is the preferred solution if a sufficient self-consistency condition is satisfied. Finally we briefly discuss the nature of the dynamical mass Λ and the 1/N expansion as well as an effective bound state equation. (orig.)
Self-consistence equations for extended Feynman rules in quantum chromodynamics
International Nuclear Information System (INIS)
Wielenberg, A.
2005-01-01
In this thesis improved solutions for Green's functions are obtained. First the for this thesis essential techniques and concepts of QCD as euclidean field theory are presented. After a discussion of the foundations of the extended approach for the Feynman rules of QCD with a systematic approach for the 4-gluon vertex a modified renormalization scheme for the extended approach is developed. Thereafter the resummation of the Dyson-Schwinger equations (DSE) by the appropriately modified Bethe-Salpeter equation is discussed. Then the leading divergences for the 1-loop graphs of the resummed DSE are determined. Thereafter the equation-of-motion condensate is defined as result of an operator-product expansion. Then the self-consistency equations for the extended approaches are defined and numerically solved. (HSI)
Vector mesons in meson-baryon scattering and large-N_c quantum chromodynamics
International Nuclear Information System (INIS)
Fuhrmann, Hans-Friedrich
2016-01-01
We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N_c QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N_c is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J"P=(1)/(2)"+)- and (J"P=(3)/(2)"+)-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N_c QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N_c the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N_c was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non-vanishing spin. In particular we considered the vector meson photoproduction off the nucleon as it is currently studied by e.g. Jude (2015), Wilson (2015) or Sokhoyan (2015). A decomposition of on-shell production amplitudes into covariant partial wave amplitudes which are both free from kinematical constraints and compatible with the microcausality condition was achieved. A Mathematica code using the FeynCalc package was written and applied to some tree-level contact terms and s-, u- and t-channel processes.
International Nuclear Information System (INIS)
Dick, Viktor
2016-04-01
In this work, the spectrum of the overlap Dirac operator has been computed and analyzed on configurations that had been created using highly improved staggered quarks. Although the overlap operator is expensive to compute, it has the advantage that it fully implements chiral symmetry in the same way as the continuum QCD Dirac operator even at finite lattice spacings. This opened the possibility to investigate chiral aspects of QCD and, in particular, the question if the axial anomaly is suppressed at the chiral transition temperature T c . The obtained results indicate that the axial anomaly is still present at T c and even at 1.5 T c as evidenced by a splitting in the integrated pion and delta susceptibilities. The spectrum shows a peak in the near-zero region consisting of zero modes and pairs of near-zero modes. The breaking of the axial symmetry was identified as being caused by these infrared modes. It was discussed how this infrared contribution might change in the thermodynamic, continuum, and chiral limits. The obtained data supports the expectation that the peak becomes narrower with decreasing quark masses, resulting in a Dirac-delta peak in the chiral limit. The area under the peak was found to decrease with decreasing lattice spacing, so in order to resolve how much of it survives the continuum limit further investigations are needed, in particular ones where already for the generation of gauge configurations chiral fermions are used. The infrared modes were investigated and found to be highly localized, supporting the picture of QCD at high temperatures as a dilute instanton gas. The instantons were found to have an average size of 0.239(4) fm and a density of 0.154(5) fm -4 at 1.5 T c . Near-zero modes were found to be induced by instanton-anti-instanton molecules, which are weakly bound. At temperatures closer to T c , this picture becomes more complicated but these features sometimes still can be recognized. In conclusion, in QCD at temperatures above but close to Tc the chiral anomaly does not seem to be effectively suppressed yet. Topological objects like instantons and anti-instantons induce an accumulation of highly localized infrared Dirac modes and thereby cause the anomalous chiral symmetry to be broken.
Experimental results on QCD [Quantum Chromodynamics] from e+e- annihilation
International Nuclear Information System (INIS)
de Boer, W.
1987-09-01
A review is given on QCD results from studying e + e - annihilation with the PEP and PETRA storage rings with special emphasis on jet physics and the determination of the strong coupling constant α/sub s/. 92 refs., 28 figs., 3 tabs
Energy Technology Data Exchange (ETDEWEB)
Streuer, T.
2005-07-15
In this thesis QCD on the lattice was simulated with overlap fermions in the valence-quark approximation. We haver studied the spectrum of the light hadrons, spectral properties of the Dirac operator as well as hadronic matrix elements. The dependence of the masses of the light hadrons on the quark mass agrees with the prediction of the chiral perturbation theory. especially the artefacts of the valence-quark approximation at small quark masses are clearly recognizable. The values of the hadron masses determined by us exhibit deviations from the experimental values, which lie in the order of magnitude of ten percent. This we interpret as effect of the valence-quark approximation. The spectral properties of the Dirac operator are far reachingly fixed by the chiral symmetry. In order to study this property on the lattice, it is therefore indispensable to work with a lattice discretization, which respects the chiral symmetry, so that between the topology of the gauge field and the zero modes of the Dirac operator the same connection exists as in the continuum - the Atiyah-Singer index theorem. We have used this connection in order to determine the topological susceptibility, which enters the Witten-Veneziano formula for the mass of the {eta}' particle. The spectral density of the Dirac operator, which we have determined, follows the shape predicted by the chiral perturbation theory; from this we could determine the parameters {sigma} and {delta} of the effective Lagangian density. The distribution of the smallest eigenvalues of the Dirac operator agrees with the prediction of the random matrix theory. The value for the axial charge of the nucleon calculated by us deviates by about ten percent from the experimentally determined value g{sub A}=1.26. The order of magnitude of this deviation is typical for the valence-quark approximation. The matrix element v{sub 2b}, which enters the operator-product expansion of the first moment of the unpolarized nucleon structure function, exhibits a clearly larger deviation from the experimental value. The error, which is made by the valence-quark approximation, is principially uncontrollable. Therefore it is necessaryu to perform calculations with dynamical fermions. Meanwhile by different groups algorithms werew developed, which allow to perform such calculations.
Experimental results on QCD (Quantum Chromodynamics) from e/sup +/e/sup -/ annihilation
Energy Technology Data Exchange (ETDEWEB)
de Boer, W.
1987-09-01
A review is given on QCD results from studying e/sup +/e/sup -/ annihilation with the PEP and PETRA storage rings with special emphasis on jet physics and the determination of the strong coupling constant ..cap alpha../sub s/. 92 refs., 28 figs., 3 tabs.
Nonperturbative confinement in quantum chromodynamics : II. Mandelstam’s gluon propagator
Atkinson, D.; Johnson, P. W.; Stam, K.
It is shown that Mandelstam’s approximate equation for the gluon propagator has a solution with very singular infrared behavior. At the origin in the squared momentum variable there are a double pole, a branch‐point, and an accumulation of complex first‐sheet branch‐points. Although the double pole
Atkinson, D.; Drohm, J. K.; Johnson, P. W.; Stam, K.
1981-01-01
An approximated form of the Dyson–Schwinger equation for the gluon propagator in quarkless QCD is subjected to nonlinear functional and numerical analysis. It is found that solutions exist, and that these have a double pole at the origin of the square of the propagator momentum, together with an
Infrared structure and large Psub(T) behavior of quantum chromodynamics
International Nuclear Information System (INIS)
Rafael, Eduardo de.
1977-09-01
The study of the infrared structure of QCD in perturbation theory is an interesting problem per se regardless of its relationship to the confinement problem. The ultimate motivation for the study of the large transverse momentum behavior of QCD is to provide a field theoretic framework to the large Psub(T)-phenomena in hadronic interactions. As a first step towards that aim it is of interest to explore the possibility that the QCD Green's functions in 'some' regions of exceptional momenta, like the large-Psub(T) regime, may still obey some kind of renormalization group type equations
Gluon and quark jets in a recursive model motivated by quantum chromodynamics
International Nuclear Information System (INIS)
Sukhatme, U.P.
1979-01-01
We compute observable quantities like the multiplicity and momentum distributions of hadrons in gluon and quark jets in the framework of a recursive cascade model, which is strongly motivated by the fundamental interactions of QCD. Fragmentation occurs via 3 types of breakups: quark → meson + quark, gluon → meson + gluon, gluon → quark + antiquark. In our model gluon jets are softer than quark jets. The ratio of gluon jet to quark jet multiplicity is found to be 2 asymptotically, but much less at lower energies. Some phenomenological consequences for γ decay are discussed. (orig.)
Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions
International Nuclear Information System (INIS)
Sinclair, D.K.
1986-10-01
Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 10 3 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass
Spontaneous chiral symmetry breaking and effective quark masses in quantum chromodynamics
International Nuclear Information System (INIS)
Miransky, V.A.
1982-01-01
The ultraviolet asymptotics of the dynamical effective quark mass is determined directly from the equation for the fermion mass function. The indications about the character of the dynamics of the spontaneous chiral symmetry breaking in QCD are obtained
A model of unified quantum chromodynamics and Yang-Mills gravity
International Nuclear Information System (INIS)
HSU Jongping
2012-01-01
Based on a generalized Yang-Mills framework, gravitational and strong interactions can be unified in analogy with the unification in the electroweak theory. By gauging T(4) × [SU(3)] color in flat space-time, we have a unified model of chromo-gravity with a new tensor gauge field, which couples universally to all gluons, quarks and anti-quarks. The space-time translational gauge symmetry assures that all wave equations of quarks and gluons reduce to a Hamilton-Jacobi equation with the same 'effective Riemann metric tensors’ in the geometric-optics (or classical) limit. The emergence of effective metric tensors in the classical limit is essential for the unified model to agree with experiments. The unified model suggests that all gravitational, strong and electroweak interactions appear to be dictated by gauge symmetries in the generalized Yang-Mills framework. (author)
Challenges to quantum chromodynamics: Anomalous spin, heavy quark, and nuclear phenomena
International Nuclear Information System (INIS)
Brodsky, S.J.
1989-11-01
The general structure of QCD meshes remarkably well with the facts of the hadronic world, especially quark-based spectroscopy, current algebra, the approximate point-like structure of large momentum transfer inclusive reactions, and the logarithmic violation of scale invariance in deep inelastic lepton-hadron reactions. QCD has been successful in predicting the features of electron-positron and photon-photon annihilation into hadrons, including the magnitude and scaling of the cross sections, the shape of the photon structure function, the production of hadronic jets with patterns conforming to elementary quark and gluon subprocesses. The experimental measurements appear to be consistent with basic postulates of QCD, that the charge and weak currents within hadrons are carried by fractionally-charged quarks, and that the strength of the interactions between the quarks, and gluons becomes weak at short distances, consistent with asymptotic freedom. Nevertheless in some cases, the predictions of QCD appear to be in dramatic conflict with experiment. The anomalies suggest that the proton itself as a much more complex object than suggested by simple non-relativistic quark models. Recent analyses of the proton distribution amplitude using QCD sum rules points to highly-nontrival proton structure. Solutions to QCD in one-space and one-time dimension suggest that the momentum distributions of non-valence quarks in the hadrons have a non-trival oscillatory structure. The data seems also to be suggesting that the ''intrinsic'' bound state structure of the proton has a non- negligible strange and charm quark content, in addition to the ''extrinsic'' sources of heavy quarks created in the collision itself. 144 refs., 46 figs., 2 tabs
Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics (LQCD)
Energy Technology Data Exchange (ETDEWEB)
Negele, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2017-08-31
Building on the success of two preceding generations of Scientific Discovery through Advanced Computing (SciDAC) projects, this grant supported the MIT component (P.I. John Negele) of a multi-institutional SciDAC-3 project that also included Brookhaven National Laboratory, the lead laboratory with P. I. Frithjof Karsch serving as Project Director, Thomas Jefferson National Accelerator Facility with P. I. David Richards serving as Co-director, University of Washington with P. I. Martin Savage, University of North Carolina with P. I. Rob Fowler, and College of William and Mary with P. I. Andreas Stathopoulos. Nationally, this multi-institutional project coordinated the software development effort that the nuclear physics lattice QCD community needs to ensure that lattice calculations can make optimal use of forthcoming leadership-class and dedicated hardware, including that at the national laboratories, and to exploit future computational resources in the Exascale era.
High energy e/sup +/e/sup -/ interaction and quantum chromodynamics. Experimental results
Energy Technology Data Exchange (ETDEWEB)
Fournier, D; Aubert, J J; Bassetto, A; Boucrot, J; Fontannaz, M; Fournier, D; Furmanski, W; Le Bellac, M
1983-01-01
e+e- interactions at PETRA-PEP energies (12 to 36 GeV) provide clear tests for QCD. First, results concerning annihilation total cross-section and inclusive spectra, in particular scaling violation, are considered. Next, energy-energy correlations, which provide an interesting test of QCD in the leading logarithm approximation, are reviewed. The third part deals with 3-jet events interpreted as evidence for hard gluon bremsstrahlung, and with various problems occuring in the determination of ..cap alpha..sub(s). e+e- annihilation on top of narrow resonances (..gamma..), and deep inelastic electron-photon scattering, which allow important tests of the theory, are briefly considered in the last part.
The QCD catechism: an introduction to the perturbative aspects of quantum chromodynamics
International Nuclear Information System (INIS)
Rujula, A. dee
1978-01-01
The author gives a summary of the topics discussed in his lectures at the 1978 CERN School of Physics. Asymptotic freedom, hadron spectroscopy, deep inelastic lepton scattering and the jet and gluon models are the main subjects of the lectures. (W.D.L.)
International Nuclear Information System (INIS)
Brodsky, S.J.; Lu, H.J.
1994-10-01
We derive commensurate scale relations which relate perturbatively calculable QCD observables to each other, including the annihilation ratio R e+ e - , the heavy quark potential, τ decay, and radiative corrections to structure function sum rules. For each such observable one can define an effective charge, such as α R (√s)/π ≡ R e+ e - (√s)/(3Σe q 2 )-1. The commensurate scale relation connecting the effective charges for observables A and B has the form α A (Q A ) α B (Q B )(1 + r A/Bπ / αB + hor-ellipsis), where the coefficient r A/B is independent of the number of flavors ∫ contributing to coupling renormalization, as in BLM scale-fixing. The ratio of scales Q A /Q B is unique at leading order and guarantees that the observables A and B pass through new quark thresholds at the same physical scale. In higher orders a different renormalization scale Q n* is assigned for each order n in the perturbative series such that the coefficients of the series are identical to that of a invariant theory. The commensurate scale relations and scales satisfy the renormalization group transitivity rule which ensures that predictions in PQCD are independent of the choice of an intermediate renormalization scheme C. In particular, scale-fixed predictions can be made without reference to theoretically constructed singular renormalization schemes such as MS. QCD can thus be tested in a new and precise way by checking that the effective charges of observables track both in their relative normalization and in their commensurate scale dependence. The commensurate scale relations which relate the radiative corrections to the annihilation ratio R e + e - to the radiative corrections for the Bjorken and Gross-Llewellyn Smith sum rules are particularly elegant and interesting
Renormalizable Abelian-projected effective gauge theory derived from quantum chromodynamics
International Nuclear Information System (INIS)
Kondo, Kei-ichi; Shinohara, Toru
2001-01-01
We show that an effective Abelian gauge theory can be obtained as a renormalizable theory from QCD in the maximal Abelian gauge. The derivation improves in a systematic manner the previous version that was obtained by one of the authors and was referred to as the Abelian-projected effective gauge theory. This result supports the view that we can construct an effective Abelian gauge theory from QCD without losing characteristic features of the original non-Abelian gauge theory. In fact, it is shown that the effective coupling constant in the resulting renormalizable theory has a renormalization-scale dependence governed by the β-function that is exactly the same as that of the original Yang-Mills theory, irrespective of the choice of gauge fixing parameters of the maximal Abelian gauge and the parameters used for identifying the dual variables. Moreover, we evaluate the anomalous dimensions of the fields and parameters in the resultant theory. By choosing the renormalized parameters appropriately, we can switch the theory into an electric or a magnetic theory. (author)
International Nuclear Information System (INIS)
Stasto, A.
2004-09-01
This work is a study of the phenomenon of partonic saturation in the high energy collisions of elementary particles. We have observed the geometric scaling property of the deep inelastic electron-proton cross section which can be interpreted as a signal of partonic saturation. This scaling means that the cross section depends only on one scaling variable τ ≅ Q 2 /Q 2 s (x) which is a ratio of the photon virtuality Q 2 and the saturation scale Q 2 s (x) which depends power-like on Bjorken x. The properties of the solution to the linear DGLAP evolution equations have been investigated in the presence of the scaling initial conditions. These conditions are given on the critical line defined as Q 0 =Q 4 s (x). In the fixed strong coupling case scaling is preserved by the DGLAP evolution. When strong coupling is running, geometric scaling is violated because of presence of additional scale Λ QCD . The coefficient responsible for geometric scaling violations has been extracted, which vanishes for very small values of Bjorken x such that Q 2 4 s (x)=Λ 2 QCD . We have analysed numerically nonlinear Balitsky-Kovchegov equation, which takes into account diagrams responsible for the gluon recombination and describes partonic saturation. The solution to this equation in the case of the infinitely large target has been obtained (1 + 1 dimensions). In the linear case, the solution is plagued by the strong diffusion of the transverse momenta. It turns out that in the nonlinear equation the diffusion to infrared region is strongly suppressed due to the presence of the saturation scale Q s (x). We have also investigated the impact of the nonleading in x effects in this equation such as running coupling and the consistency constraint. In the case of solution to the Balitsky-Kovchegov equation in 3+1 dimensions the power behaviour in impact parameter is present, even if the initial conditions are exponentially falling. This feature causes violation of the Froissart-Martin bound in the solution to the Balitsky - Kovchegov equation despite the fact that the amplitude is bounded from above N ≤ 1. We have also checked that the impact parameter dependent solution possesses full conformal symmetry. The general procedure of extraction of impact parameter dependent S-matrix element has been proposed. To this aim, the data on the elastic diffractive production of vector mesons in deep inelastic ep scattering at small x have been used. The dependence of the cross section on the momentum transfer t has been translated onto the impact parameter dependence of the extracted S matrix element. From this analysis it turns out that the saturation corrections might play quite an important role in the HERA kinematical regime. Also, the impact of the saturation effects have been studied in the case of the charm meson production in the interactions of high-energy cosmic rays in the atmosphere. We have compared three different calculations based on different models for the gluon densities. Among them we have used a model for the gluon density based on the saturation model by Golec-Biernat and Wuesthoff. Then, we have used the obtained cross sections for charm production to calculate the neutrino fluxes by solving complete transport equations. The resulting atmospheric neutrino flux is reduced in magnitude by about a factor of 2 when the saturation effects are included. (author)
Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Huang, T.; Lepage, G.P.
1983-01-01
This chapter emphasizes the utility of a Fock state representation of the meson and baryon wave functions as a means not only to parametrize the effects of bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive, and higher twist processes. Discusses hadronic wave functions in QCD, measures of hadronic wave functions (form factors of composite systems, form factors of mesons, the meson distribution amplitude); large momentum transfer exclusive processes (two-photon processes); deep inelastic lepton scattering; and the phenomenology of hadronic wave functions (measures of hadron wave functions, constraints on the pion and proton valence wave function, quark jet diffraction excitation, the ''unveiling'' of the hadronic wave function and intrinsic charm). Finds that the testing ground of perturbative QCD where rigorous, definitive tests of the theory can be made can now be extended throughout a large domain of large momentum transfer exclusive and inclusive lepton, photon, and hadron reactions
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
International Nuclear Information System (INIS)
Brodsky, S.J.
1983-11-01
A number of novel features of QCD are reviewed, including the consequences of formation zone and color transparency phenomena in hadronic collisions, the use of automatic scale setting for perturbative predictions, null-zone phenomena as a fundamental test of gauge theory, and the relationship of intrinsic heavy colored particle Fock state components to new particle production. We conclude with a review of the applications of QCD to nuclear multiquark systems. 74 references
International Nuclear Information System (INIS)
Matveev, V.A.; Tavkhelidze, A.N.
2006-01-01
A brief review is given of the priority works which were mainly carried out at the Laboratory of Theoretical Physics, JINR, and devoted to the introduction to hadron physics of the concept of color and colored quarks, and to the description of hadrons in the framework of the model of quasi-free quarks. These ideas play a key role in the modern theory of strong interactions - quantum chromodynamics
Directory of Open Access Journals (Sweden)
Ion C. Baianu
2009-04-01
Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
A study on the determination of the scale parameter ΛMS of quantum chromodynamics at LEP I energies
International Nuclear Information System (INIS)
Wenisch, J.
1989-08-01
A method of measuring independently of jet rates the scale parameter Λsub(anti Manti S) for the determination of the running coupling constant α s of QCD is investigated. Using the LUND-program with exact matrix elements, the method is based on the energy dependence of observables like reduced thrust, jet masses and integrated asymmetry of energy-energy correlation (IAEEC). Only the IAEEC is able to reproduce the input scale parameter, Λsub(anti Manti S)=0.500 GeV, whereas the other variables yield smaller results than predicted. If the three jet cross section is, however, formulated with ERT-matrix elements, which are not included in the standard LUND code, it is possible to reproduce Λsub(anti Manti S) also from reduced thrust and jet masses. (orig.) [de
International Nuclear Information System (INIS)
Bourrely, C.; Machet, B.; Rafael, E. de.
1980-12-01
The form factors which govern the semileptonic decays of pseudoscalar particles (M→M'+l+ν(l)) are constrained by the knowledge of the two-point function PIsup(μv)(q) in the deep euclidean region. We derive the precise constrains from a QCD calculation of PIsup(μv) which includes perturbative contributions to two-loops as well as leading non-perturbative contributions. Applications to PIl 3 , Kl 3 and D + →antiK 0 e + νe decays are discussed
International Nuclear Information System (INIS)
Mueller, B.; Springer, R.P.
1995-01-01
A brief summary of the progress made for the year is given for each of the following areas: (1) quark-gluon plasma and relativistic heavy ion collisions (nine contributions); (2) effective theories for hadrons and nuclei (four contributions); (4) renormalization group approach to field theory at finite temperature; (5) symmetry-preserving regularization; and (6) an effective field theory approach to the cosmological constant problem
International Nuclear Information System (INIS)
Kuo, Wang-Chuang.
1990-01-01
The production of the neutral technicolor pseudo Goldstone bosons, P 0 'and P 8 0 ', at large transverse momentum in pp collisions, pp → g(q)P 0 ' (P 8 0 ')X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t bar t decay channel would dominate both the decays of P 0 ' and P 8 0 ' if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P 0 ' and P 8 0 ' are below 40 GeV, where b bar b becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t bar t is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t bar t channel, the τ bar τ mode can be used to identify P 0 ' up to m P = 300 GeV in the transverse momentum range P perpendicular approx-lt 100 GeV. Similarly, the b bar b decay mode can serve us a signal to identify P 8 0 ' up to m P = 300 GeV for P perpendicular between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P 8 0 ' at the SSC. 63 refs
The development of the light cone in the quantum chromodynamics up to the first non-leading order
International Nuclear Information System (INIS)
Kaschluhn, L.
1986-01-01
For the product of two electromagnetic currents in QCD there is derived in a systematic way a nonlocal light-cone expansion up to next-to-leading order. Thereby the gauge-invariance of the underlying theory has been taken into acccount by using the known general solutions of the Ward identities in axial gauge. (author)
International Nuclear Information System (INIS)
Guellenstern, S.
1991-09-01
Using the technique of Cherniak and Zhitnitzky we have calculated the wavefunctions of ρ(770) and Φ(1020) within the framework of QCD sum rules. Whereas the standard approach assumes light-like distances of the quarks (z 2 = 0), we also have taken into account higher order terms in z 2 . Thus, we obtained non-vanishing orbital angular momentum contributions. The first few moments of various invariant functions have been calculated with the help of an especially developed REDUCE program package. In zeroth order (z 2 = 0) our results of the reconstructed wavefunctions agree with those in the literature. However, we got first order contributions in z 2 of an amount of almost 10% of the corresponding zeroth order. (orig.)
International Nuclear Information System (INIS)
Oezel, Feryal; Psaltis, Dimitrios; Ransom, Scott; Demorest, Paul; Alford, Mark
2010-01-01
The recent measurement of the Shapiro delay in the radio pulsar PSR J1614-2230 yielded a mass of 1.97 ± 0.04 M sun , making it the most massive pulsar known to date. Its mass is high enough that, even without an accompanying measurement of the stellar radius, it has a strong impact on our understanding of nuclear matter, gamma-ray bursts (GRBs), and the generation of gravitational waves from coalescing neutron stars. This single high-mass value indicates that a transition to quark matter in neutron-star cores can occur at densities comparable to the nuclear saturation density only if the quarks are strongly interacting and are color superconducting. We further show that a high maximum neutron-star mass is required if short-duration GRBs are powered by coalescing neutron stars and, therefore, this mechanism becomes viable in the light of the recent measurement. Finally, we argue that the low-frequency (≤500 Hz) gravitational waves emitted during the final stages of neutron-star coalescence encode the properties of the equation of state because neutron stars consistent with this measurement cannot be centrally condensed. This will facilitate the measurement of the neutron star equation of state with Advanced LIGO/Virgo.
Energy Technology Data Exchange (ETDEWEB)
Kuo, Wang-Chuang.
1990-09-21
The production of the neutral technicolor pseudo Goldstone bosons, P{sup 0}{prime}and P{sub 8}{sup 0}{prime}, at large transverse momentum in pp collisions, pp {yields} g(q)P{sup 0}{prime} (P{sub 8}{sup 0}{prime})X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t{bar t} decay channel would dominate both the decays of P{sup 0}{prime} and P{sub 8}{sup 0}{prime} if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P{sup 0}{prime} and P{sub 8}{sup 0}{prime} are below 40 GeV, where b{bar b} becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t{bar t} is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t{bar t} channel, the {tau}{bar {tau}} mode can be used to identify P{sup 0}{prime} up to m{sub P} = 300 GeV in the transverse momentum range P{sub {perpendicular}} {approx lt} 100 GeV. Similarly, the b{bar b} decay mode can serve us a signal to identify P{sub 8}{sup 0}{prime} up to m{sub P} = 300 GeV for P{sub {perpendicular}} between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P{sub 8}{sup 0}{prime} at the SSC. 63 refs.
Hard Thermal Loop approximation in the Light Front Quantum Field Theory
International Nuclear Information System (INIS)
Silva, Charles da Rocha; Perez, Silvana
2011-01-01
Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the λφ3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)
Hard Thermal Loop approximation in the Light Front Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Silva, Charles da Rocha [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil); Universidade Federal do Para (UFPA), Belem, PA (Brazil); Perez, Silvana [Universidade Federal do Para (UFPA), Belem, PA (Brazil)
2011-07-01
Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the {lambda}{phi}3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
Wilson lines in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.
2014-07-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Wilson lines in quantum field theory
International Nuclear Information System (INIS)
Cherednikov, Igor Olegovich; Joint Institute of Nuclear Research, Moscow; Mertens, Tom; Veken, Frederik F. van der
2014-01-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
International Nuclear Information System (INIS)
Kilin, Sergei Ya
1999-01-01
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
1999-05-31
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
The pursuit of locality in quantum mechanics
Hodkin, Malcolm
The rampant success of quantum theory is the result of applications of the 'new' quantum mechanics of Schrodinger and Heisenberg (1926-7), the Feynman-Schwinger-Tomonaga Quantum Electro-dynamics (1946-51), the electro-weak theory of Salaam, Weinberg, and Glashow (1967-9), and Quantum Chromodynamics (1973-); in fact, this success of 'the' quantum theory has depended on a continuous stream of brilliant and quite disparate mathematical formulations. In this carefully concealed ferment there lie plenty of unresolved difficulties, simply because in churning out fabulously accurate calculational tools there has been no sensible explanation of all that is going on. It is even argued that such an understanding is nothing to do with physics. A long-standing and famous illustration of this is the paradoxical thought-experiment of Einstein, Podolsky and Rosen (1935). Fundamental to all quantum theories, and also their paradoxes, is the location of sub-microscopic objects; or, rather, that the specification of such a location is fraught with mathematical inconsistency. This project encompasses a detailed, critical survey of the tangled history of Position within quantum theories. The first step is to show that, contrary to appearances, canonical quantum mechanics has only a vague notion of locality. After analysing a number of previous attempts at a 'relativistic quantum mechanics', two lines of thought are considered in detail. The first is the work of Wan and students, which is shown to be no real improvement on the iisu.al 'nonrelativistic' theory. The second is based on an idea of Dirac's - using backwards-in-time light-cones as the hypersurface in space-time. There remain considerable difficulties in the way of producing a consistent scheme here. To keep things nicely stirred up, the author then proposes his own approach - an adaptation of Feynman's QED propagators. This new approach is distinguished from Feynman's since the propagator or Green's function is not obtained
The impact of QCD and light-cone quantum mechanics on nuclear physics
International Nuclear Information System (INIS)
Brodsky, S.J.; Schlumpf, F.
1994-12-01
We discuss a number of novel applications of Quantum Chromodynamics to nuclear structure and dynamics, such as the reduced amplitude formalism for exclusive nuclear amplitudes. We particularly emphasize the importance of light-cone Hamiltonian and Fock State methods as a tool for describing the wavefunctions of composite relativistic many-body systems and their interactions. We also show that the use of covariant kinematics leads to nontrivial corrections to the standard formulae for the axial, magnetic, and quadrupole moments of nucleons and nuclei
Energy Technology Data Exchange (ETDEWEB)
Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department
1999-07-01
Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.
Quantum entanglement and quantum teleportation
International Nuclear Information System (INIS)
Shih, Y.H.
2001-01-01
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)
International Nuclear Information System (INIS)
Brevik, I.
1983-01-01
The canonical quantum theory for an electromagnetic field within an isotropic nondispersive medium, whose permittivity, epsilon, and permeability μ satisfy the condition epsilonμ=1, is developed. This condition is found to simplify the electromagnetic formalism considerably and is of interest not only to quantum electrodynamics (QED) but also to quantum chromodynamics (QDC) in view of the formal analogy existing between these two theories to the zero-order in the gauge coupling constant. After giving a survey of the general formalism, this paper discusses appropriate modifications of known experiments in optics: the Ashkin-Dziedzic pressure experiment (1973), the Barlow experiment (1912), and the levitation experiment of Ashkin (1970) and others. Finally, a calculation is given of Casimir (i.e., zero-point) surface force acting on one of two spherical interfaces separating three media from each other, under certain simplifying conditions
Projection and nested force-gradient methods for quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Shcherbakov, Dmitry
2017-07-26
For the Hybrid Monte Carlo algorithm (HMC), often used to study the fundamental quantum field theory of quarks and gluons, quantum chromodynamics (QCD), on the lattice, one is interested in efficient numerical time integration schemes which preserve geometric properties of the flow and are optimal in terms of computational costs per trajectory for a given acceptance rate. High order numerical methods allow the use of larger step sizes, but demand a larger computational effort per step; low order schemes do not require such large computational costs per step, but need more steps per trajectory. So there is a need to balance these opposing effects. In this work we introduce novel geometric numerical time integrators, namely, projection and nested force-gradient methods in order to improve the efficiency of the HMC algorithm in application to the problems of quantum field theories.
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum computers and quantum computations
International Nuclear Information System (INIS)
Valiev, Kamil' A
2005-01-01
This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)
Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity
International Nuclear Information System (INIS)
Christiansen, Nicolai
2015-01-01
In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).
Chanda, Rajat
1997-01-01
The book discusses the laws of quantum mechanics, several amazing quantum phenomena and some recent progress in understanding the connection between the quantum and the classical worlds. We show how paradoxes arise and how to resolve them. The significance of Bell's theorem and the remarkable experimental results on particle correlations are described in some detail. Finally, the current status of our understanding of quantum theory is summerised.
Coleman, Piers; Schofield, Andrew J
2005-01-20
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.
Indian Academy of Sciences (India)
In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.
I, Quantum Robot: Quantum Mind control on a Quantum Computer
Zizzi, Paola
2008-01-01
The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.
Quantum Logic and Quantum Reconstruction
Stairs, Allen
2015-01-01
Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
Quantum dynamics of quantum bits
International Nuclear Information System (INIS)
Nguyen, Bich Ha
2011-01-01
The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
International Nuclear Information System (INIS)
Kouwenhoven, L.; Marcus, C.
1998-01-01
Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)
Quantum information. Teleporation - cryptography - quantum computer
International Nuclear Information System (INIS)
Breuer, Reinhard
2010-01-01
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
Quantum games as quantum types
Delbecque, Yannick
In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other
Signatures for axial chromodynamics
International Nuclear Information System (INIS)
Pati, J.C.
1978-07-01
Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 10 4 -10 6 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e - e + experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
Walls, D F
2007-01-01
Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Stapp, Henry P.
2011-01-01
Robert Griffiths has recently addressed, within the framework of a 'consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. O...
Grifoni, Milena
1997-01-01
In this thesis, ratchet systems operating in the quantum regime are investigated. Ratchet systems, also known as Brownian motors, are periodic systems presenting an intrinsic asymmetry which can be exploited to extract work out of unbiased forces. As a model for ratchet systems, we consider the motion of a particle in a one-dimensional periodic and asymmetric potential, interacting with a thermal environment, and subject to an unbiased driving force. In quantum ratchets, intrinsic quantum flu...
Quantum space and quantum completeness
Jurić, Tajron
2018-05-01
Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.
International Nuclear Information System (INIS)
Zeppenfeld, D.
1984-01-01
The present thesis deals with the construction and the analysis of mesonic bound states in SU(N) gauge theories in a two-dimensional space-time. The based field theory can thereby be considered as a simplified version of the QCD, the theory of the strong interactions. After an extensive discussion of the quantization in the temporal gauge and after the Poincare invariance of the theory has been shown mesonic bound states and the meson spectrum for different ranges of the free parameters of the theory (quark mass, coupling constant, and index N of the gauge group) are treated. The spectrum is given by a boundary value problem which in the perturbative limit is solved analytically. For massless quarks gauge-invariant annihilation operators are constructed which permit an exact solution of the energy eigenvalue equation. The energy eigenstates so found described massive interacting mesons which are surrounded by a cloud of massless free particles. (orig.) [de
International Nuclear Information System (INIS)
Katz, G.R.
1986-01-01
Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
International Nuclear Information System (INIS)
Rodgers, P.
1998-01-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
International Nuclear Information System (INIS)
Khrennikov, Andrei; Klein, Moshe; Mor, Tal
2010-01-01
In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.
International Nuclear Information System (INIS)
Deutsch, D.
1992-01-01
As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
Quantum group and quantum symmetry
International Nuclear Information System (INIS)
Chang Zhe.
1994-05-01
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs
Quantum information. Teleportation - cryptography - quantum computer
International Nuclear Information System (INIS)
Koenneker, Carsten
2012-01-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Quantum ensembles of quantum classifiers.
Schuld, Maria; Petruccione, Francesco
2018-02-09
Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.
Quantum computer games: quantum minesweeper
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Quantum measurement in quantum optics
International Nuclear Information System (INIS)
Kimble, H.J.
1993-01-01
Recent progress in the generation and application of manifestly quantum or nonclassical states of the electromagnetic field is reviewed with emphasis on the research of the Quantum Optics Group at Caltech. In particular, the possibilities for spectroscopy with non-classical light are discussed both in terms of improved quantitative measurement capabilities and for the fundamental alteration of atomic radiative processes. Quantum correlations for spatially extended systems are investigated in a variety of experiments which utilize nondegenerate parametric down conversion. Finally, the prospects for measurement of the position of a free mass with precision beyond the standard quantum limit are briefly considered. (author). 38 refs., 1 fig
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:
International Nuclear Information System (INIS)
Doplicher, S.
1996-01-01
We review some recent result and work in progress on the quantum structure of spacetime at scales comparable with the Planck length; the models discussed here are operationally motivated by the limitations in the accuracy of localization of events in spacetime imposed by the interplay between quantum mechanics and classical general relativity. (orig.)
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
International Nuclear Information System (INIS)
Hawking, S.W.
1984-01-01
The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Richter, Johannes; Farnell, Damian; Bishop, Raymod
2004-01-01
The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.
International Nuclear Information System (INIS)
Steane, Andrew
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Energy Technology Data Exchange (ETDEWEB)
Steane, Andrew [Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Oxford (United Kingdom)
1998-02-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Quantum mechanics with quantum time
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibart, J.
1997-01-01
This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)
Cariolaro, Gianfranco
2015-01-01
This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: · development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; · general formulation of a transmitter–receiver system · particular treatment of the most popular quantum co...
Drummond, P. D.; Chaturvedi, S.; Dechoum, K.; Comey, J.
2001-02-01
We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrödinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrödinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrödinger cat. -Pacs: 03.65.Bz
Reynolds, Helen
2000-03-01
ability keeping track of the equations and their meaning. However, the text continues to be accessible and moves swiftly from `quantum classics' such as the harmonic oscillator to electrical conductivity and the collapse of stars. Reassuringly, Treiman takes time out to ask `What's going on?' where he considers the question of how probabilities get converted into `facts' when things are measured. His own fascination with the subject comes through as he considers the different interpretations of quantum mechanics. The chapter on `building blocks' starts in 1932 when ` ... it could seem that all the basic building blocks of the whole world were at last in hand'. Swiftly and succinctly it moves through to the standard model, acknowledging that a closer look would ` ... quickly carry us far afield into highly technical thickets'. The final chapter tackles the more difficult subject of quantum field theory. This is a very swift journey through quantum electrodynamics and quantum chromodynamics. It is the final summary that stands out, however. The author reminds us what to marvel about: the miracles of quantum theory that are ` ... outrageous to common sense and intuition'. This is a useful book for any science department. It will be of particular use to those of us who studied the subject some time ago and who need to refresh their memories, for example teachers of A-level physics. The asides about `what is going on' and the history that is included make it a `book' rather than a `textbook'. First-year undergraduates, or just possibly motivated and mathematically able A-level students, would also benefit. Beware, however. The mathematics is not trivial and you would arguably need to have met it before in order to cope. Although the book occasionally relapses into textbook style you are left with a sense of the wonder of the subject and an appreciation of the beauty of the mathematics that underpins it.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
International Nuclear Information System (INIS)
Rae, A.I.M.
1981-01-01
This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)
International Nuclear Information System (INIS)
Steiner, F.
1994-01-01
A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formular is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found. (orig.)
International Nuclear Information System (INIS)
Beretta, G.P.; Gyftopoulos, E.P.; Park, J.L.
1985-01-01
A novel nonlinear equation of motion is proposed for a general quantum system consisting of more than one distinguishable elementary constituent of matter. In the domain of idempotent quantum-mechanical state operators, it is satisfied by all unitary evolutions generated by the Schroedinger equation. But in the broader domain of nonidempotent state operators not contemplated by conventional quantum mechanics, it generates a generally nonunitary evolution, it keeps the energy invariant and causes the entropy to increase with time until the system reaches a state of equilibrium or a limit cycle
Lowe, John P
1993-01-01
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,
International Nuclear Information System (INIS)
Beenakker, C W J
2005-01-01
Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The
International Nuclear Information System (INIS)
Nguyen, Ba An
2006-01-01
Absolutely and asymptotically secure protocols for organizing an exam in a quantum way are proposed basing judiciously on multipartite entanglement. The protocols are shown to stand against common types of eavesdropping attack
International Nuclear Information System (INIS)
Tittel, W.; Brendel, J.; Gissin, N.; Ribordy, G.; Zbinden, H.
1999-01-01
The principles of quantum cryptography based on non-local correlations of entanglement photons are outlined. The method of coding and decoding of information and experiments is also described. The prospects of the technique are briefly discussed. (Z.J.)
International Nuclear Information System (INIS)
Cejnar, P.
2007-01-01
Chaos is a name given in physics to a branch which, within classical mechanics, studies the consequences of sensitive dependences of the behavior of physical systems on the starting conditions, i.e., the 'butterfly wing effect'. However, how to describe chaotic behavior in the world of quantum particles? It appears that quantum mechanics does not admit the sensitive dependence on the starting conditions, and moreover, predicts a substantial suppression of chaos also at the macroscopic level. Still, the quantum properties of systems that are chaotic in terms of classical mechanics differ basically from the properties of classically arranged systems. This topic is studied by a field of physics referred to as quantum chaos. (author)
International Nuclear Information System (INIS)
Faraggi, A.E.; Matone, M.
1998-01-01
We show that the quantum Hamilton-Jacobi equation can be written in the classical form with the spatial derivative ∂ q replaced by ∂ q with dq = dq/√1-β 2 (q), where β 2 (q) is strictly related to the quantum potential. This can be seen as the opposite of the problem of finding the wave function representation of classical mechanics as formulated by Schiller and Rosen. The structure of the above open-quotes quantum transformationclose quotes, related to the recently formulated equivalence principle, indicates that the potential deforms space geometry. In particular, a result by Flanders implies that both W(q) = V(q) - E and the quantum potential Q are proportional to the curvatures κ W and κ Q which arise as natural invariants in an equivalence problem for curves in the projective line. In this formulation the Schroedinger equation takes the geometrical form (∂ q 2 + κ W )ψ = 0
Quantum Correlations Evolution Asymmetry in Quantum Channels
International Nuclear Information System (INIS)
Li Meng; Huang Yun-Feng; Guo Guang-Can
2017-01-01
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. (paper)
Duality Quantum Information and Duality Quantum Communication
International Nuclear Information System (INIS)
Li, C. Y.; Wang, W. Y.; Wang, C.; Song, S. Y.; Long, G. L.
2011-01-01
Quantum mechanical systems exhibit particle wave duality property. This duality property has been exploited for information processing. A duality quantum computer is a quantum computer on the move and passing through a multi-slits. It offers quantum wave divider and quantum wave combiner operations in addition to those allowed in an ordinary quantum computer. It has been shown that all linear bounded operators can be realized in a duality quantum computer, and a duality quantum computer with n qubits and d-slits can be realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality quantum computing mode. The quantum particle-wave duality can be used in providing secure communication. In this paper, we will review duality quantum computing and duality quantum key distribution.
Quantum correlations and distinguishability of quantum states
Energy Technology Data Exchange (ETDEWEB)
Spehner, Dominique [Université Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France and Laboratoire de Physique et Modélisation des Milieux Condensés, F-38000 Grenoble (France)
2014-07-15
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Quantum correlations and distinguishability of quantum states
International Nuclear Information System (INIS)
Spehner, Dominique
2014-01-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature
Stapp, Henry P.
2012-05-01
Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows
CERN Bulletin
2013-01-01
On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail... Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Grunspan, C.
2003-01-01
This text gives some results about quantum torsors. Our starting point is an old reformulation of torsors recalled recently by Kontsevich. We propose an unification of the definitions of torsors in algebraic geometry and in Poisson geometry. Any quantum torsor is equipped with two comodule-algebra structures over Hopf algebras and these structures commute with each other. In the finite dimensional case, these two Hopf algebras share the same finite dimension. We show that any Galois extension...
Mazilu, Michael
2015-01-01
ICOAM 2015 The electromagnetic momentum transferred transferred to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ℏk does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the tran...
International Nuclear Information System (INIS)
Hadjiivanov, L.; Todorov, I.
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the 'philosophical discussions' between Bohr, Einstein and Schrödinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schrödinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminating with the work of Alain Aspect) it was Feynman who made public the idea of a quantum computer based on the observed effect
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Quantum computing: Quantum advantage deferred
Childs, Andrew M.
2017-12-01
A type of optics experiment called a boson sampler could be among the easiest routes to demonstrating the power of quantum computers. But recent work shows that super-classical boson sampling may be a long way off.
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Quantum Transmemetic Intelligence
Piotrowski, Edward W.; Sładkowski, Jan
The following sections are included: * Introduction * A Quantum Model of Free Will * Quantum Acquisition of Knowledge * Thinking as a Quantum Algorithm * Counterfactual Measurement as a Model of Intuition * Quantum Modification of Freud's Model of Consciousness * Conclusion * Acknowledgements * References
Quantum correlations in multipartite quantum systems
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
Long distance quantum teleportation
Xia, Xiu-Xiu; Sun, Qi-Chao; Zhang, Qiang; Pan, Jian-Wei
2018-01-01
Quantum teleportation is a core protocol in quantum information science. Besides revealing the fascinating feature of quantum entanglement, quantum teleportation provides an ultimate way to distribute quantum state over extremely long distance, which is crucial for global quantum communication and future quantum networks. In this review, we focus on the long distance quantum teleportation experiments, especially those employing photonic qubits. From the viewpoint of real-world application, both the technical advantages and disadvantages of these experiments are discussed.
Electron quantum optics as quantum signal processing
Roussel, B.; Cabart, C.; Fève, G.; Thibierge, E.; Degiovanni, P.
2016-01-01
The recent developments of electron quantum optics in quantum Hall edge channels have given us new ways to probe the behavior of electrons in quantum conductors. It has brought new quantities called electronic coherences under the spotlight. In this paper, we explore the relations between electron quantum optics and signal processing through a global review of the various methods for accessing single- and two-electron coherences in electron quantum optics. We interpret electron quantum optics...
Energy Technology Data Exchange (ETDEWEB)
Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)
1999-02-01
Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weakerand weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This
Le Bellac, Michel
2006-03-01
Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises
Energy Technology Data Exchange (ETDEWEB)
Reinhard, Friedemann [Universitaet Stuttgart (Germany). 3. Physikalisches Institut
2010-07-01
Quantum minigolf is a virtual-reality computer game visualizing quantum mechanics. The rules are the same as for the classical game minigolf, the goal being to kick a ball such that it crosses an obstacle course and runs into a hole. The ball, however, follows the laws of quantum mechanics: It can be at several places at once or tunnel through obstacles. To know whether the ball has reached the goal, the player has to perform a position measurement, which converts the ball into a classical object and fixes its position. But quantum mechanics is indeterministic: There is always a chance to lose, even for Tiger Woods. Technically, the obstacle course and the ball are projected onto the floor by a video projector. The position of the club is tracked by an infrared marker, similar as in Nintendo's Wii console. The whole setup is portable and the software has been published under the GPL license on www.quantum-minigolf.org.
International Nuclear Information System (INIS)
Kendon, Viv
2014-01-01
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer
Quantum group gauge theory on quantum spaces
International Nuclear Information System (INIS)
Brzezinski, T.; Majid, S.
1993-01-01
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)
Efficient quantum circuit implementation of quantum walks
International Nuclear Information System (INIS)
Douglas, B. L.; Wang, J. B.
2009-01-01
Quantum walks, being the quantum analog of classical random walks, are expected to provide a fruitful source of quantum algorithms. A few such algorithms have already been developed, including the 'glued trees' algorithm, which provides an exponential speedup over classical methods, relative to a particular quantum oracle. Here, we discuss the possibility of a quantum walk algorithm yielding such an exponential speedup over possible classical algorithms, without the use of an oracle. We provide examples of some highly symmetric graphs on which efficient quantum circuits implementing quantum walks can be constructed and discuss potential applications to quantum search for marked vertices along these graphs.
Renormalisation in Quantum Mechanics, Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.
2001-01-01
We suggest how to construct non-perturbatively a renormalized action in quantum mechanics. We discuss similarties and differences with the standard effective action. We propose that the new quantum action is suitable to define and compute quantum instantons and quantum chaos.
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Directory of Open Access Journals (Sweden)
Jeffrey A. Barrett
2016-09-01
Full Text Available http://dx.doi.org/10.5007/1808-1711.2016v20n1p45 Because of the conceptual difficulties it faces, quantum mechanics provides a salient example of how alternative metaphysical commitments may clarify our understanding of a physical theory and the explanations it provides. Here we will consider how postulating alternative quantum worlds in the context of Hugh Everett III’s pure wave mechanics may serve to explain determinate measurement records and the standard quantum statistics. We will focus on the properties of such worlds, then briefly consider other metaphysical options available for interpreting pure wave mechanics. These reflections will serve to illustrate both the nature and the limits of naturalized metaphysics.
Mullin, William J
2017-01-01
Quantum mechanics allows a remarkably accurate description of nature and powerful predictive capabilities. The analyses of quantum systems and their interpretation lead to many surprises, for example, the ability to detect the characteristics of an object without ever touching it in any way, via "interaction-free measurement," or the teleportation of an atomic state over large distances. The results can become downright bizarre. Quantum mechanics is a subtle subject that usually involves complicated mathematics -- calculus, partial differential equations, etc., for complete understanding. Most texts for general audiences avoid all mathematics. The result is that the reader misses almost all deep understanding of the subject, much of which can be probed with just high-school level algebra and trigonometry. Thus, readers with that level of mathematics can learn so much more about this fundamental science. The book starts with a discussion of the basic physics of waves (an appendix reviews some necessary class...
International Nuclear Information System (INIS)
Isham, C.
1989-01-01
Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Exner, Pavel
2015-01-01
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Energy Technology Data Exchange (ETDEWEB)
Bohigas, Oriol [Laboratoire de Physique Theorique et Modeles Statistiques, Orsay (France)
2005-04-18
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's {zeta}-function, which has become a testing ground for RMT, QC, POT, and their relationship.
International Nuclear Information System (INIS)
Bohigas, Oriol
2005-01-01
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's ζ-function, which has become a testing ground for RMT, QC, POT, and their relationship
Page, Don N.
2006-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
International Nuclear Information System (INIS)
Habib, S.
1994-01-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Quantum control limited by quantum decoherence
International Nuclear Information System (INIS)
Xue, Fei; Sun, C. P.; Yu, S. X.
2006-01-01
We describe quantum controllability under the influences of the quantum decoherence induced by the quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle with its controlled system and then cause quantum decoherence in the controlled system. In competition with this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed quantum control process. In association with the phase uncertainty and the standard quantum limit, a general model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite energy within a finite time. It is also shown that if the operations of quantum control are to be determined by the initial state of the controller, then due to the decoherence which results from the quantum control itself, there exists a low bound for quantum controllability
Quantum memory for images: A quantum hologram
International Nuclear Information System (INIS)
Vasilyev, Denis V.; Sokolov, Ivan V.; Polzik, Eugene S.
2008-01-01
Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. [P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)]. In this paper we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multiatom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multiatom nature of the ensemble and to the optical parallelism it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram with the fidelity exceeding that of classical hologram will be able to store quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve
Quantum machine learning for quantum anomaly detection
Liu, Nana; Rebentrost, Patrick
2018-04-01
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 9. Quantum Computation - Particle and Wave Aspects of Algorithms. Apoorva Patel. General Article Volume 16 Issue 9 September 2011 pp 821-835. Fulltext. Click here to view fulltext PDF. Permanent link:
Indian Academy of Sciences (India)
performance driven optimization ofVLSI ... start-up company at lIT. Mumbai. ... 1 The best known algorithms for factorization ... make a measurement the quantum state continues to be ... cally in this way: if there is a source producing identical.
Directory of Open Access Journals (Sweden)
Alessandro Sergi
2009-06-01
Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.
International Nuclear Information System (INIS)
Mittelstaedt, P.
1979-01-01
The subspaces of Hilbert space constitute an orthocomplemented quasimodular lattice Lsub(q) for which neither a two-valued function nor generalized truth function exist. A generalisation of the dialogic method can be used as an interpretation of a lattice Lsub(qi), which may be considered as the intuitionistic part of Lsub(q). Some obvious modifications of the dialogic method are introduced which come from the possible incommensurability of propositions about quantum mechanical systems. With the aid of this generalized dialogic method a propositional calculus Qsub(eff) is derived which is similar to the calculus of effective (intuitionistic) logic, but contains a few restrictions which are based on the incommensurability of quantum mechanical propositions. It can be shown within the framework of the calculus Qsub(eff) that the value-definiteness of the elementary propositions which are proved by quantum mechanical propositions is inherited by all finite compund propositions. In this way one arrives at the calculus Q of full quantum logic which incorporates the principle of excluded middle for all propositions and which is a model for the lattice Lsub(q). (Auth.)
Burba, M.; Lapitskaya, T.
2017-01-01
This article gives an elementary introduction to quantum computing. It is a draft for a book chapter of the "Handbook of Nature-Inspired and Innovative Computing", Eds. A. Zomaya, G.J. Milburn, J. Dongarra, D. Bader, R. Brent, M. Eshaghian-Wilner, F. Seredynski (Springer, Berlin Heidelberg New York, 2006).
Raedt, Hans De; Binder, K; Ciccotti, G
1996-01-01
The purpose of this set of lectures is to introduce the general concepts that are at the basis of the computer simulation algorithms that are used to study the behavior of condensed matter quantum systems. The emphasis is on the underlying concepts rather than on specific applications. Topics
Quantum Statistical Mechanics on a Quantum Computer
Raedt, H. De; Hams, A.H.; Michielsen, K.; Miyashita, S.; Saito, K.; Saito, E.
2000-01-01
We describe a simulation method for a quantum spin model of a generic, general purpose quantum computer. The use of this quantum computer simulator is illustrated through several implementations of Grover’s database search algorithm. Some preliminary results on the stability of quantum algorithms
Quantum arithmetic with the Quantum Fourier Transform
Ruiz-Perez, Lidia; Garcia-Escartin, Juan Carlos
2014-01-01
The Quantum Fourier Transform offers an interesting way to perform arithmetic operations on a quantum computer. We review existing Quantum Fourier Transform adders and multipliers and propose some modifications that extend their capabilities. Among the new circuits, we propose a quantum method to compute the weighted average of a series of inputs in the transform domain.
Quantum Chaos via the Quantum Action
Kröger, H.
2002-01-01
We discuss the concept of the quantum action with the purpose to characterize and quantitatively compute quantum chaos. As an example we consider in quantum mechanics a 2-D Hamiltonian system - harmonic oscillators with anharmonic coupling - which is classically a chaotic system. We compare Poincar\\'e sections obtained from the quantum action with those from the classical action.
Quantum optics and fundamentals of quantum theory
International Nuclear Information System (INIS)
Dusek, M.
1997-01-01
Quantum optics has opened up new opportunities for experimental verification of the basic principles of quantum mechanics, particularly in the field of quantum interference and so-called non-local phenomena. The results of the experiments described provide unambiguous support to quantum mechanics. (Z.J.)
Quantum cryptography beyond quantum key distribution
Broadbent, A.; Schaffner, C.
2016-01-01
Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation,
Quantum Computing: a Quantum Group Approach
Wang, Zhenghan
2013-01-01
There is compelling theoretical evidence that quantum physics will change the face of information science. Exciting progress has been made during the last two decades towards the building of a large scale quantum computer. A quantum group approach stands out as a promising route to this holy grail, and provides hope that we may have quantum computers in our future.
International Nuclear Information System (INIS)
Finkelstein, D.
1989-01-01
The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics
International Nuclear Information System (INIS)
Giribet, G E
2005-01-01
Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)
Quantum Testbeds Stakeholder Workshop (QTSW) Report meeting purpose and agenda.
Energy Technology Data Exchange (ETDEWEB)
Hebner, Gregory A.
2017-04-01
Quantum computing (QC) is a promising early-stage technology with the potential to provide scientific computing capabilities far beyond what is possible with even an Exascale computer in specific problems of relevance to the Office of Science. These include (but are not limited to) materials modeling, molecular dynamics, and quantum chromodynamics. However, commercial QC systems are not yet available and the technical maturity of current QC hardware, software, algorithms, and systems integration is woefully incomplete. Thus, there is a significant opportunity for DOE to define the technology building blocks, and solve the system integration issues to enable a revolutionary tool. Once realized, QC will have world changing impact on economic competitiveness, the scientific enterprise, and citizen well-being. Prior to this workshop, DOE / Office of Advanced Scientific Computing Research (ASCR) hosted a workshop in 2015 to explore QC scientific applications. The goal of that workshop was to assess the viability of QC technologies to meet the computational requirements in support of DOE’s science and energy mission and to identify the potential impact of these technologies.
Quantum optics with single quantum dot devices
International Nuclear Information System (INIS)
Zwiller, Valery; Aichele, Thomas; Benson, Oliver
2004-01-01
A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Quantum Secure Dialogue with Quantum Encryption
International Nuclear Information System (INIS)
Ye Tian-Yu
2014-01-01
How to solve the information leakage problem has become the research focus of quantum dialogue. In this paper, in order to overcome the information leakage problem in quantum dialogue, a novel approach for sharing the initial quantum state privately between communicators, i.e., quantum encryption sharing, is proposed by utilizing the idea of quantum encryption. The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons, which can be repeatedly used after rotation. Due to quantum encryption sharing, the public announcement on the state of the initial quantum state is omitted, thus the information leakage problem is overcome. The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols. Moreover, the proposed protocol only needs single-photon measurements and nearly uses single photons as quantum resource so that it is convenient to implement in practice. (general)
Quantum key distribution via quantum encryption
Yong Sheng Zhang; Guang Can Guo
2001-01-01
A quantum key distribution protocol based on quantum encryption is presented in this Brief Report. In this protocol, the previously shared Einstein-Podolsky-Rosen pairs act as the quantum key to encode and decode the classical cryptography key. The quantum key is reusable and the eavesdropper cannot elicit any information from the particle Alice sends to Bob. The concept of quantum encryption is also discussed. (21 refs).
Quantum random walks using quantum accelerator modes
International Nuclear Information System (INIS)
Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.
2006-01-01
We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes
Quantum chemistry on a superconducting quantum processor
Energy Technology Data Exchange (ETDEWEB)
Kaicher, Michael P.; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2016-07-01
Quantum chemistry is the most promising civilian application for quantum processors to date. We study its adaptation to superconducting (sc) quantum systems, computing the ground state energy of LiH through a variational hybrid quantum classical algorithm. We demonstrate how interactions native to sc qubits further reduce the amount of quantum resources needed, pushing sc architectures as a near-term candidate for simulations of more complex atoms/molecules.
Unconventional Quantum Computing Devices
Lloyd, Seth
2000-01-01
This paper investigates a variety of unconventional quantum computation devices, including fermionic quantum computers and computers that exploit nonlinear quantum mechanics. It is shown that unconventional quantum computing devices can in principle compute some quantities more rapidly than `conventional' quantum computers.
Physics of quantum computation
International Nuclear Information System (INIS)
Belokurov, V.V.; Khrustalev, O.A.; Sadovnichij, V.A.; Timofeevskaya, O.D.
2003-01-01
In the paper, the modern status of the theory of quantum computation is considered. The fundamental principles of quantum computers and their basic notions such as quantum processors and computational basis states of the quantum Turing machine as well as the quantum Fourier transform are discussed. Some possible experimental realizations on the basis of NMR methods are given
International Nuclear Information System (INIS)
Akhiezer, A.I.
1983-01-01
Basic ideas of quantum electrodynamics history of its origination and its importance are outlined. It is shown low the notion of the field for each kind of particles and the notion of vacuum for such field had originated and been affirmed how a new language of the Feynman diagrams had appeared without which it is quite impossible to described complex processes of particle scattering and mutual transformation. The main problem of the quantum electrodynamics is to find a scattering matrix, which solution comes to the determination of the Green electrodynamic functions. A review is given of papers on clarifying the asymptotic behaviour of the Green electrodynamic functions in the range of high pulses, on studying the Compton effect, bremsstrahlung irradiation Raman light scattering elastic scattering during channeling of charged particles in a crystal
Greiner, Walter
2009-01-01
This textbook on Quantum Electrodynamics is a thorough introductory text providing all necessary mathematical tools together with many examples and worked problems. In their presentation of the subject the authors adopt a heuristic approach based on the propagator formalism. The latter is introduced in the first two chapters in both its nonrelativistic and relativistic versions. Subsequently, a large number of scattering and radiation processes involving electrons, positrons, and photons are introduced and their theoretical treatment is presented in great detail. Higher order processes and renormalization are also included. The book concludes with a discussion of two-particle states and the interaction of spinless bosons. This completely revised and corrected new edition provides several additions to enable deeper insight in formalism and application of quantum electrodynamics.
Baaquie, Belal E; Demongeot, J; Galli-Carminati, Giuliana; Martin, F; Teodorani, Massimo
2015-01-01
At the end of the 19th century Sigmund Freud discovered that our acts and choices are not only decisions of our consciousness, but that they are also deeply determined by our unconscious (the so-called "Freudian unconscious"). During a long correspondence between them (1932-1958) Wolfgang Pauli and Carl Gustav Jung speculated that the unconscious could be a quantum system. This book is addressed both to all those interested in the new developments of the age-old enquiry in the relations between mind and matter, and also to the experts in quantum physics that are interested in a formalisation of this new approach. The description of the "Bilbao experiment" adds a very interesting experimental inquiry into the synchronicity effect in a group situation, linking theory to a quantifiable verification of these subtle effects. Cover design: "Entangled Minds". Riccardo Carminati Galli, 2014.
International Nuclear Information System (INIS)
Zubairy, Suhail
2005-01-01
Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the
Haroche, Serge
2013-01-01
From the infinitely small to the infinitely big, covering over 60 spatial orders of magnitude, quantum theory is used as much to describe the still largely mysterious vibrations of the microscopic strings that could be the basic constituents of the Universe, as to explain the fluctuations of the microwave radiation reaching us from the depths of outer space. Serge Haroche tells us about the scientific theory that revolutionised our understanding of nature and made an extraordinary contributio...
Martin Schaden
2002-01-01
Quantum theory is used to model secondary financial markets. Contrary to stochastic descriptions, the formalism emphasizes the importance of trading in determining the value of a security. All possible realizations of investors holding securities and cash is taken as the basis of the Hilbert space of market states. The temporal evolution of an isolated market is unitary in this space. Linear operators representing basic financial transactions such as cash transfer and the buying or selling of...
Quantum Secure Direct Communication with Quantum Memory.
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-02
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad
Energy Technology Data Exchange (ETDEWEB)
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the
Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing
Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias
2017-10-01
Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.
Mermin, N. David
2007-08-01
Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.
Indian Academy of Sciences (India)
Jyotishman Bhowmick
2015-11-07
Nov 7, 2015 ... Classical. Quantum. Background. Compact Hausdorff space. Unital C∗ algebra. Gelfand-Naimark. Compact Group. Compact Quantum Group. Woronowicz. Group Action. Coaction. Woronowicz. Riemannian manifold. Spectral triple. Connes. Isometry group. Quantum Isometry Group. To be discussed.
Pilar, Frank L
2003-01-01
Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.
On quantum statistical inference
Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.
2003-01-01
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have
Lvovsky, Alexander I.; Sanders, Barry C.; Tittel, Wolfgang
2009-12-01
Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that matches various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a mechanism to convert heralded photons to on-demand photons. In addition to quantum computing, quantum memory will be instrumental for implementing long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied, such as optical delay lines, cavities and electromagnetically induced transparency, as well as schemes that rely on photon echoes and the off-resonant Faraday interaction. Here, we report on state-of-the-art developments in the field of optical quantum memory, establish criteria for successful quantum memory and detail current performance levels.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Quantum conductance in silicon quantum wires
Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A
2002-01-01
The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)
Quantum probability and quantum decision-making.
Yukalov, V I; Sornette, D
2016-01-13
A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary. © 2015 The Author(s).
Interpreting quantum discord through quantum state merging
International Nuclear Information System (INIS)
Madhok, Vaibhav; Datta, Animesh
2011-01-01
We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single-copy scenario.
Characterization of quantum logics
International Nuclear Information System (INIS)
Lahti, P.J.
1980-01-01
The quantum logic approach to axiomatic quantum mechanics is used to analyze the conceptual foundations of the traditional quantum theory. The universal quantum of action h>0 is incorporated into the theory by introducing the uncertainty principle, the complementarity principle, and the superposition principle into the framework. A characterization of those quantum logics (L,S) which may provide quantum descriptions is then given. (author)
International Nuclear Information System (INIS)
Kiefer, C.
2004-01-01
The following topics are dealt with: Particles and waves, the superposition principle and probability interpretation, the uncertainty relation, spin, the Schroedinger equation, wave functions, symmetries, the hydrogen atom, atoms with many electrons, Schroedinger's cat and the Einstein-podolsky-Rosen problem, the Bell inequalities, the classical limit, quantum systems in the electromagnetic field, solids and quantum liquids, quantum information, quantum field theory, quantum theory and gravitation, the mathematical formalism of quantum theory. (HSI)
Ying, Mingsheng; Yu, Nengkun; Feng, Yuan
2012-01-01
A remarkable difference between quantum and classical programs is that the control flow of the former can be either classical or quantum. One of the key issues in the theory of quantum programming languages is defining and understanding quantum control flow. A functional language with quantum control flow was defined by Altenkirch and Grattage [\\textit{Proc. LICS'05}, pp. 249-258]. This paper extends their work, and we introduce a general quantum control structure by defining three new quantu...
Relativistic quantum cryptography
International Nuclear Information System (INIS)
Molotkov, S. N.
2011-01-01
A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.
From quantum coherence to quantum correlations
Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong
2017-06-01
In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.
Quantum signature scheme for known quantum messages
International Nuclear Information System (INIS)
Kim, Taewan; Lee, Hyang-Sook
2015-01-01
When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)
International Nuclear Information System (INIS)
Casati, G.; Chirikov, B.V.
1996-01-01
Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru
Schürmann, Michael
2008-01-01
This volume contains the revised and completed notes of lectures given at the school "Quantum Potential Theory: Structure and Applications to Physics," held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald from February 26 to March 10, 2007. Quantum potential theory studies noncommutative (or quantum) analogs of classical potential theory. These lectures provide an introduction to this theory, concentrating on probabilistic potential theory and it quantum analogs, i.e. quantum Markov processes and semigroups, quantum random walks, Dirichlet forms on C* and von Neumann algebras, and boundary theory. Applications to quantum physics, in particular the filtering problem in quantum optics, are also presented.
1990-01-01
Quantum electrodynamics is an essential building block and an integral part of the gauge theory of unified electromagnetic, weak, and strong interactions, the so-called standard model. Its failure or breakdown at some level would have a most profound impact on the theoretical foundations of elementary particle physics as a whole. Thus the validity of QED has been the subject of intense experimental tests over more than 40 years of its history. This volume presents an up-to-date review of high precision experimental tests of QED together with comprehensive discussion of required theoretical wor
International Nuclear Information System (INIS)
Ratel, H.
1999-01-01
A new stage in non-destructive quantum measurements has been reached by a French team, it is now possible to measure photons without disturbing them. The photon beam goes through a non-linear transparent medium, this medium is modified by the passing of the beam, a second photon beam is sent through the same medium, this beam whose energy is weaker can read the modifications of the transparent crystal left by the first beam. The study of these modifications gives information on the photons of the first beam. (A.C.)
International Nuclear Information System (INIS)
Flytzanis, C.
1988-01-01
The 1988 progress report of the Quantum Optics laboratory (Polytechnic School, France) is presented. The research program is focused on the behavior of dense and dilute materials submitted to short and high-intensity light radiation fields. Nonlinear optics techniques, with time and spatial resolution, are developed. An important research activity concerns the investigations on the interactions between the photon beams and the inhomogeneous or composite materials, as well as the artificial microstructures. In the processes involving molecular beams and surfaces, the research works on the photophysics of surfaces and the molecule-surface interactions, are included [fr
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Manin's quantum spaces and standard quantum mechanics
International Nuclear Information System (INIS)
Floratos, E.G.
1990-01-01
Manin's non-commutative coordinate algebra of quantum groups is shown to be identical, for unitary coordinates, with the conventional operator algebras of quantum mechanics. The deformation parameter q is a pure phase for unitary coordinates. When q is a root of unity. Manin's algebra becomes the matrix algebra of quantum mechanics for a discretized and finite phase space. Implications for quantum groups and the associated non-commutative differential calculus of Wess and Zumino are discussed. (orig.)
Quantum groups and quantum homogeneous spaces
International Nuclear Information System (INIS)
Kulish, P.P.
1994-01-01
The usefulness of the R-matrix formalism and the reflection equations is demonstrated on examples of the quantum group covariant algebras (quantum homogeneous spaces): quantum Minkowski space-time, quantum sphere and super-sphere. The irreducible representations of some covariant algebras are constructed. The generalization of the reflection equation to super case is given and the existence of the quasiclassical limits is pointed out. (orig.)
Quantum Hall effect in quantum electrodynamics
International Nuclear Information System (INIS)
Penin, Alexander A.
2009-01-01
We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted
Characterizing and quantifying quantum chaos with quantum ...
Indian Academy of Sciences (India)
We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under the application of the Floquet operator of a quantum map that possesses (or lacks) time-reversal ...